

1 **Neuraminidase activity modulates cellular co-infection during influenza A virus multicycle growth**

2 Zijian Guo^{1,2}, Yuanyuan He^{1,2}, Ananya N. Benegal^{1,2}, Michael D. Vahey^{1,2*}

3 1 Department of Biomedical Engineering, Washington University in St. Louis

4 2 Center for the Science and Engineering of Living Systems

5 * mvahey@wustl.edu

6 **Abstract**

7 Infection of individual cells by multiple virions plays critical roles in the replication and spread
8 of many viruses, but mechanisms that control cellular co-infection during multi-cycle viral growth
9 remain unclear. Here, we investigate virus-intrinsic factors that control cellular co-infection by
10 influenza A virus (IAV). Using quantitative fluorescence to track the spread of virions from single
11 infected cells, we identify the IAV surface protein neuraminidase (NA) as a key determinant of
12 cellular co-infection. We map this effect to NA's ability to deplete viral receptors from both infected
13 and neighboring uninfected cells. In cases where viral infectious potential is low, genetic or
14 pharmacological inhibition of NA increases the local spread of infection by increasing the viral load
15 received by neighboring cells. These results identify virus-intrinsic factors that contribute to cellular
16 multiplicity of infection, and suggest that optimal levels of NA activity depend on the infectious
17 potential of the virus in question.

18 **Introduction**

19 Single cells infected by influenza A virus (IAV) can give rise to hundreds to thousands of new
20 virions within a single replication cycle¹⁻³. These virions spread non-uniformly, producing wide
21 variations in viral load that are concentrated around the initial site of infection. This phenomenon is
22 widely recognized *in vitro*, providing the foundation for plaque assays for detecting and quantifying
23 influenza and many other viruses. More recently, the development of reporter viruses⁴⁻⁶ and genetic
24 barcoding strategies^{7,8} have revealed that viral spread *in vivo* exhibits similar features: for example,
25 showing sensitivity to anatomical compartmentalization^{9,10}.

26 An important consequence of non-uniform viral spread is that it produces wide variation in the
27 cellular multiplicity of infection (MOI). This has implications that are particularly important in the
28 biology of IAV. The IAV genome is comprised of eight distinct RNA segments, and although most
29 virions fail to deliver all eight segments individually^{11,12}, complementation through co-infection can
30 sustain productive infection³. Cellular co-infection also enables reassortment when it occurs
31 between distinct viral lineages¹³; it enhances the replication of viruses that are poorly adapted to
32 their hosts¹⁴; and it can modulate cellular immune responses^{15,16}. These wide-ranging contributions

33 to influenza replication and spread make understanding the causes and consequences of IAV co-
34 infection a high priority. However, the extent to which co-infection depends on specific properties of
35 the virus or the target cell remains unclear.

36 Multiple factors may contribute to the spatial structure of viral spread and the degree of co-
37 infection that occurs during multi-cycle growth. These include the number of virions released from
38 infected cells (*i.e.*, the burst size); physical association between virions as they transit the
39 extracellular environment; and the typical distance traveled by virions before they attach to and enter
40 a naïve cell (*i.e.*, the degree of dispersal). Viral burst size can influence the frequency of co-infection
41 by increasing the number of viral particles in the extracellular environment. Alternatively, viral
42 aggregation¹⁷, bacterial hitchhiking^{18,19}, and clustered packaging into extracellular vesicles²⁰ have
43 each been shown to enhance co-infection through the physical association of multiple infectious
44 units. Finally, virion dispersal could influence the degree of co-infection by determining whether
45 progeny virions remain concentrated at the site of infection or if they spread out over a large range.
46 While each of these considerations could influence the spread of IAV, specific links between IAV
47 genotype and co-infection through these different routes have not been identified.

48 In the case of viral dispersal, the IAV surface proteins hemagglutinin (HA) and neuraminidase
49 (NA) are likely to contribute^{21–23}. HA and NA are expressed on the surface of infected cells and
50 packaged into virions, where they exhibit competing biochemical activities. NA cleaves the viral
51 receptor, sialic acid, allowing virus particles to spread throughout the host^{24,25}. Released virions can
52 initiate a new round of cellular infection through HA-mediated attachment to sialic acid on the surface
53 of a naïve cell²⁶. While both HA and NA are essential for virus replication and transmission,
54 evolutionary data and laboratory experiments demonstrate that consequential mutations to one
55 protein can be tolerated through compensatory mutations to the other^{27–31}. Biochemical data
56 comparing HA avidity and NA catalytic activity for strains circulating in humans further supports the
57 idea that efficient replication and transmission within a particular host depends on balance between
58 the two proteins' competing activities^{32,33}. However, the precise consequences of imbalanced HA
59 and NA on viral spread - and whether other factors contribute to how well imbalance is tolerated -
60 is not well understood. Further complicating this picture, some NAs can bind to sialic acid³⁴, and
61 NAs cleave sialic acid both in *cis* (*i.e.*, on the membrane of the infected cell)³⁵ and in *trans* (as in a
62 standard enzyme-linked lectin assay³⁶), raising the question of how these activities collectively
63 contribute to virus release and attachment.

64 To begin addressing these questions, we investigated mechanistic links between the degree
65 of co-infection that occurs during multi-cycle IAV growth, and the *in situ* activity of HA and NA on
66 cells and viruses. Using quantitative measurements of virion spread, we identify strain-specific

67 differences in the degree of co-infection that different viruses support during multicycle growth in
68 cell culture. We find that these differences are genetically linked to the NA segment, with the number
69 of virions shed to neighboring cells varying inversely with NA enzymatic activity. We show that
70 attenuation of NA activity using either genetic mutations or chemical inhibition can increase the
71 spread of infection in viruses with high dependence on co-infection. Combined with stochastic
72 modelling of virus spread, these results demonstrate the importance of viral adhesion and release
73 in establishing the spatial structure of viral spread, and suggest that the optimal balance between
74 HA and NA activities for a given strain will depend on its infectious potential

75 **Results**

76 **An imaging-based approach to tracking virion spread**

77 We developed a fluorescence-imaging based approach to monitor the local spread of single
78 IAV virions, with the goal of determining the viral load per cell during secondary infection in units of
79 physical particles. This method allows us to determine the degree of co-infection caused by viruses
80 derived from a common lineage, which therefore lack defined genetic differences. Following
81 infection at low MOI, we incubate cells with fluorescently-labeled Fab fragments that recognize
82 conserved epitopes on HA away from the receptor binding site. This allows us to image, segment,
83 and count individual virions shed from sites of infection without disrupting the ability of these virions
84 to bind to sialic acid (Sia) receptors. By blocking viral fusion with the endosome, Fabs derived from
85 CR9114³⁷ and FI6v3³⁸ restrict replication to a single round. From these measurements, we define
86 local virion shedding as the number of virions originating from isolated sites of infection (typically
87 one single infected cell) that bind to and/or are internalized by neighboring uninfected cells (Figure
88 1A). Volumetric imaging of infected A549 cells over time reveals that local virion shedding remains
89 steady from 14-18 hours post-infection (Supplementary Figure 1); we therefore selected the ~16h
90 timepoint for our data collection. Values for local virion shedding obtained in this way serve as a
91 proxy for the degree of cellular co-infection that a particular viral strain supports during secondary
92 infection.

93 Using this approach, we first sought to measure the local spread of virions produced by
94 different IAV strains and subtypes. We selected two H1N1 strains - A/WSN/1933 (WSN33) and
95 A/California/04/2009 (CA09) - and two H3N2 strains - A/Hong Kong/1/1968 (HK68) and
96 A/Brisbane/10/2007 (BR07). These viruses represent a combination of lab-adapted and
97 contemporary strains for the two IAV subtypes currently circulating in humans. We find that the
98 number of virions shed to neighboring uninfected cells differs markedly both within a single strain
99 as well as between strains (Figure 1B), consistent with extreme heterogeneity in the outcome of IAV
100 infection at low MOI¹², and suggesting that genetic differences between strains and subtypes

101 contribute to localized virion spread.

102 We hypothesized that the activity of neuraminidase (NA) may play an outsized role in
103 establishing this phenotype. NA depletes cell-surface sialic acids³⁵, reducing the chance of super-
104 infection³⁹ and promoting viral release²⁵. To test if NA contributes to differences in local virion
105 shedding observed between strains, we created recombinant viruses in which the NA segment of
106 CA09 and WSN33 were exchanged. Expression of WSN33 NA in a CA09 genetic background
107 increased local virion shedding (making it more WSN33-like), while expression of CA09 NA in a
108 WSN33 background decreased local virion shedding (making it more CA09-like) (Figure 1C). These
109 results establish local virion shedding as a viral phenotype that differs between strains and depends
110 in part of the NA segment.

111 ***In situ* activity of NA differs between strains and shapes permissiveness to viral attachment**

112 NA could contribute to local virion shedding in multiple ways: increasing or decreasing viral
113 adhesion depending on its enzymatic activity, or influencing virion assembly through unrelated
114 mechanisms. To help distinguish between these possibilities, we first sought to compare the ability
115 of different NAs to deplete sialic acid from the cell surface. We labeled sialic acid on A549
116 monolayers infected at low MOI (~0.003) using mild periodate oxidation followed by conjugation
117 with an aldehyde-reactive fluorophore⁴⁰ (Supplementary Figure 2 & 3). Comparing Sia levels across
118 cells infected with different strains provides a metric for the *in situ* activity of NA against its native
119 substrates in cell culture. These measurements show that the selected strains deplete Sia to
120 different extents (Figure 2A), and that the efficiency with which NA removes Sia from the cell surface
121 does not generally correlate with its activity against MUNANA (Figure 2B), consistent with prior work
122 evaluating NA activity against larger, multiply-sialylated substrates⁴¹⁻⁴³.

123 In addition to the depletion of Sia from the surface of infected cells (*i.e.*, in *cis*), we also observe
124 depletion from the surface of adjacent uninfected cells (*i.e.*, in *trans*; Figure 2C). *Trans* depletion of
125 Sia follows similar trends across the strains tested as *cis* depletion (Figure 2D), and also occurs in
126 cells with greater apical-basal polarity (MDCK; Supplementary Figure 4). Viral strains with swapped
127 NAs (WSN^{CA-NA} and CA^{WSN-NA}) showed similar *cis* and *trans* Sia depletion as the strains from which
128 their NAs were derived (Figure 2E). We reasoned that Sia depletion in *trans* could be driven by NA
129 on the surface of cells, released viruses, or both. To evaluate the contributions of these two sources
130 of NA activity, we compared Sia depletion driven by virus-associated NA with that of NA expressed
131 on the surface of cells in the absence of other viral proteins (“cell-associated” NA) (Figure 2F). Viral
132 NA (delivered to A549 monolayers at a density of ~10 virions per cell) shows a relatively modest
133 effect on Sia depletion, reaching a maximum of ~25% for HK68 (Figure 2G, top), whereas cell-
134 associated NA achieves similar *cis* and *trans* depletion of cell surface Sia as that observed in virus-

135 infected cells (Figure 2G, bottom). Collectively, these results indicate that NA from virus-infected
136 cells deplete Sia receptors both in *cis* and in *trans*, and that cell-surface NA in the absence of viral
137 budding is sufficient to recapitulate trends observed during viral infection.

