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Effective biomarkers and diagnostic tools are urgently needed in clinical settings for improved management
of prostate cancer patients, especially to reduce over-treatment of indolent tumors and for early
identification of aggressive disease. Gene expression signatures are currently the "gold standard" to
provide guide clinical decision, however their clinical utility and interpretability is questionable. Multi-modal
molecular profiling provides an holistic approach to systematically unravel the biological complexity
underlying cancer pathogenesis, hence biomarkers developed using such an integrated approach hold
the potential to more accurately capture cancer-driving alterations than signatures based on a single
omics modality. Currently, however, robust and reproducible multi-omics biomarkers are still lacking for
prostate cancer. In this study, we analyzed transcriptomics and metabolomics profiles jointly in a prostate
cancer cohort and identified two prognostic signatures with high statistical powers ( signature 1: EGLN3,
succinate, trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine). Our approach leveraged a
priori biological knowledge of the cellular metabolism and gene circuitry, enabling the identification of
dysregulated network modules. Functional bioinformatics analyses suggest that these signatures can
capture relevant molecular alterations in prostate cancer tissues, including dysregulations of cellular
signaling, cell cycle progression, and immune system modulation, stratifying patients in distinct risk groups.
Next, we trained two gene expression signatures as a proxy for the multi-omics ones, extending our
investigation to publicly available data, further confirming their prognostic values in independent patient
cohorts. In summary, the analysis of multi-modal molecular grounded in cellular network biology represents
a promising approach for the development of robust prognostic biomarkers of detecting and discriminating
high grade disease.
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Introduction

Prostate cancer (PCa) is the most common malignant neoplasm of the urinary tract (Porzycki and Ciszkowicz, 2020;
Litwin and Tan, 2017) and is a highly heterogeneous disease in almost every aspect from molecular diversity to
clinical behaviour Barbieri and Shoag (2016); Carm et al. (2019). Most men diagnosed with prostate cancer have a
favorable outcome of 99% overall ten-year survival if the disease is detected and treated early (Rebello et al., 2021).
However, in some cases, the condition will metastasize having only a 28% five-year survival rate (Roviello et al.,
2016). Thus, effective biomarkers are urgently needed to differentiate between indolent and aggressive prostate
cancer to guide proper interventions.

Extensive efforts have been made to develop new prostate cancer diagnostic tools using different types of omics
approaches (Doultsinos and Mills, 2021; Klein et al., 2014; Erho et al., 2013; Koo et al., 2019; Markert et al., 2011;
Long et al., 2011). For example, Irshad et al. identified a three-gene expression signature (FGFR1, PMP22, and
CDKN1A) that accurately predicts outcomes in low Gleason tumors (Irshad et al., 2013), while Yang et al. identified
3 metabolites (guanidinoacetate, phenylacetylglycine, and glycine) as potential novel biomarkers for prostate cancer
detection and high grade disease discrimination (Yang et al., 2021). Another example is the identification of fifteen
microRNAs recurrently associated with prostate cancer progression across multiple cohorts through a systematic
review and reanalysis by Rana et al. (Rana et al., 2022) Although previous prostate cancer biomarker studies
exhibited promising results, most relied on data from single omics technologies. Because the information offered
by different data modalities (i.e., transcriptomics, genomics, epigenomics, metabolomics, etc.) does not necessarily
overlaps, and often exhibits only modest correlation (Ghazalpour et al., 2011; Schwanhausser et al., 2011), single
modality biomarkers can only capture perturbations in specific domains, providing a skewed, and perhaps incomplete
picture of the underlying biological processes.

On the other hand, as disease development involves complex interactions and alterations at multiple levels such
as genome, epigenome, transcriptome, proteome, and metabolome, multi-omics profilings can describe biological
processes comprehensively and systematically (Karczewski and Snyder, 2018). As shown in (Baranovskii et al.,
2022), utilizing the transcriptome on top of gene panel features substantially improves drug response prediction
performance in cancer. Therefore, biomarkers developed using multi-omics data can more accurately capture
inter-patient heterogeneity than single-omics biomarkers (Olivier et al., 2019). As multi-omics profilings become
more accessible, a few studies have started to utilize multi-omics profiles to develop predictive biomarkers for
prostate cancer. For instance, Long et al. Long et al. (2011) identified a panel of 10 protein-coding genes along
with two microRNA that are predictive of tumor recurrence from prostate cancer expression profiling. More recently,
Wau et al. (Kiebish et al., 2020) combined proteomics, metabolomics, and lipidomics and identified a biomarker panel
consisting of two proteins, one metabolite, and one phospholipid molecular that can predict biochemical recurrence
in prostate cancer. However, integrating multiple types of omics profiles for biomarker development is not trivial
and current studies mainly have two limitations. First, most studies analyzed profiles from different omics types
in a sequential instead of simultaneous manner, limiting their ability to fully utilize the information from multi-omics
data, especially the “cross-talks” between different omics types. Second, most previous studies provided a list
of prognostic molecules instead of a decision rule for stratifying patients, undermining their potential translational
values.

