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25

26 Abstract

27  The generation of realistic plant and animal images from marker information could be a main
28  contribution of artificial intelligence to genetics and breeding. Since morphological traits are
29  highly variable and highly heritable, this must be possible. However, a suitable algorithm has
30 not been proposed yet. This paper is a proof of concept demonstrating the feasibility of this
31 proposal using ‘decoders’, a class of deep learning architecture. We apply it to Cucurbitaceae,
32  perhaps the family harboring the largest variability in fruit shape in the plant kingdom, and to
33  tomato, a species with high morphological diversity also. We generate Cucurbitaceae shapes
34  assuming a hypothetical, but plausible, evolutive path along observed fruit shapes of C. melo.
35 Intomato, we used 353 images from 129 crosses between 25 maternal and 7 paternal lines for
36  which genotype data were available. In both instances, a simple decoder was able to recover
37 expected shapes with large accuracy. For the tomato pedigree, we also show that the
38  algorithm can be trained to generate offspring images from their parents’ shapes, bypassing
39  genotype information. Data and code are available at
40  https://eithub.com/miguelperezenciso/dna2image.

41

42  Introduction

43 Shape and color patterns of animals and plant fruits are not only aesthetic features, but they
44  also convey essential information on animal welfare or fruit quality and can be critical for
45  consumer appreciation. Besides, plant and animal appearance have played a major role ever
46  since domestication and many breeds and plant varieties were created based on morphology.
47  Even today, breeders’ associations can spend much time in defining the ‘racial standard’.
48  Often, domestication and breeding have untapped a range of shapes that was not present in
49  the wild. The variability in morphology and colors in the dog is amazing compared to that of
50 its wild ancestor the wolf. In plants, domestic squashes and gourds exhibit an enormous
51 diversity in shapes whereas its wild counterparts produce small, rounded fruits only
52  (Xanthopoulou et al. 2019). Today, dairy bull catalogs, a business worth millions of euros
53  worldwide, usually present a picture of the bull in addition to its genetic evaluation. Bull
54  catalogs usually include information on a ‘global’ conformation score that is an important
55  part of the genetic value of the bull, and an indication of longevity. In many vegetables
56  breeding programs, experienced breeders rely on their ‘eye’ to quickly discard unpromising
57  experimental crosses.
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59  Shape is easily modified by artificial selection and, unsurprisingly, has received much
60 attention from the genetics community and the breeding industry (Tanksley 2004; Monforte
61 et al. 2014). Tomato is perhaps the best studied species from a morphological point of view;
62 numerous quantitative trait loci (QTL) and some causative genes affecting shape have been
63  identified (Monforte 2014; Snouffer et al. 2020). Cucurbitaceae in turn have been less well
64  studied, yet they allegedly display the largest morphological variability in the plant kingdom
65  (Paris 2001). For instance, a whole sequencing effort of the different C. pepo morphotypes
66 did reveal numerous SNP differences but no clear clue on causative loci for shape
67  (Xanthopoulou €t al. 2019).

68

69  The statistical analysis of shape has a long history in Evolution, which has fostered most of
70 the analysis tools available today (Zelditch et al. 2004; Claude 2008; Klingenberg 2010).
71  Traditional morphometrics is based on the analysis of summary statistics such as length,
72 width, ratios, and areas (Brewer et al. 2006). Modern morphometrics, in turn, is based on the
73  concept of ‘landmarks’ (Zelditch et al. 2004). A landmark is an anatomical position that can
74  be identified in all samples, e.g., the tip of the nose in cattle. In landmark-based geometric
75  morphometrics, the spatial information is contained in landmark coordinates. Shapes can then
76  be compared once a common reference scale is found. This can be done via Generalized
77  ‘Procrustes’ Analysis (GPA, Gower 1975), which consists of finding an optimal
78  superimposition of several shapes such that distances between them are minimized.

