

1 **Body condition score and triglyceride concentrations and**
2 **their associations with other markers of energy homeostasis**
3 **in healthy, non-obese dogs**

4 Carlos Gomez-Fernandez-Blanco^{1*}, Dominique Peeters¹, Frédéric Farnir², Katja Höglund³,
5 Vassiliki Gouni^{4,5}, Maria Wiberg⁶, Jakob Lundgren Willesen⁷, Sofia Hanås^{3,8}, Kathleen
6 McEntee^{1,9}, Laurent Tiret^{4,5}, Jens Häggström³, Hannes Lohi¹⁰, Valérie Chetboul^{4,5}, Merete
7 Fredholm⁷, Eija Seppälä¹⁰, Anne-Sophie Lequarré¹, Alexander James German¹¹, Anne-Christine
8 Merveille¹

9 ¹Department of clinical sciences, College of Veterinary Medicine, University of Liège, Liège,
10 Belgium.

11 ²Department of sustainable animal resources, FARAH, College of Veterinary Medicine,
12 University of Liège, Liège, Belgium.

13 ³Swedish University of Agricultural Sciences, Uppsala, Sweden.

14 ⁴Université Paris-Est Créteil, INSERM, IMRB, Créteil, France.

15 ⁵École nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France.

16 ⁶Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine,
17 University of Helsinki, Finland.

18 ⁷Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen,
19 Denmark.

20 ⁸Evidensia Specialist Animal Hospital Strömsholm, Strömsholm, Sweden.

21 ⁹Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium.

22 ¹⁰Department Medical and Clinical Genetics, and Department of Veterinary Biosciences,
23 University of Helsinki, Finland.

24 ¹¹Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United
25 Kingdom.

26 *Corresponding author:

27 cgfernandezblanco@gmail.com

28 **Abstract**

29 Serum triglyceride concentrations increase in dogs in overweight condition, which is typically
30 assessed by body condition score (BCS). However, their associations with other markers of
31 energy homeostasis are poorly characterized. The present study aimed to evaluate the
32 associations between both BCS and triglyceride levels and other markers of lipid and glucose
33 metabolism in healthy dogs in overweight condition. 534 overweight, but otherwise healthy,
34 client-owned dogs were included. Serum concentrations of cholesterol, free fatty acids,
35 triglycerides, insulin, glucose and fructosamine were measured. Dogs were assigned to lean
36 (BCS: 3-5) or overweight (BCS: 6-7) categories, and linear models were used to assess the
37 differences between BCS categories and the associations between triglycerides and the other
38 variables, correcting for the effect of breed. Globally, “overweight” dogs had greater serum
39 cholesterol (95% CI: 5.3-6.2 mmol/L or 205-237 mg/dL versus 5.1-5.4 mmol/L or 198-210

40 mg/dl, $P = .003$), insulin (95% CI: 17.5-22.1 μ U/ml versus 16.7-18.0 μ U/ml, $P = .036$) and were
41 older (95% CI: 4.0-5.3 versus 3.4-3.7 years, $P = .002$) than lean dogs. Triglyceride
42 concentrations were positively associated with fructosamine ($r^2 = 0.31$, $P = .001$), cholesterol
43 ($r^2 = 0.25$, $P < .001$), insulin ($r^2 = 0.14$, $P = .003$) and glucose ($r^2 = 0.10$, $P = .002$), and
44 negatively associated with free fatty acids ($r^2 = 0.11$, $P < .001$). There was no association
45 between triglyceride levels and age. In conclusion, both BCS and triglyceride concentrations
46 were associated with other markers of glucose and lipid metabolism in overweight, but
47 otherwise healthy dogs. Triglyceride concentrations were associated with an increase in insulin
48 and fructosamine that might reflect an early-phase impairment in glucose tolerance which,
49 surprisingly, was concurrent with lower basal free fatty acids.

50 **Introduction**

51 Metabolic syndrome (MS) is an entity comprising multiple cardiovascular and metabolic risk
52 factors in humans, characterized by a state of chronic, subclinical inflammation (1). Features of
53 human MS include combinations of increased visceral fat (abdominal obesity), systemic
54 hypertension, increased circulating triglyceride (TG) concentrations, decreased high-density
55 lipoprotein (HDL) cholesterol concentration, and increased fasting glucose concentration
56 (suggesting insulin resistance) (2). Human beings with MS have a greater risk of developing type
57 2 diabetes mellitus (DM) and cardiovascular complications (2).

58 Dogs also suffer from obesity-related metabolic dysfunction (ORMD), but the term metabolic
59 syndrome is avoided because, even though dogs share some of its components (such as
60 hypercholesterolaemia, hypertriglyceridaemia and insulin resistance), they do not develop the
61 obesity-related diseases that humans do, such as atherosclerosis, stroke or type 2 DM (3–6).

62 Studies on canine ORMD have mostly examined dogs with manifest obesity, whilst metabolic
63 dysfunction of dogs in overweight condition has been less well characterized, despite its known
64 associated with comorbidities in the canine species (7–10).

65 Some people with obesity remain metabolically healthy, at least in the short term (11), during
66 which time their risk of comorbidities is less, they do not develop insulin resistance, are
67 normotensive, and concentration of glucose, TG, HDL cholesterol and high-sensitivity C-
68 reactive protein (hsCRP) is within reference limits (12). Conversely, some normal-weight
69 individuals develop the characteristics of MS despite having a normal body fat mass (13). Such
70 ‘metabolically unhealthy normal-weight’ people can be identified by a thorough biochemical
71 assessment in which increased TG and C-reactive protein (CRP) concentration, as well as
72 decreased HDL-cholesterol and adiponectin concentrations will be found (13). Similarly,
73 different biochemical phenotypes have been described in obese dogs: adiponectin was lesser
74 and plasma insulin was greater in obese dogs that met the criteria of ORMD (which were
75 defined as having obesity plus two other criteria amongst TG > 200 mg/dL (2.26 mmol/L), total
76 cholesterol > 300mg/dL (7.8 mmol/L), systolic blood pressure >160 mmHg, and fasting plasma

77 glucose > 100mg/dL (5.6 mmol/L), or previously diagnosed diabetes mellitus) as compared to
78 obese dogs without ORMD (14,15).

79 The aim of this study was to investigate associations amongst body condition score (BCS) and
80 a range of metabolic variables associated with glucose and fat metabolism in a large cohort of
81 healthy dogs in overweight condition, as compared to lean dogs, as well as to assess whether
82 TG concentrations can be a marker for these metabolic variables.

83 **Materials and methods**

84 A canine database aimed at examining genetic determinants of disease (European LUPA project
85 (16)) was retrieved. Five centres had participated in the original study between 2009 and 2010:
86 University of Liège, University of Copenhagen, Swedish University of Agricultural Sciences,
87 University of Helsinki, and the National Veterinary School of Maisons-Alfort (France). All
88 centres used the same standardised protocols for recruitment and characterisation of dogs. The
89 database was then retrospectively investigated for the purpose of the present work.

90 **Dogs**

91 This study was approved by the Ethical Committee of the LUPA project, and the informed
92 consent of all owners was obtained (16). Client-owned, pure-bred dogs were recruited, and
93 included different breed cohorts in order to represent a wide range of various phenotypic features.
94 Dogs were 1 to 7 years old and were genetically unrelated. In order to minimise potential effects

95 of the oestrous cycle on metabolic parameters, each breed cohort comprised a single sex, namely
96 intact males or female dogs that were spayed or in anoestrus (checked by a vaginal smear). Health
97 status was checked through history, physical examination, laboratory analyses (including routine
98 hematology and serum biochemistry), and a thorough cardiovascular investigation comprising
99 ECG recording and echocardiographic examination. After visual assessment and palpation, each
100 dog was assigned a BCS category using the one-to-nine point scale (17); dogs were then assigned
101 to one of two body condition categories (lean, BCS 3-5; overweight, BCS 6-7) based on this
102 score. Dogs were excluded if they showed clinical signs of any disease, were very underweight
103 (BCS \leq 2) or had obesity (BCS 8-9, as defined by Brooks et al. (18)).