Since metabolites are the end products of upstream processes and carry information from both genetic and
environmental changes (Guijas et al., 2018; Patti et al., 2012), integrating gene expressions with metabolite
abundances will provide unprecedented opportunities to unravel biological complexities holistically. Thus, this
study seeks to identify multi-omics signatures that can potentially be used as prognostic biomarkers by integrating
patients’ transcriptomics and metabolomics profiles. We first constructed a multi-omics network that contains
the minimal sets of aberrant gene-metabolite pairs, but it is sufficient to capture inter-patient heterogeneity using
the Dana-Farber/Harvard Cancer Center (DF/HCC) cohort (Oh et al., 2006). We then identified two multi-omics
signatures that can stratify prostate cancer patients into two risk groups with regard to disease-free survival.
We further demonstrated that the identified signatures are associated with multi-faceted changes on pathways of
signal transduction, cell cycle, and immune system. Finally, we constructed surrogate gene signatures based on
patients’ recurrence risk groups, and extensively validated these in 8 external independent datasets as well as in
the pooled dataset. In conclusion: (1) We identified two multi-omics signatures (signature 1: EGLN3, succinate,
trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine) that can accurately classify prostate cancer
patients into two prognostic groups. (2) The surrogate genes signatures are also effective biomarkers, since the
relative decision rule can be easily applied to other cohorts without the need of any re-calibration. (3) Our workflow
paves the way for jointly analyzing multi-omics profiles for biomarker discovery.
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Results

Study overview

We only included individuals with both transcriptomics and metabolomics profiles from the DF/HCC cohort (Oh
et al., 2006) for biomarker development and functional analysis. The cohort includes 94 tumor samples, of which
48 have matched normal adjacency samples. Eighty-five patients have follow-up records with a median follow-up
time of 2.02 years, including three lethal and eight progression cases. Summary statistics of demographic and
clinical variables are provided in Table 1. In this study, we centered our analysis on gene-metabolite interactions.
We first constructed a multi-omics covering network with a minimal set of aberrant gene-metabolite pairs to reduce
noisy features from the data, but sufficient to account for observed inter-patient heterogeneity. Candidate signatures
encompassing both genes and metabolites were then extracted based on the topology of the covering network,
followed by survival analysis to asses their prognostic values (Figure 1a). After selecting prognostic multi-omics
signatures, we conducted pathway analysis (using both gene expressions and metabolite abundances) to investigate
pathological changes between the patients’ prognostic groups the signatures captured (Figure 1b). Finally, surrogate
rank-based, single-omics gene signatures (based on the multi-omics classification results) were also obtained, to
facilitate clinical usage when only gene expression data is accessible (Figure 1c).

Multi-omics covering network captures inter-patient heterogeneity efficiently

To capture systematic abnormalities that happen across different omics layers, we centered our analysis on paired
gene-metabolite aberrations. We constructed the covering network followed as previously published (Ke et al., 2021)
with some modifications. This approach was originally designed to select the minimal set of aberrant DNA-RNA
pairs that yield a parsimonious sample-level representation rich enough to account for the observed inter-patient
heterogeneity. Here we extended and applied the covering method to gene-metabolite profiles of prostate cancer.
Briefly, genes (source level) and metabolites (target level) were first paired based on prior interaction knowledge from
PathwayCommons (Rodchenkov et al., 2019) with the maximum length of the directed chain set as three. Thus, the
initial network was comprised of 1,880,969 valid gene-metabolite pairs, involving 18,483 distinct genes and 111
distinct metabolites. For each gene-metabolite pair, a binary variable indicating whether the specific patient exhibits
a “divergent” status compared to the normal range was derived using the divergence framework (Dinalankara et al.,
2018, 2021). Next, we filtered out rare and independent gene-metabolite pairs based on binary divergence indicators,
resulting in a network of 3,679 candidate pairs accounting for 12,245 unique genes and 71 unique metabolites. After
the optimization procedure, 20 gene-metabolite pairs covering 98.9% of the patients in the cohort with maximum
divergence probability were selected to obtain the final covering network. We filled all intermediary genes between
each selected source-target pair and all within- and between-omics interactions based on PathwayCommons. The
final, complete covering network consisted of 20 source genes, 34 intermediary genes, 12 target metabolites, 117
gene-gene interactions, 1 metabolite-metabolite interaction, and 30 gene-metabolite interactions (Figure 2a).

