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Abstract 

Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be 

modelled using trajectory inference methods. While tremendous effort has been put into designing 

these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard 

approach involves testing different trajectory inference methods and picking the trajectory giving the 

most biologically sensible model. As the default parameters are often suboptimal, their tuning requires 

methodological expertise. We introduce Totem, an open-source, easy-to-use R package designed to 

facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number 

of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure 

the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity 

enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, 

testing different trajectories with Totem is fast, easy, and does not require in-depth methodological 

knowledge. 
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Main 

Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify the transcriptome of 

thousands or even millions of cells simultaneously at the single-cell level. The cells in a tissue 

undergo transcriptomic changes that are part of biological processes. If the changes happen gradually, 

the tissue contains cells derived from different stages of the process. If the correct trajectory that 

accurately models these different stages can be generated from the scRNA-seq data, this enables 

researchers to unravel the transcriptomic mechanisms of the processes. The modelling of trajectories 

from scRNA-seq data has formed a new branch in computational biology, known as trajectory 

inference. 

A vast number of trajectory inference methods have been developed1,2. While these methods have 

proven to be valuable in many situations, their use is still difficult for several reasons. The main 

reason is that a single method used with default settings often fails to generate a trajectory that can 

capture all relevant parts (milestones) of the trajectory and also accurately model the correct milestone 

network. Therefore, a popular approach is to test different methods and tune their parameters until a 

biologically sensible or otherwise satisfactory trajectory is obtained. 

Slingshot3 has become one of the most popular trajectory inference methods after a comparison study2 

showed it was one of the best-performing methods for inferring tree-shaped trajectories. A tree can be 

any trajectory in which the parts are not disconnected and the trajectory has no cycles. Slingshot 

requires as input a clustering of cells that is used to construct a Minimum Spanning Tree (MST), 

which is subsequently smoothed using the simultaneous principal curves algorithm to obtain a 

directed trajectory, which also includes pseudotime, a measure of the differentiation stage of the cells. 

While methods such as the Average Silhouette Width (ASW)4 and the Variance Ratio Criterion 

(VRC)5 can be used to select the clustering automatically, their weakness is their tendency to select a 

clustering with a too small number of clusters. The resulting trajectories are often over-simplistic and 

lack especially small milestones. Therefore, a more reliable approach can be to manually generate a 

clustering that includes all the relevant milestones, but this requires careful parameter testing and 

validation using markers to ensure that the clustering is optimal. However, even then the resulting 

MST may not correlate well with the true milestone network because the MST is generated using a 

distance matrix that is sensitive to the pre-processing steps (e.g. dimensionality reduction), the 

clustering structure, and the choice of the distance metric. 

To provide a system with better user experience for researchers who perform trajectory inference, we 

developed a new tool, Totem, for the inference of tree-shaped trajectories from single-cell data (Fig. 

1). Totem generates a large number of dissimilar clustering results for the cells (by default, 10,000) 

using a k-medoids algorithm. The number of clusters (k) and the structure of the clustering results 

vary, generating vastly different trajectories when used as the basis for constructing the MST. To 
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select a clustering from the large set of clustering results, Totem uses a new measure called the cell 

connectivity, which is based on counting the number of edges (connections) between the clusters in an 

MST. The ratio of the number of edges and clusters (connectivity) is calculated for each cell and 

clustering, and the connectivity vectors are averaged to obtain the cell connectivity of the cells. The 

cell connectivity acts as a useful baseline for selecting an appropriate trajectory and deciding which 

milestones to include in the trajectory, while also helping to give a visual overview of the milestone 

network, i.e. how the milestones are connected and where the branching points and leaf nodes are 

located. Importantly, a key feature of Totem for its usability is that it allows to quickly and easily 

browse different MSTs, from which the user can select one or several MSTs for further analysis. 

To benchmark Totem, we performed a comprehensive comparison using the dynverse benchmarking 

framework2, which comprises over 200 tree-shaped trajectories. We compared Totem with the popular 

Slingshot tool2,3 and the more recently introduced TinGa6, which is based on a growing neural gas 

(GNG) model7 and can also model trajectories that are more complex than trees. In particular, to 

evaluate the performance of the connectivity-based criterion of Totem for clustering selection in 

trajectory inference, we compared it with the popular ASW and VRC clustering selection methods. 