79

80 In breeding, morphology research has focused so far on detection of quantitative trait loci
81 (QTL) of shape-derived statistics (e.g., Monforte et al. 2014). These QTL often explain only
82  apercentage of observed variability. This is not unexpected; a large body of literature shows
83  that significant loci identified from genomewide association studies (GWAS) explain but a
84  small percentage of genetic variability in complex traits (Wood et al. 2014; Robinson et al.
85  2017; Visscher et al. 2017). Therefore, GWAS is not optimum for prediction. An alternative
86 is to use all markers for prediction of some of the shape metrics (Tong et al. 2022).
87  Nevertheless, shape is highly dimensional, and the QTL or genomic prediction approaches
88  restrict the list of potential candidate genes by focusing on single univariate statistics. In
89  addition, these summary statistics do not allow reconstructing the original shape and hampers
90 the prediction of global appearance changes induced by selection.
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92  Here we approach this issue from a holistic, opposite angle. We propose to reproduce
93  expected shapes and textures that would result from a given individual’s DNA sequence. To
94  that end, we explore algorithms based on deep learning tools. Note that, in contrast to
95  standard descriptors of shape, the goal here is prediction given new DNA information rather
96 than QTL search. Breeding is mainly concerned with prediction of future offspring
97  performance and this proposal aligns with this target. This novel theoretical framework can
98  have an important impact in breeding.
99
100  This paper is a proof of concept that the proposed approach is feasible, at least in simplified
101  scenarios. We use a class of deep architectures, called ‘decoders’, to reproduce the expected
102  shapes given a linear vector of causative polymorphisms and random SNPs. First, we show
103 how a trained decoder is able to generate simple geometric forms (2D and 3D ellipses)
104  followed by more realistic applications in cucurbitas and tomato fruits. We end by showing
105 that, provided shapes are inherited through an ‘additive’ mechanism, the algorithm can
106  predict offspring shapes based on parents’ images, bypassing genotype information. More
107  sophisticated algorithms would be needed if shapes are not inherited ‘additively’.
108
109 Material and methods
110  Generation of simple 2D and 3D images
111 We first performed a simple experiment using 2D ellipse and 3D ellipsoid shapes to verify
112 that the proposed architecture is useful. An ellipse can be defined by the lengths of its
113 horizontal (x) and vertical (y) axes, plus a third axis z for 3D shapes. We drew 2D ellipses
114  with cv2.ellipse() function from OpenCV python package (Bradski 2000) randomly varying x
115 and y axis lengths, that is, ellipses differed in shape, size, and orientation. Images were black
116  and white of size 64 x 64 pixels. The decoder network (described below) was trained using an
117  input vector containing x/y ratio and ellipse size, i.e., the two ‘causative loci’, and 100
118 random uniformly distributed variables. The 100 random numbers were aimed at representing
119  noise from DNA information that is unrelated to the ‘phenotype’, i.e., the image containing
120  the ellipse.
121
122 We generated 3D ellipsoids as three-dimensional binary arrays using pymrt package (Metere
123 and Moller 2017), array size was 32 x 32 x 32. As in the previous example, images were
124  predicted from x, y, and z axes lengths plus 100 random uncorrelated variables. For

125  representation of the 3D shapes, ellipsoid projections were drawn using the marching cubes
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126  algorithm as implemented in skimage (van der Walt et al. 2014) and the plot_trisurf package.
127  However, since these 3D plots were not too accurate, we also plotted the ellipsoid sections
128  across the x, y, and z axes. Both observed and predicted shapes were plotted.

129

130  Cucurbit shapes

131 C. pepo fruits can adopt an enormous diversity of shapes (Figure 1A). This variability
132 appeared only after domestication, since all wild fruits are small and round (Paris 1986).
133 According to (Paris 1989, 2001), C. melo shapes may have followed several evolutive
134  pathways. One pathway would be wild gourd (akin to pumpkin shape) = scallop = acorn; a
135  second pathway would be wild gourd = marrow > straightneck = zucchini = cocozelle
136  (Figure 1B). See also Figure 17 in (Paris 1989). We extracted contours from the
137  ‘contours.png’  file, based in (Paris 1989) and available in  GitHub

138  (https://github.com/miguelperezenciso/dna2image/blob/main/images/contours.png), using

139  OpenCV library (Bradski 2000). Contours were centered and 500 pseudo-landmarks were
140  obtained with the algorithm in Zingaretti et al. (2021). Next, contours were aligned with a
141  generalized procrustes algorithm implemented in python package ‘procrustes’ (Meng et al.
142 2022) and images were resized to 64 x 64 pixels.