Since prostate cancer is a heterogeneous disease, an efficient cohort-level representation should be not only
parsimonious but also sufficient to cover the variance of cohort patients from different angles. Accordingly,
different patients should exhibit distinct molecular aberrations on the covering network, and at the same time,
different source-target pairs can stratify different subsets of patients. In other words, a covering network is
the desired representation if similarities of both inter-pair (parsimony) and inter-patient (sufficient) are relatively
low. We then examined patients’ divergence status of every gene, metabolite, and gene-metabolite pair in the
covering network to inspect the inter-patient heterogeneity captured. It can be seen from the results that different
patients exhibited distinct molecular aberration patterns in the covering network (Figure 2b, Figure S1). We also
quantitatively evaluated inter-patient similarities based on the divergence status of 20 gene-metabolite pairs and
inter-pair similarities based on 94 patients’ divergence status. Results showed that both inter-patient and inter-pair
similarities are numerically low, with average Jaccard coefficients of 0.050 and 0.024, respectively. All above
results demonstrated the multi-omics covering network we constructed can efficiently capture observed inter-patient
heterogeneity.

Two multi-omics signatures are prognostic

We aimed to identify prognostic multi-omics signatures from the covering network. Candidate signatures were first
determined by a diffusion process based on network topology by assuming that topologically closed molecules are
also functionally related. Each connected gene-metabolite pair was set as seeds to enforce candidate signatures
containing cross-modal information. Nineteen candidate signatures were obtained from the complete covering
network, with the total number of genes and metabolites varying from 3 to 8 (Figure S2). We then stratified the
patients into low and high risk groups for each candidate signature by performing a hierarchical clustering using
the corresponding molecules’ abundances. By comparing disease-free survival between patient risk groups, two

Zhuoran Xu etal. | Multi-omics biomarkers aid prostate cancer prognostication | 3


https://doi.org/10.1101/2022.09.20.508244
http://creativecommons.org/licenses/by-nc-nd/4.0/

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

192

193

194

195

196

197

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.20.508244; this version posted September 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

prognostic multi-omics signatures (signature 1: EGLNS3, succinate, trans-4-hydroxyproline, Log-Rank test: p=0.019;
and signature 2: IL6, SLC22A2, histamine, Log-Rank test: p=0.017) were identified from the covering network
(Figure 3). Because the patient number of the cohort is limited, we grouped patients with primary Gleason scores of
3 into the low Gleason risk group and the rest into the high Gleason risk group (Table 1). After stratifying patients into
high- and low-Gleason groups, we found signature 1 is significantly prognostic in high-Gleason risk group (Log-Rank
test: p=0.0073) and signature 2 is significantly prognostic in low-Gleason group (Log-Rank test: p=0.0073). We
then created an ensemble signature that categorized patients into the high-risk group if they were high-risk patients
by both signatures. Such signature ensemble can successfully identify patients who relapsed in the whole cohort
patients (Log-Rank test: p<0.0001) as well as in a stratified analysis by Gleason score (Log-Rank test: high-Gleason
group: p=0.0011; low-Gleason group: p<0.0001). To test whether the signatures can add additional prognostic
values on top of widely used Gleason scores and Prostatic Specific Antigen (PSA), we conducted a likelihood ratio
test by nesting multivariate Cox models with and without the signature risk predictions, after adjusting for Gleason
risk groups and PSA. Results demonstrated that adding signature 1 or the signature ensemble on top of Gleason and
PSA can add accuracy in predicting patients’ of disease-free survival (Likelihood ratio test: signature 1: p=0.019;
signature ensemble: p=0.0057), while signature 2 didn’t exhibit any significant improvement(Likelihood ratio test:
p=0.615). Finally, we also conducted permutation analysis to circumvent the possibility that the signatures were
determined by randomness, ensuring statistical power. The identified signatures have statistical powers of 95.2%
(signature 1) and 94.5% (signature 2), respectively.

