bioRxiv preprint doi: https://doi.org/10.1101/2022.09.17.508207; this version posted September 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Proteogenomic analysis reveals RNA as an important source for tumor-agnostic

neoantigen identification correlating with T-cell infiltration

Celina Tretter?", Niklas de Andrade Kratzig>*>", Matteo Pecoraro®, Sebastian Lange®*>, Philipp Seifert?,

Clara von Frankenberg?, Johannes Untch?, Florian S Dreyer?, Eva Braunlein?, Mathias Wilhelm?#, Daniel P Zolg’,
Thomas Engleitner®>, Sebastian Uhrigh®, Melanie Boxberg'°, Katja Steiger®1°, Julia Slotta-Huspeninal®,

Sebastian Ochsenreither'112, Nikolas von Bubnoff!!3, Sebastian Bauer®!4, Melanie Boerries'*3, Philipp J Jost'?,
Kristina Schenck'?, Iska Dresing'?, Florian Bassermann®%#, Helmut Friess>, Daniel Reim?°, Konrad Griitzmann1617,
Katrin Pfiitze!, Barbara Klink™'8, Evelin Schrock™'%, Bernhard Haller?, Bernhard Kuster’-?°, Matthias Mann®,

Wilko Weichert19, Stefan Frohling?, Roland Rad¥3#°, Michael Hiltensperger®?# and Angela M Krackhardt®24#

1 German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ),
Heidelberg, Germany

2 lird Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

3 lInd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

4 Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich,
Germany

5 Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich,
Germany

6 Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Munich, Germany

7 Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany

8 Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany

% Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany

10|nstitute of Pathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

11 Charité Comprehensive Cancer Center, Charité — Universitidtsmedizin Berlin, Berlin, Germany

12 Department of Hematology, Oncology and Tumor Immunology, Charité — Universitdtsmedizin Berlin, Berlin, Germany

13 |nstitute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of
Medicine, University of Freiburg, Freiburg, Germany

14 Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Hospital Essen, Essen,
Germany

15 Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

16 Core Unit Molecular Tumor Diagnostics (CMTD), NCT Dresden, Dresden, Germany

7 nstitute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, Dresden, Germany

18 |nstitute for Clinical Genetics, Technical University Dresden, Germany

19 Institute of Al and Informatics in Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich,
Munich, Germany

20 Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), School of Life Sciences, Technical University of Munich,
Freising, Germany

" These authors contributed equally to this work

# These authors jointly supervised this work


https://doi.org/10.1101/2022.09.17.508207
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.17.508207; this version posted September 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Running title

Proteogenomics reveal RNA as important neoantigen source

Keywords

Proteogenomics, neoantigens, pan-cancer, immunogenicity, RNA variants

Additional information

Corresponding author: Angela M. Krackhardt, Klinik und Poliklinik fiir Innere Medizin lll, Technische
Universitat Minchen, School of Medicine, Ismaningerstr. 22, 81675 Miinchen, Tel. +49 89 4140 4124,
Fax. +49 89 4140 4879, angela.krackhardt@tum.de

Financial support: This work was supported by the DKTK Joint Funding Program.

Author’s disclosure: The authors have no conflicts of interest to declare. All co-authors have seen
and agree with the contents of the manuscript and there is no financial interest to report. We certify

that the submission is original work and is not under review at any other publication.

Number of figures and tables: 6 main figures; 8 supplementary figures; 4 supplementary tables


https://doi.org/10.1101/2022.09.17.508207
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.17.508207; this version posted September 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Abstract

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer
immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32
patients across 25 tumor types by combining proteogenomics with phenotypic and functional analyses.
By using an optimized computational approach, we discovered a large number of novel tumor-specific
and tumor-associated antigens including shared common target candidates. To create a pipeline for
the identification of neoantigens in our cohort, we combined deep DNA and RNA sequencing with MS-
based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity.
In fact, we could detect a broad variety of non-wild type HLA-binding peptides in the majority of
patients and confirmed the immunogenicity of 24 neoantigens. Most interestingly, the majority of total
and immunogenic neoantigens originated from variants identified in the RNA dataset, illustrating the
importance of RNA as a still understudied source of cancer antigens. Moreover, the amount of these
mainly RNA-based immunogenic neoantigens correlated positively with overall CD8* tumor-infiltrating
T cells. This study therefore underlines the importance of RNA-centered variant detection for the

identification of shared biomarkers and potentially relevant neoantigen candidates.

Statement of significance

The significance of this study lies not only in the potential of our optimized proteogenomic workflow
for the discovery of neoantigens (in particular RNA-derived neoantigens) for clinical application, but
sheds light on the entity-agnostic prevalence of HLA class | peptide presentation of RNA processing

events to be used for tumor targeting.
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Introduction

Genetic aberrations are not only centrally involved in the development of cancer but may also result
in the formation of neoantigens that have the potential to mount an anti-tumor immune response.
Such neoantigens can be recognized as foreign and targeted by neoantigen-specific T cells. Thus, the
identification of such neoantigens is becoming increasingly important for the development of novel
immunotherapies (1-5). However, the vast majority of neoantigens are not shared between cancer
patients and the validation of in silico-predicted neoantigen candidates that range in the thousands is
often limited or impractical in a clinical setting. For this reason, our group reported a proteogenomic
approach that combines mass spectrometry (MS) of immunoprecipitated HLA class | (pHLA-I) peptides
with whole exome sequencing (WES) of melanoma tumors for the identification and validation of such
neoantigens at the protein level (6). We were able to show for the first time that such a proteogenomic
approach is feasible in fresh solid tumor material and yields a refined number of immunogenic
neoantigens. Yet the number of neoantigens that could be identified with our approach was limited

and the findings had to be validated in different cancer entities.

It was reported that not only somatic mutations on coding exons represent a source of neoantigens
but also non-coding transcripts, intronic regions and splice sites (7-10). Furthermore, RNA processing
events such as RNA editing have been investigated in more detail lately. RNA editing is a widespread
post-transcriptional mechanism conferring specific and reproducible nucleotide changes in selected
RNA transcripts that occurs in normal cells (11) but is also involved in disease pathogenesis and is
altered in cancer (12-14). These events have been recently associated with diversifying the cancer
proteome (14,15) and RNA variants derived from editing events were further investigated in more
detail as a source of aberrantly expressed peptides (16,17). As RNA regulation is mediated by cis
regulatory elements and trans regulatory factors which are often disrupted by somatic mutations or
affected by oncogenic signaling (18), antigens derived from cancer-associated RNA editing may
represent in part true neoantigens and are therefore of high interest for targeted cancer
immunotherapy. Thus, we included tumor transcriptomics in addition to WES, to detect neoantigens

that were derived from RNA processing events.

Furthermore, we previously showed that integrating spectral prediction features into the MS-spectra
matching process during neoantigen identification, known as rescoring, is a powerful method to deal
with larger search spaces and it increases coverage and sensitivity of the analysis (19,20). Therefore,
we added the artificial intelligence algorithm Prosit and utilized a Prosit-based rescoring workflow in

our pipeline for neoantigen identification (20,21).
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In this study, we use a subset of 32 patients with different tumor entities that were mainly included in
the previously described MASTER cohort (22) to test our improved proteogenomic pipeline in a cross-
entity cohort ImmuNEO MASTER. We discover many shared genetic variants and tumor-associated
peptides between patients independent of the tumor entity. Most importantly, in the majority of
patients we identify neoantigens that were predominantly derived from RNA sources. In addition, we
perform T cell phenotyping in the tumor microenvironment and show that immunogenic neoantigens
correlate with increased CD8* T-cell infiltration. Thus, these data demonstrate that proteogenomic-
based neoantigen identification is feasible in a cross-entity cohort and that neoantigens originating
from RNA sources might present highly relevant targets for the development of novel

immunotherapies.
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Results

This study took advantage of a patient cohort included in the MASTER Program (22). Detailed
information about patient samples and respective analyses are described in the Methods section and

are listed in Suppl. Table S1A and B.

For the identification of common tissue-agnostic immune-related hallmarks and neoantigen
candidates in our cross-entity cohort ImmuNEO MASTER (Suppl. Table S1A, B and Suppl. Figure S1A,
B), we created a general workflow for the analyses of tumor specimens which is illustrated in Figure 1.
First, tumor-infiltrating immune cells were characterized in the tumor microenvironment (TME) of
fresh tumor tissue by flow cytometricimmunophenotyping as well as transcriptome analyses of sorted
CD8* T cells. Next, for the respective characterization of indicated tumor specimens we used
WES/whole genome sequencing (WGS) and RNA sequencing (RNA-seq) data from patients included in
the MASTER cohort or from the ImmuNEO Plus samples that were respectively analyzed at the same
DKFZ facility as the samples of the MASTER cohort (22). The analytical core of our neoantigen discovery
pipeline is its proteogenomic approach. For this, we performed immunoprecipitation of pHLA-I with
subsequent MS analysis for the identification of the presented immunopeptidome. We then used an
optimized workflow of our previously published strategy (6) for the identification of neoantigens by
combining the personalized genomic data with the MS-based immunopeptidomic data using pFIND
(23). As critical innovations we included RNA-seq data and used the artificial intelligence algorithm
Prosit for increased coverage and sensitivity of our neoantigen discovery pipeline (20,21).
Immunogenicity of the identified neoantigen candidates was assessed in vitro by using patient-derived
autologous or healthy donor (HD)-derived allogenic-matched T cells. Finally, in order to decipher
potential clinical conditions for the identification of neoantigens which might be crucial knowledge for
clinical application, we correlated the number of identified total and immunogenic neoantigens with

the TME immunophenotyping data.

The phenotype of tumor-infiltrating T cells is independent of the tumor entity

To study if we could observe tumor-agnostic immunological features in the immune TME and correlate
them with clinical outcome, we performed flow cytometric immunophenotyping of fresh primary
tumor tissues. In 17 patients, from whom enough tumor material was available, T cell subsets were

examined.

First, we looked at the relative cell numbers of CD8" T cells per gram tumor (Figure 2A). The two
melanoma specimens and the pancreatic cancer metastasis of a patient with mismatch repair
deficiency (dAMMR) (ImmuNEO-11 T2) demonstrated a high amount of T-cell infiltration matching to

the high mutational burden often present in these malignancies (24,25). However, also other tumor
6
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entities, including a sarcoma specimen (ImmuNEO-5), showed high amounts of tumor-infiltrating
lymphocytes (TILs) (Figure 2A). CD8" and CD4* T cells predominantly consisted of effector memory T
(Tem; CD45RA'CD62L"") cells regardless of the tumor entity (Figure 2B and Suppl. Figure S2A, B).
Moreover, the distribution of CD8* T cell subsets and — to a lesser extent — of CD4* T cell subsets
between different metastases of a defined individual patient were highly comparable independent of
their anatomical metastatic location (Figure 2B and Suppl. Figure S2B) and despite differences in their
relative cell numbers (Figure 2A). Since the functional state of TILs is linked to their potential anti-
tumor activity, we analyzed the expression of selected activation markers (HLA-DR and CD103) and
inhibitory markers (PD-1, TIM-3, and LAG-3). To account for differences in overall cell numbers and to
investigate the activation status on a population level, we looked into the frequencies of activation or
inhibitory markers on CD8* and CD4* T cells (Suppl. Figure S2C), respectively, that express at least one
marker. There was no difference in the frequencies of CD8" T cells with activation markers between
different tumor entities, and tumor specimens with high frequencies of inhibitory markers were

present in carcinoma, sarcoma, and melanoma patients (Figure 2C).

