

1 **Computational remodeling of an enzyme conformational landscape for**
2 **altered substrate selectivity**

3

4 **Antony D. St-Jacques,^{1,2} Joshua M. Rodriguez,³ Matthew G. Eason,^{1,2} Scott M. Foster,^{1,2}**
5 **Safwat T. Khan,^{1,2} Adam M. Damry,^{1,2} Natalie K. Goto,^{1,2} Michael C. Thompson,³ Roberto**

6 **A. Chica^{1,2,*}**

7

8 ¹ Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario,
9 Canada, K1N 6N5

10 ² Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada,
11 K1N 6N5

12 ³ Department of Chemistry and Biochemistry, University of California, Merced, Merced,
13 California 95343, United States

14

15 * To whom correspondence should be addressed:

16 Roberto A. Chica, Email: rchica@uottawa.ca

17

18 **Keywords**

19 Computational protein design; multistate design; enzyme engineering; aminotransferase;
20 transaminase; biocatalysis; substrate selectivity

21 **Abstract**

22 Structural plasticity of enzymes dictates their function. Yet, our ability to rationally remodel
23 enzyme conformational landscapes to tailor catalytic properties remains limited. Here, we report
24 a computational procedure for tuning conformational landscapes that is based on multistate design.
25 Using this method, we redesigned the conformational landscape of a natural aminotransferase to
26 preferentially stabilize a less populated but reactive conformation, and thereby increase catalytic
27 efficiency with a non-native substrate to alter substrate selectivity. Steady-state kinetics of
28 designed variants revealed selectivity switches of up to 1900-fold, and structural analyses by room-
29 temperature X-ray crystallography and multitemperature nuclear magnetic resonance spectroscopy
30 confirmed that conformational equilibria favoured the target conformation. Our computational
31 approach opens the door to the fine-tuning of enzyme conformational landscapes to create designer
32 biocatalysts with tailored functionality.

33

34 **Main text**

35 Enzymes are flexible macromolecules that sample multiple structural states, described by
36 a conformational energy landscape (1). It is the relative stability of these conformational states,
37 and the ability of enzymes to transition between them, that ultimately dictates enzymatic function
38 (2-4). Analyses of directed evolution trajectories have shown that evolution can reshape enzyme
39 conformational landscapes by enriching catalytically productive states and depopulating non-
40 productive ones (5-7), leading to enhanced catalytic activity. Similar mechanisms contribute to the
41 evolution of substrate selectivity, where transient conformations responsible for activity on non-
42 cognate substrates become enriched (8-10). Thus, it should be possible to harness the pre-existing
43 conformational plasticity of enzymes to rationally design biocatalysts with tailored catalytic
44 properties by fine-tuning their conformational landscapes. However, predicting the effect of
45 mutations on these energy landscapes remains challenging, and current computational enzyme
46 design protocols, which focus on a single structural state, are poorly optimized for this task. New
47 design methodologies are therefore required for the targeted alteration of subtle conformational
48 states and equilibria, which would in turn facilitate the design of biocatalysts with customized
49 activity and selectivity.

50 Here, we report a computational procedure for rationally tuning enzyme conformational
51 landscapes that is based on multistate computational protein design, a methodology that allows
52 protein sequences to be optimized on multiple structural states (11). As a case study, we
53 remodelled the conformational landscape of aspartate aminotransferase, an enzyme that switches
54 between open and closed conformations via hinge movement, which involves the rotation of a
55 protein domain relative to another around an axis between two planes. Using our approach, we
56 enriched the less populated but catalytically active closed conformation in order to increase

57 catalytic efficiency ($k_{\text{cat}}/K_{\text{M}}$) with the non-native substrate L-phenylalanine, leading to altered
58 substrate selectivity. Steady-state kinetics revealed $k_{\text{cat}}/K_{\text{M}}$ increases of up to 100-fold towards this
59 aromatic amino acid, resulting in a selectivity switch of up to 1900-fold, and structural analyses
60 by room-temperature X-ray crystallography and multitemperature nuclear magnetic resonance
61 (NMR) spectroscopy confirmed that the conformational landscape was remodelled to favour the
62 target state. Our methodology for conformational landscape fine-tuning could be incorporated into
63 *de novo* enzyme design pipelines, opening the door to the creation of more complex and efficient
64 designer biocatalysts than previously possible.

65

66 **Results**

67 *Computational remodelling of conformational landscape*

68 *E. coli* aspartate aminotransferase (AAT) is a pyridoxal phosphate (PLP)-dependent
69 enzyme that catalyses the reversible transamination of L-aspartate with α -ketoglutarate, yielding
70 oxaloacetate and L-glutamate (Supplementary Figure 1a). During its catalytic cycle, AAT
71 undergoes hinge movement to switch between an open conformation, in the ligand-free form, and
72 a closed conformation upon association with substrates or inhibitors (Figure 1a,b) (12). Previously,
73 a hexamutant (HEX) of AAT that is approximately two orders of magnitude more catalytically
74 efficient than the wild type (WT) with the aromatic amino acid L-phenylalanine (Table 1,
75 Supplementary Figure 1b), and similarly efficient for transamination of L-aspartate, was
76 engineered by replacing six of the 19 residues that are strictly conserved in AAT enzymes by those
77 found at corresponding positions in the homologous *E. coli* tyrosine aminotransferase (13).
78 Unexpectedly, it was found that unlike WT, HEX was closed in its ligand-free form (Figure 1c)
79 (14), demonstrating that those six mutations shifted its conformational equilibrium to favour the

80 closed state (Figure 1d), which is the active conformation of the enzyme (15). This equilibrium
81 shift was accompanied by enhanced L-phenylalanine transamination activity resulting from a
82 larger increase in affinity for this non-native substrate than for the native L-aspartate substrate (13).
83 Thus, we postulated that we could rationally remodel the conformational landscape of AAT by
84 using multistate computational protein design (11) to identify novel mutation combinations that
85 can preferentially stabilize the closed conformation over the open conformation, and in doing so,
86 increase substrate selectivity for L-phenylalanine.

87 To test this hypothesis, we implemented a computational strategy (Figure 2) that proceeds
88 in five steps: (1) identification of hinge-bending residues involved in transition between open and
89 closed conformations; (2) generation of structural ensembles approximating backbone flexibility
90 to model open and closed conformational states; (3) optimization of side-chain rotamers for all
91 allowed amino-acid combinations at key hinge-bending residues and neighboring positions, on
92 each ensemble; (4) calculation of energy differences between open and closed states to predict
93 preferred conformation, and (5) combinatorial library design using computed energy differences
94 to select mutant sequences for experimental testing.