138 We next sought to determine how Sia depletion affects virion attachment for the four strains
139 from our initial test. The HAs of these viruses have different avidity for human receptors^{33,44},
140 suggesting that they may differ in their sensitivity to Sia depletion. To determine how attachment of
141 each viral strain to A549 monolayers changes following reduction of cell surface Sia, we measured
142 virus binding following treatment with exogenous sialidase (from *Clostridium perfringens*; CpNA)
143 relative to an untreated control. As expected, the four strains respond differently to Sia depletion,
144 with BR07 showing the greatest reduction even at modest levels of Sia depletion, and HK68 and
145 CA09 showing the most persistent binding as Sia levels are reduced (Figure 3A). The level of Sia
146 depletion achieved with exogenous CpNA (~60%) is comparable to or less than that achieved
147 through cell-surface expression of IAV NAs in the context of viral infection (~60-80% reduction;
148 Figure 2A), suggesting that the *in situ* activity of NA would be sufficient to reduce virion attachment
149 to background levels for these strains. Consistent with this prediction, we observe strong reductions
150 in viral attachment in both NA-expressing cells as well as adjacent cells that do not express NA
151 (Figure 3B). Taken together, these results demonstrate that viral HA influences the extent of virion
152 attachment to cells, while *cellular* NA influences which cells are most permissive to attachment.

153 **Increased *in situ* NA activity reduces local cellular co-infection**

154 Based on these observations, we reasoned that high *in situ* NA activity (as exhibited by CA09
155 NA; Figure 2A) could deplete Sia receptors from cells adjacent to the initial site of infection, reducing
156 virus binding and uptake by these cells. This could potentially explain the differences in local virion
157 shedding we observed when NA segments were swapped between WSN33 and CA09 (Figure 1C).
158 To determine if direct cell-to-cell viral spread is sensitive to Sia depletion, we measured local virion
159 shedding following treatment with exogenous sialidase (CpNA). We observed a ~10-fold reduction
160 in local virion shedding for WSN33-infected cells, and a ~5-fold reduction for cells infected with
161 CA09 (Figure 4A), confirming that cell-to-cell viral spread is Sia-dependent.

162 We next perturbed the *in situ* NA activity of WSN33 by rescuing a virus (WSN^{LS}) harboring a
163 16-residue insertion in the NA stalk that restores the length of contemporary N1 NAs and increases
164 NA activity⁴⁵⁻⁴⁷. This longer-stalk NA matches CA09 NA in overall size, but preserves the catalytic
165 domain of WSN33 NA. Consistent with prior comparisons of long- and short-stalked NAs⁴⁸⁻⁵⁰, our
166 *in situ* measurements show higher *cis* and *trans* Sia depletion by this strain (Figure 4B, left). Viruses
167 with long-stalk NA also show reduced local virion shedding relative to the parental strain (Figure 4B,
168 right).

169 Although these results are consistent with a direct link between *in situ* NA activity and the
170 extent of cellular co-infection that occurs during secondary viral spread, they do not rule out
171 structural contributions from different NAs that may affect virus assembly. To specifically test how
172 NA activity contributes to co-infection in the absence of genetic changes, we treated cells infected
173 with viral strains harboring WSN33 NA and CA09 NA with varying concentrations of the NA inhibitor
174 oseltamivir⁵¹. In contrast to strains harboring WSN33 NA, we found that oseltamivir treatment leads
175 to a significant increase in local virion shedding in strains harboring CA09 NA (Figure 4C & D). This
176 suggests that the effect of NA mutations on local virion shedding likely result from changes in
177 enzymatic activity, as opposed to differences in virion assembly. They also highlight limitations of
178 NA inhibitors in preventing short-range viral transmission.

179 **Increased cellular MOI promotes the spread of CA09 infection.**

180 High viral loads per cell may enhance infection by IAV, where the ratio of total virus particles
181 to fully-infectious units is thought to range from ~10-100^{1,52-54}. To determine how *in situ* NA activity
182 contributes to the spread of infection, we compared the size of infection foci for cells infected with
183 WSN33 or CA09 during multi-cycle viral spread, as well as their counterparts with swapped NAs.
184 As an additional perturbation of NA activity, we also tested the effects of treatment with oseltamivir.
185 For viruses harboring CA09 NA, but not those with WSN33 NA, the size of infection foci increased
186 significantly following NA inhibition (Figure 5A & B). This follows the trends observed for these
187 strains in local virion shedding, suggesting that increased particle counts in neighboring cells maps
188 to increased probability of secondary infection.

189 Assuming that each infected cell is surrounded by ten nearest neighbors, our data for CA09
190 imply that an increase from ~10 to ~20 virions per cell (obtained by dividing the data from Figure 4D
191 by the number of neighboring cells) significantly increases the probability of infection (Figure 5A &
192 B). To verify if this is the case, we measured the relationship between virion counts and infection in
193 A549 cells. We observed that the proportion of infected cells increases linearly with the average
194 numbers of virions per cell over a wide range (Figure 5C). At an average of ~10 virions per cell, the
195 proportion of infected cells remains modest, at around 20%. By fitting this data to an infection model
196 (Supplementary Figure 5A, *Methods*), we find that its high linearity is consistent with a large
197 proportion of non-infectious particles, combined with a small proportion of semi- or fully-infectious
198 virions that deliver genome segments with relatively high efficiency (Supplementary Figure 5B). In
199 contrast, a large proportion of semi-infectious particles with inefficient genome delivery would exhibit
200 higher cooperativity, producing an 's'-shaped curve in our model (Supplementary Figure 5C). These
201 results confirm that infection of A549 cells by CA09 is inefficient at low particle counts, but can be
202 increased during secondary infection by attenuating NA activity.

203 **The predicted optimal balance between IAV surface proteins depends on infectious
204 potential.**

205 Collectively, our results suggest a relationship between sialic acid availability, cellular MOI,
206 and infectious potential – characteristics that will vary widely across IAV strains and their possible
207 hosts. To broaden our investigation beyond the strains used in our experiments, we developed a
208 simplified model that uses probabilistic virus attachment to simulate the spread of infection (Figure
209 6A; *Methods*). We model viral attachment using two probabilities: a *cis* binding probability describes
210 the likelihood that the virus will attach to the initial infected cell during a single random encounter,
211 while a *trans* binding probability describes the likelihood of virus attachment to naïve cells. These
212 probabilities provide a framework for modeling HA-NA functional balance. NA activity tends to drive
213 the *cis* binding probability towards zero, and may also affect the *trans* binding probability (Figures 1
214 & 2), while HA binding avidity will affect both (Figure 3). This model provides estimates of cellular
215 MOI and infection across a monolayer of cells, allowing us to determine how the surface features of
216 a viral strain (*i.e.*, its *cis* and *trans* binding probabilities) are functionally related to its dependence
217 on co-infection (the number of virions necessary for infection).

218 Figure 6B shows the predicted number of virions per cell adjacent to the initial site of infection
219 across a 100-fold range in *cis* and *trans* binding probabilities (0.01-1). Not surprisingly, viral load per
220 cell is highest when viruses bind strongly to naïve cells with negligible binding to the infected cell,
221 but can be reduced when overall adhesion is either too weak or too strong (Figure 6B, right).
222 Predicted viral loads per cell can be used to estimate probability of infection using our measured
223 data for CA09 (Figure 5C) or hypothetical parameters for viruses with a different dependence on
224 co-infection. While strains requiring high viral loads for efficient infection favor focal spread in which
225 *trans* binding probabilities are high (Figure 6C & D, right), reduced *trans* binding is more efficient
226 when fewer virions are necessary for infection (Figure 6C & D, left). These predictions also
227 generalize to viral burst size, with increased burst size permitting more dispersed spread for a given
228 infectious potential, and smaller burst sizes requiring more localized spread. Overall, these results
229 predict that optimal HA-NA balance is functionally linked to intracellular aspects of viral replication,
230 with potential implications for viral evolution and adaptation to new hosts.

231 **Discussion**

232 While the concept of HA-NA functional balance is well-established, our work provides
233 additional insights into how the competing activities of the IAV surface proteins shape the spatial
234 structure of viral spread, and the specific role of NA in this process. Depletion of sialic acid in both
235 *cis* and *trans* (Figure 2) combined with genetic differences in HA binding avidity (Figure 3)
236 collectively determine how virions spread from initial sites of infection (Figures 4-6). HA and NA

237 activities therefore constitute a genetic mechanism through which IAV may tune the degree of
238 cellular co-infection that occurs during multi-cycle growth.

239 Our work reinforces previous observations that NA cleaves Sia both in *cis* and in *trans*, and
240 extends these observations to cell-surface NA with access to Sia on neighboring cells. The extent
241 of cell-surface Sia depletion is similar when NA is expressed through infection or through transient
242 transfection (Figure 2D & G bottom). This is perhaps surprising, given the potential differences in
243 the level and duration of NA expression in these experiments. One possible explanation is that NA
244 expressed at even modest levels is able to remove all Sia to which it has access. This may also be
245 true for virion-associated NA, although we do not observe strong Sia depletion over the course of
246 cellular entry (Figure 2G, top). In this case, cell-surface Sia depletion may be restricted by the rapid
247 rate at which virions are endocytosed following attachment⁵⁵. Further work is needed to determine
248 how NA on the cell and viral surface separately contribute to virion release and dissemination.

249 The mechanistic link established here between the activities of viral surface proteins and the
250 degree of cellular co-infection holds potential implications for virus evolution or adaptation to new
251 hosts, where a dependence on complementation is critical for virus replication¹⁴. Specifically, our
252 results suggest that strains that require higher degrees of co-infection - or that produce smaller burst
253 sizes within a particular host - will spread most efficiently when adhesion to neighboring cells is
254 strong, maximizing viral load per cell. While this comes at the cost of more dispersed spread, this
255 may be beneficial to virus replication if dispersed virions are unlikely to result in productive infection.
256 Previous work has demonstrated that the emergence of influenza viruses in new hosts is frequently
257 accompanied by truncations in the NA stalk^{56,57}. Although speculative, the link between reduced NA
258 activity and increased cellular co-infection that we demonstrate here may provide insights into early
259 events such as these during the adaptation of a virus to new hosts.

260 Additional mechanisms could further contribute to the frequency of co-infection, including
261 transmission through tunneling nanotubes⁵⁸⁻⁶⁰ as well as viral aggregation⁶¹. Virion aggregation has
262 been shown to promote co-infection by VSV and poliovirus^{17,62}. In light of long-standing observations
263 that IAV particles can form aggregates⁶³, it is plausible that aggregation could contribute to the
264 spread of IAV. Importantly, aggregation-dependent co-infection could operate over long distances
265 – potentially between hosts - and could involve multiple distinct IAV genotypes, produced by
266 different infected cells. Understanding IAV phenotypes that contribute to aggregation-dependent co-
267 infection could improve current understanding of the constellation of viral factors that contribute to
268 airborne transmission^{64,65}.

