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 25 

Abstract 26 

The generation of realistic plant and animal images from marker information could be a main 27 

contribution of artificial intelligence to genetics and breeding. Since morphological traits are 28 

highly variable and highly heritable, this must be possible. However, a suitable algorithm has 29 

not been proposed yet. This paper is a proof of concept demonstrating the feasibility of this 30 

proposal using ‘decoders’, a class of deep learning architecture. We apply it to Cucurbitaceae, 31 

perhaps the family harboring the largest variability in fruit shape in the plant kingdom, and to 32 

tomato, a species with high morphological diversity also. We generate Cucurbitaceae shapes 33 

assuming a hypothetical, but plausible, evolutive path along observed fruit shapes of C. melo. 34 

In tomato, we used 353 images from 129 crosses between 25 maternal and 7 paternal lines for 35 

which genotype data were available. In both instances, a simple decoder was able to recover 36 

expected shapes with large accuracy. For the tomato pedigree, we also show that the 37 

algorithm can be trained to generate offspring images from their parents’ shapes, bypassing 38 

genotype information. Data and code are available at 39 

https://github.com/miguelperezenciso/dna2image. 40 

 41 

Introduction 42 

Shape and color patterns of animals and plant fruits are not only aesthetic features, but they 43 

also convey essential information on animal welfare or fruit quality and can be critical for 44 

consumer appreciation. Besides, plant and animal appearance have played a major role ever 45 

since domestication and many breeds and plant varieties were created based on morphology. 46 

Even today, breeders’ associations can spend much time in defining the ‘racial standard’. 47 

Often, domestication and breeding have untapped a range of shapes that was not present in 48 

the wild. The variability in morphology and colors in the dog is amazing compared to that of 49 

its wild ancestor the wolf. In plants, domestic squashes and gourds exhibit an enormous 50 

diversity in shapes whereas its wild counterparts produce small, rounded fruits only 51 

(Xanthopoulou et al. 2019). Today, dairy bull catalogs, a business worth millions of euros 52 

worldwide, usually present a picture of the bull in addition to its genetic evaluation. Bull 53 

catalogs usually include information on a ‘global’ conformation score that is an important 54 

part of the genetic value of the bull, and an indication of longevity. In many vegetables 55 

breeding programs, experienced breeders rely on their ‘eye’ to quickly discard unpromising 56 

experimental crosses. 57 

 58 
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Shape is easily modified by artificial selection and, unsurprisingly, has received much 59 

attention from the genetics community and the breeding industry (Tanksley 2004; Monforte 60 

et al. 2014). Tomato is perhaps the best studied species from a morphological point of view; 61 

numerous quantitative trait loci (QTL) and some causative genes affecting shape have been 62 

identified (Monforte 2014; Snouffer et al. 2020). Cucurbitaceae in turn have been less well 63 

studied, yet they allegedly display the largest morphological variability in the plant kingdom 64 

(Paris 2001). For instance, a whole sequencing effort of the different C. pepo morphotypes 65 

did reveal numerous SNP differences but no clear clue on causative loci for shape 66 

(Xanthopoulou et al. 2019). 67 

 68 

The statistical analysis of shape has a long history in Evolution, which has fostered most of 69 

the analysis tools available today (Zelditch et al. 2004; Claude 2008; Klingenberg 2010). 70 

Traditional morphometrics is based on the analysis of summary statistics such as length, 71 

width, ratios, and areas (Brewer et al. 2006). Modern morphometrics, in turn, is based on the 72 

concept of ‘landmarks’ (Zelditch et al. 2004). A landmark is an anatomical position that can 73 

be identified in all samples, e.g., the tip of the nose in cattle. In landmark-based geometric 74 

morphometrics, the spatial information is contained in landmark coordinates. Shapes can then 75 

be compared once a common reference scale is found. This can be done via Generalized 76 

‘Procrustes’ Analysis (GPA, Gower 1975), which consists of finding an optimal 77 

superimposition of several shapes such that distances between them are minimized. 78 

 79 

In breeding, morphology research has focused so far on detection of quantitative trait loci 80 

(QTL) of shape-derived statistics (e.g., Monforte et al. 2014). These QTL often explain only 81 

a percentage of observed variability. This is not unexpected; a large body of literature shows 82 

that significant loci identified from genomewide association studies (GWAS) explain but a 83 

small percentage of genetic variability in complex traits (Wood et al. 2014; Robinson et al. 84 

