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Abstract

All living organisms have been programmed to maintain a complex inner equilibrium
called homeostasis, despite numerous adversities during their lifespan. Any threatening or
perceived as such stimuli for homeostasis is termed a stressor, and a highly conserved
response system called the stress response system has been developed to cope with these
stimuli and maintain or reinstate homeostasis. The glucocorticoid receptor, a transcription
factor belonging to the nuclear receptors protein superfamily, has a major role in the stress
response system, and research on its’ interactome may provide novel information regarding
the mechanisms underlying homeostasis maintenance. A list of 149 autosomal genes which
have an essential role in GR function or are prime examples of GRE-containing genes was
composed in order to gain a comprehensive view of the GR interactome. A search for SNPs
on those particular genes was conducted on a dataset of 3.554 Japanese individuals, with
mentioned polymorphisms being annotated with relevant information from the ClinVar,
LitVar, and dbSNP databases. Forty -two SNPs of interest and their genomic locations
were identified. These SNPs have been associated with drug metabolism and
neuropsychiatric, metabolic, and immune system disorders, while most of them were
located in intronic regions. The frequencies of those SNPs were later compared with a
dataset consisting of 1465 Korean individuals in order to find population-specific
characteristics based on some of the identified SNPs of interest. The results highlighted
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that rs1043618 frequencies were different in the two populations, with mentioned
polymorphism having a potential role in chronic obstructive pulmonary disease in response
to environmental stressors. This SNP is located in the HSPA1A gene which codes for an
essential GR co-chaperone, and such information showcases that similar gene may be novel
genomic targets for managing or combatting stress-related pathologies.

Introduction

Living organisms maintain a dynamic inner equilibrium, both physiological and
psychological, termed homeostasis. This equilibrium is continuously challenged by
internal or external adverse forces termed stressors (1). The term stress refers to a state of
threatened or perceived as such homeostasis (2). Since living organisms need to cope with
numerous stressors during their lifespan, they have developed an intricate neuroendocrine
system that includes both physiological and behavioral responses, called the stress response
system. This system consists of the hypothalamic-pituitary-adrenal (HPA) axis and the
locus coeruleus (LC)/noradrenaline (NE)-autonomic nervous system and features both
central and peripheral components (Figure 1) (3). The central components of the stress
system, located in the hypothalamus and brainstem, include: a) parvocellular neurons that
release corticotropin-releasing hormone (CRH), b) paraventricular nuclei (PVN) neurons
that release arginine vasopressin (AVP), c) CRH neurons of the paragigantocellular and
parabranchial nuclei of the medulla and LC and d), norepinephrine (NE) cell groups in the
pons and medulla, known comprising the LC/NE system. The stress system’s peripheral
components include a) the peripheral part of the Hypothalamic-Pituitary-Adrenal (HPA)
axis, b) components of the parasympathetic system and c) the efferent sympathetic adreno-
medullary system (SAM) (2).
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Figure 1. A schematic representation of the stress response system.
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Specifically, in the HPA, CRH and AVP are secreted by the hypothalamus and act on the
pituitary gland to trigger the adrenocorticotropic hormone production (ACTH). ACTH is
then released into the circulation, which in turn stimulates glucocorticoid production and
release from the adrenal cortex (4). Glucocorticoids, cortisol in humans and corticosterone
in rodents are steroid hormones synthesized and released by the adrenal glands in a
circadian manner (5-7). Cortisol can control CRH, AVP, and ACTH secretion in order to
avoid prolonged HPA activity through sensitive negative feedback (8, 9). Under normal
circumstances, the circadian rhythm followed by the HPA axis is characterized by high
cortisol levels in the morning and low levels at night (10). The LC/NE and SAM systems,
on the other hand, are mainly regulated by catecholamines (CEs). The locus coeruleus
consists of a cluster of norepinephrine-producing neurons that are located in the upper
dorsolateral pontine tegmentum and showcase branched axons, which project all through
the neuraxis. These neurons are the sole source of NE to several brain regions, such as the
hippocampus, neocortex, and cerebellum and can regulate the SAM system, which includes
the NE neurons of the sympathetic system and the adrenal medulla (11, 12). Lastly, adrenal
medulla stimulation by the LC/NE system leads to catecholamines secretion, specifically
epinephrine (E) and norepinephrine (NE) which have a major role in the fight or flight
response to stressors (3, 13).