269 Finally, it is important to note that understanding the cellular spread of IAV in humans remains
270 an outstanding challenge which the design of our study does not allow us to address. *In vivo* studies

271 in animal models demonstrate that long-range transmission of viruses within the airways are rare
272 but potentially very important events^{9,10}. Given the limited number of virions released by a single
273 infected cell and the high proportion of these that may attach to adjacent cells, be swept away by
274 mucociliary clearance, or neutralized by antibodies, we speculate that pioneering rounds of focal
275 infection (such as those studied here) may be necessary before long-range dispersal becomes
276 possible. Understanding how IAV strains differ in their dependence on focal versus dispersed
277 spread in the human airways - and how host factors contribute to viral spread - will require additional
278 work. The results presented here establish a framework for understanding the contributions of HA
279 and NA to viral spread and cellular MOI in more complex environments.

280 **Methods**

281 **Cells and viruses**

282 Recombinant viruses were rescued using reverse genetics⁶⁶. Briefly, HEK-293T and MDCK-II co-cultures were transfected with eight plasmids containing bi-directional promoters and encoding each viral genomic segment. Viral stocks were passaged and expanded using MDCK-II cells in virus growth medium comprised of Opti-MEM (Gibco), 2.5 mg/mL bovine serum albumin (Sigma-Aldrich), 1 mg/ml TPCK-treated trypsin (Thermo Scientific Pierce), and 1x antibiotic-antimycotic (Corning). The RNA of rescued virus strains was extracted with QIAamp DSP viral RNA mini kit (Qiagen), reverse transcribed and amplified with OneTaq one-step RT-PCR kit (NEB) for verification by Sanger sequencing.

290 Cells used in this study were purchased as authenticated cell lines (STR profiling) from ATCC and cultured under standard conditions (37 °C, 5% CO₂) using DMEM (Gibco) supplemented with 291 10% fetal bovine serum (FBS) (Gibco) and 1x antibiotic-antimycotic. A549 cells for measuring virion 292 spread and for quantifying sialic acid were maintained in cell-growth media. 36 hours prior to 293 infection, cells were plated in an 8-chamber coverglass (Cellvis) coated with fibronectin (Sigma- 294 Aldrich). After cells reached confluence, serum-containing media was removed and cells were 295 washed twice with PBS (pH 7.4) (Gibco) before adding viral stocks diluted to MOI 0.003 in virus 296 growth media. After 1 h incubation at 37 °C, cells were washed with PBS and the virus-containing 297 media was replaced with fresh virus growth media containing fluorescent Fab fragments to monitor 298 single or multiple round infection. For experiments in Figure 5, an additional 0.2 µg/ml TPCK-treated 299 trypsin was included in the media to permit multi-round replication.

301 **Quantification of cell-surface sialic acids**

302 Cell-surface sialic acids were labeled using aniline-catalyzed oxime ligation⁴⁰. In comparison 303 to labeling with *Sambucus Nigra* lectin (SNA) (Vector Laboratories) which are large and have defined 304 preferences for specific Sia linkages, chemical labelling provides a more reproducible and 305 quantitative measurement of cell-surface sialic acids (Supplementary Figure 3). To perform this 306 reaction, we first prepared *solution A*: 1 mM NaIO₄ (Sigma-Aldrich) dissolved in PBS supplemented 307 with 1 mM CaCl₂, and *solution B*: 1 mM CaCl₂, 10mM aniline (Sigma-Aldrich), 5% FBS and 100 µM 308 CF633 hydrazide (Sigma-Aldrich) or CF488A hydrazide (Sigma-Aldrich) in cold PBS (pH 6.5) 309 (Teknova). Cells were cooled on ice and washed with cold PBS once before incubating with *solution* 310 *A* on ice for 15 min, followed by a wash with cold PBS (pH 6.5) and incubation with *solution B* on ice 311 for 40 min. Cells with labeled sialic acids were washed once with cold Opti-MEM and their plasma 312 membranes were labeled with CellMask Orange (Invitrogen) at a concentration of 2.5 µg/mL in Opti- 313 MEM for 5 min at room temperature. Cells were washed again with Opti-MEM before imaging.

314 **Quantification of NA activity with MUNANA**

315 HEK-293T cells were transfected with pCAGGS plasmids containing NA sequences from
316 WSN33, CA09, HK68, and BR07 with C-terminal Myc-tags attached via a short flexible linker
317 (GGSEQKLI~~SEEDL~~). Poly(ethylenimine) (PEI) (Polysciences) transfected cells were incubated for
318 48 h at 33 °C. The media was then removed, cells were washed once with PBS (pH 7.4), suspended
319 by pipetting, and serially-diluted in PBS into a 96-well glass-bottom plate (Cellvis) as a 50 µL
320 suspension. 50 µL of NA buffer (100 mM NaCl, 50 mM MES pH 6.5, 5 mM CaCl₂, and 5% bovine
321 serum albumin) supplemented with 0.25 mM 2'-*(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid*
322 (MUNANA) sodium salt (Toronto Research Chemicals), was then added to each well. The plate was
323 incubated at 37 °C for an hour before adding 100 µL stop solution (150 mM NaOH in 83% ethanol).
324 MUNANA signal was measured with a Nikon Ti2 confocal microscope using excitation at 405 nm.
325 In parallel with MUNANA tests, 10 µL of transfected cells from each sample were plated for imaging
326 with the anti-myc antibody 9E10⁶⁷ labeled with Sulfo-Cy5. Cell-surface NA expression was
327 quantified from confocal stacks (1 µm step, collected with a 40x, 1.30-NA objective) and used to
328 normalize activities determined from MUNANA measurements.

329 **Quantifying local virus shedding**

330 Infected cells (MOI ~ 0.003) were imaged with a Nikon Ti2 confocal microscopy system using
331 a 40x, 1.30-NA objective at 16 h.p.i. Infected cells were selected based on surface expression of
332 HA (using 9 nM CR9114 Fab for H1N1 strains and 19 nM FI6v3 plus 19 nM H3v-47⁶⁸ for H3N2
333 strains) and M2 (using a Fab fragment derived from mAb148⁶⁹). Confocal z-stacks spanning a range
334 of 15 µm were collected for the channel corresponding to labeled HA. Image analysis was performed
335 on Nikon NIS Element software 5.21. Briefly, a maximum intensity projection was generated from
336 confocal z-stacks, from which the body of the infected cell was identified by size and intensity and
337 stored (*Mask A*). This mask was dilated by ~1 cell diameter to capture a concentric region
338 surrounding the infected cell (*Mask B*). Peak detection was performed within the region between
339 *Mask A* and *Mask B*, where bright spots corresponding to shed virions were identified and counted.

340 **Antibody purification and labeling**

341 VH and VL sequences of Fabs were obtained from deposited antibody structures and cloned
342 into backbones containing the CH1 and CL domains, respectively. Heavy chain Fab sequences
343 were modified with a C-terminal ybbR tag for enzymatic labeling⁷⁰ and His₆-tag for affinity
344 purification. HEK-293T cells at ~85% confluence were washed with PBS, transfected with verified
345 clones and grown in Opti-MEM with 2% FBS for 7 days. Supernatants were collected and purified
346 using Ni-NTA agarose (Thermo Scientific HisPur). Eluted antibodies were quantified by UV-Vis,
347 diluted into a new buffer for enzymatic labeling (150 mM NaCl, 25 mM HEPES, 5 mM MgCl₂) and

348 concentrated to ~1 mg/mL by Vivaspin 20 centrifugal filter unit (MWCO 10 kDa) (Sartorius). Sfp
349 synthase and CoA-conjugated dyes were prepared as previously described⁵⁴ and used to perform
350 the overnight Fab labeling reaction on ice. Excess dye was removed by PD-10 desalting columns
351 (Cytiva). Expression and purification of full-length IgG1 antibodies (9E10 and 1G01⁷¹) followed a
352 similar procedure, except using serum-free media for expression and protein A/G agarose (Thermo
353 Scientific Pierce) for affinity purification.

354 **Creating polyclonal A549 SLC35A1 knock-out cells.**

355 A549 knockout cells were generated through transduction with lentivirus generated from the
356 lentiCRISPR v2 packaging plasmid. Three sgRNA sequences were selected using CRISPR KO and
357 the design rules described by Doench et al.⁷². These were tested in small scale via transient
358 transfection in HEK-293Ts and the sgRNAs that yielded the highest efficiency (determined via Sia
359 labeling) were selected for lentivirus preparation and infection into A549s. The optimal spacer
360 sequence was 5'-GACAGTGCATAAAGCAGTACA-3' (underlined nucleotide added for efficient
361 transcription initiation).

362 **Measuring virus binding avidity**

363 To measure virion binding avidity, A549 cells with different Sia abundance were prepared by
364 treatment with different concentrations of CpNA (Roche) for 30 min at 37 °C. Simultaneously,
365 viruses were labeled with fluorescent Fab fragments (18 nM CR9114 for H1N1, 19 nM Fl6v3 plus
366 19 nM H3v-47 for H3N2) for 20 min at room temperature. Following CpNA treatment, cells were
367 washed with PBS twice and incubated with 100 µL virus-containing Opti-MEM at 4 °C. After
368 incubating for 30 min, virus-containing media was removed and the cells were washed and
369 supplemented with cold Opti-MEM. Viruses attached to the cell surface or endocytosed were
370 imaged by the Nikon Ti2 confocal microscopy system using a 40x, 1.30-NA objective.

371 **Measuring infectious potential.**

372 To measure the relationship between viral particles and the probability of infection, we
373 prepared stocks of CA09 virus in A549 cells. Viruses were concentrated approximately five-fold by
374 centrifugation at 21,100 g for 30 min at 4 °C. Concentrated virus was then serially diluted and added
375 to A549 cell monolayers. After 30 min of incubation at 37 °C, cells were washed with PBS twice and
376 supplemented with virus growth media containing 9 nM labeled CR9114 Fab. To quantify the
377 number of bound virions for each group, the same concentrations of viruses pre-incubated with 9
378 nM CR9114 Fab for 20 min were added to another group of cells and incubated for 30 min before
379 washing off. Particle numbers were obtained by collecting confocal stacks and performing particle
380 detection based on the maximum intensity projection. For the group incubated with untreated virus,
381 percentage of infected cell was determined by measuring the ratio of HA-positive area to the total

382 field of view (containing an intact cell monolayer) at ~12 h.p.i.

383 **Modeling infectious potential.**

384 To interpret our measurements of infection probability versus the average number of particles
385 per cell, we developed a model that accounts for (1) virion delivery of incomplete genomes (*i.e.*,
386 semi- or fully-infectious particles); (2) virions that fail to deliver any genome segments (*i.e.*, non-
387 infectious particles); and (3) the Poissonian nature of virion attachment to cells.

