

1 **Protease-independent production of poliovirus virus-like particles**
2 **in *Pichia pastoris*: Implications for efficient vaccine development**
3 **and insights into capsid assembly.**

4 Lee Sherry^a, Jessica J. Swanson^a, Keith Grehan^a, Huijun Xu^a, Mai Uchida^b, Ian M.
5 Jones^b, Nicola J. Stonehouse^{a#} and David J. Rowlands^{a#}

6

7 ^a Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular
8 Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United
9 Kingdom

10 ^b University of Reading, Reading, United Kingdom

11

12 Running title: Protease-free production of poliovirus VLPs: 2A or not 2A, that is the question

13 # Address correspondence to David J. Rowlands, D.J.Rowlands@leeds.ac.uk and Nicola J.
14 Stonehouse, N.J.Stonehouse@leeds.ac.uk

15

16 Keywords: poliovirus, vaccine, virus-like particle, *Pichia pastoris*

17

18 Word count

19 Abstract: 236; Body text: 4,683 (including reference numbers)

20 **Abstract**

21 The production of enterovirus virus-like particles (VLPs) which lack the viral genome have
22 great potential as vaccines for a number of diseases, such as poliomyelitis and hand, foot-and-
23 mouth disease. These VLPs can mimic empty capsids, which are antigenically
24 indistinguishable from mature virions, produced naturally during viral infection. Both in
25 infection and in vitro, capsids and VLPs are generated by the cleavage of the P1 precursor
26 protein by a viral protease. Here, using a stabilised poliovirus 1 (PV-1) P1 sequence as an
27 exemplar, we show the production of PV-1 VLPs in *Pichia pastoris* in the absence of the
28 potentially cytotoxic protease, 3CD, instead using the porcine teschovirus 2A (P2A) peptide
29 sequence to terminate translation between individual capsid proteins. We compare this to
30 protease-dependent production of PV-1 VLPs. Analysis of all permutations of the order of the
31 capsid protein sequences revealed that only VP3 could be tagged with P2A and maintain native
32 antigenicity. Transmission electron microscopy of these VLPs reveals the classic picornaviral
33 icosahedral structure. Furthermore, these particles were thermostable above 37°C,
34 demonstrating their potential as next generation vaccine candidates for PV. Finally, we believe
35 the demonstration that native antigenic VLPs can be produced using protease-independent
36 methods opens the possibility for future enteroviral vaccines to take advantage of recent
37 vaccine technological advances, such as adenovirus-vectored vaccines and mRNA vaccines,
38 circumventing the potential problems of cytotoxicity associated with 3CD, allowing for the
39 production of immunogenic enterovirus VLPs *in vivo*.

40

41 **Introduction**

42 Poliomyelitis, a devastating paralytic and potentially fatal disease caused by poliovirus (PV)
43 has been responsible for many global epidemics over the past century. The introduction of the
44 Global Polio Eradication Initiative (GPEI) in 1988, has resulted in >99% reduction in paralytic
45 poliomyelitis cases globally and the goal of the initiative is to eliminate the virus (1). This
46 reduction in paralytic PV cases has resulted from the widespread application of two vaccines;
47 the live-attenuated oral PV vaccine (OPV) and the inactivated PV vaccine (IPV) (2). Vaccine
48 deployment has also led to wild-type (wt) PV-2 and wt PV-3 being declared eradicated in 2015
49 and 2019, respectively, with only wt PV-1 still circulating in Afghanistan and Pakistan (3). As
50 we near eradication, biosafety concerns surrounding both OPV and IPV as each requires large
51 scale virus growth and thus has the potential to re-introduce the virus into the environment.

52 Whilst IPV provides excellent humoral immunity which protects against paralytic disease, it
53 induces little, if any, mucosal immunity and does not prevent viral replication in the gut, thus
54 allowing virus transmission within a population (4). The contribution of OPV to the near-
55 eradication of PV is immense, although control of polio by IPV alone has been achieved in
56 some regions. However, the attenuated virus can quickly revert to virulence, leading to vaccine-
57 associated paralytic poliomyelitis (VAPP) and, in areas with low vaccine coverage, the spread
58 of vaccine-derived PV (cVDPV) (5). Unfortunately, cVDPV cases now outnumber wt PV cases
59 globally (1). Additionally, OPV can recombine with other PVs or PV-like enteroviruses to gain
60 virulence. This, alongside chronic shedding of VDPV into the environment from
61 immunocompromised individuals, highlights the risks associated with the continued use of
62 OPV for eradication of polio (6, 7). However, the recent introduction of nOPV2 vaccine, which
63 significantly decreases the likelihood of reversion and recombination, may help to reduce
64 VDPV circulation and therefore assist in PV eradication (8).

65 PV belongs to species *Enterovirus C* within the picornavirus family of positive-sense RNA
66 viruses and has a 7.5 kb genome. The majority of the genome encodes a large continuous open-
67 reading frame (ORF), which is proteolytically-processed after translation into mature protein
68 products. In addition, a short upstream ORF (uORF) has recently been identified and shown to
69 be important in *ex vivo* organoid infection by Echovirus 7 (9). The major ORF comprises 3
70 distinct regions; P1, which encodes the viral capsid proteins, and P2 and P3, which encode the
71 non-structural proteins. Proteolytic cleavage of the polypeptide by the viral proteases, 2A^{pro},
72 3C^{pro} and 3CD, occurs co- and post-translationally yielding the mature viral proteins required
73 for viral replication (10). The viral protease precursor, 3CD, specifically cleaves P1 into the
74 individual capsid proteins, VP0, VP3 and VP1 (11, 12). A further maturation cleavage of VP0
75 into VP4 and VP2 is associated with encapsidation of viral RNA and results in enhanced
76 particle stability (13, 14).

77 The mature PV virion is a ~30 nm icosahedral capsid, comprised of 60 copies of VP1-VP4,
78 containing the viral genome (15). During infection, particles lacking viral genome are also
79 produced. These particles, termed empty capsids (ECs), are antigenically indistinguishable
80 from mature virions, although VP0 remains uncleaved (16). Recombinant ECs have potential
81 as virus-like particle (VLP) vaccines, however wt ECs are inherently unstable and their
82 antigenic conformation changes at lower temperatures than is the case for mature viral particles
83 (16, 17). This conformational change results in a minor expansion of the particles, but has
84 significant consequences for their antigenicity. ECs readily convert from the native antigenic
85 form (termed D-Ag) to the non-native form (termed C-Ag). Although the D-antigenic form
86 induces protective immune responses to PV, the C-antigenic form does not (17–19). Therefore,
87 recombinant VLP vaccines against PV must retain the D-antigenic conformation.

