

1 **Opposing roles for ADAMTS2 and ADAMTS14 in myofibroblast differentiation and function**

2

3 Edward P Carter^{1#}, Kubra K Yonetan¹, Nuria Gavara², Eleanor J Tyler³, Valentine Gauthier³,
4 Elizabeth R Murray¹, Angus J Cameron¹, Oliver Pearce³, Richard P Grose^{1#}.

5

6

7

8 1. Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London,
9 London EC1M 6BQ, UK

10

11 2. Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat
12 de Barcelona, Barcelona, Spain.

13

14 3. Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of
15 London, London EC1M 6BQ, UK

16

17 # Co-corresponding author

18

19 **Abstract**

20 Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation
21 of stellate cells into myofibroblasts that drive. To assess co-operative mechanisms in a 3D context,
22 we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-
23 specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes
24 underpinning invasion. This dataset highlighted stellate-specific expression of the collagen-
25 processing enzymes ADAMTS2 and ADAMTS14. While both proteases contributed to collagen-
26 processing, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast
27 differentiation and invasion. Proteomic analysis revealed enrichment of known, protease-specific
28 substrates following knockdown of either protease. Functional analysis demonstrated that these two
29 enzymes regulate myofibroblast differentiation through opposing roles in regulating transforming
30 growth factor β availability, acting on protease-specific substrates, SERPINE2 and Fibulin2, for
31 ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we
32 uncover a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma.

33 **Introduction**

34 Treatment options are limited in pancreatic ductal adenocarcinoma (PDAC) due to the late stage of
35 diagnosis and substantial desmoplasia within the tumour. Central to the dense desmoplasia are
36 pancreatic stellate cells – tissue resident stromal cells that activate to become cancer-associated
37 fibroblasts (CAF) when exposed to the tumour milieu¹⁻⁴. These activated stellate cells secrete high
38 levels of extracellular matrix⁵, promote therapy resistance⁶, facilitate cancer cell invasion⁷, and
39 contribute to the pool of CAFs within the tumour⁸. Consequently, stellate cells have received
40 considerable attention as a potential therapeutic target⁹. However, efforts to target stellate cells has
41 been complicated by CAF heterogeneity and conflicting functional roles.

42 Paradoxically, depletion of activated stellate cells has led to more aggressive tumours, casting a
43 light on their tumour-restrictive functions^{10,11}. The remarkable plasticity of stellate cells enables them
44 to adopt multiple phenotypes when presented with distinct tumour microenvironmental cues^{1,2,12}.
45 Thus, unlocking the therapeutic potential of these cells demands a detailed understanding of their
46 biology, to determine critical mechanistic nodes that can be targeted, rather than focusing solely on
47 depleting stellate cell number.

48 Using a heterospecific approach to generate chimeric PDAC spheres, followed by post-hoc
49 bioinformatic deconvolution, we have established high fidelity transcriptional signatures of cancer
50 and stellate cells in a 3D model of stellate-led invasion. Interrogating these data to gain insight into
51 cellular crosstalk in an invasive context, we show that stellate cells specifically express the collagen
52 processing enzymes ADAMTS2 and ADAMTS14. Cellular and biochemical analyses revealed that,
53 while acting similarly in relation to collagen processing, these enzymes have directly opposing roles
54 on myofibroblast differentiation, with both playing a critical role in regulating the bioavailability of
55 transforming growth factor beta (TGF β).

56

57

58 **Results**

59 **Chimeric spheroids reveal invasive cancer and stellate cell transcriptomes**

60 We have previously described a 3D spheroid model of stellate-led invasion using stellate and cancer
61 cells combined together in heterocellular spheres embedded in a 3D matrix (Figure 1A)^{1,4}. This
62 model is highly tractable, allowing modulation of either cellular compartment, and is amenable to
63 pharmacological interventions, with invasion and proliferation acting as objective, quantifiable,
64 readouts.

65 A challenge with heterocellular 3D models is identifying the cell type-specific biology that underpins
66 the overall behaviour. Methods to isolate the individual cell types do not necessarily maintain
67 transcriptomic fidelity, particularly if lengthy digestion and separation steps are involved¹³. To
68 overcome this, we assembled chimeric spheroids using murine and human cancer and stellate cells.
69 Intriguingly, while spheroids composed of human PDAC cells alone showed minimal invasion,
70 spheres of murine PDAC cells could invade in the absence of stellate cells (Supp Figure 1A).
71 Nevertheless both combinations generated spheres with invasive projections led by stellate cells
72 (Figure 1B; Supp Figure 1A, B), indicating that while murine PDAC cells could invade alone they
73 retained a preference for stellate-led invasion.

74 After three days of culture, when invasive projections had formed, chimeric spheroids were
75 harvested directly into RNA lysis buffer. Cell type-specific information was then obtained from bulk
76 RNA sequencing by matching sequencing reads to parent species and thus cell type (Figure 1C).
77 Comparing cancer with stellate cell signatures thus yielded cell type specific transcriptomes in an
78 invasive context (Figure 1D; Supp Figure 1C; Supp file 1). Gene over-representation analysis
79 confirmed cell type specific information; cancer cell signatures were prominently enriched for genes
80 involved in proliferation, while stellate cell signatures were enriched for genes related to invasion
81 and matrix remodeling (Figure 1E, F; Supp Figure 1D, E).

82 Of particular interest in the context of remodelling, the metzincin family of proteases, comprising
83 both matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs), are
84 major invasion-promoting proteases in PDAC¹⁴. Our dataset highlights that the majority of these
85 enzymes are produced by stellate rather than cancer cells (Figure 2A, Supp Figure 2A), prompting
86 us to interrogate the role of key family members in stellate-cancer cell interactions.

87

88 **Stellate cells express collagen-processing enzymes**

89 Mature collagen fibres have recently been shown to restrain PDAC progression^{11,15}. Newly
90 synthesised collagen is released into the matrix as a pro-collagen trimer, which requires cleavage
91 of the N- and C- termini before it can be cross-linked and bundled into mature collagen fibres (Figure
92 2B). Bone morphogenic protein 1 (BMP1) is responsible for cleaving the C-terminus, while
93 ADAMTS2, 3, and 14 cleave the N-terminus¹⁶. BMP1 is down-regulated in PDAC, resulting in the
94 formation of disorganised collagen fibres that facilitate progression¹⁵, highlighting the clinical
95 importance of these collagen processing enzymes in PDAC.

96

97 In both our human and mouse datasets BMP1, ADAMTS2 and ADAMTS14, were preferentially
98 expressed in stellate cells, while ADAMTS3 was undetected (Figure 2A; Supp Figure 2A). Given the
99 role of BMP1 in PDAC, we investigated whether ADAMTS2 and ADAMTS14 might also impact on
100 PDAC progression

101

102 We first examined the ability of stellate cells to process collagen when either ADAMTS2 or
103 ADAMTS14 were disrupted. Non-reducing SDS-PAGE gels revealed a reduction in mature
104 processed collagen in stellate cell culture medium following knockdown of either ADAMTS2 or
105 ADAMTS14 (Figure 2C; Supp Figure 2B, C). When embedded in floating collagen gels, loss of either
106 ADAMTS2 or ADAMTS14 reduced gel contraction (Figure 2D, E), consistent with the phenotype
107 previously reported with fibroblasts lacking ADAMTS2 and indicative of impaired collagen
108 processing¹⁷. The number of cells within the gel was consistent between conditions, suggesting the

109 effect was not a result of changes to proliferation (Supp Figure 2D). Second harmonic generation
110 (SHG) microscopy of contracted collagen gels revealed a reduction in fibrillar collagen content
111 following knockdown of either ADAMTS2 or ADAMTS14 (Figure 2F-H), which was confirmed
112 through Sirius Red imaging of sectioned collagen gels (Figure 2I).

113

114 These data suggest that loss of either ADAMTS2 or ADAMTS14 in stellate cells reduces their ability
115 to produce mature collagen fibres, prompting us to investigate their impact on stellate-led invasion.

116

117 **ADAMTS2 and ADAMTS14 have opposite effects on myofibroblast function**

118 Knockdown of ADAMTS2 in either mouse or human stellate cells significantly reduced stellate-led
119 invasion of cancer cells (Figure 3A; Supp Figure 3A). Strikingly however, knockdown of ADAMTS14
120 in either mouse or human stellate cells enhanced invasion dramatically (Figure 3A, Supp Figure
121 3A). No changes in sphere size were observed, again confirming the result was not due to a change
122 in proliferation. An increase in stellate cell migration following loss of ADAMTS14 was confirmed in
123 a Boyden chamber migration assay (Figure 3B, C).

124

125 Stellate-led invasion is enhanced when the stellate cells adopt a myofibroblastic phenotype, a key
126 characteristic of which is the presence of α -smooth muscle actin (α SMA) fibres¹. Compared to
127 control stellate cells, loss of ADAMTS14 greatly enhanced α SMA fibre content, suggesting that lack
128 of ADAMTS14 drove stellate cells to a myofibroblastic state (Figure 3D, E).

129

130 The principal growth factor regulating myofibroblast differentiation is TGF β ¹⁸. Exogenous TGF β
131 promotes α SMA expression and fibre formation, both of which were diminished significantly in
132 stellate cells lacking ADAMTS2 (Figure 3F, G; Supp Figure 3B). While loss of ADAMTS14 promoted
133 α SMA expression and fibre formation, co-treatment with a TGF β receptor (TGF β R) inhibitor
134 significantly reduced this effect (Figure 3H, I; Supp Figure 3C). Together this implies that ADAMTS2

135 and ADAMTS14 have opposing roles on myofibroblast differentiation, in a TGF β -dependent
136 manner.

137

138 **ADAMTS2 and ADAMTS14 regulate distinct matrisomal phenotypes**

139 ADAMTS2 and ADAMTS14 have equivalent effects on collagen processing, suggesting that their
140 roles in regulating myofibroblast differentiation are independent of their impact on collagen
141 processing, and likely regulated through enzyme-specific substrates (Figure 4A). Indeed, distinct
142 repertoires of cleavage substrates have been reported for both enzymes¹⁹. We reasoned that loss
143 of either ADAMTS2 or ADAMTS14 would increase levels of the respective substrate(s) responsible
144 for modulating myofibroblast differentiation.

145

146 As the majority of identified substrates for these enzymes are extracellular matrix proteins¹⁹, we
147 performed matrisomics on stellate cells following knockdown of either ADAMTS2 or ADAMTS14.
148 Loss of either protease resulted in distinct matrisome signatures (Figure 4B-E, Supp file 2), with
149 greater changes being observed following loss of ADAMTS14, likely reflective of differentiation to a
150 myofibroblastic phenotype.

151

152 Comparison between our matrisome data and a previously published data set of ADAMTS2/14
153 substrates identified significant enrichment of the ADAMTS2 substrates SERPINE2 and TIMP1 in
154 stellate cells lacking ADAMTS2 (Figure 4F)¹⁹. Furthermore, multiple ADAMTS14 substrates were
155 significantly enriched in the matrisome of stellate cells following ADAMTS14 knockdown, namely
156 COL18A1, MMP1, TIMP1 and Fibulin2 (FBLN2) (Figure 4G).

157

158 **The ADAMTS2 substrate SERPINE2 regulates myofibroblast differentiation**

159 Having identified enrichment of the ADAMTS2 substrates TIMP1 and SERPINE2 in stellate cells
160 with ADAMTS2 knockdown (Figure 4F; Supp Figure 4A), we next sought to identify if either was
161 responsible for restraining myofibroblast differentiation. Knockdown of TIMP1 alongside ADAMTS2

162 failed to rescue the reduced invasion caused by loss of ADAMTS2 alone (Supp Figure 4B, D). Loss
163 of TIMP1 has previously been shown to promote a myofibroblastic phenotype²⁰, so its inability to
164 affect invasion in this context is surprising.

165

166 Concurrent knockdown of SERPINE2 alongside ADAMTS2 reversed the loss of invasion observed
167 with ADAMTS2 knockdown alone (Figure 5A; Supp Figure 4C, E), suggesting SERPINE2 might be
168 a key ADAMTS2 substrate in regulating invasion. SERPINE2 is a serine protease inhibitor that can
169 modulate plasmin activity through inhibition of plasminogen activators²¹. In support of this, plasmin
170 activity in stellate cell supernatant was reduced in cells lacking ADAMTS2, which was rescued with
171 concomitant knock down of SERPINE2 (Figure 5B). Equally, treatment of spheres with the serine
172 protease inhibitor aprotinin reduced invasion compared to control counterparts (Figure 5C), leading
173 to a model where ADAMTS2 facilitates TGF β release through degradation of the plasmin inhibitor,
174 SERPINE2 (Figure 5D).

175

176 **ADAMTS14 regulates myofibroblast differentiation through Fibulin2**

177 Loss of ADAMTS14 increased the levels of the ADAMTS14 substrates COL18A1, MMP1, TIMP1
178 and Fibulin2 (Figure 4G, Supp Figure 5A). To determine which might be responsible for the
179 observed invasive phenotype, we performed an siRNA screen of all the upregulated matrisome
180 proteins, in combination with ADAMTS14 knockdown (Figure 6A). α SMA fibre intensity was then
181 assessed following co-knockdown as a marker of myofibroblast differentiation (Figure 6B).
182 Compared to ADAMTS14 knockdown alone, combination with either IL-1 β or Kininogen-1
183 knockdown greatly increased α SMA fibre expression. Of the known ADAMTS14 substrates, only
184 concurrent knockdown of either MMP1 or Fibulin2 was able to significantly reverse the effect of
185 ADAMTS14 knockdown alone.

186

187 Despite perturbing α SMA fibre expression, dual knockdown of MMP1 together with ADAMTS14 in
188 stellate cells was unable to prevent the enhanced invasive phenotype observed with loss of

189 ADAMTS14 alone (Supp Figure 5B, C). Conversely, co-knockdown of Fibulin2 blocked the invasive
190 phenotype seen with ADAMTS14 knockdown in cancer spheroids containing either human or murine
191 stellate cells (Figure 6C; Supp Figure 5D). Additionally, stellate cell migration in a Boyden chamber
192 model was also blocked with concomitant knockdown of both ADAMTS14 and Fibulin2 (Figure 6D).

