

1 Multi-omics biomarkers aid prostate 2 cancer prognostication

3 Zhuoran Xu¹, Mohamed Omar¹, Elisa Benedetti⁷, Jacob Rosenthal^{1,2}, Renato Umeton^{1,2,5,6}, Jan Krumsiek⁷, Mark
4 Pomerantz³, Eddie Imada¹, Massimo Loda^{1,4}, and Luigi Marchionni^{1,✉}

5 ¹Computational Pathology, Weill Cornell Medicine, New York, NY

6 ²Department of Informatics & Analytics, Dana-Farber Harvard Cancer Institute, Boston, MA

7 ³Department of Medical Oncology, Dana-Farber Harvard Cancer Institute, Boston, MA

8 ⁴Department of Pathology, Dana-Farber Harvard Cancer Institute, Boston, MA

9 ⁵Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA

10 ⁶Department of Biological Engineering, Department of Mechanical Engineering, Massachusetts Institute of Technology,
11 Cambridge, MA

12 ⁷Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY

13 **Effective biomarkers and diagnostic tools are urgently needed in clinical settings for improved management**
14 **of prostate cancer patients, especially to reduce over-treatment of indolent tumors and for early**
15 **identification of aggressive disease. Gene expression signatures are currently the "gold standard" to**
16 **provide guide clinical decision, however their clinical utility and interpretability is questionable. Multi-modal**
17 **molecular profiling provides an holistic approach to systematically unravel the biological complexity**
18 **underlying cancer pathogenesis, hence biomarkers developed using such an integrated approach hold**
19 **the potential to more accurately capture cancer-driving alterations than signatures based on a single**
20 ***omics* modality. Currently, however, robust and reproducible multi-*omics* biomarkers are still lacking for**
21 **prostate cancer. In this study, we analyzed transcriptomics and metabolomics profiles jointly in a prostate**
22 **cancer cohort and identified two prognostic signatures with high statistical powers (signature 1: EGLN3,**
23 **succinate, trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine). Our approach leveraged a**
24 ***priori* biological knowledge of the cellular metabolism and gene circuitry, enabling the identification of**
25 **dysregulated network modules. Functional bioinformatics analyses suggest that these signatures can**
26 **capture relevant molecular alterations in prostate cancer tissues, including dysregulations of cellular**
27 **signaling, cell cycle progression, and immune system modulation, stratifying patients in distinct risk groups.**

28 **Next, we trained two gene expression signatures as a proxy for the multi-*omics* ones, extending our**
29 **investigation to publicly available data, further confirming their prognostic values in independent patient**
30 **cohorts. In summary, the analysis of multi-modal molecular grounded in cellular network biology represents**
31 **a promising approach for the development of robust prognostic biomarkers of detecting and discriminating**
32 **high grade disease.**

33 multi-omics | prostate cancer | biomarker

34 Correspondence: lum4003@med.cornell.edu

35 Introduction

36 Prostate cancer (PCa) is the most common malignant neoplasm of the urinary tract (Porzycki and Ciszkowicz, 2020;
37 Litwin and Tan, 2017) and is a highly heterogeneous disease in almost every aspect from molecular diversity to
38 clinical behaviour Barbieri and Shoag (2016); Carm et al. (2019). Most men diagnosed with prostate cancer have a
39 favorable outcome of 99% overall ten-year survival if the disease is detected and treated early (Rebello et al., 2021).
40 However, in some cases, the condition will metastasize having only a 28% five-year survival rate (Roviello et al.,
41 2016). Thus, effective biomarkers are urgently needed to differentiate between indolent and aggressive prostate
42 cancer to guide proper interventions.

43 Extensive efforts have been made to develop new prostate cancer diagnostic tools using different types of *omics*
44 approaches (Doultsinos and Mills, 2021; Klein et al., 2014; Erho et al., 2013; Koo et al., 2019; Markert et al., 2011;
45 Long et al., 2011). For example, Irshad et al. identified a three-gene expression signature (FGFR1, PMP22, and
46 CDKN1A) that accurately predicts outcomes in low Gleason tumors (Irshad et al., 2013), while Yang et al. identified
47 3 metabolites (guanidinoacetate, phenylacetylglycine, and glycine) as potential novel biomarkers for prostate cancer
48 detection and high grade disease discrimination (Yang et al., 2021). Another example is the identification of fifteen
49 microRNAs recurrently associated with prostate cancer progression across multiple cohorts through a systematic
50 review and reanalysis by Rana et al. (Rana et al., 2022) Although previous prostate cancer biomarker studies
51 exhibited promising results, most relied on data from single *omics* technologies. Because the information offered
52 by different data modalities (i.e., transcriptomics, genomics, epigenomics, metabolomics, etc.) does not necessarily
53 overlaps, and often exhibits only modest correlation (Ghazalpour et al., 2011; Schwahnhäuser et al., 2011), single
54 modality biomarkers can only capture perturbations in specific domains, providing a skewed, and perhaps incomplete
55 picture of the underlying biological processes.

56 On the other hand, as disease development involves complex interactions and alterations at multiple levels such
57 as genome, epigenome, transcriptome, proteome, and metabolome, multi-*omics* profilings can describe biological
58 processes comprehensively and systematically (Karczewski and Snyder, 2018). As shown in (Baranovskii et al.,
59 2022), utilizing the transcriptome on top of gene panel features substantially improves drug response prediction
60 performance in cancer. Therefore, biomarkers developed using multi-*omics* data can more accurately capture
61 inter-patient heterogeneity than single-*omics* biomarkers (Olivier et al., 2019). As multi-*omics* profilings become
62 more accessible, a few studies have started to utilize multi-*omics* profiles to develop predictive biomarkers for
63 prostate cancer. For instance, Long et al. Long et al. (2011) identified a panel of 10 protein-coding genes along
64 with two microRNA that are predictive of tumor recurrence from prostate cancer expression profiling. More recently,
65 Wu et al. (Kiebisch et al., 2020) combined proteomics, metabolomics, and lipidomics and identified a biomarker panel
66 consisting of two proteins, one metabolite, and one phospholipid molecular that can predict biochemical recurrence
67 in prostate cancer. However, integrating multiple types of *omics* profiles for biomarker development is not trivial
68 and current studies mainly have two limitations. First, most studies analyzed profiles from different *omics* types
69 in a sequential instead of simultaneous manner, limiting their ability to fully utilize the information from multi-*omics*
70 data, especially the "cross-talks" between different *omics* types. Second, most previous studies provided a list
71 of prognostic molecules instead of a decision rule for stratifying patients, undermining their potential translational
72 values.

73 Since metabolites are the end products of upstream processes and carry information from both genetic and
74 environmental changes (Guijas et al., 2018; Patti et al., 2012), integrating gene expressions with metabolite
75 abundances will provide unprecedented opportunities to unravel biological complexities holistically. Thus, this
76 study seeks to identify multi-*omics* signatures that can potentially be used as prognostic biomarkers by integrating
77 patients' transcriptomics and metabolomics profiles. We first constructed a multi-*omics* network that contains
78 the minimal sets of aberrant gene-metabolite pairs, but it is sufficient to capture inter-patient heterogeneity using
79 the Dana-Farber/Harvard Cancer Center (DF/HCC) cohort (Oh et al., 2006). We then identified two multi-*omics*
80 signatures that can stratify prostate cancer patients into two risk groups with regard to disease-free survival.
81 We further demonstrated that the identified signatures are associated with multi-faceted changes on pathways of
82 signal transduction, cell cycle, and immune system. Finally, we constructed surrogate gene signatures based on
83 patients' recurrence risk groups, and extensively validated these in 8 external independent datasets as well as in
84 the pooled dataset. In conclusion: (1) We identified two multi-*omics* signatures (signature 1: EGLN3, succinate,
85 trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine) that can accurately classify prostate cancer
86 patients into two prognostic groups. (2) The surrogate genes signatures are also effective biomarkers, since the
87 relative decision rule can be easily applied to other cohorts without the need of any re-calibration. (3) Our workflow
88 paves the way for jointly analyzing multi-*omics* profiles for biomarker discovery.

89 Results

90 Study overview

91 We only included individuals with both transcriptomics and metabolomics profiles from the DF/HCC cohort (Oh
92 et al., 2006) for biomarker development and functional analysis. The cohort includes 94 tumor samples, of which
93 48 have matched normal adjacency samples. Eighty-five patients have follow-up records with a median follow-up
94 time of 2.02 years, including three lethal and eight progression cases. Summary statistics of demographic and
95 clinical variables are provided in **Table 1**. In this study, we centered our analysis on gene-metabolite interactions.
96 We first constructed a multi-*omics* covering network with a minimal set of aberrant gene-metabolite pairs to reduce
97 noisy features from the data, but sufficient to account for observed inter-patient heterogeneity. Candidate signatures
98 encompassing both genes and metabolites were then extracted based on the topology of the covering network,
99 followed by survival analysis to assess their prognostic values (**Figure 1a**). After selecting prognostic multi-*omics*
100 signatures, we conducted pathway analysis (using both gene expressions and metabolite abundances) to investigate
101 pathological changes between the patients' prognostic groups the signatures captured (**Figure 1b**). Finally, surrogate
102 rank-based, single-*omics* gene signatures (based on the multi-*omics* classification results) were also obtained, to
103 facilitate clinical usage when only gene expression data is accessible (**Figure 1c**).

104 Multi-*omics* covering network captures inter-patient heterogeneity efficiently

105 To capture systematic abnormalities that happen across different *omics* layers, we centered our analysis on paired
106 gene-metabolite aberrations. We constructed the covering network followed as previously published (Ke et al., 2021)
107 with some modifications. This approach was originally designed to select the minimal set of aberrant DNA-RNA
108 pairs that yield a parsimonious sample-level representation rich enough to account for the observed inter-patient
109 heterogeneity. Here we extended and applied the covering method to gene-metabolite profiles of prostate cancer.
110 Briefly, genes (source level) and metabolites (target level) were first paired based on prior interaction knowledge from
111 PathwayCommons (Rodchenkov et al., 2019) with the maximum length of the directed chain set as three. Thus, the
112 initial network was comprised of 1,880,969 valid gene-metabolite pairs, involving 18,483 distinct genes and 111
113 distinct metabolites. For each gene-metabolite pair, a binary variable indicating whether the specific patient exhibits
114 a "divergent" status compared to the normal range was derived using the divergence framework (Dinalankara et al.,
115 2018, 2021). Next, we filtered out rare and independent gene-metabolite pairs based on binary divergence indicators,
116 resulting in a network of 3,679 candidate pairs accounting for 12,245 unique genes and 71 unique metabolites. After
117 the optimization procedure, 20 gene-metabolite pairs covering 98.9% of the patients in the cohort with maximum
118 divergence probability were selected to obtain the final covering network. We filled all intermediary genes between
119 each selected source-target pair and all within- and between-*omics* interactions based on PathwayCommons. The
120 final, complete covering network consisted of 20 source genes, 34 intermediary genes, 12 target metabolites, 117
121 gene-gene interactions, 1 metabolite-metabolite interaction, and 30 gene-metabolite interactions (**Figure 2a**).
122 Since prostate cancer is a heterogeneous disease, an efficient cohort-level representation should be not only
123 parsimonious but also sufficient to cover the variance of cohort patients from different angles. Accordingly,
124 different patients should exhibit distinct molecular aberrations on the covering network, and at the same time,
125 different source-target pairs can stratify different subsets of patients. In other words, a covering network is
126 the desired representation if similarities of both inter-pair (parsimony) and inter-patient (sufficient) are relatively
127 low. We then examined patients' divergence status of every gene, metabolite, and gene-metabolite pair in the
128 covering network to inspect the inter-patient heterogeneity captured. It can be seen from the results that different
129 patients exhibited distinct molecular aberration patterns in the covering network (**Figure 2b**, **Figure S1**). We also
130 quantitatively evaluated inter-patient similarities based on the divergence status of 20 gene-metabolite pairs and
131 inter-pair similarities based on 94 patients' divergence status. Results showed that both inter-patient and inter-pair
132 similarities are numerically low, with average Jaccard coefficients of 0.050 and 0.024, respectively. All above
133 results demonstrated the multi-*omics* covering network we constructed can efficiently capture observed inter-patient
134 heterogeneity.