88 VLPs are a safe and attractive option as recombinant vaccines as they mimic the repetitive
89 structures of virions but lack the genome and are non-infectious. Both the hepatitis B virus
90 (HBV) and human papillomavirus (HPV) vaccines are licensed VLP-based vaccines produced
91 in yeast and insect cells, respectively (20–22). Following the initial demonstration of the
92 expression of PV VLPs in yeast in 1997 (23), these have been produced in several systems in
93 recent years, including mammalian, plant and insect cells (24–30). However, most of these
94 systems rely on the co-expression of the viral protease, 3CD, to cleave the viral structural
95 protein to produce VLPs. There are some concerns around the potential cytotoxicity of 3CD
96 and its potential impact on VLP yield in recombinant systems. Additionally, 3CD has been
97 shown to induce apoptosis in mammalian cells (31), which may limit the application of newly
98 licensed vaccine technologies such as viral vectors and mRNA vaccine technologies to produce
99 next-generation poliovirus vaccines.

100 We have previously demonstrated the production of PV VLPs using *Pichia pastoris*, and
101 modulated the expression of 3CD through a number of molecular approaches (30).
102 Interestingly, Xu et al. reported an insect cell expression system which yielded PV VLPs in the
103 absence of the viral protease by splitting the P1 precursor protein across 2 ORFs, with VP3 and
104 VP0 under the control of one promoter and separated by the porcine teschovirus 2A peptide
105 (P2A), and VP1 under the control of a second promoter (28), which also changes the natural
106 order of proteins on the P1 precursor, i.e. VP0-VP3-VP1.

107 Here, we investigated the potential for protease-independent VLP production in *Pichia*
108 *pastoris*. We show that stabilised PV-1 VLPs (32) can be produced in *Pichia* without the viral
109 protease, 3CD, using instead the P2A peptide sequence to terminate translation between
110 individual capsid proteins, and compare this to protease-dependent production of PV-1 VLPs.
111 Analysis of all permutations revealed that only VP3 could be tagged with P2A and maintain

112 native antigenicity. Transmission electron microscopy of these VLPs reveals their classic
113 picornaviral icosahedral structure. Finally, we show that these particles are thermostable above
114 37°C, demonstrating their potential as next-generation polio vaccine candidates.

115 **Results**

116 **Protease-independent production of poliovirus structural proteins**

117 Previously, we reported the production of PV VLPs in *Pichia Pastoris* using dual promoter
118 constructs to separately express P1 and the viral protease, 3CD. However, the over-
119 expression of 3CD can be cytotoxic and may reduce the yield of PV VLPs in heterologous
120 systems (30, 31). Xu et al. demonstrated production of protease-independent PV VLPs in
121 native conformation in insect cells using recombinant baculoviruses to express the viral
122 structural proteins under the control of two separate promoters, with VP3 and VP0 separated
123 by P2A transcribed from the first promoter and VP1 under the control of the second promoter
124 (Xu et al. 2019). 2A is a short peptide sequence present at the C terminus of the P1 region of
125 aphthoviruses which interrupts translation to separate the P1 and P2 regions without
126 proteolytic cleavage. Here, we undertook a detailed study of the protease-independent
127 expression of PV-1 VLPs in *Pichia* using a matrix of constructs based on a PV-1 sequence
128 which includes several stabilising mutations (32) (Fig. 1A). We compared protein expression
129 and VLP assembly from these constructs with the dual alcohol oxidase (AOX) promotor
130 P1/3CD system we reported previously, together with a modified construct in which the VP1
131 sequence was extended at the C-terminus with a 6xHIS tag.

132 *Pichia* colonies, transformed with each construct, were tested for the level of expression.
133 Samples from small-scale expression were collected 48 hours post-induction and analysed for
134 correct processing, either by 3CD or P2A, using an anti-VP1 antibody (Fig. 1B). All constructs
135 produced VP1, albeit at different levels. Both protease-containing constructs, PV-1 SC6b P1
136 and PV-1 SC6b 6xHIS, and the protease-independent constructs in which VP1 was upstream
137 of 2A or was produced from a separate promotor, produced readily detectable levels of VP1.
138 However, in constructs where VP1 followed the P2A peptide, VP3-2A-VP1 VP0 and VP0-2A-

139 VP1 VP3 respectively, the level of VP1 was markedly lower. This suggests that, although in
140 an optimum context P2A can facilitate a 1:1 ratio of up- and down-stream protein expression
141 in mammalian cells, the surrounding sequence or the re-initiation event following 2A-mediated
142 interruption of translation may influence the translation rates in *Pichia*. As expected, anti-3D
143 reactivity was only seen with lysates of the protease-containing constructs, where two major
144 bands were detected at approximately 72 and 55 kDa respectively (Fig. 1B).

145 **VLPs produced from protease-dependent and -independent constructs sediment
146 similarly.**

147 To determine VLP assembly competence of the protease-independent constructs, high-
148 expressing *Pichia* clones of each were cultured to high-density and expression induced with
149 0.5% methanol (v/v) and cell pellets collected 48 hours post-induction. The resuspended
150 pellets were homogenised at ~275 MPa and the resultant lysates purified through chemical
151 precipitation and differential centrifugation steps culminating in 15-45% sucrose gradients.
152 With the exception of the VP0-2A-VP3 VP1 construct, immunoblot analysis of gradient
153 fractions detected VP1 in fractions consistent with the presence of VLPs (Fig. 2) with
154 intensities that were broadly consistent with the total protein analysis (Fig. 1). Constructs in
155 which 2A followed VP0 produced lower yields of VLPs suggesting a conformation
156 incompatible with efficient assembly. Minor differences in peak fractions was also noted with
157 those constructs containing VP1-2A or VP1-His trending to peak higher in the gradient.

158 **VP3-P2A VLPs are D-antigenic**

159 To confirm the antigenicity of the VLPs, the peak fractions were analysed by enzyme-linked
160 immunosorbent assay (ELISA) using a standard protocol established by the National Institute
161 for Biological Standards and Control (NIBSC) with the current inactivated vaccine (BRP) as
162 a positive control (32). As expected, the PV-1 SC6 3CD produced both D and C antigenic

163 VLPs, with the ratio of D:C largely in favour of D-antigenic particles (Fig 3). Intriguingly,
164 the addition of a VP1 C-terminal 6xHIS tag on this construct reversed the ratio, with the
165 majority of particles found in the C-antigenic conformation. This was also true for both
166 protease-independent VP1-P2A constructs, only C-antigenic particles were detected,
167 suggesting that the addition of a C-terminal tag to VP1 leads to assembly of particles, which
168 readily convert to C-antigenicity, or never achieve the D-antigenic conformation despite the
169 presence of stabilising mutations (Fig 3).