104 **Sampling**

105 Three weeks before the study, owners were asked to feed their dogs exclusively with a
106 commercial dry food diet of their choice, avoiding any treats or table food. Dogs were fasted for
107 at least 12 hours before blood sampling and, after collection, blood was centrifuged within 30
108 minutes and serum then aliquoted. In most centres, serum aliquots were immediately frozen at -
109 80°C; in the remaining centre, samples were frozen at -20°C for the first 2 weeks after collection,
110 before being transferred to a -80°C thereafter. All samples were subsequently sent to the same
111 laboratory^a for analysis.

112 **Analyses**

113 The analytes selected for the present study were chosen based on their reported association with
114 obesity in humans and dogs (2,3,14,19–41). These included markers of lipid metabolism (e.g.,
115 cholesterol, TG and free fatty acids, FFA), glucose homeostasis (e.g., glucose, fructosamine, and
116 insulin) and inflammation (CRP). A photometric clinical chemistry analyzer (KoneLab 60i,
117 Thermo Electron Co, Finland) was used to determine fructosamine, glucose, CRP, cholesterol
118 and TG concentrations. Fructosamine and FFA concentrations were respectively assessed using
119 Hariba ABX (Montpellier, France) and Wako Chemical GmbH (Neuss, Germany). Insulin
120 concentration was determined by radioimmunoassay, provided by DiaSorin S.p.A (Italy).

121 **Repeatability of measurements**

122 Ten dogs were randomly selected to send duplicates to the same laboratory three months after the
123 first analyses. Coefficients of variation were 6% for insulin and $\leq 5\%$ for FFA, cholesterol, TG,
124 glucose and fructosamine.

125 **Statistical analyses**

126 Outliers were inspected with the Reference Value Advisor (42) using the Tukey method (43).
127 Dogs with only one outlier were accepted and included in the analyses; those with more than one
128 outlying value were excluded.

129 **Preliminary tests**

130 Given that parametric tests were needed to test our hypotheses, all analyses were validated after
131 checking the normal distribution of the residuals (evaluated by histogram observation and by a
132 Shapiro-Wilk test), and a test of homoscedasticity (Breusch-Pagan test). If a particular analyte
133 (dependent variable) did not pass the normality tests, a non-parametric equivalent test was used
134 (e.g., Spearman's Rank correlation or Mann-Whitney test). Statistical tests were performed with
135 R free statistical software (44).

136 **Effect of age on biochemical variables**

137 The correlation between age and each of the analytes was calculated by Pearson's method, and
138 *P*-values <0.05 were considered to be statistically significant.

139 **Effect of overweight status**

140 In order to test for differences between lean and overweight groups, a linear model including
141 BCS, breed and an interaction between BCS and breed was used for all biochemical variables.
142 Normality was checked using the Shapiro-Wilk test and analytes with non-normal residuals were
143 log-transformed. Type III sums of squares were used and differences with *P*-values <0.05 were
144 considered to be statistically significant. Whenever a statistically significant interaction was
145 found, associations within each breed were examined. In this case, a Mann-Whitney test was
146 used and the level of significance was corrected for multiple comparisons using a Bonferroni
147 correction.

148 **Effect of TG on the biochemical variables**

149 Linear models including TG, the breed and an interaction between the breed and TG were used
150 for each biochemical variable. Once again, *P*-values <0.05 were considered to be statistically
151 significant. Whenever an interaction with the breed was significant, the association between TG
152 and the outcome variable was tested within each breed, using Spearman's correlation method.
153 Once again, a Bonferroni correction was used to correct for multiple comparisons.

154 **Results**

155 **Animals**

156 In total, 534 dogs met the inclusion criteria, with 9 different breeds represented: Boxer (BOX,
157 15 dogs), Belgian Shepherd Dog (BSD, 125 dogs), Cavalier King Charles Spaniel (CKCS, 35
158 dogs), Dachshund (DACH, 40 dogs), Doberman (DOB, 39 dogs), Finnish Lapphund (FL, 45
159 dogs), German Shepherd dog (GSD, 66 dogs), Labrador Retriever (LAB, 125 dogs), and
160 Newfoundland (NF, 44 dogs). All cohorts comprised only male dogs, except for the NF cohort,
161 that comprised only females, and the LAB cohort, that comprised dogs of both sexes (73 females
162 and 52 males). Some breeds were unique to one centre while others were shared among centres.
163 Distribution of dogs by centre, breed, and gender is shown in Table 1. All outliers were used in
164 the statistical analyses, since they were considered compatible with physiological values, and
165 no dog showed more than one outlier result.

166 **Table 1.** Distribution of dogs by centre, breed, and sex

	Belgium	Denmark	Finland	France	Sweden	Total
BSD	97M			28M		125
BOX					15M	15
CKCS					35M	35
DACH			24M		16M	40
DOB				39M		39
FL			45M			45
GSD	17M		49M			66
LAB	7M	44F		29F	45M	125
NF		44F				44
Total	121	88	118	96	111	534

167 M, Male ; F, Female ; BOX, Boxer; BSD, Belgian Sheperd Dog; CKCS, Cavalier King Charles

168 Spaniel; DACH, Dachshund; DOB, Doberman pinscher; FL, Finnish Lapphund; GSD, German

169 Shepherd Dog; LAB, Labrador retriever; NF, Newfoundland.

170 Median BCS was 3 in FL (interquartile range, IQR: 3-4); 4 in GSD (IQR: 3-4), DACH (IQR: 171 3-5), BSD (IQR: 4-5) and BOX (IQR: 4-5); 5 in DOB (IQR: 5-5), CKCS (IQR: 5-6) and NF 172 (IQR: 5-6); and 5.5 in LAB (IQR: 5-6). Seventy-one percent of the dogs (409) were in the lean 173 category, while 29% (120 dogs) were overweight. Table 2 shows the distribution of BCS 174 amongst breeds.

175 **Table 2.** Distribution of dogs by breed and BCS.

	BCS 2	BCS 3	BCS 4	BCS 5	BCS 6	BCS 7
BOX	-	-	8	4	3	-
BSD	1	22	45	51	5	1
CKCS	-	-	-	20	15	-
DACH	-	11	12	11	6	-
DOB	-	-	2	33	4	-
FL	-	24	12	6	2	1
GS	1	22	35	4	1	-

LAB	-	1	8	53	59	4
NF	-	-	-	23	15	4
TOTAL	2	80	122	205	110	10

176 BCS, Body Condition Score ; BOX, Boxer; BSD, Belgian Sheperd Dog; CKCS, Cavalier King

177 Charles Spaniel; DACH, Dachshund; DOB, Doberman pinscher; FL, Finnish Lapphund; GSD,

178 German Shepherd Dog; LAB, Labrador retriever; NF, Newfoundland.

179 Analyses were validated after successfully testing for normal distribution of the residuals and
180 homoscedasticity. CRP was the only variable that did not succeed the tests and was, therefore,
181 assessed with nonparametric methods.

182 **Association between age and biochemical variables**

183 There was no effect of age on any analyte tested (cholesterol, $P=0.49$; FFA, $P=0.88$; TG,
184 $P=0.55$; CRP, $P=0.34$; insulin, $P=0.18$; glucose, $P=0.65$; fructosamine, $P=0.11$).