193

194 In further support for a role of Fibulin2 in mediating the effects of ADAMTS14 on myofibroblast
195 function, co-knockdown abrogated the enhanced α SMA expression and fibre formation phenotype
196 associated with ADAMTS14 silencing (Figure 6E; Supp Figure 5E, F). Together these data implicate
197 ADAMTS14 as a key regulator of TGF β bioavailability (Figure 6F).

198

199 **Discussion**

200 Stromal targeting in cancer requires careful dissection of the functions of the various stromal
201 constituents to ensure preferential targeting of pro-tumoural axes over tumour-restrictive ones. 3D
202 model systems provide an excellent environment to dissect stromal biology by faithfully
203 recapitulating cell-cell and cell-matrix interactions in a highly tractable setting¹³. Our chimeric model
204 of cancer/stellate interactions has captured the expression states of both cell types, providing cell
205 type-specific data from a 3D invasive context. This data set serves as an invaluable resource to
206 interrogate cell type specific functions and critical cell-cell signals required for invasion that can be
207 exploited therapeutically.

208

209 We have focussed on protease expression in both cell types due to their importance in invasion.
210 Cell type-specific expression of proteases in the tumour environment can be difficult to discern due
211 to their secreted nature. Our data set demonstrates that the majority of proteases are produced from
212 stellate cells compared to cancer cells. Indeed, stellate-derived MMP14 has been shown to promote
213 cancer cell invasion^{22,23}, supporting stellate cells as a source for invasive proteases.

214

215 The collagen processing enzymes ADAMTS2 and ADAMTS14 were highly enriched in our data set
216 and loss of either perturbed collagen processing by stellate cells. Mutations in ADAMTS2 account
217 for a dermatosparatic version of Ehlers-Danlos syndrome characterised by fragile skin as a
218 consequence of impaired collagen processing²⁴. ADAMTS2 knockout mice display the same fragile
219 skin condition but still exhibit some processed collagen in the dermis, owing to partial redundancy
220 through ADAMTS14²⁵. Tissue specific expression and partial redundancy between the procollagen
221 N-endopeptidase family, which also includes ADAMTS3, explains why loss of ADAMTS2 does not
222 have a more global effect on collagen rich tissues²⁵.

223

224 Despite both ADAMTS2 and ADAMTS14 having identical roles in collagen processing, they
225 exhibited remarkably divergent roles on myofibroblast differentiation, implicating crucial collagen-
226 independent roles for these enzymes. Indeed, alternative substrates for the ADAMTS family have
227 been identified, demonstrating their much broader roles in matrix regulation¹⁹. For instance,
228 ADAMTS3 is necessary for lymphangiogenesis through proteolysis of VEGF-C²⁶.

229

230 Our matrisomics approach identified potential substrates that mediate the ability of ADAMTS2 and
231 ADAMTS14 to impact on stellate-led invasion. Significant increase in matrisomal levels of
232 SERPINE2, a serine protease inhibitor and known ADAMTS2 substrate¹⁹, following ADAMTS2
233 silencing, implicated this as a key mediator of the anti-invasive phenotype. SERPINE2 blocks the
234 activity of Urokinase Plasminogen Activator (uPA)²¹, which in turn cleaves Plasminogen to yield
235 active Plasmin²⁷. Plasmin plays an important role in the tumour microenvironment by proteolytically
236 releasing active TGFβ from its latent complex²⁸⁻³⁰. Free TGFβ drives stellate cells towards a pro-
237 invasive myofibroblastic phenotype¹⁸. Given that loss of ADAMTS2 perturbs TGFβ activity, we
238 propose that ADAMTS2 regulates myofibroblast differentiation through the inhibition of SERPINE2.
239 In the absence of ADAMTS2, SERPINE2 levels increase, which in turn blocks the activity of uPA.
240 This reduces the activation of Plasmin, preventing the release of TGFβ (Figure 5C).

241 To interrogate the anti-invasive effect of ADAMTS14, we focussed on determining key substrates
242 that might mediate the pro-myofibroblastic phenotype seen when ADAMTS14 is silenced. Although
243 we focussed on targets that blocked α SMA fibre formation following ADAMTS14 silencing in our
244 combination siRNA screen, the validity of the screen was confirmed by enhanced α SMA fibre
245 formation following concomitant loss of IL-1 β , which is known to antagonise the effects of TGF β ¹⁸.

246

247 More importantly, the screen identified Fibulin2 as a potential ADAMTS14 substrate which mediates
248 the anti-invasive effects of ADAMTS14. Fibulin2 regulates the availability of matrix-bound TGF β by
249 competing with the large latent complex of TGF β for binding to the matrix component Fibrillin³¹. The
250 importance of this matrix sink for TGF β regulation is exemplified by Marfan syndrome, which is
251 caused by mutations in the binding site for latent TGF β on Fibrillin and is characterised by
252 hyperactive TGF β signalling³². Fibrillin is also a major component of the pancreatic tumour
253 microenvironment³³. Thus, we propose that ADAMTS14 regulates myofibroblast differentiation by
254 modulating Fibulin2 proteolysis. In the absence of ADAMTS14, Fibulin2 levels are increased, and
255 Fibulin2 in turn outcompetes latent TGF β for binding to Fibrillin, facilitating release of active TGF β
256 into the tumour milieu (Figure 6F).

257

258 Stellate cells are remarkably plastic and will adopt different states depending on extracellular cues¹²,
259 with discrete tumoural compartment signalling further refining cellular phenotypes¹⁸. Together, our
260 data reveal that ADAMTS2 and ADAMTS14 can differentially regulate the availability of extracellular
261 TGF β and in turn the myofibroblastic differentiation of stellate cells. Thus, these enzymes or their
262 substrates may present novel opportunities for biomarker development and innovative angles for
263 stromal targeting in PDAC.

264

265

266

267

268 **Materials and Methods**

269

270 **Cell Culture**

271 All cells were maintained in DMEM:F12 medium (Sigma, D8437) supplemented with 10% foetal
272 bovine serum (FBS; Gibco) at 37°C 5% CO₂. The murine pancreatic cancer cell lines R254 and
273 DT6066 were a kind gift from Professor Hodivala-Dilke (BCI). Mouse PSCs were isolated from wild
274 type C57BL/6 mice as previously described¹.

275

276 **Spheroid assay**

277 To form spheres, 20 µL droplets containing a total of 1000 cancer and stellate cells in a 1:2 ratio
278 were prepared in a 0.24% solution of methylcellulose (M0512, Sigma) and plated on the underside
279 of a tissue culture plate lid. 24 hours later, spheroids were collected and pelleted at 100x g for 3
280 minutes before being re-suspended in a gel mix solution consisting of 2 mg/mL Collagen I (Corning,
281 354236) and 17.5% Matrigel (Corning, 354234), prepared in culture medium and buffered to
282 physiological pH with 1N NaOH. Approximately 6 spheroids suspended in gel mix were added to
283 pre-coated wells of a low attachment 96 well plate and left to solidify at 37°C before culture medium
284 was added on top.

285

286 Spheroids were imaged using an Axiovert 135 (Carl Zeiss) camera and percentage invasive area
287 quantified using ImageJ (National Institutes of Health), using the equation: % invasive area = ((total
288 area - central area)/central area) x 100.

289

290 **Collagen gel contraction assay**

291 50,000 stellate cells were cast into 3 mg/mL Collagen gels (Corning, 354236) prepared with 10x
292 DMEM (Sigma, D2429) and buffered to physiological pH with 1N NaOH. Gels were placed into wells
293 of a 24 well tissue culture plate and solidified at 37°C for 1 hour before culture medium was added
294 on top. 24 hours later, gels were released and allowed to float in culture medium. Gels were imaged

295 after 72 hours and the level of contraction calculated by comparing the area of the gel to the area
296 of the culture well.

297

298 ***Migration assay***

299 700 cancer and 1400 stellate cells were seeded in culture medium containing 1% FBS into the apical
300 compartment of an Incucyte Clearview 96-well plate (Sartorius, 4582) at a 1:2 ratio. Basolateral
301 compartments were filled with culture medium containing 10% FBS and plates were placed in an
302 Incucyte S3 Imaging System (Sartorius). Images of the apical and basolateral sides of the porous
303 membrane were captured every 4 hours over 3 days. At each time point, migration was calculated
304 as the percentage of cells present in the basolateral compartment compared to the total number of
305 cells in both apical and basolateral compartments.

306

307 ***siRNA transfection***

308 Cells were transfected with siRNA using Lipofectamine 3000 (Invitrogen) following manufacturer's
309 guidelines. Indicated SMART Pool siGENEOME siRNAs containing 5 siRNA duplexes were
310 purchased from Horizon Bioscience.

311

312 ***RNA extraction and qPCR***

313 RNA for qPCR was extracted using the Monarch Total RNA Miniprep kit (T2010, New England
314 Biolabs), and reverse transcription performed using LunaScript RT SuperMix (E3010, New England
315 Biolabs) according to manufacturer's instructions. qPCR samples were prepared with
316 Luna Universal qPCR Master Mix (M3003, New England Biolabs) and analysed using a Step One
317 Plus Instrument (Applied Biosystems) with recommended cycle conditions. Primers used are
318 indicated in Table 1.

319

320

321

322 **Western blotting**

323 Cells lysates were prepared in 50 mM Tris-HCl, 150 mM NaCl, 1% Nonidet P40 buffer supplemented
324 with protease (EMD Millipore) and phosphatase (EMD Millipore) inhibitor cocktails. Proteins were
325 separated on a 10% SDS-PAGE gel, transferred onto a nitrocellulose membrane and blocked in 5%
326 milk/TBST before being incubated overnight at 4°C in primary antibody (diluted 1:1000 in 5%
327 BSA/TBST). Membranes were then incubated for 1 hour with a species-appropriate HRP-
328 conjugated secondary antibody (diluted 1:5000 in TBST) before bands were visualised using
329 Immobilon Forte Western HRP Substrate (Merck Millipore). Primary antibodies used were mouse
330 anti- α SMA (Dako, M0851), rabbit anti-Collagen I (Novus, NB600-408), rabbit anti-Fibulin 2
331 (Invitrogen, PA521640), rabbit anti-ADAMTS14 (Invitrogen, PA5103578), and mouse anti-HSC70
332 (Santa Cruz, sc7298). HRP-linked secondary antibodies used were goat anti-mouse (Dako, P0447)
333 and goat anti-rabbit (Dako, P0448).

334

335 **Immunofluorescence and Imaging**

336 Cells were fixed with 4% PFA, permeabilised with 0.1% Triton X-100 for 15 minutes, and then
337 blocked in 5% BSA/PBS for 1 hour. Cells were then incubated for 1 hour with anti- α SMA (Dako,
338 M0851) primary antibody diluted 1:200 in 5% BSA/PBS. Subsequently cells were incubated for 1
339 hour with Alexa-546 donkey anti-mouse (Invitrogen, A11003) secondary antibody diluted 1:200 in
340 5% BSA/PBS before being mounted using MOWIOL solution. Where indicated, filamentous actin
341 was labelled through incubation with Alexa-647 phalloidin (Cell Signalling Technologies) prior to
342 mounting.

343

344 Spheroids containing fluorescently labelled cells were fixed in 10% formalin before being mounted
345 in MOWIOL solution on slides with a raised border for coverslip attachment.

346

347 Collagen gels were fixed in 10% formalin and embedded in paraffin. 3 µm sections were then stained
348 for collagen fibres with PicoSirius Red by the BCI Pathology Core Facility prior to imaging on a
349 Pannoramic scanner (3DHISTECH).

350

351 2D immunofluorescence images were acquired using either a LSM710 Zeiss confocal microscope
352 or INCA2200 high-content microscope. 3D spheroid Z-stack images were acquired using an
353 LSM880 Zeiss confocal microscope. Second harmonic imaging of collagen gels was acquired using
354 a Leica SP8 DIVE multiphoton microscope.

355

356 α SMA fibre intensity per cell was calculated as previously described^{1,34}. Alternatively, mean α SMA
357 intensity per field of view was calculated using ImageJ software. For each condition, a minimum of
358 five random fields of view per biological repeat was analysed.

359

360 ***Lentiviral Production***

361 All lentiviral particles were generated by co-transfecting HEK293T cells with 3.25 µg pCMVR8.2
362 (Addgene #12263) and 1.7 µg pMD2.G (Addgene #12259) packaging plasmids, and 5 µg of either
363 H2B-GFP (Addgene #11680) or H2B-RFP (Addgene #26001) plasmids using FuGENE transfection
364 reagent (Promega), following manufacturer's guidelines. Virus-containing supernatant was
365 harvested 48 hr post transfection and stored at -80°C.

366

367 Cells were cultured in viral supernatant for 24 hours, after which the culture medium was replaced.
368 Successfully transduced cells containing fluorescent reporters were then isolated using a BD FACS
369 Aria Fusion cell sorter.

370

371 ***Plasmin Activity Assay***

372 Indicated cells were cultured in phenol red free culture medium for 48 hours before supernatant was
373 collected and incubated with 0.2 mM of the chromogenic plasmin substrate D-Val-Leu-Lys 4-

374 nitroanilide dihydrochloride (Sigma). After 30 minutes absorbance was recorded at 405 nm on a 96-
375 well microplate reader (Infinite F50).

376

377 ***RNA Sequencing***

378 At indicated time points, spheroid-containing gels were lysed in Trizol solution and RNA isolated by
379 isopropanol precipitation. RNA was then sequenced at Barts and The London Genome Centre.
380 Library prep was performed using NEB Next Ultra II (NEB, E7645S) kit following manufacturer's
381 guidelines, and run on an Illumina NextSeq 500 (150 cycles). Reads were aligned to a combined
382 human and mouse genome (using Human Hg38 and mouse mm10), then separated based on
383 species. Differential analysis between cell types from the same species was performed using Partek
384 software (Partek). Genes with greater than 2 fold difference with a FDR <0.01 were considered
385 significantly different between groups. Gene overrepresentation analysis was performed using
386 WEB-based gene set analysis toolkit platform (<http://www.webgestalt.org/>).