388 *Incomplete genomes:* We define an eight-element vector, \mathbf{p} , whose elements (p_i) correspond to the
389 probabilities that a competent virion delivers segment i to the target cell (Supplementary Figure 5A).
390 While each probability p_i could be distinct, for simplicity we model the probabilities as being equal
391 across all segments. Since our data only captures cells that express HA, we assume that these cells
392 express a minimum of 5 genomic segments: the vRNP segments (NP, PA, PB1, and PB2), along
393 with the HA segment. This assumption is motivated by previous reports showing that secondary
394 transcription (*i.e.*, transcription from nascent vRNPs) is necessary for robust expression of other
395 segments (Russell et al., 2018).

396 *Non-infectious virions:* Some fraction of virions within a population will not be capable of contributing
397 to infection. These particles are distinct from those that enter the cells but package or deliver an
398 incomplete genome. These particles could arise from failure to package any genomic segments
399 (empty particles) or from failure to escape from the endosome (*e.g.*, due to incomplete proteolytic
400 activation of HA or for other reasons). To account for non-infectious virions, we define a parameter
401 ϕ that describes the fraction of the viral population that contributes to infection.

402 *Virion attachment to cells:* Our measurements of particles per cell represent a population average
403 which does not apply to any one particular cell within the population. To account for this, we model
404 the distribution of particles per cell as following a Poisson distribution. If the average number of
405 particles per cell is N and the fraction of these that are competent for infection is ϕ , then the
406 distribution of *infection-competent virions per cell* (n) will follow:

$$407 f_1(n) = \frac{(\phi N)^n e^{-\phi N}}{n!}$$

408 From this relationship and the segment delivery probabilities for competent virions, we can calculate
409 infection probabilities. First, we note that the probability of failing to deliver segment i in n tries is
410 equal to $(1 - p_i)^n$. Therefore, the probability of successfully delivering *at least one* copy of segment
411 i in n tries is equal to $1 - (1 - p_i)^n$. Cell-surface expression of HA indicates delivery at least one
412 copy of at least five segments (NP, PA, PB1, PB2, and HA), the probability of which is equal to the
413 product of the individual segment delivery probabilities:

414

$$f_2(n) = \prod_{i=1}^5 1 - (1 - p_i)^n$$

415 Combining the two probabilities from above, we can determine the probability of infection for a
416 sample where the average number of particles per cell is N :

417

$$f(N) = \sum_{n=0}^{\infty} f_1(n) f_2(n) = \sum_{n=0}^{\infty} \frac{(\phi N)^n e^{-\phi N}}{n!} \left[\prod_{i=1}^5 1 - (1 - p_i)^n \right]$$

418 This curve can then be used to interpret our experimental measurements. In particular, this provides
419 a means of estimating the fraction of competent virions within our sample, as well as the segment
420 delivery probabilities (Figure 5C, Supplementary Figure 5).

421 **Modeling virion spread.**

422 We modeled the spread of virions from infected cells as a three-dimensional random walk
423 above a cellular monolayer, represented by a partially-absorbing boundary. Cells within the
424 monolayer are represented by hexagons in a lattice, whose centers are separated by 30 μm . Virions
425 are released synchronously from a central hexagon (the infected cell) and sample a random
426 displacement in each direction for every time step ($= 1 \text{ s}$) of the simulation. When a virion encounters
427 the cell monolayer, it either binds to the surface irreversibly (with a probability p_{bind}), or reflects from
428 the surface to continue its random walk (with a probability $1 - p_{\text{bind}}$), potentially encountering the
429 surface repeatedly over time. We assign distinct binding probabilities to the surface of the infected
430 cell (*cis* adhesion) and to uninfected cells (*trans* adhesion). We simulate only conditions where the
431 *cis* adhesion probability is less than or equal to the *trans* adhesion probability, reflecting the efficient
432 removal of Sia in *cis* during infection (Figure 2). The output of the model is a spatial distribution of
433 bound and unbound virions that evolves over time, from which we can calculate the probability of
434 infection using results measured for CA09 or from virions with hypothetical characteristics (Figure
435 6C & D).

436 **Statistics and replicates**

437 Replicates referenced throughout the paper refer to biological replicates, defined as separate
438 cultures of cells infected/ transfected/ treated individually and assayed as indicated. All statistical
439 tests were performed in Python Scipy 1.7.3. No statistical methods were used to predetermine
440 sample size. Statistical tests and the number of replicates used in specific cases are described in
441 figure captions. Box plots may sometimes not show the outliers due to the limitation of y-axis.

442 **Acknowledgements**

443 This work was supported by Institutional funds from Washington University in St. Louis, NIH
444 R21 AI163985, and Burroughs Wellcome Fund CASI 1013923.

445 **References**

- 446 1. Donald, H. B. & Isaacs, A. Counts of Influenza Virus Particles. *J. Gen. Microbiol.* **10**, 457–
447 464 (1954).
- 448 2. Heldt, F. S., Kupke, S. Y., Dorl, S., Reichl, U. & Frensing, T. Single-cell analysis and
449 stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. *Nat.*
450 *Commun.* **6**, 8938 (2015).
- 451 3. Jacobs, N. T. *et al.* Incomplete influenza A virus genomes occur frequently but are readily
452 complemented during localized viral spread. *Nat. Commun.* **10**, 3526 (2019).
- 453 4. Fukuyama, S. *et al.* Multi-spectral fluorescent reporter influenza viruses (Color-flu) as
454 powerful tools for in vivo studies. *Nat. Commun.* **6**, 6600 (2015).
- 455 5. Karlsson, E. A. *et al.* Visualizing real-time influenza virus infection, transmission and
456 protection in ferrets. *Nat. Commun.* **6**, 6378 (2015).
- 457 6. Manicassamy, B. *et al.* Analysis of in vivo dynamics of influenza virus infection in mice using
458 a GFP reporter virus. *Proc. Natl. Acad. Sci.* **107**, 11531–11536 (2010).
- 459 7. Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza Virus
460 Reassortment Occurs with High Frequency in the Absence of Segment Mismatch. *PLOS*
461 *Pathog.* **9**, e1003421 (2013).
- 462 8. Varble, A. *et al.* Influenza A virus transmission bottlenecks are defined by infection route
463 and recipient host. *Cell Host Microbe* **16**, 691–700 (2014).
- 464 9. Amato, K. A. *et al.* Influenza A virus undergoes compartmentalized replication in vivo
465 dominated by stochastic bottlenecks. *Nat. Commun.* **13**, 3416 (2022).
- 466 10. Richard, M., Herfst, S., Tao, H., Jacobs, N. T. & Lowen, A. C. Influenza A Virus
467 Reassortment Is Limited by Anatomical Compartmentalization following Coinfection via
468 Distinct Routes. *J. Virol.* **92**, e02063-17 (2018).
- 469 11. Brooke, C. B. *et al.* Most Influenza A Virions Fail To Express at Least One Essential Viral
470 Protein. *J. Virol.* **87**, 3155–3162 (2013).
- 471 12. Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection
472 in single cells. *eLife* **7**, e32303 (2018).
- 473 13. Steel, J. & Lowen, A. C. Influenza A Virus Reassortment. in *Influenza Pathogenesis and*
474 *Control - Volume 1* (eds. Compans, R. W. & Oldstone, M. B. A.) 377–401 (Springer
475 International Publishing, 2014). doi:10.1007/82_2014_395.
- 476 14. Phipps, K. L. *et al.* Collective interactions augment influenza A virus replication in a host-
477 dependent manner. *Nat. Microbiol.* **5**, 1158–1169 (2020).

478 15. Martin, B. E., Jeremy D., Sun, J., Koelle, K. & Brooke, C. B. Cellular co-infection can
479 modulate the efficiency of influenza A virus production and shape the interferon response.
480 *PLOS Pathog.* **16**, e1008974 (2020).

481 16. Ramos, I. *et al.* Innate Immune Response to Influenza Virus at Single-Cell Resolution in
482 Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. *J. Virol.* **93**,
483 e00559-19 (2019).

484 17. Cuevas, J. M., Durán-Moreno, M. & Sanjuán, R. Multi-virion infectious units arise from free
485 viral particles in an enveloped virus. *Nat. Microbiol.* **2**, 1–7 (2017).

486 18. Erickson, A. K. *et al.* Bacteria facilitate enteric virus co-infection of mammalian cells and
487 promote genetic recombination. *Cell Host Microbe* **23**, 77-88.e5 (2018).

488 19. Kuss, S. K. *et al.* Intestinal Microbiota Promote Enteric Virus Replication and Systemic
489 Pathogenesis. *Science* **334**, 249–252 (2011).

490 20. Chen, Y.-H. *et al.* Phosphatidylserine Vesicles Enable Efficient En Bloc Transmission of
491 Enteroviruses. *Cell* **160**, 619–630 (2015).

492 21. Kosik, I. & Yewdell, J. W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins
493 Coevolving to Thwart Immunity. *Viruses* **11**, 346 (2019).

494 22. Sakai, T., Nishimura, S. I., Naito, T. & Saito, M. Influenza A virus hemagglutinin and
495 neuraminidase act as novel motile machinery. *Sci. Rep.* **7**, 1–11 (2017).

496 23. Vahey, M. D. & Fletcher, D. A. Influenza A virus surface proteins are organized to help
497 penetrate host mucus. *eLife* **8**, e43764 (2019).

498 24. Air, G. M. Influenza neuraminidase. *Influenza Other Respir. Viruses* **6**, 245–256 (2012).

499 25. McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E. & McKimm-Breschkin, J. L.
500 Influenza Virus Neuraminidase Structure and Functions. *Front. Microbiol.* **10**, 39 (2019).

501 26. Gamblin, S. J. & Skehel, J. J. Influenza Hemagglutinin and Neuraminidase Membrane
502 Glycoproteins. *J. Biol. Chem.* **285**, 28403–28409 (2010).

503 27. Gaymard, A., Le Briand, N., Frobert, E., Lina, B. & Escuret, V. Functional balance between
504 neuraminidase and haemagglutinin in influenza viruses. *Clin. Microbiol. Infect.* **22**, 975–983
505 (2016).

506 28. Jang, J. & Bae, S.-E. Comparative Co-Evolution Analysis Between the HA and NA Genes of
507 Influenza A Virus. *Virol. Res. Treat.* **9**, 1178122X18788328 (2018).

508 29. Kryazhimskiy, S., Dushoff, J., Bazykin, G. A. & Plotkin, J. B. Prevalence of Epistasis in the
509 Evolution of Influenza A Surface Proteins. *PLOS Genet.* **7**, e1001301 (2011).

510 30. Liu, T., Wang, Y., Tan, T. J. C., Wu, N. C. & Brooke, C. B. The evolutionary potential of the
511 influenza A virus hemagglutinin is highly constrained by intersegment epistasis.
512 2022.05.19.492711 Preprint at <https://doi.org/10.1101/2022.05.19.492711> (2022).

513 31. Mitnaul, L. J. *et al.* Balanced Hemagglutinin and Neuraminidase Activities Are Critical for
514 Efficient Replication of Influenza A Virus. *J. Virol.* **74**, 6015–6020 (2000).

