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Abstract 
With the advent of sequencing technology, large-scale multi-omics data have been generated to understand the 
diversity and heterogeneity of genetic targets and associated complex signaling pathways at multiple levels in 
diseases, which are critical targets to guide the development of personalized precision medicine. However, it remains 
a challenging task to computationally mine a few essential targets and pathways from a large number of variables 
characterized by the multi-level multi-omics data. In this study, we proposed a novel interpretable k-hop graph 
attention network model, k-hop GAT, to integrate the multi-omics data to infer the essential targets and related 
signaling networks. We evaluated the proposed model using the multi-omics data, i.e., genetic mutation, copy number 
variation, methylation, gene expression data, of 332 cancer lines; and the experimentally identified essential targets. 
The validation and comparison results indicated that the proposed model outperformed the GAT and graph 
convolutional network (GCN) models. 
  
 
Introduction 
 
With the advance of sequencing technology, multi-omics data have been generated to understand the genetic 
heterogeneity and complex signaling pathways at multiple levels in diseases. Compared with solo-omics data analysis, 
the integration of the multi-omics datasets can 1) provide a holistic view of complex and multi-level biological 
processes, 2) increase the statistical power to identify the molecular mechanism which involves causal and vital 
molecular targets and signaling pathways. For example, the multi-omics datasets were generated in the cancer genome 
atlas (TCGA)1,2,3 project to characterize the molecular diversity and heterogeneity of cancer patients. In addition, the 
Cancer Cell Line Encyclopedia (CCLE)4 project has generated multi-omics data of about 1000 different cancer cell 
lines, which can indicate the different and distinct dysfunctional signaling targets and pathways. The Genomics of 
Drug Sensitivity in Cancer (GDSC) project also associated the multi-omics data of cancer cell lines with some drug 
sensitivity5. Also, the multi-omics data were generated in the Religious Orders Study and Memory and Aging Project 
(ROSMAP)6,7 project to study the genetic variants and dysfunctional signaling pathways in Alzheimer’s disease (AD). 
The multi-omics data, i.e., genetic mutations and copy number variations (genetic), methylations (epigenetic), gene 
expression (RNA-seq), proteomics (protein), measure and characterize the multi-level molecular genotype of diseases. 
These multi-omics datasets have been useful to identify essential disease biomarkers and uncover some dysfunctional 
signaling pathways. However, it remains a challenging task to integrate the multi-omics data and mine the vital 
signaling targets and signaling pathways, which can guide the personalized disease management and the development 
of personalized precision medicine or cocktail medicines, from a holistic view. 
   
On the other hand, to guide the analysis of the large-scale multi-omics datasets, experimental screening using RNAi 
or crispr technology has also been conducted to identify the essential targets that can affect the phenotype of diseases, 
like cancer cell proliferation and migration. For example, large-scale target screening has been conducted to 
experimentally identify essential signaling targets to inhibit the tumor cell growth in the DepMap8 project. The 
valuable multi-omics datasets in CCLE and genetic screens, i.e., genetic effects on the phenotypes, in DepMap provide 
the basis that can catalyze the development of novel computational models to facilitate the development of precision 
medicine. 
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The multi-omic data analysis remains a challenging task9. A comprehensive review of existing multi-omics data 
integration analysis models was reported9. Specifically, these models were clustered into a few categories, like 
similarity, correlation, Bayesian, multivariate, fusion and network-based models9. Among the network-based models, 
the paradigm10 model is one of the most widely used models, which was built based on the factor graph. Compared 
with the traditional computational models, in the recent study11, the DeepDep model was developed based on the 
combination of deep belief network (DBN)12 and auto-encoders13,14, to integrate the multi-omics data of CCLE and 
TCGA for the DepMap target effect prediction. Though it achieved good prediction accuracy, the model interpretation 
is still limited to the perturbation analysis, which cannot interpret and uncover the subsequent dysfunctional signaling 
pathways of the essential molecular targets.  
 
It is well known that proteins within cells work coordinately as a systematic network and modules to regulate a set of 
complex biological processes and dysfunctional signaling pathways in complex diseases, like cancer2. For example, 
10 core signaling pathways were systematically using the multi-omics data of TCGA, which indicated the diverse and 
essential targets of these signaling pathways for different cancer subtypes. Moreover, a set of signaling pathways, like 
KEGG15,16, wikiPathways17, and protein-protein interaction (PPI) database, like BioGRID18,19, STRING20,21, have been 
reported and publicly accessible. Thus, graph neural network (GNN)-based models22–24 can naturally represent the 
signaling flow/interactions on the signaling networks; and the latent status of individual proteins will be affected by 
their multi-omics data (features) and also the interacting proteins (neighbors) on the signaling network (graph)25,26. 
More importantly, using the attention mechanism it is possible identify the essential targets and subsequent signaling 
pathways. Thus, in this study, we proposed to integrate the multi-omics data using a novel k-hop graph attention 
network (k-hop GAT); and to infer the essential targets and subsequent signaling networks. The detailed introduction 
of datasets, model architecture and evaluation were presented in the following sections.   
 