In order to identify clinically relevant transcriptional T cell signatures in our cohort, we performed RNA-
seq on sorted CD8* T cells from eight patients. Patients were grouped based on their survival data since
tumor resection into a short survival (less than 1 year) and a long survival (more than 1 year) group
(Suppl. Figure S2D and Suppl. Table S1A). By using gene set enrichment analyses (GSEA), we could show
that pathways associated with T cell-mediated cytotoxic functions were upregulated in the long
survival group, while pathways associated with general inflammatory responses were upregulated in
the short survival group (Figure 2D). In addition, to identify tissue-agnostic features that correlate with
survival, the influence of each parameter on the survival of our patients since tumor resection was
assessed by log rank test and Cox's proportional hazards model (Figure 2E, Suppl. Figure S2E). Although
the quantified numbers and frequencies of CD8* T cells showed only a non-significant trend for a
positive correlation with increased survival, the overall frequency of CD8* T cells without inhibitory
markers in the TME correlated positively with increased survival (Figure 2E). Moreover, the frequencies
of cells without activation or inhibitory markers within the CD8" Teff subset correlated positively as
well with increased survival and, consequently, a high fraction of cells with activation or inhibitory
markers within this subset correlated positively with reduced survival (Figure 2F). Of note, we observed

only non-significant trends for CD4* T cells (Suppl. Figure S2E).

In summary, we observed that tumor-infiltrating T cells in our heterogenous pan-cancer cohort were
mainly comprised of Tem cells independent of the tumor entity. Moreover, we could reproduce
findings that had previously been observed in homogenous tumor cohorts, such as increased numbers

of TILs in malignancies that are characterized by high mutational burden, and observed specific
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transcriptional pathways in CD8* T cells that were associated with clinical outcome (26) in this cross-

entity cohort.

Genetic variants are more common at the RNA level and are often shared between

different tumor entities

In a next step, we assessed the number of genetic variants in the tumors at the DNA and RNA level.
Since these data are the basis for the identification of neoantigen candidates and will later be cross-
validated by our MS-based analyses of the tumor immunopeptidomes (Figure 1), we decided to use
the datasets with unfiltered genetic variants to avoid loss of potential candidates (Suppl. Figure S3). Of
note, the majority of genetic variants passed the filtering criteria at the RNA level for all tumor

specimens but there were multiple exceptions regarding mutations at the DNA level.

The number of DNA and RNA variants varied greatly between patients but showed no clear deviation
between different tumor entities in our pan-cancer cohort (Figure 3A). On average, we identified 302
somatic mutations per tumor, but a much higher number of genetic variants were identified at the
RNA level, with an average of 4024 genetic variants per tumor (Figure 3A). Of note, the majority of
DNA variants were also found at the RNA level (Suppl. Figure S4A), highlighting the power of RNA as a
source for the discovery of genetic variants. In general, single-nucleotide substitutions accounted for
most of the variants found at the DNA and RNA level but deletions and insertions as well as multi-
nucleotide substitutions were also observed for some variants (Suppl. Figure S4B). Interestingly, there
was no correlation between the number of DNA and RNA variants that were identified for each tumor
(Suppl. Figure S4C), indicating that tumors with low levels of somatic mutations can still harbor a high

amount of RNA variants.

The higher number of variants that were detected at the RNA level compared to the DNA level could
be explained in part by more non-coding sources for RNA variants, such as regulatory RNAs and
pseudogenes (Suppl. Figure S4D). However, these additional non-coding sources still did not account
for this striking difference since most RNA variants were detected from protein coding regions (Suppl.
Figure S4D). RNA editing events could present an additional source for RNA variants (11,27). For this,
we analyzed the coverage of the corresponding wild type (WT) locus at the DNA level and nucleotide
exchange patterns for all variants that were only identified at the RNA level. Indeed, for most RNA
variants we could detect a corresponding WT sequence at the DNA level (Figure 3B), suggesting that
part of these variants might be derived from RNA editing events. In fact, a considerable portion of RNA
variants harbored an adenosine (A) to guanosine (G) nucleotide exchange, which has been described
in the context of RNA editing events (defined by A to inosine () editing, where | appears as G in RNA-
seq data (28)) (11,14), and the majority of variants with this specific nucleotide exchange have been

8
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reported as RNA editing events in the databank REDIportal (29) (Figure 3C). We observed that both
DNA and RNA variants were mainly comprised of missense variants, but RNA variants consisted of
more splice-site and intron variants (Figure 3D). Although the correlation between tumor mutational
burden (TMB) (DNA variants per Mb) and increased survival was not statistically significant, we
observed a positive trend and the overall number of DNA variants correlated positively with increased
survival in our heterogenous cohort (Suppl. Figure S4E). There was no correlation between the number
of genetic variants that were found solely at the RNA level and overall survival (Suppl. Figure S4E),
suggesting that the sheer quantity of RNA variants does not present a prognostic biomarker for

immunogenicity-associated survival.

Moreover, shared genetic mutations within this pan-cancer cohort were of special interest to us as
these might lead to potential common neoantigens that could be attractive targets for
immunotherapy. Therefore, we investigated in how many patients each genetic variant was detected.
As expected, the vast majority of genetic variants were found to be unique at the DNA and RNA level
(Figure 3E, F). Indeed, approximately 97% of variants were unique in our cohort at the DNA level (Figure
3E) but only 89% at the RNA level (Figure 3F). Together with the fact that we detected roughly 10 times
more RNA variants compared to DNA variants, this means that we could identify approximately 37
times more shared genetic variants (detected in at least 2 patients) at the RNA level. In addition, we
observed that a subset of RNA variants was shared in all patients, however, DNA variants were shared

significantly less frequently and in smaller groups of patients (Figure 3E, F and Suppl. Table S2A, B).

To elucidate if these shared RNA variants were overlapping with each other in the same sets of
patients, we focused on RNA variants that were found in at least ten tumor specimens with a minimum
of two shared RNA variants (Suppl. Figure S4F). Overlapping shared RNA variants were not only
commonly present in tumor metastases but also in different tumor entities in our pan-cancer cohort
(Suppl. Figure S4F). Although the majority of shared RNA variants in these sets were found to be
exclusive, we were able to identify 59 shared variants that showed some degree of overlap. Out of
these, 11 RNA variants were present in all patients and tumor metastases of our pan-cancer cohort

(Suppl. Tables S2B, C).

Taken together, we identified remarkably more genetic variants at the RNA level in general and shared
variants in particular, and a substantial part of additional RNA variants was likely derived from RNA

editing events.
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The tumor immunopeptidomes harbor many shared cancer-associated peptides
across different tumor entities

To characterize the tumor immunopeptidomes in our pan-cancer cohort, we performed
immunoprecipation of pHLA-I followed by MS analysis as previously described (6). Similar to the
numbers of genetic variants, the overall numbers of peptides varied greatly between patients without
a clear deviation between different tumor entities (Figure 4A and Suppl. Figure S5A). On average,
approximately 5075 peptides could be identified per tumor (Figure 4A), with a length of 8 to 15 amino
acids that were predominated by nonamers (Suppl. Figure S6). Exemplified in four patients (ImmuNEO-
4,-11,-14, -38), we analyzed the HLA anchor residues of the immunopeptides in all patients and could
show that they were characteristic for the patients’ HLA composition with a purity of at least 95%

(Suppl. Figure S7).

By focusing on peptides derived from cancer-associated genes that have been described in the Human
Protein Atlas (30), we spotted that 36% of these peptides were shared between patients (Figure 4B)
and a considerable number of them were present in up to 18 patients (Figure 4C). Out of these, 79
shared peptides showed some degree of overlap in at least eight tumor specimens (Suppl. Figure S5B).
Moreover, 18 shared peptides were identified in at least 11 patients (Suppl. Figure S5B arrows and
Suppl. Table S3) and were predicted by NetMHCA4.0 to bind with good affinities to the patients’ HLA
molecules (HLA-A03:01 or HLA-A11:01; Suppl. Table S1C). These peptide ligands have been previously
described by several studies in the context of cancer (studies found on PeptideAtlas, 2022; IEDB.org:

Free epitope database and prediction resource, 2022).

In addition, we analyzed peptides derived from reported cancer testis antigens (CTAs) using the
CTpedia database (33) and discovered numerous CTA peptides in our cohort (Figure 4D). Although the
majority of CTA peptides were only found to be unique in one patient, we identified multiple peptides
derived from CTA-associated genes that were present in a substantial portion of patients independent
of the tumor entity (e.g. ATAD2, SPAGY, ODF2, KIAA0100) (Figure 4D). Importantly, there was not only
an overlap between peptides derived from the same CTA genes across different patients, but the exact

same CTA peptides could be found in multiple patients (Suppl. Figure S5C).

Investigating the immunopeptidome in this cross-entity cohort therefore resulted in the discovery of

a number of potential tumor-associated antigen candidates for immunotherapy.

The majority of MS-based neoantigen candidates is derived from RNA sources

For the identification of neoantigen candidates, we have optimized our bioinformatics pipeline (6) by

including novel tools such as an expanded mutation calling algorithm (34) and an improved mutation
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to peptide converter. The peptide identification algorithm pFind (23) was used with subsequent
rescoring by the machine learning algorithm Prosit (21) (Figure 1). Neoantigen candidates had to pass
our comprehensive post-processing pipeline, which is described in detail in the method section. By
utilizing a Prosit-based rescoring workflow for our proteogenomic data, we could increase the total

number of identified neoantigen candidates by 14 (Figure 5A).

With this proteogenomic pipeline we were able to identify 91 neoantigen candidates in 24 patients
across different tumor entities (75% of all patients) with 1 to 13 identified neoantigen candidates per
patient (Figure 5B, Suppl. Table S4A), highlighting that most cancer patients harbor potential targets
for personalized immunotherapy. We did not observe shared neoantigen candidates between
patients, however, three peptides were shared between two metastases of a melanoma patient
(ImmuNEO-19) and one peptide was shared between two distinct tumor samples of a patient with
dMMR (ImmuNEO-11) (Suppl. Table S4A). Interestingly, we identified two neoantigen candidates in
two patients (ImmuNEO-4 and -23) that were derived from shared genetic variants in MAP4K5
(IN_04_F, 1.5% FDR; shared between 32 tumor samples; Suppl. Table S2B) and in AC024075.2
(IN_23_A, 4.3% FDR, shared between 24 tumor samples; Suppl. Table S2B), respectively. Since both of
these shared genetic variants were able to yield a pHLA-I that was presented in at least one patient, it
is possible that these two peptides are presented in other patients with the genetic variants but were

missed due to detection limitations of the patients” immunopeptidomes.