515 32. de Vries, E., Du, W., Guo, H. & de Haan, C. A. M. Influenza A Virus Hemagglutinin–
516 Neuraminidase–Receptor Balance: Preserving Virus Motility. *Trends Microbiol.* **28**, 57–67
517 (2020).

518 33. Xu, R. *et al.* Functional Balance of the Hemagglutinin and Neuraminidase Activities
519 Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic. *J. Virol.* **86**, 9221–
520 9232 (2012).

521 34. Uhlendorff, J., Matrosova, T., Klenk, H.-D. & Matrosova, M. Functional significance of the
522 hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic
523 viruses. *Arch. Virol.* **154**, 945–957 (2009).

524 35. Els, M. C., Graeme Laver, W. & Air, G. M. Sialic acid is cleaved from glycoconjugates at the
525 cell surface when influenza virus neuraminidases are expressed from recombinant vaccinia
526 viruses. *Virology* **170**, 346–351 (1989).

527 36. Lambré, C. R., Terzidis, H., Greffard, A. & Webster, R. G. Measurement of anti-influenza
528 neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with
529 natural substrates. *J. Immunol. Methods* **135**, 49–57 (1990).

530 37. Dreyfus, C. *et al.* Highly Conserved Protective Epitopes on Influenza B Viruses. *Science*
531 **337**, 1343–1348 (2012).

532 38. Corti, D. *et al.* A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1
533 and Group 2 Influenza A Hemagglutinins. *Science* **333**, 850–856 (2011).

534 39. Huang, I.-C. *et al.* Influenza A Virus Neuraminidase Limits Viral Superinfection. *J. Virol.* **82**,
535 4834–4843 (2008).

536 40. Zeng, Y., Ramya, T. N. C., Dirksen, A., Dawson, P. E. & Paulson, J. C. High-efficiency
537 labeling of sialylated glycoproteins on living cells. *Nat. Methods* **6**, 207–209 (2009).

538 41. Couzens, L. *et al.* An optimized enzyme-linked lectin assay to measure influenza A virus
539 neuraminidase inhibition antibody titers in human sera. *J. Virol. Methods* **210**, 7–14 (2014).

540 42. Kosik, I. & Yewdell, J. W. Influenza A virus hemagglutinin specific antibodies interfere with
541 virion neuraminidase activity via two distinct mechanisms. *Virology* **500**, 178–183 (2017).

542 43. Lai, J. C. C., Karunaratna, H. M. T. K., Wong, H. H., Peiris, J. S. M. & Nicholls, J. M.
543 Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-
544 receptor binding. *Emerg. Microbes Infect.* **8**, 327–338 (2019).

545 44. Lin, Y. P. *et al.* Evolution of the receptor binding properties of the influenza A(H3N2)
546 hemagglutinin. *Proc. Natl. Acad. Sci.* **109**, 21474–21479 (2012).

547 45. Castrucci, M. R. & Kawaoka, Y. Biologic importance of neuraminidase stalk length in
548 influenza A virus. *J. Virol.* **67**, 759–764 (1993).

549 46. Luo, G., Chung, J. & Palese, P. Alterations of the stalk of the influenza virus neuraminidase:
550 deletions and insertions. *Virus Res.* **29**, 141–153 (1993).

551 47. Wang, H., Dou, D., Östbye, H., Revol, R. & Daniels, R. Structural restrictions for influenza
552 neuraminidase activity promote adaptation and diversification. *Nat. Microbiol.* **4**, 2565–2577
553 (2019).

554 48. Blumenkrantz, D., Roberts, K. L., Shelton, H., Lycett, S. & Barclay, W. S. The Short Stalk
555 Length of Highly Pathogenic Avian Influenza H5N1 Virus Neuraminidase Limits
556 Transmission of Pandemic H1N1 Virus in Ferrets. *J. Virol.* **87**, 10539–10551 (2013).

557 49. Durrant, J. D., Bush, R. M. & Amaro, R. E. Microsecond Molecular Dynamics Simulations of
558 Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-
559 Deletion Mutants. *J. Phys. Chem. B* **120**, 8590–8599 (2016).

560 50. Els, M. C., Air, G. M., Murti, K. G., Webster, R. G. & Laver, W. G. An 18-amino acid deletion
561 in an influenza neuraminidase. *Virology* **142**, 241–247 (1985).

562 51. Hayden, F. G. *et al.* Use of the Selective Oral Neuraminidase Inhibitor Oseltamivir to
563 Prevent Influenza. *N. Engl. J. Med.* **341**, 1336–1343 (1999).

564 52. Martin, K. & Helenius, A. Transport of incoming influenza virus nucleocapsids into the
565 nucleus. *J. Virol.* **65**, 232–244 (1991).

566 53. Noton, S. L. *et al.* Studies of an Influenza A Virus Temperature-Sensitive Mutant Identify a
567 Late Role for NP in the Formation of Infectious Virions. *J. Virol.* **83**, 562–571 (2009).

568 54. Vahey, M. D. & Fletcher, D. A. Low-Fidelity Assembly of Influenza A Virus Promotes Escape
569 from Host Cells. *Cell* **176**, 281-294.e19 (2019).

570 55. Lakadamyali, M., Rust, M. J. & Zhuang, X. Endocytosis of influenza viruses. *Microbes*
571 *Infect. Inst. Pasteur* **6**, 929–936 (2004).

572 56. Li, J., Dohna, H. zu, Cardona, C. J., Miller, J. & Carpenter, T. E. Emergence and Genetic
573 Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses. *PLOS ONE* **6**,
574 e14722 (2011).

575 57. Matsuoka, Y. *et al.* Neuraminidase Stalk Length and Additional Glycosylation of the
576 Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice. *J. Virol.* **83**,
577 4704–4708 (2009).

578 58. Roberts, K. L., Manicassamy, B. & Lamb, R. A. Influenza A Virus Uses Intercellular
579 Connections To Spread to Neighboring Cells. *J. Virol.* **89**, 1537 (2015).

580 59. Ganti, K. *et al.* Influenza A virus reassortment in mammals gives rise to genetically distinct
581 within-host sub-populations. 2022.02.08.479600 Preprint at
582 <https://doi.org/10.1101/2022.02.08.479600> (2022).

583 60. Kumar, A. *et al.* Influenza virus exploits tunneling nanotubes for cell-to-cell spread. *Sci. Rep.*
584 **7**, 40360 (2017).

585 61. Aguilera, E. R. & Pfeiffer, J. K. Strength in numbers: Mechanisms of viral co-infection. *Virus*
586 *Res.* **265**, 43–46 (2019).

587 62. Aguilera, E. R., Erickson, A. K., Jesudhasan, P. R., Robinson, C. M. & Pfeiffer, J. K.
588 Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies.
589 *mBio* **8**, e02020-16 (2017).

590 63. Hirst, G. K. & Pons, M. W. Mechanism of influenza recombination: II. Virus aggregation and
591 its effect on plaque formation by so-called noninfective virus. *Virology* **56**, 620–631 (1973).

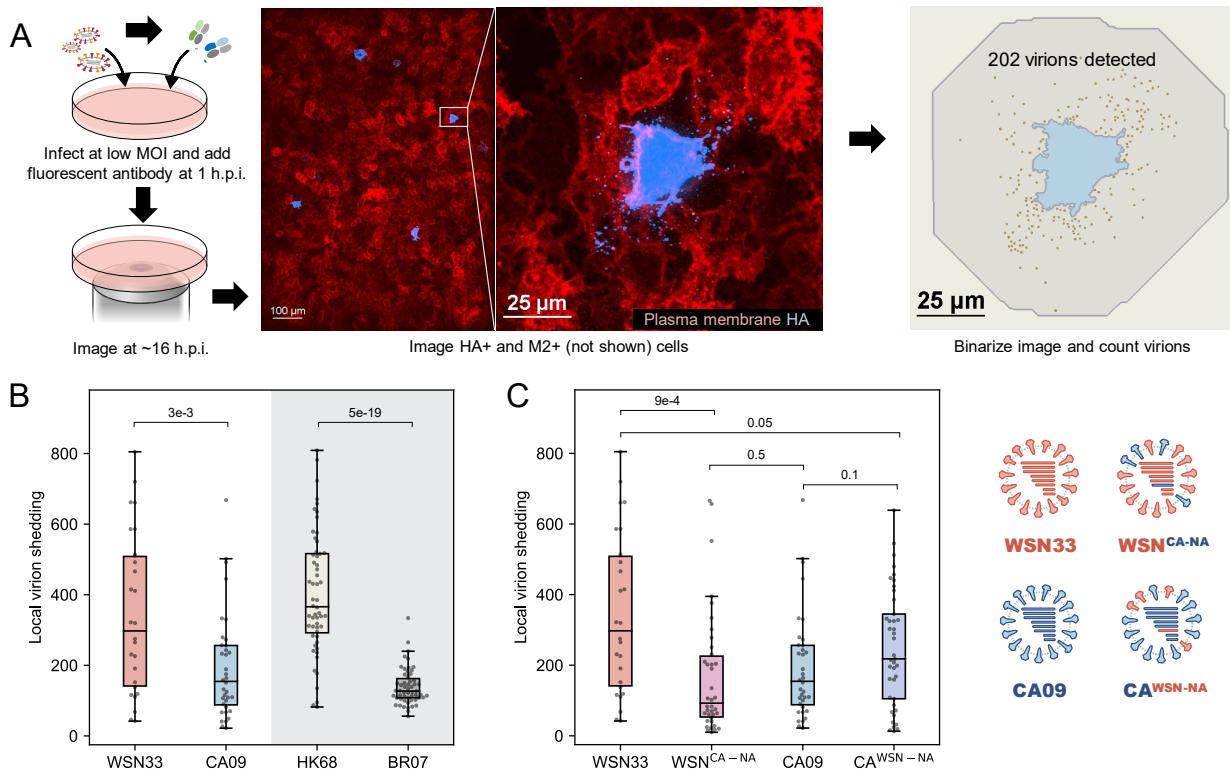
592 64. Lakdawala, S. S. *et al.* Eurasian-Origin Gene Segments Contribute to the Transmissibility,
593 Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus. *PLOS*
594 *Pathog.* **7**, e1002443 (2011).

595 65. Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of
596 influenza A virus species specificity. *Nat. Rev. Microbiol.* **17**, 67–81 (2019).

597 66. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection
598 system for generation of influenza A virus from eight plasmids. *Proc. Natl. Acad. Sci.* **97**,
599 6108–6113 (2000).

600 67. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies
601 specific for human c-myc proto-oncogene product. *Mol. Cell. Biol.* **5**, 3610–3616 (1985).

602 68. Bangaru, S. *et al.* A multifunctional human monoclonal neutralizing antibody that targets a
603 unique conserved epitope on influenza HA. *Nat. Commun.* **9**, 2669 (2018).