95 To identify hinge-bending residues for the open/closed conformational transition, crystal
96 structures of WT AAT in its open and closed forms (PDB ID: 1ARS and 1ART, respectively (12))
97 were used as input for hinge movement analysis with DynDom, a program that identifies domains,
98 hinge axes and hinge bending residues in proteins for which two conformations are available (16).
99 DynDom analysis (Supplementary Table 1) revealed a small moving domain (Figure 1b) that
100 rotates by 7.1 degrees about the hinge axis from the larger fixed domain, and identified 25 hinge-
101 bending residues. We selected two of these residues, Val35 and Lys37 (numbering based on
102 Uniprot sequence P00509), for design because they are found on the flexible loop connecting the

103 moving and fixed domains (Figure 2). We also selected for design residues Thr43 and Asn64,
104 which are not part of the hinge, but whose side chains form tight packing interactions with those
105 of Val35 and Lys37. Interestingly, these residues comprise four of the six positions that were
106 mutated in HEX (Table 1), demonstrating that our analysis using only WT structures led to the
107 identification of positions that contribute to controlling the open/closed conformational
108 equilibrium in AAT.

109 Next, we generated backbone ensembles from the open- and closed-state crystal structures
110 to approximate the intrinsic flexibility of these two conformational states using the PertMin
111 algorithm (17), which we previously showed to result in improved accuracy of protein stability
112 predictions when used as templates in multistate design (18). Using the protein design software
113 Phoenix (19, 20), we optimized rotamers for all combinations of proteinogenic amino acids with
114 the exception of proline at the four designed positions on each backbone ensemble, yielding
115 Boltzmann-weighted average energies for 130,321 (19⁴) AAT sequences that reflect their
116 predicted stability on each conformational state. To identify mutant sequences that preferentially
117 stabilized the closed conformation, we computed the energy difference between closed and open
118 state ensembles ($\Delta E = E_{\text{closed}} - E_{\text{open}}$) for each sequence. As a final step, we used these ΔE values
119 as input to the CLEARSS library design algorithm (19) to generate a 24-member combinatorial
120 library of AAT mutants predicted to favour the closed state (Closed library, Supplementary Table
121 2) with a range of values (−86.0 to −9.5 kcal mol^{−1}) encompassing that of HEX (−76.8 kcal mol^{−1},
122 Table 2). As controls, we also generated two libraries of sequences predicted to favour the open
123 conformation (Supplementary Table 2): the Open_{Low} library, which contains 18 sequences
124 predicted to stabilize the open state with ΔE values (0.8–16.4 kcal mol^{−1}) comparable to that of the
125 WT (14.2 kcal mol^{−1}, Table 2), and the Open_{High} library, which contains 24 sequences predicted to

126 more strongly favour the open state due to substantial destabilization of the closed state by >120
127 kcal mol⁻¹. While we postulated that the Open_{Low} library would yield mutants with wild-type-like
128 conformational landscapes and therefore similar catalytic efficiency and substrate selectivity, we
129 hypothesized that Open_{High} library mutants would be less efficient than WT with both native and
130 non-native substrates due to their strong destabilization of the closed conformation, which is the
131 active form of the enzyme (15). Thus, experimental characterization of these three mutant libraries,
132 which comprise non-overlapping sequences (Figure 2), allowed us to assess the ability of the ΔE
133 metric to predict sequences with conformational landscapes favouring the open or closed states.

134

135 *Kinetic analysis of designs*

136 We screened the three mutant libraries for transamination activity with the non-native
137 substrate L-phenylalanine (Methods) and selected the most active mutants from each library for
138 kinetic analysis. All selected mutants catalyzed transamination of L-phenylalanine or L-aspartate
139 with α -ketoglutarate, and displayed substrate inhibition with this acceptor substrate, as is the case
140 for WT (Table 1, Supplementary Tables 3–4, Supplementary Figures 2–5). All Closed library
141 mutants displayed catalytic efficiencies towards L-phenylalanine that were improved by
142 approximately two orders of magnitude relative to WT (Table 1), comparable to HEX, and all were
143 similarly or more active with this non-native substrate than with L-aspartate, in stark contrast with
144 WT AAT, which prefers the native substrate by a factor of 100 (Supplementary Figure 6). By
145 contrast, Open_{Low} and Open_{High} mutants favoured the native over the non-native substrate by up to
146 50-fold, similar to WT. Surprisingly, Open_{Low} mutants had lower K_M values and were more
147 catalytically efficient than WT with both L-phenylalanine and L-aspartate, which could be due to
148 the fact that these mutants have ΔE values similar to the WT but stabilize both the open and closed

149 conformations by >10 kcal mol $^{-1}$ (Table 2, Supplementary Table 2). This is not the case for
150 Open_{High} mutants, which have similar K_M values but are less catalytically efficient with the native
151 substrate than WT, in agreement with our hypothesis that strong destabilization of the catalytically
152 active closed conformation would result in less efficient catalysis. Overall, these kinetic results
153 support the hypothesis that the change in substrate selectivity is linked to the conformational
154 equilibrium previously suggested by the data from the HEX mutant (13, 14).

155

156 *Structural analysis of designs*

157 To provide structural information on the conformations adopted by AAT mutants, we
158 turned to room-temperature X-ray crystallography, which provides insight into enzyme
159 conformational ensembles under conditions that are relevant to catalysis (21) and free of potential
160 distortions or conformational bias introduced by sample cryocooling (22). We crystallized WT,
161 HEX, and select variants from the Closed (VFIT and VFIY), Open_{Low} (VFCS) and Open_{High}
162 (AIFS) libraries. All six enzymes yielded crystals under similar conditions (Supplementary Table
163 5), which could only be obtained in the presence of maleate (Supplementary Figure 1c), an
164 inhibitor that stabilizes the closed conformation when bound by the enzyme (23). To obtain
165 structures in the absence of maleate, we applied a rigorous crystal soaking method to serially dilute
166 and extract the inhibitor from the crystallized enzymes (Methods). We collected X-ray diffraction
167 data at room-temperature (278 K) for all variants with the exception of AIFS, which could only be
168 measured at cryogenic temperature (100 K) because we could only obtain small crystals that were
169 not robust to radiation damage at non-cryogenic temperatures. We applied statistical criteria
170 (Supplementary Table 6) to assign high-resolution cut-offs of 1.37–2.31 Å for our data sets, and
171 all structures were subsequently determined by molecular replacement in space group P63 with an

172 enzyme homodimer in the asymmetric unit. In the inhibitor-bound state, all structures were closed
173 as expected (Supplementary Figure 7) due to electrostatic interactions between maleate and the
174 side chains of Arg280 and Arg374 (Supplementary Figure 8). Upon soaking crystals of the WT
175 enzyme to remove the bound inhibitor, we observed that one subunit (chain A) within the enzyme
176 homodimer was in the open conformation (Figure 3), confirming that the soaking procedure was
177 able to remove the bound maleate, and that the crystal lattice could accommodate the domain
178 rotation required for opening and closing of this subunit. In the maleate-free structures, a sulfate
179 ion and one or more ordered water molecules occupy the inhibitor binding site (Supplementary
180 Figure 9), as was previously observed in WT (24) and HEX (14) structures at cryogenic
181 temperatures.

