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Abstract
Pseudoknots are key structure motifs of RNA and pseudoknotted RNAs
play important roles in a variety of biological processes. Here, we
present KnotFold, an accurate approach to the prediction of RNA
secondary structure including pseudoknots. The key elements of Knot-
Fold include a learned potential function and a minimum-cost flow
algorithm to find the secondary structure with the lowest potential.
KnotFold learns the potential from the RNAs with known struc-
tures using a self-attention-based neural network, thus avoiding the
inaccuracy of hand-crafted energy functions. The specially-designed
minimum-cost flow algorithm used by KnotFold considers all possible
combinations of base pairs and selects from them the optimal combina-
tion. The algorithm breaks the restriction of nested base pairs required
by the widely-used dynamic programming algorithms, thus facilitat-
ing the identification of pseudoknots. Using a total of 1605 RNAs
as representatives, we demonstrate the successful application of Knot-
Fold in predicting RNA secondary structures including pseudoknots
with accuracy significantly higher than the state-of-the-art approaches.
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We anticipate that KnotFold, with its superior accuracy, will greatly
facilitate the understanding of RNA structures and functionalities.

1 Introduction
Ribonucleic acid (RNA) are polymer molecules with essential roles involving
in a large variety of biological processes [1, 2], including transcription, trans-
lation [3], catalysis [4], gene expression regulation [5], protein synthesis [6],
and degradation [7]. Most biologically active RNAs, say mRNA, tRNA, and
non-coding RNAs (ncRNAs), usually fold into specific structures due to the
existence of self-complementary parts. These structures, together with RNA
primary sequences, largely determine the biological functions of RNAs [8];
thus, a deep understanding of RNA structures is of great significance.

RNA structures can be experimentally determined using X-ray crystallog-
raphy [9], nuclear magnetic resonance [10], or cryo-electron microscopy [11].
These experimental determination technologies have achieved great progress;
however, the high experimental cost usually required by these technologies [12]
precludes their applications – over 24 million ncRNAs have been sequenced
and collected in the RNAcentral database [13] but only a tiny fraction of
them have their structures experimentally determined [14]. Compared with
these experimental determination technologies, computational prediction of
RNA structures purely from RNA sequences is substantially efficient and has
become a promising method for understanding RNA structures.

RNA usually form secondary structure through pairing bases with hydro-
gen bonds and RNA secondary structures largely can be predicted without
knowledge of tertiary structure as they are much more stable and accessible
in cells than their tertiary form [15, 16]. One strategy for RNA secondary
structure prediction is thermodynamics, which quantifies the stability of an
RNA structure using folding free energy change and then selects the lowest
free energy structure as it is the most probable one in the whole structure
ensemble [17–19]. Turner’s nearest-neighbor model [19], a representative of
thermodynamic prediction approaches, decomposes an RNA secondary struc-
ture into a collection of nearest-neighbor loops, characterizes them using
multiple free energy parameters, and sums up these parameters as the free
energy of the entire secondary structure [20, 21]. The free energy parameters
are determined in advance using experimental techniques, say optical melt-
ing [22], or determined statistically through analyzing known RNA structures
with machine learning techniques [23–25]. The lowest free energy secondary
structure can be calculated using the dynamic programming technique, which
determines the optimal base pairs recursively [26].

RNA structures usually contain a special kind of structure motifs called
pseudoknots, which are bipartite helical structures formed through pairing
a single-stranded region inside a stem-loop structure with a complementary
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stretch outside [27]. Pseudoknots can function as stand-alone elements or acts
as parts of complex RNA structures to stabilize them [28, 29]. Understanding
pseudoknots is of significant importance as pseudoknotted RNAs participate
in a wide range of biological processes, including replication, RNA process-
ing, inactivation of toxins, and gene expression control [30–32]. Figure 1a
demonstrates an example of RNA secondary structure including pseudoknots.