170 Despite low level VP1 expression in the lysates of the VP0-2A-VP1 VP3 construct (Fig 2),
171 no VLPs were detected in the gradient fractions (Fig 3) and although strong VP1 expression
172 was apparent for the VP0-2A-VP3 VP1 construct (Fig 2) only low levels of assembled VLPs,
173 which were entirely in the C-antigenic conformation, were observed (Fig 3).

174 Interestingly, both VP3-P2A constructs produced D-antigen reactive particles with little to no
175 detectable C-antigen, suggesting that addition of a C-terminal tag to VP3 is not detrimental to
176 the antigenicity of assembled particles, consistent with the data previously reported following
177 expression in insect cells (Xu et al. 2019). These data demonstrate that D-antigenic VLPs can
178 be produced in *Pichia* without the requirement for co-expression of the viral protease, 3CD.

179 To further characterise the assembled VLPs, peak fractions of the productive constructs were
180 pooled and concentrated using 100 kDa centrifugal concentrators and assessed by
181 immunoblot and ELISA (Fig. 4A and 4B). The concentrated VLPs were interrogated by
182 immunoblot using a number of different antibodies (Fig. 4A). As expected, the relative levels
183 of VP1 and VP0 were similar for each VLP and only the PV1 SC6b 6xHIS showed reactivity
184 to the anti-HIS antibody. The anti-2A antibody detected the tagged proteins VP3-P2A and
185 VP1-P2A (~27 kDa and ~33 kDa, respectively) as expected. However, for the VP3-P2A-VP0
186 VP1 VLPs, the VP3-P2A band was weaker than that seen with VLPs derived from the VP3-

187 2A-VP1 VP0 construct. This may be a consequence of enhanced proteolytic degradation of
188 the 2A tag in the context of the VP3-P2A-VP0 VP1 VLPs.

189

190 We examined the C- and D-antigenic composition of the VLPs in more detail by ELISA
191 following their concentration from the sucrose gradient fractions (Fig. 4B). Both D- and C-
192 antigenic forms were present in VLPs derived from protease-containing constructs, although
193 the D:C ratio was greatly reduced in the P1-6xHIS tagged construct. Little or no D-antigen
194 was detected in the concentrated VP1-P2A VLPs from the VP1-P2A constructs, further
195 indicating that tagged VP1 results in the assembly of C antigenic VLPs. In contrast, the VLPs
196 including VP3-2A produced high levels of D-antigenic material and low levels of C-
197 reactivity.

198 **Protease-independent VLPs maintain classic picornavirus morphology and are thermally
199 stable at physiologically relevant temperatures**

200 Figure 5A shows representative negative-stain EM images of concentrated protease-
201 independent VLPs and the protease-dependent VLPs. Particles of ~30 nm diameter with typical
202 VLP morphology were seen in all samples, consistent with previous EM images of poliovirus
203 virions and empty capsids and *Pichia*-derived PV-1 VLPs (30). Smaller particles were also
204 seen, especially in the protease-independent samples, which are likely to be *Pichia* alcohol
205 oxidase or fatty acid synthetase which have been shown previously to co-purify with VLPs
206 (33).

207 Potential vaccines will need to withstand physiologically relevant temperatures and so the D-
208 antigenicity of VP3-P2A containing VLPs, protease-derived VLPs, and BRP, was assessed
209 following exposure to increasing temperatures (Fig. 5B). The positive control, BRP, was the

210 most thermally stable only showing a 50% decrease in D antigenicity at ~50°C whereas PV-1
211 SC6b 3CD VLPs lost 50% D Ag ~41°C, although VLPs with VP1 6xHIS were least stable
212 with D Ag dropping sharply above 37°C and retaining only 11% D-antigenicity at 40°C.
213 Importantly, both VP3-P2A containing VLPs maintained D-antigenicity above 37°C (62%
214 and 77% for VP3-P2A-VP0 VP1 VLPs and VP3-P2A-VP1 VP0 VLPs, respectively). These
215 results suggest that protease-free production of PV VLPs can yield particles which are
216 antigenically stable at physiologically relevant temperatures, suggesting the potential to
217 produce a long-lasting immune protection against PV.

218 **Discussion**

219 The current PV vaccines require the production of large amounts of infectious virus, with
220 potential to reintroduce the virus to the environment (2, 4). Moreover, continued use of OPV
221 has contributed to the global increase in cVDPV cases, which now exceed those caused by wt
222 PV (7). However, these vaccines are hugely important for eradication of PV, especially in light
223 of the recently licensed nOPV2, which has been intelligently designed to reduce the likelihood
224 of the two major concerns surrounding OPV, reversion and recombination. (8). With this newly
225 available vaccine, and advances with improved PV-1 and PV-3 OPV vaccines, there is
226 increased optimism that a polio-free world is achievable. However, for the complete
227 elimination of polio alternative PV vaccines which do not require the growth of large quantities
228 of infectious virus for their production still require investigation. VLP vaccines produced using
229 a heterologous expression system may address this requirement. This approach has been
230 successful in a number of expression systems, including plant, insect cell, MVA-based
231 mammalian cell expression systems and, as we show here, yeast systems such as *Pichia*
232 *Pastoris* (24–30, 34). However, the 3C protease, the active component of the P1 cleavage
233 specific precursor 3CD, has been shown to have a toxic effect on cell viability. Whilst 3CD

234 should be less toxic than 3C, it has the potential for cellular toxicity (12, 31), which may reduce
235 the yield of VLPs produced in heterologous expression systems, as highlighted by our failure
236 to select viable colonies in *Pichia pastoris* when expressing 3CD under a constitutive promoter.
237 However, a recent publication indicated the potential of protease-independent production of
238 PV VLPs using an insect cell expression system in which the two structural proteins, VP0 and
239 VP3, were separated by inserting a P2A peptide, and with VP1 under the control of a second
240 promoter (28). Here, we explored all permutations of P2A containing protease-independent
241 VLP constructs using *Pichia pastoris* as a heterologous expression system.