 
Materials and Methodology. 
 
Multi-omics datasets of cancer cell lines. The multi-omics data of cancer cell lines were collected from Cancer Cell 
Line Encyclopedia (CCLE)4 project (see Table 1 and Table 2). Four types of data, i.e., gene level transcriptomics, 
methylation, copy number variation, genetic mutations, were used as the features of proteins nodes in the deep graph 
neural network (GNN) models.  
 
KEGG signaling network. In the KEGG database, there are 311 signaling pathways, extracted using the graphite R 
package27,28,15. These signaling pathways were merged to construct the signaling network. Then a signaling network 
with 1,985 proteins, with all the 4 types of data, was used as the graph (to calculate the adjacency matrix) in the GNN 
models (see Table 1). The Fisher’s exact test29,30 was used for the signaling pathway enrichment analysis.  
 
DepMap gene effect data. In the DepMap data8 (see Table 2), the gene effect score (scores indicate cell growth 
inhibition effects of the gene knockout) was used to indicate the cancer cell growth inhibition effects of specific genes. 
In this exploratory study, we selected 100 targets with the lowest DepMap priority scores (inhibiting tumor cell growth, 
as the positive targets) (the priority score of each gene is defined for cancer types, higher score means the gene is more 
important in the given cancer type (not cell line level)); and selected 50 targets with highest DepMap scores (promoting 
tumor growth, as the negative targets); and randomly selected 50 targets. Finally, we will model the gene effect scores 
of the 200 genes on the 332 cell lines, as the label to train the GNN models.  
 
Table 1. Datasets used in this study. 
 

Dataset/Database Description URL link 

CCLE 

Multi-omics data of ~1,000 cancer cell lines (including gene level 
transcriptomics, methylation, copy number variation, genetic 
mutations), which will be used to estimate the activity of 
individual proteins. (Used as features of protein nodes on the 
KEGG signaling graph in the GNN models). 

https://sites.broadinstitu
te.org/ccle/datasets  
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DepMap 

Gene effect scores, which are derived from CRISPR knockout 
screen for each cancer line. The negative scores indicate cell 
growth inhibition effects of the gene knockout. (Used as the label 
to train the GNN models). 
Meta-data of DepMap cancer cell lines. (Used to align the 
DepMap cancer cell lines with CCLE). 

https://depmap.org/port
al/download/  

KEGG 
The KEGG signaling pathways will be merged to construct the 
signaling network. (Used as the graph (with 1985 protein nodes) 
in the GNN models). 

https://www.genome.jp/
kegg/  

 
 
Table 2. Statistics of CCLE multi-omics data. 

CCLE multi-omics data # of genes/proteins # of cancer cell lines 
Gene expression 19177 1393 
Mutation 48270 1032 

Copy number 20671 980 

methylation 21338 846 

 1985 (proteins on the KEGG 
signaling pathways) 

332 (# of cancer cell lines with all 4 
types of omics data.) 

 

Model architecture of the K-hop Graph Attention Network (GAT) model 

The attention mechanism was introduced to graph neural network in graph attention network (GAT)31. One limitation 
of the GAT model is the lack of expressive power because it is bounded by the Weisfeiler-Lehman(1-WL) test32. 
Instead of using 1-hop neighbor, we proposed to improve the GAT model by using k-hop neighbors that can aggregate 
information from genes k-steps away on the signaling network/graph. Specifically, to identify the k-hop neighbors, 
the shortest path distance was used in our model. The k-hop model can be more efficient to distinguish nodes with 
different nodes in the k-step neighborhood/field (see Fig. 1). 
 
As seen in Fig. 1, the model input variables are: 𝑋	 ∈ 𝑅!×#×$, which represents the multi-omics data of n cell lines 
and d genes. For each gene in a cancer cell line, there are 4 types of genomics data (i.e., gene level transcriptomics, 
methylation, copy number variation, genetic mutations); and the 5th element is used to indicate if it is a target to be 
modeled (to predict its gene effect score).  𝐴	 ∈ 𝑅#×# is the adjacent matrix of the selected KEGG signaling network. 
To make the model interpretable and avoid potential noisy effects, the receptive field pooling for a given target was 
added. In this study, the proposed model used the attention scores of 1 and 2 hop neighbors, and has 2 layers. Thus, 
the receptive filed is 4-hop neighbors. In another word, the 4-hop neighbors can pass signaling to the given target. 
Specifically, we implemented the receptive field pooling by adding a mask to output before pooling, as defined in the 
following equations:  

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑎𝑠𝑘	 × 𝑥, 𝑚𝑎𝑠𝑘 = 𝐹(∑ 𝐴%&×'
%() ), 

where K is the number of k-hops, and l is number of layers of the model. F is a function that set all the non-zero value 
to 1. based on shortest path distance kernel is the set of nodes that have the shortest path distance from node v less 
than or equal to K. 
 