Patients’ prognostic groups associate with profound molecular alterations

To investigate underlying pathway alterations between high- and low-risk groups captured by the two multi-omics
signatures, we performed enrichment analyses on single- and multi-omics levels. Specifically, we performed
differential genes and metabolite analysis between the prognostic groups and used the results as input for
pathway enrichment exploration. For the joint genes/metabolites enrichment, we performed a combined pathway
analysis capturing biological changes across omics layers (Canzler and Hackermiller, 2020). For signature 1, we
found 1,151 genes and 28 metabolites with significant differences between low and high-risk prognostic groups.
Likewise, we found 728 differential genes and 12 differential metabolites between prognostic groups defined by
signature 2. Multi-faceted pathway changes were identified for both signatures, including gene sets involved
in signal transduction, metabolism of proteins, and immune system modulation. We noticed that signature 1
captured perturbations of activated pathways relating to signal transduction on both gene and metabolite levels.
However, signature 2 primarily identified pathway changes on the gene level, such as significantly activated DNA
replications and cell-cycle-related pathways. In addition, patients classified into the high-risk group by signature
1 had activated interleukin signaling pathways, while high-risk patients identified by signature 2 showed a broader
scope of up-regulated related to immune functions, including cytokine signaling, adaptive immunity, and the innate
immune system.

We then conducted cell type enrichment deconvolution analysis using bulk gene expression data to compare cell type
differences between patient prognostic groups. We found that high-risk patients in signature 1 had more regulatory
T cells (p=0.016) when compared to low-risk patients. While high-risk patients in signature 2 had elevated levels of B
cells (p=0.039) and macrophages (p=0.039), specifically M2 macrophages (p=0.030) compared to low-risk patients.
Finally, we compared sample-level signature scores between prognostic groups to evaluate the associations between
existing prognostic prostate cancer signatures with our multi-omics signatures. Results suggested that signature 1
high-risk patients had significantly higher signature scores for a 28-gene hypoxia-related signature developed by
Yang et al. (Yang et al., 2018) (p=0.014), confirming the role of EGLNS in hypoxia (Strocchi et al., 2022). However,
high-risk patients of signature 2 exhibited low signature scores for Talantov(Talantov et al., 2010) (p = 0.005) and
Planche (Planche et al., 2011) signatures (p=0.035).

Surrogate gene signatures are prognostic in external validation cohorts

Since multi-omics data sets are relatively rare, we we constructed single modality gene signatures aiming to proxy
our multi-omics signatures, with the ultimate goal of facilitating clinical applications when only gene expression data
is available. We used pairwise gene comparisons (Geman et al., 2004; Marchionni et al., 2013; Afsari et al., 2014)
as binary features and fit lasso regression models to train surrogate gene signatures, which is robust to quantization
effects and invariant to pre-processing. Patients’ prognostic classifications by our multi-omics signatures were used
as labels. The whole DF/HCC cohort was used as training dataset, where surrogate gene signature 1 and signature
2 achieved accuracy of 86.17% and 94.68% (Figure 4a), respectively. To ensure these surrogate gene signatures
still held prognostic value, we performed log-rank tests and found surrogate gene signatures are still prognostic
(Figure 4b; surrogate signature 1: p=0.037, surrogate signature 2: p=0.024, surrogate signature ensemble: p
<0.0001). Consistent with corresponding multi-omics signatures, surrogate gene signature 1 is prognostic for high
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Gleason patients (log-rank p=0.023) and surrogate gene signature 2 is prognostic for low Gleason patients (log-rank
p=0.016). However, no evidences can show any surrogate gene signatures can statistically add propensity on top of
Gleason risks and PSA values (Likelihood ratio test: surrogate signature 1: p=0.062; surrogate signature 2: p=0.836;
surrogate signature ensemble: p=0.061). We then validated the surrogate gene signatures in 8 independent external
cohorts as well as in the resulting pooled cohort. Surrogate signature 1 and signature 2 are prognostic in 2 and 4
cohorts, respectively. The surrogate ensemble signature is more robust and prognostic in 5 out of 8 cohorts. All
surrogate signatures are prognostic in the pooled cohort (Figure 5a). We finally performed log-rank test adjusting
for Gleason score. Surrogate gene signatures are prognostic in 1 and 2 out of 8 cohorts, respectively, while the
signature ensemble is prognostic in 3 cohorts, but not the pooled cohort (Figure 5b).
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Discussion

Extensive efforts have been made to develop prostate cancer molecular prognostic biomarkers using omics profiles
to differentiate between indolent and aggressive disease. However, most existing signatures rely on a single type of
feature, such as gene expression, and only capture a partial view of inter-patient heterogeneity. Because prostate
cancer is highly heterogeneous, using single-omics profile to develop predictive biomarkers might be insufficient to
recapitulate systematic alterations related to the disease for accurate predictions (Olivier et al., 2019). Therefore,
integrating multiple profiles, such as gene expressions and metabolite abundances, and especially their cross-talks,
offers exceptional opportunities for advancing diagnosis, monitoring, and treatment of prostate cancer.