185 **Effect of overweight status on biochemical variables**

186 After normalisation for the effect of the breed, dogs in the overweight category were older
187 ($P=0.002$) and had greater plasma insulin ($P=0.036$) and cholesterol ($P=0.003$) concentrations
188 than lean dogs. An interaction between BCS category and breed was also identified for both

189 TG and cholesterol (Table 3): in this respect, cholesterol concentration was greater in
190 overweight BOX ($P=0.020$) and CKCS ($P=.0005$) compared with their lean counterparts;
191 overweight CKCS also had greater TG than lean CKCS ($P=0.002$). These differences are
192 illustrated in Fig 1.

193 **Table 3.** Results of ANOVA. Effect of BCS category, and its interaction with the effect of the
194 breed, on age (years) and on concentrations of insulin, fructosamine, glucose, cholesterol, free
195 fatty acids, and triglycerides in overweight and lean dogs. Data are presented as mean and 95%
196 confidence intervals.

	Lean	Overweight	BCS category, p-value	Interaction between BCS category and breed, p- value
Age (years)	3.5 (3.4-3.7)	4.4 (3.9-4.9)	0.0005^a	0.3405
Insulin (pmol/l)	120.1 (113.2-125.7)	131.3 (122.2-141.7)	0.0374^a	0.1289

Insulin (μU/ml)	17.3 (16.7-18.1)	18.9 (17.6-20.4)		
Fructosamine (μmol/l)	287.1 (283.6 – 290.6)	289.7 (283.2 – 296.2)	0.4951	0.4560
Glucose (mmol/l)	0.05 (0.05-0.05)	0.05 (0.05-0.06)	0.3828	0.6783
Glucose (mg/dl)	0.98 (0.97-0.99)	0.99 (0.97-1.01)		
Cholesterol (mmol/l)	5.3 (5.1-5.4)	5.7 (5.3-6.2)	0.0032 ^a	0.0006 ^b
Cholesterol (mg/dl)	204 (198-210)	221 (205-237)		
FFA (mEq/l)	0.87 (0.83-0.91)	0.86 (0.78-0.93)	0.7657	0.7529

Triglycerides (mmol/l)	0.005 (0.005-0.005)	0.005 (0.005-0.006)	0.9716	0.0019^b
Triglycerides (mg/dl)	0.43 (0.42-0.45)	0.45 (0.40-0.51)		

197 FFA, free fatty acids.

198 ^a Significant effect of the BCS category for a level of confidence of 0.05.

199 ^b Significant interaction between breed and BCS category, for a level of confidence of 0.05.

200 **Fig. 1.** Box plots showing serum cholesterol (A and B) and triglyceride (C) concentrations in
201 Boxer (BOX) and Cavalier King Charles Spaniel (CKCS). Bonferroni-corrected p-value of
202 0.0056. The lower, middle and upper line of each box represent the 25th percentile (bottom
203 quartile), 50th percentile (median) and the 75th percentile (top quartile). The whiskers, where
204 present, represent the minimum and maximum. Outliers, represented by open circles, were
205 included in the analyses.

206 **Associations between TG concentration and markers of ORMD**

207 After normalisation for the effect of the breed, TG concentrations were positively associated
208 with fructosamine ($P=0.001$), cholesterol ($P<0.001$), insulin ($P=0.003$) and glucose ($P=0.001$)
209 concentrations, and negatively associated with FFA ($P<.0001$). Results are shown in **Table 4**.

210 The interaction between TG and breed was significant when testing insulin concentration as the
211 dependent variable and, in the intra-breed analyses, there was a positive association between
212 TG and insulin concentrations in several breeds (**Table 5**).

213 **Table 4.** Association between triglyceride concentration and insulin, fructosamine, glucose,
214 cholesterol, and free fatty acids. The r^2 corresponds to the predictive percentage attributed to
215 the whole linear model, which included the main effects of both triglycerides and breed (plus
216 their interaction, when significant) as explanatory variables.

	Adjusted r2	Triglyceridaemia, p-value	Interaction between triglyceridaemia and breed, p-value
Insulin	0.16	0.0030^a	0.0101^b
Fructosamine	0.31	0.0013^a	0.0711
Glucose	0.10	0.0014^a	0.7750
Cholesterol	0.25	<0.0001^a	0.1572
FFA	0.10	<0.0001^a	0.0645

217 FFA, free fatty acids.

218 ^a Significant effect of triglyceridaemia, for a level of confidence of 0.05.

219 ^b Significant interaction between breed and triglyceride concentrations, for a level of confidence
220 of 0.05.

221 **Table 5.** Correlations between triglyceride concentration (mg/dl) and insulin (μ U/ml) within
222 individual breeds. Spearman's rank correlation test.

Breed	p-value	Spearman's R
BOX	0.0066	0.67
BSD	0.0008	0.30
CKCS	0.5361	0.11
DACH	0.0819	0.28
DOB	0.0515	0.39
FL	0.6246	-0.07
GS	0.1973	0.16
LAB	0.0305	0.20
NF	0.1018	0.26

223 BOX, Boxer; BSD, Belgian Sheperd Dog; CKCS, Cavalier King Charles Spaniel; DACH,
224 Dachshund; DOB, Doberman pinscher; FL, Finnish Lapphund; GSD, German Shepherd Dog;
225 LAB, Labrador retriever; NF, Newfoundland.

226

227 Discussion

228 Two main findings can be highlighted from this large cohort of dogs recruited from various
229 European countries. First, insulin and cholesterol concentrations are increased in dogs in
230 overweight body condition; second, fasting TG concentrations are positively associated with
231 cholesterol, glucose, fructosamine and insulin, but negatively associated with FFA. Previous
232 studies, often experimental, have reported increased insulin, cholesterol and TG concentrations
233 in obese dogs. However, the “overweight” group in those studies invariably comprises either
234 some or all dogs in obese body condition (BCS 8-9) (14,19,23,35–38,45–47). To the best of our
235 knowledge, the present study is the first to report similar changes in a large group of dogs in
236 overweight condition only (BCS 6-7). Currently, consensus does not exist on when
237 accumulated adipose tissue becomes pathological in dogs and, in some previous studies, dogs
238 with BCS 6/9 have been included in the “ideal weight” group, together with BCS 4 and BCS 5
239 (32,48,49). Conversely, some studies have examined “mildly to moderately overweight” dogs
240 separately from “obese” dogs and found both groups to be at greater risk for developing
241 comorbidities, suffering from a poorer quality of life and having a shorter life-expectancy (7–
242 10). For example, Kealy et al. (2002) found that long-term food-restricted Labrador Retriever
243 dogs had a longer life span and delayed onset of chronic diseases as compared to a control group
244 (8). There was a mean difference of 26% between groups, which was reflected by a difference
245 in BCS (mean BCS 4.6 +/- 0.19 in the food-restricted group, versus BCS 6.7 +/- 0.19 in the
246 control group). In the present study, insulin and cholesterol concentrations were significantly

247 greater in a cohort of overweight dogs (median = 6; IQR = 0; mean BCS = 6.1; range, 6 – 7)
248 than in their lean counterparts (median BCS = 5; IQR =1; mean BCS = 4.3; range, 2 – 5).

249 In addition to the main effects, both TG and cholesterol concentrations were affected by an
250 interaction between overweight status and breed. When such an interaction between two
251 independent variables is found, interpretation of the main effects alone may be misleading and,
252 therefore, each category (in this case, individual breeds) should be investigated independently
253 (50). In this respect, compared with lean status, overweight status was associated with greater
254 TG concentrations in the CKCS, and also greater cholesterol concentrations in both BOX and
255 CKCS breeds. We hypothesize that the positive results within these breeds might be related to
256 the experimental design of the present study, rather than a breed-specific cause.
257 Hyperinsulinaemia is thought to be key in obesity-related disorders in humans (51). Even
258 though hyperinsulinaemia is also a feature of canine obesity, dogs do not develop the same
259 outcomes as humans with MS (14), suggesting that significant physiological and
260 pathophysiological differences might exist between these species (3). In the current study,
261 overweight status in dogs was associated with increased concentrations of insulin and
262 cholesterol, which might be interpreted as an early evidence of ORMD. These changes,
263 although mild and likely not clinically relevant, might contribute to the long-term consequences
264 of fat accumulation (i.e., reduced lifespan and quality of life, rapid onset of comorbidities) that
265 have been described in overweight dogs (7–10).