143

144  To generate C. pepo shapes along the putative evolutive gradient, we first sampled a random
145  number from a uniform distribution S~ U(-1, 1), where S = -1 defines an ‘acorn’ form; 0, a
146  ‘pumpkin’, and 1 corresponds to ‘cocozelle’ (Figure 1B). Using the sampled s value, the two
147  closest basic shapes were identified, and we defined a function that drew an intermediate
148  shape between the nearest basic shapes, weighted by the proximity to each of the bounding
149  contour (Figure 1C, see code in GitHub

150  https://github.com/miguelperezenciso/dna2image/blob/main/dna2img.cucurbita.ipynb). The

151  fruit corresponding to shape S was drawn in a 64 x 64 pixel image and noise was added to
152  mimic rugosity of naturally observed fruits. This was done by adding an autoregressive noise
153  to the contour (see code in GitHub). The decoder was trained using the ‘true’ S value and 100
154  random uncorrelated variables as input and the cucurbit shape images as output; 1,000 images
155  were used for training and 100 for testing.

156

157  Tomato shapes from experimental crosses

158  We used 353 tomato images from 129 crosses between 25 traditional varieties and 7 modern

159  inbreds (Table S1). Traditional varieties were a subset of the TRADITOM project, which
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160 collected a wide sample of traditional tomato varieties from Southern Europe (Pons et al.
161  2022; Blanca et al. 2022). Longitudinal cuts from about three fruits per parental or crossed
162  line were photographed. Fruit images were segmented using a cluster algorithm (k=3) and
163  contours were identified using a thresholding algorithm, as implemented in openCV.
164  Contours were centered, cropped, and resized to 128 x 128 pixel binary images.

165

166  Modern inbred and traditional varieties were genotyped by sequence (GBS) previously
167  (Blanca et al. 2022). Sixty eight segregating SNPs located within fruit shape candidate genes
168  (Pons et al. 2022) were extracted. Hybrid offspring GBS genotypes were inferred from their
169  parental genotypes. In addition, 48 biochemical, color and morphological metrics obtained
170  with tomato analyzer had been obtained from each of the hybrid tomato fruits (Pons et al.
171  2022) were also used for prediction. These metrics were not available for the 32 founder lines
172 and were inferred with linear regression assuming additivity. This was done separately for
173 each metric. The final network was trained using the 116 (68 + 48) ‘DNA’ measures as input
174  for each of the accessions and the 353 tomato images as output. Input values were the same
175  for images pertaining to the same accession.

176

177  Shape prediction

178  We used a simple decoder architecture made-up of a first fully connected layer, followed by a
179  reshaping layer and by three transposed convolutional layers (Figure 2). Code was

180 implemented in keras and tensorflow (https://keras.io/, Abadi et al. 2015; Chollet 2015) and

181 is inspired in autoencoder architectures (Brownlee 2019; Chollet 2021). The same decoder
182  architecture was used for ellipse, cucurbita or tomato shape prediction, except that layer
183  dimensions were adjusted according to image size (Figure 2). For ellipsoid 3D predictions,
184 3D transposed convolution layers were used instead of 2D transposed convolutions, but
185  architecture was otherwise identical (see code in
186  https://github.com/miguelperezenciso/dna2image).