182 Superposition of bound and unbound structures for each variant confirmed that closed
183 library mutants VFIT and VFIY remained in the closed conformation in the inhibitor-free form,
184 similar to HEX, while Open_{Low} variant VFCS and Open_{High} variant AIFS adopted the open
185 conformation, similar to WT (Figure 3). AIFS is unique in that the electron density is especially
186 weak in the regions corresponding to the helix formed by Pro12–Leu19 and the loop connecting
187 moving and fixed domains (Leu31–Thr43), even at cryogenic temperatures, demonstrating that
188 these structural segments are disordered when the enzyme adopts the open conformation
189 (Supplementary Figure 10). This result suggests that the four mutations of AIFS, three of which
190 are found within the Leu31–Thr43 loop, contribute to destabilize the open conformation,
191 consistent with the calculated E_{open} value of this variant (Table 2) being >7 kcal mol⁻¹ higher than
192 that of the other variants that favour the open state (WT and VFCS). Interestingly, the amplitude
193 of the open/closed conformational transition that occurs in open variants upon maleate binding
194 (Figure 3) correlated with their computed ΔE values (VFCS < WT < AIFS), suggesting that this

195 metric can be used to fine-tune this enzyme conformational landscape. Furthermore, DynDom
196 analyses of all variants confirmed that only WT, VFCS, and AIFS undergo hinge motion upon
197 maleate binding (Supplementary Table 7), which rotates the moving domain relative to the fixed
198 domain by 4.6, 2.6, and 5.9 degrees, respectively.

199

200 *NMR analysis of conformational landscapes*

201 Having demonstrated crystallographically that our designed variants adopted the target
202 conformation in the absence of ligand, we turned to NMR spectroscopy to gain insights into their
203 conformational equilibria in solution, and compared results against those obtained for WT and
204 HEX. We first measured ^1H - ^{15}N HSQC spectra for WT in the presence and absence of L-aspartate
205 (Supplementary Figure 11a). As expected for a protein of this size, the spectrum consisted of a
206 large number of peaks that were broad with a high degree of overlap. It was nonetheless possible
207 to assign the unique chemical shifts of peaks from the indole NH group for three native Trp
208 residues by comparison of these spectra with those acquired with single Trp mutants
209 (Supplementary Figure 11b,c). This allowed assignment of a peak that was significantly broadened
210 in spectra of both HEX and Closed library mutant VFIY to the indole NH from Trp307
211 (Supplementary Figure 11d), whose side chain is closest to the designed hinge residues. Moreover,
212 the Trp307 indole peak was no longer detectable when the L-aspartate substrate was present for
213 both WT and mutant enzymes, most likely being broadened beyond detection. Since all conditions
214 that favour the closed state (i.e., HEX and Closed library mutations and/or L-aspartate binding)
215 broaden the Trp307 indole resonance, this exchange appears to be associated with the closed state,
216 potentially due to conformational dynamics around the hinge.

217 In order to characterize the thermodynamics of the exchange processes around the hinge
218 region, we labelled AAT variants at a single site with ^{19}F using site-specific incorporation of the
219 noncanonical amino acid 4-trifluoromethyl-L-phenylalanine (25). Phe217 was chosen as the
220 incorporation site since it is proximal to hinge residues but is not in direct contact with the substrate
221 (Figure 4a). The ^{19}F spectrum of WT at 278 K showed a single peak centred at approximately –60
222 ppm that shifts downfield as temperature is increased (Figure 4b), similar to what is observed for
223 free 4-trifluoromethyl-L-phenylalanine in solution (Supplementary Figure 12). By contrast, the
224 HEX spectrum at 278 K showed a large broad peak centred at around –61.6 ppm, with another
225 peak of substantially lower intensity also appearing at a similar shift to that observed in the WT
226 spectrum (–60.4 ppm). The relative intensity of these 2 peaks changed as the temperature was
227 increased, with the low intensity peak increasing as the major peak decreased. This is characteristic
228 of two-state exchange, with the equilibrium between the two states being shifted by the
229 temperature change. Given that the crystal structure of HEX in its ligand-free form showed a closed
230 conformation (Figure 3), it is likely that the major peak reflects a local chemical environment
231 created by the closed state, with a small population in an open state similar to that seen in the WT
232 spectrum.

233 Using peak deconvolution and integration, it was possible to calculate relative populations
234 for each species for variants undergoing the observed two-state exchange, along with the free
235 energy difference between states (Supplementary Figure 13, Supplementary Table 8). We
236 calculated ΔG at 278 K for HEX to be $-1.72 \text{ kcal mol}^{-1}$ (Table 2), a small difference that would be
237 compatible with the interconversion between these two states to be part of the catalytic cycle (26).
238 These peak volumes could also be calculated over the entire temperature range tested, giving rise
239 to a van't Hoff relationship with a small degree of curvature (Supplementary Figure 14).

240 Deviations from linearity can occur when there are differences in heat capacity between the two
241 states, as would be expected for a process involving a change in conformational states over the
242 temperature range tested (27). By contrast, the presence of a single peak in WT spectra suggests
243 that the closed state is not significantly populated under these conditions, as expected from its
244 open-state crystal structures obtained under both cryogenic (12, 24) and room-temperature
245 conditions.

246 We next analyzed two mutants from the Closed library (VFIT and VFIY). ¹⁹F NMR spectra
247 at 278 K for both mutants showed a narrow peak centred at approximately –60.2 ppm that is similar
248 to that of WT (Figure 4). Spectra of these variants also showed another broad peak centred at
249 approximately –61.2 ppm that is similar to the HEX peak characteristic of the closed conformation.
250 The relative intensity of the two peaks showed similar temperature dependence, with an increase
251 in the relative intensity of the WT-like peak as temperature was increased to 308 K. Peak
252 deconvolution and integration (Supplementary Figure 13–14, Supplementary Table 8) were used
253 to evaluate the population of the two states, and confirmed that at low temperatures both VFIT and
254 VFIY favour the state resembling that adopted by the closed HEX mutant (T < 288 K or 283 K,
255 respectively). However, unlike HEX, at higher temperatures the alternate conformation with the
256 WT-like peak becomes the favoured state (Table 2). Interestingly, ΔE values for these mutants
257 were smaller in magnitude than that calculated for HEX, supporting the predictive nature of the
258 calculated energy differences between open and closed states for these sequences.