The peptide length of all identified neoantigen candidates ranged from 8 to 14 amino acids with
nonamers predominating (Figure 5C). Perhaps most strikingly, out of 91 identified neoantigen
candidates 80 were derived exclusively from RNA variants, while only three originated exclusively from
DNA variants, and eight were shared between both sources (Figure 5D). Comparable to the overall
number of RNA only variants, we could detect a corresponding WT sequence at the DNA level for the
majority of identified neoantigen candidates that were derived exclusively from RNA variants (Figure
5E). Moreover, many of these variants also harbored an A to G nucleotide exchange pattern that has
been associated with RNA editing and were reported as RNA editing events in the databank REDIportal
(29) (Figure 5F). This suggests that RNA altering mechanisms (e.g. RNA editing) could be an important
source for the formation of neoantigens. Regarding the variant effect of the variants that gave rise to
the neoantigen candidates, missense variants were still most abundant, however, splice-site and intron
variants were more prevalent compared to overall detected variants (Figure 5G, left). The majority of
neoantigen candidates were derived from protein coding regions but a substantial amount was also

derived from non-coding regions such as pseudogenes and IncRNAs (Figure 5G, right).
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Taken together, our data indicate that MS-based identification of neoantigen candidates is feasible in
the majority of cancer patients with tumor RNA representing an important source for the detection of

peptide ligands derived from genetic variants.

Identified neoantigens derived from RNA sources are immunogenic in a set of patients

independent of the tumor entity

To assess the immunogenicity of the identified neoantigen candidates, we evaluated T cell responses
against 79 neoantigen candidates from 21 patients in an in vitro assay with autologous or allogenic
HLA-matched peripheral blood mononuclear cells (PBMCs) or expanded TILs by ELIspot analysis (Suppl.
Figure S8A).

Out of 79 examined neoantigen candidates, 24 were capable of inducing T cell responses (29% of all
tested neoantigen candidates) in either an autologous PBMC (Figure 6A, left), expanded TIL (Figure 6A,
right), or an allogenic-matched PBMC (Figure 6B) culture setting (Figure 6C, Suppl. Table S4B). The
majority of immunogenic neoantigens were identified by using autologous PBMCs and only three
immunogenic neoantigens could be identified with expanded TILs (Figure 6A). This highlights the
difficulties known for TIL cultures that could be explained by either insufficient expansion or a
dysregulated and exhausted T cell phenotype of the expanded TILs, thus, preventing a proper T cell
response against the presented neoantigen candidates. Although allogenic-matched PBMC cultures
are challenging, especially with respect to donor selection, we tested a small set of neoantigen
candidates (n=10) and could confirm the immunogenicity for four neoantigens that were immunogenic
in the autologous setting and even identified one additional immunogenic neoantigen (IN_19_A)
(Figure 6B). Of note, there was no enrichment observed regarding the frequency of immunogenic
neoantigens out of the pool of neoantigen candidates that were identified by either of the two

processing workflows or by both of them (Figure 5A, Suppl. Table S4B).

Importantly, all 24 immunogenic neoantigens were identified from RNA sources, with 23 detected
exclusively from RNA variants and only one from both RNA and DNA variants (Figure 6D). In line with
our findings for RNA only variants and neoantigen candidates, we observed that the majority of
immunogenic neoantigens harbored a detectable WT sequence at the DNA level (Suppl. Figure S8B)
and a substantial portion were reported as RNA editing events in the databank REDIportal (29) (Suppl.
Figure S8C). This supports our hypothesis that RNA-altering mechanisms might be implicated in the
formation of neoantigens that are capable of inducing T cell responses in patients. Moreover, the
variant effect and the transcript type of the variants that gave rise to the immunogenic neoantigens
were highly comparable to the distribution of neoantigen candidates as well (Figure 6E). When looking

at binding predictions for our identified immunogenic neoantigens with NetMHC4.0 (35) and
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MHCFlurry (36) (Suppl. Table S4A), only 65% were identified as binders by at least one algorithm
(percentile rank <2% or predicted binding affinity <500nM), indicating that one third would have been
missed with these binding prediction algorithms. Overall, we observed immunogenicity of neoantigens
regardless of the patients’ tumor entity, including patients with carcinoma, sarcoma, and melanoma
(Suppl. Figure S8D, Suppl. Table S4B), indicating that the identification of immunogenic neoantigens is

not limited to specific tumor entities.

Finally, in an effort to link the level of identified neoantigens (Figure 5 and 6) with the immune activity
in the TME and the level of detected immunopeptides of our patients, we performed a Spearman’s
rank correlation test with our immunophenotyping (Figure 2) and immunopeptidomic data (Figure 4).
Since all neoantigen candidates were matched to the presence of pHLA-I mass spectra, both the
number of neoantigen candidates and immunogenic neoantigens correlated strongly with the size of
the detected immunopeptidome (Figure 6F). The overall number of neoantigen candidates also
correlated slightly with the total frequency of CD3* T cells and CD8" Teff cells in the TME (Figure 6F).
Importantly, the number of immunogenic neoantigens did not only correlate stronger with the total
frequency of CD3* T cells and CD8" Teff cells in the TME, but we also observed a strong correlation with
CD8* T cells and CD8* Tem cells as well as a generally more exhausted phenotype of these cells (Figure
6F). Thus, immunogenic neoantigens correlated with a more immune-active TME with high T-cell

infiltration in our cohort.

In summary, we identified immunogenic neoantigens in a quarter of all patients of our pan-cancer
cohort independent of the tumor entity by using a proteogenomic pipeline that utilizes RNA
transcriptomics of tumor specimens for the identification of genetic variants. These immunogenic

altered peptides correlated with T-cell infiltration and potentially an exhausted T cell phenotype.
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Discussion

The clinical application of personalized cancer immunotherapies based on neoantigens is benefitting
greatly from the recent advances in mRNA-based vaccines (4) and cellular immunotherapy (37).
However, the identification of tumor-specific and therapy-relevant targets is still critical. This is an area
of research that mainly focused on cancer genomics and bioinformatics epitope prediction models for
the identification of potential neoantigens in the past (1) but might benefit greatly from combinatorial
approaches like proteogenomics that have been applied by other groups (7,10) and us (6,20). In this
study, we showed that RNA is an important source for the identification of neoantigens and shared
tumor antigens with our improved proteogenomic pipeline in an extensively characterized pan-cancer
cohort. By combining proteogenomics with phenotypic and functional analyses, we linked the
identified candidates to immunological features and validated their potential to induce T cell-driven

immune responses.

Despite the relatively small size of this cohort and the high diversity with respect to tumor entity,
disease stage, treatment history, age, and gender, we were able to confirm biomarkers with prognostic
significance which have been already established for a number of distinct malignancies, indicating that
these biomarkers have a strong prognostic power. When looking at the TMB as a prognostic biomarker,
we could confirm a significant positive correlation between the number of somatic mutations and
patients” survival, as previously shown for several different cancer entities as well as selected cross-
entity studies (38—41). In addition, we observed that high levels of CD8* T cells expressing inhibitory
markers, previously shown as an indication for a dysfunctional T cell state in the TME (42), correlated

with poor clinical outcome.

To increase the number of identified neoantigens from our previously published proteogenomic
strategy (6), we integrated tumor RNA as an additional source for variant detection. Including RNA-seq
to our pipeline has two advantages. First, RNA-seq has been shown to complement WES in calling
somatic mutations in glioblastoma multiforme to broaden the scope of discoveries (43). Second, RNA-
seq is able to detect variants that are not occurring at the DNA level but are derived from RNA
processing events like alternative splicing and RNA editing (44,45). It has been previously reported that
RNA editing events and RNA dysregulation lead to the diversification of the cancer proteome (14,15)
and in fact, we substantially increased the number of genetic variants and neoantigens by including
RNA-seq in our pipeline. Variant detection using RNA-seq is already utilized in a number of studies for
the identification of neoepitopes (7,16) but comes with its own limitations, in particular for variants
derived from RNA processing events since they cannot be validated by matched-normal DNA samples.
In addition, obtaining matched-normal RNA samples from the same tissue as the tumor is similarly

limited as it might be either not available or may be influenced by the tumor activity and transcriptional
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profile of the surrounding tissue. To exclude false positive RNA variants based on single-nucleotide
polymorphisms (SNPs), we used a methodology of combining tumor RNA-seq with normal WES data
that has been shown to be most effective for calling RNA variants (46). We thereby excluded frequent
population SNPs. Since that still did not control for false positive RNA variants from RNA processing
events, we overcame this limitation by matching the RNA variants to the MS spectra from the tumor
pHLA-I and thereby performed a cross-validation of the neoantigen candidates. Of note, due to this
subsequent cross-validation, less stringent mutation calling algorithms for RNA but also DNA variant
detection were used that increase the search space for potential neoantigen identification. Therefore,
false positive hits may have been still not completely excluded here. However, using our sensitive
algorithms for the detection of genetic variants, we were able to identify genetic variants that occurred
not only in individual patients but were shared in a substantial number of patients at the DNA and
especially at the RNA level, representing potentially attractive common targets that need to be

investigated in a larger cross-entity cohort.

The strength of our neoantigen discovery platform, the matching of MS-spectra to variants, is also its
bottleneck because the number of identified neoantigens strongly correlated with the size of the
immunopeptidome. Therefore, improving MS-based neoantigen detection is paramount and there are
three avenues that can be addressed. (1) Optimizing artificial intelligence tools for the matching and
rescoring of MS spectra (like Prosit) will enhance their potential for neoantigen discovery. (2)
Improving protocols for sample preparation and immunoprecipitation of pHLA-I might result in a
higher yield of detected peptides. (3) Increasing the sensitivity of MS instruments will likely have the

biggest impact in the future (47).

The number of neoantigen candidates that we identified was small compared to the thousands of hits
that were reported with epitope prediction models (1,2). However, in our study approximately 30% of
the tested candidates elicited a T cell response in vitro, a far greater number than could be expected
from any epitope prediction approach. Thus, drastically reducing the need for large-scale
immunogenicity testing that would not be feasible in a clinical environment. Since a substantial portion
of our immunogenic neoantigens was not predicted as binders, solely prediction-based approaches
might miss these potentially promising targets. Moreover, immunogenicity testing in autologous T cell
assays has the inherent risk of a lack of an immune response to the presented peptide because of T
cell dysfunction (48), suggesting that some neoantigen candidates that did notinduce a T cell response
might actually be potentially immunogenic. More sensitive assays for validation are therefore
necessary and combined single cell RNA and T cell receptor (TCR) sequencing shows great promise for

this need (48,49).
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Neoantigen candidates derived from RNA variants have been previously reported (7-10,16,17) and
may represent missing targets in studies where suspected neoantigens could not be detected by
focusing only on WES (49). Indeed, the majority of neoantigens in our cohort were derived only from
RNA variants and we observed a high number of A to G modifications typical for RNA editing events
(16,28). However, RNA variants detected in this cohort also include other forms of RNA dysregulation
as well as potentially somatic mutations which have not been covered by WES. Elucidating the nature
of RNA variants and their role in cancer biology and immunotherapy is an important research area

(reviewed in (50-52)) that might lead to new types of cancer treatment.