266 In contrast to TG and cholesterol, FFA concentrations were not different between dogs in the
267 overweight and lean categories. Previous studies have shown that both humans and dogs with
268 obesity have increased FFA concentrations, possibly because their concurrent insulin resistance
269 leads to a lack of insulin-mediated suppression of lipolysis (36,37,46,51); further, FFA are
270 considered to be key mediators in the pathogenesis of obesity-induced insulin resistance (51).
271 Therefore, the degree of adiposity in the dogs of the current study might have been less than
272 that required to affect circulating FFA concentrations.

273 Fasting hyperglycaemia is seen in humans with obesity (52), and is a risk factor for progression
274 to type 2 DM (2). In dogs, type 2 DM has not been convincingly described (53,54), but the
275 incidence of diabetes mellitus has increased in the last years, paralleling the increase in obesity
276 (8,55,56), whilst several studies report obesity to be a risk factor (57,58).

277 In the current study, there was no difference in glucose concentrations between the dogs in the
278 overweight and lean categories. Several canine studies have identified changes in glucose
279 concentration associated with overweight status, weight gain and weight loss (39–41,59), but
280 no such association is evident in other studies (14,19–21,24,35,37,60,61). In the present study,
281 fructosamine concentration was did not differ between the dogs in the overweight and lean
282 categories.

283 Fructosamine is not often included in studies on canine obesity. One study found greater
284 fructosamine concentrations in insulin-resistant, but not insulin-sensitive, dogs with obesity

285 (27). The influence of obesity on fructosamine concentrations in humans is believed to be mild

286 (28,29).

287 Some of the breeds included in the current study were overrepresented in the overweight

288 category. This finding was expected for both LAB (62,63) and NF (18), breeds that have

289 previously been reported to be predisposed to obesity (18,30,62,63). In contrast, some other

290 obesity-prone breeds were under-represented in the overweight category, for example, there

291 were only 15% and 20% of overweight dogs in the DACH and BOX categories, respectively

292 (30).

293 There was no difference in CRP concentration between dogs in the overweight and lean

294 categories. CRP is a marker of inflammation and is increased in humans with obesity (31).

295 Subclinical inflammation is also a feature of obesity in dogs, and some authors have found a

296 positive association between CRP and either obesity or weight loss in dogs (20,32). However,

297 this finding is inconsistent, and it was not evident in other studies (33,35,41,64). In one study,

298 CRP concentrations were less in dogs with obesity (34).

299 When assessing TG as an independent marker of ORMD in the dogs of the current study,

300 positive associations with glucose, fructosamine, insulin and cholesterol were identified, whilst

301 TG concentration was negatively associated with FFA. In people, plasma TG concentration is

302 an independent predictor of MS (65). TG concentration, both independently and alongside other

303 biochemical variables (such as insulin, hsCRP, adiponectin and HDL-cholesterol), can predict

304 a greater risk of type 2 DM and cardiovascular complications even in normal-weight humans,
305 and this analyte might be a more sensitive marker than the common definition of MS (66). Also,
306 studies in children have shown that a decrease in TG concentration following a low-fat diet,
307 was associated with healthier metabolic profiles even though no significant changes in BCS
308 were observed (67).

309 In one study, dogs with concurrent obesity were grouped according to the presence of metabolic
310 dysfunction using criteria similar to those of human MS (14); dogs were classified as having
311 so-called ORMD when BCS was between 7 and 9 and there were abnormalities in at least two
312 of the following: triglycerides, total cholesterol, systolic blood pressure and fasting plasma
313 glucose concentrations (14). The dogs classified in this way as ORMD did not have a greater
314 total fat mass than those without ORMD, but insulin concentration was greater and adiponectin
315 concentration was lower than in obese dogs not meeting the criteria for ORMD. This suggested
316 that the assessment of metabolic risk could help to classify dogs at risk of obesity-associated
317 comorbidities. According to the results of the current study, plasma TG concentration, used as
318 an only explanatory variable and correcting for the effect of the breed, were associated with
319 metabolic variables but not BCS, including greater glucose and fructosamine concentrations.
320 Of course, this finding should be interpreted in light of the fact that none of the dogs were in
321 obese body condition (BCS 8 to 9). To the author's knowledge, an association between TG and
322 glucose and fructosamine has not been previously reported in dogs, and might suggest an
323 association between increased glucose concentration and altered lipid metabolism.

324 Fructosamine is seldom researched in studies of human MS, but has been linked to
325 cardiovascular outcomes, whilst its concentration increases with dyslipidaemia, including an
326 association with triglyceride concentration (68).

327 Another important finding of the present study was the association between fasting TG and
328 insulin concentrations which, to the best of the authors' knowledge, has not previously been
329 described in healthy dogs. Increased TG concentrations are commonly associated with insulin
330 resistance and type 2 DM in humans, and are considered to be the central feature of the
331 dyslipidaemia that is present in these states (69–71). In dogs, it has been suggested that
332 hypertriglyceridaemia is favoured by an increased supply of substrates to the liver (especially
333 glucose and FFA) in insulin-resistant states (36).

334 In a study involving dogs with obesity, insulin concentration was less in a subgroup of
335 persistently-hyperglycaemic dogs compared with obese dogs that were not persistently
336 hyperglycemic. Given that TG concentrations were also less in persistently-hyperglycemic
337 obese dogs, it was hypothesised that TG might play a role in compensatory hyperinsulinaemia
338 (and that a lack of TG could cause a decrease in insulin compensation for hyperglycaemia) (23).

339 In a study involving healthy people without insulin resistance, there were differences between
340 a control group, who responded to a TG infusion with an increase in insulin secretion, and a
341 group with a family history of type 2 DM, who experienced a decrease in insulin secretion, as
342 well as marked hepatic insulin resistance (72). This suggests that insulin responses vary greatly
343 in different physiological states, and this should be considered in future studies

344 FFA concentrations tend to be greater in insulin-resistant humans, since insulin resistance leads
345 to a decreased insulin-mediated inhibition of lipolysis and, as a result, FFA concentrations tend
346 to increase (51). Furthermore, FFA are thought to be mechanistically involved in the
347 pathophysiology of obesity-induced insulin resistance (51). In studies involving dogs with
348 obesity, FFA concentrations increase and contribute to insulin resistance (36,37,46,69).
349 However, in the present study, FFA and TG concentrations were negatively associated. This
350 was unexpected given that increasing TG concentrations were also associated with greater
351 insulin, glucose and fructosamine concentrations, changes that are evocative of ORMD, and
352 ORMD is commonly associated with increased circulating FFA (51). One possible explanation
353 is that the severity of insulin resistance in the dogs of the present study was mild, or in the early
354 stages, primarily affecting the liver but not peripheral tissues (i.e., insulin is not able to inhibit
355 hepatic glucose production but it is effectively inhibiting lipolysis at the peripheral level). This
356 dissociation between hepatic and peripheral insulin resistance has previously been described
357 (73). An alternative explanation for the decreased FFA concentration, such as enhanced FFA
358 oxidation, seems unlikely given the other changes (increasing insulin, glucose, and
359 fructosamine), which are evocative of ORMD.
360 The positive association between serum TG and cholesterol has been previously described in
361 overweight dogs and was therefore expected.
362 Given that some breeds were overrepresented in the overweight category, the risk of
363 misinterpreting an effect of the breed with an effect of overweight was a concern. However, the

364 linear models used were corrected for the effect of the breed, and some effects were evident
365 even in overweight dogs within single breeds. A sex effect was not assessed because, besides
366 for Labrador retrievers, the study design meant that sex was covariate with breed. As a result,
367 correction for the breed effect in the ANOVA and in the linear models would automatically
368 correct for any effect of sex in most cases.