Stress has the ability to alter gene expression through several mechanisms, including the
direct effects of glucocorticoids (GCs), which are the final product of the HPA axis on gene
transcription, plus activation of epigenetic mechanisms such as histone modifications and
methylation/hydroxy-methylation of CpG residues in DNA (14). The biological processes
influenced by such alterations include metabolism, development, reproduction, immune
system pathways, and various cognitive functions (14). Thus, research on stress, the stress
response system, homeostasis, glucocorticoids, and epigenetic modifications could provide
both valuable information regarding human biological functions and possibly help develop
medical applications.

Glucocorticoids act through binding with the high-affinity mineralocorticoid receptor
(MR) and the low-affinity glucocorticoid receptor (GR), with GC action occurring mainly
through the activation of the latter (9, 15). GR is almost exclusively activated by
glucocorticoids, while MR can bind GCs and the mineralocorticoid aldosterone with
similar high affinity (16). In the brain, a crucial component of the stress response system,
MR is occupied at basal hormone levels due to its’ high affinity, while GR is activated at
the circadian peak of glucocorticoid secretion and during stress (17). Thus, a research focus
on GR can illuminate various aspects of the stress response system.

GR and MR are transcription factors that belong to the superfamily of nuclear receptors (6,
7, 9, 18). Nuclear receptors are ligand-dependent and regulate gene expression through
DNA binding (19). The unliganded GR is predominantly localized within the cytoplasm,
while ligand binding leads to the ligand-receptor complex's translocation to the nucleus via
the microtube network (20). In the absence of a ligand, GR is part of a protein complex
with co-chaperones such as heat shock protein 70 (Hsp70), heat shock protein 40 (Hsp40),
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and heat shock protein 90 (Hsp90). After ligand binding, GR dissociates from its’
chaperone proteins and translocate to the nucleus in order to regulate gene transcription
(21). More specifically, after receptor translation, GR forms a complex with Hsp40 and
Hsp70. Following an ATP-dependent event, the Hsp40-Hsp70-GR complex is recruited by
the Hsp70-Hsp90 Organizing Protein (Hop) to interact with Hsp90. After Hsp90 binding
and another ATP-dependent event, Hop, Hsp40, and Hsp70 are dislodged from the
chaperone complex and replaced by prostaglandin E synthase 3 (p23) and FK506 binding
protein 51 (FKPBS51). This specific GR complex showcases a high affinity for cortisol.
Cortisol binding leads to conformational changes on GR and the replacement of FKPB51
by FK506 binding protein 52 (FKBP52), which lead to the receptor’s nuclear translocation
(Figure 2) (22). GR induces transcription mainly by binding of GR homodimers to
promoter regions that contain palindromic glucocorticoid response elements (GREs), a
mechanism termed GR-dependent transactivation, while an alternate mechanism features
the glucocorticoid receptor acting as a monomer and co-operating with other transcription
factors (23, 24). After GR binding to GREs, the receptor acts as a scaffold for the assembly
of several macromolecular complexes, which include coactivator proteins, chromatin
remodeling factors, and mediators of the transcriptional machinery (20). GR-dependent
transrepression, on the other hand, takes place mainly through GR interaction with DNA-
bound transcription factors, while an alternate mechanism of transrepression is more
similar to transactivation since GR binds to DNA sequences distinct from GREs, called
negative GRE sites (nGREs) (20, 25).
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Figure 2. A schematic representation of GR signaling in gene regulation, specifically
transactivation.
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GR’s action is characteristic of its’ function in the stress response and highlights the
importance of nuclear receptors interplay in biological functions. Regarding the latter, it is
also important to note that GR has been shown to physically interact with MR and influence
the action of other nuclear receptors such as estrogen receptor alpha, androgen receptor,
retinoic acid receptors, and vitamin D receptor (26, 27). Thus, GR can also be used as a
stepping-stone for providing insights into the complex interplay of nuclear receptor
transcriptional networks and their contribution to homeostasis maintenance.
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Figure 3. The main procedure pipeline.