259 To determine if these differences in the temperature dependence of exchange could be
260 observed in the crystal state, we also solved the maleate-free structures of WT, HEX, and VFIT at
261 303 K (Supplementary Table 9, Supplementary Figure 9), and calculated isomorphous difference
262 density maps by subtracting electron density at 278 K (Supplementary Figure 15). Comparing

263 VFIT data obtained at 278 K and 303 K results in substantial difference density throughout chain
264 A, the chain that opens when WT crystals are soaked to remove maleate. By contrast, similar
265 comparisons for WT and HEX showed relatively little difference density. This analysis confirms
266 that VFIT undergoes larger local conformational changes than either HEX or WT when the
267 temperature of the crystal is increased to 303 K, in agreement with our van't Hoff analysis of NMR
268 data (Table 2, Supplementary Table 8). The agreement between temperature-dependent X-ray
269 crystallography and NMR data provides strong evidence that the conformational exchange
270 detected in the NMR experiments reflects a dynamic equilibrium between closed and open
271 conformations, with mutations that favour the closed conformation also increasing selectivity
272 toward L-phenylalanine.

273 We next analyzed two mutants designed to favour the open conformation in their ligand-
274 free forms. Open_{Low} mutant VFCS showed ¹⁹F NMR spectra that were very similar to those of WT
275 within the tested temperature range (Figure 4b, Supplementary Figure 13), consistent with its
276 preference for the open conformation (Figure 3, Table 2). However, Open_{High} mutant AIFS gave
277 rise to spectra that were distinct from those of all other variants (Figure 4b), but could be
278 deconvoluted to two exchanging peaks (Supplementary Figure 13), to allow estimation of
279 populations (Supplementary Table 8, Supplementary Figure 14). We postulate that those peaks
280 correspond to alternate open conformations distinct from the one sampled by the other variants.
281 This hypothesis is supported by our observations that ligand-free AIFS is open at low temperature
282 (Figure 3) but contains disordered segments around the Pro12–Leu19 helix and the loop containing
283 three of the four designed positions (Supplementary Figure 10), which are located close to the
284 Phe217 position where the ¹⁹F label was introduced. The observed heterogeneity could therefore
285 correspond to a mixture of these alternate open conformations. Additional support that the

286 exchange detected in AIFS differed from that of HEX and closed mutants was provided by the
287 van't Hoff analysis, which showed no curvature for AIFS unlike for the closed mutants
288 (Supplementary Figure 14), suggesting that the Open^{High} variant does not undergo the open/closed
289 conformational transition within this temperature range.

290

291 **Discussion**

292 Here, we successfully remodeled the conformational landscape of an enzyme via targeted
293 alterations to the equilibrium between two distinct conformational states related by a hinge-
294 bending motion. The resulting equilibrium shift promoted activity towards a non-native substrate,
295 leading to a selectivity switch of up to 1900-fold. As many enzymes undergo hinge-mediated
296 domain motions during their catalytic cycles (28), the multistate design approach presented here
297 should be straightforward to implement for such enzymes. Given the ability of our design
298 procedure to distinguish between closed and open states whose free energy difference is on the
299 order of a single hydrogen bond, our approach could, in principle, also be applied to preferentially
300 stabilize catalytically competent substates involving more subtle structural changes, such as
301 backbone carbonyl flips (29) or side-chain rotations (30). This methodology could therefore help
302 to tailor catalytic efficiency or substrate selectivity by mimicking, *in silico*, the processes of
303 evolution that harness altered conformational equilibria to tune function (7, 31, 32).

304 The predictive capacity of our multistate design framework could only be achieved by
305 evaluating the energy of sequences on multiple conformational states. For example, the VFCS
306 variant that prefers the open state is predicted to be more stable on the closed state than Closed
307 library mutants VFIT and VFIY (Table 2), and more stable on the Open state than AIFS even
308 though it is less open than this variant (Figure 3). Furthermore, there were no obvious trends in

309 designed mutations that could explain their effect on the conformational landscape, as none of
310 these introduced bulkier or smaller amino acids at all or specific residue positions to cause or
311 alleviate steric clashes in the open or closed conformations so as to shift the equilibrium towards
312 one of these states, which has been the approach others have used to shift conformational equilibria
313 (33). Thus, subtle effects of mutation combinations on the relative stability of each conformational
314 state were likely responsible for the observed preference of mutants for the open or closed
315 conformations.

316 Our results demonstrate the utility of multistate design, with ΔE values calculated from
317 ensemble energies of open and closed states, for the targeted alteration of subtle conformational
318 equilibria, an approach that represents a useful alternative to heuristic methods that others have
319 used to tune the relative stability of protein conformational states (34). Extending this concept, we
320 envision that *de novo* design of artificial enzymes with native-like catalytic efficiency and
321 selectivity for complex multistep chemical transformations will require a holistic approach where
322 every conformational state and/or substate required to stabilize reaction intermediates and
323 transition states are explicitly modelled, and their relative energies optimized. The multistate
324 design method for conformational landscape remodelling presented here could therefore be
325 incorporated into *de novo* enzyme design pipelines, helping to bridge the gap between the carving
326 of an active site for transition-state stabilization, and the modulation of conformational dynamics
327 required for efficient passage along the reaction coordinate.