369 One limitation of the current study was that the BCS is an imperfect measure of body fat mass,
370 and is influenced by many factors, including differences in breed morphologies and fat
371 distribution (60). Further, subjectivity when assigning BCS might have led to the
372 misclassification of some dogs, especially those examined at different centres. However, the
373 same investigator was responsible for the assessment in each one of the five centres, and in all
374 cases they were highly trained veterinarians that are expected to correlate greatly (74).

375 Therefore, the associations found in the present study further support the utility of the BCS as
376 a universal system to estimate fat excess. Different analysis combinations could have been used
377 with BCS categories, but BCS 6 was chosen since it is a widely-accepted cut-off in every-day
378 practice (7,17,18,60,75).

379 When assigning dogs to the overweight or lean categories, there was a predominance of dogs
380 in the lean category in most breeds ($\geq 80\%$ in most breeds, except for CKCS, NF and LAB,
381 which approached 50% in each category). Such an imbalance might have made it more difficult
382 to identify statistically significant differences between lean and overweight categories within
383 specific breeds that had a small number of overweight dogs. Of course, the limitations for

384 comparisons made between overweight and lean categories would not apply to comparisons
385 with TG concentrations, whose measurement is more accurate than the assessment of BCS.
386 This might have ensured a greater statistical power, explaining the increased number of
387 significant associations with the metabolic variables assessed.

388 Some may argue that an effect of the diet should have been included in the analyses. However,
389 this study was designed not to test for this parameter, but rather assess a cohort with
390 heterogeneous diets, representative of a client-owned population of dogs. Therefore, no
391 restriction was imposed in terms of diet, as long as the dogs had only access to a commercial
392 dry food diet and received no supplement during the three weeks preceding the analyses.

393 **Conclusions**

394 Both BCS and serum TG concentrations were independently associated with changes in
395 markers of lipid and glucose metabolism in this large cohort of slightly overweight, otherwise
396 healthy dogs. Non obese, overweight (6-7) body condition was positively associated with
397 insulin and cholesterol concentrations whilst TG concentrations were positively associated with
398 cholesterol, insulin, glucose, and fructosamine concentrations, and negatively associated with
399 FFA concentrations. Therefore, both BCS and fasting TG concentration seem to be useful
400 markers of ORMD-related changes in dogs. Further analyses using more complex multivariate
401 models are needed to better characterize the interplay between these biochemical analytes.

403 **References**

- 404 1. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic
405 disease. *Nat Rev Immunol* [Internet]. 2011 Feb 21 [cited 2017 May 12];11(2):85–97.
406 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21252989>
- 407 2. Punthakee Z, Goldenberg R, Katz P. Definition, Classification and Diagnosis of
408 Diabetes, Prediabetes and Metabolic Syndrome. *Can J Diabetes* [Internet]. 2018
409 Apr;42:S10–5. Available from:
410 <https://linkinghub.elsevier.com/retrieve/pii/S1499267117308134>
- 411 3. Verkest KR. Is the metabolic syndrome a useful clinical concept in dogs? A review of
412 the evidence. *Vet J* [Internet]. 2014 Jan;199(1):24–30. Available from:
413 <http://dx.doi.org/10.1016/j.tvjl.2013.09.057>
- 414 4. Chandler M, Cunningham S, Lund EM, Khanna C, Naramore R, Patel A, et al. Obesity
415 and Associated Comorbidities in People and Companion Animals: A One Health
416 Perspective. *J Comp Pathol* [Internet]. 2017 May [cited 2017 Nov 8];156(4):296–309.
417 Available from: https://ac.els-cdn.com/S0021997517301226/1-s2.0-S0021997517301226-main.pdf?_tid=317ea704-c497-11e7-ba4e-00000aacb361&acdnat=1510154111_b97e24a33138d315df6b96e82e3ab679
- 420 5. Weeth LP. Other Risks/Possible Benefits of Obesity. *Vet Clin North Am Small Anim
421 Pract* [Internet]. 2016 Sep [cited 2016 Dec 15];46(5):843–53. Available from:
422 <https://linkinghub.elsevier.com/retrieve/pii/S0195561616300237>
- 423 6. Clark M, Hoenig M. Metabolic Effects of Obesity and Its Interaction with Endocrine
424 Diseases. *Vet Clin North Am Small Anim Pract* [Internet]. 2016 Sep [cited 2016 Dec
425 15];46(5):797–815. Available from:
426 <http://linkinghub.elsevier.com/retrieve/pii/S0195561616300201>
- 427 7. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, et al. Effects of
428 diet restriction on life span and age-related changes in dogs. *J Am Vet Med Assoc*
429 [Internet]. 2002 May 1 [cited 2017 Jun 4];220(9):1315–20. Available from:
430 <http://www.ncbi.nlm.nih.gov/pubmed/11991408>
- 431 8. Lund EM, Armstrong PJ, Kirk CA, Klausner JS. Prevalence and Risk Factors for
432 Obesity in Adult Dogs from Private US Veterinary Practices. *J Appl Res Vet Med*
433 [Internet]. 2006;4(2):177–86. Available from:
434 <http://www.jarvm.com/articles/Vol4Iss2/Lund.pdf>
- 435 9. Endenburg N, Soontararak S, Charoensuk C, van Lith HA. Quality of life and owner
436 attitude to dog overweight and obesity in Thailand and the Netherlands. *BMC Vet Res*
437 [Internet]. 2018 Dec 9;14(1):221. Available from:
438 <https://bmccvetres.biomedcentral.com/articles/10.1186/s12917-018-1531-z>
- 439 10. Yam PS, Butowski CF, Chitty JL, Naughton G, Wiseman-Orr ML, Parkin T, et al.
440 Impact of canine overweight and obesity on health-related quality of life. *Prev Vet Med*
441 [Internet]. 2016 May [cited 2017 Sep 12];127:64–9. Available from: <http://ac.els->

442 cdn.com/S0167587716300988/1-s2.0-S0167587716300988-main.pdf?_tid=f4c5ee4c-
443 979d-11e7-a3e1-
444 00000aacb35e&acdnat=1505209213_14e8f3f4af51412cc206bbdfcfb87449

445 11. Muñoz-Garach A, Cornejo-Pareja I, Tinahones F. Does Metabolically Healthy Obesity
446 Exist? *Nutrients* [Internet]. 2016 Jun 1 [cited 2017 Jun 4];8(6):320. Available from:
447 <http://www.mdpi.com/2072-6643/8/6/320>

448 12. Chang Y, Jung H-S, Yun KE, Cho J, Ahn J, Chung EC, et al. Metabolically healthy
449 obesity is associated with an increased risk of diabetes independently of nonalcoholic
450 fatty liver disease. *Obesity* [Internet]. 2016 Jul 30 [cited 2016 Aug 23];24(9):1996–
451 2003. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/27474900>

452 13. Stefan N, Schick F, Häring H-U. Causes, Characteristics, and Consequences of
453 Metabolically Unhealthy Normal Weight in Humans. *Cell Metab* [Internet]. 2017 Aug
454 [cited 2018 Oct 24];26(2):292–300. Available from:
455 <http://dx.doi.org/10.1016/j.cmet.2017.07.008>

456 14. Tvarijonaviciute A, Ceron JJ, Holden SL, Cuthbertson DJ, Biourge V, Morris PJ, et al.
457 Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic
458 syndrome. *BMC Vet Res* [Internet]. 2012 Dec 28;8(1):147. Available from:
459 <http://www.biomedcentral.com/1746-6148/8/147>

460 15. Tvarijonaviciute A, Ceron JJ, de Torre C, Ljubić BB, Holden SL, Queau Y, et al.
461 Obese dogs with and without obesity-related metabolic dysfunction – a proteomic
462 approach. *BMC Vet Res* [Internet]. 2016 Dec 20 [cited 2017 Jun 14];12(1):211.
463 Available from:
464 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028949/pdf/12917_2016_Article_839.pdf

466 16. Lequarré A-S, Andersson L, André C, Fredholm M, Hitte C, Leeb T, et al. LUPA: A
467 European initiative taking advantage of the canine genome architecture for unravelling
468 complex disorders in both human and dogs. *Vet J* [Internet]. 2011 Aug [cited 2016 Aug
469 22];189(2):155–9. Available from:
470 <https://linkinghub.elsevier.com/retrieve/pii/S1090023311002279>

471 17. Laflamme D. Development and validation of a body condition score system for dogs.
472 *Canine Pract.* 1997;22(4):10–5.