Despite the importance of pseudoknots, accurate prediction of RNA sec-
ondary structure including pseudoknots is a great challenge, partly due
to the various composition of loops and helices and the lack of sequence-
specific features [33]. Theoretically, the calculation of the lowest free energy
structure including pseudoknots under the nearest neighbor model is NP-
hard [34]. To solve this hard problem, conventional prediction approaches
make compromises through limiting pseudoknot types or even focusing on
the pseudoknot-free structures only. However, even if posing several reason-
able limitations on pseudoknot types, the conventional dynamic programming
algorithms still need O(n4) ∼ O(n6) time for an RNA with n bases,
thus precluding their applications for long RNA sequences [35–37]. Other
approaches, such as ILM [38], HotKnots [39], FlexStem [40], ProbKnot [41],
and IPknot [42, 43], circumvent this computation difficulty using heuristic
strategies. These approaches, although very fast, usually cannot guarantee
quality of the predicted secondary structures. Recently, deep learning has
been applied to predict base pairing probabilities with promising results [44–
46]; however, the construction of secondary structure from the base pairing
probabilities remains a challenge.
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Fig. 1 An example of RNA secondary structure including pseudoknots
(bpRNA_RFAM_29722). a, The RNA secondary structure includes a pseudoknot formed by
five base pairs: 4C-51G, 5G-50C, 6U-49A, 7U-48A, and 8G-47C. b, Base pairs are divided into
three categories for better evaluation of structures including pseudoknots: (i) pseudoknot-
free (PKF) base pairs, i.e., base pairs that form no crossing with any base pair (in blue), (ii)
pseudoknotted (PK) base pairs, i.e., the minimum set of base pairs such that, if removed,
the remaining secondary structure has no pseudoknots any more (in magenta), and (iii)
crossing-pseudoknot (CPK) base pairs, i.e., base pairs crossing some pseudoknotted base
pairs (in green)
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In this study, we report an accurate and fast approach (called KnotFold)
to the prediction of RNA secondary structure including pseudoknots. Our
approach is featured by two key elements, including: (1) a structural potential
learned using self-attention-based neural network: KnotFold learns a structural
potential from RNAs with known structures: it first predicts the base pairing
probability for any two bases using a self-attention neural networks and then
transforms the probabilities into a potential function. The potential function
reduces the inaccuracies of hand-crafted free energies as it is learned from a
large number of RNAs with known structures. Unlike the nearest-neighbor
model calculating the contribution of a base pair to free energy according to
its neighboring base pairs, the self-attention mechanism enables KnotFold to
capture the relationship between any base pairs, especially the long-distance
base pairs, thus making it more suitable for identifying pseudoknots. (2) a
specially-designed minimum-cost flow algorithm to find the secondary struc-
ture with the lowest potential: We calculate the lowest potential structure
through solving the minimum-cost flow in a flow network: the network uses
nodes to represent bases and uses edges to represent base pairs with the corre-
sponding pairwise potential as edge weight. It is worth pointing out that the
minimum-cost flow algorithm considers all possible combinations of base pairs
without restriction on pseudoknot types, thus making KnotFold more general
and suitable for RNAs with various types of pseudoknots.

We demonstrate the accuracy of KnotFold using two benchmark sets,
including PKnotTest (300 RNAs) and SPOT-TS0 (1305 RNAs). To better
evaluate the performance of structure prediction approaches on pseudoknots,
we divide all base pairs into pseudoknot-free (PKF) base pairs, pseudoknotted
(PK) base pairs [47, 48], and crossing-pseudoknot (CPK) base pairs, derived
from the convention used by previous studies including IPknot [43] (see Fig. 1b
for example). For RNAs in PKnotTest, KnotFold identifies 63.1% pseudo-
knotted base pairs and 67.9% crossing-pseudoknot base pairs, significantly
higher than the state-of-the-art approach (27.2% and 50.1%, respectively).
We also provide bpRNA_RFAM_27767 as a concrete example to investigate
why the conventional dynamic programming algorithms fail. Taking 5L4O as
another example, we illustrate that KnotFold, with slight modifications, can
also successfully predict base triples, which poses difficulty to conventional sec-
ondary structure prediction approaches. In addition, KnotFold accomplished
secondary structure prediction for a long RNA with over 4300 bases within 90
seconds on an ordinary personal computer. These results clearly demonstrate
the superiority of KnotFold over the existing approaches in both accuracy and
efficiency.