187

188  From phenotype to phenotype

189  Modern phenomics has sparked interest in ‘phenomic selection’, which consists in replacing
190  genotyping by high throughput phenotyping to predict future offspring performance (Rincent
191 etal.2018; Cuevas et al. 2019; Robert et al. 2022). Here we considered two scenarios. In the

192  first scenario we predicted 2D ellipses given two ‘parents’ ellipses. To do that, we first need
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193  to specify inheritance rules for images. Four arbitrary ‘image inheritance’ actions were

194  defined:

195

196 - Additivity: the ‘offspring’ ellipse x and y coordinates are obtained by averaging
197 coordinates of ‘parent’ ellipses.

198 - Dominance: for any pair of parent coordinates, the maximum of the two coordinates is
199 selected as offspring coordinate.

200 - Imprinting: the offspring ellipse is identical to the first parental ellipse.

201 - Epistasis: the offspring ellipse is drawn by swapping the x and y coordinates of an
202 ellipse intermediate between parents’ coordinates. That is, the epistatic offspring
203 ellipse is a transposed additive ellipse.

204

205 We generated ~ 1,000 ellipse trios for each inheritance pattern to train the network. We
206 trained the network for each inheritance pattern separately.

207

208 In the second, more realistic scenario, we used all combinations of male, female and
209  offspring tomato images in a given cross from the previously described dataset. This resulted
210 in a dataset of 2,325 tomato image trios. We utilized the same autoencoder architecture in
211  both ellipse and tomato scenarios. Input consisted of two images that fed two separate CNN
212 layers, one for each parental image, that were next concatenated (Figure 3).

213

214  Results

215  Shape prediction

216  We first show, as proof of concept in a toy example, that the simple decoder architecture in
217  Figure 2 is able to learn and generate 2D and 3D simple forms from ‘genotype’ data. To train
218  the decoder, we generated ~ 1000 2D ellipses and 3D ellipsoids with varying axis ratios and
219  sizes (volumes) and the network was validated in 100 additional test images. Figure 4 show a
220 sample of observed and predicted 2D ellipses, while results for 3D shapes are in Figure 5. In
221  this latter case, sections across the three axes are shown for clarity since the 3D figure drawn
222 with python package trisurf was not too accurate. Prediction is remarkably accurate also in
223 the case of 3D shapes, especially when one considers the high dimensionality of the output
224 image: 32 x 32 x 32 = 32,768 float numbers. Albeit in a simplistic scenario, we can see a
225 naive decoder is quite effective in predicting shapes conditional on text (DNA) information.

226
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227  To investigate whether the decoder network can be applied to more complex and realistic
228  scenarios, we simulated cucurbit images from C. pepo as described in methods. We trained
229  the same decoder as in the previous toy example using the shape causative locus S plus 100
230 random SNPs as input and the simulated cucurbit images as output. An example of five
231 randomly predicted images is in Figure 6. Overall, prediction was quite reasonable, and
232 predicted shapes can be easily recognized. Note the ‘rugosity’ induced by the autoregressive
233 model, which is also reproduced in the prediction. We found the maximization algorithm can
234 have a large influence on results. RMSprop performed best, whereas Adam failed often and
235  Adagrad did not seem to work.

236

237  Prediction of a random set of tomato shapes based on the 116 metrics is shown in Figure 7.
238  Predictions were very good overall, except of hybrids involving TR MO _ 004 (Figure 7,
239  sample 1). This traditional variety belongs to the horticultural group “Coeur de Boeuf”,
240  which fruits are big with irregular shapes.

241

242 From phenotype to phenotype

243  Can we bypass genotype information altogether? If shapes are highly heritable, the network
244 could learn inheritance patterns and predict offspring shape directly from parents’ forms,
245  without resorting to genotypes. Figure 8 shows examples of the four image ‘inheritance’
246  behaviors defined: ‘additivity’, ‘dominance’, ‘imprinting’ and ‘epistasis’. We observe that
247  predictions were reasonably accurate for additivity and epistasis but were worse for
248  dominance and, especially, for imprinting. It seems the network can accurately find additive
249  and non-linear patterns but is less adapted to predictions where the order of inputs is relevant.
250 We conjecture then that recurrent neural networks (RNNs, e.g., Hill et al. 2018) could be
251  better suited to this problem.