328

329

References

- 330 1. S. J. Benkovic, G. G. Hammes, S. Hammes-Schiffer, Free-energy landscape of enzyme catalysis.
Biochemistry **47**, 3317-3321 (2008).
- 331 2. S. J. Kerns, R. V. Agafonov, Y. J. Cho, F. Pontiggia, R. Otten, D. V. Pachov, S. Kutter, L. A. Phung, P. N. Murphy, V. Thai, T. Alber, M. F. Hagan, D. Kern, The energy landscape of adenylate kinase during catalysis. *Nat Struct Mol Biol* **22**, 124-131 (2015).
- 332 3. D. D. Boehr, D. McElheny, H. J. Dyson, P. E. Wright, The dynamic energy landscape of dihydrofolate reductase catalysis. *Science* **313**, 1638-1642 (2006).
- 333 4. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins. *Nature* **450**, 964-972 (2007).
- 334 5. E. Campbell, M. Kaltenbach, G. J. Correy, P. D. Carr, B. T. Porebski, E. K. Livingstone, L. Afriat-Jurnou, A. M. Buckle, M. Weik, F. Hollfelder, N. Tokuriki, C. J. Jackson, The role of protein dynamics in the evolution of new enzyme function. *Nature chemical biology* **12**, 944-950 (2016).
- 335 6. J. A. Kaczmarski, M. C. Mahawaththa, A. Feintuch, B. E. Clifton, L. A. Adams, D. Goldfarb, G. Otting, C. J. Jackson, Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. *Nature communications* **11**, 5945 (2020).
- 336 7. M. A. Maria-Solano, J. Iglesias-Fernandez, S. Osuna, Deciphering the Allosterically Driven Conformational Ensemble in Tryptophan Synthase Evolution. *J Am Chem Soc* **141**, 13049-13056 (2019).
- 337 8. N. Tokuriki, D. S. Tawfik, Protein dynamism and evolvability. *Science* **324**, 203-207 (2009).
- 338 9. M. A. Maria-Solano, E. Serrano-Hervas, A. Romero-Rivera, J. Iglesias-Fernandez, S. Osuna, Role of conformational dynamics in the evolution of novel enzyme function. *Chem Commun (Camb)* **54**, 6622-6634 (2018).
- 339 10. B. E. Clifton, C. J. Jackson, Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins. *Cell chemical biology* **23**, 236-245 (2016).
- 340 11. J. A. Davey, R. A. Chica, Multistate approaches in computational protein design. *Protein Sci* **21**, 1241-1252 (2012).
- 341 12. A. Okamoto, T. Higuchi, K. Hirotsu, S. Kuramitsu, H. Kagamiyama, X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from *Escherichia coli* in open and closed form. *J Biochem* **116**, 95-107 (1994).
- 342 13. J. J. Onuffer, J. F. Kirsch, Redesign of the substrate specificity of *Escherichia coli* aspartate aminotransferase to that of *Escherichia coli* tyrosine aminotransferase by homology modeling and site-directed mutagenesis. *Protein Sci* **4**, 1750-1757 (1995).
- 343 14. V. N. Malashkevich, J. J. Onuffer, J. F. Kirsch, J. N. Jansonius, Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. *Nat Struct Biol* **2**, 548-553 (1995).
- 344 15. M. M. Islam, M. Goto, I. Miyahara, H. Ikushiro, K. Hirotsu, H. Hayashi, Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step. *Biochemistry* **44**, 8218-8229 (2005).
- 345 16. S. Hayward, R. A. Lee, Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. *Journal of Molecular Graphics and Modelling* **21**, 181-183 (2002).
- 346 17. J. A. Davey, R. A. Chica, Multistate Computational Protein Design with Backbone Ensembles. *Methods Mol Biol* **1529**, 161-179 (2017).
- 347 18. J. A. Davey, R. A. Chica, Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles. *Proteins* **82**, 771-784 (2014).
- 348 19. B. D. Allen, A. Nisthal, S. L. Mayo, Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. *Proc Natl Acad Sci U S A* **107**, 19838-19843 (2010).
- 349 20. R. A. Chica, M. M. Moore, B. D. Allen, S. L. Mayo, Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries. *Proc Natl Acad Sci U S A* **107**, 20257-20262 (2010).
- 350 21. J. S. Fraser, M. W. Clarkson, S. C. Degnan, R. Erion, D. Kern, T. Alber, Hidden alternative structures of proline isomerase essential for catalysis. *Nature* **462**, 669-673 (2009).
- 351 22. D. A. Keedy, H. van den Bedem, D. A. Sivak, G. A. Petsko, D. Ringe, M. A. Wilson, J. S. Fraser, Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. *Structure* **22**, 899-910 (2014).

382 23. I. Miyahara, K. Hirotsu, H. Hayashi, H. Kagamiyama, X-ray crystallographic study of pyridoxamine 5'-
383 phosphate-type aspartate aminotransferases from Escherichia coli in three forms. *J Biochem* **116**, 1001-
384 1012 (1994).
385 24. J. Jäger, M. Moser, U. Sauder, J. N. Jansonius, Crystal Structures of Escherichia coli Aspartate
386 Aminotransferase in Two Conformations: Comparison of an Unliganded Open and Two Liganded Closed
387 Forms. *Journal of Molecular Biology* **239**, 285-305 (1994).
388 25. J. T. Hammill, S. Miyake-Stoner, J. L. Hazen, J. C. Jackson, R. A. Mehl, Preparation of site-specifically
389 labeled fluorinated proteins for 19F-NMR structural characterization. *Nat Protoc* **2**, 2601-2607 (2007).
390 26. S. Kuramitsu, K. Hiromi, H. Hayashi, Y. Morino, H. Kagamiyama, Pre-steady-state kinetics of Escherichia
391 coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity.
392 *Biochemistry* **29**, 5469-5476 (1990).
393 27. G. Sharma, E. A. First, Thermodynamic analysis reveals a temperature-dependent change in the catalytic
394 mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase. *J Biol Chem* **284**, 4179-4190 (2009).
395 28. P. M. Khade, A. Kumar, R. L. Jernigan, Characterizing and Predicting Protein Hinges for Mechanistic
396 Insight. *Journal of Molecular Biology* **432**, 508-522 (2020).
397 29. R. Otten, R. A. P. Padua, H. A. Bunzel, V. Nguyen, W. Pitsawong, M. Patterson, S. Sui, S. L. Perry, A. E.
398 Cohen, D. Hilvert, D. Kern, How directed evolution reshapes the energy landscape in an enzyme to boost
399 catalysis. *Science* **370**, 1442-1446 (2020).
400 30. N. S. Hong, D. Petrovic, R. Lee, G. Gryn'ova, M. Purg, J. Saunders, P. Bauer, P. D. Carr, C. Y. Lin, P. D.
401 Mabbitt, W. Zhang, T. Altamore, C. Easton, M. L. Coote, S. C. L. Kamerlin, C. J. Jackson, The evolution
402 of multiple active site configurations in a designed enzyme. *Nature communications* **9**, 3900 (2018).
403 31. B. E. Clifton, J. A. KaczmarSKI, P. D. Carr, M. L. Gerth, N. Tokuriki, C. J. Jackson, Evolution of
404 cyclohexadienyl dehydratase from an ancestral solute-binding protein. *Nature chemical biology* **14**, 542-
405 547 (2018).
406 32. M. Kaltenbach, J. R. Burke, M. Dindo, A. Pabis, F. S. Munsberg, A. Rabin, S. C. L. Kamerlin, J. P. Noel,
407 D. S. Tawfik, Evolution of chalcone isomerase from a noncatalytic ancestor. *Nature chemical biology* **14**,
408 548-555 (2018).
409 33. J. S. Marvin, H. W. Hellinga, Manipulation of ligand binding affinity by exploitation of conformational
410 coupling. *Nature Structural Biology* **8**, 795-798 (2001).
411 34. K. Y. Wei, D. Moschidi, M. J. Bick, S. Nerli, A. C. McShan, L. P. Carter, P.-S. Huang, D. A. Fletcher, N.
412 G. Sgourakis, S. E. Boyken, D. Baker, Computational design of closely related proteins that adopt two
413 well-defined but structurally divergent folds. *Proceedings of the National Academy of Sciences* **117**, 7208-
414 7215 (2020).
415