2 Results
In this section, we first demonstrate the concept of KnotFold using the RNA
bpRNA_RFAM_29722 as a representative, and then exhibit the performance of
KnotFold on two datasets, including PKnotTest (containing 300 RNAs) and
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Fig. 2 Overview of the KnotFold approach to predicting RNA secondary struc-
ture including pseudoknots. a, The main procedures of KnotFold illustrated using
bpRNA_RFAM_29722 as an example: KnotFold first predicts the base pairing probability for
any two bases of the target RNA, then constructs pairwise potentials based on the acquired
base pairing probabilities, and finally calculates the optimal secondary structure with the
lowest potential using the minimum-cost flow algorithm. Here, the flow network shows four
bases, i.e., 5G, 41U, 50C, 56A, and 12 edges among these bases as representatives, and
KnotFold selects the corresponding base pairs 5G-50C (in magenta) and 41U-56A (in green)
as part of the predicted secondary structure. The final prediction consists of a total of 18
base pairs but only one false-positive base pair 15G-20C (in blue). b, The iteration steps of
solving the minimum-cost flow. The minmimum-cost flow algorithm begins with a zero flow
with none edges and iteratively adds new edges to the current flow, or sometimes removes
existing edges. We use KnotFold to construct the secondary structures corresponds to the
intermediate flows. The cost decreases as iteration proceeds and finally reaches -351.6 after
36 steps. During this process, some base pairs are newly added (shown as orange lines here)
while some are removed, which is described in more details in Supplementary Figure 4

SPOT-TS0 [44] (containing 1305 RNAs). The details of these datasets are
provided in the Methods section. We further demonstrate the advantages of
KnotFold through comparing it with the existing approaches.

2.1 Overview of the KnotFold approach
KnotFold predicts secondary structure of a target RNA through three main
steps, i.e., predicting the base pairing probability for any two bases of the given
RNA, constructing a potential using the acquired base pairing probabilities,
and calculating the optimal secondary structure with the lowest potential using
a minimum-cost flow algorithm. We describe these steps in detail as follows.

Learning the base pairing probability: For an RNA sequence x with
n bases, we parameterize its secondary structure as an n × n matrix S =
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{Sij |Sij ∈ {0, 1}, 1 ≤ i, j ≤ n}, where Sij = 1 if the i-th base pairs with the j-
th base and Sij = 0 otherwise. To find the most likely secondary structure for
the target RNA sequence, we first apply a deep neural network to predict the
base pairing probability for any two bases. Here, we use P (i pairs with j|x)
to represent the base pairing probability between the i-th and j-th bases.
The neural network uses transformer encoder blocks [49] to encode bases and
then calculates outer product of the encoding of two bases, which is used to
represent the pairing probability of the two bases. The use of self-attention
mechanism gains our approach an advantage that, when predicting the pairing
probability between two bases, the entire sequence, rather than these two bases
alone, is taken into consideration (see Supplementary Fig. 6 for further details
of the network architecture).

Constructing structural potential considering all pairs of bases:
To generate a secondary structure that conforms to the predicted base pairing
probabilities, we construct a structural potential by summing up all pair-
wise potentials, i.e., the negative logarithm of the base pairing probabilities.
It should be noted that, during the calculation, we correct for the over-
representation of the prior by subtracting a reference distribution from the
base pairing potential in the logarithm domain. The reference distribution
models the base pairing probability P (i pairs with j|len(x)) independent of
RNA sequence, which is computed through executing the same neural network
architecture with RNA length as the only input.

In particular, the potential of a secondary structure S is formally described
as:

E(S) = −
∑
i<j

log V (S, i, j)

Vref (S, i, j)
+ λ

∑
i<j

Sij . (1)

Here, V (S, i, j) is assigned the probability P (i pairs with j|x) if Sij =
1, and 1 − P (i pairs with j|x) otherwise. Similarly, Vref (S, i, j) represents
P (i pairs with j|len(x)) if Sij = 1, and 1−P (i pairs with j|len(x)) otherwise.
The term λ

∑
i<j Sij is introduced to penalize the inappropriate secondary

structure if it has too many or too few base pairs. The parameter λ was opti-
mized using the validation data set. We provide the optimal setting of this
parameter in supplementary materials (Supplementary Fig. 5).

Calculating the optimal secondary structure: To find the opti-
mal secondary structure S that minimizes the potential E(S), KnotFold
solves a minimum-cost flow problem [50–52], in which the minimum-cost flow
corresponds to the optimal secondary structure. Briefly speaking, we first con-
structed a bipartite graph, in which both parts consist of n nodes, and each
node corresponds to a base of the given RNA. We drew an edge from each
node in the left part to each node in the right part. We further added an extra
node (called source node, denoted as s) and connected it with each node in the
left part. Similarly, we also added an extra node (called sink node, denoted
as t) and connected it with each node in the right part. By setting appro-
priate capacity and cost for each edge according to the calculated pairwise
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Fig. 3 The difference between KnotFold and its variant KnotFold-DP illustrated
using bpRNA_RFAM_27767 as an example. Both KnotFold and KnotFold-DP use the same
pairwise potentials as their input, and they differ only in the algorithms to find the secondary
structure with the lowest potential: KnotFold uses the minimum-cost flow algorithm while
KnotFold-DP uses the dynamic programming algorithm. a, The calculated pairwise poten-
tials for the target RNA. Here, circles highlight two regions of base pairs that are crossing.
b, The predicted secondary structure by KnotFold-DP. The orange dash lines represent the
missing base pairs while blue lines represent the false-positive base pairs. c, The predicted
secondary structure by KnotFold. The base pairs missed by KnotFold-DP are successfully
predicted (shown in magenta)