135 Two multi-*omics* signatures are prognostic

136 We aimed to identify prognostic multi-*omics* signatures from the covering network. Candidate signatures were first
137 determined by a diffusion process based on network topology by assuming that topologically closed molecules are
138 also functionally related. Each connected gene-metabolite pair was set as seeds to enforce candidate signatures
139 containing cross-modal information. Nineteen candidate signatures were obtained from the complete covering
140 network, with the total number of genes and metabolites varying from 3 to 8 (**Figure S2**). We then stratified the
141 patients into low and high risk groups for each candidate signature by performing a hierarchical clustering using
142 the corresponding molecules' abundances. By comparing disease-free survival between patient risk groups, two

143 prognostic multi-*omics* signatures (signature 1: EGLN3, succinate, trans-4-hydroxyproline, Log-Rank test: $p=0.019$;
144 and signature 2: IL6, SLC22A2, histamine, Log-Rank test: $p=0.017$) were identified from the covering network
145 (**Figure 3**). Because the patient number of the cohort is limited, we grouped patients with primary Gleason scores of
146 3 into the low Gleason risk group and the rest into the high Gleason risk group (**Table 1**). After stratifying patients into
147 high- and low-Gleason groups, we found signature 1 is significantly prognostic in high-Gleason risk group (Log-Rank
148 test: $p=0.0073$) and signature 2 is significantly prognostic in low-Gleason group (Log-Rank test: $p=0.0073$). We
149 then created an ensemble signature that categorized patients into the high-risk group if they were high-risk patients
150 by both signatures. Such signature ensemble can successfully identify patients who relapsed in the whole cohort
151 patients (Log-Rank test: $p<0.0001$) as well as in a stratified analysis by Gleason score (Log-Rank test: high-Gleason
152 group: $p=0.0011$; low-Gleason group: $p<0.0001$). To test whether the signatures can add additional prognostic
153 values on top of widely used Gleason scores and Prostatic Specific Antigen (PSA), we conducted a likelihood ratio
154 test by nesting multivariate Cox models with and without the signature risk predictions, after adjusting for Gleason
155 risk groups and PSA. Results demonstrated that adding signature 1 or the signature ensemble on top of Gleason and
156 PSA can add accuracy in predicting patients' of disease-free survival (Likelihood ratio test: signature 1: $p=0.019$;
157 signature ensemble: $p=0.0057$), while signature 2 didn't exhibit any significant improvement (Likelihood ratio test:
158 $p=0.615$). Finally, we also conducted permutation analysis to circumvent the possibility that the signatures were
159 determined by randomness, ensuring statistical power. The identified signatures have statistical powers of 95.2%
160 (signature 1) and 94.5% (signature 2), respectively.

161 Patients' prognostic groups associate with profound molecular alterations

162 To investigate underlying pathway alterations between high- and low-risk groups captured by the two multi-*omics*
163 signatures, we performed enrichment analyses on single- and multi-*omics* levels. Specifically, we performed
164 differential genes and metabolite analysis between the prognostic groups and used the results as input for
165 pathway enrichment exploration. For the joint genes/metabolites enrichment, we performed a combined pathway
166 analysis capturing biological changes across *omics* layers (Canzler and Hackermüller, 2020). For signature 1, we
167 found 1,151 genes and 28 metabolites with significant differences between low and high-risk prognostic groups.
168 Likewise, we found 728 differential genes and 12 differential metabolites between prognostic groups defined by
169 signature 2. Multi-faceted pathway changes were identified for both signatures, including gene sets involved
170 in signal transduction, metabolism of proteins, and immune system modulation. We noticed that signature 1
171 captured perturbations of activated pathways relating to signal transduction on both gene and metabolite levels.
172 However, signature 2 primarily identified pathway changes on the gene level, such as significantly activated DNA
173 replications and cell-cycle-related pathways. In addition, patients classified into the high-risk group by signature
174 1 had activated interleukin signaling pathways, while high-risk patients identified by signature 2 showed a broader
175 scope of up-regulated related to immune functions, including cytokine signaling, adaptive immunity, and the innate
176 immune system.

177 We then conducted cell type enrichment deconvolution analysis using bulk gene expression data to compare cell type
178 differences between patient prognostic groups. We found that high-risk patients in signature 1 had more regulatory
179 T cells ($p=0.016$) when compared to low-risk patients. While high-risk patients in signature 2 had elevated levels of B
180 cells ($p=0.039$) and macrophages ($p=0.039$), specifically M2 macrophages ($p=0.030$) compared to low-risk patients.
181 Finally, we compared sample-level signature scores between prognostic groups to evaluate the associations between
182 existing prognostic prostate cancer signatures with our multi-*omics* signatures. Results suggested that signature 1
183 high-risk patients had significantly higher signature scores for a 28-gene hypoxia-related signature developed by
184 Yang et al. (Yang et al., 2018) ($p=0.014$), confirming the role of EGLN3 in hypoxia (Strocchi et al., 2022). However,
185 high-risk patients of signature 2 exhibited low signature scores for Talantov (Talantov et al., 2010) ($p = 0.005$) and
186 Planche (Planche et al., 2011) signatures ($p=0.035$).

187 Surrogate gene signatures are prognostic in external validation cohorts

188 Since multi-*omics* data sets are relatively rare, we constructed single modality gene signatures aiming to proxy
189 our multi-*omics* signatures, with the ultimate goal of facilitating clinical applications when only gene expression data
190 is available. We used pairwise gene comparisons (Geman et al., 2004; Marchionni et al., 2013; Afsari et al., 2014)
191 as binary features and fit lasso regression models to train surrogate gene signatures, which is robust to quantization
192 effects and invariant to pre-processing. Patients' prognostic classifications by our multi-*omics* signatures were used
193 as labels. The whole DF/HCC cohort was used as training dataset, where surrogate gene signature 1 and signature
194 2 achieved accuracy of 86.17% and 94.68% (**Figure 4a**), respectively. To ensure these surrogate gene signatures
195 still held prognostic value, we performed log-rank tests and found surrogate gene signatures are still prognostic
196 (**Figure 4b**; surrogate signature 1: $p=0.037$, surrogate signature 2: $p=0.024$, surrogate signature ensemble: p
197 <0.0001). Consistent with corresponding multi-*omics* signatures, surrogate gene signature 1 is prognostic for high

198 Gleason patients (log-rank $p=0.023$) and surrogate gene signature 2 is prognostic for low Gleason patients (log-rank
199 $p=0.016$). However, no evidences can show any surrogate gene signatures can statistically add propensity on top of
200 Gleason risks and PSA values (Likelihood ratio test: surrogate signature 1: $p=0.062$; surrogate signature 2: $p=0.836$;
201 surrogate signature ensemble: $p=0.061$). We then validated the surrogate gene signatures in 8 independent external
202 cohorts as well as in the resulting pooled cohort. Surrogate signature 1 and signature 2 are prognostic in 2 and 4
203 cohorts, respectively. The surrogate ensemble signature is more robust and prognostic in 5 out of 8 cohorts. All
204 surrogate signatures are prognostic in the pooled cohort (**Figure 5a**). We finally performed log-rank test adjusting
205 for Gleason score. Surrogate gene signatures are prognostic in 1 and 2 out of 8 cohorts, respectively, while the
206 signature ensemble is prognostic in 3 cohorts, but not the pooled cohort (**Figure 5b**).

207 Discussion

208 Extensive efforts have been made to develop prostate cancer molecular prognostic biomarkers using *omics* profiles
209 to differentiate between indolent and aggressive disease. However, most existing signatures rely on a single type of
210 feature, such as gene expression, and only capture a partial view of inter-patient heterogeneity. Because prostate
211 cancer is highly heterogeneous, using single-*omics* profile to develop predictive biomarkers might be insufficient to
212 recapitulate systematic alterations related to the disease for accurate predictions (Olivier et al., 2019). Therefore,
213 integrating multiple profiles, such as gene expressions and metabolite abundances, and especially their cross-talks,
214 offers exceptional opportunities for advancing diagnosis, monitoring, and treatment of prostate cancer.

215 Hence, we analyzed gene-metabolite interactions and used multi-*omics* profiles to identify prognostic signatures for
216 prostate cancer. We first constructed a covering network to account for inter-patient variability (Figure 2, S1). This
217 covering network can be interpreted as a feature selection step, where only important, but not redundant features,
218 reflecting gene-metabolite interplay, are kept in the network. Thus, the sub-networks within the covering network are
219 expected to reflect inter-patient molecular heterogeneity. We then dissected such covering network into candidate
220 signatures, identifying those with prognostic values. We utilized the topological structure of the covering network
221 to select candidate signatures, assuming topologically closed molecules are more likely to be functionally related
222 (Figure S2). With this approach, we identified two prognostic signatures, containing both genes and metabolites,
223 that can accurately stratify patients into high- and low- recurrence risk groups (Figure 3a-b, signature 1: EGLN3,
224 succinate, trans-4-hydroxyprolin; and signature 2: IL6, SLC22A2, histamine). The EGLN3 gene in the first signature
225 have long been known to relate with hypoxia, a cancer hallmark (Schödel and Ratcliffe, 2019), while succinate is a
226 key metabolic factor in the cancer-immune cycle (Jiang and Yan, 2017), and an initiator in tumorigenesis and cancer
227 progression (Zhao et al., 2017). In the second signature, IL6 has also been shown to be involved in prostate cancer
228 initiation, invasion and metastasis (Culig and Puhr, 2018). We further performed permutation studies to ensure the
229 robustness of identified signatures, and demonstrated high statistical powers (95.2% for signature 1 and 94.5% for
230 signature 2, respectively). Although the two multi-*omics* signatures are both prognostic in the DF/HCC cohort, we
231 noticed their different roles in patients of different Gleason groups. Specifically, Signature 1 is prognostic mainly
232 in patients with high-Gleason score, while Signature 2 is prognostic primarily for patients with low-Gleason score
233 (Figure 3c). And the signature ensemble was shown to be prognostic in both Gleason patient groups.

234 To elucidate functional differences between high- and low-risk patient groups captured by these signatures, we
235 conducted gene, metabolite, and multi-*omics* pathway enrichment analysis (Additional file). This approach revealed
236 several key biological processes that are differently represented in distinct prognostic groups. For instance, the
237 high-risk group defined by signature 1 has many up-regulated pathways involved in immuno-modulation, including
238 IL10 signaling, which inhibits the activation of antigen-presenting cells (APCs) like macrophages and dendritic cells
239 (DCs) and induces TH2 cells differentiation from naive CD4+ T cells (Ouyang and O'Garra, 2019). Similarly, the
240 high-risk group also showed up-regulated IL4 and IL13 signaling pathways, which are both known to contribute
241 to cancer progression and are associated with poor prognosis (Barderas et al., 2012; Roca et al., 2012). On the
242 other hand, the high-risk group was also found to have down-regulation of molecular processes involved in DNA
243 damage repair, including the Global Genome Nucleotide Excision Repair (GG-NER) and the Transcription-Coupled
244 Nucleotide Excision Repair (TC-NER) pathways (Lockett et al., 2005). Finally, the high-risk group identified by
245 signature 2 showed up-regulation of different molecular and biological processes. Specifically, we were able to
246 reveal the up-regulation of the pathways involved in the regulation of RUNX2 and RUNX3 expression and activity.
247 RUNX2 has been shown to play an important role in mediating prostate cancer bone metastasis, especially in tumors
248 with PTEN loss (Zhang et al., 2011). RUNX3 has a tumor suppressor role and its loss is associated with tumor
249 progression (Ashe et al., 2021). Interestingly, the ABC transporter disorders pathway was also found up-regulated
250 in the high-risk group predicted by signature 2, a biological process linked to chemoresistance and potentially worse
251 survival in this group (Robey et al., 2018). Taking together, multi-*omics* signatures can capture patients' multi-faceted
252 alterations associated with tumor progressions in a systematical way.

253 Unfortunately, the availability of prostate cancer datasets with paired transcriptomic and metabolomic data is scarce.
254 To overcome this issue, we constructed single-*omics* signatures as proxies to predict patients' risk groups resulting
255 from the multi-*omics* signatures. Hence, we trained two surrogate gene expression signatures in the DF/HCC
256 cohort, and then validated these externally. Most decision rules built on high-throughput *omics* data use continuous
257 expression or abundance values can suffer from a lack of robustness and low cross-study reproducibility, limiting their
258 translational potential. Here we adopted a rank-based approach for constructing surrogate signatures so that they
259 are robust to quantization effects and invariant to pre-processing. Although the surrogate gene signatures achieved
260 high performance in the DF/HCC cohort (Figure 4), they were intrinsically different from the multi-*omics* signatures
261 due to the lack of integrated, cross-*omics* information. Nevertheless, we found that these surrogate signatures
262 exhibited prognostic values in 5 and 4 out of 8 external datasets before and after adjusting for Gleason risk groups
263 (Figure 5).