Because a single clustering is rarely optimal, and thus the users are often forced to try multiple 

clustering results to optimize the trajectories, we investigated the performance of the trajectories 

generated based on multiple top-ranked clustering results, giving a deeper overview of the 

performance. Finally, we demonstrate the usefulness of the cell connectivity measure with a few 

examples that show how the measure can aid trajectory inference by helping to pinpoint relevant 

branching points and milestones. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508535
http://creativecommons.org/licenses/by/4.0/


Results 

Benchmarking Totem for trajectory inference 

To benchmark Totem, we used the dynverse benchmarking framework2 that includes 216 tree-shaped 

trajectories. In our comparison, we included the dynverse implementation of Slingshot2,3, which uses 

the ASW method for clustering selection, and TinGa, which is a GNG-based method7 that can also 

predict more complex trajectories than tree-shaped, such as acyclic and disconnected trajectories6. 

As shown in the rightmost panel of Figure 2, Totem achieved superior overall scores (Wilcoxon 

signed-rank test; P-value ≤ 0.01) for datasets with a non-linear trajectory (bifurcating, multifurcating, 

or other non-linear tree), whereas TinGa was the second-best method for the non-linear datasets. The 

violin plots also show that Totem’s distribution of the overall scores with the non-linear trajectories 

was more concentrated to higher performance levels compared to TinGa and Slingshot. For linear 

trajectories, Slingshot achieved superior performance among the tested methods (Wilcoxon signed-

rank test; P-value ≤ 0.01), while the overall scores of the linear datasets were, on average, similar for 

TinGa and Totem.  The difference in the overall performance was mainly attributable to the 

differences in the topology accuracy (HIM) and the accuracy of the cell assignment onto the branches 

(F1 branches). The HIM score of Slingshot was close to perfect for most of the linear datasets but 

worse compared to TinGa and Totem for the non-linear datasets. 

Benchmarking Totem for clustering selection 

Selection of an appropriate clustering for constructing the MST is an important step in the trajectory 

inference process. Therefore, we took a closer look at the clustering selection step to investigate 

which clustering selection approach gives the best results when we consider multiple top-ranking 

trajectories simultaneously. We included two popular clustering selection methods, which were the 

average silhouette width (ASW) and the Variance Ratio Criterion (VRC), as well as the Totem 

method that uses the cell connectivity and the VRC, and also a method that ranks the clustering results 

into a random order (Random). 

When we tested multiple top-ranking clustering results and always selected the trajectory that gave 

the best performance in the evaluation, the result suggested that the random criterion gave the best 

performance (Fig. 3A). This is an expected result considering that the random criterion generates 

more dissimilar trajectories than the other methods. However, when we averaged the performance 

values of the multiple top trajectories (Fig. 3A), the random criterion was the worst-performing 

method, as expected. The ASW achieved the worst performance among the methods in the analysis in 

which we selected the best-performing trajectory, and it was the second-worst method when the 

performance values of the trajectories were averaged. The VRC achieved slightly better performance 
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than the ASW when selecting the best-performing trajectory, and it was tied with the Totem method 

as the best method by the average performance. In addition to good average performance, Totem had 

a relatively high performance curve in the analysis that considers the performance of the best-

performing trajectories, similar with the random criterion. In other words, the selection method of 

Totem enables to find better performing trajectories than the ASW and VRC without sacrificing as 

much on the average performance as the random criterion. 

Examples of trajectory inference with Totem 

To demonstrate the usefulness of Totem in practice, we compared the trajectories (Fig. 4A) produced 

by Totem and Slingshot for a simulated dataset that has a multifurcating trajectory (named 

multifurcating_4 in the dynverse benchmark data repository). With Slingshot, we used the ground-

truth clustering of the simulated dataset as input. The MST produced by Slingshot was linear and did 

not correlate well with the true milestone network. The example shows how Slingshot can still 

produce inaccurate trajectories even if the ground-truth clustering is available because the cluster 

distances generate an MST with a wrong network. In contrast, Totem predicted trajectories that 

correlated well with the true milestone network. In addition, the cell connectivity measure of Totem 

provided, in general, accurate information about the location of the end points and the middle 

branching point. 