potentials, the minimum-cost flow for this network-flow problem is exactly the
optimal secondary structure with the lowest potential. We used a specially-
designed algorithm to solve the minimum-cost flow. The algorithm, together
with the setting of capacities and costs for edges, are described in more details
in Section 3.

Using the RNA bpRNA_RFAM_29722 as a representative, we demonstrate
the basic idea and main concepts of KnotFold as follows:

First, KnotFold predicted the base pairing probabilities using a deep neu-
ral network and then calculated pairwise potentials accordingly. As shown in
Figure 2, the pairwise potentials exhibit three strips with significantly low
values. These strips, which are perpendicular with the main diagonal, provide
strong signals of three possible base pair stackings formed by the base pairing
between the regions [4, 8] and [47, 51], [10, 15] and [20, 25], and [36,
43] and [53, 61], respectively. KnotFold further constructed a flow network
with associated cost and capacity on edges. For example, the edge 5G-50C and
41U-56A are assigned with a negative cost of -8.84 and -0.47, respectively. In
contrast, the edges 5G-41U, 41U-50C have a positive cost of 11.93 and 11.93,
respectively. We assigned each edge with a capacity of 1, thus allowing any
base to pair with at most one base.

Next, KnotFold calculated the minimum-cost flow using a modified
shortest-path algorithm. A flow contains several paths from the source s to the
sink t, and the accumulated cost of all edges traveled by the flow is denoted
as its cost. To solve the minimum-cost flow, the algorithm begins with a zero-
flow and continuously improved the current flow through adding, removing, or
replacing some edges, in the hope of decreasing the total cost of the flow step
by step. It should be pointed out that in our flow network, the flow value of

7



each edge is either 0 or 1, i.e., an edge should be either saturated (flow value
is 1) or empty (flow value is 0).

In the present case, after a total of 36 steps of improvement, the algo-
rithm eventually acquired the minimum-cost flow with a total cost of -351.6,
among which 5G-50C and 56A-41U are saturated with a flow while 5G-41U and
50C-41U are empty edges (Fig. 2b).

Finally, we obtained a predicted secondary structure using the edges trav-
eled by the minimum-cost flow, i.e., selecting the saturated edges with the
flow value of 1. In the present case, KnotFold reported 18 base pairs including
5G-50C and 41U-56A, and successfully identified the pseudoknot (Fig. 2).

2.2 Predicting secondary structures including
pseudoknots using KnotFold

After demonstrating the main steps of KnotFold using bpRNA_RFAM_29722
as an example, we further carried out a thorough evaluation of KnotFold on
the PKnotTest dataset that contains a total of 300 pseudoknotted RNAs. To
avoid the possible overlap between this test set and the training set, we have
performed a filtering operation to guarantee that PKnotTest has no sequence
with identity exceeding 80% over any RNA used for training.

The 300 RNAs in PKnotTest dataset contain a total of 21905 base
pairs, which can be further divided into three categories, including 13968
pseudoknot-free (PKF) base pairs, 5325 pseudoknotted (PK) base pairs, and
2612 crossing-pseudoknot (CPK) base pairs. Thus, we can examine the predic-
tion accuracy of KnotFold on these three categories of base pairs individually,
which should facilitate the understanding of the performance of KnotFold in
depth.

To investigate the contribution by the key elements of KnotFold, we built
a variant of KnotFold that replaces the minimum-cost flow algorithm with
the Zuker-style dynamic programming algorithm [26] for calculating the opti-
mal secondary structure. Specifically, the variant (referred to as KnotFold-DP
hereinafter) and the original KnotFold use the same pairwise potentials and
they differ only in the way to infer the optimal secondary structure from these
potentials.