473 18. Brooks D, Churchill J, Fein K, Linder D, Michel KE, Tudor K, et al. 2014 AAHA
474 Weight Management Guidelines for Dogs and Cats* †. *J Am Anim Hosp Assoc*
475 [Internet]. 2014 Jan [cited 2017 Jun 28];50(1):1–11. Available from:
476 https://www.aaha.org/public_documents/professional/guidelines/weight_management_guidelines.pdf

478 19. Diez M, Michaux C, Jeusette I, Baldwin P, Istasse L, Biourge V. Evolution of blood
479 parameters during weight loss in experimental obese Beagle dogs. *J Anim Physiol
480 Anim Nutr (Berl)* [Internet]. 2004 Apr;88(3–4):166–71. Available from:
481 <https://onlinelibrary.wiley.com/doi/10.1111/j.1439-0396.2003.00474.x>

482 20. German AJ, Hervera M, Hunter L, Holden SL, Morris PJ, Biourge V, et al.
483 Improvement in insulin resistance and reduction in plasma inflammatory adipokines

484 after weight loss in obese dogs. *Domest Anim Endocrinol* [Internet]. 2009
485 Nov;37(4):214–26. Available from:
486 <https://linkinghub.elsevier.com/retrieve/pii/S073972400900071X>

487 21. Tvarijonaviciute A, Tecles F, Martinez-Subiela S, Ceron JJ. Effect of weight loss on
488 inflammatory biomarkers in obese dogs. *Vet J* [Internet]. 2012 Aug;193(2):570–2.
489 Available from:
490 <http://search.proquest.com/docview/914408438?accountid=13042%5Cnhttp://oxfordsf>
491 x.hosted.exlibrisgroup.com/oxford?url_ver=Z39.88-
492 2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&s
493 id=ProQ:ProQuest+Dissertations+&+Theses+Global

494 22. Kim SP, Catalano KJ, Hsu IR, Chiu JD, Richey JM, Bergman RN. Nocturnal free fatty
495 acids are uniquely elevated in the longitudinal development of diet-induced insulin
496 resistance and hyperinsulinemia. *Am J Physiol - Endocrinol Metab* [Internet].
497 2007;292(6):1590–8. Available from:
498 <http://ajpendo.physiology.org/content/292/6/E1590.short>

499 23. Verkest KR, Rand JS, Fleeman LM, Morton JM. Spontaneously obese dogs exhibit
500 greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs.
501 *Domest Anim Endocrinol* [Internet]. 2012 Feb [cited 2016 Mar 7];42(2):103–12.
502 Available from: <http://www.sciencedirect.com/science/article/pii/S0739724011001494>

503 24. Söder J, Wernersson S, Hagman R, Karlsson I, Malmlöf K, Höglund K. Metabolic and
504 Hormonal Response to a Feed-challenge Test in Lean and Overweight Dogs. *J Vet
505 Intern Med* [Internet]. 2016 Mar 29;30(2):574–82. Available from:
506 <http://doi.wiley.com/10.1111/jvim.13830>

507 25. Hoenig M. Comparative Aspects of Human, Canine, and Feline Obesity and Factors
508 Predicting Progression to Diabetes. *Vet Sci* [Internet]. 2014 Aug 21;1(2):121–35.
509 Available from: <http://www.mdpi.com/2306-7381/1/2/121/>

510 26. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, Fat Distribution,
511 and Weight Gain as Risk Factors for Clinical Diabetes in Men. *Diabetes Care*
512 [Internet]. 1994 Sep 1;17(9):961–9. Available from:
513 <https://diabetesjournals.org/care/article/17/9/961/17890/Obesity-Fat-Distribution-and-Weight-Gain-as-Risk>

515 27. Veiga APM, Santos AP, Santos WIM, González FHD. Fructosamine as a Tool on the
516 Evaluation of Insulin Resistant Obese Dogs. *ARC J Anim Vet Sci* [Internet]. 2016
517 [cited 2017 Feb 27];2(2):2455–518. Available from:
518 <https://www.arcjournals.org/pdfs/ajavs/v2-i2/4.pdf>

519 28. Broussolle C, Tricot F, Garcia I, Orgiazzi J, Revol A. Evaluation of the fructosamine
520 test in obesity: consequences for the assessment of past glycemic control in diabetes.
521 *Clin Biochem* [Internet]. 1991 Apr [cited 2017 Jun 2];24(2):203–9. Available from:
522 <http://www.ncbi.nlm.nih.gov/pubmed/2040093>

523 29. Woo J, Cockram C, Lau E, Chan A, Swaminathan R. Influence of obesity on plasma
524 fructosamine concentration. *Clin Chem* [Internet]. 1992 Nov [cited 2017 Jun
525 2];38(11):2190–2. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/1424109>

526 30. Zoran DL. Obesity in Dogs and Cats: A Metabolic and Endocrine Disorder. *Vet Clin North Am Small Anim Pract* [Internet]. 2010 Mar;40(2):221–39. Available from: <http://dx.doi.org/10.1016/j.cvs.2009.10.009>

527

528

529 31. Aronson D, Bartha P, Zinder O, Kerner A, Markiewicz W, Avizohar O, et al. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. *Int J Obes* [Internet]. 2004 May 2 [cited 2019 May 28];28(5):674–9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/14993913>

530

531

532

533 32. Radakovich LB, Truelove MP, Pannone SC, Olver CS, Santangelo KS. Clinically healthy overweight and obese dogs differ from lean controls in select CBC and serum biochemistry values. *Vet Clin Pathol* [Internet]. 2017 Jun;46(2):221–6. Available from: <https://onlinelibrary.wiley.com/doi/10.1111/vcp.12468>

534

535

536

537 33. Tvarijonaviciute A, Martinez S, Gutierrez A, Ceron JJ, Tecles F. Serum acute phase proteins concentrations in dogs during experimentally short-term induced overweight. A preliminary study. *Res Vet Sci* [Internet]. 2011 Feb [cited 2017 Jun 5];90(1):31–4. Available from: https://vpn.gw.ulg.ac.be/S0034528810001773/DanaInfo=ac.els-cdn.com+1-s2.0-S0034528810001773-main.pdf?_tid=15a6737c-49d6-11e7-aecc-00000aacb35e&acdnat=1496657129_c7263074d33e46faa1c64dd4e93d81a

538

539

540

541

542

543 34. Veiga APM, Price CA, de Oliveira ST, dos Santos AP, Campos R, Barbosa PR, et al. Association of canine obesity with reduced serum levels of C-reactive protein. *J Vet Diagnostic Investig* [Internet]. 2008 Mar 1 [cited 2017 May 11];20(2):224–8. Available from: <http://journals.sagepub.com/doi/pdf/10.1177/104063870802000214>

544

545

546

547 35. Tropf M, Nelson OL, Lee PM, Weng HY. Cardiac and Metabolic Variables in Obese Dogs. *J Vet Intern Med* [Internet]. 2017 Jul;31(4):1000–7. Available from: <http://doi.wiley.com/10.1111/jvim.14775> <http://www.ncbi.nlm.nih.gov/pubmed/28608635>