Identification of

This study focuses on GR and genes that have an essential role in GR function or are prime
examples of GR target genes. A distinct pipeline was followed to extract information in a
precise and efficient way (Figure 3). A unique dataset consisting of single nuclear
variations found in the autosomes of 3.554 Japanese individuals was used. The dataset was
analyzed towards to finding (Single Nucleotide Polymorphisms) SNPs in the
aforementioned genes, and if mentioned polymorphisms have been associated with human
physiopathology. The results were then compared to a dataset featuring Koran individuals
to find characteristics unique to the current population and if mentioned, characteristics can
be associated with homeostasis mechanisms.

Materials and Methods
The Dataset

The dataset used was the 2017 update of the IKJPN project (28), and featured the fully
sequenced exome of 3,554 Japanese individuals. The dataset received had already
undergone a filtering procedure (Table 1), with the (Single Nucleotide Polymorphisms)
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SNPs used having ‘passed’ every filtering step. The current dataset only featured
autosomes, therefore factors that were located in sex chromosomes were not present. These
SNPs included reference SNP ID based on the dbSNP database if applicable. The genomic
position of each SNP was based on the GRCh37/hg19 assembly.

Table 1. The filtering steps performed in the 3.5K dataset.

Category Total Matched Description
SNVs SNVs

Step 1 50.099.977 165.439 Multi-allelic SNVs in 3.5KJPN but biallelic

(Multi-allelic) in 1KJPN and 2KJPN

Step 2 49.934.538 1.373.119 Depth filter (in naive call, an alternative
variant is detected but disappeared with the
sequence depth filter, e.g. miscall with CNV,
somatic call or misalignment)

Step 3 48.561.419 | 2.835.609 Depth filter (more than 10% of individuals do
not fit into the reliable sequence depth range)

Step 4 45.725.810 | 6.969.032 SNVs in highly repetitive regions

Step 5 38.756.778 1.267.757 SNVs that are not detected in other alignment
tools and variant callers

Step 6 37.489.021 421.306 The SNVs's hardy weinberg equilibrium is
less than or equal to 0.00001

Step 7 37.489.021 | 13.032.262

Identification of target genes

A data mining and semantic study was performed using GR related publications, and a
comprehensive list that features 149 autosomal genes which have essential role in GR
function or are prime examples of GRE-containing genes was composed (Supplementary
Table 1). These genes contain, among others, nuclear receptors, molecular epigenetic
regulators, GR cofactors, and several enzymes. The genomic location of each gene was
described based on the GRCh37/hg19 assembly. The GeneMANIA webtool (29) was then
used towards to estimating the internal links, the biological functions and the biological
pathways among genes of interest.

SNPs Filtering, Annotation and Analysis

Each gene genomic region was then pinpointed in the dataset, and all relative SNPs were
extracted. A sliding window algorithm was then used to obtain SNPs that have a reference
SNP ID number and are present in the dbSNP database (30). The found SNPs’ genomic
location was then updated to be in accordance with the current GRCh38.p13 assembly. All
the extracted SNPs were stored in a structured database with all relevant information from
the primary dataset including gene name, genetic position, change, and frequency of
occurrence based on the sample.
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All the identified SNPs were then annotated with relative information from the dbSNPs
database (31), LitVar (32), OMIM (33) and ClinVar database (34) (Figure 4). Several types
of information were extracted and included in the database produced, using a set of rules
based on each database protocols. Particularly, ClinVAR database was used to find
possible associations with human health, LitVar database to find the most co-occurred
entities regarding diseases, chemicals, and variants, OMIM to extract the genetic disorders
based on the corresponding gene and the dbSNP database to find the SNP’s location (intros
/exons), common changes, and the allele frequency in different populations. This study’s
major goal was to retrieve all the necessary information towards understanding the
molecular mechanisms of the stress response system and the SNP in question. The above
results were then used to compare the characteristics of the specific dataset to other
populations with the help of dbSNP. A second level of filtering analysis then has been
performed towards to extracting all the SNPs that are contained in the ClinVar database.
Afterwards, based on the results and the available information from the annotation process
an ontologies analysis has been performed and the SNPs have been evaluated based on the
ClinVar database information (Figure 3). Finally, summarizing all the information
collected for each SNPs, a comparison with a dataset featuring Korean individuals was
conducted in order to identify attributes specific to the Japanese population that are
associated with the GR interactome.