242 We investigated the efficiency of viral capsid protein expression by immunoblot analysis (Fig
243 1B.) Good levels of VP1 were produced from both protease-dependent constructs and from
244 each protease-independent construct where the VP1 ORF was immediately after the promoter,
245 with or without the P2A peptide. However, lower levels of VP1 were seen when the VP1 ORF
246 was placed after the P2A peptide. This suggests that although in the appropriate context the
247 P2A peptide is highly efficient at re-initiating translation following pausing in mammalian
248 cells, the efficiency of this re-initiation event in *Pichia* is lower (35). This also suggests that
249 the individual structural proteins are unlikely to be at equimolar amounts within the cell, which
250 would inevitably reduce capsid assembly efficiency. Therefore, there is potential to improve
251 this process in future either by selection of an alternative 2A peptide or by expressing all
252 three structural proteins individually from different promoters (36).

253 Following conformation that each of these constructs produced the viral structural proteins, we
254 compared the production of VLPs from the protease-independent constructs with those from
255 the protease-dependent constructs, which were previously shown to produce VLPs in *Pichia*
256 (30). Interestingly, almost all of the protease-independent constructs produced material, which
257 sedimented in gradients similarly to VLPs produced from the protease-dependent constructs.

258 The exceptions were VP0-P2A-VP3 VP1 and the VP0-P2A-VP1 VP3 constructs which
259 produced less material than other protease-dependent and protease-independent constructs (Fig
260 2.) Using conformation-specific antibodies in ELISAs of sucrose gradient fractions we saw no
261 signal from the VP0-P2A-VP3 VP1 construct as expected, and only low levels of C-antigenic
262 and no D-antigenic reactivity from the VP0-P2A-VP1 VP3 construct. These results suggest
263 that addition of the P2A peptide to the C-terminal end of VP0 has detrimental effects on particle
264 assembly.

265 Whilst VP1-P2A tagged constructs produced assembled VLPs, as demonstrated by sucrose
266 gradient centrifugation analyses (Fig 2.) and morphologically by TEM (Fig 5A.), these were
267 entirely in the C-antigenic conformation (Fig 3 & 4A). This dominance of the C-antigenic
268 conformation was also seen when a C-terminal 6xHIS tag added to VP1 in the protease-
269 dependent construct, although some D-antigenicity was detected. Virus particles with 2A
270 peptide still attached have been previously described for foot-and-mouth disease virus, another
271 member of the picornavirus family, although the particle expansion and antigenic
272 conformational changes seen with PV are not observed here (37). However, in closer relatives
273 to PV, VP1 C-terminal extensions which include a motif integral to viral entry process have
274 been found in Coxsackieviruses, echoviruses and human parechoviruses (38–40).

275 Interestingly, both VP3-P2A constructs produced D-antigenic VLPs, in agreement with
276 previous work in insect cells which showed that a dual promoter construct containing VP3-
277 P2A-VP0 under the control of one promoter and VP1 under the control of a second promoter
278 produced D-antigenic VLPs (28). Our initial sucrose gradient analyses (Fig 2.) suggested that
279 these constructs produced little to no detectable C-antigenicity, whilst maintaining good levels
280 of D-antigenicity. C-antigenicity was detectable after concentration of the VLPs, although at a
281 much lower level than D Ag and both constructs produced similar D:C ratios (Fig 4B.)

282 Intriguingly, when we assessed the levels of P2A peptide in the concentrated VLP samples, the
283 VP3-P2A-VP0 VP1 VLPs showed less reactivity to the 2A antibody than the VP3-P2A-VP1
284 VP0 VLPs, suggesting that the 2A peptide was degraded or cleaved by host factors on these
285 VLPs but not those derived from VP3-P2A-VP1 VP0, indicating subtle differences in
286 processing of these VLPs despite the similarity in production. This difference in particle
287 composition may also account for the small differences seen in thermostability, as the VP3-
288 P2A-VP0 VP1 VLPs appeared less thermally stable at 37°C, maintaining 62% D-antigenicity,
289 whereas the VP3-P2A-VP1 VP0 VLPs maintained 77% D-antigenicity (Fig 5B.)

290 Importantly, the thermostabilities of the protease-independent VLPs were similar to those of
291 the protease-dependent PV1 SC6b VLPs and maintained native antigenicity at physiologically
292 relevant temperatures. These properties suggest that the protease-independent VLPs have the
293 potential to induce protective immune responses against PV. However, the yields of protease-
294 independent VLPs were lower than protease-dependent VLPs, likely due to inefficiency of the
295 P2A translation re-initiation in *Pichia* as highlighted in Fig. 1B. This inefficiency of re-
296 initiation may be addressable by manipulating the sequence surrounding the 2A peptide. In
297 addition, the demonstration that native antigenic VLPs can be produced using protease-
298 independent means may make these constructs more amenable from a genetic complexity
299 perspective for adaptation to the new vaccine technologies, such as adenovirus-vectored
300 vaccines and mRNA vaccines, that have emerged in response to the SARS-CoV-2 pandemic.
301 They would also circumvent potential problems of cytotoxicity associated with 3CD and
302 facilitate the production of immunogenic enterovirus VLPs *in vivo* (41–43).

303 In conclusion, we have shown protease-independent production of VLPs using a heterologous
304 expression system, which maintain the antigenic, morphological and thermostability
305 characteristics known to be important drivers of protective immunity against PV. Additionally,

306 our data corroborate the results observed in other expression systems using this thermostable
307 mutant, whilst building on this work to highlight that VP3 is the only structural protein able to
308 tolerate the addition of a C-terminal P2A tag without negatively impacting assembly or
309 antigenicity. Overall, the protease-independent VLP system we describe provides a framework
310 for the production of VLPs using modern vaccine technologies, not only for PV but also as a
311 model system for other members of the picornavirus family.