416 **Table 1.** Apparent kinetic parameters of *E. coli* AAT and its mutants for transamination of various amino-acid
 417 donors with α -ketoglutarate as acceptor

Enzyme ^a	Mutations				L-Aspartate ^b		L-Phenylalanine ^b		Selectivity ^c	
	V35	K37	T43	N64	K_M (mM)	k_{cat} (s ⁻¹)	k_{cat}/K_M (M ⁻¹ s ⁻¹)	K_M (mM)	k_{cat} (s ⁻¹)	k_{cat}/K_M (M ⁻¹ s ⁻¹)
Controls										
WT	-	-	-	-	0.21 ± 0.03	7.8 ± 0.3	37000 ± 5000	N.D. ^e	N.D. ^e	400 ± 100
HEX ^d	L	Y	I	L	0.059 ± 0.007	1.32 ± 0.03	22000 ± 3000	0.27 ± 0.03	9.0 ± 0.2	33000 ± 4000
Closed Library										
IYIT	I	Y	I	T	0.014 ± 0.002	0.155 ± 0.005	11000 ± 2000	0.34 ± 0.03	10.1 ± 0.2	30000 ± 3000
VFIT	-	F	I	T	0.027 ± 0.003	0.90 ± 0.01	33000 ± 4000	0.90 ± 0.06	22.8 ± 0.4	25000 ± 2000
VFIY	-	F	I	Y	0.12 ± 0.01	0.263 ± 0.005	2200 ± 200	0.42 ± 0.04	17.3 ± 0.4	41000 ± 4000
VYIT	-	Y	I	T	0.08 ± 0.01	0.37 ± 0.01	4600 ± 600	1.11 ± 0.07	41.8 ± 0.6	38000 ± 2000
VYIY	-	Y	I	Y	0.09 ± 0.02	0.244 ± 0.006	2700 ± 600	0.58 ± 0.02	20.9 ± 0.2	36000 ± 1000
Open_{Low} Library										
IFCA	I	F	C	A	0.031 ± 0.004	2.63 ± 0.06	80000 ± 10000	2.3 ± 0.2	47 ± 1	20000 ± 2000
MFCA	M	F	C	A	0.018 ± 0.003	1.21 ± 0.02	70000 ± 10000	1.08 ± 0.08	35.9 ± 0.6	33000 ± 3000
VFCA	-	F	C	A	0.050 ± 0.006	4.4 ± 0.1	90000 ± 10000	4.2 ± 0.2	47 ± 1	11200 ± 600
VFCS	-	F	C	S	0.068 ± 0.007	6.0 ± 0.1	88000 ± 9000	12 ± 1	87 ± 3	7200 ± 700
Open_{High} Library										
AIFS	A	I	F	S	0.32 ± 0.03	2.42 ± 0.04	7600 ± 700	2.6 ± 0.2	0.54 ± 0.01	210 ± 20
CIFC	C	I	F	C	0.13 ± 0.01	2.62 ± 0.04	20000 ± 2000	5.9 ± 0.4	3.89 ± 0.08	660 ± 50
CIFS	C	I	F	S	0.28 ± 0.02	0.65 ± 0.01	2300 ± 200	5.4 ± 0.4	0.257 ± 0.006	48 ± 4
SIFH	S	I	F	H	0.33 ± 0.03	1.11 ± 0.02	3400 ± 300	3.7 ± 0.3	0.245 ± 0.008	66 ± 6
SIFS	S	I	F	S	0.35 ± 0.04	1.04 ± 0.02	3000 ± 300	3.9 ± 0.2	0.294 ± 0.006	75 ± 4

^a Mutants are named on the basis of the amino-acid identity at the four designed positions. For example, the VFIT mutant from the Closed Library contains Val, Phe, Ile, and Thr residues at positions 35, 37, 43, and 64, respectively. WT and HEX refer to wild-type AAT and the previously published hexamutant (13), respectively.

^b All experiments were performed in triplicate using a single enzyme batch. Errors of regression fitting, which represent the absolute measure of the typical distance that each data point falls from the regression line, are provided. Concentrations of α -ketoglutarate used to determine apparent kinetic parameters of donor substrates are reported on Supplementary Table 3.

^c Selectivity is defined as $(k_{cat}/K_M \text{ L-phenylalanine}) / (k_{cat}/K_M \text{ L-aspartate})$.

^d This variant also contains the T104S and N285S active-site mutations.

^e Individual parameters K_M and k_{cat} could not be determined accurately because saturation was not possible at the maximum substrate concentration tested (40 mM, Supplementary Figure 2), which is the substrate's solubility limit. Catalytic efficiency (k_{cat}/K_M) was therefore calculated from the slope of the linear portion ($[S] \ll K_M$) of the Michaelis-Menten model ($v_0 = (k_{cat}/K_M)[E_0][S]$).

418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430

431

432
433

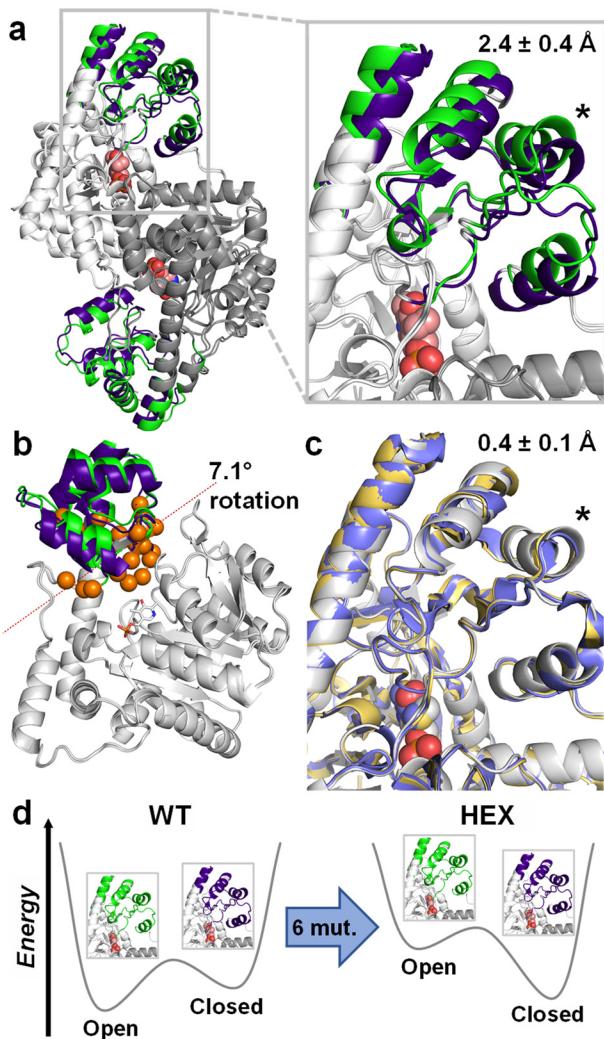
Table 2. Conformational equilibrium of AAT variants