387

388 ***Proteomics***

389 Matrisomics was performed as previously described^{35 36}. Briefly, indicated cells were cultured in L-
390 ascorbic acid for 48 hours to stimulate ECM production. Cell lysates were then prepared in 8 M urea
391 supplemented with 100 mM Na₃VO₄, 500 mM NaF, 1M β-Glycerol Phosphate, and 250 mM
392 Na₂H₂P₂O₇.

393

394 Proteins were reduced with 25 mM DTT and then alkylated with 40 mM iodacetamide prior to the
395 addition of PNGase F at a final concentration of 1500 U (New England Biolabs, P0704) to achieve
396 the removal of N-glycosylations. Proteins were then digested with LysC (1.6 µg/sample)
397 (ThermoFisher Scientific, 90051) for 2 hours and further digested using immobilised trypsin beads
398 (40 µL of beads/250 µg of protein) (Thermo Fisher Scientific, 10066173) for 16 hours.

399 Peptides were then de-salted using C-18 tip columns (Glygen). De-salted samples were then dried
400 in a vacuum concentrator and stored at -20°C for mass spectrometric analysis. Dried peptide
401 mixtures were dissolved in 0.1% trifluoroacetic acid solution and analysed with a nanoflow ultra-high
402 pressure liquid chromatography system (NanoACQUITY UPLC System, Waters) coupled to a LTQ
403 XL™ Linear Ion Trap mass spectrometer (Thermo Fisher Scientific) at the Mass Spectrometry Core
404 Facility at Barts Cancer Institute.

405 Peptide identification was performed by searching the raw data against the SwissProt database
406 (version 2013-2014) restricted to human entries using the Mascot search engine (v 2.5.0, Matrix
407 Science, London, UK) with the following parameters: trypsin as digestion enzyme (with up to two
408 missed cleavages), carbamidomethyl (C) as a fixed modification and *N*-terminal pyroglutamate
409 (pyroGlu), Oxidation (M) and Phospho (STY) as variable modifications, 5 ppm as peptide mass
410 tolerance, ±0.8 Da as fragment mass tolerance. A MASCOT score cut-off of 50 was used to filter
411 false-positive detection to a false discovery rate below 1 %. Matrisome proteins were then identified
412 using the matrisome annotator tool (<http://matrisomeproject.mit.edu/analytical-tools/matrisome-annotator/>)³⁶. T-Tests were then used to compare differences in protein abundance between
413 samples with a p-value of <0.05 and a log₂ fold change >1 considered significant.

415

416 **Statistical analysis**

417 Apart from analysis of RNA Seq and Matrisome data all analysis was performed using GraphPad
418 Prism (version 9.0) with statistical tests indicated in figure legends. With individual cell and spheroid
419 data sets statistical analysis was performed on the averages of each biological repeat.

420

421

422

423

424

425 Table 1: Primer Sequences

Target Gene	Forward Primer	Reverse Primer
Human ADAMTS2	GTCCCCGAAACATCTCAGATC	GGACAAGACTTCCATCCTACAG
Human MMP1	ACAGCCCAGTACTTATTCCCTTG	GGGCTTGAAGCTGCTTACGA
Human Actin	AGAGCTACGAGCTGCCTGAC	AGCACTGTGTTGGCGTACAG
Mouse SerpinE2	AGAATGTGAACCTCCAGGACC	ACACTGCATTAACGAGGACC
Mouse Timp1	CTCAAAGACCTATAGTGCTGGC	CAAAGTGACGGCTCTGGTAG
Mouse Actin	ACCTTCTACAATGAGCTGCG	CTGGATGGCTACGTACATGG

426

427 **Acknowledgements**

428 We acknowledge the CMR Advanced Bio-Imaging Facility at QMUL and Microscopy Core Facility
429 at BCI for the use, help and advice with microscopy. We thank Luke Gammon and the QMUL
430 Phenotypic Screening Facility for help with high content imaging. We thank Chaz Mein and the
431 Genomics Core at QMUL for assistance with RNA sequencing. We thank Vinothini Rajeeve and the
432 Mass Spectrometry Core Facility at BCI for help with proteomics. EC is funded by CRUK (A27781),
433 KY is supported by a Barts Charity Grant (G-002189). This work is also funded by a Cancer
434 Research UK Centre Grant to Barts Cancer Institute (A25137).

435

436 **Author Contributions**

437 EC and RG conceived and designed the study. EC, KY, NG, ET, VG, EM acquired and analysed
438 data. All authors contributed to interpretation of data. EC and RG wrote the manuscript with review
439 and approval of all authors.

440

441 **Competing Interests**

442 The authors declare no competing interests.

443

444

445 **References**

1. Murray, E. R. *et al.* Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. *Cell Rep* **38**, 110227 (2022).
2. Neuzillet, C. *et al.* Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. *J Pathol* **248**, 51–65 (2019).
3. Coleman, S. J. *et al.* Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. *EMBO Mol Med* **6**, 467–481 (2014).
4. Adams, S. D. *et al.* Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. *Curr. Biol.* **31**, 1403–1416.e7 (2021).
5. Sada, M. *et al.* Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. *Cancer Lett.* **372**, 210–218 (2016).
6. Dalin, S. *et al.* Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. *Cancer Res.* **79**, 5723–5733 (2019).
7. Koikawa, K. *et al.* Pancreatic stellate cells reorganize matrix components and lead pancreatic cancer invasion via the function of Endo180. *Cancer Lett.* **412**, 143–154 (2018).
8. Helms, E. J. *et al.* Mesenchymal Lineage Heterogeneity Underlies Nonredundant Functions of Pancreatic Cancer-Associated Fibroblasts. *Cancer Discov* **12**, 484–501 (2022).
9. Menezes, S., Okail, M. H., Jalil, S. M. A., Kocher, H. M. & Cameron, A. J. M. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets. *J Pathol* (2022). doi:10.1002/path.5926
10. Özdemir, B. C. *et al.* Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. *Cancer Cell* **25**, 719–734 (2014).
11. Chen, Y. *et al.* Type I collagen deletion in α SMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. *Cancer Cell* **39**, 548–565.e6 (2021).
12. Öhlund, D. *et al.* Distinct populations of inflammatory fibroblasts and myofibroblasts in

472 pancreatic cancer. *J Exp Med* **214**, 579–596 (2017).

473 13. Carter, E. P., Roozitalab, R., Gibson, S. V. & Grose, R. P. Tumour microenvironment 3D-

474 modelling: simplicity to complexity and back again. *Trends Cancer* **7**, 1033–1046 (2021).

475 14. Slapak, E. J., Duitman, J., Tekin, C., Bijlsma, M. F. & Spek, C. A. Matrix Metalloproteases in

476 Pancreatic Ductal Adenocarcinoma: Key Drivers of Disease Progression? *Biology (Basel)* **9**,

477 80 (2020).

478 15. Tian, C. *et al.* Suppression of pancreatic ductal adenocarcinoma growth and metastasis by

479 fibrillar collagens produced selectively by tumor cells. *Nat Commun* **12**, 2328–16 (2021).

480 16. Colige, A. *et al.* Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying

481 high homology with ADAMTS-2 and ADAMTS-3. *J. Biol. Chem.* **277**, 5756–5766 (2002).

482 17. Delvoye, P., Nusgens, B. & Lapière, C. M. The capacity of retracting a collagen matrix is lost

483 by dermatosparactic skin fibroblasts. *J Invest Dermatol* **81**, 267–270 (1983).

484 18. Biffi, G. *et al.* IL1-Induced JAK/STAT Signaling Is Antagonized by TGF β to Shape CAF

485 Heterogeneity in Pancreatic Ductal Adenocarcinoma. *Cancer Discov* **9**, 282–301 (2019).

486 19. Bekhouche, M. *et al.* Determination of the substrate repertoire of ADAMTS2, 3, and 14

487 significantly broadens their functions and identifies extracellular matrix organization and

488 TGF- β signaling as primary targets. *FASEB J.* **30**, 1741–1756 (2016).

489 20. Shimoda, M. *et al.* Loss of the Timp gene family is sufficient for the acquisition of the CAF-

490 like cell state. *Nat. Cell Biol.* **16**, 889–901 (2014).

491 21. Scott, R. W. *et al.* Protease nexin. Properties and a modified purification procedure. *J. Biol.*

492 *Chem.* **260**, 7029–7034 (1985).

493 22. Koikawa, K. *et al.* Basement membrane destruction by pancreatic stellate cells leads to local

494 invasion in pancreatic ductal adenocarcinoma. *Cancer Lett.* **425**, 65–77 (2018).

495 23. Qiang, L. *et al.* Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein

496 MTCBP-1. *J. Cell Biol.* **218**, 317–332 (2019).

497 24. Colige, A. *et al.* Novel types of mutation responsible for the dermatosparactic type of Ehlers-

498 Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. *J Invest*

499 25. Le Goff, C. *et al.* Regulation of procollagen amino-propeptide processing during mouse
500 embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen
501 biosynthesis and dermatosparaxis. *Development* **133**, 1587–1596 (2006).

502 26. Bui, H. M. *et al.* Proteolytic activation defines distinct lymphangiogenic mechanisms for
503 VEGFC and VEGFD. *J. Clin. Invest.* **126**, 2167–2180 (2016).

504 27. ALKJAERSIG, N., FLETCHER, A. P. & SHERRY, S. The activation of human plasminogen.
505 II. A kinetic study of activation with trypsin, urokinase, and streptokinase. *J. Biol. Chem.* **233**,
506 86–90 (1958).

507 28. Khalil, N., Corne, S., Whitman, C. & Yacyshyn, H. Plasmin regulates the activation of cell-
508 associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin
509 injury. *Am J Respir Cell Mol Biol* **15**, 252–259 (1996).

510 29. Dallas, S. L., Rosser, J. L., Mundy, G. R. & Bonewald, L. F. Proteolysis of latent
511 transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular
512 mechanism for release of TGF-beta from bone matrix. *J. Biol. Chem.* **277**, 21352–21360
513 (2002).

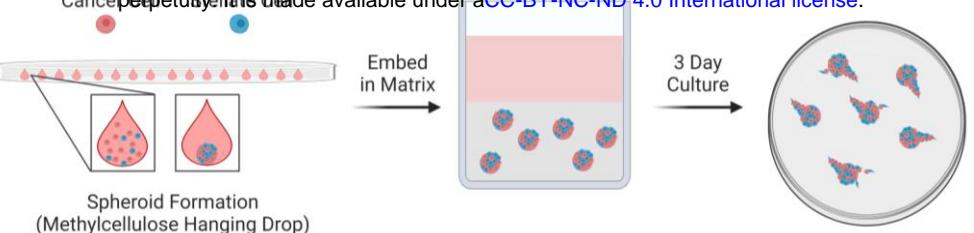
514 30. Lyons, R. M., Gentry, L. E., Purchio, A. F. & Moses, H. L. Mechanism of activation of latent
515 recombinant transforming growth factor beta 1 by plasmin. *J. Cell Biol.* **110**, 1361–1367
516 (1990).

517 31. Ono, R. N. *et al.* Latent transforming growth factor beta-binding proteins and fibulins
518 compete for fibrillin-1 and exhibit exquisite specificities in binding sites. *J. Biol. Chem.* **284**,
519 16872–16881 (2009).

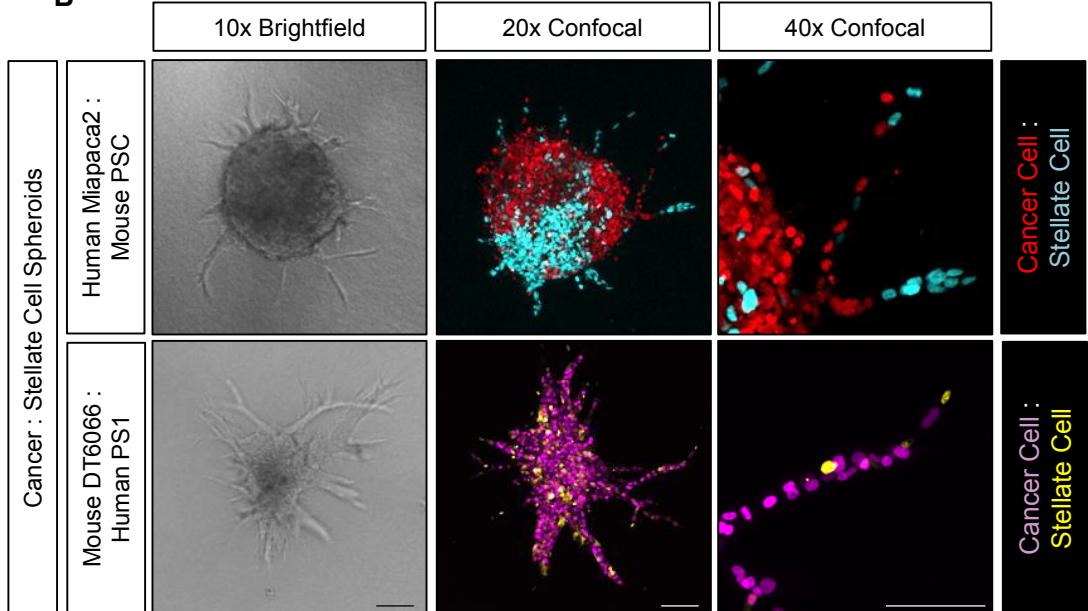
520 32. Neptune, E. R. *et al.* Dysregulation of TGF-beta activation contributes to pathogenesis in
521 Marfan syndrome. *Nat. Genet.* **33**, 407–411 (2003).

522 33. Tian, C. *et al.* Proteomic analyses of ECM during pancreatic ductal adenocarcinoma
523 progression reveal different contributions by tumor and stromal cells. *Proc. Natl. Acad. Sci.*
524 U.S.A.