264 Overall, we identified two multi-*omics* signatures through the joint analysis of cross-*omics* interactions from
265 transcriptomic and metabolomic profiles. The two signatures we identified can capture multi-faceted pathway
266 alterations within prostate cancer patients in the DF/HCC cohort, and they were shown to be prognostic. These
267 surrogate gene signatures, especially after ensembling, are still effective biomarkers when validated in external,
268 independent cohorts. While further functional validation of these multi-*omics* signatures are still needed, we believe
269 this work highlights the importance of integrating multi-*omics* profiles for biomarker discovery and development.

270 Methods

271 Patient Cohorts

272 All samples used for biomarker development and functional analysis are from the Dana-Farber/Harvard Cancer
273 Center Cohort (DF/HCC) as described previously (Oh et al., 2006). The DF/HCC Cohort includes patients' clinical
274 information, blood samples, and tissue biopsy samples from more than 4,000 prostate cancer patients. Each subject
275 consented to the use of clinical data and specimens for research purposes. In this study, we only included subjects
276 with both transcriptomics and metabolomics profiles from fresh-frozen radical prostatectomy specimens, where 48
277 patients having both tumor and adjacency normal samples and 46 patients only having tumor samples. Among all
278 94 patients, 85 patients have follow-up records with a median follow-up length of 2.02 years, including three lethal
279 and eight progression cases. Since there is no publicly available prostate cancer cohorts with both transcriptomics
280 and metabolomics profiles, we built surrogate single-*omics* signatures for validating proposed biomarkers externally
281 using transcriptomics datasets from PCaDB (Li et al., 2021). All tumor samples from the cohorts that have follow-up
282 information were included for testing surrogate gene signatures except for CPC-Gene and Belfast cohort due to half
283 of the gene pairs not being found in the data. In total, we used 8 external validation cohorts, including CancerMap,
284 GSE54460, Taylor, Cambridge, CIT, DKFZ, Stockholm and TCGA-PRAD. We also pooled all above cohorts as a
285 heterogenous pooled cohort (**Additional file1**).

286 Construction of a covering Network

Before constructing the covering network, we derived divergence statistics (Dinalankara et al., 2018), a binary random variable, for every tumor sample using the Divergence (Dinalankara et al., 2021) R/Bioconductor package to indicate whether each gene expression and metabolite abundance is aberrant compared to the baseline range calculated based on 48 normal samples. We define a gene-metabolite pair as divergent if the divergence statistics of the gene is correlated with that of the metabolite using Chi-squared test. Prior-knowledge interaction information between gene-gene, gene-metabolite, and metabolite-metabolite was obtained from PathwayCommons(Rodchenkov et al., 2019). We only kept 18,490 genes and 111 metabolites that can be found in both *omics* profiles and PathwayCommons for the subsequent analyses. Except for known gene-metabolite pairs, we also included the pairs if the source gene can get to the target metabolite within three steps with only passing through other genes, aiming to capture potential gene-metabolite indirect interactions based on current network knowledge. For example, we can match three gene-metabolite pairs from the chain of *gene*₁ – *gene*₂ – *gene*₃ – metabolite. 1,880,969 valid gene-metabolite pairs with 18,483 distinct genes and 111 distinct metabolites were then obtained. The Chi-square test was used to test if the divergence status of source genes and target metabolites within pairs are dependent. All 1,847,998 independent pairs with p-value larger than 0.05 were filtered out. 29,292 rare pairs with divergence probability less than 2% were also excluded. After the above filtering procedures, 3,679 candidate pairs with 12,245 unique genes and 71 unique metabolites were left for optimizing the covering network. Finally, twenty gene-metabolite pairs covering 98.9% of the cohort patients with maximum divergence probability were selected. And the entire covering network consisted of 20 source genes, 34 intermediary genes, and 12 target metabolites. We also connected the molecules if they have a known interaction based on PathwayCommons and finally got 117 gene-gene interactions, 1 metabolite-metabolite interaction, and 30 gene-metabolite interactions for the covering network. Inter-patient Jaccard similarity was evaluated by

$$S_{ij} = \frac{D_i \cap D_j}{D_i \cup D_j}$$

, where S_{ij} denotes similarity between patient i with patient j , and D_i refers the set of divergence pairs of patient i . Similarly, inter-pair Jaccard similarity was evaluated by

$$A_{ij} = \frac{P_i \cap P_j}{P_i \cup P_j}$$

287 , where A_{ij} denotes similarity between the i^{th} gene-metabolite pair with the j^{th} gene-metabolite pair, and P_i refers
288 the patient set with i^{th} gene-metabolite pair being diverged.

289 Identification of prognostic multi-*omics* signatures

A diffusion procedure was performed to identify candidate signatures of which molecules are topologically close in the covering network. Because the regulatory directions are not important here, we consider the covering network as an undirected graph $G = (V, E)$, where V is the set of nodes and E is the set of edges. We denote the adjacency matrix of G as W , where $W_{i,j} = 1$ if there is an edge between node i and node j , otherwise as 0. \bar{W} is column-normalized

matrix of W to ensure convergence. Since our analysis focused on integrating both *omics* types, we forced selected signatures to contain both gene(s) and metabolite(s) by setting starting seeds from each connected gene-metabolite pair. We denote $P^{(0)}$ as seed matrix with shape of 66×30 , where the entry of $P_{i,k}^{(0)}$ representing whether the i^{th} node in the covering network belonging to the k^{th} connected gene-metabolite pair. $P_{i,k}^{(0)} = P_{j,k}^{(0)} = 1$ if node i and node j are connected with one being gene another being metabolite, and other entries of the k^{th} column in P are 0. We then iteratively diffuse $P^{(0)}$ on \bar{W} with α ($0 \leq \alpha \leq 1$) controlling for the balance between local and global network similarities. Such that,

$$P^{(t+1)} = \alpha \bar{W} P^{(t)} + (1 - \alpha) P^{(0)}$$

When α approaches 0, more local similarities will be used; otherwise, more global network information will be involved. We set $\alpha = 0.75$, based on previous studies (Ruan and Wang, 2020). t represents iteration step, and we consider convergence if $\|P^{(t+1)} - P^{(t)}\|_1 < 10^{-6}$. After the diffusion processes, we can find some gene-metabolite pairs, especially the ones connecting to the same molecules, have similar diffused score vectors (column vectors of $P^{(t)}$, see Figure S2a) that can be used as gene-metabolite pair representations. We then performed hierarchical clustering of the 30 edges connecting gene-metabolite pairs using Ward's minimum variance method and identified edge clusters (Figure S2b-c). Molecules connected by the edges from the same cluster will be treated as one candidate signature. Thresholds of 0.45, 0.65, and 0.85 were set to prune the hierarchical tree, from where most of the edges can cluster with at least one other edge to no single edge was left out Figure S2c.

We employed patients' *omics* profiles that were scaled into continuous z-scores for risk stratification, which was achieved by hierarchical clustering using Ward's minimum variance and complete linkage method. We then performed a log-rank test to compare disease-free survival times between two groups classified by each signature and only left prognostic signatures with a p-value < 0.05 . We also excluded the signatures if the smaller patient cluster had less than 10% of the patients. We then permuted the abundance of all features of each prognostic signature and repeated hierarchical clustering and survival analysis 1,000 times. The statistical power for the selected signature was calculated by the percentage of getting p-values > 0.05 in permutation studies.

306 Construction of surrogate signatures

Surrogate gene signatures were all trained in DF/HCC cohort and validated in independent external test datasets as mentioned above. For each multi-*omics* signature, patients' risk labels were used to train the surrogate gene signature classifier. The procedures are as following: (1) Differentially expressed genes between two patient risk groups (t test: p values < 0.01) were selected as context genes. (2) Within context genes, we only kept the genes that are significantly correlated with at least one of the metabolites in the multi-*omics* signature with p values less than 0.01. (3) If genes in the multi-*omics* signatures were not in the gene list, we added those genes into the genes. (4) The left genes were paired with one being up-regulated and the other being down-regulated. (5) We then derive pairwise score (Geman et al., 2004) for each gene pair given by:

$$S_{i,j} = |Pr(X_i > X_j | Y_1) - Pr(X_i > X_j | Y_2)|$$

307 $S_{i,j}$ denotes gene pair score for gene i and gene j , where gene i is the up-regulated gene and gene j is the
308 down-regulated gene. X_i and X_j are gene expression values for gene i and j . Y_1 and Y_2 are risk group labels.
309 (6) To further reduce the complexity and noises, we only kept top 50 gene pairs with highest scores to training
310 the surrogate classifier. Thus each patient has 50 binary indicator variables representing whether gene i has a
311 higher expression level than gene j . (7) 5-fold cross-validation lasso logistic regression was then performed to select
312 important gene pairs and derive parameter weights for each pair. Predictions of lasso regression models were used
313 to classify patients into different risk groups. 0.5 was used as the cutoff for the training set. Each external validation
314 cohort used the corresponding median value as the cutoff.

315 Statistical analysis and data availability

316 All statistical and bioinformatics analyses were performed in R, version 4.0.3. Chi-square or Fisher's exact
317 test was performed as appropriate for selecting significant associated gene-metabolite pairs for constructing the
318 covering network and examining associations between patient risk groups with genotype and Gleason scores.
319 Log rank test was used for comparing Kaplan-Meier survival curves between high- and low-risk patient groups
320 stratified by different signatures, where time to any events including biochemical recurrence, metastasis and
321 death was used as composite survival endpoints. Gene set enrichment analysis and metabolite set enrichment
322 analysis were conducted using fgsea (Korotkevich et al., 2016) R package and Reactome pathway database
323 (Gillespie et al., 2021). Gene-metabolite multi-*omics* pathway enrichment analysis were performed following the
324 workflow proposed by Canzler et al (Canzler and Hackermüller, 2020). through combining p-values from each
325 of single-*omics* enrichment analysis using Stouffer's method. Unless explicitly mentioned, otherwise all statistical

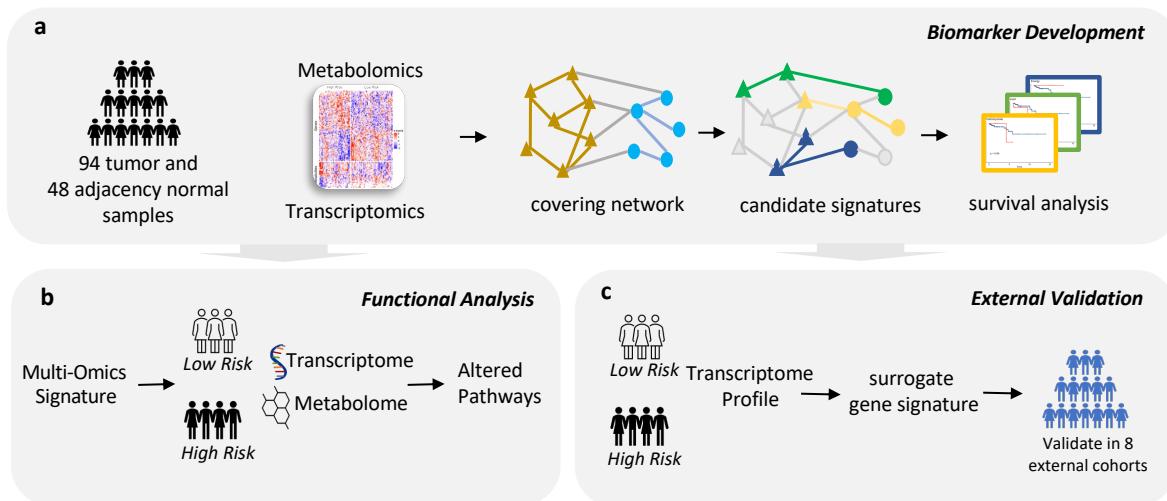


Figure 1. Study overview **a.** Biomarker development. 94 tumor and 48 adjacency normal samples with both transcriptomics and metabolomics profiles were used for developing prostate cancer biomarkers. A covering network that is parsimony and sufficient to account for inter-patient heterogeneity was constructed. Candidate multi-omics signatures were determined based on network topology followed by survival analysis to select prognostic signatures. **b.** Functional analysis. Pathway enrichment analyses were performed between patients' risk groups using gene expression, metabolite abundances alone and jointly. **c.** External validation. Based on patients' risk groups classified by multi-omics signatures, surrogate gene signatures using only gene expression data were trained and validated in external cohorts.