Enzyme	Computational ^a			Experimental ^b				
	E_{closed} (kcal mol ⁻¹)	E_{open} (kcal mol ⁻¹)	ΔE (kcal mol ⁻¹)	ΔH (kcal mol ⁻¹)	ΔS (kcal mol ⁻¹ K ⁻¹)	ΔC_p (kcal mol ⁻¹ K ⁻¹)	$\Delta G, 278\text{ K}$ (kcal mol ⁻¹)	$\Delta G, 303\text{ K}$ (kcal mol ⁻¹)
WT	-358.0	-372.2	14.2	N.D.	N.D.	N.D.	N.D.	N.D.
HEX	-350.2	-273.4	-76.8	-9.9	-0.032	0.972	-1.72	-0.31
VFIT	-366.1	-320.6	-45.5	-10.7	-0.038	0.667	-0.59	0.78
VFIY	-357.8	-300.0	-57.8	-19.6	-0.070	0.369	-0.38	1.59
VFCS	-385.6	-389.7	4.2	N.D.	N.D.	N.D.	N.D.	N.D.
AIFS	-237.2	-364.4	127.2	N.D.	N.D.	N.D.	N.D.	N.D.

434

^a Boltzmann-weighted average potential energies (T = 300 K) for the open and closed state ensembles were computed using the Phoenix energy function (Methods). The energy difference reported corresponds to $E_{closed} - E_{open}$.

435
436

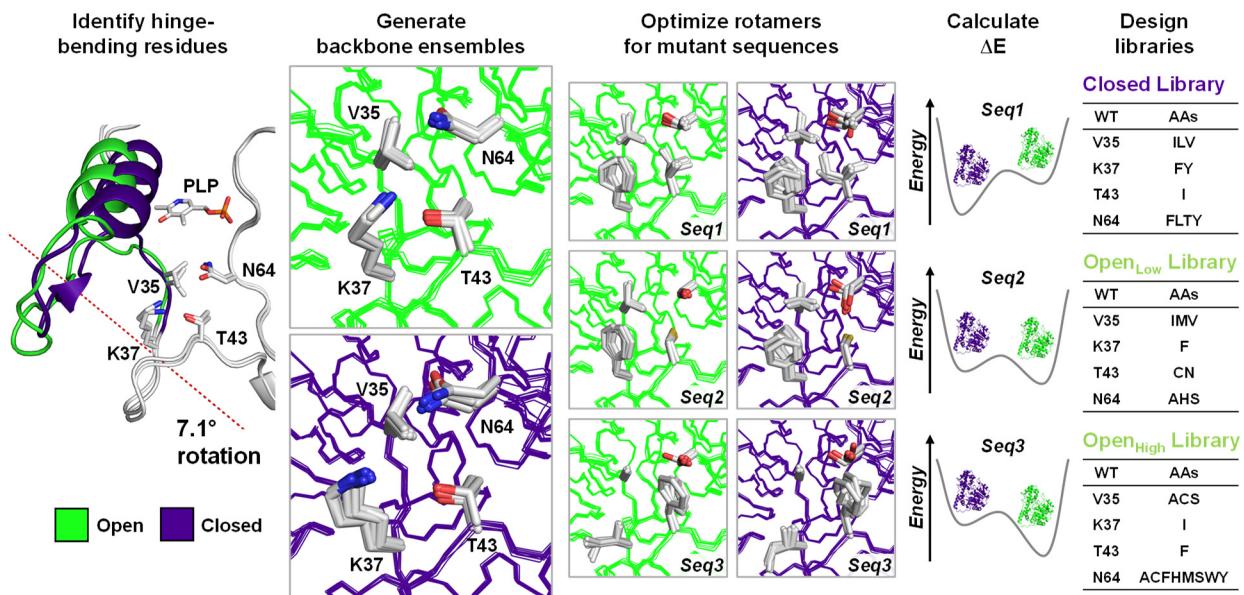

^b Differences in enthalpy (ΔH), entropy (ΔS), heat capacity (ΔC_p) and Gibbs free energy (ΔG) are given in the direction of enzyme closing (e.g., $G_{closed} - G_{open}$), and were calculated using a reference temperature of 298 K. N.D. indicates “not determined”.