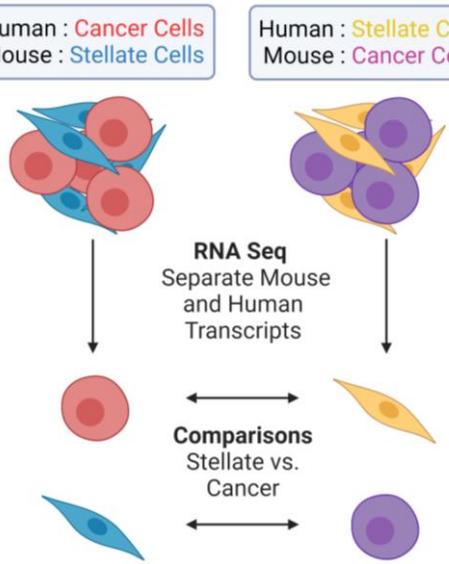
525 **116**, 19609–19618 (2019).

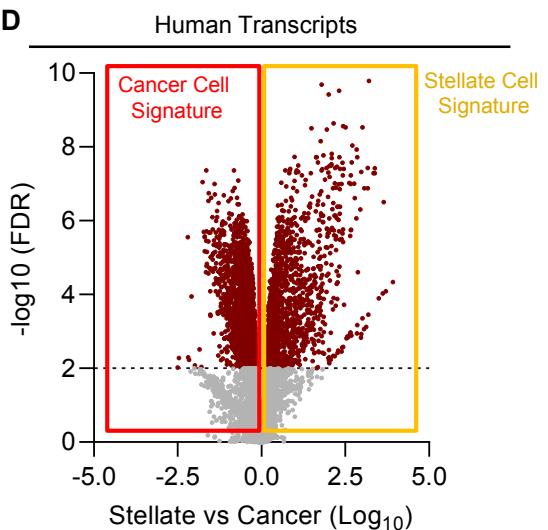

526 34. Flores, L. R., Keeling, M. C., Zhang, X., Sliogeryte, K. & Gavara, N. Lifeact-GFP alters F-
527 actin organization, cellular morphology and biophysical behaviour. *Sci Rep* **9**, 3241–13
528 (2019).

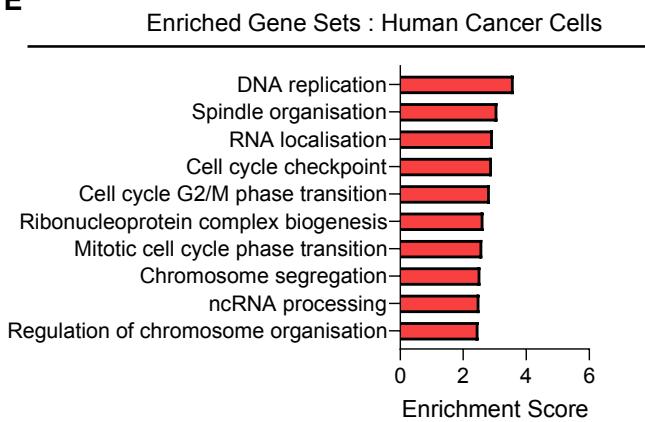
529 35. Pearce, O. M. T. *et al.* Deconstruction of a Metastatic Tumor Microenvironment Reveals a
530 Common Matrix Response in Human Cancers. *Cancer Discov* **8**, 304–319 (2018).

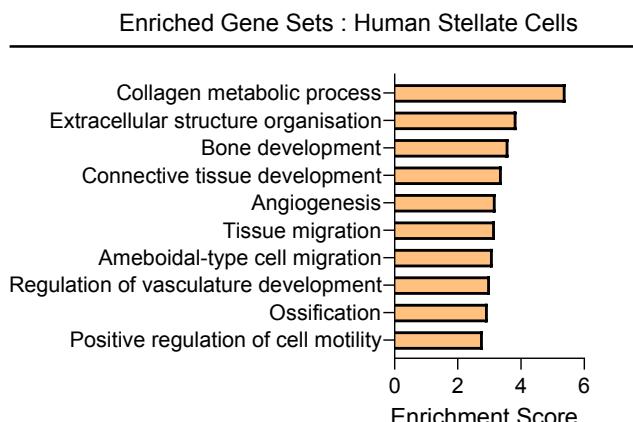

531 36. Naba, A. *et al.* Characterization of the Extracellular Matrix of Normal and Diseased Tissues
532 Using Proteomics. *J Proteome Res* **16**, 3083–3091 (2017).

533
534
535
536

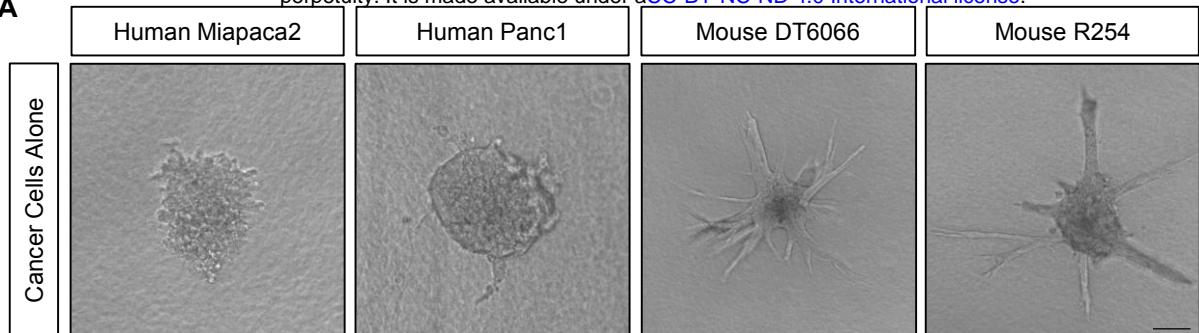

Fig 1.

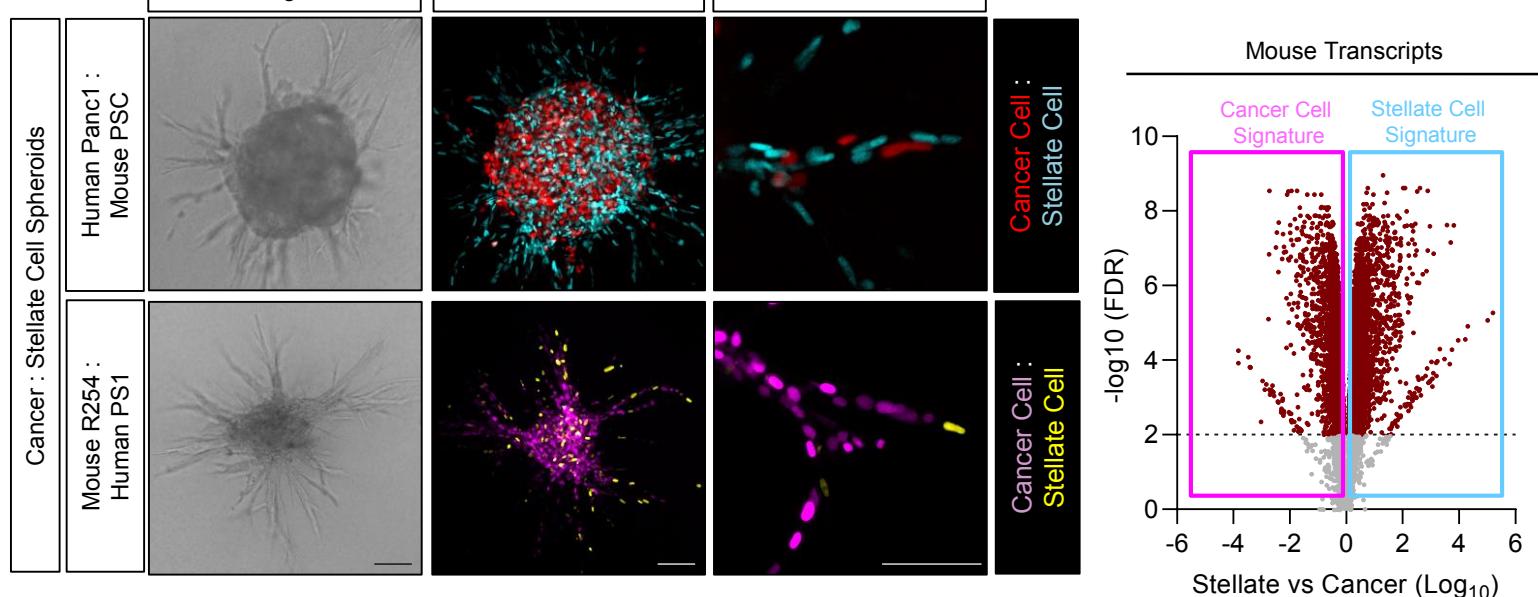

B


C


D

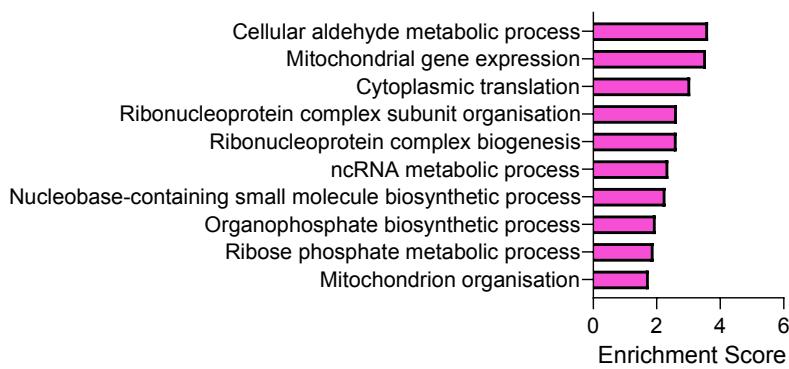
E


F

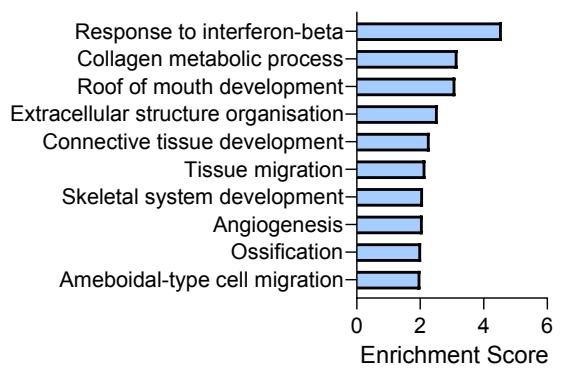

537 **Figure 1. Chimeric spheres reveal cancer and stellate cell transcriptomes that underpin 3D**
538 **invasion. A)** Schematic of spheroid invasion model. Stellate and cancer cells are formed into
539 spheres using methylcellulose hanging drops, which are then placed in 3D matrix and cultured for
540 3 days. **B)** Brightfield and confocal images of chimeric spheres. Top panels, human cancer cells
541 (Miapaca2; H2B-RFP, red) co-cultured with mouse stellate cells (PSC; H2B-GFP, cyan). Lower
542 panels, mouse cancer cells (DT6066; H2B-RFP, purple) mixed with human stellate cells (PS1; H2B-
543 GFP, yellow). Images representative of at least three biological replicates. **C)** Schematic of
544 transcriptomic approach. Spheroids are processed for bulk RNA sequencing and reads mapped to
545 either human or mouse genome, providing cancer and stellate cell information. Species-specific cell
546 information is then compared with the opposing same species cell type from corresponding
547 spheroids. **D)** Volcano plot of differentially regulated genes between stellate and cancer cells from
548 human data set. **E and F)** Enriched gene sets in human cancer cell (**E**) and human stellate cell (**F**)
549 data sets. Scale bar = 100 μ m.