252

253 In the second example, we used the images from crosses between traditional and modern
254  inbred tomato lines described. Predictions (Figure 9) were remarkably accurate overall,
255  proving fruit appearances can be predicted from ancestor images. It also suggests that the
256  predominant action seems to be additive.

257

258  Discussion

259 Being able to predict highly dimensional objects such as appearance can revolutionize

260 breeding by merging genome and phenome information in a coherent framework. Here we
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261  present a proof of concept that this is possible, even using very simple network architectures.
262  We show that 2D, but also 3D, shapes can be accurately predicted and generated.

263

264  The problem posed here is similar to the ‘text-to-image’ challenge, where algorithms are
265 trained to generate images from figure captions. Some works have recently reported highly
266  accurate results (Ramesh et al.; Radford et al. 2021) and we foresee that ‘dna-to-image’
267  should follow. There are some differences between text and DNA that require specific
268  developments though. First, text is divided in a finite, relatively small number of items
269  (words) which relationships can be inferred by automatically parsing large available
270  databases. DNA sequence can be split into coding / noncoding, introns / exons but cannot be
271  assimilated to ‘words’ with specific meanings. DNA or marker data are not segmented; their
272 relationships are much more intricate than those in words from human languages and are
273 unknown to a large extent. For instance, most discovered causative mutations that affect
274  shape are located outside coding regions (Wu et al. 2018; Martinez-Martinez et al. 2022).
275  Second, large corpuses of images and figure captions are available for training text-to-image
276  problems; these datasets are not readily available for fruits or other agricultural scenarios.
277  Finally, texts used to generate images are short and simple; algorithms usually fail and
278  generate unpredictable results if input text is slightly changed. In the case of DNA, the
279 number of differences between strain or individual genotypes is very large; we still do not
280  know how dna-to-image algorithms will cope with this issue.

281

282  Text-to-image methods rely on text encoding, also called ‘embedding’, i.e., in finding an
283  optimum numeric representation of text elements in a reduced n-dimensional space. DNA
284  encoding is to be critical in dna-to-image problems as well. Previous research on DNA
285  encoding has utilized small DNA sequences, ¢.g., taking exons as ‘words’ (Zou et al. 2019; Ji
286 et al. 2021). However, this cannot be applied to generic marker data or complete sequence.
287  We hypothesize that standard dimension reduction techniques, such as classical principal
288  component analysis (PCA), can be a useful alternative especially when shape is controlled by
289  numerous loci of small effect.

290

291  For simulation purposes of cucurbit shapes, we assumed an underlying continuous gradient
292  that results in a continuous morphological variation (Figure 1C). We assumed this for
293  computational and illustrative purposes, although we reckon there is no clear biological

294  evidence on this hypothesis. Modern cultivars adopt discrete shapes and intermediate shapes
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295  are rarely observed. However, traditional unimproved varieties and their crosses do show a
296  number of intermediate features (Montero-Pau et al. 2017).

297

298 Numerous genes that influence shape have been discovered (Monforte et al. 2014; Grumet
299 and Colle 2016; Snouffer et al. 2020). These genes act in concerted action during
300 development (Wu et al. 2018). Note the method proposed here does not require causative loci
301 to be identified, as prediction methods rely on linkage disequilibrium between causative and
302 genotyped markers. Nevertheless, known causative polymorphisms could be given larger
303  weights than the rest of SNPs. There are several approaches that can be used to achieve this.
304 One option is the ‘attention’ mechanism, which is used to underline words of particular
305 relevance in text analysis (Vaswani €t al.). Another possibility is to define a specific input
306 layer for causative mutations and merging with the rest of SNPs in a separate layer. This is
307  straightforward with standard software such as Keras (Chollet 2015).