Selected SNPs
Genomic Grammar

dbSNP Litvar clinvar oMIM Diseases Ontologies

Figure 4. Data Mining and Semantic of selected SNPs.

Results

The genes checked amounted to 31600 SNPs with a known rs ID that were present in the
dbSNP database. Out of 31600 SNPs, 411 were present in the ClinVar database and were
chosen as possible SNPs of interest. An ontology analysis based on the corresponding
LitVar entries was conducted on mentioned SNPs in order to paint a general picture of the
mostly studied mechanisms when it comes to the GR interactome (Figure 5). The results
showcase a study focus on metabolic disorders, various neoplasms, and psychiatric
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disorders. Out of the above 411 polymorphisms, 46 SNPs showcased a possible association
with human health or disease according to the ClinVAR database (Table 2). These SNPs
were associated with drug metabolism and metabolic disorders, something not surprising
since GR has an essential role in metabolism and seems to influence cytochrome P450
function (35, 36). It should also be mentioned that several of the drugs whose metabolism
is altered by mentioned SNPs are antidepressants, an observation that is in accordance with
GR’s role in neuropsychiatric disorders, and more specifically, depression (37). Lastly, an
association with diseases such as chronic obstructive pulmonary disease and inflammatory
bowel disease was present in the SNPs, which are characteristic inflammatory diseases,
where glucocorticoids are used as potent anti-inflammatory medication (38). These SNPs
were then checked on the LitVar database in an effort to exert more information regarding
their role in glucocorticoid receptor signaling and homeostasis (Supplementary Table 2).
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Figure 5. Word Cloud visual representation of the frequency of the disease terms within
the final dataset of SNPs associated with glucocorticoid receptor interactome.\

Table 2. SNPs with a potential pathological association in the ClinVar database, their
frequency in the 3.5K dataset, and their association with pathological conditions or
physiological mechanisms as stated in the ClinVar database.

Gene Association

SNP
Nucl
change
Ref
allele
freq
Alt
allele
freq

HSPAILL | rs2227956 G> 0,0858 | 0,9142 | Chronic Obstructive Pulmonary Disease
HSPAIL | rs2227955 ™G | 0,9799 | 0,0201 | Inflammatory Bowel Disease
HSPAIL | rs34620296 | C>T | 0,9983 | 0,0017 | Inflammatory Bowel Disease
HSPAIL | rs368138379 | C>T | 0,9999 | 0,0001 | Inflammatory Bowel Disease
HSPA1B | rs6457452 C>T |0,9378 | 0,0622 | Chronic Obstructive Pulmonary Disease
HSPA1A | rs1043618 G>C | 0,8401 | 0,1599 | Chronic Obstructive Pulmonary Disease

>
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CYP3A5 | rs4646450 G>A | 0,7399 | 0,2601 | Appendicular Lean Mass Relative to Body
Height

TP53 rs201753350 | C>T | 0,9938 | 0,0062 | Li-Fraumeni syndrome 1

FKBP5 rs4713916 A>G | 0,1999 | 0,8001 | Influences Efficacy of Antidepressants
(Citalopram, Fluoxetine, Mirtazapine,
Paroxetine, SSRIs, Venlafaxine)
CYP2C9 rs1057910 A>C | 0,9758 | 0,0242 | Influences Warfarin Metabolism
CYP2C9 | rs7089580 A>T | 0,9900 | 0,0100 | Influences Warfarin Response

CYP2C9 1s4917639 A>C | 0,8526 | 0,1474 | Influences Warfarin Response

CYP2C19 | rs4244285 G>A | 0,7056 | 0,2944 | Influences Clopidogrel Response
(Efficacy, Toxicity/ADR);Influences
Clomipramine Response
(Efficacy);Influences Amitriptyline
Response (Efficacy);Influences
Citalopram Response (Efficacy); Poor
Metabolism of Mephenytoin;Poor
Metabolism of Proguanil;Poor
Metabolism of Clopidogrel