312 **Methods**

313 **Vector construction**

314 The P1 gene of PV1 SC6b Mahoney was amplified from a pT7RbzMahSC6bP1_deletion
315 mutant plasmid sourced from NIBSC, UK and a 3CD gene was codon optimised for
316 expression in *Pichia pastoris*. Both P1 genes and the 3CD were cloned separately into the
317 pPink-HC expression vector multiple cloning site (MCS) using *EcoRI* and *FseI* (NEB).
318 Subsequently, the dual promoter expression vector was constructed through PCR
319 amplification from position 1 of the 3CD pPink-HC to position 1285 inserting a *SacII*
320 restriction site at both the 5' and 3' end of the product. The P1 expression plasmids were
321 linearised by *SacII* (NEB), followed by the insertion of the 3CD PCR product into *SacII*-
322 linearized P1 plasmid. All PCR steps were carried out with Phusion polymerase (NEB) using
323 the manufacturer's guidelines. The PV1 SC6b 6xHIS P1 construct was subcloned by the
324 addition of the 6xHIS tag through PCR amplification of the PV1 SC6b P1 from the PV1
325 SC6b P1 pPink-HC vector. The PV1 SC6b 6xHIS P1 dual promoter expression vector was
326 then constructed as described above. The PV1 SC6b P1 pPink-HC vector was used as the
327 template to produce each porcine teschovirus 2A (P2A) containing construct. P2A was
328 inserted into each construct through overlap PCR amplification and then dual promoter
329 expression constructs for each P2A construct were obtained as described above for the 3CD
330 containing plasmids.

331 **Yeast transformation and induction**

332 Plasmids were linearized by *AflII* digestion (NEB) and then transformed into *Pichia* Pink™
333 Strain one (Invitrogen, USA) by electroporation as per the manufacturer's guidelines.
334 Transformed yeast cells were plated on *Pichia* Adenine Dropout (PAD) selection plates and
335 incubated at 28°C until sufficient numbers of white colonies appeared (3-5 days). To screen

336 for high-expression clones, 8 colonies were randomly selected for small-scale (5 mL)
337 expression experiments. Briefly, colonies were cultured in YPD for 48 hours at 28°C and after
338 shaking at 250 rpm, each culture was pelleted at $1500 \times g$ and resuspended in YPM (1 mL &
339 methanol 0.5% v/v) to induce protein expression and cultured for a further 48 hours. Cultures
340 were fed methanol to 0.5% v/v 24 h post-induction. Expression levels of each clone were
341 determined through VP1 expression analysed by immunoblotting as described below. For VLP
342 production, a stab from a previously high-expressing glycerol stock was cultured for 48 hours
343 in 5 mL YPD to high density. To increase biomass for the protease containing constructs, 4 mL
344 of the starter culture was added to 200 mL YPD in a 2 L baffled flask and cultured at 28°C at
345 250 rpm for a further 24 h. Cells were pelleted at $1500 \times g$ and resuspended in 200 mL YPM
346 (methanol 0.5% v/v) and cultured for a further 48 h. Cultures were fed methanol to 0.5% v/v
347 24 h post-induction. For 2A containing constructs, the cultures were produced in the same way
348 but in a total volume of 400 mL per construct. After 48 h cells were pelleted at $2000 \times g$ and
349 resuspended in breaking buffer (50 mM sodium phosphate, 5% glycerol, 1 mM EDTA, pH 7.4)
350 and frozen prior to processing.

351 **Purification and concentration of PV and PV VLPs**

352 *Pichia* cell suspensions were thawed and subjected to cell lysis using CF-1 cell disruptor at
353 ~275 MPa chilled to 4°C following the addition of 0.1% Triton-X 100. The resulting lysate
354 was then centrifuged at 5000 rpm to remove the larger cell debris, followed by a $10,000 \times g$
355 spin to remove further insoluble material. The supernatant was then nuclease treated using 25
356 U/mL DENARASE® (c-LEcta) for 1.5 hours at RT with gentle agitation. The supernatant was
357 then mixed with PEG 8000 (20% v/v) to a final concentration of 8% (v/v) and incubated at 4°C
358 overnight. The precipitated protein was pelleted at 5,000 rpm and resuspended in PBS. The
359 solution was then pelleted again at 5,000 rpm and the supernatant collected for a subsequent

360 10,000 $\times g$ spin to remove any insoluble material. The supernatant was collected and pelleted
361 through a 30% (w/v) sucrose cushion at 151,000 $\times g$ (using a Beckman SW 32 Ti rotor) for 3.5
362 hours at 10°C. The resulting pellet was resuspended in PBS + NP-40 (1% v/v) + sodium
363 deoxycholate (0.5% v/v) and clarified by centrifugation at 10,000 $\times g$. Supernatant was purified
364 through 15-45% (w/v) sucrose density gradient by ultracentrifugation at 151,000 $\times g$ (using a
365 17 mL Beckman SW32.1 Ti rotor) for 3 hours at 10°C (16). Gradients were collected in 1 mL
366 fractions from top to bottom and analysed for the presence of VLPs through immunoblotting
367 and ELISA. For electron microscopy and thermostability studies, peak fractions from primary
368 gradients were diluted and purified through a second 15-45% (w/v) sucrose density gradient
369 by ultracentrifugation at 151,000 xg for 3 hours at 10°C.

370 Peak gradient fractions as determined by immunoblotting and ELISA were then concentrated
371 to ~100 uL in PBS + 20 mM EDTA using 0.5 mL 100 kDa centrifugal concentration columns
372 (Amicon) as per the manufacturer's instructions.

373 **Sample preparation and immunoblotting**

374 Gradient fraction samples were mixed 5:1 with 5x Laemmli buffer and analysed by 12% SDS-
375 PAGE (w/v) using standard protocols. Concentrated VLP samples were prepared at a 1:1 ratio
376 using 2 x Laemmli buffer. Immunoblot analyses were performed using a monoclonal blend
377 primary antibody against VP1 protein of each PV1, PV2, and PV3 (Millipore MAB8655)
378 followed by detection with a goat anti-mouse secondary antibody conjugated to horseradish
379 peroxidase, and developed using the chemiluminescent substrate (Promega). To detect VP0, a
380 rabbit polyclonal antibody was used followed by detection with a goat anti-rabbit secondary
381 antibody conjugated to horseradish peroxidase and developed using a chemiluminescent
382 substrate (Promega). Immunoblot detection of 6xHIS and 2A peptide tags were determined
383 through anti-Histidine tag (AD1.1.10, Biorad) and anti-2A peptide (3H4, Novus Biologicals),

384 followed by detection with a goat anti-mouse secondary antibody conjugated to horseradish
385 peroxidase, and developed using the chemiluminescent substrate (Promega) (44).

386

387 **Enzyme-linked immunosorbent assay (ELISA)**

388
389 To determine the antigenic content of gradient fractions a non-competitive sandwich ELISA
390 assay was used to measure PV1 D- and C-antigen content (45). Briefly, two-fold dilutions of
391 antigen were captured using a PV1-specific polyclonal antibody, and then detected using anti-
392 PV1 D-antigen (Mab 234) or C-antigen (Mab 1588) specific monoclonal antibodies (kindly
393 provided by NIBSC), followed by anti-mouse peroxidase conjugate (46, 47). All ELISAs were
394 then analysed through Biotek PowerWave XS2 plate reader.