548

549

550

551 36. Bailhache E, Nguyen P, Krempf M, Siliart B, Magot T, Ouguerram K. Lipoproteins abnormalities in obese insulin-resistant dogs. *Metabolism* [Internet]. 2003 May;52(5):559–64. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0026049503000234>

552

553

554

555 37. Gayet C, Bailhache E, Dumon H, Martin L, Siliart B, Nguyen P. Insulin resistance and changes in plasma concentration of TNFalpha, IGF1, and NEFA in dogs during weight gain and obesity. *J Anim Physiol Anim Nutr (Berl)* [Internet]. 2004 Apr;88(3–4):157–65. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15059241>

556

557

558

559 38. Jeusette IC, Lhoest ET, Istasse LP, Diez MO. Influence of obesity on plasma lipid and lipoprotein concentrations in dogs. *Am J Vet Res* [Internet]. 2005 Jan 1 [cited 2016 Aug 8];66(1):81–6. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15691040>

560

561

562 39. Tribuddharatana T, Kongpiromchean Y, Sribhen K, Sribhen C. Biochemical alterations and their relationships with the metabolic syndrome components in canine obesity. *Kasetsart J - Nat Sci* [Internet]. 2011 [cited 2017 Jun 4];45(4):622–8. Available from: <http://www.thaiscience.info/journals/Article/TKJN/10898335.pdf>

563

564

565

566 40. José Lahm Cardoso M, Fagnani R, Zaghi Cavalcante C, de Souza Zanutto M, Júnior AZ, Holsback da Silveira Fertonani L, et al. Blood Pressure, Serum Glucose,

567

568 Cholesterol, and Triglycerides in Dogs with Different Body Scores. *Vet Med Int*
569 [Internet]. 2016;2016:1–7. Available from:
570 <https://www.hindawi.com/journals/vmi/2016/8675283/>

571 41. Adolphe JL, Silver TI, Childs H, Drew MD, Weber LP. Short-term obesity results in
572 detrimental metabolic and cardiovascular changes that may not be reversed with weight
573 loss in an obese dog model. *Br J Nutr* [Internet]. 2014 Aug 30;112(04):647–56.
574 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24877650>

575 42. Geffré A, Concorde D, Braun J-P, Trumel C. Reference Value Advisor: a new
576 freeware set of macroinstructions to calculate reference intervals with Microsoft Excel.
577 *Vet Clin Pathol* [Internet]. 2011 Mar;40(1):107–12. Available from:
578 <https://onlinelibrary.wiley.com/doi/10.1111/j.1939-165X.2011.00287.x>

579 43. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, et al.
580 ASVCP reference interval guidelines: determination of de novo reference intervals in
581 veterinary species and other related topics. *Vet Clin Pathol*. 2012 Dec;41(4):441–53.

582 44. R Development Core Team: A language and environment for statistical computing.
583 Vienna, Austria: R Foundation for Statistical Computing. 2014.

584 45. Peña C, Suárez L, Bautista I, Montoya JA, Juste MC. Relationship between analytic
585 values and canine obesity. *J Anim Physiol Anim Nutr (Berl)* [Internet]. 2008
586 Jun;92(3):324–5. Available from: <https://onlinelibrary.wiley.com/doi/10.1111/j.1439-0396.2007.00786.x>

587 46. Bailhache E, Ouguerram K, Gayet C, Krempf M, Siliart B, Magot T, et al. An insulin-
588 resistant hypertriglyceridaemic normotensive obese dog model: assessment of insulin
589 resistance by the euglycaemic hyperinsulinaemic clamp in combination with the stable
590 isotope technique. *J Anim Physiol Anim Nutr (Berl)* [Internet]. 2003;87(3–4):86–95.
591 Available from: <http://doi.wiley.com/10.1046/j.1439-0396.2003.00419.x>

592 47. Jeusette IC, Detilleux J, Shibata H, Saito M, Honjoh T, Delobel A, et al. Effects of
593 chronic obesity and weight loss on plasma ghrelin and leptin concentrations in dogs.
594 *Res Vet Sci*. 2005;79(2):169–75.

595 48. Lee S, Kweon O-K, Kim WH. Increased Leptin and Leptin Receptor Expression in
596 Dogs With Gallbladder Mucocele. *J Vet Intern Med* [Internet]. 2017 Jan [cited 2017
597 Nov 29];31(1):36–42. Available from:
598 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259632/pdf/JVIM-31-36.pdf>

599 49. Parker VJ, Freeman LM. Association between Body Condition and Survival in Dogs
600 with Acquired Chronic Kidney Disease. *J Vet Intern Med* [Internet]. 2011
601 Nov;25(6):1306–11. Available from:
602 <https://onlinelibrary.wiley.com/doi/10.1111/j.1939-1676.2011.00805.x>

603 50. Myers DG, Bach PJ, Schreiber FB. Normative and Informational Effects of Group
604 Interaction*. *Sociometry*. 1974;37(2):275–86.

605 51. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance
606 and type 2 diabetes. *Nature*. 2006.

607

608 52. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. The
609 Pathogenetic Role of Cortisol in the Metabolic Syndrome: A Hypothesis. *J Clin*
610 *Endocrinol Metab* [Internet]. 2009 Aug 1;94(8):2692–701. Available from:
611 <https://academic.oup.com/jcem/article/94/8/2692/2596309>

612 53. Nelson RW, Reusch CE. Animal models of disease: classification and etiology of
613 diabetes in dogs and cats. *J Endocrinol*. 2014;222(3).

614 54. Gilor C, Niessen SJM, Furrow E, DiBartola SP. What's in a Name? Classification of
615 Diabetes Mellitus in Veterinary Medicine and Why It Matters. *J Vet Intern Med*
616 [Internet]. 2016 [cited 2018 Feb 14];30(4):927–40. Available from:
617 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108445/pdf/JVIM-30-0927.pdf>

618 55. Banfield. State of Pet Health 2014 Report. 2016;

619 56. Mattin M, O'Neill D, Church D, McGreevy PD, Thomson PC, Brodbelt D. An
620 epidemiological study of diabetes mellitus in dogs attending first opinion practice in
621 the UK. *Vet Rec* [Internet]. 2014 Apr;174(14):349–349. Available from:
622 <http://doi.wiley.com/10.1136/vr.101950>

623 57. Klinkenberg H, Sallander MH, Hedhammar A. Feeding, Exercise, and Weight
624 Identified as Risk Factors in Canine Diabetes Mellitus. *J Nutr* [Internet]. 2006 Jul
625 1;136(7):1985S-1987S. Available from:
626 <https://academic.oup.com/jn/article/136/7/1985S/4664763>

627 58. Pöppl AG, de Carvalho GLC, Vivian IF, Corbellini LG, González FHD. Canine
628 diabetes mellitus risk factors: A matched case-control study. *Res Vet Sci* [Internet].
629 2017 [cited 2017 Dec 12];114:469–73. Available from: https://ac.els-cdn.com/S0034528817303156/1-s2.0-S0034528817303156-main.pdf?_tid=c5f1f458-df28-11e7-831d-00000aab0f6c&acdnat=1513075367_33935133eb97f7dd7cb02b3b9f49aa02

633 59. Lawler DF, Larson BT, Ballam JM, Smith GK, Biery DN, Evans RH, et al. Diet
634 restriction and ageing in the dog: major observations over two decades. *Br J Nutr*
635 [Internet]. 2008 Apr 6 [cited 2016 Aug 31];99(04):793–805. Available from:
636 http://www.journals.cambridge.org/abstract_S0007114507871686