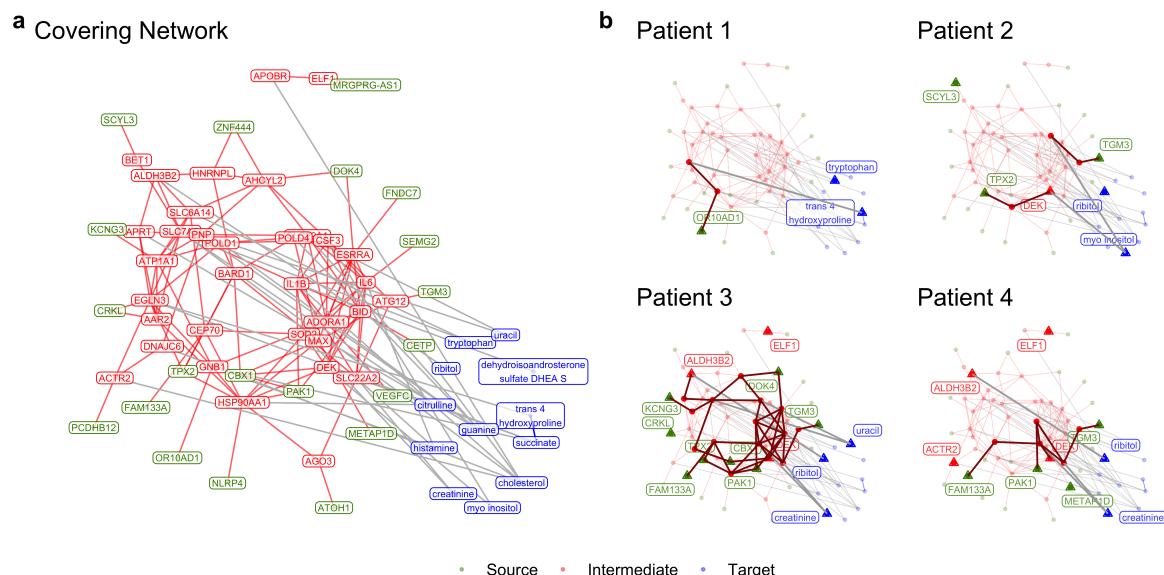


Figure 2. Covering network. **a.** Complete network covering the whole cohort. **b.** Different patients exhibited distinct aberrant patterns captured by network.

326 tests were two-sided, with $p < 0.05$ indicating significance. Data used in the manuscript can be found at <https://github.com/Karenxzr/MultiModalPC>.
327

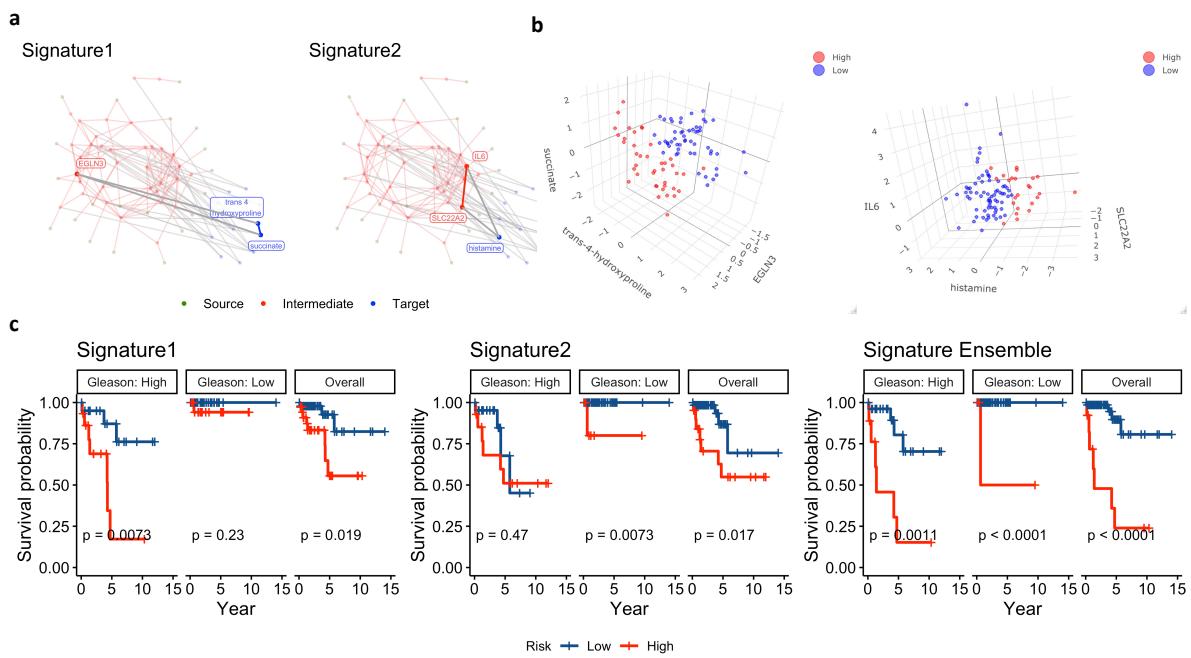


Figure 3. Two prognostic multi-omics signatures were identified from the covering network. **a.** Both of two multi-omics signatures identified from the covering network contain gene(s) and metabolite(s). **b.** Two signatures stratified patients into two risk groups viewed in 3D space. **c.** Kaplan-Meier curves between patient risk groups with and without stratification by Gleason scores. Signature 1 is prognostic in high Gleason risk group and signature 2 is prognostic in low Gleason risk group. Signature ensemble is prognostic in both Gleason risk groups.

Table 1. Descriptive statistics of DF/HCC cohort

		Overall (N=94)
Age	mean \pm sd	58.60 \pm 7.17
	Missing	3 (3.2%)
Race	White	77 (81.9%)
	Black or African American	9 (9.6%)
	Other or Missing	8 (8.5%)
Hispanic	Yes	48 (51.1%)
	No	43 (45.7%)
	Missing	3 (3.2%)
PSA before surgery	median (25 th , 75 th)	119 (84.0, 174.0)
	Missing	13 (13.83%)
Gleason Risk	Low (Primary Gleason 3)	58 (61.7%)
	High (Primary Gleason > 3)	36 (38.3%)

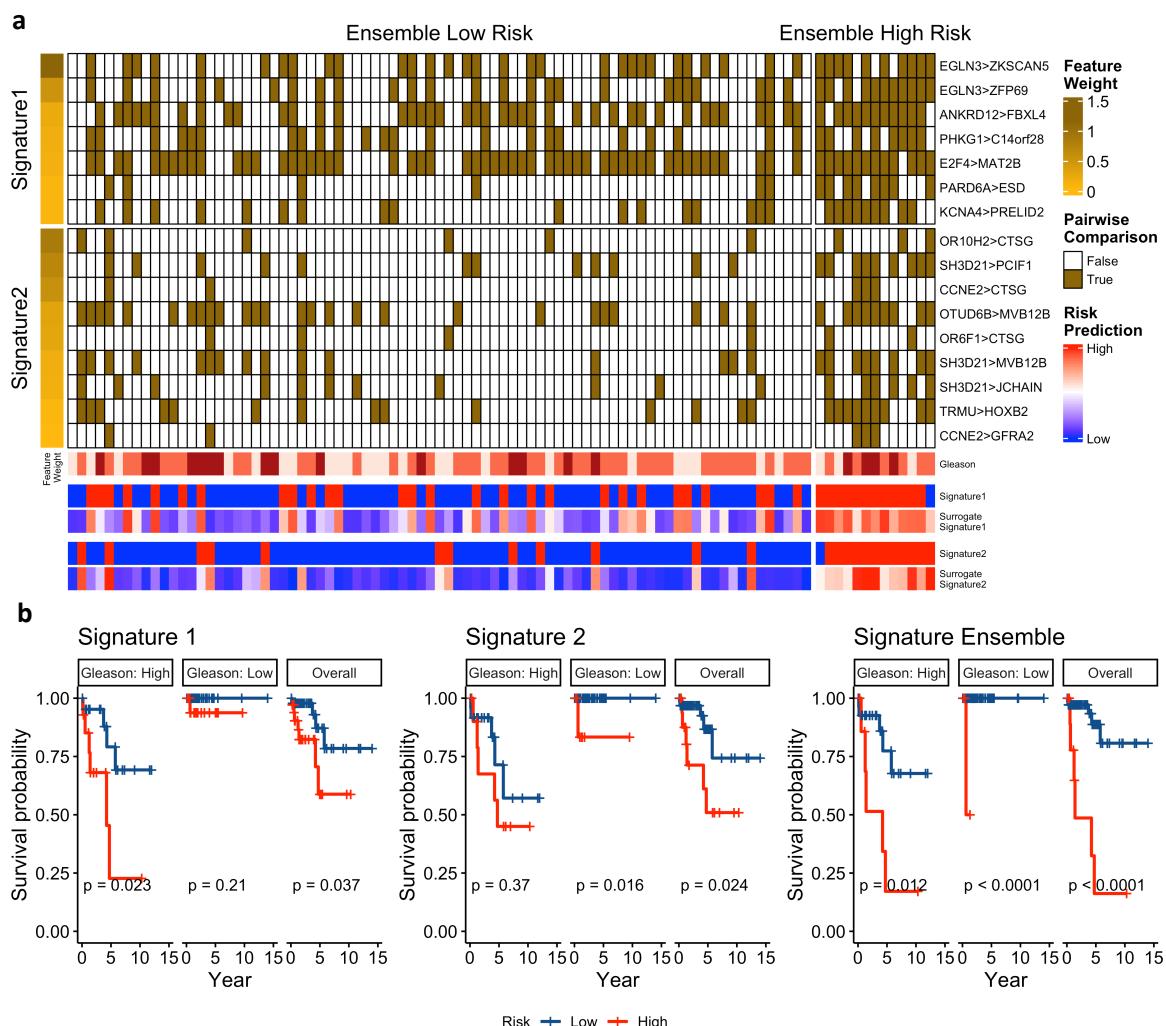


Figure 4. Surrogate gene signatures trained in DF/HCC cohort as multi-omics signature proxies. **a.** Heatmap of surrogate gene signatures with each column of the heatmap body representing one patient and each row representing one pairwise gene comparison. Heatmap body was split by predictions of surrogate signature ensemble. Annotations of the heatmap indicate original labels of patients' risk group of two multi-omics signatures and predicted risk scores by two surrogate gene signatures **b.** Kaplan-Meier curves between patient risk groups classified by surrogate gene signatures and surrogate gene signature ensemble with and without stratification by Gleason scores.

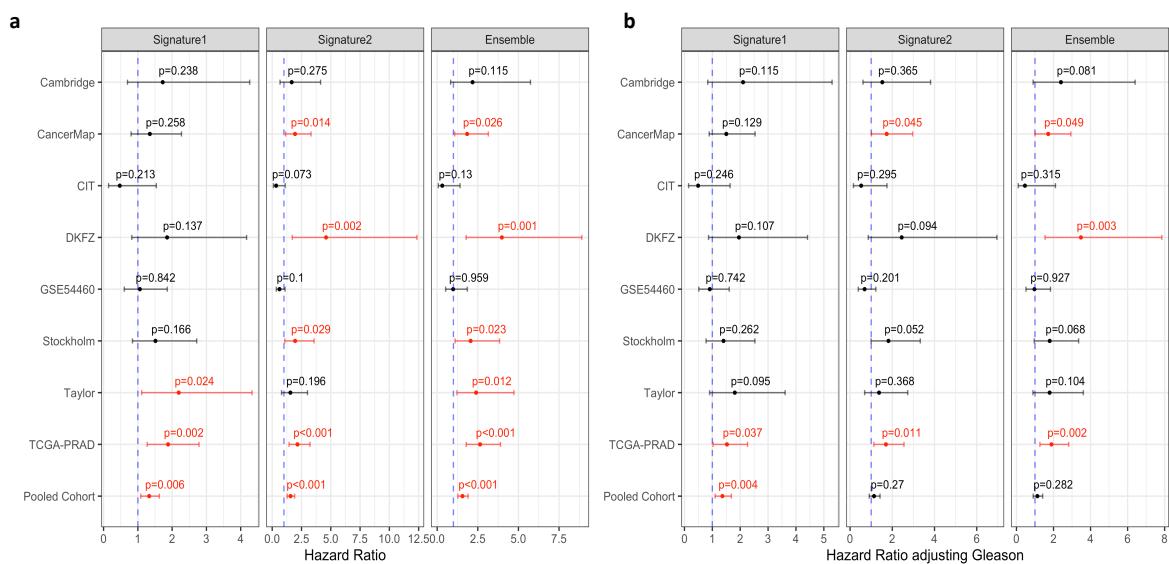


Figure 5. Validation of surrogate gene signatures in external prostate cancer cohorts. **a.** Surrogate gene signatures as the single predictor. **b.** Surrogate gene signatures adjusting for Gleason score. Plots show hazard ratios of high risk groups classified by each surrogate signature. Red indicate significance. Error bars represent 95% confidence interval of hazard ratios.