Supplementary Table 1 suggests that KnotFold achieves a high prediction
accuracy of 0.667 for all base pairs in PKnotTest, and identifies the pseudo-
knotted base pairs and crossing base pairs with prediction accuracy of 0.631
and 0.679, respectively. More specifically, KnotFold identifies 42.1% more
pseudoknotted base pairs and 12.8% more crossing-pseudoknot base pairs than
the variant KnotFold-DP, although these two approaches achieved comparable
performance on the pseudoknot-free base pairs. This result clearly illustrates
the advantage of KnotFold in predicting pseudoknotted base pairs.

We further carried out an in-depth examination on the failure cases of
KnotFold-DP. As shown in Figure 3, despite that KnotFold-DP achieves a
high accuracy of 0.868, it completely missed the five pseudoknotted base pairs,
36G-57U, 37C-56G, 42C-100G, 43C-99G, 44U-98A (shown as dashed lines). The
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Fig. 4 Comparison of KnotFold, RNAstructure, SPOT-RNA and MXfold2 in
terms of overall prediction accuracy and the performance for various types of
base pairs on PKnotTest. a, Overall performance (precision, recall, and F1 score) of
RNAstructure, SPOT-RNA, MXfold2, and KnotFold. b, Recall of these approaches for vari-
ous types of base pairs, i.e., pseudoknot-free base pairs, crossing-pseudoknot base pairs, and
pseudoknotted base pairs

underlying reason is that the Zuker’s dynamic programming algorithm used
by KnotFold-DP is recursive and therefore suitable for the nested base pairs.
However, the pseudoknotted base pairs break this recursion assumption: when
applying the dynamic programming algorithm on a pseudoknotted RNA, only
a subset of base pairs can be identified.

Figure 3 also suggests that KnotFold-DP correctly predicted all
pseudoknot-free base pairs and 71.4% crossing-pseudoknot base pairs (solid
lines) but missed the five pseudoknotted base pairs (dashed lines). In con-
trast, KnotFold adopts the network-flow technique and thus does not have
such restrictions on the base pairs. As result, KnotFold successfully identified
the five pseudoknotted base pairs.

Together, these results reveal that the major source of KnotFold’s perfor-
mance comes from the use of the minimum-cost flow algorithm to identify base
pairs, especially for the pseudoknotted and crossing-pseudoknot base pairs.

2.3 Comparison with the existing approaches
We compared KnotFold with three widely-used approaches, including
RNAstructure[53], SPOT-RNA [44], and MXfold2 [54]. We provide experimen-
tal results on PKnotTest in this subsection and list the results on SPOT-TS0
in supplementary materials (see Supplementary Table 2-4).

Unlike SPOT-RNA and MXfold2 applying deep learning techniques to
estimate base pairing probabilities, RNAstructure uses Turner’s nearest neigh-
bor model to estimate free energy of an RNA structure. RNAstructure
provides multiple programs to calculate the lowest free energy structure,
including Fold [22], which applies the widely-known dynamic programming
technique, MaxExpect [55], which reports the secondary structure with max-
imum expected accuracy, and ProbKnot [41], which was designed to predict
secondary structure including pseudoknots. We executed different component
programs to suit target RNAs: for the RNAs in SPOT-TS0, we executed all of
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Fig. 5 The predicted secondary structures by RNAstructure, SPOT-RNA,
MXfold2 and KntoFold for bpRNA_RFAM_2518. a, The ground-truth secondary structure
of the target RNA, in which the pseudoknotted base pairs are shown in red. The predicted
structure by KnotFold (b), RNAstructure (c), SPOT-RNA (d) and MXfold2 (e) has an
accuracy of 0.943, 0.367, 0.646 and 0.615, respectively. KnotFold identifies all pseudoknot-
ted base pairs (in red) and 84.6% crossing-pseudoknot base pairs

these three programs and selected the best prediction as the final prediction
of RNAstructure. In contrast, for the RNAs in PKnotTest, we directly used
the prediction by ProbKnot as it was specially designed for pseudoknots.

As shown in Figure 4, KnotFold outperforms the three approaches and
the superiority of KnotFold is much clearer for the crossing-pseudoknot and
pseudoknotted base pairs: the accuracy of KnotFold is 0.679 and 0.631, respec-
tively, which is considerably higher than RNAstructure (0.438 and 0.173),
SPOT-RNA (0.492 and 0.272), and MXfold2 (0.501 and 0.133).