2017; Visscher et al. 2017). Therefore, GWAS is not optimum for prediction. An alternative 85 

is to use all markers for prediction of some of the shape metrics (Tong et al. 2022). 86 

Nevertheless, shape is highly dimensional, and the QTL or genomic prediction approaches 87 

restrict the list of potential candidate genes by focusing on single univariate statistics. In 88 

addition, these summary statistics do not allow reconstructing the original shape and hampers 89 

the prediction of global appearance changes induced by selection.  90 

 91 
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Here we approach this issue from a holistic, opposite angle. We propose to reproduce 92 

expected shapes and textures that would result from a given individual’s DNA sequence. To 93 

that end, we explore algorithms based on deep learning tools. Note that, in contrast to 94 

standard descriptors of shape, the goal here is prediction given new DNA information rather 95 

than QTL search. Breeding is mainly concerned with prediction of future offspring 96 

performance and this proposal aligns with this target. This novel theoretical framework can 97 

have an important impact in breeding. 98 

 99 

This paper is a proof of concept that the proposed approach is feasible, at least in simplified 100 

scenarios. We use a class of deep architectures, called ‘decoders’, to reproduce the expected 101 

shapes given a linear vector of causative polymorphisms and random SNPs. First, we show 102 

how a trained decoder is able to generate simple geometric forms (2D and 3D ellipses) 103 

followed by more realistic applications in cucurbitas and tomato fruits. We end by showing 104 

that, provided shapes are inherited through an ‘additive’ mechanism, the algorithm can 105 

predict offspring shapes based on parents’ images, bypassing genotype information. More 106 

sophisticated algorithms would be needed if shapes are not inherited ‘additively’. 107 

 108 

Material and methods 109 

Generation of simple 2D and 3D images 110 

We first performed a simple experiment using 2D ellipse and 3D ellipsoid shapes to verify 111 

that the proposed architecture is useful. An ellipse can be defined by the lengths of its 112 

horizontal (x) and vertical (y) axes, plus a third axis z for 3D shapes. We drew 2D ellipses 113 

with cv2.ellipse() function from OpenCV python package (Bradski 2000) randomly varying x 114 

and y axis lengths, that is, ellipses differed in shape, size, and orientation. Images were black 115 

and white of size 64 x 64 pixels. The decoder network (described below) was trained using an 116 

input vector containing x/y ratio and ellipse size, i.e., the two ‘causative loci’, and 100 117 

random uniformly distributed variables. The 100 random numbers were aimed at representing 118 

noise from DNA information that is unrelated to the ‘phenotype’, i.e., the image containing 119 

the ellipse. 120 

 121 

We generated 3D ellipsoids as three-dimensional binary arrays using pymrt package (Metere 122 

and Möller 2017), array size was 32 x 32 x 32. As in the previous example, images were 123 

predicted from x, y, and z axes lengths plus 100 random uncorrelated variables. For 124 

representation of the 3D shapes, ellipsoid projections were drawn using the marching cubes 125 
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algorithm as implemented in skimage (van der Walt et al. 2014) and the plot_trisurf package. 126 

However, since these 3D plots were not too accurate, we also plotted the ellipsoid sections 127 

across the x, y, and z axes. Both observed and predicted shapes were plotted. 128 

 129 

Cucurbit shapes 130 

C. pepo fruits can adopt an enormous diversity of shapes (Figure 1A). This variability 131 

appeared only after domestication, since all wild fruits are small and round (Paris 1986). 132 

According to (Paris 1989, 2001), C. melo shapes may have followed several evolutive 133 

pathways. One pathway would be wild gourd (akin to pumpkin shape)  scallop  acorn; a 134 

second pathway would be wild gourd  marrow  straightneck  zucchini  cocozelle 135 

(Figure 1B). See also Figure 17 in (Paris 1989). We extracted contours from the 136 

‘contours.png’ file, based in (Paris 1989) and available in GitHub 137 

(https://github.com/miguelperezenciso/dna2image/blob/main/images/contours.png), using 138 