CYP3A5 | 15776746 T>C | 0,2444 | 0,7556 | Influences Tacrolimus response based on
Recipient Genotype (Dosage,
Metabolism/PK);Influences Sirolimus
Response (Metabolism/PK);Influences
Cyclosporine Response (Dosage,
Metabolism/PK);Influences Tacrolimus
Response based on Donor Genotype
(Dosage, Metabolism/PK); Influences
Tacrolimus Response
(Efficacy);Influences Sirolimus Response
(Dosage)

CYP2C19 | 1572552267 | G>A | 0,9997 | 0,0003 | CYP2C19:No Function

ABCBI1 151045642 A>G | 0,4119 | 0,5881 | Influences Fentanyl Response (Efficacy);
Influences Methadone Response (Dosage,
Efficacy); Influences Morphine Response
(Dosage, Efficacy); Influences Opiods
Response (Dosage,Efficacy); Influences
Oxycodone Response (Dosage,
Efficacy);Influences Tramadol Response
(Dosage, Efficacy); Influences Tramadol
Response;Influences Nevirapine Response
(Toxicity/ADR); Influences Digoxin
Response (Toxicity/ADR); Influences
Ondansetron Response
(Efficacy);Influences Methotrexate
Response (Toxicity/ADR)

ABCBI1 rs3842 T>C | 0,7203 | 0,2797 | Influences Tramadol Response

ABCBI1 11922242 A>T | 0,6649 | 0,3351 | Influences Tramadol Response

ABCBI1 1s2235046 T>C | 0,6052 | 0,3948 | Influences Tramadol Response

ABCBI1 rs2235013 C>T | 0,6167 | 0,3833 | Influences Tramadol Response

ABCBI1 rs2235035 G>A | 0,6813 | 0,3187 | Influences Tramadol Response

ABCBI1 1s2235033 A>G | 0,6294 | 0,3706 | Influences Tramadol Response

ABCBI1 rs139611979 | C>T | 0,9992 | 0,0008 | Influences Tramadol Response

ABCBI1 rs10276036 | C>T | 0,6184 | 0,3816 | Influences Tramadol Response
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ABCBI1 11922240 T>C | 0,6840 | 0,3160 | Influences Tramadol Response
ABCB1 rs28381877 | A>G | 0,9999 | 0,0001 | Influences Tramadol Response
ABCBI1 rs868755 TG | 04118 | 0,5882 | Influences Tramadol Response
ABCB1 rs13237132 | C>G | 0,6832 | 0,3168 | Influences Tramadol Response
ABCBI1 rs1202170 C>T |0,3856 | 0,6144 | Influences Tramadol Response
ABCBI1 rs1202168 G>A ] 0,3846 | 0,6154 | Influences Tramadol Response
ABCB1 rs1016793 G>A | 0,5916 | 0,4084 | Influences Tramadol Response
ABCBI1 rs2235018 T>C [0,7931 | 0,2069 | Influences Tramadol Response
ABCBI1 rs28381827 | C>T | 0,8748 | 0,1252 | Influences Tramadol Response
ABCB1 rs1211152 A>C | 0 1 Influences Tramadol Response
ABCBI1 rs373236080 | C>T | 0,9999 | 0,0001 | Influences Tramadol Response
ABCB1 1s2235074 G>A | 0,9291 | 0,0709 | Influences Tramadol Response

ABCB1 rs2214102 ™C |0 1 Influences Tramadol Response
ABCBI1 rs3213619 A>G | 0,9289 | 0,0711 | Influences Tramadol Response
VDR rs2228570 A>G | 0,3674 | 0,6326 | Influences Response to Peginterferon

Alfa-2b and Ribavirin (Efficacy)
FKBP5 rs1360780 T>C | 0,2246 | 0,7754 | Major Depressive Disorder; Increased
Recurrence of Depressive Episodes;
Susceptibility to Major Depressive
Disorder; Accelerated Response to
Antidepressant Drug Treatment
SUMO4 15237025 G>A ] 0,3028 | 0,6972 | Type 1 Diabetes Mellitus