308

309  Further work is warranted to overcome limitations of this work and continue this area of
310 research. First of all, appropriate datasets of large size in 2D and 3D must be generated. In
311  fact, one of the limiting steps for this methodology to be applied is the lack of datasets of
312  enough size containing high density genotypes and good quality images. The simplest
313  scenario should be fruits, as is the TRADITOM initiative in tomato (Pons et al. 2022; Blanca
314 et al. 2022), but many other applications can be envisaged: animal conformation (e.g., dairy
315  bull catalogs, dog breeds), whole plant appearance, leaf and root morphology, color patterns,
316 ... Second, more complex network architectures inspired in current text-to-image algorithms
317 must be adapted to the dna-to-image scenario. Finally, generative models, such as conditional
318 generative adversarial networks (CGANSs; Goodfellow et al. 2014; Mirza and Osindero
319 2014), conditional on DNA information, could be used to produce images of high quality. On
320 top of that, new tools for dealing with 3D objects are needed.

321

322  In summary, we have shown that very simple networks can be successfully trained in small
323  datasets to accurately predict fruit images. Although much work remains to be done, this
324  research opens new possibilities in the area of prediction of complex traits.

325

326  Data availability statement

327  All data and code are available at https://github.com/miguelperezenciso/dna2image.
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467  Figure 1. A) Variability found in C. pepo fruit shapes. B) Assumed evolutive pathways for

465
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468  shape simulation: scallop € acorn € pumpkin / wild gourd - marrow - straightneck 2
469  zucchini - cocozelle. C) Each panel shows contours of two observed shapes and an
470 intermediate shape, illustrating how a continuous evolutive gradient corresponds to a given
471  shape.
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# decoder network dna --> image: generates images out of snp data
def dna2image(n_snp,image_size):
input = tf.keras.layers.Input(shape=(n_snp))

= tf.keras.layers.Dense(np.prod(image_size)) (input)
tf.keras.layers.Reshape(image_size+(1,))(x)

tf.keras.layers.Conv2DTranspose(1l6, (3,3), activation='relu', padding='same')(x)
tf.keras.layers.Conv2DTranspose(8, (3,3), activation='relu', padding='same') (x)

I
/I |

output = tf.keras.layers.Conv2DTranspose(l, (5,5), activation='relu', padding='same')(x)

return tf.keras.Model(input, output)
Figure 2: Keras code with the decoder used for image prediction. Function requires number

of SNPs and output image size as input parameters.

# decoder network dna --> image: generates images out of image pairs
def img22img(image_size):
inputl = keras.Input(shape=image_size+(1l,))
input2 = keras.Input(shape=image_size+(1,))
X1 = layers.experimental.preprocessing.Rescaling(1.0 / 255)(inputl)
x2 = layers.experimental.preprocessing.Rescaling(1.0 / 255)(input2)

layers.Concatenate()([x1, x2])

keras.layers.Conv2D(16, (5,5), activation='relu', padding='same')(x)
keras.layers.Conv2D(8, (3,3), activation='relu', padding='same')(x)
keras.layers.Flatten()(x)

keras.layers.Dense(1l6) (x)

I ]
nunan

embed = keras.layers.Dense(2)(x)

keras.layers.Dense(np.prod(image_size)) (embed)
keras.layers.Reshape(image_size+(1,))(x)

keras.layers.Conv2DTranspose(16, (3,3), activation='relu', padding='same') (x)
keras.layers.Conv2DTranspose(8, (3,3), activation='relu', padding='same')(x)

L
non

output = keras.layers.Conv2DTranspose(l, (5,5), activation='relu', padding='same')(x)
return keras.Model(inputs=[inputl, input2], outputs=output)
Figure 3: Keras code used for offspring image prediction based on parents images. It
requires image size as input, which should be the same in input and output images. Sze of

embed vector can be fine-tuned for better performance.
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Observed:27 Observed 9 Observed:172 Observed:180 Observed 90
Predicted:27 Predicted:9 Predicted:172 Predicted: 180 Predicted 90

482 nnnnn

483  Figure 4: Top row: random sample of simulated ellipses; bottom row: predicted images
484  using decoder in Figure 2.