The second example (Fig. 4B) shows similar results but for a bifurcating trajectory that includes T 

cells from a mouse thymus2,8. Based on the trajectory inferred by Slingshot, the topology of this 

network could be linear, i.e. the start point would be one of the end nodes, or bifurcating, i.e. the start 

point would be one of the middle nodes, if we have no knowledge about the starting point of the 

trajectory. By selecting a trajectory with Totem that is in line with the cell connectivity profile of the 

data, we obtain a trajectory with the correct topology (bifurcating), where the bifurcation point is at 

the node in the middle, from which the bifurcation starts in the ground-truth trajectory. Both of these 

examples demonstrate, how the cell connectivity helped us to choose trajectories that exhibit the 

correct topology. 
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Discussion 

scRNA-seq can be a powerful technology for studying transcriptomic processes of cellular systems. 

While a large number of trajectory inference methods has been developed2 for constructing 

trajectories from single-cell data through mathematical modelling, the usability of these methods 

remains rather poor. One of the main reasons is that the methods do not work optimally with every 

dataset, requiring the users to try different methods, tune the parameters, and adjust the pre-processing 

steps prior to trajectory inference. While helpful frameworks like dyno2 have been developed that 

enable testing different trajectory methods, it still takes considerable effort to fine-tune the trajectory 

inference models. Oftentimes, the parameter tuning requires detailed knowledge of the underlying 

statistical and machine learning models, which many users are not familiar with, and the manuals of 

the trajectory inference tools often do not provide clear instructions on how the parameters should be 

adjusted. 

In this paper, we introduced Totem, a tool designed to facilitate the inference of tree-shaped 

trajectories from single-cell data. Totem generates a large number of clustering results (by default, 

10,000) with the k-medoids algorithm and calculates the connectivity of the clusters, i.e. the ratio of 

the connected clusters and the total number of clusters, in the minimum spanning trees (MSTs) that 

are generated from the clustering results. By averaging the connectivity vectors of all the clustering 

results, we obtain the cell connectivity measure, which acts as a useful baseline for finding the 

optimal trajectory. The cell connectivity can be visualized over a two-dimensional embedding, such as 

the multi-dimensional scaling (MDS) or t-distributed stochastic neighbour embedding (t-SNE), and 

the local changes in the connectivity indicate milestones and branching points that are relevant to 

include in the trajectory model. In our examples, we showed how the cell connectivity enabled us to 

select clustering results that generated accurate trajectories. 

Other trajectory inference methods, such as Slingshot3 and TinGa6, do not provide a metric like the 

cell connectivity that can be used as a reference to aid trajectory inference. With these methods the 

user needs to instead use the visualization to get a sense of the topology, use biological markers to 

ensure the model is biologically sensible, and change the parameters if the trajectory is not 

satisfactory, which can be arduous for users without advanced background in mathematics and 

machine learning.  

In Slingshot, the between-cluster distances determine the MST and the milestone network. Our 

examples showed how even when the correct cell types were available, the MSTs predicted by 

Slingshot could still be inaccurate. One solution is to change the distance method, for example, to a 

mutual neighbor -based method, but this will still not necessarily generate the correct network. Totem 

addresses this issue by providing a user-friendly interface to analyze MSTs generated based on 

different clustering results. With this interface the user can select an MST that best fits to the 
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biological hypothesis and the cell connectivity profile without time-consuming and arbitrary 

parameter tuning. Totem then smoothens the MSTs of the selected clustering results using the 

simultaneous principal curves algorithm of Slingshot to obtain directed trajectories that include the 

pseudotime. The trajectories can be exported as Slingshot or dynwrap objects to be used in 

downstream analysis, for example to perform differential expression analysis using tradeSeq9 or 

dyno2. 