328 Bibliography

329 Afsari, B., Fertig, E. J., Geman, D., and Marchionni, L. switchBox: an r package for k-top scoring pairs classifier development. *Bioinformatics*, 31(2):273–274, Sept. 2014. doi: 10.1093/bioinformatics/btu622.

330 Ashe, H., Krakowiak, P., Hasterok, S., Sleppy, R., Roller, D. G., and Gioeli, D. Role of the runt-related transcription factor (runx) 331 family in prostate cancer. *The FEBS Journal*, 288(21):6112–6126, 2021.

332 Baranovskii, A., Gunduz, I. B., Franke, V., Uyar, B., and Akalin, A. Multi-omics alleviates the limitations of panel-sequencing for 333 cancer drug response prediction. June 2022. doi: 10.1101/2022.06.15.496249.

334 Barbieri, C. and Shoag, J. Clinical variability and molecular heterogeneity in prostate cancer. *Asian Journal of Andrology*, 18(4): 335 543, 2016. doi: 10.4103/1008-682x.178852.

336 Barderas, R., Bartolomé, R. A., Fernandez-Aceñero, M. J., Torres, S., and Casal, J. I. High expression of il-13 receptor α 2 in 337 colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. *Cancer Res*, 72(11):2780–2790, Jun 2012.

338 Canzler, S. and Hackermüller, J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. *BMC 339 Bioinformatics*, 21(1), Dec. 2020. doi: 10.1186/s12859-020-03910-x.

340 Carm, K. T., Hoff, A. M., Bakken, A. C., Axcrona, U., Axcrona, K., Lothe, R. A., Skotheim, R. I., and Løvf, M. Interfocal 341 heterogeneity challenges the clinical usefulness of molecular classification of primary prostate cancer. *Scientific Reports*, 342 9(1), Sept. 2019. doi: 10.1038/s41598-019-49964-7.

343 Culig, Z. and Puhr, M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. *Molecular and Cellular 344 Endocrinology*, 462:25–30, Feb. 2018. doi: 10.1016/j.mce.2017.03.012.

345 Dinalankara, W., Ke, Q., Xu, Y., Ji, L., Pagane, N., Lien, A., Matam, T., Fertig, E. J., Price, N. D., Younes, L., Marchionni, L., and 346 Geman, D. Digitizing omics profiles by divergence from a baseline. *Proceedings of the National Academy of Sciences*, 115 347 (18):4545–4552, Apr. 2018. doi: 10.1073/pnas.1721628115.

348 Dinalankara, W., Ke, Q., Geman, D., and Marchionni, L. An r package for divergence analysis of omics data. *PLOS ONE*, 16(4): 349 e0249002, Apr. 2021. doi: 10.1371/journal.pone.0249002.

350 Doultsinos, D. and Mills, I. G. Derivation and application of molecular signatures to prostate cancer: Opportunities and challenges. 351 *Cancers*, 13(3):495, Jan. 2021. doi: 10.3390/cancers13030495.

352 Erho, N., Crisan, A., Vergara, I. A., Mitra, A. P., Ghadessi, M., Buerki, C., Bergstrahl, E. J., Kollmeyer, T., Fink, S., Haddad, 353 Z., Zimmermann, B., Sierociński, T., Ballman, K. V., Triche, T. J., Black, P. C., Karnes, R. J., Klee, G., Davicioni, E., and 354 Jenkins, R. B. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical 355 prostatectomy. *PLoS ONE*, 8(6):e66855, June 2013. doi: 10.1371/journal.pone.0066855.

356 Geman, D., d'Avignon, C., Naiman, D. Q., and Winslow, R. L. Classifying gene expression profiles from pairwise mRNA 357 comparisons. *Statistical Applications in Genetics and Molecular Biology*, 3(1):1–19, Jan. 2004. doi: 10.2202/1544-6115.1071.

358 Ghazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., Sinsheimer, J., Kang, H. M., 359 Furlotte, N., Park, C. C., Wen, P.-Z., Brewer, H., Weitz, K., Camp, D. G., Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., 360 Siemers, N., Gargalovic, P., Eskin, E., Kirchgessner, T., Smith, D. J., Smith, R. D., and Lusis, A. J. Comparative analysis 361 of proteome and transcriptome variation in mouse. *PLoS Genetics*, 7(6):e1001393, June 2011. doi: 10.1371/journal.pgen. 362 1001393.

363 Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C., Matthews, L., Gong, C., 364 Deng, C., Varusai, T., Ragueneau, E., Haider, Y., May, B., Shamovsky, V., Weiser, J., Brunson, T., Sanati, N., Beckman, L., 365 Shao, X., Fabregat, A., Sidiropoulos, K., Murillo, J., Viteri, G., Cook, J., Shorser, S., Bader, G., Demir, E., Sander, C., Haw, R., 366 Wu, G., Stein, L., Hermjakob, H., and D'Eustachio, P. The reactome pathway knowledgebase 2022. *Nucleic Acids Research*, 367 50(D1):D687–D692, Nov. 2021. doi: 10.1093/nar/gkab1028.

368 Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E., and Siuzdak, G. Metabolomics activity screening for identifying 369 metabolites that modulate phenotype. *Nature Biotechnology*, 36(4):316–320, Apr. 2018. doi: 10.1038/nbt.4101.

370 Irshad, S., Bansal, M., Castillo-Martin, M., Zheng, T., Aytes, A., Wenske, S., Magnen, C. L., Guarneri, P., Sumazin, P., Benson, 371 M. C., Shen, M. M., Califano, A., and Abate-Shen, C. A molecular signature predictive of indolent prostate cancer. *Science 372 Translational Medicine*, 5(202), Sept. 2013. doi: 10.1126/scitranslmed.3006408.

373 Jiang, S. and Yan, W. Succinate in the cancer–immune cycle. *Cancer Letters*, 390:45–47, Apr. 2017. doi: 10.1016/j.canlet.2017. 374 01.019.

375 Karczewski, K. J. and Snyder, M. P. Integrative omics for health and disease. *Nature Reviews Genetics*, 19(5):299–310, Feb. 376 2018. doi: 10.1038/nrg.2018.4.

377 Ke, Q., Dinalankara, W., Younes, L., Geman, D., and Marchionni, L. Efficient representations of tumor diversity with paired 378 DNA-RNA aberrations. *PLOS Computational Biology*, 17(6):e1008944, June 2021. doi: 10.1371/journal.pcbi.1008944.

379 Kiebish, M. A., Cullen, J., Mishra, P., Ali, A., Milliman, E., Rodrigues, L. O., Chen, E. Y., Tolstikov, V., Zhang, L., Panagopoulos, K., 380 Shah, P., Chen, Y., Petrovics, G., Rosner, I. L., Sesterhenn, I. A., McLeod, D. G., Granger, E., Sarangarajan, R., Akmaev, V., 381 Srinivasan, A., Srivastava, S., Narain, N. R., and Dobi, A. Multi-omic serum biomarkers for prognosis of disease progression 382 in prostate cancer. *Journal of Translational Medicine*, 18(1), Jan. 2020. doi: 10.1186/s12967-019-02185-y.

383 Klein, E. A., Cooperberg, M. R., Magi-Galluzzi, C., Simko, J. P., Falzarano, S. M., Maddala, T., Chan, J. M., Li, J., Cowan, 384 J. E., Tsiatis, A. C., Cherbavaz, D. B., Pelham, R. J., Tenggara-Hunter, I., Baehner, F. L., Knezevic, D., Febbo, P. G., Shak, 385 S., Kattan, M. W., Lee, M., and Carroll, P. R. A 17-gene assay to predict prostate cancer aggressiveness in the context of 386 Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. *European Urology*, 66(3):550–560, Sept. 2014. 387 doi: 10.1016/j.eururo.2014.05.004.

388 Koo, K. M., Mainwaring, P. N., Tomlins, S. A., and Trau, M. Merging new-age biomarkers and nanodiagnostics for precision 389 prostate cancer management. *Nature Reviews Urology*, 16(5):302–317, Apr. 2019. doi: 10.1038/s41585-019-0178-2.

390 Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M. N., and Sergushichev, A. Fast gene set enrichment analysis. 391 June 2016. doi: 10.1101/060012.

392 Li, R., Zhu, J., Zhong, W.-D., and Jia, Z. PCaDB - a comprehensive and interactive database for transcriptomes from prostate 393 cancer population cohorts. July 2021. doi: 10.1101/2021.06.29.449134.

394 Litwin, M. S. and Tan, H.-J. The diagnosis and treatment of prostate cancer. *JAMA*, 317(24):2532, June 2017. doi: 10.1001/ 395 jama.2017.7248.

396

397 Lockett, K. L., Snowwhite, I. V., and Hu, J. J. Nucleotide-excision repair and prostate cancer risk. *Cancer Letters*, 220(2):125–135,
398 2005.

399 Long, Q., Johnson, B. A., Osunkoya, A. O., Lai, Y.-H., Zhou, W., Abramovitz, M., Xia, M., Bouzyk, M. B., Nam, R. K., Sugar,
400 L., Stanimirovic, A., Williams, D. J., Leyland-Jones, B. R., Seth, A. K., Petros, J. A., and Moreno, C. S. Protein-coding and
401 MicroRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. *The American Journal of Pathology*,
402 179(1):46–54, July 2011. doi: 10.1016/j.ajpath.2011.03.008.

403 Marchionni, L., Afsari, B., Geman, D., and Leek, J. T. A simple and reproducible breast cancer prognostic test. *BMC Genomics*,
404 14(1), May 2013. doi: 10.1186/1471-2164-14-336.

405 Markert, E. K., Mizuno, H., Vazquez, A., and Levine, A. J. Molecular classification of prostate cancer using curated expression
406 signatures. *Proceedings of the National Academy of Sciences*, 108(52):21276–21281, Nov. 2011. doi: 10.1073/pnas.
407 1117029108.

408 Oh, W. K., Hayes, J., Evan, C., Manola, J., George, D. J., Waldron, H., Donovan, M., Varner, J., Orechia, J., Katcher, B., Lu, D.,
409 Nevins, A., Wright, R. L., Tormey, L., Talcott, J., Rubin, M. A., Loda, M., Sellers, W. R., Richie, J. P., Kantoff, P. W., and Weeks,
410 J. Development of an integrated prostate cancer research information system. *Clinical Genitourinary Cancer*, 5(1):61–66, June
411 2006. doi: 10.3816/cgc.2006.n.019.

412 Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., and Cox, L. A. The need for multi-omics biomarker signatures in precision
413 medicine. *International Journal of Molecular Sciences*, 20(19):4781, Sept. 2019. doi: 10.3390/ijms20194781.

414 Ouyang, W. and O'Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. *Immunity*, 50(4):
415 871–891, 2019.

416 Patti, G. J., Yanes, O., and Siuzdak, G. Metabolomics: the apogee of the omics trilogy. *Nature Reviews Molecular Cell Biology*,
417 13(4):263–269, Mar. 2012. doi: 10.1038/nrm3314.

418 Planche, A., Bacac, M., Provero, P., Fusco, C., Delorenzi, M., Stehle, J.-C., and Stamenkovic, I. Identification of prognostic
419 molecular features in the reactive stroma of human breast and prostate cancer. *PLoS ONE*, 6(5):e18640, May 2011. doi:
420 10.1371/journal.pone.0018640.

421 Porzycki, P. and Ciszkowicz, E. Modern biomarkers in prostate cancer diagnosis. *Central European Journal of Urology*, 73, 2020.
422 doi: 10.5173/ceju.2020.0067r.

423 Rana, S., Valbuena, G. N., Curry, E., Bevan, C. L., and Keun, H. C. MicroRNAs as biomarkers for prostate cancer prognosis:
424 a systematic review and a systematic reanalysis of public data. *British Journal of Cancer*, 126(3):502–513, Jan. 2022. doi:
425 10.1038/s41416-021-01677-3.

426 Rebello, R. J., Oing, C., Knudsen, K. E., Loeb, S., Johnson, D. C., Reiter, R. E., Gillessen, S., der Kwast, T. V., and Bristow, R. G.
427 Prostate cancer. *Nature Reviews Disease Primers*, 7(1), Feb. 2021. doi: 10.1038/s41572-020-00243-0.