550

A

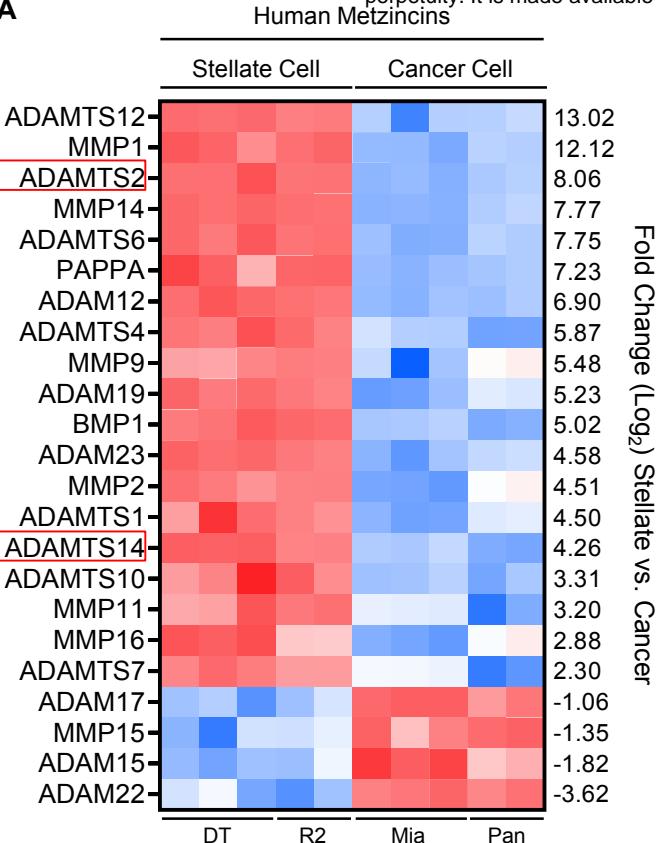


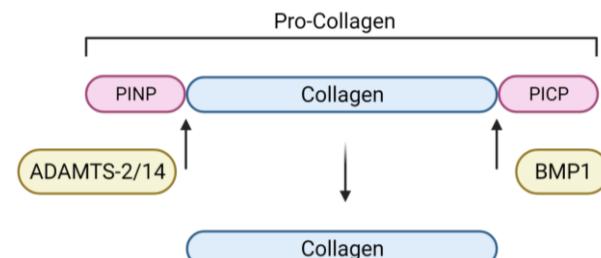
B


D

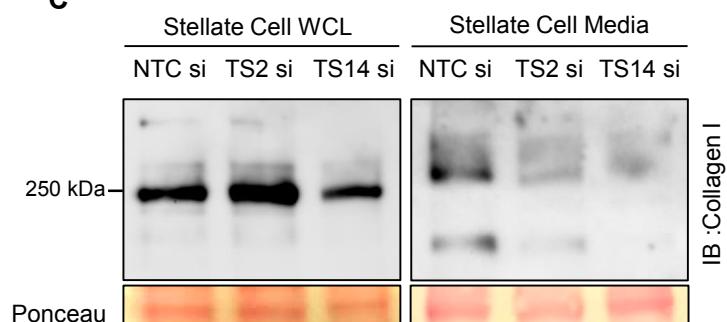
Enriched Gene Sets : Mouse Cancer Cells

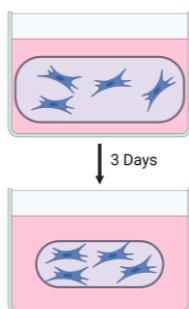
E

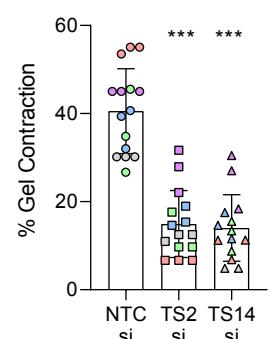
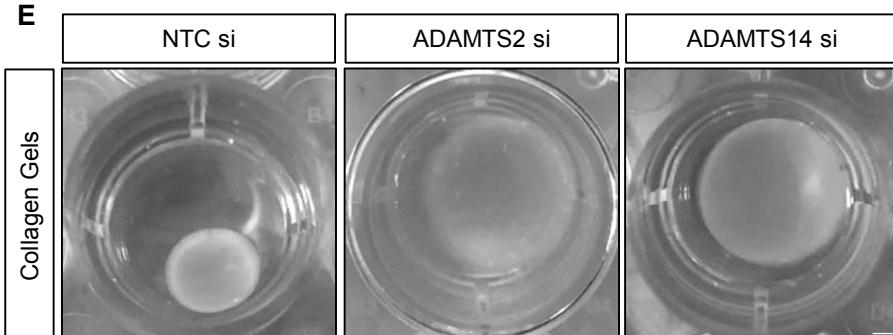

Enriched Gene Sets : Mouse Stellate Cells

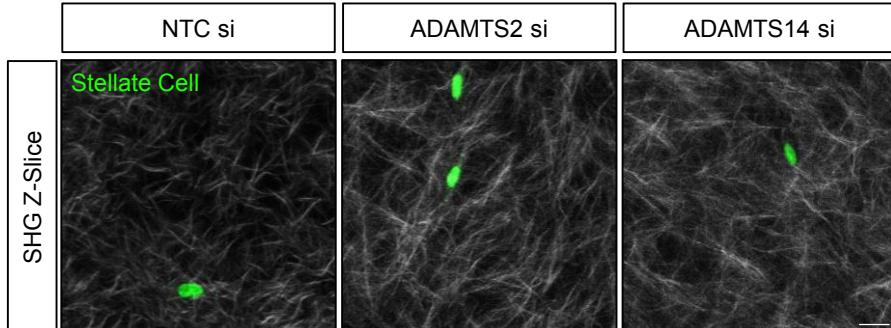

551 **Supplementary Figure 1. A)** Brightfield images of spheres composed solely of either human
552 Miapaca2 or Panc1, or murine DT6066 or R254 cancer cells. **B)** Brightfield and confocal images of
553 chimeric spheres. Top panels, human cancer cells (Panc1; H2B-RFP, red) mixed with mouse
554 stellate cells (PSC; H2B-GFP, cyan). Lower panels, mouse cancer cells (R254; H2B-RFP, purple)
555 mixed with human stellate cells (PS1; H2B-GFP, yellow). Images representative of at least three
556 biological replicates. **C)** Volcano plot of differentially regulated genes between stellate and cancer
557 cells from murine data set. **D and E)** Enriched gene sets in murine cancer cell (**D**) and murine stellate
558 cell (**E**) data sets. Scale bar = 100 μ m.

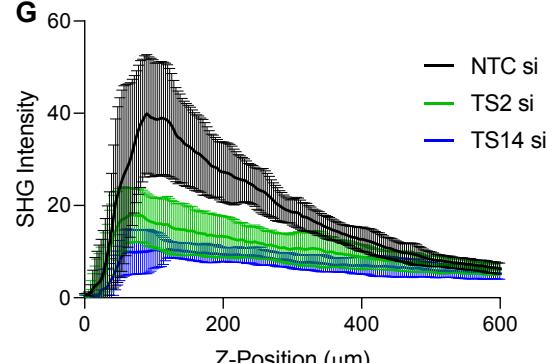
559

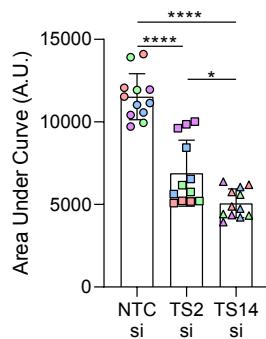

A


B



C


D

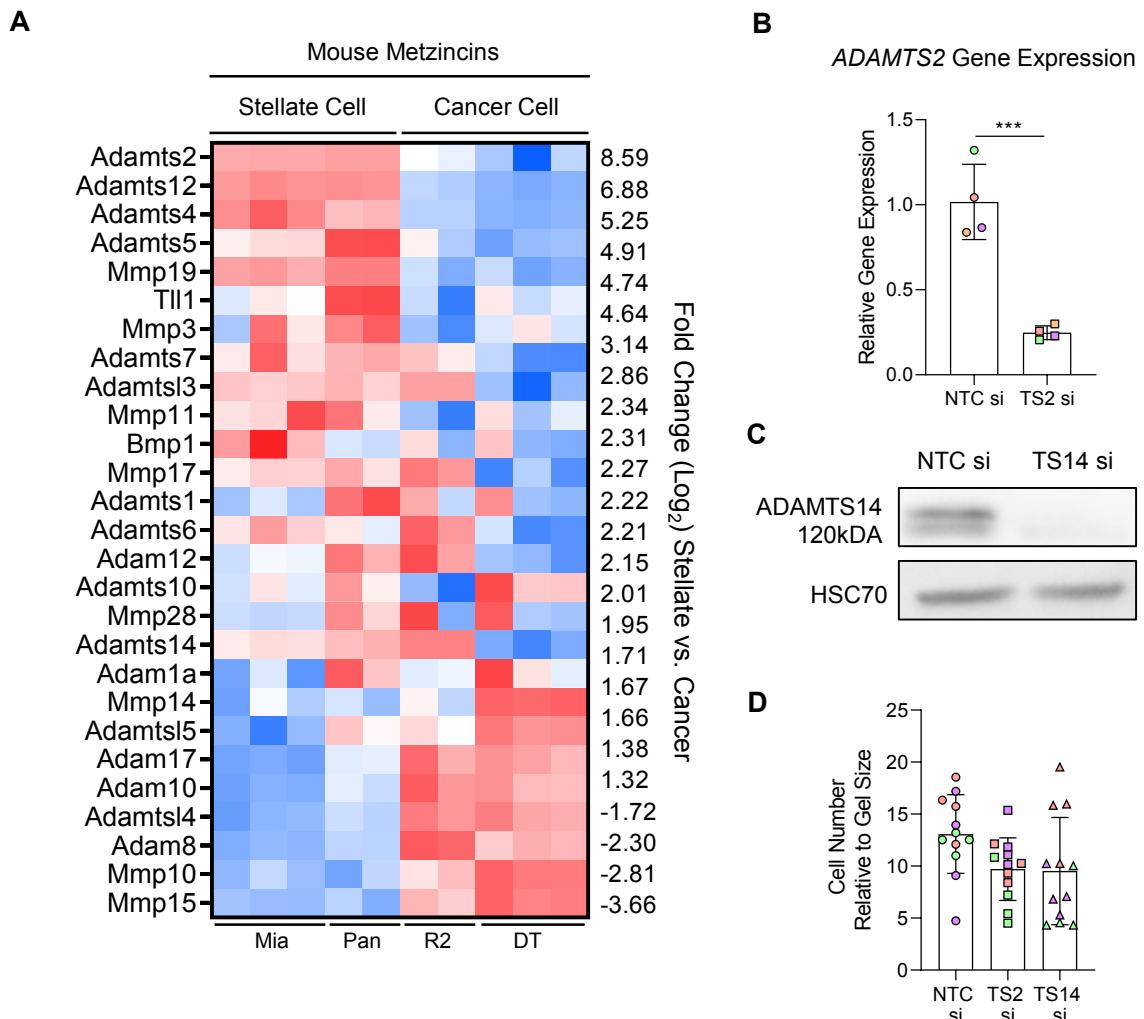

E


F


G

H

I

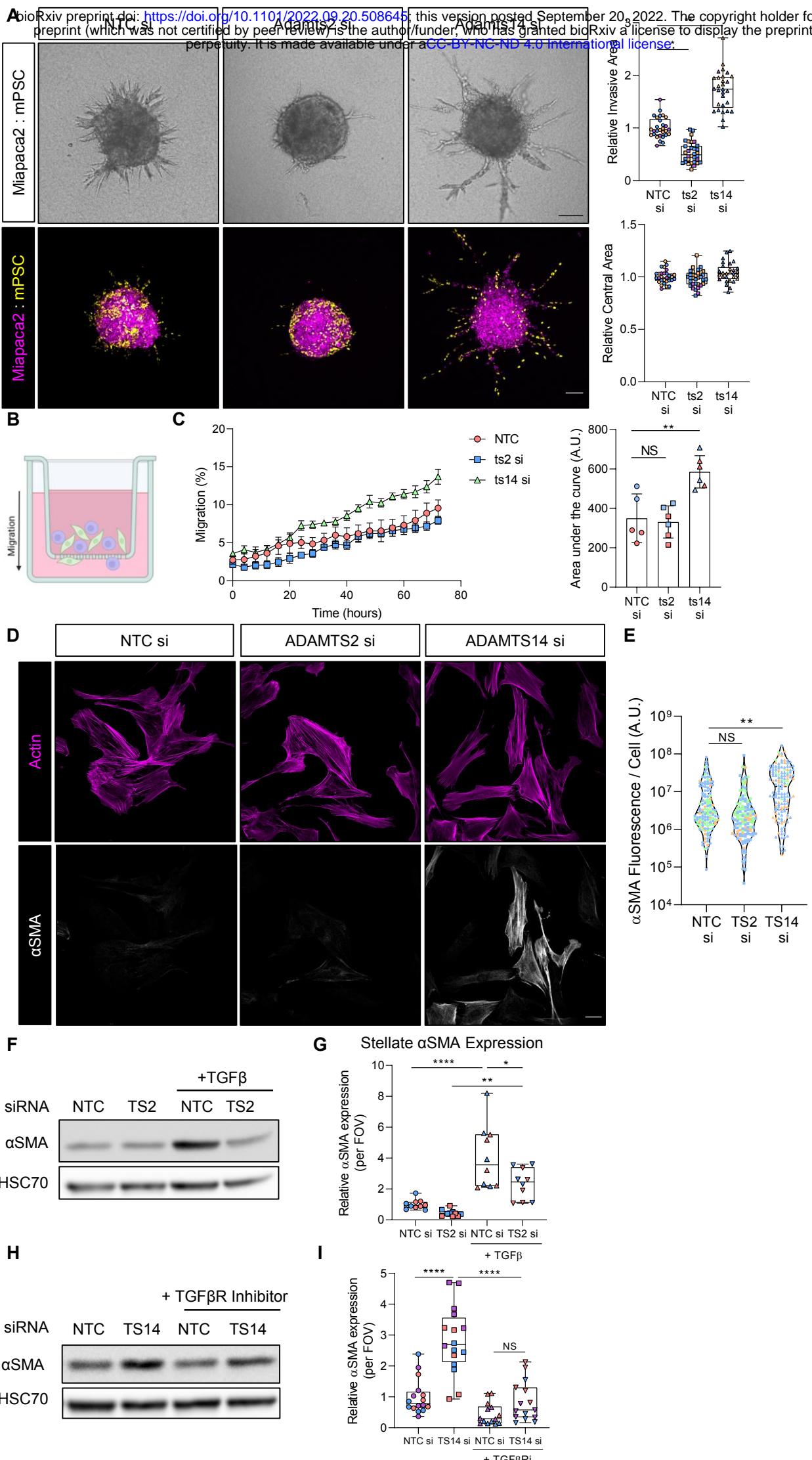

560 **Figure 2. Stellate-derived ADAMTS2 and ADAMTS14 both contribute to collagen processing.**

561 **A)** Heat map of metzincin expression in human data set from chimeric spheroids. **B)** Schematic of
562 collagen processing. ADAMTS2 and ADAMTS14 cleaves procollagen I N-terminal propeptide
563 (PINP) from pro-collagen trimers, while BMP1 cleaves procollagen I C-terminal propeptide (PICP)
564 to form mature collagen. **C)** Collagen I expression in non-reducing immunoblots of stellate cell whole
565 cell lysate or culture medium following siRNA knockdown of either ADAMTS2 (TS2) or ADAMTS14
566 (TS14). Images representative of three independent blots. **D)** Schematic of collagen gel contraction
567 assay. **E)** Brightfield images and quantification of collagen gel contraction following siRNA
568 knockdown of either ADAMTS2 or ADAMTS14 in embedded stellate cells. Images representative of
569 at least three biological repeats performed in triplicate. Scale bar = 1 mm. **F)** Representative Z-slices
570 of second harmonic generation (SHG) microscopy of collagen gels presented in **E**). Stellate cell
571 nuclei presented in green (H2B-GFP). Scale bar = 20 μ m. **G)** Z-profile of SHG intensity in collagen
572 gels from **E**). **H)** Area under the curve from plots in **G**). **I)** Sirius Red images and quantification of
573 sections from collagen gels shown in **E**). Scale bar = 100 μ m. **** P<0.0001, *** P<0.001, *P<0.05.
574 One-way ANOVA with Dunnett's post hoc test. Individual colours representative of distinct biological
575 repeats.