To benchmark Totem for inferring trajectories from scRNA-seq data, we used the dynverse 

benchmarking framework, which includes 216 tree-shaped trajectories. We compared Totem with the 

dynverse implementation of Slingshot, which uses k-medoids to cluster cells and the average 

silhouette width (ASW) to select the optimal clustering, and TinGa, which is a growing neural gas 

(GNG) -based method. For clustering selection with Totem, we used the combination of the cell 

connectivity measure and the variance ratio criterion (VRC). Totem outperformed the other two 

methods for non-linear trajectories (bifurcation, multifurcation, or some other non-linear tree) and 

performed comparably with TinGa for linear trajectories. The results suggested that while Slingshot 

was the best method for linear trajectories among the tested methods, it was significantly worse than 

TinGa and Totem for non-linear trajectories. This happened because the ASW is generally known to 

select a small number of clusters, which will more likely generate a linear trajectory than a non-linear 

trajectory when used for MST estimation. By contrast, TinGa is more likely to overcomplicate the 

trajectories with redundant cycles and disconnected parts than Slingshot and Totem, both of which 

can only infer tree-shaped trajectories. Indeed, the performance differences between the methods were 

mainly attributable to differences in the accuracy of the topology (HIM) and branch assignment (F1 

branches). 

To investigate what is the most optimal way to select the clustering that is used to generate the MST, 

we generated 10,000 k-medoids clustering results for each of the benchmark datasets and ranked them 

using different clustering evaluation methods, including the ASW, the VRC, and the Totem criterion 

that uses the cell connectivity and the VRC. When we investigated the performance scores of the top 

100 clustering results, the results suggested that the Totem criterion and the VRC provided the best 

average performance. However, the Totem criterion outperformed the VRC when we considered only 

the best trajectory from the set of trajectories. In other words, when testing multiple trajectories, it is 

more likely that we find a higher-performing trajectory with Totem than with the ASW and VRC 

methods, and the average performance of all the trajectories found by Totem will likely be at least as 

good as for the other methods. 

Totem has the same limitations as Slingshot. In particular, it cannot be used to infer trajectories that 

have cycles or both diverging (cells diverge from a single point into several lineages) and converging 

(cells converge into a single point from several lineages) parts at the same time. In addition, unlike the 
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updated Slingshot, Totem cannot currently handle disconnected trajectories. However, we do not 

consider this a major limitation because determining automatically which cell types belong to which 

disconnected sub-trajectories is not an easy task10. A safer approach is to analyse the disconnected 

parts as separate trajectories by segregating the cell types manually before trajectory inference. 

Although there exist methods that can handle almost arbitrary topologies, such as PAGA11, 

Monocle312, and TinGa6, their issue is that they are more likely to overcomplicate the trajectory with 

extra cycles and branches than methods like Slingshot and Totem that are limited to tree-shaped 

trajectories. Similarly, methods like scShaper12, SCORPIUS13, and Elpilinear14 that are limited to 

linear trajectories are still useful because they are guaranteed to provide the correct topology if the 

trajectory is expected to be linear, unlike the more complex methods. 

To summarize, Totem is a tool designed to facilitate the inference of tree-shaped trajectories from 

single-cell data. It is built upon the popular Slingshot method, which uses a clustering to construct an 

MST and the simultaneous principal curves algorithm to obtain a directed trajectory along with 

pseudotime that quantifies cell differentiation at the single-cell level. The benefit of Totem over the 

available tools is that it is designed to provide a user-friendly interface for finding a clustering that is 

used as the basis of the trajectory. Although the clustering selection is highly critical for the success of 

the trajectory inference, performing it automatically in a way that will generate the correct milestone 

network in the trajectory remains challenging. To address this challenge, the analysis of different 

clustering results and their MSTs with Totem has been designed to be fast and easy without requiring 

complex parameter tuning and in-depth technical knowledge. As a notable difference compared to 

existing trajectory inference methods, Totem provides the cell connectivity measure, which aids the 

trajectory optimization by providing information about the location of the branching points and 

milestone transitions.  
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Methods 

Totem 

In the following, we go through the main steps of the Totem trajectory inference workflow. Figure 1 

illustrates the basic workflow of Totem. 

Upstream analysis 

Upstream of trajectory inference, Totem assumes that the input gene expression matrix has been 

normalized and quality control has been performed to remove bad-quality cells15. scRNA-seq data 

analysis toolkits like Seurat16 and Scanpy 17 can perform the normalization and quality control. 