395

396 **Thermostability Assay**

397 The thermostability of VLPs was assessed using previously published protocols (32). Briefly,
398 quantified PV VLPs were diluted in phosphate buffered saline (Corning 46-013-CM) to
399 provide a uniform quantity of D antigen. Duplicate aliquots were incubated on ice (control)
400 or in a thermocycler (BIO-RAD T100) at temperatures between 20 °C and 60 °C for
401 10 minutes.

402 Thermostability of the VLPs was assessed by measuring loss of D-antigenicity by ELISA,
403 detection of D-antigenic particles was determined through PV-1 specific Mab 234.

404 **Electron microscopy**

405 To prepare samples for negative stain transmission EM, carbon-coated 300-mesh copper
406 grids were glow-discharged in air at 10 mA for 30 seconds. 3 µl aliquots of purified VLP
407 stocks were applied to the grids for 30 seconds, then excess liquid was removed by blotting.

408 Grids were washed twice with 10 μ l distilled H₂O. Grids were stained with 10 μ l 1% uranyl
409 acetate solution, which was promptly removed by blotting before another application of 10 μ l
410 1% uranyl acetate solution for 30 seconds. Grids were subsequently blotted to leave a thin
411 film of stain, then air-dried. EM was performed using an FEI Tecnai G2-Spirit transmission
412 electron microscope (operating at 120 kV with a field emission gun) with an Gatan Ultra
413 Scan 4000 CCD camera (ABSL, University of Leeds).

414 **Image processing**

415 Raw micrographs were visualised with ImageJ 1.51d (48, 49).

416 **Authors and Contributions**

417 LS, DJR & NJS conceived and designed the experiments. LS, JJS, KG & HX conducted the
418 experiments. LS, JJS, KG, DJR & NJS analysed the data. LS, DJR & NJS wrote the manuscript.
419 KG, JJS, HX, MU & IJ reviewed and edited the manuscript. Funding was secured for this
420 research by DJR and NJS.

421 **Acknowledgments**

422 We thank other members of the Stonehouse/Rowlands group, at the University of Leeds, for
423 their insightful contributions. This work was performed as part of a WHO-funded collaborative
424 project involving the following institutions: University of Oxford, University of Reading,
425 University of Florida, Harvard University, John Innes Centre, The Pirbright Institute, and the
426 National Institute for Biological Standards and Control.

427

428 **Conflicts of Interest**

429 The authors declare that there are no conflicts of interest.

430

431 **Funding**

432 This work was funded via WHO 2019/883397-O “Generation of virus free polio vaccine –
433 phase IV”.

434

435 **References**

436 1. Polio Now – GPEI.

437 2. Zambon M, Martin J. 2018. Polio eradication: next steps and future challenges.

438 Eurosveillance 23.

439 3. Two out of three wild poliovirus strains eradicated.

440 4. Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. 2015. Polio vaccination: past,

441 present and future. Future Microbiol 10:791–808.

442 5. Minor P. 2009. Vaccine-derived poliovirus (VDPV): Impact on poliomyelitis

443 eradication. Vaccine 27:2649–2652.

444 6. Jegouic S, Joffret M-L, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin

445 F, Rakoto-Andrianarivelo M, Delpéyroux F. 2009. Recombination between

446 Polioviruses and Co-Circulating Coxsackie A Viruses: Role in the Emergence of

447 Pathogenic Vaccine-Derived Polioviruses. PLoS Pathog 5:e1000412.

448 7. Greene SA, Ahmed J, Datta SD, Burns CC, Quddus A, Vertefeuille JF, Wassilak SGF.

449 2019. Progress Toward Polio Eradication — Worldwide, January 2017–March 2019.

450 MMWR Morb Mortal Wkly Rep 68:458–462.

451 8. Yeh M Te, Bujaki E, Dolan PT, Smith M, Wahid R, Konz J, Weiner AJ,

452 Bandyopadhyay AS, Van Damme P, De Coster I, Revets H, Macadam A, Andino R.

453 2020. Engineering the Live-Attenuated Polio Vaccine to Prevent Reversion to

454 Virulence. Cell Host Microbe 27:736-751.e8.

455 9. Lulla V, Dinan AM, Hosmillo M, Chaudhry Y, Sherry L, Irigoyen N, Nayak KM,

456 Stonehouse NJ, Zilbauer M, Goodfellow I, Firth AE. 2019. An upstream protein-

457 coding region in enteroviruses modulates virus infection in gut epithelial cells. *Nat*
458 *Microbiol* 4:280–292.

459 10. Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ. 2010. Picornaviruses, p. 43–89. *In*
460 Current topics in microbiology and immunology.

461 11. Molla A, Harris KS, Paul A V, Shin SH, Mugavero J, Wimmer E. 1994. Stimulation of
462 poliovirus proteinase 3Cpro-related proteolysis by the genome-linked protein VPg and
463 its precursor 3AB. *J Biol Chem* 269:27015–20.

464 12. Jore J, De Geus B, Jackson RJ, Pouwels PH, Enger-Valk BE. 1988. Poliovirus Protein
465 3CD Is the Active Protease for Processing of the Precursor Protein P1 in vitro. *J Gen*
466 *Virol* 69:1627–1636.

467 13. Kräusslich HG, Nicklin MJ, Lee CK, Wimmer E. 1988. Polyprotein processing in
468 picornavirus replication. *Biochimie* 70:119–30.

469 14. Jiang P, Liu Y, Ma H-C, Paul A V, Wimmer E. 2014. Picornavirus morphogenesis.
470 *Microbiol Mol Biol Rev* 78:418–37.

471 15. Hogle JM, Chow M, Filman DJ. 1985. Three-dimensional structure of poliovirus at 2.9
472 Å resolution. *Science* 229:1358–65.

473 16. Basavappa R, Filman DJ, Syed R, Flore O, Icenogle JP, Hogle JM. 1994. Role and
474 mechanism of the maturation cleavage of VP0 in poliovirus assembly: Structure of the
475 empty capsid assembly intermediate at 2.9 Å resolution. *Protein Sci* 3:1651–1669.

476 17. LE BOUVIER GL. 1955. The modification of poliovirus antigens by heat and
477 ultraviolet light. *Lancet (London, England)* 269:1013–6.