We denoted ℎ*&,'  as the output representation of all the k-th hop neighbors of node v at layer l, ℎ*&  as the output 
representation of node v at layer l. Then, the K-hop signaling flow (or message passing) is defined as follows:  
 

𝑚*
&,' = 𝑀𝑆𝐸'& ({{((ℎ,&-), 𝑒,,*)|𝑢 ∈ 𝑄*,.

',/0#)}}),	
ℎ*&,' = 𝑈𝑃𝐷'& (𝑚*

&,' , ℎ*&-)), 
ℎ*& = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸&({{ℎ*&.'|𝑘 = 1,2, … , 𝐾}})	
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where 𝑚*
&,'	is the message from the k-th hop neighbors of node v to node v at layer l at, 𝑀𝑆𝐸'& , 𝑈𝑃𝐷'&   are message 

and update functions at hop k at layer l (see Fig. 2). 
 
 

 
 
Figure 1. Overview, architecture and signaling-flow of the proposed k-hop GAT model. 
 
 
Essential signaling network inference/subnetwork extraction 
After training the model, the attention scores on the graph for each cell line will be obtained, which will be used to 
infer the essential subsequent signaling flows related to the target genes. In total, there are 332 (cell lines) x 200 (target 
genes) x 4 (heads) attention scores.  For each head in each cancer cell line for a given target, we first choose the one-
hop and two-hop neighbors with attention scores higher than a given threshold. For the two-hop neighbors, since there 
might have more than one path, the signaling path with the largest product of the edge attention scores will be selected, 
because larger product of attention represents more signaling flows on this path. Considering that we used 2 layer 2-
hop GAT model, thus the receptive field is 4 hop neighbors. Then, we use the similar method to find the 3 and 4 hop 
neighbors of the target starting from the 1-2 hop neighbors. The selected paths from multiple heads will be merged to 
construct the signaling network of given targets on specifical cancer cell lines. Moreover, for each given cancer type, 
the selected signaling pathways for a set of given targets and a set of cancer cell lines (belonging to the same cancer 
type) will be merged as the cancer type specific dependence signaling network. 
 
Scoring target importance. It is an important task to score the potential importance of targets on the selected signaling 
networks. In this study, we defined the target importance score, for each cancer cell line, using the average attention 
scores of multiple heads. For a given cancer type, the target importance score is defined as the weighted average of 
attention scores across all the related cancer cell lines, where the weight for each cancer cell line is defined as: 

𝑤𝑒𝑖𝑔ℎ𝑡 = 1 − 𝑛𝑜𝑟𝑚(𝑙𝑜𝑠𝑠).  𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑝𝑟𝑒𝑑𝑖𝑐𝑡2, 	𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ2). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.16.508281doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508281
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

 
 

Figure 2. Illustration of the signaling-flow on the k-hop signaling neighbors. (A): For a node v in graph G, the 1- and 
2-hop neighbors 𝑁*,.

3,/0# of v based on shortest path distance. (B) The 2-hop message passing flows for the graph (A), 
different color implies different heads. The color of edges indicates the different heads. 

 
 
Results 
 
Model hyperparameters. The model was implemented using Pytorch and geometric. The Adam optimizer was used. 
The initial learning rate = 0.0005 with a minimum of 1e-6 to terminate the training. We empirically set the training 
epochs = 40. We set the K=2 and l=2 empirically because 3-hop will have millions of edges, which is computationally 
expensive and will cover almost all the nodes on the whole signaling network. The hidden layer size is 128; the 
leakyRelu parameter was set to 0.2; the output dimension is 100; and reduced to 1 dimension after the receptive field 
pooling. The 5-fold cross-validation was used. The mean square error (MSE) and correlation (between the predicted 
gene effect scores and the experimental gene effect scores) were used as the loss function. 
 
Model performance and comparison. Table 3 shows the MSE and correlation values on the training and testing 
dataset. As seen, the model generated similar performance on the training and testing data respectively. We further 
compared the proposed model with the other two widely used models, i.e., GAT and GCN (see Table 4). As seen, the 
proposed model outperformed the GAT and GCN models significantly.  
 
 

Table 3. MSE and correlation values of the proposed model on the 5-fold cross-validation datasets. 