Trajectory inference methods require a low-dimensional (from 2 to 50) embedding as input. The 

dimensionality reduction steps can be customized as the user sees best prior to Totem analysis, but 

Totem can also be used to transform gene counts into new features (feature extraction) with functions 

that utilize the dyndimred R package. In scRNA-seq data analysis, the most common way to perform 

feature extraction is the Principal Component Analysis (PCA) in which the number of principal 

components typically varies from 10 to 30. Alternatively, methods like Multi-Dimensional Scaling 

(MDS) or the more scalable landscape MDS (LMDS) can be used to generate an embedding with a 

smaller number of dimensions (e.g. from 2 to 5), which is usually not a sufficient number in PCA of 

scRNA-seq data. t-SNE18 and UMAP19 are commonly used only for visualization, and they should be 

used with caution if used as input in trajectory inference. As the default dimensionality reduction 

method in Totem, we use the 5-dimensional LMDS. Moreover, it is generally a good idea to reduce 

the number of features prior to feature extraction by selecting highly variable genes (HVGs), which 

can be performed using methods like Seurat 16 and Scanpy17. If the dataset has batch effects, and the 

user does not want to model these differences in trajectory inference, data integration methods 16,20 can 

be used. 

Generation of a large set of clustering results 

To generate a large set of dissimilar clustering results that can be used as the basis for constructing the 

Minimum Spanning Tree (MST), we use the CLARA k-medoids clustering algorithm21 from the 

cluster R package22, which performs fast k-medoids clustering. We run the algorithm 𝐿 times (by 

default 𝐿 = 10,000) and filter out clustering results that have clusters with fewer than 5 cells to 

prevent overly small clusters, which are usually not interesting. The number of remaining clustering 

results (𝐿′) can be close to 𝐿 or deviate from it considerably depending on the dataset. The number of 

clusters (𝑘) varies by default from 3 to 20, but can be adjusted by the user if more complex 

trajectories with more milestones are expected. The default upper limit (20) is well above the average 

number of clusters (milestones) in the trajectories of the dynverse benchmarking framework.  We also 
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activate the R random number generation (RNG) in the clara R function so that the program returns 

different results with different RNG seeds. 

Generation of Minimum Spanning Trees for clustering results 

For each clustering, we generate an MST by representing the clusters of cells as vertices in a graph 

and using the covariance-based approach of Slingshot3 to measure distances between the clusters. The 

Mahalanobis-like distances are calculated from the covariance matrix for cells in each cluster, while 

also considering the shape and spread of the clusters. We use the ape R package to perform the MST 

estimation23. 

Estimate cell connectivity 

For each MST j (𝑗 = 1,… , 𝐿′), we measure the connectivity 𝑐𝑖𝑗 = 𝑑𝑖𝑗/𝑘𝑗 of the ith vertex (cluster) in 

the graph by dividing the degree of the vertex 𝑑𝑖𝑗, i.e. the number of edges that are connected to the 

vertex, by the number of vertices 𝑘𝑗 in the graph. We then create a connectivity vector 𝒄𝑗 that contains 

the connectivity values for all 𝑁 cells corresponding to MST j, scale the connectivity values so that 

the maximum connectivity of each graph is always one, and calculate the cell connectivity of all the 

cells (𝒄̅) by averaging over the 𝐿′ connectivity vectors: 

𝒄̅ =
1

𝐿′
∑

𝒄𝒋

max(𝒄𝒋)

𝐿′

𝑗=1

 

The cell connectivity is higher for cell populations that are farther from the leaf parts of the trajectory 

(Fig. 1). 