Neoantigen-based vaccines showed limited clinical response in previous trials (5,53). This might have
been due to poor candidate selection or because of a dysregulated T cell state in the treated patients.
However, some efficacy has recently been observed using mRNA vaccination in melanoma and
pancreatic cancer including also a combination with immune checkpoint inhibitors (4,54,55),
suggesting that it is crucial to overcome the dysregulated T cell state for neoantigen vaccines to be
efficacious. It will be important to understand subtle differences in vaccines and clinical protocols in
order to understand outcomes of these early trials. In addition, developing alternative strategies that
engage non-dysfunctional T cells like neoantigen-specific TCR-T cell therapy is of great importance to

treat patients that do not respond to immune checkpoint inhibition.

Taken together, our data identified a number of attractive cancer-associated and -specific canonical
and non-canonical peptide antigens that have been partially shared by a significant portion of patients
in our cohort. Most importantly, we demonstrate the importance of RNA as a source for MS-based
neoantigen identification in a large number of patients of this cross-disease cohort correlating with T-
cell infiltration. Functionally active neoantigen-specific T cells could be identified only in a sub-cohort
of these patients likely due to a severe dysfunctional state of these T cells. Therefore, immunotherapies
focusing on the rescue of such T cells or targeting neoantigens with a non-dysfunctional repertoire
including TCR-transgenic T cells may represent a valid immunotherapeutic option for a large number

of cancer patients.
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Figure Legends

Figure 1 | Overview of the workflow for immunophenotyping, proteogenomic and functional
analyses for neoantigen identification in the cross-entity cohort

Tumor material and peripheral blood from 32 patients included into the ImmoNEO MASTER cohort
harboring diverse tumor entities was used for the following analyses: (1) tumor microenvironment
phenotyping; fresh primary tumor tissue was enzymatically digested and single cells were used for
multi-colour flow cytometric analysis of several immune cells and phenotypic markers. In parallel,
FACS-sorted CD8" T cells were used for bulk transcriptome analysis (RNA-seq). (2) Genomic and
transcriptomic analysis; primary tumor tissue was used for whole exome (WES)/whole genome
sequencing (WGS) and RNA-seq. Blood from the same patient served as control samples for WES/WGS
analyses. Mutations were called by MuTect2 (v4.1.0.0) from WES/WGS data and by Strelka2 (v2.9.10)
from RNA-seq data and mutations were filtered for short nucleotide polymorphisms (SNPs) by using
the dbSNP database. 3) Immunopeptidome analysis; fresh primary tumor tissue was used for HLA class
I-bound peptide immunoprecipitation and subsequent mass spectrometry (MS) analysis of eluted
peptides. The whole HLA class | peptidome was analysed using pFIND (v3.1.5) with 1% FDR on the
spectral level looking for 8-15mers. (4) MS-based neoantigen identification; patient-specific
mutational data from (2) were used to generate a personalized database. Therefore, all full length
mutated ORFs generated by VCF-translate (v1.5) were added to the Ensembl92 data set and matched
with the MS-identified peptide sequences using pFIND with 5% FDR on the spectral level looking for 8-
15mers. By filtering for peptides only matching to the mutated ORF sequences, tumor-specific
neoantigen candidates were identified. The machine learning tool Prosit was additionally integrated
to rescore the peptide spectra matching to the patient-specific ORF database. Afterwards several
filtering and post-processing steps were applied for the identification of neoantigen candidates. (5)
Immunogenicity assessment of neoantigen candidates; patient-derived autologous immune cells
(PBMCs and TILs) as well as selected allogenic-matched healthy donor-derived PBMCs were tested for
immunogenicity in response to the identified neoantigen candidates using a modified accelerated co-
cultured dendritic cell (acDC) protocol to identify immunogenic neoantigens. APC, antigen-presenting
cell; FDR, false discovery rate; HLA-I, human leukocyte antigen class |I; ORF, open reading frame; PBMC,
peripheral blood mononuclear cells; TIL, tumor-infiltrating lymphocytes.

Figure 2 | Phenotypic and transcriptomic investigation of the immune tumor microenvironment of
a defined subgroup of the InmuNEO MASTER cohort

A, Quantitative numbers of CD8* T cells per gram tumor identified by flow cytometric assessment of
fresh tumor tissue per patient grouped by tumor entity. B, Frequencies of different CD8" T cell subsets
of all identified tumor infiltrating CD8* T cells per patient grouped by tumor entity. C, Frequencies of
CD8* T cells expressing at least one activation marker (HLA-DR, CD103) or inhibitory marker (PD-1, TIM-
3, LAG-3) for different cancer entities. Symbols depict individual tumor samples. Data are shown as
mean + s.d.. D, Gene set enrichment analysis (GSEA) for gene signatures differentially expressed in
sorted tumor-infiltrating CD8" T cells from bulk RNA sequencing (RNA-seq) of patients with short
(below 1 year, n = 3) and long survival (above 1 year, n = 5) since tumor resection. NES scores for each
pathway are depicted and significantly enriched (p < 0.05) pathways are coloured in red. E, Forest plot
showing the hazard ratio (dot) and 95% confidence intervals (lines) calculated by log rank test and
Cox's proportional hazards model of several phenotypic parameters for the survival of patients since
tumor resection (n = 17). Significant correlations (p < 0.05) are highlighted in blue. For statistical
analysis only one representative tumor sample per patient was used (see core cohort Suppl. Table
S1A). A, B, n = 23 tumor samples from n = 17 patients (see Suppl. Table S1A). C, n = 22 tumor samples
from n = 16 patients. FDR, false discovery rate; freq., frequency; GOBP, Gene ontology biological
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function gene set; GOMF, Gene ontology molecular function gene set; HALLMARK, hallmark gene set;
inh., inhibitory; NES, normalized enrichment score; quant., quantified per gram tumor; T, tumor; Tcm,
central memory T cells; Teff, effector T cells; Tem, effector memory T cells; Tn, naive T cells.

Figure 3 | Genetic variants identified at the DNA and RNA level in tumor tissue from different cancer
entities

A, Distribution of the total numbers of variants identified from DNA (upper panel) and RNA data (lower
panel) identified per tumor sample grouped by tumor entity. Mutations were called by MuTect2
(v4.1.0.0) from whole exome (WES)/whole genome sequencing (WGS) data and by Strelka2 (v2.9.10)
from RNA sequencing (RNA-seq) data. SNP-filtering was performed using the dbSNP-all data base. No
RNA data was available for patients IN-11-T1, IN-14, IN-16, IN-20, IN-25, IN-31, IN-34. B, Pie chart
depicting the proportion of variants only identified from RNA-seq data of all tumor samples combined
where the respective wild type (WT) sequence was identified at the DNA level with a coverage of 2 3
reads (green) or the respective region was not covered at the DNA level (grey, < 3 reads). C, Distribution
of the nucleotide exchange pattern over all single nucleotide variants only identified from RNA-seq
data of all tumor samples combined. Variants previously identified in the REDIportal (29) database as
RNA editing events are highlighted in green. D, Pie charts depicting the distribution of each mutation
type for variants called from all DNA (left) and RNA (right) variants. E, F, Pie charts showing the
proportions of unique and shared DNA variants (E) and RNA variants (F) between different patients.
The right bar graph shows the number of variants shared by 4 to 14 patients for DNA variants (E) and
shared by 10 to 26 patients for RNA variants (F) in more detail. A-E, n = 39 tumor samples from n = 32
patients for WES/WGS data; n = 32 tumor samples from n = 26 patients for RNA-seq data (see Suppl.
Table S1A). T, tumor; WT, wild type.

Figure 4 | Analysis of the HLA class | tumor immunopeptidomes

A, Distribution of the total number of unique HLA class | peptides identified per tumor sample grouped
by tumor entity. Peptides bound to HLA class | molecules on the surface of tumor cells were isolated
by immunoprecipitation and sequenced by liquid chromatography with tandem mass spectrometry
(LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92 protein database
using pFIND (v3.1.5) and unique sequences have been filtered. B, Pie chart showing the proportion of
unique and shared peptides originating from cancer-associated genes (ProteinAtlas) between patients.
C, Bar graph depicting the number of peptides shared by 4 to 18 patients in more detail. D, Heatmap
depicting the numbers of unique peptides found per cancer testis antigen (CTA) gene in each tumor
sample. Genes were sorted by the total number of peptides identified over all patients and samples
were grouped by entity. A-D, n = 41 tumor samples from n = 32 patients (see Suppl. Table S1A). FDR,
false discovery rate; HLA, human leukocyte antigen; T, tumor.

Figure 5 | Proteogenomic identification of neoantigen candidates

A, B, Number of identified neoantigen candidates based on the bioinformatics tool that they were
identified with (A) and per tumor sample and grouped by tumor entity (B). pFIND (v3.1.5) (23) was
used at 5% FDR on spectral level for the identification of non-wild type (WT) 8-15mer neoantigen
candidates. The machine learning tool Prosit (21) was additionally integrated to rescore the peptide
spectra matching to the patient-specific ORF database using unfiltered pFIND data as input. n = 39
tumor samples from n = 32 patients were analysed in total; n = 27 tumor samples from n = 24 patients
harboured n = 91 neoantigen candidates. C, Bar graph showing the length distribution of all identified
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neoantigen candidates in amino acids (aa). D, Genetic origin (DNA or RNA data) of the variants that the
identified neoantigen candidates were derived from. E, Pie chart depicting the proportion of
neoantigen candidates identified only from RNA sequencing (RNA-seq) data where the respective WT
sequence was identified at the DNA level with a coverage of > 3 reads (green) or the respective region
was not covered at the DNA level (grey, < 3 reads). F, Distribution of the nucleotide exchange pattern
of all variants that yield neoantigen candidates identified only from RNA-seq data. Variants previously
identified in the REDIportal (29) database as RNA editing events are highlighted in green. G,
Distribution of each mutation type (left) and biotype (right) of all variants that yield neoantigen
candidates. A-G, n = 39 tumor samples from n = 32 patients were analysed in total; n = 27 tumor
samples from n = 24 patients harboured n = 91 neoantigen candidates; n = 3 neoantigen candidates
from DNA variants; n = 8 neoantigen candidates from DNA and RNA variants; n = 80 neoantigen
candidates from RNA variants. aa, amino acids; MS, mass spectrometry; Proc., processed; T, tumor;
TEC, to be experimentally confirmed; WT, wild type.