Number of folds MSE on Training 
data 

MSE on Testing 
data 

Correlation on 
Training data 

Correlation on 
Testing data 

1st fold 0.1387 0.1345 0.7090 0.7047 
2nd fold 0.1269 0.1272 0.7241 0.7224 
3rd fold 0.1260 0.1307 0.7246 0.7228 
4th fold 0.1458 0.1474 0.6874 0.6960 
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5th fold 0.1435 0.1450 0.7005 0.6951 
Mean 0.1361 0.1366 0.7094 0.7088 

 
 

Table 4. Model comparison with graph attention network (GAT) and graph convolutional network (GCN). 

Models Average MSE on 
training data 

Average MSE on 
Testing data 

Average 
correlation on 
Training data 

Average 
correlation on 
Testing data 

The proposed model 0.1361 0.1366 0.7094 0.7088 
GAT 0.1740 0.1765 0.5523 0.5506 
GCN 0.1613 0.1607 0.6411 0.6431 

 
 
 
Inferred subsequent signaling networks of selected essential targets in breast, lung and pancreatic cancers. Fig. 
3 shows the inferred subsequent signaling networks of the selected essential targets in breast, lung and pancreatic 
cancers. We just empirically selected the breast, lung and pancreatic cancer types as examples. As seen, the three 
cancer types have diverse and different essential signaling networks. There are 119, 133 and 116 targets selected in 
the breast, lung and pancreatic cancer respectively. As seen in the venn-diagram in Fig. 4, there are many targets are 
specific to the cancer types.  Moreover, we conducted the literature search about the identified essential signaling 
targets. Interestingly, many of the top-ranked targets have been associated with supportive literatures, which indicated 
the importance of the proposed model. Due to the page limit, the related references were not cited here (and attached 
as a supplementary file).  For example, literatures have been reported the important roles of PIK3CG, RASFF6, MYB, 
SPP1, THRA, ZAP70, NFKB2, CDKN1A, AKT2, TFDP1, DNM1L, CCNE1, CDK1, RCAN1, FGFR1, CSF1, DVL3, 
RAC1, CDKN2A, RBCK1 in breast cancer. For the lung cancer, the MYB, CDKN2A, CDK4, TFDP1, DVL3, TFAM, 
PIK3CG, E2F4, NFKB2, CDK1, AKT2, SPP1, RCAN1, SLC2A2, RAB8A, KLF2, CCNE1, HHIP, STK11, XIAP, EGR3 
were reported. For the pancreatic cancer, the RASSF6, PKM, MYB, CDC25A, CCNB1, FOSL1, E2F2, CDKN2A, 
FOXO1, CCND3, RBCK1, NFKB2, RBL1, MAGI2, LDHA were reported. The results indicated that the proposed 
model can identify additional essential targets using the anchor targets and the integration of the multi-omics data and 
signaling pathways. 
 

 
 

Figure 4. Common and unique targets on the inferred essential signaling networks of breast, lung and pancreatic 
cancer types. 
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Figure 3. Inferred subsequent signaling networks of given selected essential targets (red) in breast, lung and pancreatic 
cancers. The node size and edge size are proportional to target importance scores and edge attention scores respectively.  
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Conclusion 
Large-scale multi-omics datasets have been generated for studying the genetic diversity and dysfunctional signaling 
targets and subsequent signaling pathways, which is the critical basis for the development of personalized precision 
medicine. However, the multi-omics data integration and interpretation remain challenging tasks. Novel 
computational models are needed urgently. In this study, we developed a novel k-hop graph attention network (k-hop 
GAT) model to resolve these challenges in multi-omics data integration and interpretation. The evaluation of the 
proposed model using the multi-omics data 332 cancer lines and the experimentally validated targets indicated that 
the proposed model outperformed the GAT and GCN models. Moreover, we defined the target importance scores and 
subsequent signaling network inference using the attention scores on the background signaling graph. Thus, we 
conclude that the K-hop GAT model is efficient to integrate and interpret the multi-omics data for inferring essential 
signaling networks.  
 
Limitations: There are some limitations of this study. First, we only selected a subset of the targets validated in 
DepMap to train and evaluate the proposed model. In the following work, we will train the model using all these 
targets to uncover the potential holistic view of the essential signaling pathways for each individual cancer cell lines 
or cancer subtypes. The essential signaling targets and pathways will be important for identifying novel medicines or 
drug cocktails, inhibiting multiple vital targets on the signaling network, as novel treatment regimens of specific cancer 
subtypes. Moreover, it is critical to make the model more interpretable by identifying the causal factors, i.e., which 
level of genetic dysfunction triggered the activation of the targets and their subsequent signaling pathways. It can 
further narrow down the search space of the potential therapeutic targets toward personalized precision medicine. The 
third limitation is that the analysis was conducted using the known KEGG signaling pathways. Thus, it is interesting 
and necessary to identify novel causal factors by using large-scale protein-protein interaction networks. In future work, 
we will improve the proposed models to resolve these challenges to make the multi-omics data well integrated and 
more interpretable.  
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