OpenCV library (Bradski 2000). Contours were centered and 500 pseudo-landmarks were 139 

obtained with the algorithm in Zingaretti et al. (2021). Next, contours were aligned with a 140 

generalized procrustes algorithm implemented in python package ‘procrustes’ (Meng et al. 141 

2022) and images were resized to 64 x 64 pixels.  142 

 143 

To generate C. pepo shapes along the putative evolutive gradient, we first sampled a random 144 

number from a uniform distribution s ~ U(-1, 1), where s = -1 defines an ‘acorn’ form; 0, a 145 

‘pumpkin’, and 1 corresponds to ‘cocozelle’ (Figure 1B). Using the sampled s value, the two 146 

closest basic shapes were identified, and we defined a function that drew an intermediate 147 

shape between the nearest basic shapes, weighted by the proximity to each of the bounding 148 

contour (Figure 1C, see code in GitHub 149 

https://github.com/miguelperezenciso/dna2image/blob/main/dna2img.cucurbita.ipynb). The 150 

fruit corresponding to shape s was drawn in a 64 x 64 pixel image and noise was added to 151 

mimic rugosity of naturally observed fruits. This was done by adding an autoregressive noise 152 

to the contour (see code in GitHub). The decoder was trained using the ‘true’ s value and 100 153 

random uncorrelated variables as input and the cucurbit shape images as output; 1,000 images 154 

were used for training and 100 for testing.  155 

 156 

Tomato shapes from experimental crosses 157 

We used 353 tomato images from 129 crosses between 25 traditional varieties and 7 modern 158 

inbreds (Table S1). Traditional varieties were a subset of the TRADITOM project, which 159 
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collected a wide sample of traditional tomato varieties from Southern Europe (Pons et al. 160 

2022; Blanca et al. 2022). Longitudinal cuts from about three fruits per parental or crossed 161 

line were photographed. Fruit images were segmented using a cluster algorithm (k=3) and 162 

contours were identified using a thresholding algorithm, as implemented in openCV. 163 

Contours were centered, cropped, and resized to 128 x 128 pixel binary images. 164 

 165 

Modern inbred and traditional varieties were genotyped by sequence (GBS) previously 166 

(Blanca et al. 2022). Sixty eight segregating SNPs located within fruit shape candidate genes 167 

(Pons et al. 2022) were extracted. Hybrid offspring GBS genotypes were inferred from their 168 

parental genotypes. In addition, 48 biochemical, color and morphological metrics obtained 169 

with tomato analyzer had been obtained from each of the hybrid tomato fruits (Pons et al. 170 

2022) were also used for prediction. These metrics were not available for the 32 founder lines 171 

and were inferred with linear regression assuming additivity. This was done separately for 172 

each metric. The final network was trained using the 116 (68 + 48) ‘DNA’ measures as input 173 

for each of the accessions and the 353 tomato images as output. Input values were the same 174 

for images pertaining to the same accession. 175 

 176 

Shape prediction 177 

We used a simple decoder architecture made-up of a first fully connected layer, followed by a 178 

reshaping layer and by three transposed convolutional layers (Figure 2). Code was 179 

implemented in keras and tensorflow (https://keras.io/, Abadi et al. 2015; Chollet 2015) and 180 

is inspired in autoencoder architectures (Brownlee 2019; Chollet 2021). The same decoder 181 

architecture was used for ellipse, cucurbita or tomato shape prediction, except that layer 182 

dimensions were adjusted according to image size (Figure 2). For ellipsoid 3D predictions, 183 

3D transposed convolution layers were used instead of 2D transposed convolutions, but 184 

architecture was otherwise identical (see code in 185 

https://github.com/miguelperezenciso/dna2image). 186 

 187 

From phenotype to phenotype 188 

Modern phenomics has sparked interest in ‘phenomic selection’, which consists in replacing 189 

genotyping by high throughput phenotyping to predict future offspring performance (Rincent 190 

et al. 2018; Cuevas et al. 2019; Robert et al. 2022). Here we considered two scenarios. In the 191 

first scenario we predicted 2D ellipses given two ‘parents’ ellipses. To do that, we first need 192 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.19.508595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508595
http://creativecommons.org/licenses/by/4.0/