478 18. LE BOUVIER GL. 1959. Poliovirus D and C antigens: their differentiation and

479 measurement by precipitation in agar. *Br J Exp Pathol* 40:452–463.

480 19. Beale AJ, Mason PJ. 1962. The measurement of the D-antigen in poliovirus
481 preparations. *J Hyg (Lond)* 60:113–121.

482 20. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR.
483 1984. Human hepatitis B vaccine from recombinant yeast. *Nature* 307:178–80.

484 21. Sasagawa T, Pushko P, Steers G, Gschmeissner SE, Hajibagheri MA, Finch J,
485 Crawford L, Tommasino M. 1995. Synthesis and assembly of virus-like particles of
486 human papillomaviruses type 6 and type 16 in fission yeast *Schizosaccharomyces*
487 *pombe*. *Virology* 206:126–35.

488 22. Smith J, Lipsitch M, Almond JW. 2011. Vaccine production, distribution, access, and
489 uptake. *Lancet (London, England)* 378:428–38.

490 23. Rombaut B, Jore JP. 1997. Immunogenic, non-infectious polio subviral particles
491 synthesized in *Saccharomyces cerevisiae*. *J Gen Virol* 78:1829–1832.

492 24. Ansardi DC, Porter DC, Morrow CD. 1991. Coinfection with recombinant vaccinia
493 viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and
494 formation of empty capsid structures. *J Virol* 65:2088–92.

495 25. Viktorova EG, Khattar SK, Kouiavskaya D, Laassri M, Zagorodnyaya T, Dragunsky E,
496 Samal S, Chumakov K, Belov GA. 2018. Newcastle Disease Virus-Based Vectored
497 Vaccine against Poliomyelitis. *J Virol* 92.

498 26. Bahar MW, Porta C, Fox H, Macadam AJ, Fry EE, Stuart DI. 2021. Mammalian
499 expression of virus-like particles as a proof of principle for next generation polio
500 vaccines. *npj Vaccines* 6.

501 27. Bräutigam S, Snezhkov E, Bishop DHL. 1993. Formation of Poliovirus-like Particles
502 by Recombinant Baculoviruses Expressing the Individual VP0, VP3, and VP1 Proteins
503 by Comparison to Particles Derived from the Expressed Poliovirus Polyprotein.
504 *Virology* 192:512–524.

505 28. Xu Y, Ma S, Huang Y, Chen F, Chen L, Ding D, Zheng Y, Li H, Xiao J, Feng J, Peng
506 T. 2019. Virus-like particle vaccines for poliovirus types 1, 2, and 3 with enhanced
507 thermostability expressed in insect cells. *Vaccine* 37:2340–2347.

508 29. Marsian J, Fox H, Bahar MW, Kotecha A, Fry EE, Stuart DI, Macadam AJ, Rowlands
509 DJ, Lomonossoff GP. 2017. Plant-made polio type 3 stabilized VLPs—a candidate
510 synthetic polio vaccine. *Nat Commun* 8:245.

511 30. Sherry L, Grehan K, Snowden JS, Knight ML, Adeyemi OO, Rowlands DJ,
512 Stonehouse NJ. 2020. Comparative Molecular Biology Approaches for the Production
513 of Poliovirus Virus-Like Particles Using *Pichia pastoris* . *mSphere* 5.

514 31. Barco A, Feduchi E, Carrasco L. 2000. Poliovirus Protease 3Cpro Kills Cells by
515 Apoptosis. *Virology* 266:352–360.

516 32. Fox H, Knowlson S, Minor PD, Macadam AJ. 2017. Genetically Thermo-Stabilised,
517 Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines.
518 *PLOS Pathog* 13:e1006117.

519 33. Snowden JS, Alzahrani J, Sherry L, Stacey M, Rowlands DJ, Ranson NA, Stonehouse
520 NJ. 2021. Structural insight into *Pichia pastoris* fatty acid synthase. *Sci Rep* 11.

521 34. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. 2014.
522 Bioengineering virus-like particles as vaccines. *Biotechnol Bioeng*.

523 35. Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, Kim M-K, Shin BA, Choi S-

524 Y. 2011. High Cleavage Efficiency of a 2A Peptide Derived from Porcine
525 Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. PLoS One 6:e18556.

526 36. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Ruth Vaseghi H, Qian L, Liu J.
527 2017. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic
528 vector. Sci Rep 7:1–9.

529 37. Gullberg M, Polacek C, Bøtner A, Belsham GJ. 2013. Processing of the VP1/2A
530 Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty
531 Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles. J Virol
532 87:11591–11603.

533 38. Triantafilou K, Triantafilou M, Takada Y, Fernandez N. 2000. Human Parechovirus 1
534 Utilizes Integrins $\alpha v\beta 3$ and $\alpha v\beta 1$ as Receptors. J Virol 74:5856–5862.

535 39. Zimmermann H, Eggers HJ, Nelsen-Salz B. 1997. Cell attachment and mouse
536 virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1.
537 Virology 233:149–156.

538 40. Shakeel S, Seitsonen J JT, Kajander T, Laurinmäki P, Hyypiä T, Susi P, Butcher SJ.
539 2013. Structural and Functional Analysis of Coxsackievirus A9 Integrin $\alpha v\beta 6$
540 Binding and Uncoating. J Virol 87:3943–3951.

541 41. Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S,
542 Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D,
543 Fontes-Garfias C, Shi P-Y, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer
544 PR, Jansen KU, Şahin U, Gruber WC. 2020. Safety and Immunogenicity of Two
545 RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 383:2439–2450.