Figure 6 | Immunogenicity assessment of neoantigen candidates

A, B, Summary of immunogenicity assessment data from all performed modified accelerated co-
cultured dendritic cell (acDC) assays for neoantigen candidates by ELlspot analysis using patient
derived PBMC (non-enriched — left plot, CD137* enriched — middle plot) or TILs (enriched and non-
enriched combined — right plot) (A) and allogenic-matched healthy donor PBMCs (non-enriched) (B).
Mean IFN-y spot forming units (SFU) for T cells tested against the mutated peptide (test condition) and
tested against a control peptide (control condition) were calculated and the ratio as well as the
difference of the mean SFU have been determined. Values are shown for every peptide and PBMC or
TIL aliquot tested. Highlighted are peptides that elicit an immune response where the ratio of SFU is >
2 and the difference of SFU is > 50. Autologous LCLs or allogenic HLA-matched cells (LCLs or HLA-
transduced cell lines) were used as target cells. Negative values (when controls show more spots than
the test condition) were set to 0 for better readability. C, Representative IFN-y ELIspot data showing
spots per well for autologous and allogenic-matched PBMCs tested against a control peptide (top) and
the indicated neoantigen candidate (bottom). D, Genetic origin (DNA or RNA data) of the variants that
the identified immunogenic neoantigens were derived from. E, Distribution of each mutation type
(left) and biotype (right) of all variants that yield immunogenic neoantigens. F, Correlation matrix
summarizing significant (p < 0.05) Spearman correlations for multiple phenotypic parameters and the
size of the immunopeptidome with the number of identified MS-based neoantigens overall and
immunogenic ones. Spearman correlation coefficient Rho is labeled in color and size. For statistical
analysis only one representative tumor sample per patient was used. A, D-F, n = 79 neoantigen
candidates from n = 24 patients were analysed in total; n = 8 patients harboured n = 23 immunogenic
neoantigens; n = 22 immunogenic neoantigen candidates from autologous PBMC cultures; n = 3
immunogenic neoantigen candidates from TIL cultures; n = 23 tumor samples from n = 17 patients for
immunophenotyping data. B, n = 10 neoantigen candidates from n = 4 patients were analysed in total;
n = 5 immunogenic neoantigen candidates from allogenic-matched PBMC cultures. MS, mass
spectrometry; PBMCs, peripheral blood mononuclear cells; SFU, spot forming units; TIL, tumor-
infiltration lymphocytes.
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Methods

Primary human material and cell lines

Informed consent of all participants was obtained following requirements of the institutional review
boards (Ethics Commission of the Medical Faculty of Technical University Munich and Ethics
Committee of the Medical Faculty of Heidelberg University (5-206/2011)). An overview about all
patients is given in Supplementary Table S1A. Tumour tissue samples were collected from patients,
who underwent tumor resection at the different DKTK partner sites. Immediately after resection, fresh
tumor tissue was macroscopically dissected by an experienced pathologist and stored in PBS at 4°C for
transport or until processing. Additional tumour tissue was formalin-fixed and paraffin-embedded
(FFPE). Before molecular analysis, tumor diagnosis was confirmed by a pathologist and tumor content

was determined by an HE stain taken from the sample going to be used.

From the fresh tumour tissue a part was snap frozen and stored in liquid nitrogen (-196 °C) for later

sequencing and mass spectrometry analysis.

From all remaining fresh tissue a single cell suspension was generated by mincing and digesting 0.2g
tissue pieces per tube for 90min at 37°C in 1ml RPMI supplemented with 40uL Enzyme H (Tumor
dissociation kit human, Miltenyi; Stock conc.), 5uL Enzyme A (Tumor dissociation kit human, Miltenyi;
Stock conc.), 25uL Hyaluronidase (Sigma Aldrich, 10 mg/mL stock), 25uL DNAse | (Sigma Aldrich, 10
mg/mL stock). After digest the suspension and tissue pieces were meshed, and single cells were used

for flow-cytometry analysis and FACS analysis.

Primary patient cells used in this study: For TIL generation, part of the fresh tumor tissues was minced
and TILs were expanded for 2-3 weeks by cultivation with irradiated feeder PBMC, 1000 U/ml IL-2
(PeproTech) and 30 ng/mL OKT3 (kindly provided by Elisabeth Kremmer). Change of medium
supplemented with 300 U/mL IL-2 was performed twice a week. After expansion for 2 weeks, TILs were
frozen for later use in stimulation assays. PBMC from patients were isolated from whole blood by
density-gradient centrifugation (Ficoll/Hypaque, Biochrom) immediately on receipt and frozen for later
use in stimulation assays. Patients’ T cells, derived from PBMCs or TILs, were cultivated in T-cell
medium (TCM): RPMI 1640 (Invitrogen) supplemented with Penicillin/Streptomycin (Pen/Strep)
(Invitrogen), 5% FCS (Invitrogen), 5% human serum (HS), 10 mM Hepes (Invitrogen), 10 mM MEM non-
essential amino acids (Invitrogen), 1 mM MEM sodium-pyruvate (Invitrogen), 2 mM L-Glutamine

(Invitrogen) and 16.6 pg/mL Gentamycin (Biochrom).

Cell lines used in this study: T2 and C1R cell lines (American Type Culture Collection (ATCC) and
lymphoblastoid cell lines (LCL) generated from patient samples (LCL IN-01, IN-03, IN-04, IN-08, IN-09,
IN-11, IN-13, IN-18, IN-19, IN-22, IN-24, IN-33, IN-37) and healthy donors (HD) (LCL HDO4, HDO6, HDO7,
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HDO08) or purchased from ATCC (LCL CLA, Daudi, FM, IBW9, RSH, SWEIG007) were used. Morphology
and constant growth behaviour of all cell lines were controlled periodically, and the absence of
mycoplasma infection was routinely confirmed by PCR (Venor GeM mycoplasma detection kit, Minerva
Biolabs). T2 and C1R were retrovirally transduced with the HLA restriction elements HLA-A6601 (C1R-
A6601), BO702 (C1R-B0702), A0301 (T2-A0301), B5101 (T2-B1501) and B4402 (T2-B4402) as described
before (6). All target cell lines were maintained in complete RPMI (cRPMI): RPMI 1640 (Invitrogen)
supplemented with Pen/Strep (Invitrogen), 10 mM MEM non-essential amino acids (Invitrogen), 1 mM

MEM sodium-pyruvate (Invitrogen), 2 mM L-Glutamine (Invitrogen) and 10% FCS (Invitrogen).

Whole exome and RNA sequencing of patient material and analysis

Extraction of nucleic acids

DNA and RNA from tumor specimens and DNA from matched blood samples were isolated using the
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). For formalin-fixed and paraffin-embedded (FFPE)
samples, the AllPrep DNA/RNA FFPE Kit (Qiagen) was used. DNA from blood samples was isolated using
the QIAsymphony DSP DNA Mini Kit (Qiagen) or the QIAamp DNA Blood Mini Kit (Qiagen). Quality
control and quantification were done using a FilterMax F3 Multi-Mode Microplate Reader (Molecular

Devices), a 4200 or 2200 TapeStation system (Agilent).

Library preparation and target capture for whole-exome sequencing

For whole-exome sequencing (WES) library preparation, 1.5 ug genomic DNA were fragmented to 150-
200 base pair (bp; paired-end) insert size with a Covaris S2 device, and 250 ng of Illumina adapter-
containing libraries were hybridized with exome baits at 65°C for 16 hours. Exome capturing was
performed using SureSelect Human All Exon in-solution capture reagents (Agilent). In case RNA was
pooled in for sequencing, V5 without UTRs was used to reach a minimum average coverage of 80x for

the tumor and 50x for the control. V5 with UTRs was used when DNA was sequenced alone.

Library preparation for whole-genome sequencing

Whole-genome sequencing (WGS) libraries were prepared using the TrueSeq Nano Library Preparation

Kit (lllumina) following the manufacturer’s instructions.

Library preparation for RNA sequencing

RNA sequencing (RNA-seq) libraries were prepared using the TruSeq RNA Sample Preparation Kit v2
(lumina) using the stranded protocol. Briefly, mRNA was purified from 1 pg total RNA using oligo(dT)
beads, poly(A)+ RNA was fragmented to 150 bp and converted into cDNA, and cDNA fragments were

end-repaired, adenylated on the 3’ end, adapter-ligated, and amplified with 12 cycles of PCR. 2 The
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final libraries were validated using a Qubit 2.0 Fluorometer (Life Technologies) and a Bioanalyzer 2100

system (Agilent).

Whole-exome, whole-genome, and RNA sequencing

Paired-end sequencing (2 x 150 bp) was performed with HiSeq X-Ten instruments (lllumina). Two lanes,
each of tumor and control, were sequenced, yielding an average coverage of at least 70x for WGS
cases. Paired-end sequencing (2 x 100 bp) was carried out with HiSeq 4000 (lllumina), pooling two
patients' samples on one lane. From January 2017, RNA was sequenced separately with dual indexing
in pools of three samples per HiSeq 4000 lane or multiplexed over several lanes to prevent adapter
hopping. From October 2019, RNA was sequenced in pools of 3-5 samples per NovaSeq 6000 lane.

Comparability of data has been validated.

Mutation calling from exome and RNA sequencing data

Mutation calling was performed on WES/WGS and RNA-Seq data for identification of single nucleotide
variants and insertion/deletions for the indicated patients (Suppl. Table S1A). Analysis of WES data was
performed following the GATK Best Practice suggestions and utilizing the established analysis pipeline
MoCaSeq (34), adapted for the human genome. After read trimming using Trimmomatic 0.38
(LEADING:25 TRAILING:25 MINLEN:50), bwa mem 0.7.17 was used to map reads to the human
reference genome (GRCh38.p12). Picard 2.18.26 and GATK 4.1.0.0 were used for postprocessing
(CleanSam, MarkDuplicates, BaseRecalibrator) using default settings. Somatic mutations were called
using MuTect2 4.1.0.0 (56). SNVs and Indels < 10 base pairs were annotated using SnpEff 4.3t, based

on Ensembl 92.

For mutation calling from RNA-Seq, raw reads were trimmed using Trimmomatic (LEADING:25
TRAILING:25 SLIDINGWINDOW:10:25 MINLEN:50) and aligned to the human reference genome with
STAR (2.6.0c). Mutations were called using Strelka2 (2.9.10) using the RNA option (57). SNVs and Indels
< 10 base pairs were annotated using SnpEff 4.3t, based on Ensembl 92. De novo variant calling on

tumor WES data was performed by comparison to PBMC WES data.

For variant calling on RNA-Seq data, positions sufficiently covered in WES with no evidence for the
presence of germline SNVs/indels, were included as somatic. Furthermore, for positions where
SNVs/indels were called only by Mutect2 or Strelka2, the threshold to include this SNV/indel in the
second tissue sample was substantially lowered and did not require to be called separately by

Mutect2/Strelka2.

Population SNPs with certain population allele frequency based on GnomAD (58) (>1%) and dbSNP
(>5%) (59) were excluded.
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To calculate the tumor mutational burden (TMB), first WES probe regions (+/- 300bp) with a coverage
above 10 reads were identified. The TMB was then calculated as the number of genic/non-synonymous
mutations overlapping with these regions divided by the total length of probe regions in megabases

(Mb).

HLA typing

HLA typing was done from the available whole exome or whole genome sequencing data using the
consensus of all xHLA (60), BWAKit (61) and OptiType (62) using default settings. For confirmation, HLA
typing was done on gDNA isolated from PBMC by targeted next generation sequencing in selected

patients (Zentrum fir Humangenetik und Laboratoriumsdiagnostik, Martinsried, Germany).