428 Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., and Gottesman, M. M. Revisiting the role of ABC transporters
429 in multidrug-resistant cancer. *Nat Rev Cancer*, 18(7):452–464, Jul 2018.

430 Roca, H., Craig, M. J., Ying, C., Varsos, Z. S., Czarnieski, P., Alva, A. S., Hernandez, J., Fuller, D., Daignault, S., Healy, P. N., and
431 Pienta, K. J. IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress through the activation of the
432 JNK-pathway and survivin up-regulation. *J Cell Biochem*, 113(5):1569–1580, May 2012.

433 Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., Franz, M., Siper, M. C., Cheung, M., Wrana, M., Mistry,
434 H., Mosier, L., Dlin, J., Wen, Q., O'Callaghan, C., Li, W., Elder, G., Smith, P. T., Dallago, C., Cerami, E., Gross, B., Dogrusoz,
435 U., Demir, E., Bader, G. D., and Sander, C. Pathway Commons 2019 update: integration, analysis and exploration of pathway
436 data. *Nucleic Acids Research*, Oct. 2019. doi: 10.1093/nar/gkz946.

437 Roviello, G., Sigala, S., Sandhu, S., Bonetta, A., Cappelletti, M. R., Zanotti, L., Bottini, A., Sternberg, C. N., Fox, S. B.,
438 and Generali, D. Role of the novel generation of androgen receptor pathway targeted agents in the management of
439 castration-resistant prostate cancer: A literature based meta-analysis of randomized trials. *European Journal of Cancer*,
440 61:111–121, July 2016. doi: 10.1016/j.ejca.2016.04.002.

441 Ruan, P. and Wang, S. DiSNEP: a disease-specific gene network enhancement to improve prioritizing candidate disease genes.
442 *Briefings in Bioinformatics*, 22(4), Oct. 2020. doi: 10.1093/bib/bbaa241.

443 Schödel, J. and Ratcliffe, P. J. Mechanisms of hypoxia signalling: new implications for nephrology. *Nature Reviews Nephrology*,
444 15(10):641–659, Sept. 2019. doi: 10.1038/s41581-019-0182-z.

445 Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. Global quantification of
446 mammalian gene expression control. *Nature*, 473(7347):337–342, May 2011. doi: 10.1038/nature10098.

447 Strocchi, S., Reggiani, F., Gobbi, G., Ciarrrochi, A., and Sancisi, V. The multifaceted role of EGLN family prolyl hydroxylases in
448 cancer: going beyond HIF regulation. *Oncogene*, 41(29):3665–3679, June 2022. doi: 10.1038/s41388-022-02378-8.

449 Talantov, D., Jatkoe, T. A., Böhm, M., Zhang, Y., Ferguson, A. M., Stricker, P. D., Kattan, M. W., Sutherland, R. L., Kench,
450 J. G., Wang, Y., and Henshall, S. M. Gene based prediction of clinically localized prostate cancer progression after radical
451 prostatectomy. *Journal of Urology*, 184(4):1521–1528, Oct. 2010. doi: 10.1016/j.juro.2010.05.084.

452 Yang, L., Roberts, D., Takhar, M., Erho, N., Bibby, B. A., Thiruthaneeswaran, N., Bhandari, V., Cheng, W.-C., Haider, S., McCorry,
453 A. M., McArt, D., Jain, S., Alshalalfa, M., Ross, A., Schaffer, E., Den, R. B., Karnes, R. J., Klein, E., Hoskin, P. J., Freedland,
454 S. J., Lamb, A. D., Neal, D. E., Buffa, F. M., Bristow, R. G., Boutros, P. C., Davicioni, E., Choudhury, A., and West, C. M.
455 Development and validation of a 28-gene hypoxia-related prognostic signature for localized prostate cancer. *EBioMedicine*,
456 31:182–189, May 2018. doi: 10.1016/j.ebiom.2018.04.019.

457 Yang, B., Zhang, C., Cheng, S., Li, G., Griebel, J., and Neuhaus, J. Novel metabolic signatures of prostate cancer revealed by
458 1H-NMR metabolomics of urine. *Diagnostics*, 11(2):149, Jan. 2021. doi: 10.3390/diagnostics11020149.

459 Zhang, H., Pan, Y., Zheng, L., Choe, C., Lindgren, B., Jensen, E. D., Westendorf, J. J., Cheng, L., and Huang, H. Foxo1 inhibits
460 runx2 transcriptional activity and prostate cancer cell migration and invasion. *Cancer Res*, 71(9):3257–3267, May 2011.

461 Zhao, T., Mu, X., and You, Q. Succinate: An initiator in tumorigenesis and progression. *Oncotarget*, 8(32):53819–53828, May
462 2017. doi: 10.18632/oncotarget.17734.

463 **Supplementary Information**

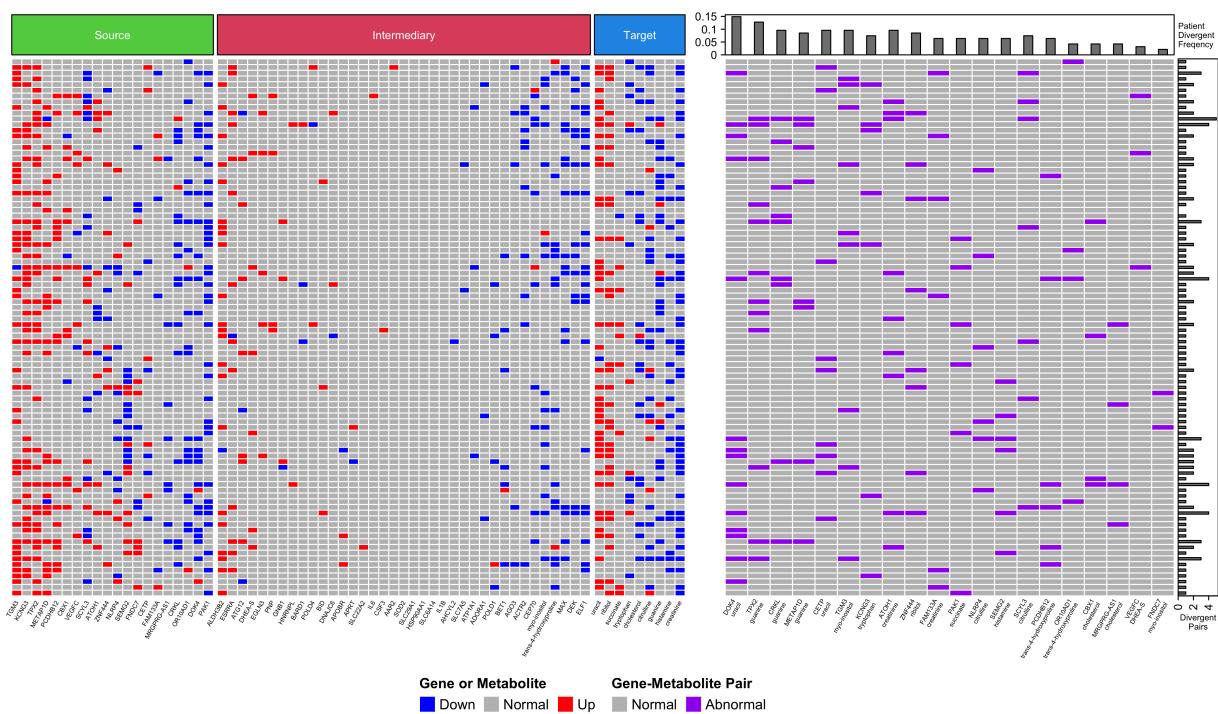


Figure S1. Inter-patient heterogeneity captured by the covering network. **(a)** Patients' divergent status on single molecular level of each gene and metabolite in the covering network. **(b)** Patients' divergent status of gene-metabolite pairs in the covering network.

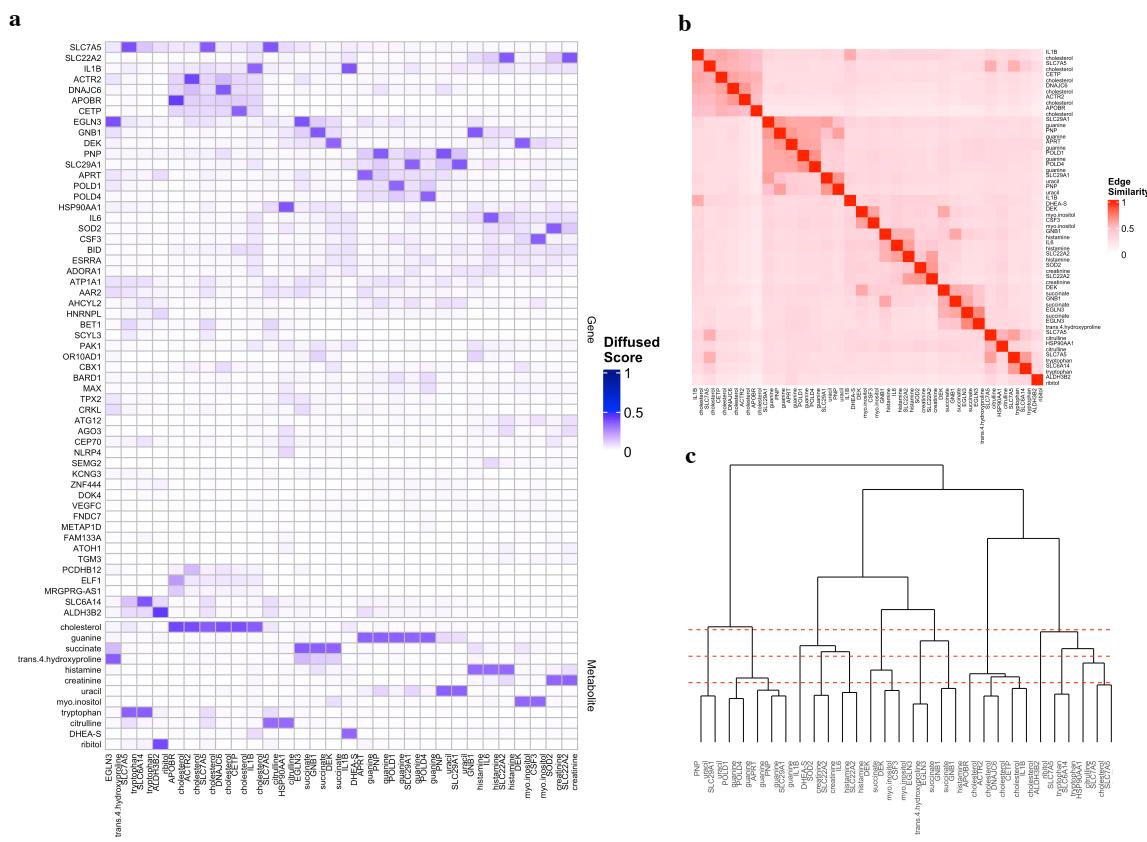


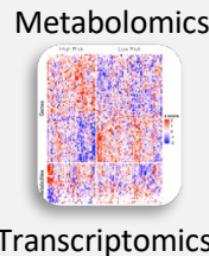
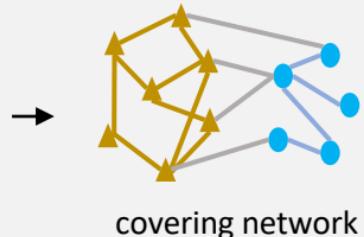
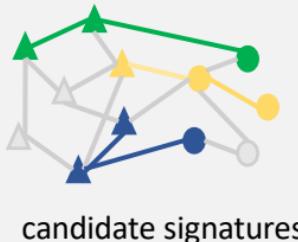
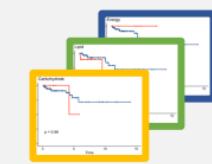
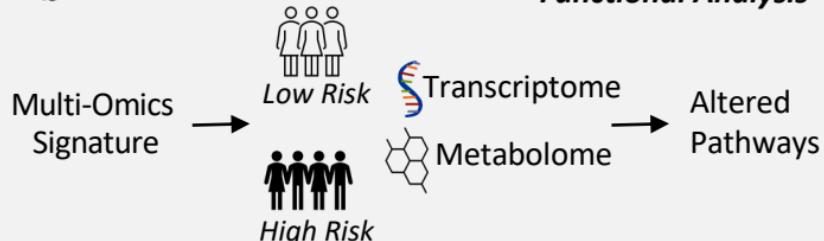
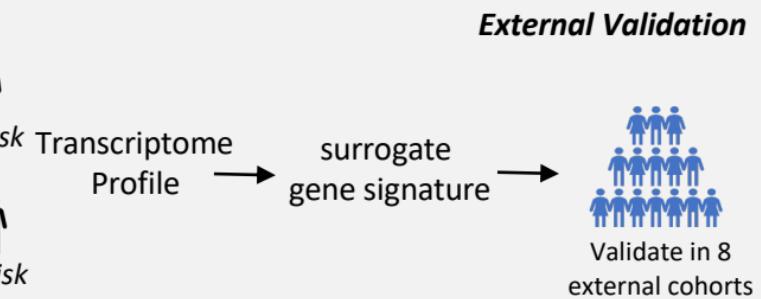
Figure S2. Identification of candidate signatures from the covering network. **(a)** Diffused scores on the covering network from every gene-metabolite pair. Each column represents seed gene-metabolite pairs. Each row represents scores of each gene and metabolite on the covering network after diffusion. **(b)** Similarity matrix of gene-metabolite pairs of the covering network. **(c)** Hierarchical clustering with different thresholds to decide candidate signatures composed of similar gene-metabolite pairs.