437
438

439

440

441 **Figures**

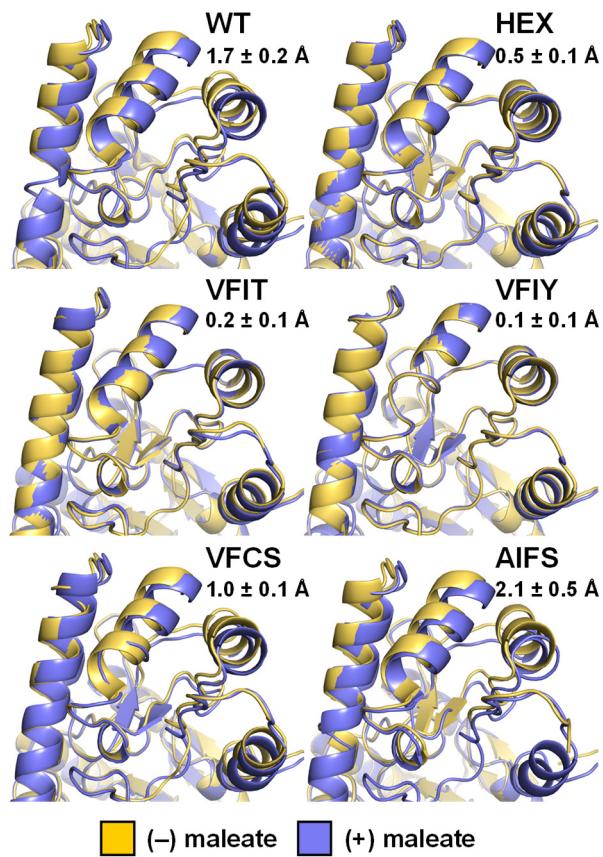


442

443 **Figure 1. AAT conformational landscape.** (a) *E. coli* AAT is a 90 kDa homodimer that undergoes a conformational
444 change from an open (green, PDB ID: 1ARS) to closed (dark blue, PDB ID: 1ART) state upon substrate binding. This
445 conformational transition involves rotation of a small moving domain (colored) relative to a fixed domain (white and
446 grey for chains A and B, respectively), which causes a $2.4 \pm 0.4 \text{ \AA}$ displacement (mean C_α distance \pm s.d.) of the helix
447 formed by residues K355–F365 (indicated by an asterisk). The PLP cofactor bound at the active site is shown as
448 spheres (salmon). (b) Hinge movement analysis of chain A reveals a 7.1-degree rotation of the moving domain relative
449 to the fixed domain along an axis between two planes (dotted line). Hinge-bending residues and PLP are shown as
450 orange spheres and white sticks, respectively. (c) Superposition of HEX structures in the absence (yellow, PDB ID:
451 1AHE) and presence (blue, PDB ID: 1AHY) of bound inhibitor with that of the WT closed state (white, PDB ID:
452 1ART) show that this mutant is closed in both cases. C_α displacement (mean \pm s.d.) of residues K355–F365 (asterisk)
453 is indicated. (d) These results demonstrate that the six mutations (mut.) of HEX remodel its conformational landscape
454 to favour the closed conformation.

455

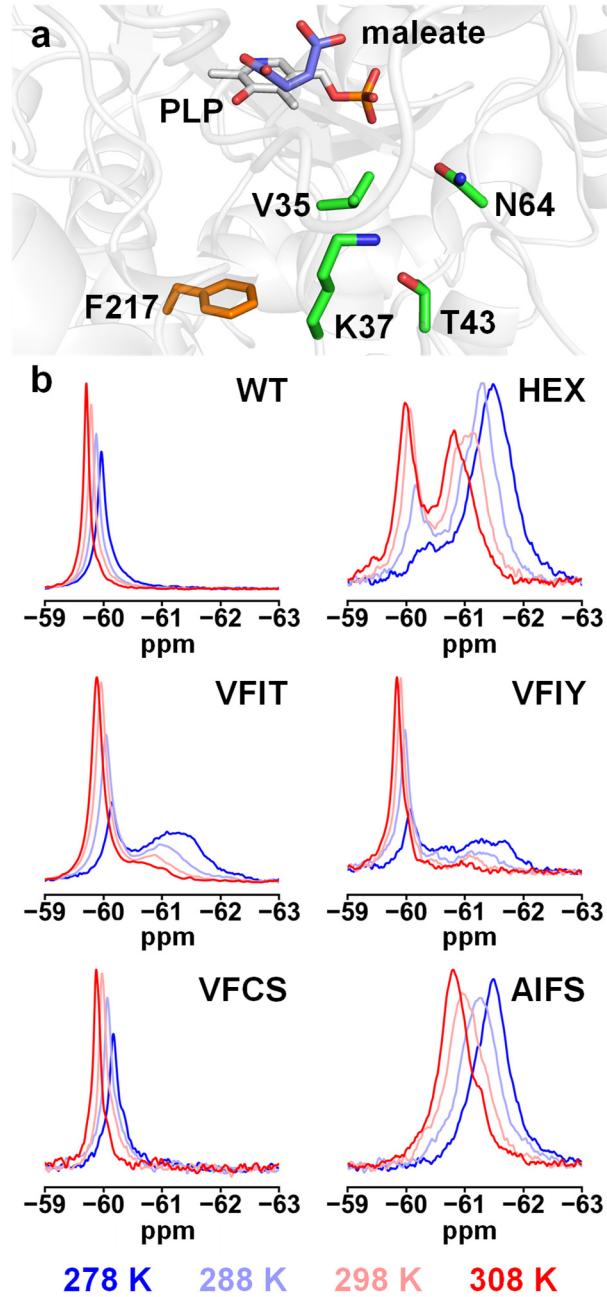
456


457

458 **Figure 2. Computational remodelling of AAT conformational landscape by multistate design.** To remodel the
459 AAT conformational landscape, we followed a 5-step process: (1) identification of hinge-bending residues involved
460 in transition between open (green) and closed (dark blue) conformational states; (2) generation of structural ensembles
461 approximating backbone flexibility to model open and closed states; (3) optimization of rotamers for mutant sequences
462 on both open- and closed-state ensembles; (4) calculation of energy differences between conformational states ($\Delta E =$
463 $E_{closed} - E_{open}$) to predict equilibrium of each mutant, and (5) combinatorial library design using ΔE values to generate
464 Closed, Open_{Low} and Open_{High} libraries for experimental testing.

465

466


467

468
469
470
471
472
473

Figure 3. Crystal structures. Overlay of AAT structures (Chain A) in the presence and absence of maleate show transition from open to closed states upon inhibitor binding for WT, VFCS, and AIFS, but not for HEX, VFIT, and VFIY, which already adopt the closed conformation in the absence of bound inhibitor. Average displacements of helix formed by residues K355–F365 upon maleate binding are reported as the average pairwise distance of corresponding C_{α} atoms for the 11 residues comprising this helix (mean \pm s.d.).

474
475
476

477
478 **Figure 4. Conformational landscape analysis by NMR.** (a) To evaluate conformational equilibrium of AAT
479 variants, we introduced the fluorinated amino acid 4-trifluoromethyl-L-phenylalanine at position F217 (orange), which
480 is located closer to hinge-bending and designed residues (green) than to the bound maleate inhibitor (blue). Crystal
481 structure shown is that of wild-type (WT) AAT at 278 K (PDB ID: 8E9K). (b) ¹⁹F NMR spectra of AAT variants in
482 the absence of ligand show dynamic equilibrium between 278 K and 308 K for HEX, VFIT, VFIY, and AIFS,
483 confirming that these proteins are undergoing exchange. This is not the case for WT and Open_{Low} library mutant
484 VFCS, who both adopt predominantly the open conformation within this temperature range. For HEX and Closed
485 library mutants VFIT and VFIY, the open conformation is enriched as temperature increases. For AIFS, spectra
486 suggest that this Open_{High} library mutant samples conformations distinct from those sampled by the other variants.