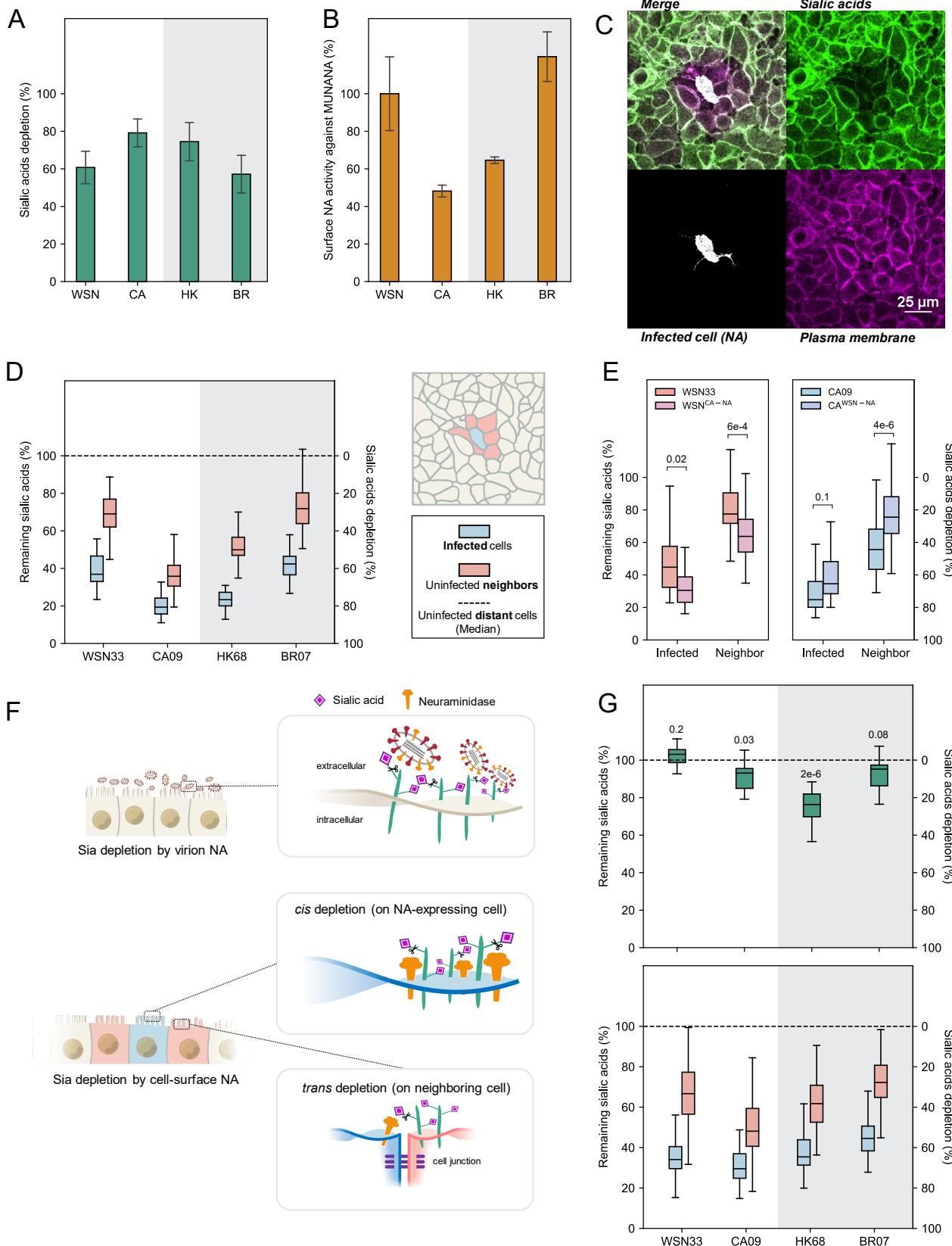

604 69. Cho, K. J. *et al.* Crystal Structure of the Conserved Amino Terminus of the Extracellular
605 Domain of Matrix Protein 2 of Influenza A Virus Gripped by an Antibody. *J. Virol.* **90**, 611–
606 615 (2015).

607 70. Yin, J. *et al.* Genetically encoded short peptide tag for versatile protein labeling by Sfp
608 phosphopantetheinyl transferase. *Proc. Natl. Acad. Sci.* **102**, 15815–15820 (2005).

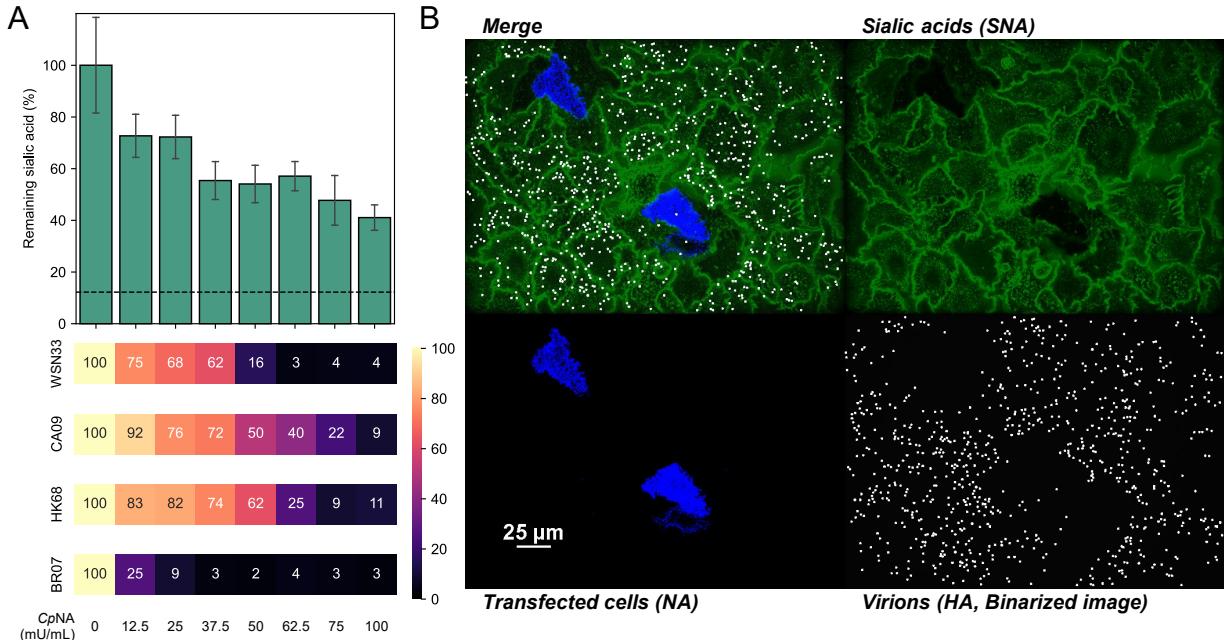
609 71. Stadlbauer, D. *et al.* Broadly protective human antibodies that target the active site of
610 influenza virus neuraminidase. *Science* **366**, 499–504 (2019).

611 72. Doench, J. G. *et al.* Optimized sgRNA design to maximize activity and minimize off-target
612 effects of CRISPR-Cas9. *Nat. Biotechnol.* **34**, 184–191 (2016).

613 **Figures**


614

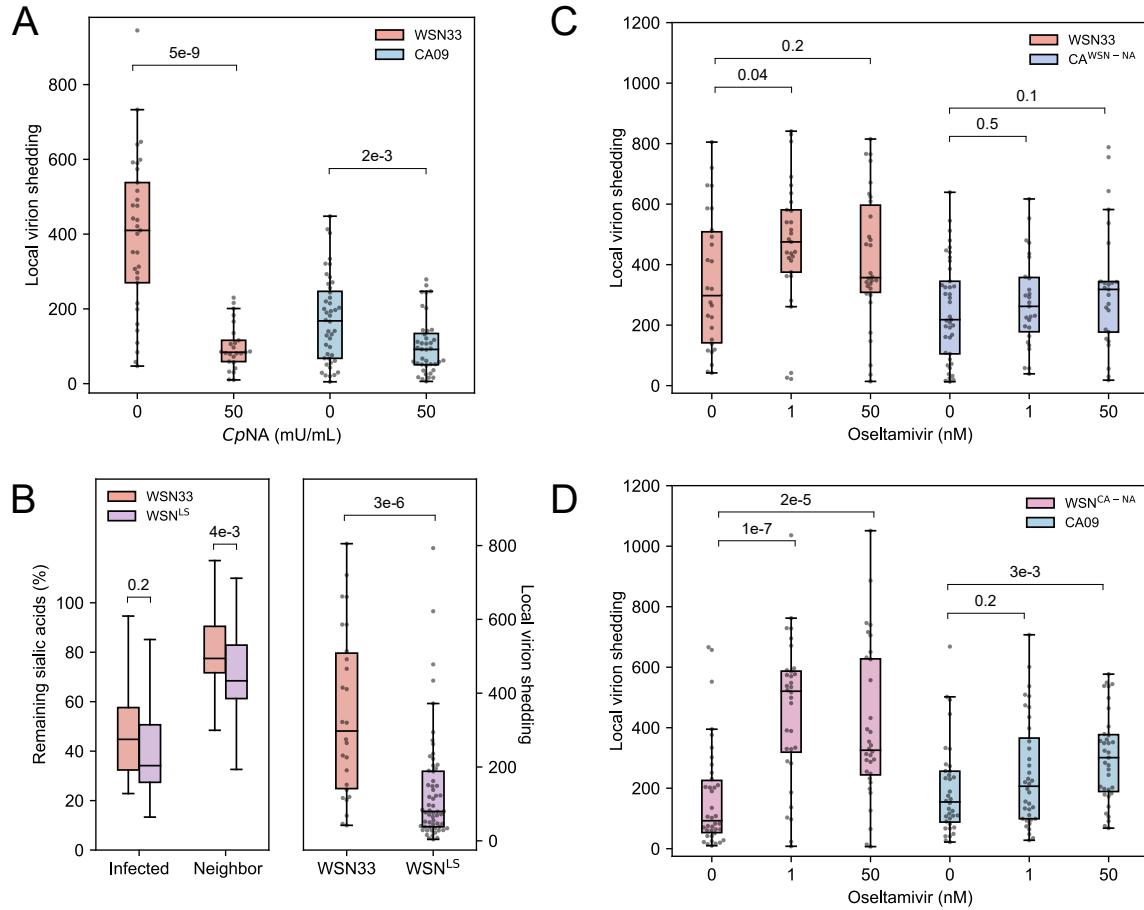
615 **Figure 1: Virions produced by infected cells are preferentially shed to the nearest neighbors.**


616 (A) Schematic and representative images illustrating the approach for measuring local virion
617 shedding. Contrast in the HA channel is exaggerated so that shed virions are visible.

618 (B) Quantification of local virion shedding for four IAV strains. Data is combined from three biological
619 replicates. Individual data points represent virions from a single site of infection. P-values are
620 determined by independent t-tests.

621 (C) Quantification of local virion shedding for WSN^{CA-NA} and CA^{WSN-NA}. Wild-type results from (B) are
622 shown for comparison. Data is combined from three biological replicates. P-values are determined
623 by independent t-tests.