 7

to specify inheritance rules for images. Four arbitrary ‘image inheritance’ actions were 193 

defined: 194 

 195 

- Additivity: the ‘offspring’ ellipse x and y coordinates are obtained by averaging 196 

coordinates of ‘parent’ ellipses. 197 

- Dominance: for any pair of parent coordinates, the maximum of the two coordinates is 198 

selected as offspring coordinate. 199 

- Imprinting: the offspring ellipse is identical to the first parental ellipse. 200 

- Epistasis: the offspring ellipse is drawn by swapping the x and y coordinates of an 201 

ellipse intermediate between parents’ coordinates. That is, the epistatic offspring 202 

ellipse is a transposed additive ellipse. 203 

 204 

We generated ~ 1,000 ellipse trios for each inheritance pattern to train the network. We 205 

trained the network for each inheritance pattern separately.  206 

 207 

In the second, more realistic scenario, we used all combinations of male, female and 208 

offspring tomato images in a given cross from the previously described dataset. This resulted 209 

in a dataset of 2,325 tomato image trios. We utilized the same autoencoder architecture in 210 

both ellipse and tomato scenarios. Input consisted of two images that fed two separate CNN 211 

layers, one for each parental image, that were next concatenated (Figure 3). 212 

 213 

Results 214 

Shape prediction 215 

We first show, as proof of concept in a toy example, that the simple decoder architecture in 216 

Figure 2 is able to learn and generate 2D and 3D simple forms from ‘genotype’ data. To train 217 

the decoder, we generated ~ 1000 2D ellipses and 3D ellipsoids with varying axis ratios and 218 

sizes (volumes) and the network was validated in 100 additional test images. Figure 4 show a 219 

sample of observed and predicted 2D ellipses, while results for 3D shapes are in Figure 5. In 220 

this latter case, sections across the three axes are shown for clarity since the 3D figure drawn 221 

with python package trisurf was not too accurate. Prediction is remarkably accurate also in 222 

the case of 3D shapes, especially when one considers the high dimensionality of the output 223 

image: 32 x 32 x 32 = 32,768 float numbers. Albeit in a simplistic scenario, we can see a 224 

naïve decoder is quite effective in predicting shapes conditional on text (DNA) information. 225 

 226 
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To investigate whether the decoder network can be applied to more complex and realistic 227 

scenarios, we simulated cucurbit images from C. pepo as described in methods. We trained 228 

the same decoder as in the previous toy example using the shape causative locus s plus 100 229 

random SNPs as input and the simulated cucurbit images as output. An example of five 230 

randomly predicted images is in Figure 6. Overall, prediction was quite reasonable, and 231 

predicted shapes can be easily recognized. Note the ‘rugosity’ induced by the autoregressive 232 

model, which is also reproduced in the prediction. We found the maximization algorithm can 233 

have a large influence on results. RMSprop performed best, whereas Adam failed often and 234 

Adagrad did not seem to work. 235 

 236 

Prediction of a random set of tomato shapes based on the 116 metrics is shown in Figure 7. 237 

Predictions were very good overall, except of hybrids involving TR_MO_004 (Figure 7, 238 

sample 1). This traditional variety belongs to the horticultural group “Coeur de Boeuf”, 239 

which fruits are big with irregular shapes. 240 

 241 

From phenotype to phenotype 242 

Can we bypass genotype information altogether? If shapes are highly heritable, the network 243 

could learn inheritance patterns and predict offspring shape directly from parents’ forms, 244 

without resorting to genotypes. Figure 8 shows examples of the four image ‘inheritance’ 245 

behaviors defined: ‘additivity’, ‘dominance’, ‘imprinting’ and ‘epistasis’. We observe that 246 

predictions were reasonably accurate for additivity and epistasis but were worse for 247 

dominance and, especially, for imprinting. It seems the network can accurately find additive 248 

and non-linear patterns but is less adapted to predictions where the order of inputs is relevant. 249 

We conjecture then that recurrent neural networks (RNNs, e.g., Hill et al. 2018) could be 250 

better suited to this problem. 251 

 252 

In the second example, we used the images from crosses between traditional and modern 253 

inbred tomato lines described. Predictions (Figure 9) were remarkably accurate overall, 254 

proving fruit appearances can be predicted from ancestor images. It also suggests that the 255 

predominant action seems to be additive. 256 

 257 

Discussion 258 

Being able to predict highly dimensional objects such as appearance can revolutionize 259 

breeding by merging genome and phenome information in a coherent framework. Here we 260 
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present a proof of concept that this is possible, even using very simple network architectures. 261 