576

Supp Fig 2

preprint



577 **Supplementary Figure 2. A)** Heat map of metzincin expression in murine data set from chimeric
578 spheroids. **B)** ADAMTS2 expression in stellate cells following siRNA knockdown of ADAMTS2
579 (TS2). **C)** Immunoblot of ADAMTS14 expression in stellate cells following siRNA knockdown of
580 ADAMTS14 (TS14). **D)** Quantification of relative cell number in collagen gels following siRNA
581 knockdown of either ADAMTS2 or ADAMTS14 in embedded stellate cells. Individual colours
582 representative of distinct biological repeats.

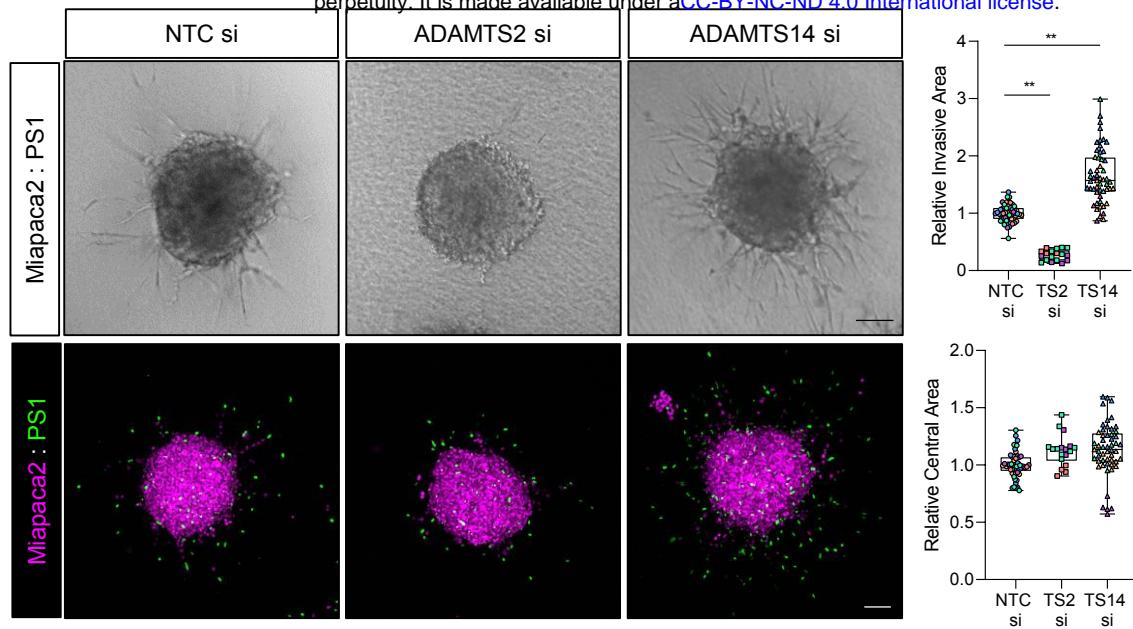
583

Fig 3.

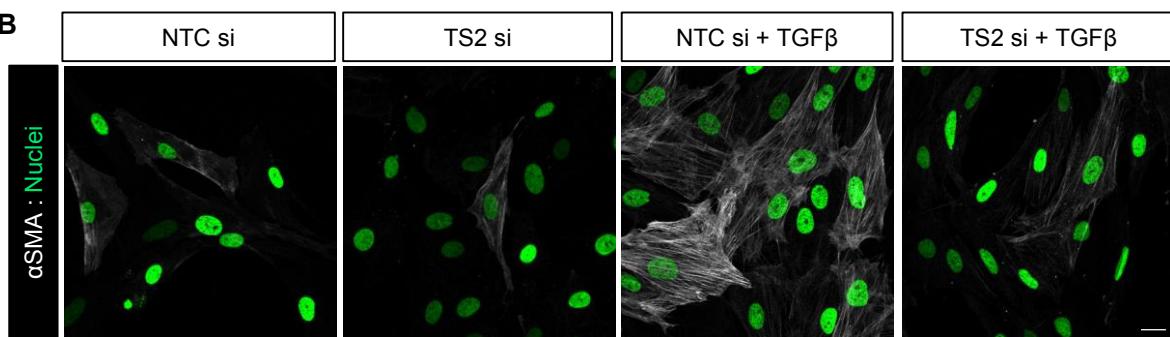
bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.20.508645>; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

584 **Figure 3. ADAMTS2 and ADAMTS14 have opposing roles on myofibroblast differentiation. A)**

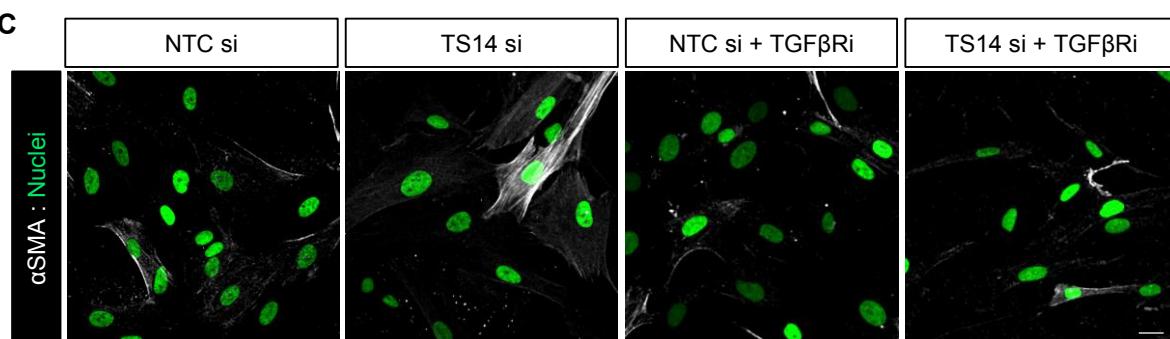
585 Brightfield and confocal images and quantification of invasion and central area from Miapaca2 (H2B-
586 RFP, purple): mouse stellate cell (mPSC; H2B-GFP, yellow) spheroids with siRNA knockdown of
587 either Adamts2 (ts2) or Adamts14 (ts14) specifically in stellate cells. Scale bar = 100 μ m. **B)**


588 Schematic of Boyden chamber migration assay. Fluorescently labelled cancer and stellate cells
589 were added to the apical chamber and migration to the basolateral chamber monitored. **C)** Kinetics
590 and area under the curve measurements of cell migration with stellate cell specific knockdown of
591 either Adamts2 or Adamts14. **D)** Confocal images of actin (purple) and α SMA (white) expression in
592 stellate cells with knockdown of either ADAMTS2 or ADAMTS14. Scale bar = 20 μ m. **E)**

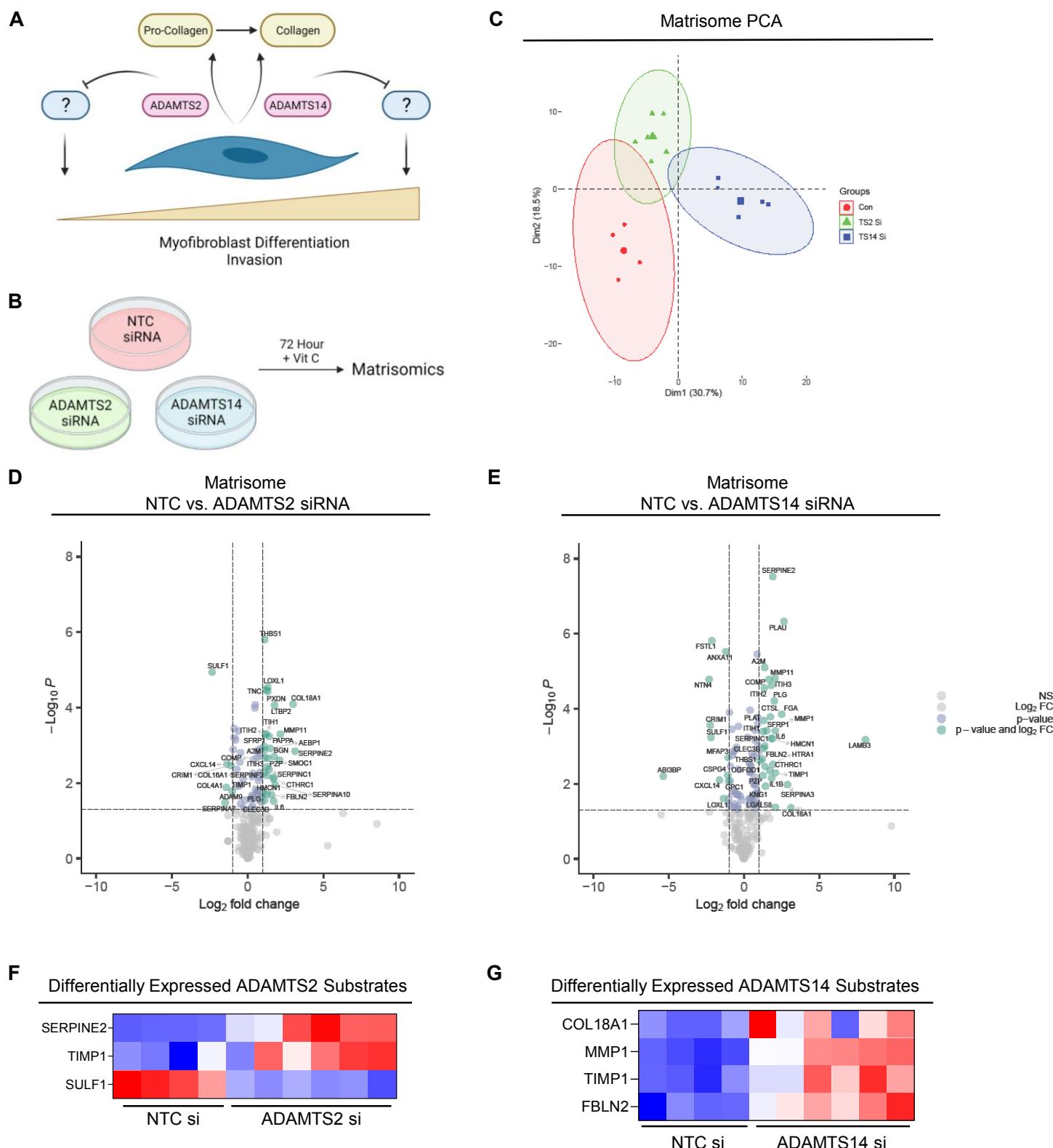
593 Quantification of α SMA fibre intensity from **D**). **F)** Immunoblot of α SMA expression in stellate cells
594 following knockdown of ADAMTS2 and stimulation with 5 ng/mL TGF β for 48 hours. **G)**


595 Quantification of α SMA immunofluorescence intensity in stellate cells following knockdown of
596 ADAMTS2 and stimulation with 5 ng/mL TGF β for 48 hours. **H)** Immunoblot of α SMA expression in
597 stellate cells following knockdown of ADAMTS14 and treatment with 10 μ M SB431542 (TGF β R
598 inhibitor) for 48 hours. **I)** Quantification of α SMA immunofluorescence intensity in stellate cells
599 following knockdown of ADAMTS14 and treatment with 10 μ M SB431542 (TGF β R inhibitor) for 48
600 hours. Images representative of at least two biological repeats. Individual colours representative of
601 distinct biological repeats. **** P<0.0001, ** P<0.01, *P<0.05, NS = Non-Significant. One-way
602 ANOVA with Dunnett's post hoc test.

603


A

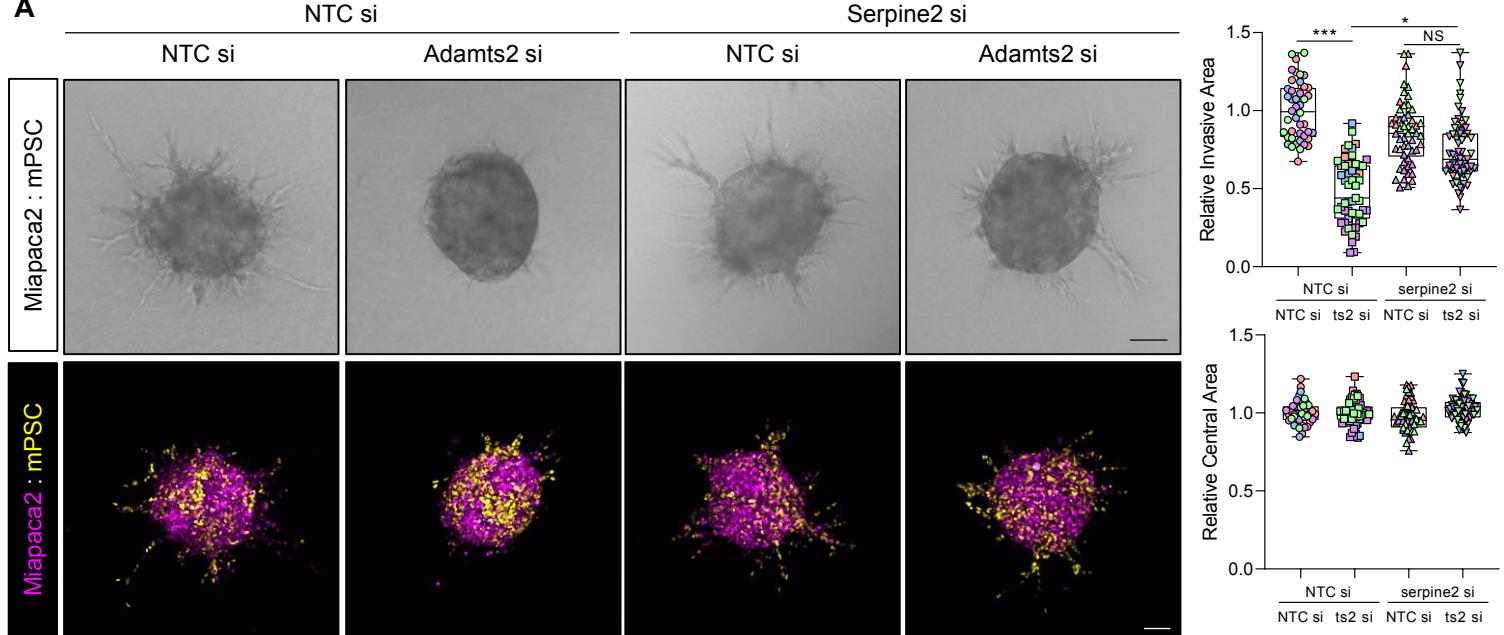
B


C

604 **Supplementary Figure 3. A)** Brightfield and confocal images and quantification of invasion and
605 central area from Miapaca2 (H2B-RFP, purple): PS1 stellate cell (H2B-GFP, green) spheroids with
606 siRNA knockdown of either ADAMTS2 (TS2) or ADAMTS14 (TS14) specifically in stellate cells.
607 Scale bar = 100 μ m. Individual colours representative of distinct biological repeats. **B)** Confocal
608 images of α SMA expression in stellate cells following knockdown of ADAMTS2 and stimulation with
609 5 ng/mL TGF β for 48 hours. Nuclei presented in green (H2B-GFP). **C)** Confocal images of α SMA in
610 stellate cells following knockdown of ADAMTS14 and treatment with 10 μ M SB431542 (TGF β R
611 inhibitor) for 48 hours. Nuclei presented in green (H2B-GFP). Scale bar = 20 μ m. Images
612 representative of at least two biological repeats. ** P<0.01. One-way ANOVA with Dunnett's post
613 hoc test.