Immunoprecipitation of HLA complexes and liquid chromatography (LC)-MS/MS
analysis of eluted peptides

Immunoprecipitation of HLA complexes, consequent elution and purification of peptide ligands was
performed on indicated tumor samples (Suppl. Table S1A) as previously described (Bassani-Sternberg
etal., 2016). Briefly, snap-frozen tumor tissue samples were placed in 5-7 ml of PBS with 0.25% sodium
deoxycholate (Sigma-Aldrich), 1% octyl-B-D glucopyranoside (Sigma-Aldrich), 0.2 mM iodoacetamide,
1 mM EDTA, and 1:200 Protease Inhibitor Cocktail (Sigma-Aldrich) and mechanically dissociated with
an ULTRA-TURRAX Disperser (IKA) for 10 s on ice, followed by 1 h incubation at 4°C. The lysates were
then cleared by centrifugation at 40,000g at 4 °C for 20 min and flowed through columns packed with
protein-A Sepharose beads (Invitrogen) to deplete the endogenous antibodies. HLA class | complexes
were immunoaffinity-purified from the cleared and antibody-depleted lysates on columns containing
protein-A Sepharose beads covalently bound to 2 mg of the pan-HLA class | antibody W6/32 (purified
from HB95 cells; ATCC) and eluted at room temperature with 0.1 N acetic acid. The eluted HLA-I
complexes were then loaded onto Sep-Pak tC18 cartridges (Waters Corporation), and HLA-I peptides
were separated from the complexes by elution with 30% acetonitrile (ACN) in 0.1% trifluoroacetic acid
(TFA). Peptides were further purified using Silica C-18 column tips (Harvard Apparatus), eluted again
with 30% ACN in 0.1% TFA and concentrated by vacuum centrifugation. Finally, HLA-I peptides were
resuspended with 2% ACN in 0.1% TFA for LC-MS/MS analysis.

LC-MS/MS analysis was performed on an EASY-nLC 1200 system (Thermo Fisher Scientific) coupled
online with a nanoelectrospray source (Thermo Fisher Scientific) to a QExactive HF-X mass
spectrometer (Thermo Fisher Scientific). Peptides were loaded in buffer A (0.1% formic acid) on a 50
cm long, 75 um inner diameter column, in-house packed with ReproSil-Pur C18-AQ 1.9 um resin (Dr.
Maisch HPLC GmbH), and eluted during a 95 min linear gradient of 5-30% buffer B (80% ACN, 0.1%

formic acid) at a flow rate of 300 nl/min. The mass spectrometer was operated in a data-dependent
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mode with the Xcalibur software (Thermo Scientific). Full MS scans were acquired at a resolution of
60,000 at 200 m/z and AGC target value of 3e6 with a maximum injection time of 80 ms. The ten most
abundant ions with charge 1-4 were accumulated to an AGC target value of 1e5 and for a maximum
injection time of 120 ms and fragmented by higher-energy collisional dissociation (HCD). MS/MS scans
were acquired with a resolution of 15,000 at 200 m/z and 20 s dynamic exclusion to reduce repeated

peptide selection.

Wild-type peptidome analysis

For the identification of peptide sequences from the MS spectra, pFIND 3.1.5 (23) was used to match
the reference protein database (Human Ensembl GRCh38, release 92) with general contaminants to
the generated spectra files. Parameters were set to search for non-specifically digested peptides
ranging from 8-15mers with a maximum mass of 1,500 Da and N-terminal protein acetylation
(42.010565 Da), methionine oxidation (15.994915 Da), cysteine carbamidomethylation (57.021463 Da)
as possible post-translational modifications. Identified peptides were filtered with an FDR of 0.01 (and

0.05) at the peptide spectrum match level.

MHC-motif deconvolution

To assess the quality and purity of the MS-generated immunopeptidomic data, the identified peptide
sequences where deconvoluted to the respective patients HLA-allele by their binding motif using
MHCMotifDecon-1.0 (63,64). Here, MHC binding predictions from NetMHCpan-4.1 (for MHC class |)
are used to deconvolute and assign likely MHC restriction elements to MHC peptidome data. All
identified peptide sequences with lengths of 8-15 amino acids and all HLA-A, B and C alleles of each

patient have been used for analysis applying standard setting as indicated on the website.

Pipeline for the identification of patient specific neoantigen candidates from MS data

In order to improve the identification of neoantigens we further developed our MS-based pipeline (6)
for the analysis of this diverse patient cohort (Figure 1). The following novel features have been
integrated: (1) On the genetic level, mutation calling from RNA sequencing data has been accomplished
using Strelka2 (34). Moreover, a refined algorithm for translation of open reading frames (ORFs) in all
three frames has been implemented to identify potential neoantigens from a large source of genetic
aberrations (splice site variants, intron-inclusions, non-coding variants, etc.). (2) On the proteomic
level, pFIND as a peptide calling tool (23) as well as the machine learning tool Prosit (20,21) have been
included into the pipeline. (3) We additionally established a comprehensive post-processing filtering
procedure, especially focusing on exclusion of possible wt peptides and SNPs. In detail, the

subsequently described analysis steps have been performed.
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Generation of custom database for MS-based identification of mutated peptides

With the main goal to obtain mutated peptide sequences, mutations called from WES/WGS and
RNAseq were introduced into the wildtype transcript DNA sequences downloaded from biomart (v92)
and translated into peptide sequences. Genes were included in the analysis without exceptions
regarding the transcript biotypes. For non-protein-coding transcripts, ORFs enclosing the mutation site
were determined by identifying paired start and stop-codons in all 3 reading frames. The same
procedure was performed for protein-coding transcripts in case of start/stop-loss/gain and frameshift
mutations. Furthermore, for start/stop mutations, the coding sequence (CDS) was extended into the
corresponding UTR. For mutations affecting splice donor or acceptor sites, the affected intron was
included into the CDS and again checked for valid ORFs. Only mutations resulting in amino acid changes
and within valid ORFs were considered. For every affected transcript, up to three ORFs enclosing the
mutation site were translated into the corresponding mutated peptide sequence. Peptide sequences

were then used together with the immunopeptidomics data from mass spectrometry.

Identification of mutated peptides sequences from MS data

For the identification of mutated HLA class | peptides, the reference protein database (Human Ensembl
GRCh38, release 92) was searched together with the patient-specific customized databases containing
the mutated sequences from step 1 using pFIND 3.1.5 (23). Parameters were set to search for non-
specifically digested peptides ranging from 8-15mers with a maximum mass of 1,500 Da and N-terminal
acetylation (42.010565 Da), methionine oxidation (15.994915 Da), cysteine carbamidomethylation
(57.021463 Da) as possible post-translational modifications and a set FDR of 0.05 at the peptide
spectrum match level. After protein annotation, the pFIND generated unfiltered peptide lists were (1)
filtered for the FDR of 0.05 and used directly for further post-processing (pFIND peptides) and (2) used
unfiltered for subsequent re-scoring and analysis by the Prosit pipeline (Prosit peptides) (20,21). The
rescoring method is extensively described in Wilhelm et al., 2021. In brief, the unfiltered search engine
output including decoys of pFind was used as input for the spectral intensity-based rescoring.
Unprocessed MS2 spectra corresponding to the identifications were annotated with all matching b-
and y-ions. Spectral comparison between predicted fragment ion intensities and experimental
intensities was performed for using the best-matching prediction settings and calculating previously
described similarity measures (e.g., normalized spectral contrast angle). FDR estimation was
performed using SVM Percolator 3.00 (65). All PSMs surpassing a FDR threshold of 5% were further

considered for analysis.

Peptides identified by both approaches were combined and used for post-processing.
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Post-processing and filtering of neoantigen candidates and MHC binding prediction

Peptides were filtered to remove contaminants and reverse sequences, which were only used to
determine statistical cutoffs. In addition, the results were filtered for sequences identified exclusively
in the custom mutated databases, and not in the Ensembl database, thus ensuring the peptide

originating from a non-wild-type ORF.

Peptides harboring mutations (SNVs, In/Dels, multiple substitutions) within their sequence were
directly taken as valid, whereas peptides not containing the mutations in the peptide sequence were
further assessed. SNVs outside of the peptide sequence were excluded, whereas frameshift mutations
upstream of a peptide or splice site mutations were checked manually in BLAT (66) and were
considered “mutated” or “non-wt” if a peptide within a noncanonical frame or a retained intron was
detected. The filtered potential neoantigens were then checked via an automated protein BLAST (67)
search and peptides with more than 2 hits in the protein data base were excluded while peptides with
1-2 hits were double checked manually by literature research and excluded if necessary. Additionally,
three different peptide data bases PeptideAtlas (68), PepBank (69) and IEDB (70) were used to filter

for already known (immunogenic) peptides.

After complete filtering the binding affinity of each neoantigen candidate was predicted by using two
different algorithms, NetMHC 4.0 (35) and MHCflurry 1.6.0 (models class1) (36), and the best binding

allele according to predicted affinity or percentile rank was determined for each algorithm.

Flow cytometry analysis of tumor single cells and FACS sort

For flow cytometry analysis, up to 0.5 Mio alive single cells from the digested tumor tissue have been
used per panel and isotype controls. Cells were first incubated in 50uL human serum (HS) for 20min
for blocking unspecific binding. Subsequently, ethidium monoazide bromide (EMA, 1:500, Thermo
Fisher Scientific) was added for live-dead staining to the HS and incubated 10min on ice in the dark
and 10min on ice in the light. After washing 2uL of the respective antibodies or 1.5uL of the isotype
control antibodies were added and stained for 20min on ice in the dark. The following antibodies were
used: CD45-PerCP-Cy5.5 (clone HI30, ref. 564105, BD), CD3-AF700 (clone UCHT1, ref. 300423,
BioLegend), CD8-APCH7 (clone SK1, ref. 560179, BD), CD4-V450 (clone SK3, ref. 651849, BD), CD45RA-
BV510 (clone HI100, ref. 304141, BD), CD62L-PE (clone DREG-56, ref. 560966, BD), CD366-BB515 (anti-
TIM-3, clone 7D3, ref. 565568, BD), CD279-PECy7 (anti-PD-1, clone EH12.2H, ref. 329917, BioLegend),
CD223-APC (anti-LAG-3, clone 3DS223H, ref. 17-2239-42, eBioscience), CD103-FITC (clone Ber-ACTS,
ref. 550259, BD), HLA-DR-APC (clone G46-6, ref. 559866, BD), CD56-PE (clone 5.1H11, ref. 362508,
BioLegend), CD45-APC-H7 (clone 2D1, ref. 560274, BD), CD25-PE (clone 2A3, ref. 341011, BD), CD127-

BV510 (clone A019DS5, ref. 351331, BioLegend). Appropriate isotype controls for each antibody were
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used as negative control. After staining cells were washed and fixed with paraformaldehyde (PFA, 1%,
Sigma Aldrich) and stored at 4°C for later analysis. Measurements were performed on an LSR Il (BD)
and anti-IgG beads (Miltenyi) as well as unstained cells were used for single stains and instrument set-
up. Voltages were adapted to the autofluorescence of each patient tumor and all possible events were
measured using FACS DIVA software. All steps were carried out on ice and as quickly as possible to
minimize changes in cell viability and marker expression. Data analysis and compensation was
performed using FlowJo V10.7.1 and the gating strategy was kept consistent for every sample

depending on the panels analysed (Gating strategy see Suppl. Figure S2A).