Clustering selection using the variance ratio criterion 

To find a clustering that captures the tree structure of the data and gives clusters that are well defined, 

we use the variance ratio criterion (VRC), also known as the Calinski-Harabasz score5, which 

measures the ratio of the between-cluster dispersion and the within-cluster dispersion. Instead of using 

the whole dimensionally reduced data as input, we use the one-dimensional cell connectivity vector 

(𝒄̅) to find clusters that have cells with similar connectivity within the clusters but different compared 

to the other clusters. The VRC is a more memory-efficient method for clustering selection than the 

commonly used average silhouette width (ASW), because it does not require a distance matrix of cells 

as input, making it more suitable for datasets with many cells. We use the fpc R package to perform 

the VRC analysis24. 
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Lineage smoothing 

For an MST corresponding to a selected clustering, Totem performs lineage smoothing using 

Slingshot3, which generates a directed trajectory along with pseudotime that quantifies cell 

differentiation continuously at the single-cell level. Slingshot fits principal curves25 for each lineage of 

the MST starting from a user-specified root node, which is initially selected randomly. The root node 

can be adjusted later by the user. 

Trajectory visualization and interpretation 

Totem includes visualization functions that aid trajectory inference, utilizing the dynplot R package2. 

The functions enable to visualize multiple MSTs and smoothed trajectories side by side over a two-

dimensional embedding. The two-dimensional embedding can be provided by the user or generated 

using one of the methods included in the dyndimred R package, such as t-SNE, UMAP, or MDS. To 

assist in biological interpretation, the user can also visualize expression levels of genes over the 

embedding. 

The cell connectivity can be visualized over the two-dimensional embedding to pinpoint milestones 

and branching points that could be otherwise missed or inaccurately modelled (Fig. 1). Local changes 

in the connectivity indicate milestone transitions that are relevant to include in the trajectory. The 

connectivity levels can be used to locate branching points, where a cell population is encircled by 

other cell populations whose connectivity is relatively lower (Fig. 4).  

Although the clustering selection is performed based on the VRC of the cell connectivity, the 

resulting MST can still be suboptimal in terms of the connections that the milestone network 

comprises. In addition, small milestones can be missing or the trajectory can seem over-complicated. 

Therefore, the user should not rely upon a single, automatically generated trajectory. Instead, the 

trajectory should be validated using gene markers to ensure that the model is biologically sensible, 

and compared with the cell connectivity by visualization to ensure that the milestone network is in 

line with the connectivity profile. If the trajectory requires adjustments, Totem allows to easily test 

different clustering results until a trajectory is obtained that meets both requirements. 

Benchmarking 

To benchmark Totem, we repeated the comprehensive benchmarking of scRNA-seq trajectory 

inference methods using the dynverse framework2. We included trajectories that have a tree-like 

structure, which were labeled as linear, bifurcation, multifurcation, or tree in the original comparison. 

These comprise 69, 44, 16, and 87 linear, bifurcation, multifurcation, and tree trajectories, 

respectively. The datasets are of synthetic and real origin. The real datasets include 26 gold standard 

datasets of which ground-truth includes cell types and their differentiation order at the cluster level 
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(discrete pseudotime). The 54 real, silver standard datasets have a ground-truth that includes a 

continuous or discrete pseudotime. The synthetic, simulated datasets provide the most accurate 

ground-truth, and they were simulated using four different simulators: dyntoy2, dyngen26, 

PROSSTT27, and Splatter28. 

The dynverse benchmarking framework includes four main metrics. The accuracy of the cell 

differentiation order is measured using the correlation of pairwise geodesic distances between the 

ground-truth and predicted trajectories. The accuracy of the differentially expressed genes is measured 

using the weighted correlation of the random forest regression -derived feature importance lists. The 

features that are ranked higher in the ground-truth are given a relatively higher weight. The F1 

branches value maps the cells to the closest branching points in the ground-truth and inferred 

trajectories and measures the clustering similarity between the two clustering results. Hamming-

Ipsen-Mikhailov (HIM)29 measures the similarity of two topologies. For example, two linear 

trajectories would yield a perfect HIM value of 1, even if the two trajectories would be otherwise 

completely dissimilar. All four metrics range from 0 to 1 and the geometric mean of the metrics is 

used to assess the overall performance by penalizing small values in the metrics. 

To benchmark Totem, we compared it with the dynverse implementation of the Slingshot method, 

which uses the PAM (k-medoids) clustering algorithm and the average silhouette width to select the 

optimal number of clusters, as well as TinGa, which is based on a growing neural gas model. 

However, the pre-processing was standardized so that each method uses the 5-dimensional latent 

multidimensional scaling (LMDS). 