We show that 2D, but also 3D, shapes can be accurately predicted and generated. 262 

 263 

The problem posed here is similar to the ‘text-to-image’ challenge, where algorithms are 264 

trained to generate images from figure captions. Some works have recently reported highly 265 

accurate results (Ramesh et al.; Radford et al. 2021) and we foresee that ‘dna-to-image’ 266 

should follow. There are some differences between text and DNA that require specific 267 

developments though. First, text is divided in a finite, relatively small number of items 268 

(words) which relationships can be inferred by automatically parsing large available 269 

databases. DNA sequence can be split into coding / noncoding, introns / exons but cannot be 270 

assimilated to ‘words’ with specific meanings. DNA or marker data are not segmented; their 271 

relationships are much more intricate than those in words from human languages and are 272 

unknown to a large extent. For instance, most discovered causative mutations that affect 273 

shape are located outside coding regions (Wu et al. 2018; Martínez-Martínez et al. 2022). 274 

Second, large corpuses of images and figure captions are available for training text-to-image 275 

problems; these datasets are not readily available for fruits or other agricultural scenarios. 276 

Finally, texts used to generate images are short and simple; algorithms usually fail and 277 

generate unpredictable results if input text is slightly changed. In the case of DNA, the 278 

number of differences between strain or individual genotypes is very large; we still do not 279 

know how dna-to-image algorithms will cope with this issue. 280 

 281 

Text-to-image methods rely on text encoding, also called ‘embedding’, i.e., in finding an 282 

optimum numeric representation of text elements in a reduced n-dimensional space. DNA 283 

encoding is to be critical in dna-to-image problems as well. Previous research on DNA 284 

encoding has utilized small DNA sequences, e.g., taking exons as ‘words’ (Zou et al. 2019; Ji 285 

et al. 2021). However, this cannot be applied to generic marker data or complete sequence. 286 

We hypothesize that standard dimension reduction techniques, such as classical principal 287 

component analysis (PCA), can be a useful alternative especially when shape is controlled by 288 

numerous loci of small effect. 289 

 290 

For simulation purposes of cucurbit shapes, we assumed an underlying continuous gradient 291 

that results in a continuous morphological variation (Figure 1C). We assumed this for 292 

computational and illustrative purposes, although we reckon there is no clear biological 293 

evidence on this hypothesis. Modern cultivars adopt discrete shapes and intermediate shapes 294 
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are rarely observed. However, traditional unimproved varieties and their crosses do show a 295 

number of intermediate features (Montero-Pau et al. 2017).  296 

 297 

Numerous genes that influence shape have been discovered (Monforte et al. 2014; Grumet 298 

and Colle 2016; Snouffer et al. 2020). These genes act in concerted action during 299 

development (Wu et al. 2018). Note the method proposed here does not require causative loci 300 

to be identified, as prediction methods rely on linkage disequilibrium between causative and 301 

genotyped markers. Nevertheless, known causative polymorphisms could be given larger 302 

weights than the rest of SNPs. There are several approaches that can be used to achieve this. 303 

One option is the ‘attention’ mechanism, which is used to underline words of particular 304 

relevance in text analysis (Vaswani et al.). Another possibility is to define a specific input 305 

layer for causative mutations and merging with the rest of SNPs in a separate layer. This is 306 

straightforward with standard software such as Keras (Chollet 2015). 307 

 308 

Further work is warranted to overcome limitations of this work and continue this area of 309 

research. First of all, appropriate datasets of large size in 2D and 3D must be generated. In 310 

fact, one of the limiting steps for this methodology to be applied is the lack of datasets of 311 

enough size containing high density genotypes and good quality images. The simplest 312 

scenario should be fruits, as is the TRADITOM initiative in tomato (Pons et al. 2022; Blanca 313 

et al. 2022), but many other applications can be envisaged: animal conformation (e.g., dairy 314 

bull catalogs, dog breeds), whole plant appearance, leaf and root morphology, color patterns, 315 

… Second, more complex network architectures inspired in current text-to-image algorithms 316 

must be adapted to the dna-to-image scenario. Finally, generative models, such as conditional 317 

generative adversarial networks (CGANs; Goodfellow et al. 2014; Mirza and Osindero 318 