625 **Figure 2: Cell-surface NA depletes sialic acid (Sia) in *cis* and in *trans*.**
626 (A) Cell-surface Sia depletion on cells infected by each viral strain. A value of 100% corresponds to
627 complete depletion.
628 (B) Surface NA activity against MUNANA, normalized to data for WSN33.
629 (C) Image showing Sia, cell-surface NA, and plasma membrane in the proximity of an isolated cell
630 infected with HK68.
631 (D) Quantification of remaining Sia on the surface of infected cells and uninfected neighbors. Cells
632 were selected based on NA expression by incubating with 1G01 immediately before imaging. Data
633 is combined from three biological replicates.
634 (E) Quantification of remaining Sia on the surface of infected cells (determined by HA expression)
635 and uninfected neighbors for viruses with exchanged NA segments. Data is combined from three
636 biological replicates. P-values are from independent t-tests.
637 (F) Illustration of Sia depletion by virion-associated NA (top) and cell-associated NA (bottom).
638 (G) *Top*: Quantification of Sia depletion following incubation with virions. Results are normalized to
639 Sia levels on untreated cell surfaces. P-values are determined from independent t-tests relative to
640 the untreated group. *Bottom*: Quantification of Sia depletion by cell-surface NA. Cells were selected
641 based on NA expression. Data is combined from three biological replicates.


642

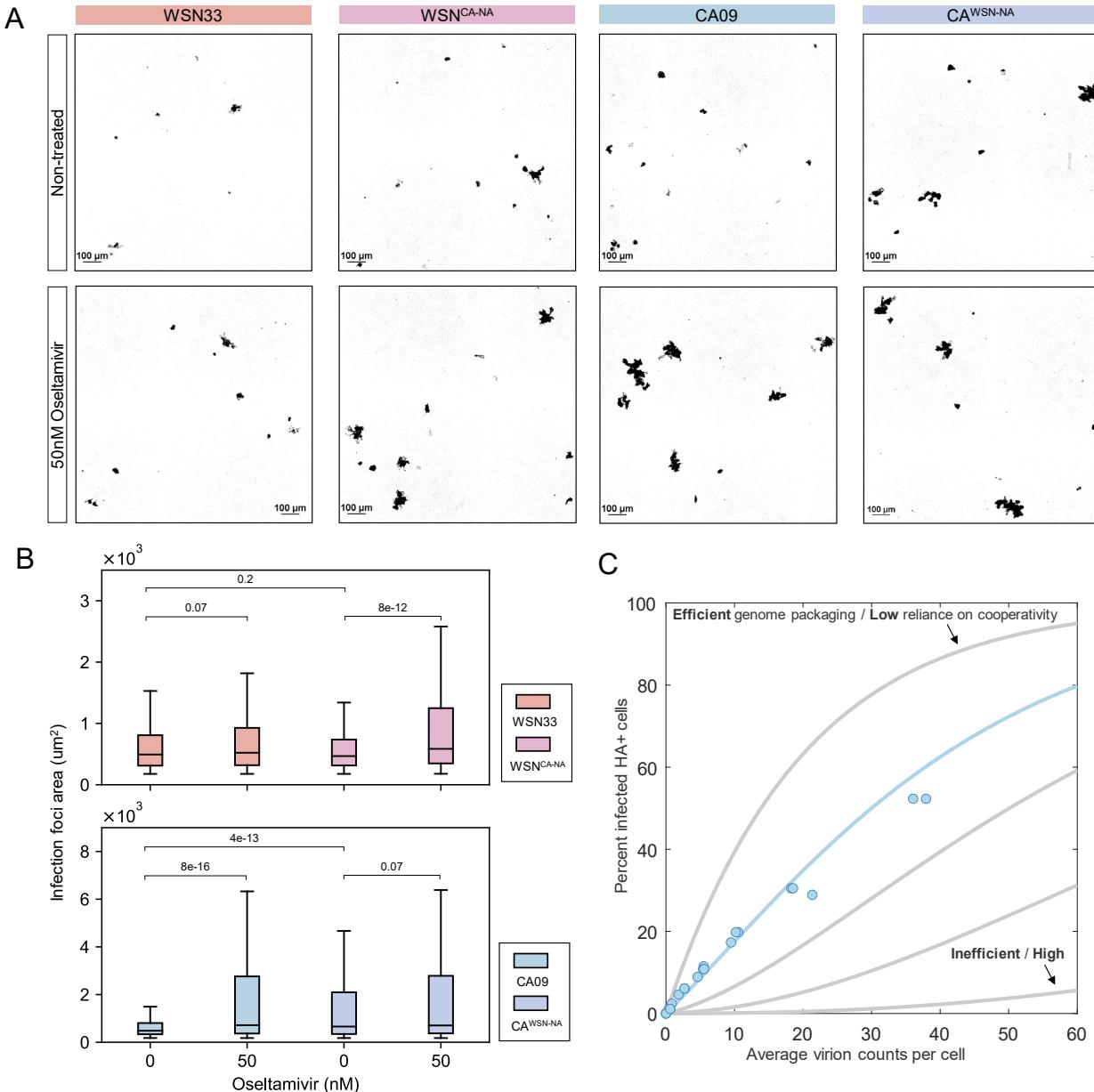
643 **Figure 3: Sialic acid depletion reduces viral attachment in a strain-dependent manner.**

644 (A) *Top*: Cell surface Sia abundance following treatment with CpNA; concentrations are specified
645 below. Dashed line indicates signal from SLC35A1 knock-out cells treated with the highest CpNA
646 concentration. *Bottom*: Relative binding capacities for each viral strain following CpNA treatment.
647 Data is combined from three biological replicates.

648 (B) Image showing virus attachment to cell monolayers with sparse expression of HK68 NA.

649

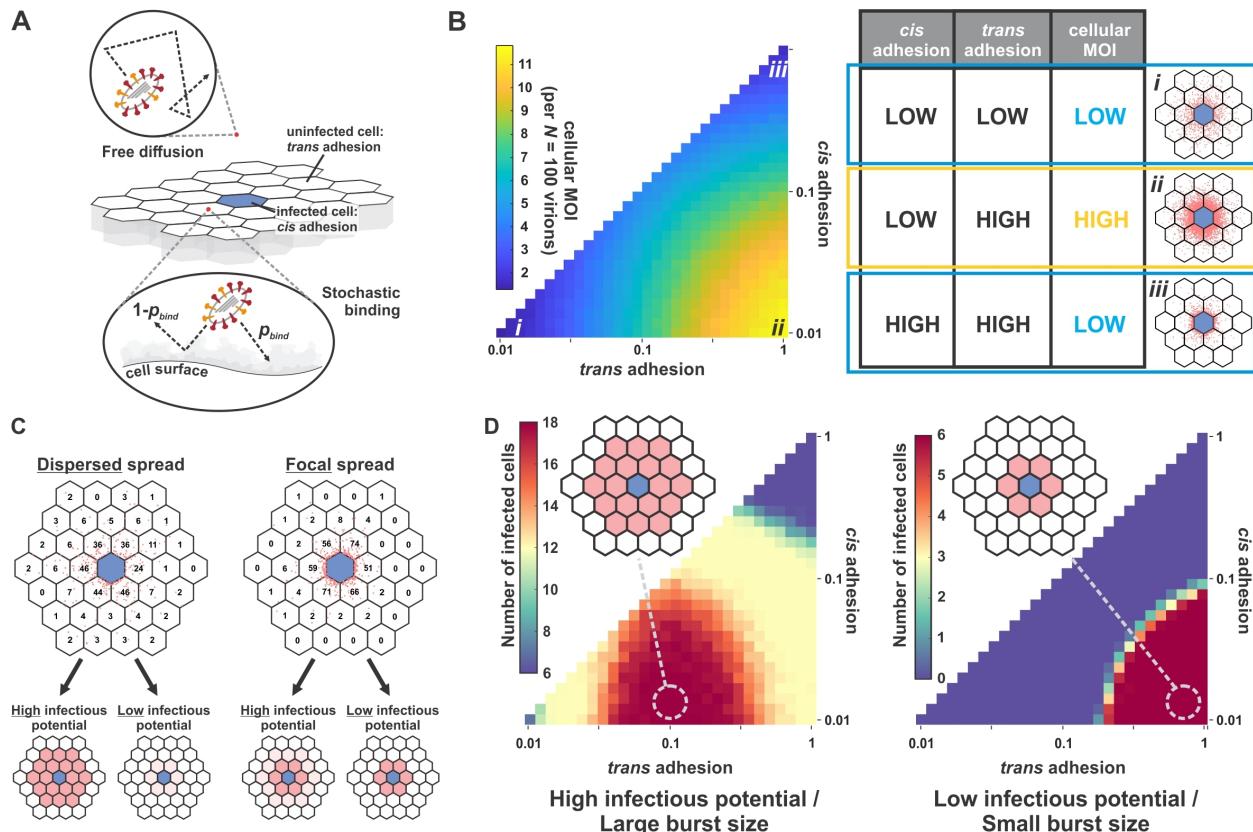
650


651 **Figure 4: Decreasing NA activity increases local virion shedding.**

652 (A) Quantification of local virion shedding under continuous treatment with exogenous sialidase
 653 (CpNA). Data is combined from three biological replicates. P-values are determined from
 654 independent t-tests.

655 (B) *Left*: Quantification of *cis* and *trans* cleavage of Sia by WSN33 and WSN^{LS}. *Right*: Quantification
 656 of local virion shedding for these strains. Data is combined from three biological replicates. P-values
 657 are determined from independent t-tests.

658 (C) Quantification of local virion shedding for viruses with WSN33 NA (in WSN33 or CA09
 659 backgrounds) under oseltamivir treatment. Data is combined from three biological replicates. P-
 660 values are determined from independent t-tests.


661 (D) Quantification of local virion shedding for viruses with CA09 NA (in WSN33 or CA09
 662 backgrounds) under oseltamivir treatment. Data is combined from three biological replicates. P-
 663 values are determined from independent t-tests.

664

665 **Figure 5: Increased cellular MOI compensates for low infectious potential.**

666 (A) Representative images of infected clusters of A549 cells at 48 h.p.i. Infected cells (shown in
667 black) are visualized by an M2-specific Fab.
668 (B) Quantification of the size distribution of infection foci at 48 h.p.i. Data is combined from three
669 biological replicates. P-values are determined by Kolmogorov–Smirnov tests.
670 (C) Relating the average virion count per cell to the probability of infection. Data for CA09 is shown
671 as blue circles. Curves are produced from an infection model, with the best fit shown in blue. Gray
672 curves show the effects of varying genome segment packaging probabilities.

673

674 **Figure 6: Optimal balance between IAV surface proteins depends on infectious potential.**

675 (A) Model of virus diffusion and binding to a cell monolayer. Virion attachment to the infected cell is

676 referred to as *cis* adhesion, and attachment to uninfected cells is referred to as *trans* adhesion.

677 During each encounter with the cell monolayer, virions bind to the cell surface or get reflected with

678 a probability (p_{bind}) which differs for *cis* adhesion and *trans* adhesion.