614

Fig 4.



615 **Figure 4. Loss ADAMTS2 and ADAMTS14 produce distinct matrisomes with enrichment of**
616 **known substrates. A)** Schematic of proposed role of ADAMTS2 and ADAMTS14 in regulation of
617 myofibroblast differentiation. **B)** Schematic of matrisome approach. **C)** PCA plot of matrisome
618 expression following knockdown of either ADAMTS2 or ADAMTS14 in stellate cells. **D and E)**
619 Volcano plot of differentially expressed matrisome proteins following knockdown of either ADAMTS2
620 (**D**) or ADAMTS14 (**E**). **F and G)** Heatmaps of differentially expressed ADAMTS2 (**F**) and
621 ADAMTS14 (**G**) substrates identified from matrisome data.

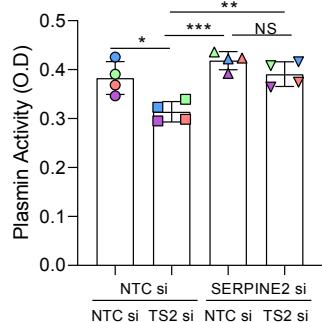
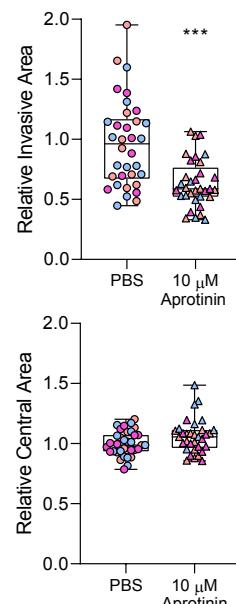
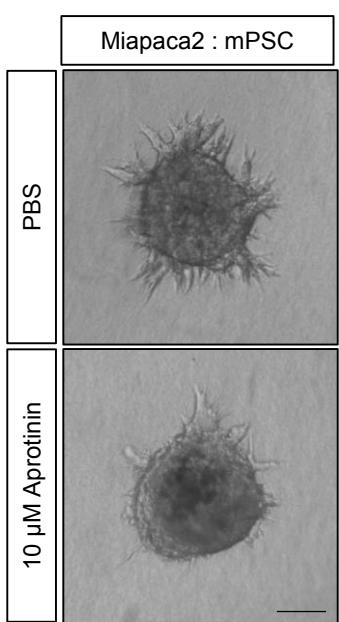
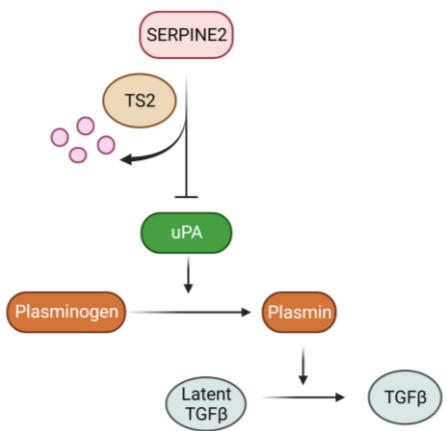
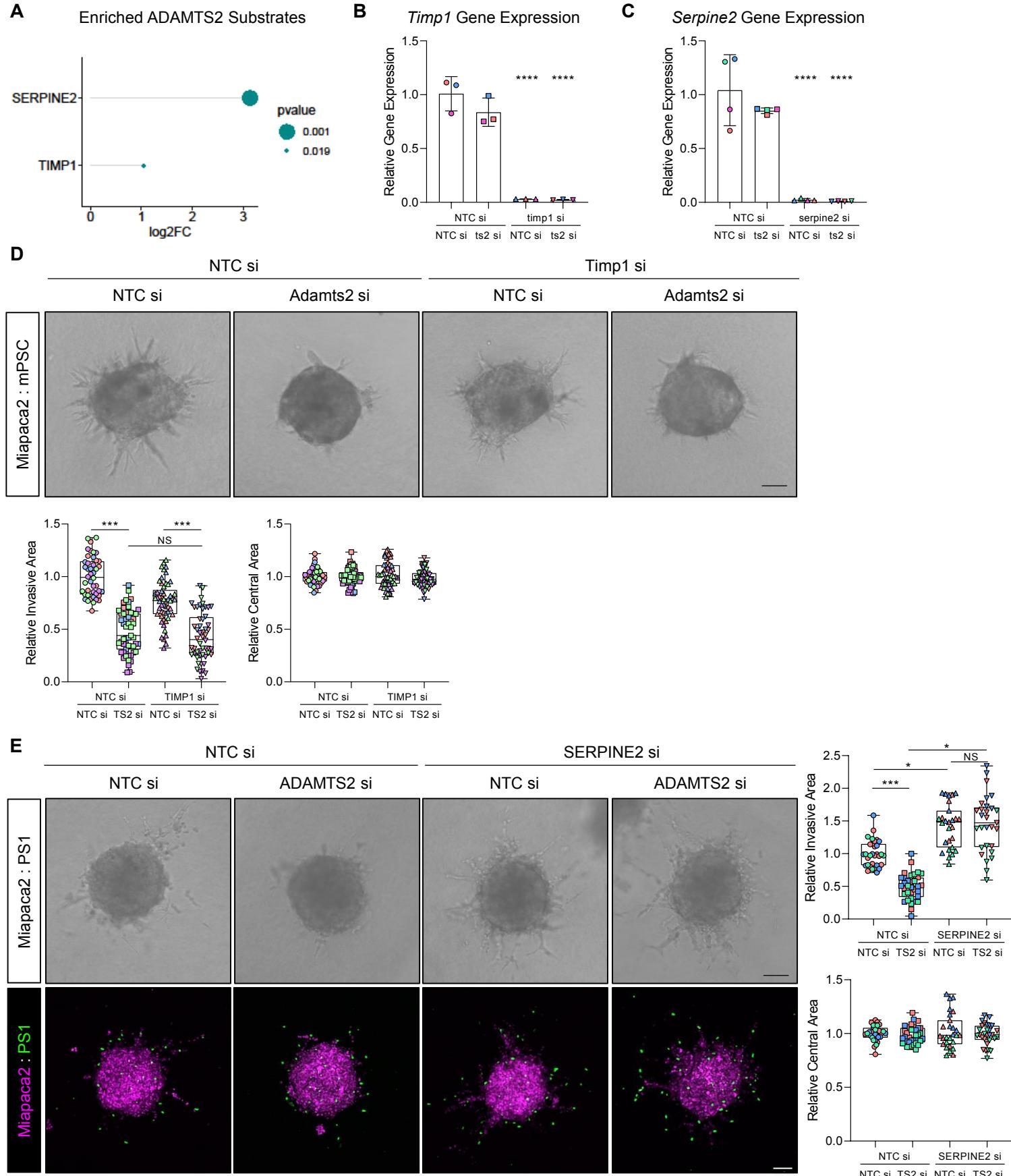

622

Fig 5.

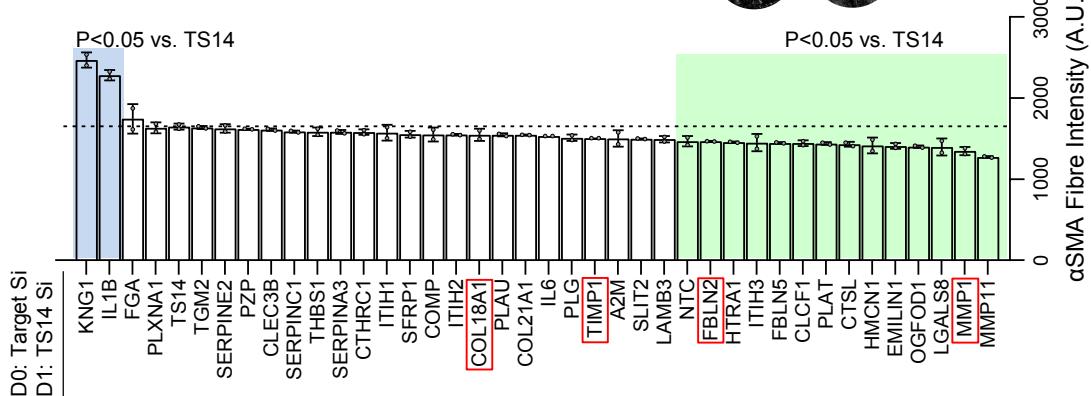


A


B

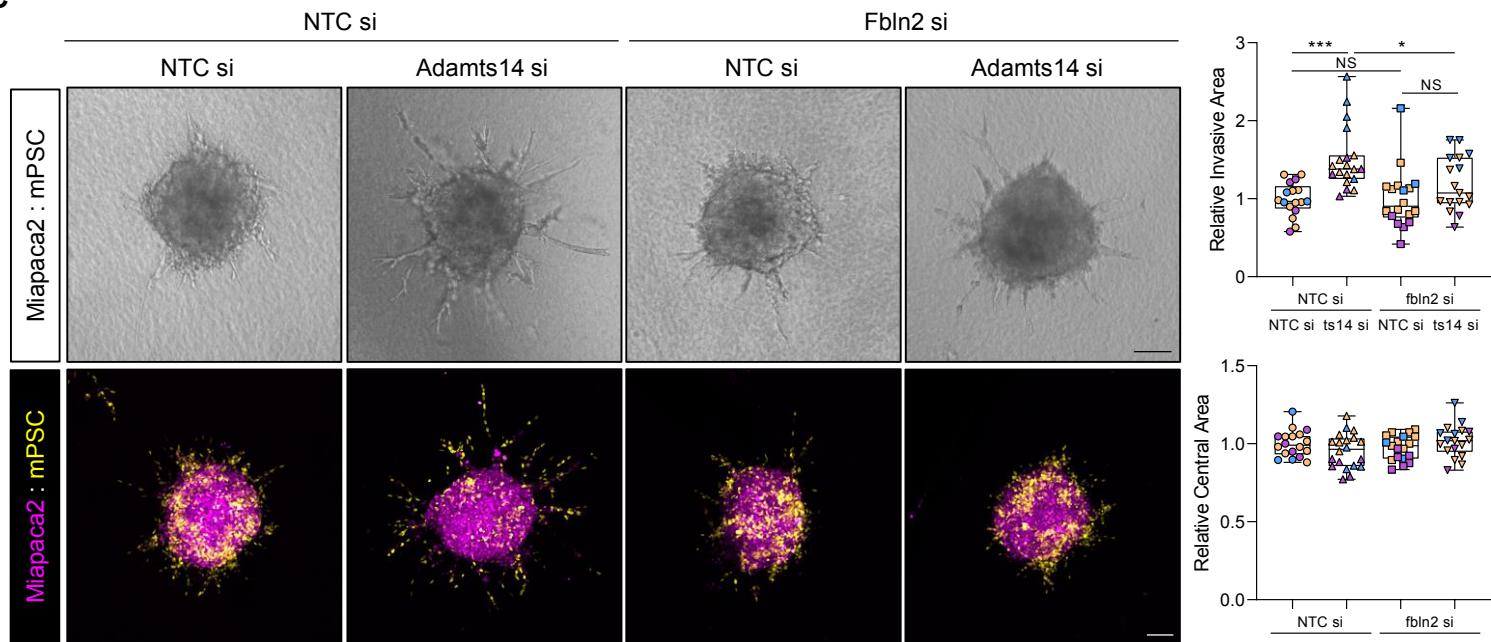

C

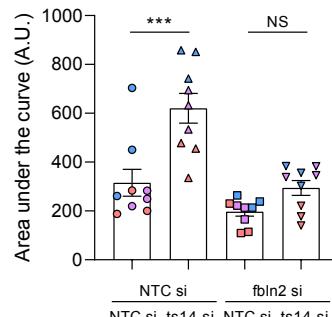
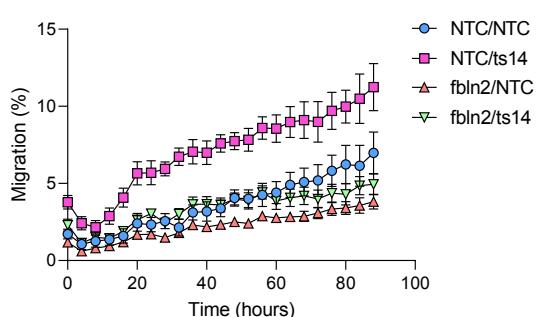
D