Hance, we analyzed gene-metabolite interactions and used multi-omics profiles to identify prognostic signatures for
prostate cancer. We first constructed a covering network to account for inter-patient variability (Figure 2, S1). This
covering network can be interpreted as a feature selection step, where only important, but not redundant features,
reflecting gene-metabolite interplay, are kept in the network. Thus, the sub-networks within the covering network are
expected to reflect inter-patient molecular heterogeneity. We then dissected such covering network into candidate
signatures, identifying those with prognostic values. We utilized the topological structure of the covering network
to select candidate signatures, assuming topologically closed molecules are more likely to be functionally related
(Figure S2). With this approach, we identified two prognostic signatures, containing both genes and metabolites,
that can accurately stratify patients into high- and low- recurrence risk groups (Figure 3a-b, signature 1: EGLNS,
succinate, trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine). The EGLN3 gene in the first signature
have long been known to relate with hypoxia, a cancer hallmark(Schédel and Ratcliffe, 2019), while succinate is a
key metabolic factor in the cancer-immune cycle (Jiang and Yan, 2017), and an initiator in tumorigenesis and cancer
progression (Zhao et al., 2017). In the second signature, IL6 has also been shown to be involved in prostate cancer
initiation, invasion and metastasis (Culig and Puhr, 2018). We further performed permutation studies to ensure the
robustness of identified signatures, and demonstrated high statistical powers (95.2% for signature 1 and 94.5% for
signature 2, respectively). Although the two multi-omics signatures are both prognostic in the DF/HCC cohort, we
noticed their different roles in patients of different Gleason groups. Specifically, Signature 1 is prognostic mainly
in patients with high-Gleason score, while Signature 2 is prognostic primarily for patients with low-Gleason score
(Figure 3c). And the signature ensemble was shown to be prognostic in both Gleason patient groups.

To elucidate functional differences between high- and low-risk patient groups captured by these signatures, we
conducted gene, metabolite, and multi-omics pathway enrichment analysis (Additional file). This approach revealed
several key biological processes that are differently represented in distinct prognostic groups. For instance, the
high-risk group defined by signature 1 has many up-regulated pathways involved in immuno-modulation, including
IL10 signaling, which inhibits the activation of antigen-presenting cells (APCs) like macrophages and dendritic cells
(DCs) and induces TH2 cells differentiation from naive CD4+ T cells(Ouyang and O’Garra, 2019). Similarly, the
high-risk group also showed up-regulated IL4 and IL13 signaling pathways, which are both known to contribute
to cancer progression and are associated with poor prognosis (Barderas et al., 2012; Roca et al., 2012). On the
other hand, the high-risk group was also found to have down-regulation of molecular processes involved in DNA
damage repair, including the Global Genome Nucleotide Excision Repair (GG-NER) and the Transcription-Coupled
Nucleotide Excision Repair (TC-NER) pathways (Lockett et al., 2005). Finally, the high-risk group identified by
signature 2 showed up-regulation of different molecular and biological processes. Specifically, we were able to
reveal the up-regulation of the pathways involved in the regulation of RUNX2 and RUNX3 expression and activity.
RUNX2 has been shown to play an important role in mediating prostate cancer bone metastasis, especially in tumors
with PTEN loss (Zhang et al., 2011). RUNXS has a tumor suppressor role and its loss is associated with tumor
progression (Ashe et al., 2021). Interestingly, the ABC transporter disorders pathway was also found up-regulated
in the high-risk group predicted by signature 2, a biological process linked to chemoresistance and potentially worse
survival in this group (Robey et al., 2018). Taking together, multi-omics signatures can capture patients’ multi-faceted
alterations associated with tumor progressions in a systematical way.

Unfortunately, the availability of prostate cancer datasets with paired transcriptomic and metabolomic data is scarce.
To overcome this issue, we constructed single-omics signatures as proxies to predict patients’ risk groups resulting
from the multi-omics signatures. Hence, we trained two surrogate gene expression signatures in the DF/HCC
cohort, and then validated these externally. Most decision rules built on high-throughput omics data use continuous
expression or abundance values can suffer from a lack of robustness and low cross-study reproducibility, limiting their
translational potential. Here we adopted a rank-based approach for constructing surrogate signatures so that they
are robust to quantization effects and invariant to pre-processing. Although the surrogate gene signatures achieved
high performance in the DF/HCC cohort (Figure 4), they were intrinsically different from the multi-omics signatures
due to the lack of integrated, cross-omics information. Nevertheless, we found that these surrogate signatures
exhibited prognostic values in 5 and 4 out of 8 external datasets before and after adjusting for Gleason risk groups
(Figure 5).
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Overall, we identified two multi-omics signatures through the joint analysis of cross-omics interactions from
transcriptomic and metabolomic profiles. The two signatures we identified can capture multi-faceted pathway
alterations within prostate cancer patients in the DF/HCC cohort, and they were shown to be prognostic. These
surrogate gene signatures, especially after ensembling, are still effective biomarkers when validated in external,
independent cohorts. While further functional validation of these multi-omics signatures are still needed, we believe
this work highlights the importance of integrating multi-omics profiles for biomarker discovery and development.
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Methods