464 **Additional file1**

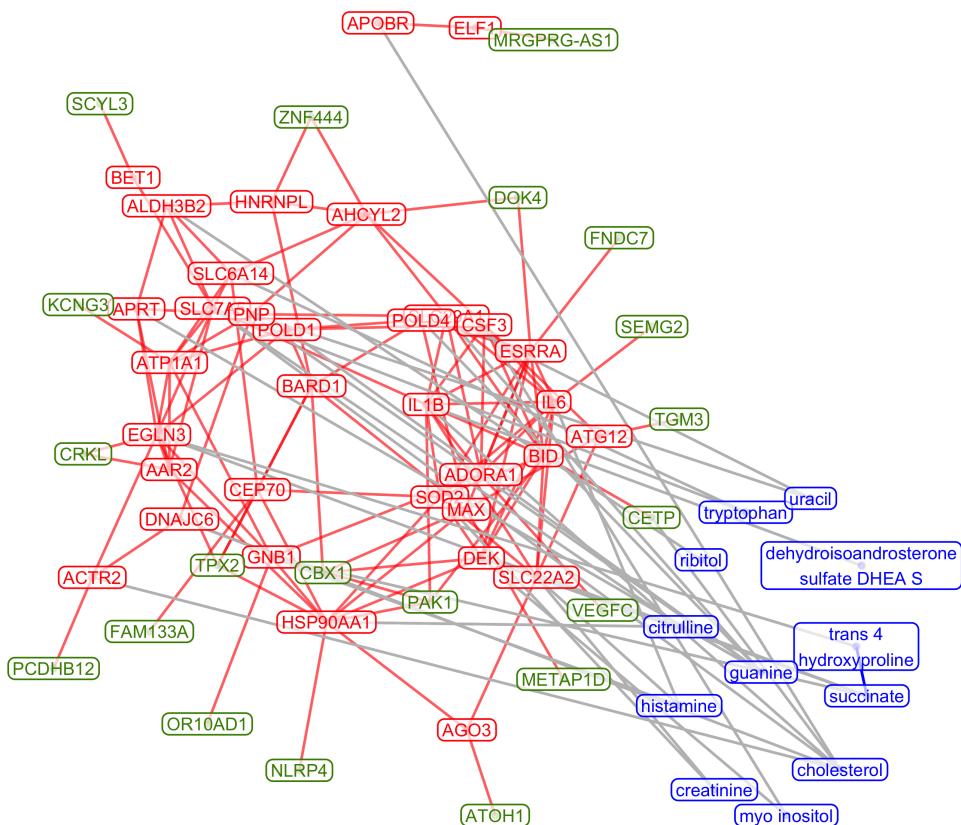
465 Sheet1-2: Gene set enrichment analysis results for two multi-omics signatures. Sheet3-4: Metabolite set enrichment
466 analysis results for two multi-omics signatures. Sheet5-6: Multi-omics enrichment analysis results for two multi-omics
467 signatures. Sheet7: Summary statistics of external validation cohorts. Sheet8: Patient counts by signature risk
468 groups and Gleason risk groups

a

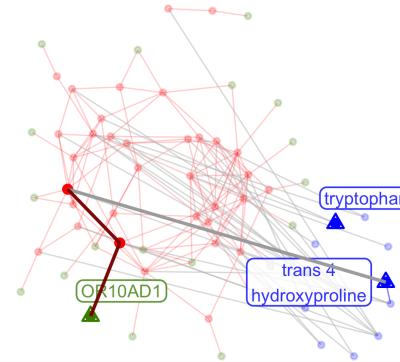
94 tumor and
48 adjacency normal
samples

**Biomarker Development****b****c**

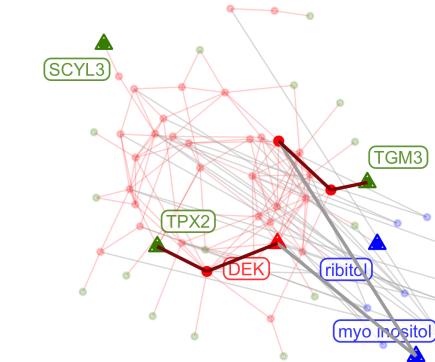
a Covering Network



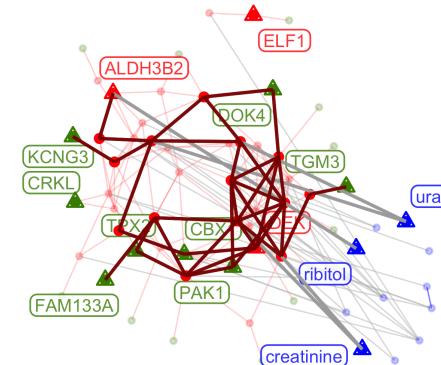
b Patient 1



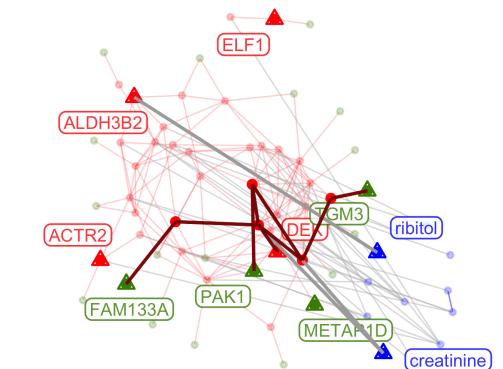
Patient 2



Patient 3



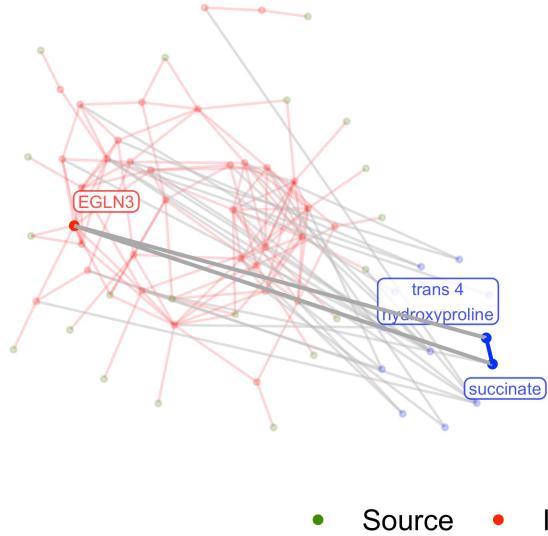
Patient 4



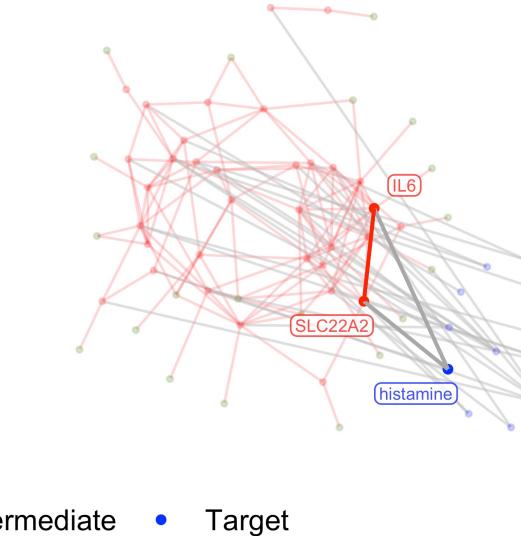
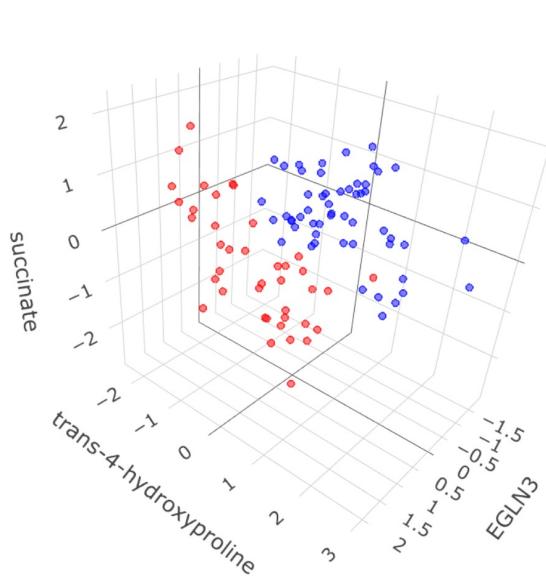
- Source
- Intermediate
- Target