For sorting of CD8" T lymphocytes, min. 5-10 Mio cells were taken from the digested tumor
sample/single cell suspension (when enough cells were available). Cells were blocked with 200-500uL
HS depending on the cell numbers for 20min on ice in the dark. After washing 2uL/1Mio cells of the
respective antibodies, CD8-PECy7 (clone RPAT-8, ref. 557746, BD) and CD45-APC (clone J33, ref.
IM2473, Beckman Coulter), and 7-Amino-Actinomycin D (7AAD, Invitrogen) for live-dead staining were
incubated in 100-200uL FACS Buffer for 30min on ice in the dark. After washing cells were resuspended
in ImL/10Mio cells FACS buffer, filtered and directly used for sorting on a FACSAria Ill (BD). Single stains
were generated using anti-IgG micro beads (Miltenyi) according to the manufacturer’s instructions and
were used together with unstained cells and 7AAD-only stained cells for on-device compensation.
Alive-SingleCells-CD45*-CD8" cells were sorted into pre-cooled tubes containing RPMI. Sorted cells
have been pelleted and resuspended in 300uL RNA Protect (Qiagen), snap frozen and stored in liquid
nitrogen (-196 °C) for later mRNA sequencing analysis. All steps have been carried out on ice and as

quickly as possible to minimize changes in cell viability and marker expression.

Bulk mRNA sequencing of sorted cells and analysis

Paired-end sequencing (2 x 75bp) was performed on a NextSeq 500 (lllumina) with SMART-Seq
Stranded Kits (Takara Bio, USA) to reach at least 50 Mio. raw reads per sample. The raw sequencing
data was processed with Trimmomatic version 0.36 (71). Trimmed reads were acquired by removing
Illumina TruSeq3 adapters and bases at the start and end of each read, for which the phread score was
below 25. Further reads were clipped if the average quality within a sliding window of 10 fell below a
phread score of 25. Conclusively reads smaller than 50 bases were removed. For mapping and
counting, the human gene annotation release 29 and the corresponding genome (GRCh38.p12) were
derived from the GENCODE homepage (72). STAR version 2.7.5b (73) was used to map the trimmed
sequencing data to the reference genome, with the parameters adapted from protocol
recommendations (74). Mapped reads were deduplicated with bamuUtils v1.0.14 (75) and
featureCounts v.1.6.3 (76) was used to assign and summarize reads to genes while ignoring multi-

mapping, multi-overlapping and duplicated reads. The resulting raw count matrix was imported into R
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v4.0.5 and lowly expressed genes were subsequently filtered out. Prior differential expression analysis
with DESeq2 v1.18.1 (77), dispersion of the data was estimated with a parametric fit using the Survival
as explanatory variable. Shrunken log2 fold changes were calculated afterwards with the apeglm
method (78) and used as ranking criteria for the pathway analysis with GSEA in the preRanked mode
(79). The Hallmark and Gene Ontology gene set definitions from MsigDB v7.4 (80,81) were used for
GSEA.

Generation of lymphoblastoid cell lines as autologous target cells

For the generation of patient derived LCL, first potent Epstein-Barr virus (EBV) supernatant was
generated from B95-8 cells (provided by Ulrike Protzer). Therefore, 1 Mio cells per mL were stimulated
in cRPMI (see Methods — primary human material and cell lines) with 20 ng/mL PMA (Sigma Aldrich)
for 1h at 37°C, subsequently washed 3 times and cultured at a concentration of 1 Mio cells per mL in
fresh cRPMI. After 3 days the supernatant was harvested, filtered with a 0.45um sterile filter and
stored at -80°C for up to 1 year. Afterwards, this supernatant was used for the infection and
immortalization of patient derived B cells from PBMC samples. Therefore, up to 0.5 Mio PBMCs were
incubated in 1ImL RPMI with 1mL EBV supernatant for 2h at 37°C, following the addition of further 1mL
cRPMI supplemented with Cyclosporine A (Sigma Aldrich) to a final concentration of 1ug/mL and
culture in cell culture flasks at 37°C. Cells were split once clusters were visible and/or medium colour
changed and expanded at 0.3-0.6 Mio cells per mL until enough cells were available for freezing or

direct use in experiments.

Immunogenicity assessment of identified peptide ligands

Recall antigen-experienced T cell-responses to selected peptides were investigated as previously
described with modifications (6,82). In brief, up to 1 Mio PBMCs or TILs per well from each patient
were used for in vitro screening. For peptide stimulation on day 0, 1 uM of each synthetic peptide
(>90% purity, DGPeptidesCo Ltd.) was added to the culture along with 0.5 ng/ml Interleukin (IL)-7
(Peprotech), 50 ng/ml Tumor necrosis factor (TNF)-a (Peprotech) and 10 ng/ml IL-1B (Peprotech). As
positive control T cells have been non-specifically stimulated with 0.5 ng/uL phorbol-12-myristate-13-
acetate (PMA, Sigma Aldrich) and 1 ng/uL lonomycin (Sigma Aldrich). After 24h of peptide stimulation,
100uL supernatant was collected for later ELISA analysis and cells where either used for direct
overnight ELISpot analysis as previously published or enriched for specifically activated T cells using a
CD137*-based magnetic isolation (83). CD137-expressing activated cells were isolated and enriched
using the human CD137 MicroBead Kit (Miltenyi) according to the manufacturer’s instructions.
Enriched cells were taken into culture in T cell medium (TCM, see Methods — primary human material
and cell lines) supplemented with 5 ng/mL IL-7 (Peprotech), 5 ng/mL IL-15 (Peprotech), 30 U/mL IL-2
(Peprotech) and 30 ng/mL OKT-3 (kindly provided by Elisabeth Kremmer) along with 1 Mio irradiated
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(30 Gray) feeder PBMC. Enriched cells were cultured for 12 days and fed by adding IL-7 and IL-15 twice
per week and IL-2 once per week. Non-enriched cells were cultured and expanded in TCM
supplemented with 5 ng/mL IL-7 (Peprotech) and 5 ng/mL IL-15 (Peprotech) and fed twice per week.
For assays using healthy donor PBMCs the protocol without enrichment was followed and a different
HLA-matched donor for each peptide was selected based on the affinity predictions performed by

NetMHC 4.0 (35) and MHCflurry (36), where possible.

After 13 days of expansion, reactivities of T cells to the synthetic peptide ligands was assessed by
specific interferon (IFN)-y release by ELISpot assay. As antigen-presenting target cells for the second
stimulation on day 13, either an autologous lymphoblastoid cell line (LCL) derived from the same
patient or HLA-matched LCL, HLA-transduced T2 or C1R cells were used. The target cells were pulsed
for 2 h with either the selected mutated peptide or an control peptide prior to co-culture with the T
cells (in duplicate or triplicate according to available cell numbers). The co-cultures were performed
with an effecter-to-target ratio of 2:1 using 20,000 pre-stimulated T cells and 10,000 pulsed target cells
per well. ELISpot plates (Merck Millipore) were coated with an IFN-y capture antibody (1-D1K,
Mabtech) at 4°C overnight prior to the co-culture, development was performed with an IFN-y-
detection antibody (7-B6-1-biotin, Mabtech) and Streptavidin-HRP (Mabtech). ELISpot plates were

read out on an ImmunoSpot S6 Ultra-V Analyzer using Immunospot software 5.4.0.1 (CTL-Europe).

We defined the reactivity by the spot counts at day 13 comparing the mean spots from the mutated
peptide condition with the mean spots from the control peptide condition and set the threshold to a
ratio above 2, meaning the mutated peptides elicited an IFN-y response in twice as many T cells
compared to the control, and a difference of spots above 50, which is defined as the background

threshold.

Statistical analysis

Two-tailed Mann-Whitney U test was used to compare frequencies of CD8* T cells expressing at least

one activation marker (HLA-DR, CD103) of tumor specimens with high vs low immune cell infiltration.

Correlations of two distinct parameters were assessed using Spearman’s rank correlation coefficient.
For correlation of the numbers of DNA variants and RNA variants, all samples with both analyses were
included while for the correlation of phenotypic data with peptidomic data only one representative
tumor sample from each patient included for analysis (ImmuNEO core cohort see Suppl. Table S1A)

has been used to circumvent bias due to multiple metastasis available for some patients.

Kaplan-Meier curves with log rank test and Cox's proportional hazards model was used to evaluate the
overall survival (OS) since tumor resection between a high and low patient group of ImmuNEO
patients. For continuous parameters, groups were divided by the median into high (above median) and
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low (below median) groups. For relative parameters (0-100%), patients were divided into a high group
with fractions above 50% and low group with fractions below 50%. Here, only one representative
tumor sample from each patient (ImMmuNEO core cohort see Suppl. Table S1A) has been used to

circumvent bias due to multiple metastasis available for some patients.
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Supplemental Information

Supplementary Figure S1 | InmuNEO MASTER cohort

A, Distribution of the major groups of tumor entities of patients included in the ImmuNEO MASTER
cohort. B, Overall survival of InmuNEO MASTER patients since tumor resection in months. A, B, n =32
patients (see Suppl. Table S1A).

Supplementary Figure S2 | Analysis of the tumor microenvironment

A, Flow cytometric gating strategy for CD4* and CD8" T cell subsets. B, Frequencies of different CD4* T
cell subsets of all identified tumor-infiltrating CD4* T cells per patient and grouped by tumor entity. C,
Frequencies of CD4* (bottom) and CD8* T cells (top) per patient and grouped by tumor entity,
expressing at least one activation marker (HLA-DR, CD103) or inhibitory marker (PD-1, TIM-3, LAG-3).
D, Kaplan-Meier survival estimation since tumor resection of patients with short survival (below 1 year,
n = 3) and long survival (above 1 year, n = 5). E, Forest plot showing the hazard ratio (dot) and 95%
confidence intervals (lines) calculated by log rank test and Cox's proportional hazards model of several
phenotypic parameters for the survival of patients since tumor resection (n = 17). For statistical
analysis only one representative tumor sample per patient was used (see core cohort Suppl. Table
S1A). A-C, n = 23 tumor samples from n = 17 patients (see Suppl. Table S1A). freq., frequency; m.,
marker; NK, natural killer; quant., quantified cells per gram tumor; T, tumor; Tcm, central memory T
cells; Teff, effector T cells; Tem, effector memory T cells; Tn, naive T cells.

Supplementary Figure S3 | Quality assessment of genetic variants identified at the DNA and RNA
level

Total unfiltered genetic variants identified by MuTect2 (v4.1.0.0) from whole exome (WES)/whole
genome sequencing (WGS) data (DNA variants; upper panel) and by Strelka2 (v2.9.10) from RNA
sequencing (RNA-seq) data (RNA variants; lower panel) are shown per tumor sample and grouped by
tumor entity. Variants passed filtering for quality assessment only if they showed at least a coverage
of 5 reads, a variant frequency of 5%, and 2 mutated reads within the tumor as well as not more than
1 mutated read within normal control tissue. n = 39 tumor samples from n = 32 patients for WES/WGS
data; n = 32 tumor samples from n = 26 patients for RNA-seq data (see Suppl. Table S1A). T, tumor.