PPARG rs28936407 | G>A | 0,9999 | 0,0001 | Somatic Colon Cancer

PPARG rs1801282 C>G | 0,9695 | 0,0305 | Type 2 Diabetes melitus

TAT rs118203914 | G>A | 0,9999 | 0,0001 | Tyrosinemia Type 2

PPARA rs1800206 C>G | 0,9999 | 0,0001 | Susceptibility to
Hyperapobetalipoproteinemia
SMAD4 rs12456284 | A>G | 0,5757 | 0,4243 | Confers sensitivity to lung cancer

Four ABCBI variations out of the 46 ClinVar entries selected did not also display a LitVar
entry. Those are rs373236080, rs28381827, rs28381877, and rs139611979. This
discrepancy may be due to the fact that ClinVar also integrates information beyond
literature-described associations, such as data from clinical testing labs (39). The resulting
SNPs which showcase entries with pathological associations in both the ClinVar and
LitVar database are termed SNPs of interest. The results are in accordance with the
information received by ClinVar. Some novel associations with various neoplasms emerge,
though those are mostly limited to the ABCB1 SNPs, with mentioned gene coding for the
P-glycoprotein, whose role in cancer multidrug resistance has been extensively studied in
the scientific literature (40).

The frequencies of SNPs of interest which are present in the LitVar database were then
characterized based on the nucleotide change region and type of mutation and later
compared with a dataset consisting of 1465 Korean individuals, since those two
populations display somewhat high similarity (Table 3), and possible differences may
display distinct genetic characteristics that may influence GR-associated or stress-
associated processes (41). Most of the SNPs compared are located in intronic regions.
Although introns were thought to be of small biological importance, modern studies have
shown that they have a great role in essential processes from alternate splicing to regulating
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gene expression (42). The comparison among the Japanese and Korean populations
highlighted the rs1043618 as a polymorphism with a substantially different frequency
among populations. This polymorphism has been associated with COPD in ClinVar and
Depression in LitVar.

Table 3. A genetic comparison between the Japanese and Korean population focusing on
SNPs of interest frequency.

Nucleotide | Nucleotide
Gene SNP Nucleotide | Nucleotide change | frequency | frequency in
change region in Korean
Japanese population
population
HSPAIL | rs2227956 G>A Missense variant G=0,0858 G=0,0765
HSPAI1L | rs2227955 G Missense variant G=0,0201 G=0,0171
HSPAI1L | rs34620296 | C>T Missense variant T=0,0017 T=0,0048
HSPAIL | rs368138379 | C>T Missense variant T=0,0001 -
HSPAIB | rs6457452 C>T 5 Prime UTR Variant T=0,0622 T=0,0875
HSPA1A | rs1043618 G>C 5 Prime UTR Variant C=0,1599 C=0,2801
CYP3AS5 | rs4646450 G>A Intron Variant A=0,2601 A=0,2304
TP53 rs201753350 | C>T Missense Variant T=0,0062 T=0,0055
FKBP5 rs4713916 A>G Intron Variant A=0,1999 A=0,2096
CYP2C9 | rs1057910 A>C Missense Variant C=0,0242 C=0,0413
CYP2C9 | rs7089580 A>T Intron Variant T=0,01 T=0,0082
CYP2C9 | rs4917639 A>C Intron Variant C=0, 1474 | C=0,1345
CYP2C19 | rs4244285 G>A Synonymous Variant A=0,2944 A=0,2765
CYP3AS5 | 1s776746 T>C Splice Acceptor Variant | C=0,2444 C=0,2249 (1K)
CYP2C19 | rs72552267 | G>A Missense Variant A=0,0003 -
ABCBI1 1s1045642 A>G Missense Variant A=0,4119 A=0,3488
ABCBI1 13842 C 3 Prime UTR Variant C=0,2797 C=0,3061
ABCBI 151922242 A>T Intron Variant T=0,3351 T=0,3717
ABCBI1 rs2235046 T>C Intron Variant C=0,3948 C=0,4085
ABCBI1 rs2235013 C>T Intron Variant T=0,3833 T=0,4065
ABCBI1 rs2235035 G>A Intron Variant A=0,3187 A=0,3590
ABCBI1 rs2235033 A>G Intron Variant G=0, 3706 | G=0,4065
ABCBI1 rs10276036 | C>T Intron Variant T=0,3816 T=0,4061
ABCBI1 11922240 C Intron Variant C=0,3160 C=0,3573
ABCBI1 rs868755 G Intron Variant T=0,4118 T=0,3788
ABCBI1 rs13237132 | C>G Intron Variant G=0,3168 G=0,3563
ABCBI1 rs1202170 C>T Intron Variant C=0,3856 C=0,4058
ABCBI1 rs1202168 G>A Intron Variant G=0,3846 G=0,4038
ABCBI1 rs1016793 G>A Intron Variant A=0,4084 A=0,3860
ABCBI1 rs2235018 >C Intron Variant C=0,2069 C=0,2160
ABCBI1 rs1211152 A>C Intron Variant A=0 A=0,001
ABCBI1 1s2235074 G>A Intron Variant A=0,0709 A=0,0565
ABCBI 152214102 T>C Synonymous Variant T=0 T=0,0003
ABCBI1 rs3213619 A>G Intron Variant G=0,0709 G=0,0561
VDR 1s2228570 A>G Initiator Codon Variant | A=0,3674 A=0,4041
FKBP5 rs1360780 C Intron Variant T=0,2246 T=0,2392
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SUMO4 | 1s237025 G>A Missense Variant G=0,3028 G=0,2973