a

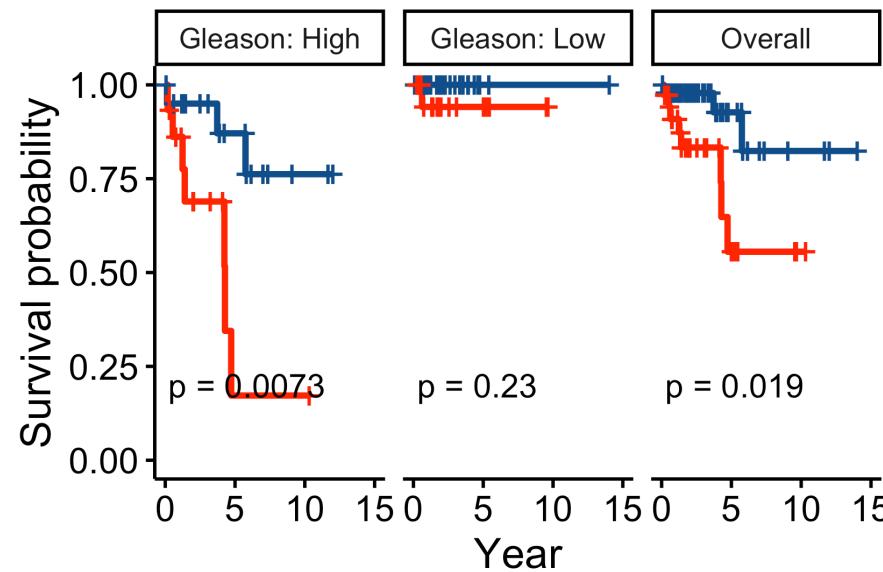
Signature1



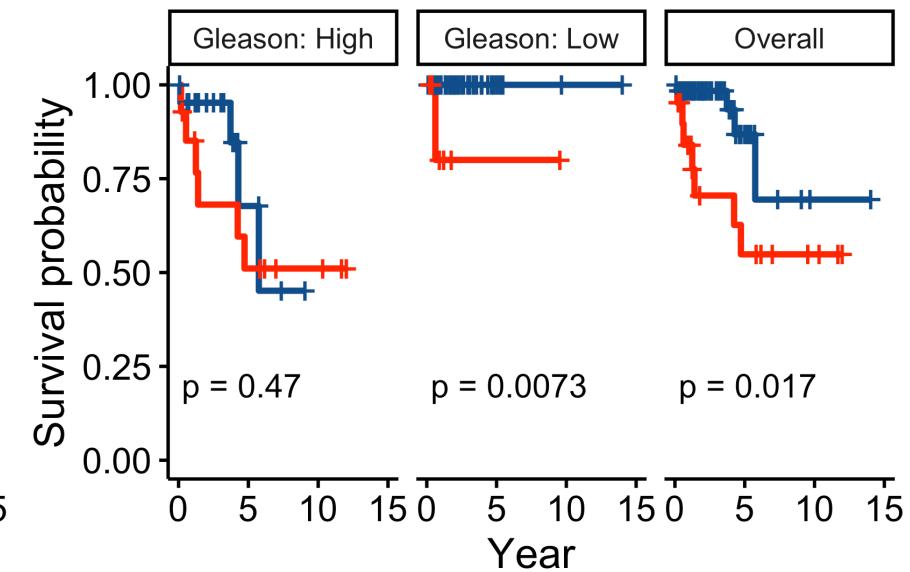
Signature2

**b****c**

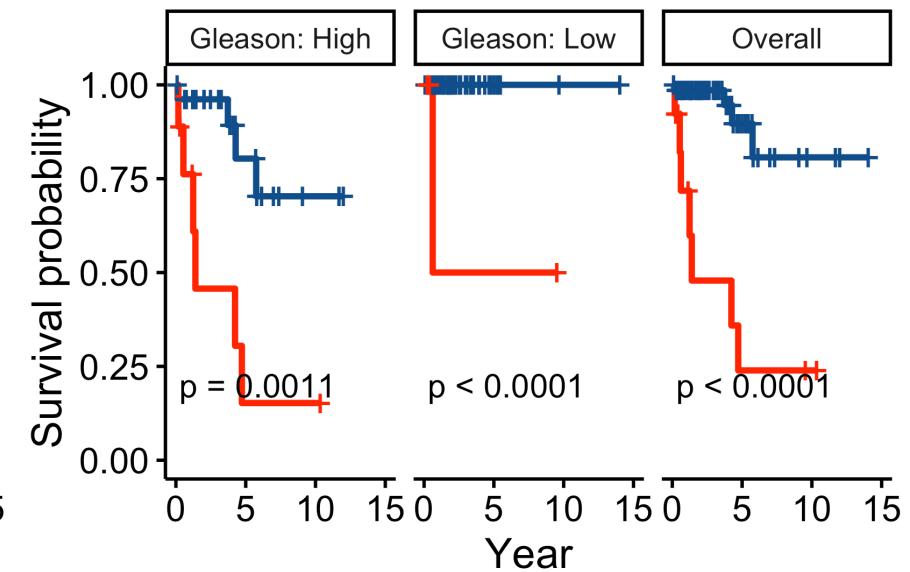
Signature1



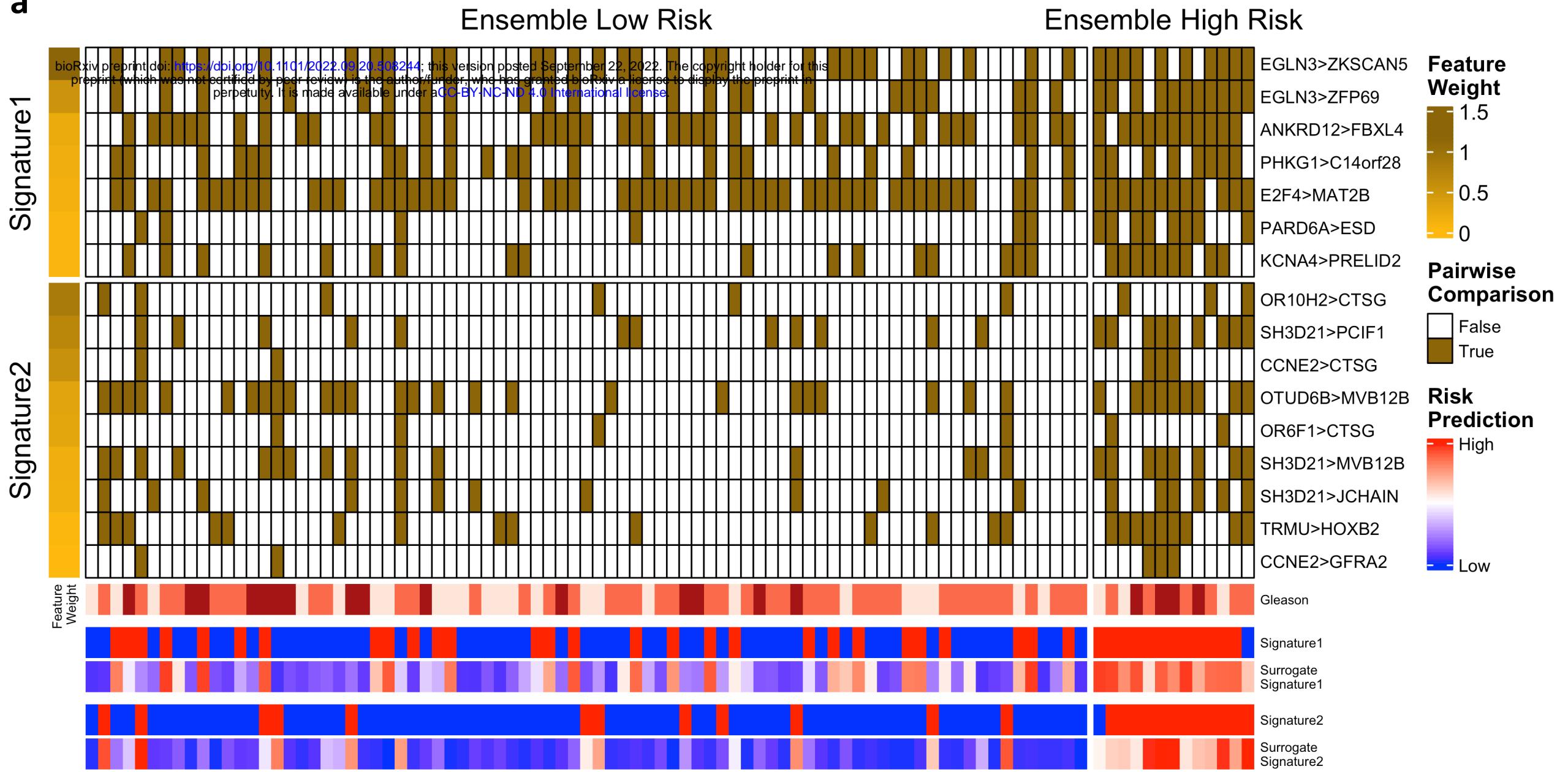
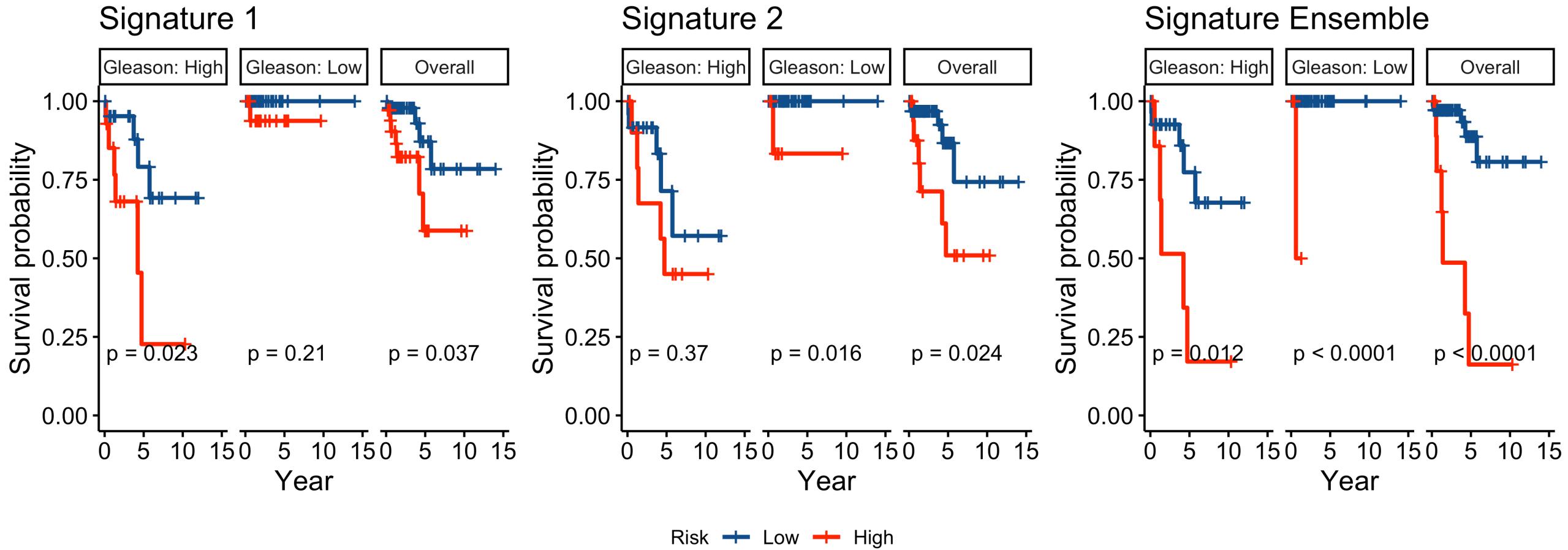
Signature2

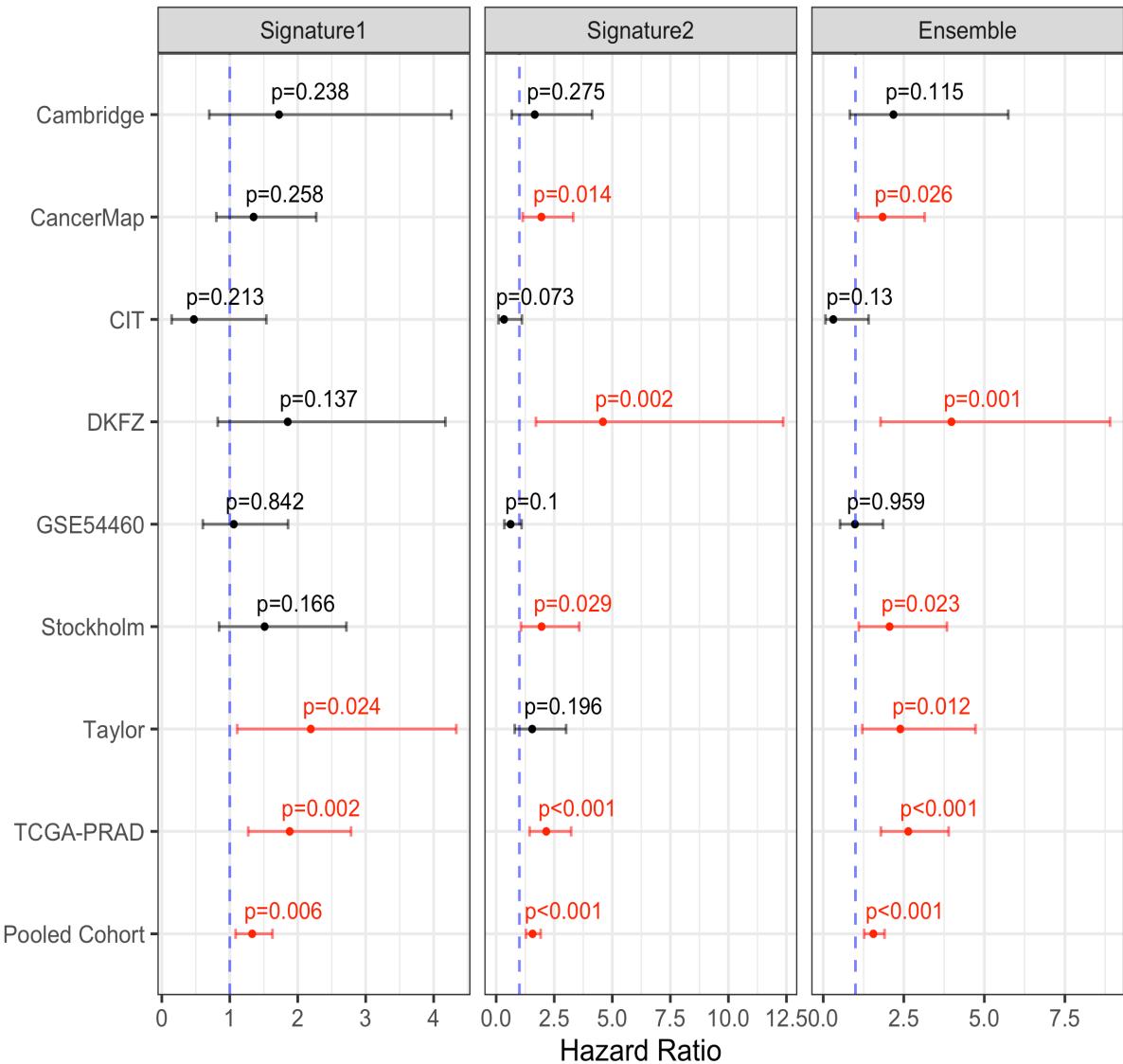


Signature Ensemble



Risk ● Low ● High

a**b**

a**b**