637 60. Jeusette I, Greco D, Aquino F, Detilleux J, Peterson M, Romano V, et al. Effect of
638 breed on body composition and comparison between various methods to estimate body
639 composition in dogs. *Res Vet Sci* [Internet]. 2010;88(2):227–32. Available from:
640 <http://dx.doi.org/10.1016/j.rvsc.2009.07.009>

641 61. Kim SP, Ellmerer M, Kirkman EL, Bergman RN. beta-Cell “rest” accompanies
642 reduced first-pass hepatic insulin extraction in the insulin-resistant, fat-fed canine
643 model. *AJP Endocrinol Metab* [Internet]. 2007 Jan 30 [cited 2017 Jun
644 12];292(6):E1581–9. Available from:
645 <http://ajpendo.physiology.org/content/ajpendo/292/6/E1581.full.pdf>

646 62. Raffan E, Dennis RJ, O'Donovan CJ, Becker JM, Scott RA, Smith SP, et al. A
647 Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in
648 Obesity-Prone Labrador Retriever Dogs. *Cell Metab* [Internet]. 2016 May;23(5):893–
649 900. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S1550413116301632>

650 63. Colliard L, Ancel J, Benet J-J, Paragon B-M, Blanchard G. Risk Factors for Obesity in
651 Dogs in France. *J Nutr* [Internet]. 2006 Jul 1;136(7):1951S-1954S. Available from:
652 <https://academic.oup.com/jn/article/136/7/1951S/4664731>

653 64. Leclerc L, Thorin C, Flanagan J, Biourge V, Serisier S, Nguyen P. Higher neonatal
654 growth rate and body condition score at 7 months are predictive factors of obesity in
655 adult female Beagle dogs. *BMC Vet Res*. 2017;13(1):1–13.

656 65. Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: Its etiology, effects and
657 treatment [Internet]. Vol. 176, *CMAJ*. 2007 [cited 2017 Jun 2]. p. 1113–20. Available
658 from:
659 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839776/pdf/20070410s00019p1113.pdf>

660 66. Eckel N, Mühlenbruch K, Meidtner K, Boeing H, Stefan N, Schulze MB.
661 Characterization of metabolically unhealthy normal-weight individuals: Risk factors
662 and their associations with type 2 diabetes. *Metabolism* [Internet]. 2015 [cited 2017
663 Aug 24];64(8):862–71. Available from:
664 [http://www.metabolismjournal.com/article/S0026-0495\(15\)00087-6/pdf](http://www.metabolismjournal.com/article/S0026-0495(15)00087-6/pdf)

665 67. Cambuli VM, Musiu MC, Incani M, Paderi M, Serpe R, Marras V, et al. Assessment of
666 adiponectin and leptin as biomarkers of positive metabolic outcomes after lifestyle
667 intervention in overweight and obese children. *J Clin Endocrinol Metab*.
668 2008;93(8):3051–7.

669 68. Peng YF, Wei YS. The relationships between serum fructosamine concentrations and
670 lipid profiles in community-dwelling adults. *Sci Rep* [Internet]. 2017;7(1):3–7.
671 Available from: <http://dx.doi.org/10.1038/s41598-017-07287-5>

672 69. Ginsberg HN, Zhang Y-L, Hernandez-Ono A. Regulation of plasma triglycerides in
673 insulin resistance and diabetes. *Arch Med Res* [Internet]. 2005 [cited 2017 Jun
674 3];36(3):232–40. Available from:
675 https://vpn.gw.ulg.ac.be/S0188440905000068/DanaInfo=ac.els-cdn.com+1-s2.0-S0188440905000068-main.pdf?_tid=298aca28-489b-11e7-a180-0000aacb362&acdnat=1496521871_771cdf524bc71d83099f9276c36fcfc

676 70. Glueck CJ, Khan NA, Umar M, Uppal MS, Ahmed W, Morrison JA, et al. Insulin
677 Resistance and Triglycerides. *J Investig Med* [Internet]. 2009 Dec 1 [cited 2019 May
678 26];57(8):874–81. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/19809367>

679 71. Hoffman RP. Increased fasting triglyceride levels are associated with hepatic insulin
680 resistance in caucasian but not African-American adolescents. *Diabetes Care*.
681 2006;29(6):1402–4.

682 72. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, et al.
683 A Sustained Increase in Plasma Free Fatty Acids Impairs Insulin Secretion in
684 Nondiabetic Subjects Genetically Predisposed to Develop Type 2 Diabetes. *Diabetes*
685 [Internet]. 2003 Oct 1;52(10):2461–74. Available from:
686 <http://www.ncbi.nlm.nih.gov/pubmed/14514628>

687 73. Kim SP, Ellmerer M, Van Citters GW, Bergman RN. Primacy of hepatic insulin
688 resistance in the development of the metabolic syndrome induced by an isocaloric

689

690

691

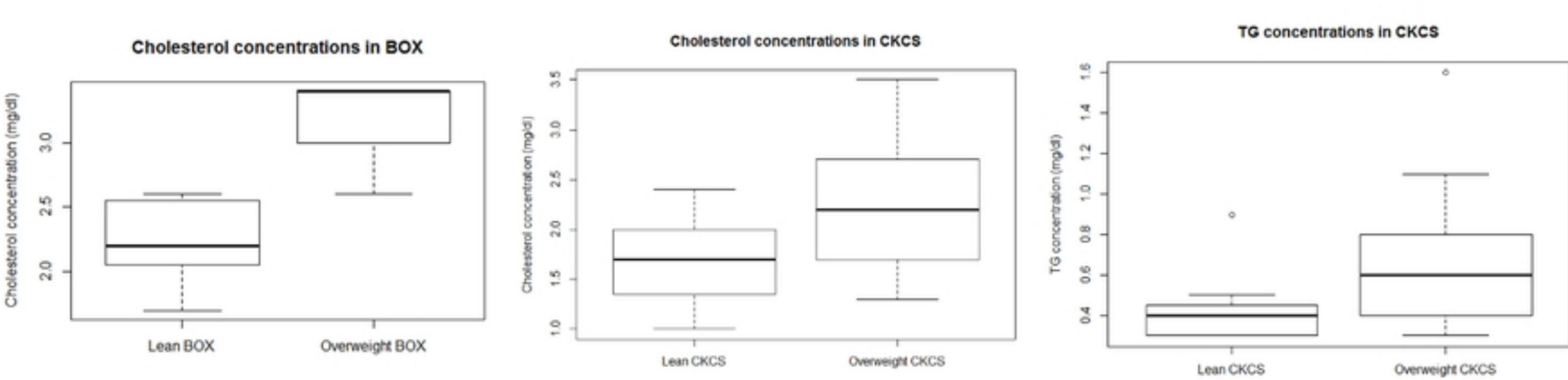
692 moderate-fat diet in the dog. *Diabetes* [Internet]. 2003 Oct [cited 2016 Aug
693 5];52(10):2453–60. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/14514627>

694 74. German AJ, Holden SL, Moxham GL, Holmes KL, Hackett RM, Rawlings JM. A
695 simple, reliable tool for owners to assess the body condition of their dog or cat. *J Nutr*
696 [Internet]. 2006 [cited 2016 Feb 16];136:2031S-2033S. Available from:
697 <http://www.mendeley.com/catalog/simple-reliable-tool-owners-assess-body-condition->
698 dog-cat/

699 75. German AJ, Holden SL, Morris PJ, Biourge V. Comparison of a bioimpedance monitor
700 with dual-energy x-ray absorptiometry for noninvasive estimation of percentage body
701 fat in dogs. *Am J Vet Res* [Internet]. 2010 Apr;71(4):393–8. Available from:
702 <http://www.ncbi.nlm.nih.gov/pubmed/20367047>

703 Acknowledgements

704 Belgian police and its contribution to the collection of dogs.


705

706 Supporting information

707 S1 File. The protocol.

708 **S2 File. The dataset.**

709

Figure