Comparing clustering selection methods 

Trajectory inference methods such as Slingshot require a clustering that is used as the basis for 

constructing the MST, which is subsequently smoothed using the simultaneous principal curves 

algorithm to obtain a directed trajectory and pseudotime. In addition to the cell connectivity criterion 

of Totem for clustering selection, we tested three other methods: the average silhouette width (ASW), 

which is used by the dynverse implementation of Slingshot; the Calinski-Harabasz score, also known 

as the Variance Ratio Criterion (VRC); and the random criterion that ranks the clustering results into a 

random order.  

To compare the clustering selection methods, we ran the k-medoids clustering algorithm (CLARA) 

10,000 times for each dataset, selected the top 100 clustering results with each method, performed the 

trajectory inference using Slingshot for each clustering, and ran the dynverse performance evaluation 

for the trajectories. For each benchmark dataset, we varied the number of evaluated trajectories from 1 

to 100 and calculated the maximum and mean of the overall performance score. Finally, we calculated 

the mean of the overall scores across the datasets.  
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Data availability 

The benchmark data is available on Zenodo30. 

Code availability 

The Totem R package is available at https://github.com/elolab/Totem, and it includes a vignette that 

explains how Totem should be used. The codes that are relevant for repeating the benchmarking are 

available at https://github.com/elolab/Totem-benchmarking.  
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Figures 

Fig. 1: Schematic illustration of the Totem workflow. (1) A gene expression matrix is used as 

input, which needs to be pre-processed upstream of Totem analysis, including normalization, quality 

control, and possible batch correction and feature selection. Further dimensionality reduction (feature 

extraction) can also be performed using Totem. For the low-dimensional data matrix, Totem generates 

(2) a large set of clustering results using a k-medoids clustering algorithm (CLARA), (3) a Minimum 

Spanning Tree (MST) for each clustering, which models the cluster (milestone) network, and (4) 

estimates the connectivity of the clusters in each MST (ratio of the number of edges a cluster has in 

MST and the number of clusters). The connectivity vectors are averaged to generate the cell 

connectivity measure (top right), which helps to locate branching points and milestones that are 

relevant to model. (5) The clustering results are ranked based on the Variance Ratio Criterion (VRC) 

of the cell connectivity measure, and (6) top-ranking clustering results and their corresponding MSTs 

are selected for further analysis (middle-right). (7) The selected MSTs are smoothed using the 

Slingshot algorithm to obtain directed trajectories (lower right). The trajectory can be exported as 

objects that can be used downstream of Totem analysis, such as differential expression analysis. 
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Fig. 2. Results of the benchmarking for trajectory inference from scRNA-seq data. The overall 

score is the geometric mean of four performance metrics: the correlation of geodesic distances 

(correlation), which measures accuracy of cellular ordering, the Hamming-Ipsen-Mikhailov (HIM), 

which measures topological accuracy, the weighted correlation of feature importance lists, which 

measures accuracy of differentially expressed genes inferred from the trajectory, and the F1 branches, 

which measures accuracy of cell assignment onto branches. The results were grouped by the 

performance metric (columns) and whether the ground-truth topology is linear or non-linear, i.e. 

bifurcating, multifurcating, or some other non-linear tree (rows).  
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Fig. 3. Comparing clustering selection methods in the dynverse benchmarking. We selected the 

top 100 clusterings from 10,000 k-medoids clusterings for each of the 216 dynverse benchmark 

datasets using four different methods: The average silhouette width, the Calinski-Harabasz score, 

random selection, and the Totem method. For each clustering, the rest of the trajectory inference 

(MST generation, smoothing) was performed using Slingshot. In (A), we varied the number of top-

ranking trajectory models and selected the model for each dataset that gave the best overall score from 

all the models. In (B), we calculated the mean performance of all the models. 
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Fig. 4.  Example analyses with Slingshot and Totem. (A) A multifurcating trajectory simulated 

with dyntoy. (B) T cells from a mouse thymus with a bifurcating trajectory. The two-dimensional 

embeddings for visualization were generated with the Multi-Dimensional Scaling (MDS) method 

from the dyndimred R package. 
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