Patient Cohorts

All samples used for biomarker development and functional analysis are from the Dana-Farber/Harvard Cancer
Center Cohort (DF/HCC) as described previously (Oh et al., 2006). The DF/HCC Cohort includes patients’ clinical
information, blood samples, and tissue biopsy samples from more than 4,000 prostate cancer patients. Each subject
consented to the use of clinical data and specimens for research purposes. In this study, we only included subjects
with both transcriptomics and metabolomics profiles from fresh-frozen radical prostatectomy specimens, where 48
patients having both tumor and adjacency normal samples and 46 patients only having tumor samples. Among all
94 patients, 85 patients have follow-up records with a median follow-up length of 2.02 years, including three lethal
and eight progression cases. Since there is no publicly available prostate cancer cohorts with both transcriptomics
and metabolomics profiles, we built surrogate single-omics signatures for validating proposed biomarkers externally
using transcriptomics datasets from PCaDB (Li et al., 2021). All tumor samples from the cohorts that have follow-up
information were included for testing surrogate gene signatures except for CPC-Gene and Belfast cohort due to half
of the gene pairs not being found in the data. In total, we used 8 external validation cohorts, including CancerMap,
GSE54460, Taylor, Cambridge, CIT, DKFZ, Stockholm and TCGA-PRAD. We also pooled all above cohorts as a
heterogenuous pooled cohort (Additional file1).

Construction of a covering Network

Before constructing the covering network, we derived divergence statistics (Dinalankara et al., 2018), a binary
random variable, for every tumor sample using the Divergence (Dinalankara et al., 2021) R/Bioconductor
package to indicate whether each gene expression and metabolite abundance is aberrant compared to the
baseline range calculated based on 48 normal samples. We define a gene-metabolite pair as divergent if the
divergence statistics of the gene is correlated with that of the metabolite using Chi-squared test. Prior-knowledge
interaction information between gene-gene, gene-metabolite, and metabolite-metabolite was obtained from
PathwayCommons(Rodchenkov et al., 2019). We only kept 18,490 genes and 111 metabolites that can be found in
both omics profiles and PathwayCommons for the subsequent analyses. Except for known gene-metabolite pairs, we
also included the pairs if the source gene can get to the target metabolite within three steps with only passing through
other genes, aiming to capture potential gene-metabolite indirect interactions based on current network knowledge.
For example, we can match three gene-metabolite pairs from the chain of gene; — genes — genes — metabolite.
1,880,969 valid gene-metabolite pairs with 18,483 distinct genes and 111 distinct metabolites were then obtained.
The Chi-square test was used to test if the divergence status of source genes and target metabolites within pairs are
dependent. All 1,847,998 independent pairs with p-value larger than 0.05 were filtered out. 29,292 rare pairs with
divergence probability less than 2% were also excluded. After the above filtering procedures, 3,679 candidate pairs
with 12,245 unique genes and 71 unique metabolites were left for optimizing the covering network. Finally, twenty
gene-metabolite pairs covering 98.9% of the cohort patients with maximum divergence probability were selected.
And the entire covering network consisted of 20 source genes, 34 intermediary genes, and 12 target metabolites.
We also connected the molecules if they have a known interaction based on PathwayCommons and finally got 117
gene-gene interactions, 1 metabolite-metabolite interaction, and 30 gene-metabolite interactions for the covering
network. Inter-patient Jaccard similarity was evaluated by

o Diij

S =
* DZ‘UDj

, where S;; denotes similarity between patient i with patient j, and D; refers the set of divergence pairs of patient i.
Similarly, inter-pair Jaccard similarity was evaluated by

o PZ‘QP]‘
K PZ‘UP]‘

, where A;; denotes similarity between the it gene-metabolite pair with the j*"* gene-metabolite pair, and P; refers
the patient set with 7** gene-metabolite pair being diverged.