Supplementary Figure S4 | Genetic variants identified at the DNA and RNA level in tumor tissue from
different cancer entities

A, Venn diagram showing the overlap between all variants identified from whole exome (WES)/whole
genome sequencing (WGS) data (DNA variants) and from RNA sequencing (RNA-seq) data (RNA
variants). B, Distribution of each mutation type for all identified genetic variants regardless of the
sequencing origin (WES/WGS and RNA-seq combined). C, Correlation of DNA variants with RNA
variants identified from tumor samples where matching WES/WGS and RNA-seq data was available (n
= 32 tumor samples). Symbols depict individual tumor samples; Spearman’s rank correlation analysis,
p =0.1578; line depicts linear regression, R?=0.008. D, Bar graph showing the number of variants found
in each genetic biotype and the originating dataset. E, Forest plot showing the hazard ratio (dot) and
95% confidence intervals (lines) calculated by log rank test and Cox's proportional hazards model of
several genetic parameters for the survival of patients since tumor resection (DNA variants n = 32
patients, RNA variants n = 26 patients). Significant results (p < 0.05) are highlighted in blue. For
statistical analysis only one representative tumor sample per patient was used (see core cohort Suppl.
Table S1A). F, Upset plot showing the overlap of at least two RNA variants between at least ten tumor
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samples. The bar graph shows the number of unique variants present in a shared subset of tumors
defined as intersection size, dots indicate the tumor samples where the subset is present, and lines
connect tumor samples within the same subset. The different genes harbouring the defined genetic
variants are coloured in the intersection bar graph. A, B, D, F, n =32 tumor samples from n = 26 patients
for WES/WGS data and for RNA-seq data (see Suppl. Table S1A). Mel, melanoma; Mb, mega base; O,
other; OS, overall survival; Proc., processed; T, tumor; TEC, to be experimentally confirmed.

Supplementary Figure S5 | Characterization of shared cancer-associated peptides in the HLA class |
immunopeptidomes

A, Quantitative numbers of unique HLA class | peptides per gram tumor identified per tumor sample
grouped by tumor entity. Peptides bound to HLA class | molecules on the surface of tumor cells have
been isolated by immunoprecipitation and sequenced by liquid chromatography with tandem mass
spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92
protein database using pFIND (v3.1.5) (23) and unique sequences have been filtered. B, Upset plot
showing peptide overlap from tumor-associated genes defined by the Protein Atlas between all tumor
samples. The bar graph shows the number of unique peptides present in a shared subset of tumors
defined as intersection size, dots indicate the tumor samples where the subset is present, and lines
connect tumor samples within the same subset. Subsets that present in at least 11 patients are
highlighted by arrows. C, Bar graph showing peptides origination from the annotated cancer testis
antigen (CTA) genes, their sequence, and the patients where they have been found. A-C, n = 41 tumor
samples from n = 32 patients (see Suppl. Table S1A). CTA, cancer testis antigen; T, tumor.

Supplementary Figure S6 | Length distribution of HLA class | peptides identified by mass
spectrometry

Bar graph showing the number of unique peptides per peptide length in amino acids for every analysed
tumor sample. Peptides bound to HLA class | molecules on the surface of the tumor cells have been
isolated by immunoprecipitation and sequenced by liquid chromatography with tandem mass
spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92
protein database using pFIND (v3.1.5) and unique sequences have been filtered. n = 41 tumor samples
from n = 32 patients (see Suppl. Table S1A). aa, amino acids; T, tumor.

Supplementary Figure S7 | Peptide HLA class | binding motifs within the immunopeptidome
MHCMotifDecon (v1.0) has been used to match all isolated HLA class | peptides with lengths from 8-
15 amino acids to the patients’ HLA class | alleles according to their binding motifs and anchor residues
for each tumor sample using standard settings. Binding motives of four representative tumor samples
for each HLA class | allele are displayed with the total number of matched peptide sequences in
brackets. Peptides not matching any HLA class | allele of the respective patient are displayed in the
trash subgraph. aa, amino acid; HLA, human leukocyte antigen.

Supplementary Figure S8 | Characterization and immunogenicity assessment of neoantigen
candidates

A, Schematic overview of the immunogenicity assessment by modified accelerated co-cultured
dendritic cell (acDC) assay using non-enriched or CD137*-enriched T cells (PBMCs or TILs) for
subsequent IFN-y ELISpot readout. B, Pie chart depicting the proportion of immunogenic neoantigens
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identified only from RNA sequencing (RNA-seq) data where the respective wild type (WT) sequence
was identified at the DNA level with a coverage of > 3 reads (green) or the respective region was not
covered at the DNA level (grey, < 3 reads). C, Distribution of the nucleotide exchange pattern of all
single nucleotide variants that yield immunogenic neoantigen candidates identified only from RNA-seq
data (n=22). Variants previously identified in the REDIportal (29) database as RNA editing events are
highlighted in green. D, For those patients with immunogenic neoantigens, the total number of tested
neoantigen candidates is depicted including immunogenic and non-immunogenic ones. B-D, n = 79
neoantigen candidates from n = 24 patients were analysed in total; n = 8 patients harboured n = 24
immunogenic neoantigens; n = 1 immunogenic neoantigens from DNA and RNA variants; n = 23
neoantigen candidates from RNA variants. ca., carcinoma; endom., endometrium; GM-CSF,
granulocyte macrophage-colony stimulating factor; IL, interleukin; OKT-3, Muromonab-CD3; Panc.,
pancreas; TNF-a, tumor necrosis factor-a.

Supplementary Table S1| Overview of the InmuNEO patient cohort

A, Detailed information on every tumor sample of the ImmuNEO cohort including entity, metastatic
site (or primary), stage at admission and primary sampling cohort. Core samples used for statistical
analysis (subset) are labelled. Tumor samples used for the immune phenotyping of the tumor
microenvironment (TME) by flow cytometric assessment and RNA sequencing (RNA-seq) of sorted
CD8* T cells are marked. Samples where whole exome sequencing (WES) and bulk tumor RNA-seq was
performed are annotated; samples analysed via whole genome sequencing (WGS) are marked with an
asterisk. The survival status as well as the survival times in months are displayed for several periods
since initial diagnosis (ID), diagnosis of metastatic disease (MD) and since admission to MASTER/tumor
resection (MASTER). The time difference since MD and MASTER is shown in months. Furthermore,
information is given on patients receiving immune checkpoint blockade in general, prior to and after
study admission and the respective response with no response (0), mixed response (1) and good
response (2). B, Information about applied therapies for every ImnmuNEQO patient prior to and after
tumor resection. 1 = therapy applied, 0 = therapy not applied. C, Table providing information on HLA
class | alleles identified for each patient from whole exome (WES)/whole genome sequencing (WGS)
data using the combination of the algorithms xHLA, BWAKit, and OptiType. For InmuNEO-1, -4, -19
and -22 (*) the alleles were confirmed using targeted NGS (Zentrum fiir Humangenetik und
Laboratoriumsdiagnostik, Martinsried, Germany). Ca, carcinoma; Chemo, chemotherapy; DSRCT,
desmoplastic small round cell tumor; GIST, gastrointestinal stromal tumor; HLA, human leukocyte
antigen; IME, immune microenvironment; IN, ImmuNEO; LN, lymph node; MPNST, malignant
peripheral nerve sheath tumor; MS, mass spectrometry; OP, operation; RNAseq, RNA sequencing;
WES, whole exome sequencing; WGS, whole genome sequencing.

Supplementary Table S2| Genetic variants

A, B, C, Table showing the somatic variants present in at least four patients (A), the RNA alterations
presentin min. 10 patients (B) and the RNA alterations (min. 2 in each group) present in min. 10 unique
samples (C). Variants were called by MuTect2 (v4.1.0.0) from whole exome (WES)/whole genome
sequencing (WGS) data and by Strelka2 (v2.9.10) from RNA sequencing (RNA-seq) data. SNP-filtering
has been performed using the dbSNP-all data base. No RNA data was available for patients IN-11-T1,
IN-14, IN-16, IN-20, IN-25, IN-31, IN-34. For every variant (Mutation_ID consist of chromosome,
position, reference base and alternative base) the affected gene and the gene biotype are shown. The
samples and patients where the variant is present is shown and counted (upper table). In the lower
table all information for each variant within each sample is listed. The number of wt reads (TumorRD)
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and mutated reads (TumorAD) in the tumor, the wt reads (NormalRD) and mutated reads (NormalAD)
in the normal control, the variant frequency within the tumor (TumorVF) and the coverage of each
mutation within the tumor (TumorCoverage) is included. IN, ImmuNEO.

Supplementary Table S3| Tumor-associated peptides shared between several tumor samples

Table shows the sequence of wild-type peptides found in at least eleven tumor samples from tumor-
associated genes defined by the ProteinAtlas. Peptides bound to HLA class | molecules on the surface
of tumor cells have been isolated by immunoprecipitation and sequenced by liquid chromatography
with tandem mass spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to
the Ensemble92 protein database using pFIND (v3.1.5) and unique sequences have been filtered. The
MS count and the length of each peptide in amino acids (aa) is annotated as well as the predicted
binding affinity and rank for two HLA-I alleles present in all patients defined by NetMHC4.0. aa, amino
acids; FDR, false discovery rate; HLA, human leukocyte antigen; IN, ImmuNEQO; nM, nanomol; SB, strong
binder; Seq, sequence; WB, weak binder.

Supplementary Table S4| Overview of mutated peptide ligands

A, Detailed information on all neoantigen candidates. By combining genomic mutational data with
mass-spectrometry (MS)-based immunopeptidomic data for each patient sample, neoantigen
candidates have been identified. pFIND (v3.1.5) was used at 5% FDR on spectral level for the
identification of non-wild type (WT) 8-15mer neoantigen candidates. The machine learning tool Prosit
was additionally integrated to rescore and rematch the peptide spectra using unfiltered pFIND data as
input. n = 39 tumor samples from n = 32 patients were analysed in total; n = 27 tumor samples from n
= 24 patients harboured n = 91 neoantigen candidates. Using netMHC4.0 and MHCFlurry, binding
predictions for each peptide towards the patients six HLA class | alleles has been performed and for
each algorithm the best binding allele by affinity and by rank are shown. Mutated amino acids are
marked with two asterisks within the sequence. B, Additional information on immunogenic neoantigen
candidates. Immunogenicity assessment has been performed using a modified accelerated co-cultured
dendritic cell (acDC) assays with IFN-y ELIspot analysis using patient derived PBMC (non-enriched and
CD137* enriched) or tumor-infiltration lymphocytes (TILs) (non-enriched and CD137* enriched) (top
table) and allogenic-matched healthy donor PBMCs (non-enriched) (bottom table). Shown are
immunogenic neoantigens that elicit an immune response where the ratio of spot forming units (SFU)
is > 2 (mutated / control peptide) and the difference of SFU is > 50 (mutated - control peptide).
Autologous lymphoblastoid cell lines (LCLs) or allogenic HLA-matched cells (LCLs or HLA-transduced
cell lines) have been used as target cells. a.a, amino acid; Alt, alternative; BA, binding affinity; CA,
carcinoma; Chrom, chromosome; del, deletion; dup, duplication; HD, healthy donor; HLA, human
leukocyte antigen; ins, insertion; n.a./NA, not applicable; nM nanomole; PBMC, peripheral blood
mononbuclear cells; Pos, position; Ref, reference; Seq, sequence; T, tumor; VF, variant frequency.
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