Figure 5 provides a concrete example: bpRNA_RFAM_2518 contains five large
bulges together with two pseudoknots, one connecting the regions [12, 18]
and [349, 355], while the other connecting the regions [79, 82] and [289,
292]. RNAstructure, SPOT-RNA and MXfold2 report secondary structures
with 4, 3, and 3 bulges, respectively; however, none of them correctly identified
the pseudoknots. In contrast, KnotFold successfully identified both the five
large bulges and the two pseudoknots, achieving a high prediction accuracy of
0.951. We obtained a similar observation from another pseudoknotted RNA
bpRNA_tmRNA_394 (see Supplementary Fig. 1 for further details).

Therefore, KnotFold shows considerable superiority in RNA secondary
structure prediction, especially for pseudoknotted base pairs and crossing-
pseudoknot base pairs.
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Fig. 6 Correlation between the prediction accuracy and the estimated confi-
dence index. We use the log value of negative average cost on saturated edges as the
confidence index. For the 1131 RNAs in the validation dataset, the Pearson correlation coef-
ficient between the prediction accuracy (F1 score) and confidence index reaches 0.836

2.4 Constructing a confidence index for secondary
structure prediction

We observed a significantly tight correlation between the minimum cost
reported by KnotFold and its prediction accuracy. Specifically, for 1131 RNAs
in the validation dataset, the Pearson’s correlation coefficient between the neg-
ative average cost over saturated edges and the prediction accuracy (F1 score)
is as high as 0.836 (in logarithm, Fig. 6). This tight correlation enables us to
use the log value of negative average cost over saturated edges reported by
KnotFold as the confidence index of prediction.

We assessed this confidence index on the RNAs in the validation set. For
example, when setting the confidence cut-off as 1.35, KnotFold reports a total
of 755 RNAs, among which 717 RNAs have their prediction accuracy exceeding
0.60. This result means that, if an RNA has its confidence index estimated
to be over 1.35, we can claim, with a confidence level of 717

755 = 0.95, that
the prediction accuracy for this RNA exceeds 0.60. We have also examined
other cut-offs of the confidence index and achieved similar observations (see
Supplementary Fig. 2). The construction of this confidence index will greatly
facilitate the analysis of KnotFold’s prediction results and the application of
the prediction approaches.

2.5 Extending KnotFold to identify base triples
Besides base pairs, an RNA might also form base triples [56], which involve
three bases interacting edge-to-edge by hydrogen bonding. Figure 7 shows
the secondary structure of the RNA with PDB entry 5L4O, which contains
three base triples, 25C-10G-45G (in magenta), 13C-22G-46A (in green), and
37A-29G-41C (in blue). Previous studies have reported the importance of base
triples in RNA structures and functions [57, 58].
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Fig. 7 Predicting RNA secondary structure including base triples with Knot-
Fold. a, The predicted structure for the RNA with PDB entry 5L4O using the enhanced
KnotFold, in which the three base triples 25C-10G-45G (in magenta), 13C-22G-46A (in green),
and 37A-29G-41C (in blue) are successfully identified. b, The predicted secondary structure
by the original KnotFold without enhancement. The missing base pairs 25C-10G, 22G-46A
and 29G-41C (dashed lines) lead to the failure in identifying the base triples

The conventional dynamic programming algorithms, however, do not allow
for base triples when constructing secondary structures. In contrast, Knot-
Fold is capable to predict secondary structures including base triples with a
slight modification without any change of its essence. In particular, we enhance
KnotFold by changing the edge capacity from 1 to 2, which allows a base to
interact with 2 other bases, thus forming base triples.

As shown in Figure 7, the original KnotFold missed the base pair 25C-10G
(shown as magenta dashed line), and thus failed to identify the base triple
25C-10G-45G. Similarly, the absence of base pairs 22G-46A and 29G-41C leads
to the failure in identifying the other two base triples 13C-22G-46A and
37A-29G-41C. In contrast, the enhanced KnotFold successfully identified all
three base triples, and thus correctly predicted the secondary structure for
this RNA. The enhanced KnotFold also successfully identified base triples for
another RNA 7LYJ (see Supplementary Fig. 3 for further details).

These results suggest that KnotFold, with slight modifications and exten-
sions, can be used to reveal complicated motifs of RNA secondary structure,
which are great challenges to the classical Zuker’s dynamic programming
algorithms. This advantage will facilitate the understanding of RNA functions.

2.6 Efficiency of KnotFold
Theoretical analysis suggests that for an RNA with n bases, KnotFold predicts
RNA structure within O(n4) time: the prediction of base pairing probability
and the subsequent calculation of pairwise potential cost O(n2) time, and the
minimum-cost flow algorithm costs O(n4) time.