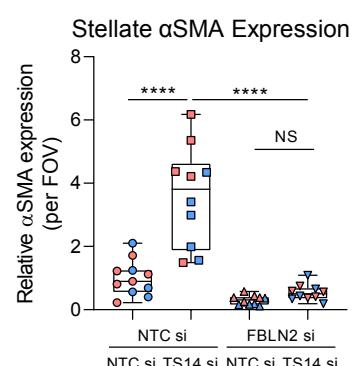
623 **Figure 5. The ADAMTS2 substrate SERPINE2 regulates myofibroblast differentiation. A)**
624 Brightfield and confocal images and quantification of invasion and central area from Miapaca2 (H2B-
625 RFP, purple): mouse stellate cell (mPSC; H2B-GFP, yellow) spheroids with siRNA knockdown of
626 Adamts2 (ts2) with and without co-knockdown of Serpine2. **B)** Plasmin activity in stellate cell
627 supernatant 48 hours following knockdown of ADAMTS2 with and without co-knockdown of
628 SERPINE2. **C)** Brightfield images and quantification of invasion and central area of Miapaca2:
629 mPSC spheroids treated with 10 μ M aprotinin for 72 hours. Images representative of at least three
630 biological repeats. Individual colours representative of distinct biological repeats. **D)** Schematic of
631 proposed role for ADAMTS2 and SERPINE2 in myofibroblast differentiation. ADAMTS2 degrades
632 SERPINE2, which normally inhibits the action of Urokinase Plasminogen Activator (uPA). uPA
633 catalyses the conversion of plasmin from plasminogen, which releases latent-bound TGF β . Loss of
634 ADAMTS2 enhances SERPINE2 function, diminishing the release of active TGF β . Scale bar = 100
635 μ m. *** P<0.001, * P<0.05, NS = Non-Significant. One-way ANOVA with Dunnett's post hoc test.
636

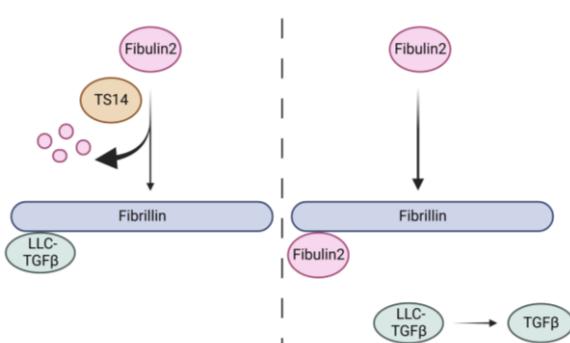


637 **Supplementary Figure 4. A)** Lollipop plot of enriched ADAMTS2 substrates from matrisome data.
638 **B and C)** qPCR of Timp1 (**B**) and Serpine2 (**C**) expression in stellate cells following siRNA
639 knockdown of indicated gene(s). **D)** Brightfield images and quantification of invasion and central
640 area from miapaca2: mPSC spheroids with siRNA knockdown of ADAMTS2 (ts2) with and without
641 co-knockdown of Timp1. **E)** Brightfield and confocal images and quantification of invasion and
642 central area from Miapaca2 (H2B-RFP, purple): PS1 stellate cell (H2B-GFP, green) spheroids with
643 siRNA knockdown of ADAMTS2 with and without co-knockdown of SERPINE2. Images
644 representative of at least three biological repeats. Individual colours representative of distinct
645 biological repeats. *** P<0.001. One-way ANOVA with Dunnett's post hoc test. Scale bar = 100 μ M.
646

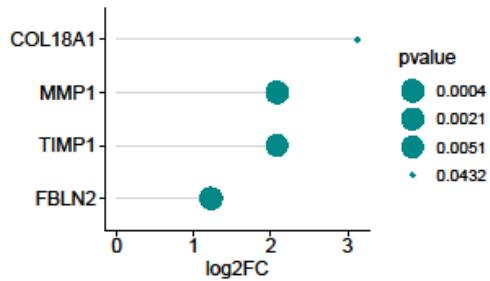

A

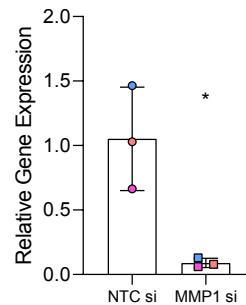


B


C

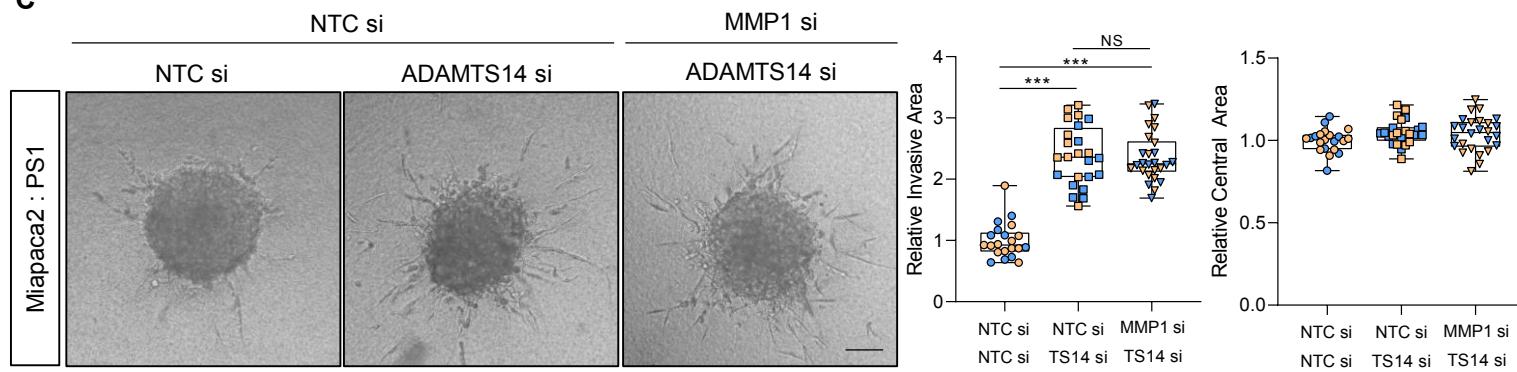

D

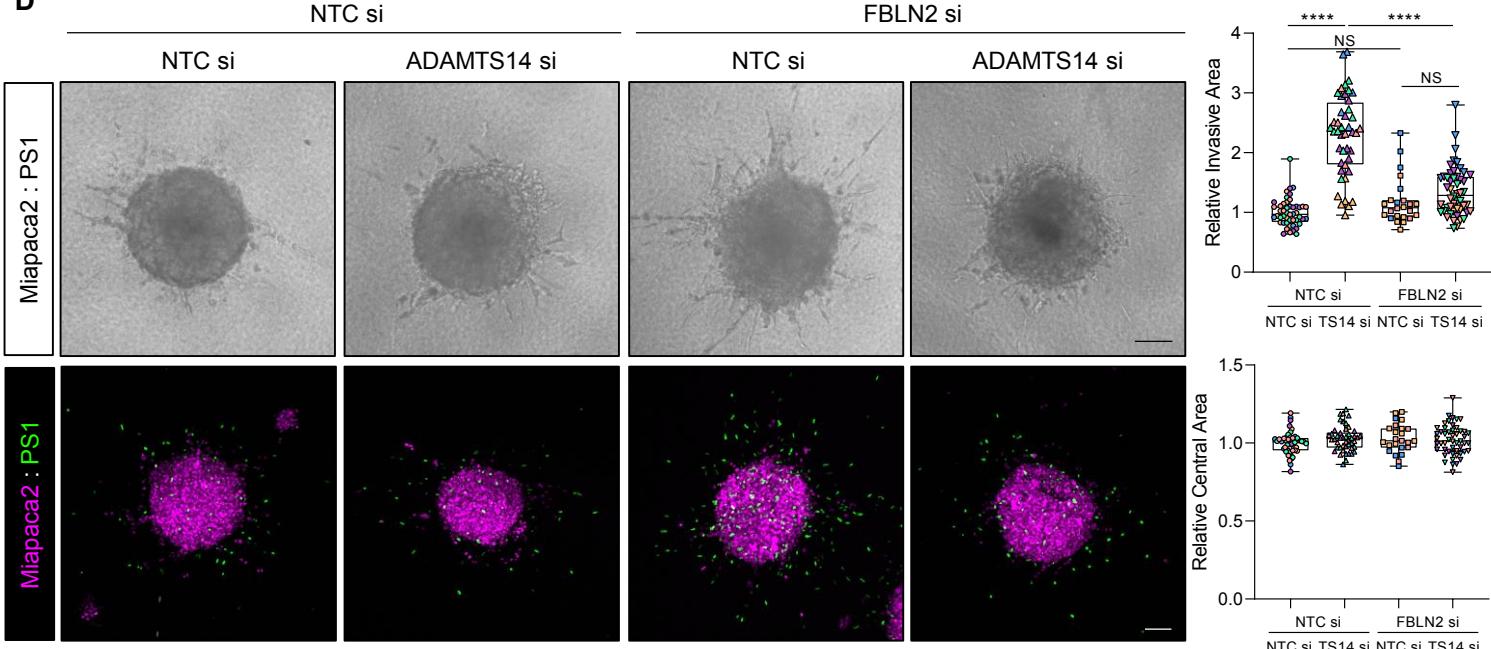
E

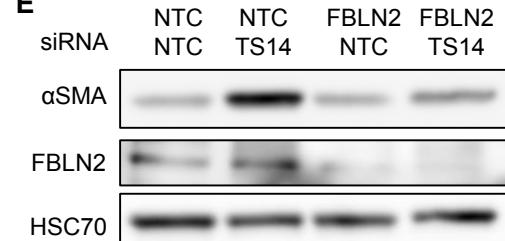

F

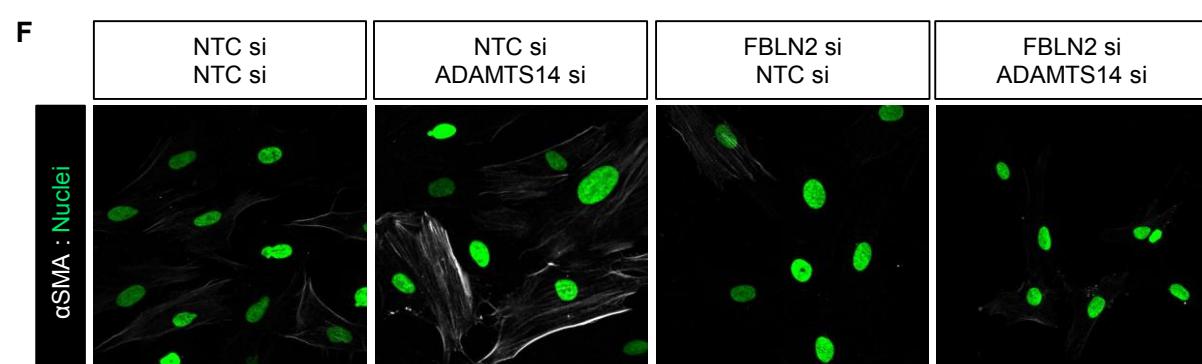

647 **Figure 6. ADAMTS14 regulates myofibroblast differentiation through Fibulin2. A)** Schematic
648 of high-content siRNA screen. **B)** α SMA expression in stellate cells with co-knockdown of indicated
649 siRNA with ADAMTS14 knockdown. siRNAs that cause α SMA intensity significantly different from
650 ADAMTS14 knockdown alone are highlighted in blue and green. Known ADAMTS14 substrates are
651 highlighted in red. Numbers representative of two biological replicates each performed in duplicate
652 wells. **C)** Brightfield and confocal images and quantification of invasion and central area from
653 Miapaca2 (H2B-RFP, purple): mouse stellate cell (mPSC; H2B-GFP, yellow) spheroids with siRNA
654 knockdown of Adamts14 (ts14) with and without co-knockdown of Fibulin2. **D)** Kinetic and area
655 under the curve analysis of cell migration with stellate cell knockdown of Adamts14 alone or in
656 combination with Fibulin2 knockdown. **E)** Quantification of α SMA intensity in stellate cells following
657 knockdown of ADAMTS14 alone or in combination with Fibulin2 knockdown. **F)** Schematic of
658 proposed role for ADAMTS14 and Fibulin2 in myofibroblast differentiation. Fibulin2 and the TGF β
659 large latent complex compete for binding to fibrillin. In the absence of ADAMTS14, Fibulin2
660 outcompetes TGF β large latent complex binding to fibrillin, releasing active TGF β into the milieu.
661 Images representative of at least two biological repeats. Individual colours representative of distinct
662 biological repeats. **** P<0.0001, *** P<0.001, NS=Non Significant. One-way ANOVA with
663 Dunnett's post hoc test. Scale bar = 100 μ m.

664


A Enriched ADAMTS14 Substrates


B MMP1 Gene Expression


C


D

E

F

665 **Supplementary Figure 5. A)** Lollipop plot of enriched ADAMTS14 substrates from matrisome data.
666 **B)** qPCR of MMP1 expression in stellate cells following siRNA knockdown of MMP1. **C)** Brightfield
667 images and quantification of invasion and central area from Miapaca2: PS1 spheroids with siRNA
668 knockdown of ADAMTS14 (TS14) with and without co-knockdown of MMP1. **D)** Brightfield and
669 confocal images and quantification of invasion and central area from miapaca2 (H2B-RFP, purple):
670 PS1 stellate cell (H2B-GFP, green) spheroids with siRNA knockdown of ADAMTS14 with and
671 without co-knockdown of Fibulin2. Scale bar = 100 μ m. **E)** Immunoblot of α SMA and Fibulin2
672 expression in stellate cells with knockdown of ADAMTS14 alone or in combination with Fibulin2
673 knockdown. **F)** Confocal images of α SMA expression in stellate cells following knockdown of
674 ADAMTS14 alone or in combination with Fibulin2 knockdown. Scale bar = 20 μ m. Images
675 representative of at least two biological repeats. Individual colours representative of distinct
676 biological repeats. **** P<0.0001, *** P<0.001, NS=Non Significant. One-way ANOVA with
677 Dunnett's post hoc test.