679 (B) *Left*: Model predictions for the number of virions shed to neighboring cells (“cellular MOI”) as a

680 function of *cis* and *trans* binding probabilities. Numerical values correspond to a scenario where the

681 infected cell sheds a total of 100 virions. *Right*: Summary of cellular MOI as a function of *cis* and

682 *trans* adhesion probabilities. Images correspond to conditions labeled *i* – *iii* in the plot to the left.

683 Blue hexagons (lattice center) correspond to the infected cell; red points denote the positions of

684 bound virions.

685 (C) Distribution of secondary infection as a function of viral adhesion (dispersed vs. focal) and

686 infectious potential (low vs. high). For viruses with high infectious potential, dispersed spread leads

687 to greater secondary infection whereas focal spread produces more secondary infection when

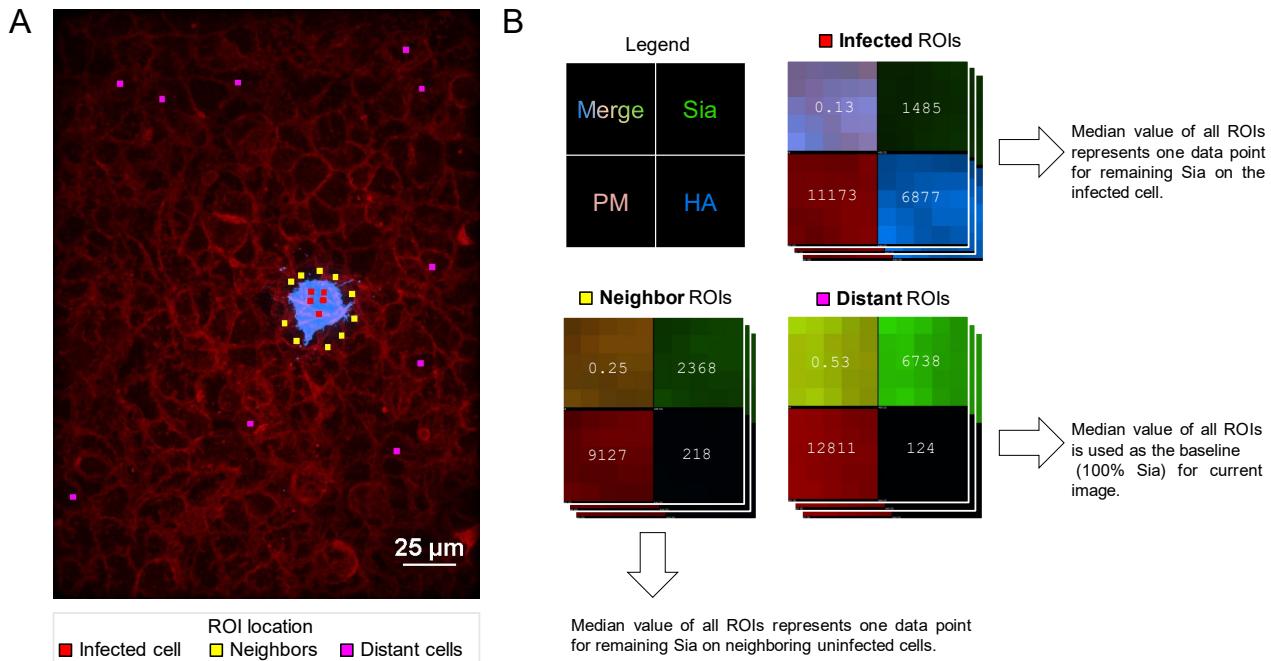

688 infectious potential is low.

689 (D) Model predictions for secondary infection as a function of *cis* and *trans* adhesion. *Left*: Viruses

690 with high infectious potential produce the greatest amount of secondary infection at intermediate

691 *trans* adhesion (~ 0.1), where virion spread is more dispersed. *Right*: Viruses with low infectious
692 potential produce the greatest amount of secondary infection at high *trans* adhesion (~ 1), where
693 virion spread is focal.

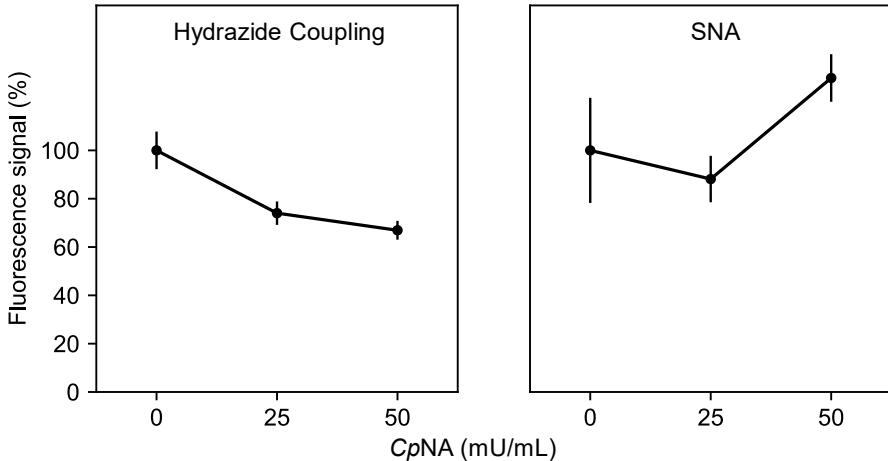
694 **Supplementary Figures**

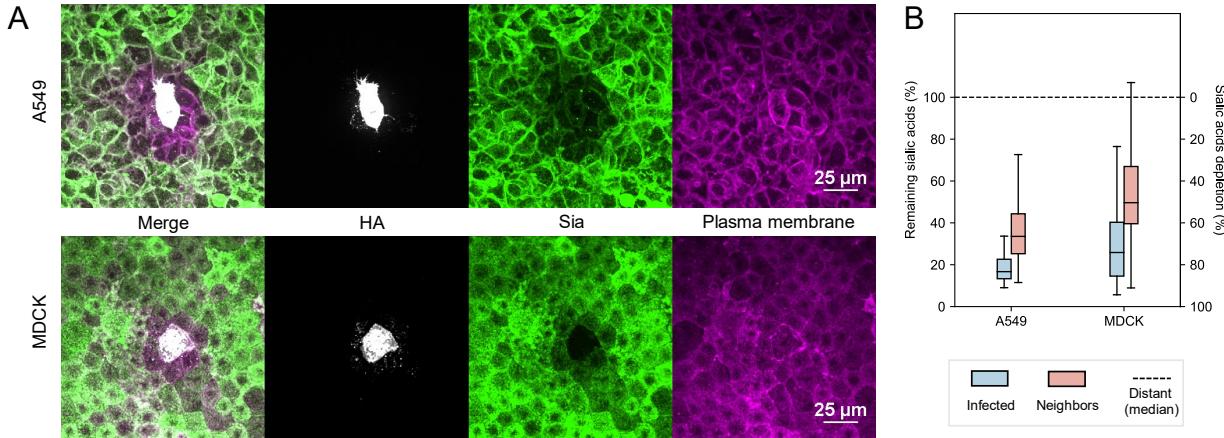


695

696 **Supplementary Figure 1: Progression of virion shedding to neighboring cells over time.**

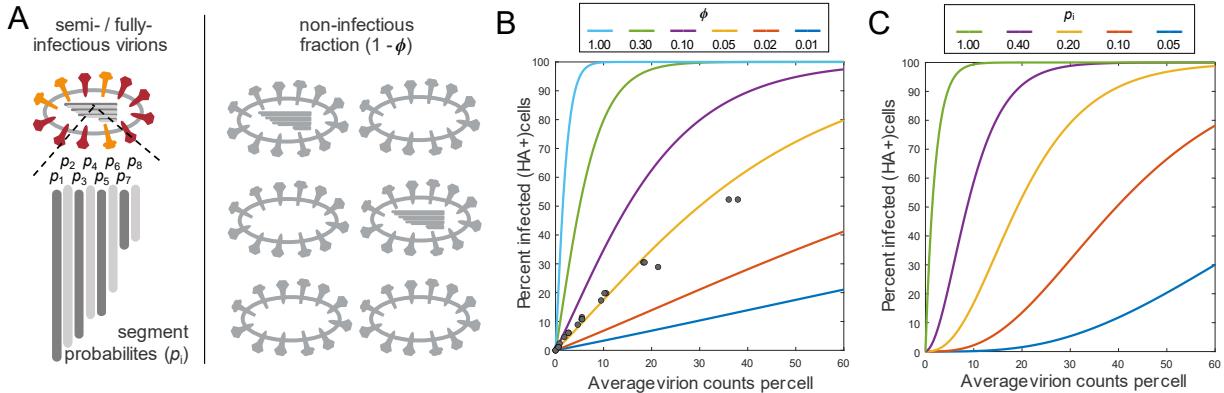
697 (A) Monitoring local virion shedding in A549 cells infected by WSN33. Confocal stacks of infected
698 cells are taken starting from 12 h.p.i. Gray region marks the cell body, with detected virions
699 highlighted in gold. Cells selected for analysis show expression of both HA and M2 on the cell
700 surface.


701 (B) Quantification of local virion shedding compiled from time series of seven cells infected by
702 WSN33. Shaded region represents 95% confidence interval.


703

704 **Supplementary Figure 2: Quantifying depletion of cell-surface Sia using hydrazide coupling.**

705 (A) Image showing regions of interest (ROIs) sampled from the surface of an infected cell (HA+),
706 uninfected neighbors, and uninfected distant cells.
707 (B) Enlarged ROIs in split view. The number on each split channel represents the mean intensity.
708 The number on “Merge” channel represents the Sia signal normalized by the plasma membrane
709 (‘PM’) signal, proportional to Sia per unit membrane area. The size of each ROI is 0.55 μm by 0.55
710 μm.


711
712 **Supplementary Figure 3: Hydrazide coupling sensitively and reproducibly reports Sia**
713 **depletion by exogenous sialidase.**
714 Quantification of Sia levels on A549 cell monolayers treated with indicated concentrations of CpNA
715 for 30 min at 37°C using hydrazide coupling (left) and lectin labeling (SNA; right). Points represent
716 mean values of three individual experiments (two for untreated group). Error bars show standard
717 deviation.

718

719 **Supplementary Figure 4: Cis and trans depletion of Sia is observed following infection of**
720 **multiple cell types.**

721 (A) Images showing HA, Sia and plasma membrane in the proximity of cells infected with CA09 at
722 MOI of 0.003.
723 (B) Quantification of remaining Sia on infected and neighboring cells for A549 and MDCK cell lines.
724 Data is combined from three biological replicates.

725

726 **Supplementary Figure 5: Modeling virus infection.**

727 (A) Illustration of virus populations represented by the model. Semi- or fully- infectious particles can
728 have different probabilities of delivering each segment. The proportion of the virus population that
729 contributes to infection is given by ϕ .

730 (B) Predictions from the infection model for different segment delivery probabilities and different
731 proportions of non-infectious virions. Results are shown for the percentage of HA+ cells. Fitting
732 CA09 infectivity data suggests values of $p_i = 0.8$ and $\phi = 0.05$.

733 (C) Measuring the percent of infected cells against average viral particles per cell under different p_i
734 conditions where $\phi = 0.5$.