Despite the O(n4) theoretical time-complexity of KnotFold, it is extremely
fast in practice: for the RNAs with as long as 2000 bases, KnotFold accom-
plished the entire structure prediction process within 30 seconds on an
average laptop computer (Intel CPU 2.8G Hz, 16GB memory). Even for
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bpRNA_CRW_55322 with 4381 bases, the longest RNA collected in bpRNA,
KnotFold can accomplish its prediction within 90 seconds. These results
demonstrate the high efficiency of KnotFold and its scalability to long RNAs
with even thousands of bases.

3 Methods
The main steps of KnotFold include predicting the base pairing probability
for any two bases of the given RNA, constructing structural potential using
the acquired base pairing probabilities, and calculating the optimal secondary
structure with the lowest potential using the minimum-cost flow algorithm.
The details of the first two steps can be referred to in the Results section and
supplementary materials. In this section, we present the details of the third
step as follows.

3.1 Transforming the secondary structure prediction
problem into a minimum-cost flow problem

As described above, we predict the secondary structure for a target RNA
through finding the secondary structure with the lowest potential. The poten-
tial function, which is shown in Equation 1, is the accumulated pairwise
potential of all possible pairs of bases. The key insight of our approach is that,
although the potential is defined as the sum of pairwise potentials of all pos-
sible pairs of bases, it is essentially determined by the base pairs appearing in
the secondary structure only. Specifically, we defined a novel measure, called
cost, for each pair of bases and proved that the potential can be rewritten as
the total cost of the base pairs that form secondary structure, i.e.,

E(S) =
∑

i<j,Si,j=1

H(i, j) + C (2)

Here, C represents a constant number independent of the given RNA, and
H(i, j) represents the cost of the base pair (i, j) and is described as:

H(i, j) = −[log P (i pairs with j|x)
P (i pairs with j|len(x)) − log 1−P (i pairs with j|x)

1−P (i pairs with j|len(x)) ] + λ (3)

We provide the strict proof of the equivalence between Equation 1 and
Equation 2 in supplementary materials.

The equivalence between Equation 1 and Equation 2 enables us to trans-
form finding the secondary structure with the lowest potential into calculating
the minimum-cost flow in an appropriately-designed network. In particular,
the network consists of a bipartite, and each part of the bipartite consists of n
nodes that represent the n bases of the target RNA. We connected every node
in the left part to every node in the right part with an edge, which essentially
represents a possible base pair. For the edge (i, j) connecting the i-th base and
the j-th base, we set its capacity as 1 and its cost as H(i, j).
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In this flow network, the base pairs represented by the minimum-cost flow
essentially form a secondary structure with the lowest potential. The details
of the network construction are described as follows.

Algorithm 1 Constructing the flow network G

1: Add n nodes to the left part L and n nodes to the right part R
2: Add two extra nodes: source node s and sink node t
3: for each node i ∈ L do
4: Add an edge (s, i) with a cost of 0 and a capacity of 1
5: end for
6: for each node j ∈ R do
7: Add an edge (j, t) with cost 0 and capacity 1
8: end for
9: for each node i ∈ L do

10: for each node j ∈ R do
11: Add an edge (i, j) with a cost of H(i, j) and a capacity of 1
12: end for
13: end for

3.2 Solving the minimum-cost flow using a modified
shortest-path algorithm

We solve the minimum-cost flow in the constructed flow network using a mod-
ified shortest-path algorithm. Specifically, we start from a 0-flow, i.e., all edges
are initialized with a flow value of 0. Next, we iteratively execute the following
two steps:

(i) Constructing a residual graph Gf according to the current flow f . For
each edge (i, j) in the flow network, we add two edges in the residual
graph Gf , including a forward edge (i, j) with capacity 1 − f(i, j) and
cost H(i, j), and a backward edge (j, i) with capacity f(i, j) and cost
−H(i, j).

(ii) Finding the shortest path from the source s to the sink t, denoted as s−t
path, in the residual graph Gf , followed by pushing along this path to
augment the current flow f . Here, the shortest path from s to t refers to
the path with the minimum accumulated cost of the edges traveled by
this path.

Finally, we extract the saturated edges from the minimum-cost flow, i.e.,
the edges with a flow value of 1, and report a secondary structure with base
pairs corresponding to these saturated edges as the predicted secondary struc-
ture. Unlike the classical shortest-path algorithm, we use a modified stopping
criterion: the two steps are executed until no s − t path with positive accu-
mulated cost can be found in the residual graph. With this stopping criterion,
the modified shortest-path algorithm can solve the minimum-cost flow.
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The details of the modified shortest-path algorithm are provided in
Algorithm 2.