2014), conditional on DNA information, could be used to produce images of high quality. On 319 

top of that, new tools for dealing with 3D objects are needed. 320 

 321 

In summary, we have shown that very simple networks can be successfully trained in small 322 

datasets to accurately predict fruit images. Although much work remains to be done, this 323 

research opens new possibilities in the area of prediction of complex traits. 324 

 325 

Data availability statement 326 

All data and code are available at https://github.com/miguelperezenciso/dna2image.  327 

 328 
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 465 
 466 

Figure 1: A) Variability found in C. pepo fruit shapes. B) Assumed evolutive pathways for 467 

shape simulation: scallop  acorn  pumpkin / wild gourd  marrow  straightneck  468 

zucchini  cocozelle. C) Each panel shows contours of two observed shapes and an 469 

intermediate shape, illustrating how a continuous evolutive gradient corresponds to a given 470 

shape. 471 
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 473 
Figure 2: Keras code with the decoder used for image prediction.  Function requires number 474 

of SNPs and output image size as input parameters. 475 

 476 

 477 
Figure 3: Keras code used for offspring image prediction based on parents’ images. It 478 

requires image size as input, which should be the same in input and output images. Size of 479 

embed vector can be fine-tuned for better performance. 480 
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 482 
Figure 4: Top row: random sample of simulated ellipses; bottom row: predicted images 483 

using decoder in Figure 2. 484 

 485 
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 487 
Figure 5: Generated (top rows) and predicted (bottom rows) of two 3D ellipsoids. The left 488 

column represents observed and predicted 3D representation, and the following columns are 489 

transversal cuts along the three axes. 490 
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 492 
Figure 6: Top row: sample of simulated cucurbit images including autoregressive noise; 493 

bottom row: predicted images using decoder in Figure 2. 494 

  495 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.19.508595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508595
http://creativecommons.org/licenses/by/4.0/


 19

 496 

 497 
Figure 7: Sample of observed tomato images (first and third rows) and the corresponding 498 

predicted images using decoder in Figure 2. 499 
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  501 
Figure 8: Examples of the four arbitrary image inheritance patterns defined: ‘additivity’, 502 

‘dominance’, ‘imprinting’ and ‘epistasis’. Columns show ‘paternal’, ‘maternal’, ‘offspring’ 503 

and predicted images. 504 
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 506 
Figure 9: Observed tomato trios in three random crosses and predicted offspring based on 507 

network in Figure 4. Columns are paternal, maternal, offspring and predicted offspring 508 

images. Images’ size is 124 x 124 pixels. 509 
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Table S1: Parental tomato lines.  511 
Code Type Fruit type 

MS_1 Modern Inbred Salad tomato 

MS_2 Modern Inbred Salad tomato 

MS_3 Modern Inbred Salad tomato 

MS_4 Modern Inbred Long processing 

MS_5 Modern Inbred Cocktail round 

MS_6 Modern Inbred Cherry round 

MS_7 Modern Inbred Cherry round 

TR_TH_001 Traditional round 

TR_TH_002 Traditional round 

TR_TH_003 Traditional flattened 

TR_CA_001 Traditional obovoid 

TR_CA_002 Traditional flat 

TR_VA_001 Traditional flat 

TR_VA_002 Traditional oxheart 

TR_VA_003 Traditional round 

TR_MO_001 Traditional flat 

TR_MO_002 Traditional round 

TR_MO_003 Traditional round 

TR_MO_004 Traditional oxheart 

TR_VI_001 Traditional Long 

TR_VI_002 Traditional round 

TR_VI_003 Traditional round 

TR_VI_004 Traditional ellipsoid 

TR_VI_005 Traditional obovoid 

TR_VI_006 Traditional rectangular 

TR_PO_001 Traditional ellipsoid 

TR_PO_002 Traditional long 

TR_PO_003 Traditional ellipsoid 

TR_PO_004 Traditional ellipsoid 

TR_IS_001 Traditional long 

TR_IS_002 Traditional obovoid 

TR_IS_003 Traditional round 

MS_1 to MS_7 correspond to modern inbred lines provided by Meridiem Seeds. Codes for 512 
the traditional varieties are according TRADITOM project (Blanca et al. 2022). 513 
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