PPARG 1s28936407 | G>A Missense Variant A=0,0001 -

PPARG rs1801282 C>G Missense Variant G=0,0305 G=0,0517

TAT rs118203914 | G>A Stop Gained A=0,0001 -

PPARA 151800206 C>G Missense Variant G=0,0001 G=0,0005 (1K)

SMAD4 1512456284 | A>G 3 Prime UTR Variant 0,4243 G=0,4049
Discussion

The current study restates the importance of the stress response system in human
pathophysiology. Polymorphisms on genes characteristic of the GR interactome lead to
metabolic, psychiatric, cancer and inflammatory diseases. These results are in accordance
with the stress response system’s role in neuropsychiatric disorders (43, 44) and the
important role of the glucocorticoid receptor in inflammation (45) and metabolism(46). A
peculiar observation was that according to LitVar several SNPs were the focus of multiple
cancer studies, though ClinVar pathological associations with cancer were minimal. This
observation may be due to several factors, such as the scientific community’s focus on
cancer research or a possibly currently emerging association between the GR interactome
and various neoplasms. The importance of introns in several pathophysiological conditions
was also highlighted, since the vast majority of found SNPs were located in intronic
regions. Moreover, the similarities in SNP frequencies between the Korean and Japanese
populations are in accordance with the fact that mainland Japanese are genetically close to
Koreans (47). Nonetheless, an interesting discrepancy was present between these two
populations, which extended to discrepancies with the frequencies present on the
TOPMED and 1000 Genomes Project. Japanese individuals showcased a rs1043618
frequency of 0,1599 while Koreans had a frequency of 0,2801, with the TOPMED and
1000 Genomes Project frequencies being 0,478474 and 0,4812, respectively. This
HSPAT1A polymorphism may influence Hsp70 protein levels through translation efficiency
alterations or post-transcriptional regulation (48). This polymorphism’s potential role in
COPD in response to environmental stimuli deserves special mention. Specifically,
rs1043618 has been associated with susceptibility to chronic obstructive pulmonary disease
(COPD) in response to environmental stressors in a Mexican population (49). This effect
may be due to the fact that HSPA1A codes a 70kDa Hsp protein that partakes in the GR
chaperone complex, and possible protein level alterations may lead to a problematic
response to stressors. This observation is really intriguing since COPD displays a higher
incidence rate in Koreans than in Japanese populations while smoking trends between those
countries are quite similar (50, 51). This may lead to the speculation that the rs1043618
could be partially responsible for such a phenomenon. Nevertheless, it is important to state
that specific SNPs may be associated with a disease in one population but show no
association in another (52). All in all, researching the genetic intricacies of the GR
interactome in different population may provide new target genes for the management or
treatment of stress related pathologies.
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