Algorithm 2 Modified shortest-path algorithm for minimum-cost flow
1: Construct a flow network G using Algorithm 1
2: Set the initial flow f as 0
3: while the residual graph Gf contains an s⇝ t path with negative cost do
4: Select a shortest s⇝ t path P
5: Augment the current flow f along the path P
6: Update the residual graph Gf

7: end while
8: Return the set of saturated edges

3.3 Dataset
In the study, we evaluate the prediction approaches using the RNAs extracted
from the following three databases:

(i) bpRNA-1m: one of the most comprehensive datasets of RNA secondary
structures [59]. bpRNA-1m contains 102,318 sequences extracted from
multiple datasets including Rfam 12.2. We utilize its RNA sequences
and secondary structures for training and validation, and we build a
pseudoknot test dataset PKnotTest from bpRNA-1m [59].

(ii) Rfam: Rfam (version 14.7) contains RNAs covering 4069 families [60].
We use the newly added RNAs after the release of Rfam (version 12.2)
to construct training and validation datasets.

(iii) Protein Data Bank (PDB): We use high-resolution RNA 3D structures
(<3.5 Å) collected in PDB to assess the prediction of base triples [14].

Using the RNAs collected in bpRNA-1m [59] and Rfam 14.7 [60], we
prepared training set, valildation set, and test set as follows: To reduce
the potential redundancy existing in these RNAs, we clustered them using
CD-HIT-EST [61] at 80% sequence-identity cutoff and select only one repre-
sentative RNA from each cluster. For the sake of fair comparison with the
existing approaches SPOT-RNA and MXfold2, we discarded the clusters that
have overlap with SPOT-TSO, which was used by the two approaches. As
results, we acquired a total of 20171 non-redundant RNAs.

From these non-redundant RNAs, we randomly selected 300 RNAs, which
include pseudoknots in their secondary structures, and use them as test
set (denoted as PKnotTest). The remaining RNAs were randomly split into
a training set and a validation set, which contain 18740 and 1131 RNAs,
respectively.
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3.4 Evaluation criteria
We evaluated the prediction accuracy using the same metrics as SPOT-RNA
and MXfold2, which include precision, recall, and F1 score. We calculated the
average precision, recall, and F1 score to evaluate the overall performance on
a dataset and the average of recall to evaluate the performance on different
types of base pairs on PKnotTest.

4 Conclusion
The results presented here have highlighted the special features of KnotFold:
it uses a deep neural network to learn a structural potential that considers
all pairs of bases, thus making it suitable for identifying long-distance base
pairs, especially pseudoknots; it also uses a specially-designed minimum-cost
algorithm to find the secondary structure with the lowest potential. Using a
total of 1605 RNAs collected in popular benchmark datasets as representatives,
we demonstrate the accuracy and efficiency of KnotFold, together with its
superiority over the existing approaches.

We also analyzed the source of of the power of KnotFold through comparing
it with its variant, which combines the classical Zuker’s dynamic programming
algorithm and the pairwise potentials predicted by deep neural networks. The
analysis suggested that the main source of the power of KnotFold to predict
pseudoknots comes from the application of a minimum-cost flow algorithm to
calculate the secondary structure with the lowest potential.

The ideas of KnotFold can be readily extended without significant mod-
ifications to solve other complicated structure motifs. For example, when
changing the capacities over edges from 1 to 2, KnotFold can easily solve
base triples, which represents a great challenge to classical Zuker’s dynamic
programming algorithms.

Although the minimum-cost flow algorithm constructs structure with the
minimum potential, the accuracy of KnotFold relies heavily on the predicted
probabilities of base pairing and the subsequent calculation of pairwise poten-
tials. For example, the accuracy of base pairing probability is usually low for
the long RNAs with over 2000 bases, or the rare RNAs with special secondary
structure types. In this case, even if using the minimum-cost flow algorithm,
the predicted secondary structures are not convincing. How to improve the
prediction of base pairing probabilities is one of our future works. In addi-
tion, except for the optimal secondary structure with the lowest potential, the
calculation of sub-optimal secondary structures might yield a secondary struc-
ture ensemble, which will provide a deep insight into the predicted secondary
structure.

We anticipate that KnotFold, with its superiority in accuracy and effi-
ciency, will greatly facilitate our understanding of RNAs with complicated
structures and their biological functions.
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