485
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ellipsoid 0.1123046875 0.10406453907489777

487
488 Figure 5: Generated (top rows) and predicted (bottom rows) of two 3D ellipsoids. The left

489  column represents observed and predicted 3D representation, and the following columns are
490 transversal cutsalong the three axes.
491
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Observed:761 Observed:1061 Observed:298 Observed:109 Observed:978
Predicted:761 Predicted:1061 Predicted: 298 Predicted:109 Predicted:978

492

493  Figure 6: Top row: sample of simulated cucurbit images including autoregressive noise;
494  bottomrow: predicted images using decoder in Figure 2.
495
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Observed:22 Observed:60 Observed:34 Observed:3 Observed:64
Predicted:22 Predicted:60 Predicted:34 Predicted:3 Predicted:64
496
Observed:42 Observed:1 Observed:29 Observed:59 Observed:68
Predicted:42 Predicted:1 Predicted:29 Predicted:59 Predicted:68
497

498 Figure 7: Sample of observed tomato images (first and third rows) and the corresponding
499  predicted images using decoder in Figure 2.
500


https://doi.org/10.1101/2022.09.19.508595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508595; this version posted September 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

501
502

503
504
505

available under aCC-BY 4.0 International license.

20

0 o 0 o
20 20 20 20
Additivity
40 4an 40 40
60 60 B0 60
0 20 40 60 0 20 40 &0 0 20 40 60 0 20 40 &0
0 0 0 0
20 20 20 20
Dominance
40 40 40 40
60 60 60 60
0 20 40 60 0 20 40 60 0 20 40 &0 0
0 0 0 0
20 20 20 20
Imprinting 0 " 0 "
60 (1] 60 (1]
1] 20 40 &0 0 20 40 &0 1] 20 40 60 0
0 o 0 o
20 20 20 0
Epistasis 2 © 40 2
60 60 60 60
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Figure 8: Examples of the four arbitrary image inheritance patterns defined: ‘additivity’,
‘dominance’, ‘imprinting’ and ‘epistasis. Columns show ‘paternal’, ‘maternal’, ‘ offspring’

and predicted images.
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506
507 Figure 9: Observed tomato trios in three random crosses and predicted offspring based on

508 network in Figure 4. Columns are paternal, maternal, offspring and predicted offspring
509 images. Images sizeis 124 x 124 pixels.
510
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Table S1: Parental tomato lines.

22

Code Type Fruit type
MS 1 Modern Inbred Salad tomato
MS 2 Modern Inbred Salad tomato
MS_3 Modern Inbred Salad tomato
MS 4 Modern Inbred Long processing
MS 5 Modern Inbred Cocktail round
MS 6 Modern Inbred Cherry round
MS 7 Modern Inbred Cherry round
TR_TH_001 Traditional round

TR _TH_002 Traditional round
TR_TH_003 Traditional flattened

TR _CA 001 Traditional obovoid
TR_CA_002 Traditional flat
TR_VA 001 Traditional flat

TR_VA 002 Traditional oxheart
TR_VA_003 Traditional round
TR_MO_001 Traditional flat
TR_MO_002 Traditional round
TR_MO_003 Traditional round
TR_MO_004 Traditional oxheart
TR_VI 001 Traditional Long

TR_VI 002 Traditional round
TR_VI_003 Traditional round
TR_VI 004 Traditional ellipsoid
TR_VI_005 Traditional obovoid
TR_VI_006 Traditional rectangular
TR_PO_001 Traditional ellipsoid
TR_PO_002 Traditional long

TR _PO_003 Traditional ellipsoid
TR_PO_004 Traditional ellipsoid
TR_IS 001 Traditional long

TR_IS 002 Traditional obovoid

TR _IS 003 Traditional round

MS 1 to MS_7 correspond to modern inbred lines provided by Meridiem Seeds. Codes for
the traditional varieties are according TRADITOM project (Blanca et al. 2022).
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