Identification of prognostic multi-omics signatures

A diffusion procedure was performed to identify candidate signatures of which molecules are topologically close in the
covering network. Because the regulatory directions are not important here, we consider the covering network as an
undirected graph G = (V, E), where V is the set of nodes and F is the set of edges. We denote the adjacency matrix
of G as W, where W; ; = 1 if there is an edge between node ¢ and node j, otherwise as 0. W is column-normalized
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matrix of W to ensure convergence. Since our analysis focused on integrating both omics types, we forced selected
signatures to contain both gene(s) and metabolite(s) by setting starting seeds from each connected gene-metabolite

pair. We denote P(?) as seed matrix with shape of 66 x 30, where the entry of PO representing whether the "

i,k
node in the covering network belonging to the k*" connected gene-metabolite pair. Pi(%) = Pﬁ) =1 if node 7 and

node j are connected with one being gene another being metabolite, and other entries of the kt" columnin P are 0.
We then iteratively diffuse P(°) on W with o (0 < o < 1) controlling for the balance between local and global network
similarities. Such that,

P — aW PO 4 (1—a)P®

When «a approaches 0, more local similarities will be used; otherwise, more global network information will be
involved. We set o = 0.75, based on previous studies (Ruan and Wang, 2020). t represents iteration step, and we
consider convergence if || P(t+1) — P()]|; < 10~6. After the diffusion processes, we can find some gene-metabolite
pairs, especially the ones connecting to the same molecules, have similar diffused score vectors (column vectors of
P() see Figure S2a) that can be used as gene-metabolite pair representations. We then performed hierarchical
clustering of the 30 edges connecting gene-metabolite pairs using Ward’s minimum variance method and identified
edge clusters (Figure S2b-c). Molecules connected by the edges from the same cluster will be treated as one
candidate signature. Thresholds of 0.45, 0.65, and 0.85 were set to prune the hierarchical tree, from where most of
the edges can cluster with at least one other edge to no single edge was left out Figure S2c.

We employed patients’ omics profiles that were scaled into continuous z-scores for risk stratification, which was
achieved by hierarchical clustering using Ward’s minimum variance and complete linkage method. We then
performed a log-rank test to compare disease-free survival times between two groups classified by each signature
and only left prognostic signatures with a p-value<0.05. We also excluded the signatures if the smaller patient cluster
had less than 10% of the patients. We then permuted the abundance of all features of each prognostic signature and
repeated hierarchical clustering and survival analysis 1,000 times. The statistical power for the selected signature
was calculated by the percentage of getting p-values > 0.05 in permutation studies.

Construction of surrogate signatures

Surrogate gene signatures were all trained in DF/HCC cohort and validated in independent external test datasets
as mentioned above. For each multi-omics signature, patients’ risk labels were used to train the surrogate gene
signature classifier. The procedures are as following: (1) Differentially expressed genes between two patient risk
groups (t test: p values<0.01) were selected as context genes. (2) Within context genes, we only kept the genes
that are significantly correlated with at least one of the metabolites in the multi-omics signature with p values less
than 0.01. (3) If genes in the multi-omics signatures were not in the gene list, we added those genes into the genes.
(4) The left genes were paired with one being up-regulated and the other being down-regulated. (5) We then derive
pairwise score (Geman et al., 2004) for each gene pair given by:

S/L‘J' = |P’)"(XZ > X]‘Yl) —P’)”‘(XZ' > XJ|Y2)|

S;,; denotes gene pair score for gene ¢ and gene j, where gene i is the up-regulated gene and gene j is the
down-regulated gene.X; and X; are gene expression values for gene 7 and j. Y7 and Y> are risk group labels.
(6) To further reduce the complexity and noises, we only kept top 50 gene pairs with highest scores to training
the surrogate classifier. Thus each patient has 50 binary indicator variables representing whether gene 7 has a
higher expression level than gene j. (7) 5-fold cross-validation lasso logistic regression was then performed to select
important gene pairs and derive parameter weights for each pair. Predictions of lasso regression models were used
to classify patients into different risk groups. 0.5 was used as the cutoff for the training set. Each external validation
cohort used the corresponding median value as the cutoff.

Statistical analysis and data availability

All statistical and bioinformatics analyses were performed in R, version 4.0.3. Chi-square or Fisher's exact
test was performed as appropriate for selecting significant associated gene-metabolite pairs for constructing the
covering network and examining associations between patient risk groups with genotype and Gleason scores.
Log rank test was used for comparing Kaplan-Meier survival curved between high- and low-risk patient groups
stratified by different signatures, where time to any events including biochemical recurrence, metastasis and
death was used as composite survival endpoints. Gene set enrichment analysis and metabolite set enrichment
analysis were conducted using fgsea (Korotkevich et al., 2016) R package and Reactome pathway database
(Gillespie et al., 2021). Gene-metabolite multi-omics pathway enrichment analysis were performed followed the
workflow proposed by Canzler et al (Canzler and Hackermdiller, 2020). through combining p-values from each
of single-omics enrichment analysis using Stouffer's method. Unless explicitly mentioned, otherwise all statistical

Zhuoran Xu etal. | Multi-omics biomarkers aid prostate cancer prognostication | 9


https://doi.org/10.1101/2022.09.20.508244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.20.508244; this version posted September 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpe

tuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Biomarker Development
Aan Metabolomics A/‘\.
IS . .
! > o - —> -
94 tumor and ; o
48 adjacency normal " . ) ) . .
samples Transcriptomics covering network candidate signatures survival analysis
b voo Functional Analysis c External Validation
000
@ . it -
Multi-Omics Low Risk g ranscriptome Altered Low Risk Transcriptome arEE e
Signature * -N -l -N Metabolome Pathways coss Profile gene signature HWHHHMH
iah Risk || “ || “ Validate in 8
High Risi High Risk

external cohorts

Figure 1. Study overview a. Biomarker development. 94 tumor and 48 adjacency normal samples with both transcriptomics and
metabolomics profiles were used for developing prostate cancer biomarkers. A covering network that is parsimony and sufficient
to account for inter-patient heterogeneity was constructed. Candidate multi-omics signatures were determined based on network
topology followed by survival analysis to select prognostic signatures. b. Functional analysis. Pathway enrichment analyses were
performed between patients’ risk groups using gene expression, metabolite abundances alone and jointly. ¢. External validation.
Based on patients’ risk groups classified by multi-omics signatures, surrogate gene signatures using only gene expression data
were trained and validated in external cohorts.
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Figure 2. Covering network. a. Complete network covering the whole cohort. b. Different patients exhibited distinct aberrant
patterns captured by network.
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tests were two-sided, with p<0.05 indicating significance. Data used in the manuscript can be found at https:
//github.com/Karenxzr/MultiModalPC.
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Figure 3. Two prognostic multi-omics signatures were identified from the covering network. a. Both of two multi-omics signatures
identified from the covering network contain gene(s) and metabolite(s). b. Two signatures stratified patients into two risk groups
viewed in 3D space. c¢. Kaplan-Meier curves between patient risk groups with and without stratification by Gleason scores.
Signature 1 is prognostic in high Gleason risk group and signature 2 is prognostic in low Gleason risk group. Signature ensemble

is prognotic in both Gleason risk groups.
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Table 1. Descriptive statistics of DF/HCC cohort

Overall
(N=94)
Age mean =+ sd 58.60+7.17
Missing 3(3.2%)
Race White 77 (81.9%)
Black or African American 9 (9.6%)
Other or Missing 8 (8.5%)
Hispanic Yes 48 (51.1%)
No 43 (45.7%)
Missing 3 (3.2%)
PSA before surgery median (25" 75") 119(84.0,174.0)
Missing 13(13.83%)

Gleason Risk

Low (Primary Gleason 3)
High (Primary Gleason > 3)

58 (61.7%)
36 (38.3%)
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original labels of patients’ risk group of two multi-omics signatures and predicted risk scores by two surrogate gene signatures b.
Kaplan-Meier curves between patient risk groups classified by surrogate gene signatures and surrogate gene signature ensemble
with and without stratification by Gleason scores.
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Figure 5. Validation of surrogate gene signatures in external prostate cancer cohorts. a. Surrogate gene signatures as the single
predictor. b. Surrogate gene signatures adjusting for Gleason score. Plots show hazard ratios of high risk groups classified by
each surrogate signature. Red indicate significance. Error bars represent 95% confidence interval of hazard ratios.
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Figure S1. Inter-patient heterogeneity captured by the covering network. (a) Patients’ divergent status on single molecular level
of each gene and metabolite in the covering network. (b) Patients’ divergent status of gene-metabolite pairs in the covering
network.
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Figure S2. Identification of candidate signatures from the covering network. (a) Diffused scores on the covering network from
every gene-metabolite pair. Each column represents seed gene-metabolite pairs. Each row represents scores of each gene and
metabolite on the covering network after diffusion. (b) Similarity matrix of gene-metabolite pairs of the covering network. (c)
Hierarchical clustering with different thresholds to decide candidate signatures composed of similar gene-metabolite pairs.
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Additional file1

Sheet1-2: Gene set enrichment analysis results for two multi-omics signatures. Sheet3-4: Metabolite set enrichment
analysis results for two multi-omics signatures. Sheet5-6: Multi-omics enrichment analysis results for two multi-omics
signatures. Sheet7: Summary statistics of external validation cohorts. Sheet8: Patient counts by signature risk
groups and Gleason risk groups
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