546 42. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy

547 D, Bibi S, Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis
548 B, Heath P, Jenkin D, Lazarus R, Makinson R, Minassian AM, Pollock KM,
549 Ramasamy M, Robinson H, Snape M, Tarrant R, Voysey M, Green C, Douglas AD,
550 Hill AVS, Lambe T, Gilbert SC, Pollard AJ, Aboagye J, Adams K, Ali A, Allen E,
551 Allison JL, Anslow R, Arbe-Barnes EH, Babbage G, Baillie K, Baker M, Baker N,
552 Baker P, Baleanu I, Ballaminut J, Barnes E, Barrett J, Bates L, Batten A, Beadon K,
553 Beckley R, Berrie E, Berry L, Beveridge A, Bewley KR, Bijker EM, Bingham T,
554 Blackwell L, Blundell CL, Bolam E, Boland E, Borthwick N, Bower T, Boyd A,
555 Brenner T, Bright PD, Brown-O'Sullivan C, Brunt E, Burbage J, Burge S, Buttigieg
556 KR, Byard N, Cabera Puig I, Calvert A, Camara S, Cao M, Cappuccini F, Carr M,
557 Carroll MW, Carter V, Cathie K, Challis RJ, Charlton S, Chelysheva I, Cho JS,
558 Cicconi P, Cifuentes L, Clark H, Clark E, Cole T, Colin-Jones R, Conlon CP, Cook A,
559 Coombes NS, Cooper R, Cosgrove CA, Coy K, Crocker WEM, Cunningham CJ,
560 Damratoski BE, Dando L, Datoo MS, Davies H, De Graaf H, Demissie T, Di Maso C,
561 Dietrich I, Dong T, Donnellan FR, Douglas N, Downing C, Drake J, Drake-Brockman
562 R, Drury RE, Dunachie SJ, Edwards NJ, Edwards FDL, Edwards CJ, Elias SC, Elmore
563 MJ, Emary KRW, English MR, Fagerbrink S, Felle S, Feng S, Field S, Fixmer C,
564 Fletcher C, Ford KJ, Fowler J, Fox P, Francis E, Frater J, Furze J, Fuskova M, Galiza
565 E, Gbesemete D, Gilbride C, Godwin K, Gorini G, Goulston L, Grabau C, Gracie L,
566 Gray Z, Guthrie LB, Hackett M, Halwe S, Hamilton E, Hamlyn J, Hanumunthadu B,
567 Harding I, Harris SA, Harris A, Harrison D, Harrison C, Hart TC, Haskell L, Hawkins
568 S, Head I, Henry JA, Hill J, Hodgson SHC, Hou MM, Howe E, Howell N, Hutlin C,
569 Ikram S, Isitt C, Iveson P, Jackson S, Jackson F, James SW, Jenkins M, Jones E, Jones
570 K, Jones CE, Jones B, Kailath R, Karampatsas K, Keen J, Kelly S, Kelly D, Kerr D,
571 Kerridge S, Khan L, Khan U, Killen A, Kinch J, King TB, King L, King J, Kingham-

572 Page L, Klenerman P, Knapper F, Knight JC, Knott D, Koleva S, Kupke A,
573 Larkworthy CW, Larwood JPJ, Laskey A, Lawrie AM, Lee A, Ngan Lee KY, Lees
574 EA, Legge H, Lelliott A, Lemm NM, Lias AM, Linder A, Lipworth S, Liu X, Liu S,
575 Lopez Ramon R, Lwin M, Mabesa F, Madhavan M, Mallett G, Mansatta K, Marcal I,
576 Marinou S, Marlow E, Marshall JL, Martin J, McEwan J, McInroy L, Meddaugh G,
577 Mentzer AJ, Mirtorabi N, Moore M, Moran E, Morey E, Morgan V, Morris SJ,
578 Morrison H, Morshead G, Morter R, Mujadidi YF, Muller J, Munera-Huertas T,
579 Munro C, Munro A, Murphy S, Munster VJ, Mweu P, Noé A, Nugent FL, Nuthall E,
580 O'Brien K, O'Connor D, Ongutti B, Oliver JL, Oliveira C, O'Reilly PJ, Osborn M,
581 Osborne P, Owen C, Owens D, Owino N, Pacurar M, Parker K, Parracho H, Patrick-
582 Smith M, Payne V, Pearce J, Peng Y, Peralta Alvarez MP, Perring J, Pfafferott K,
583 Pipini D, Plested E, Pluess-Hall H, Pollock K, Poulton I, Presland L, Provstgaard-
584 Morys S, Pulido D, Radia K, Ramos Lopez F, Rand J, Ratcliffe H, Rawlinson T,
585 Rhead S, Riddell A, Ritchie AJ, Roberts H, Robson J, Roche S, Rohde C, Rollier CS,
586 Romani R, Rudiansyah I, Saich S, Sajjad S, Salvador S, Sanchez Riera L, Sanders H,
587 Sanders K, Sapaun S, Sayce C, Schofield E, Screamton G, Selby B, Semple C, Sharpe
588 HR, Shaik I, Shea A, Shelton H, Silk S, Silva-Reyes L, Skelly DT, Smee H, Smith CC,
589 Smith DJ, Song R, Spencer AJ, Stafford E, Steele A, Stefanova E, Stockdale L, Szigeti
590 A, Tahiri-Alaoui A, Tait M, Talbot H, Tanner R, Taylor IJ, Taylor V, Te Water Naude
591 R, Thakur N, Themistocleous Y, Themistocleous A, Thomas M, Thomas TM,
592 Thompson A, Thomson-Hill S, Tomlins J, Tonks S, Towner J, Tran N, Tree JA, Truby
593 A, Turkentine K, Turner C, Turner N, Turner S, Tuthill T, Ulaszewska M, Varughese
594 R, Van Doremale N, Veighey K, Verheul MK, Vichos I, Vitale E, Walker L, Watson
595 MEE, Welham B, Wheat J, White C, White R, Worth AT, Wright D, Wright S, Yao
596 XL, Yau Y. 2020. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine

597 against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised
598 controlled trial. *Lancet* 396:467–478.

599 43. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA,
600 Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw
601 CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson
602 GB, Wu K, Henry C, Bahl K, Garcia-Dominguez D, Ma LZ, Renzi I, Kong WP,
603 Schmidt SD, Wang L, Zhang Y, Phung E, Chang LA, Loomis RJ, Altaras NE,
604 Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES,
605 West A, Gully KL, Stevens LJ, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G,
606 Bennett H, Alvarado GS, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR,
607 Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS.
608 2020. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen
609 preparedness. *Nature* 586:567–571.

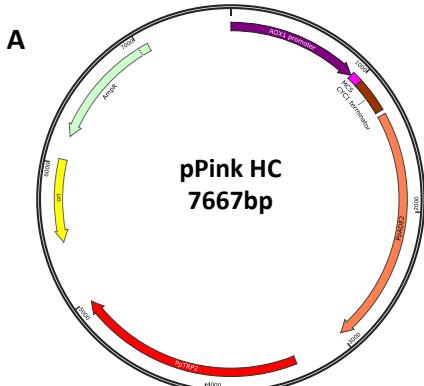
610 44. Yang P-C, Mahmood T. 2012. Western blot: Technique, theory, and trouble shooting.
611 N Am J Med Sci 4:429.

612 45. Singer C, Knauert F, Bushar G, Klutch M, Lundquist R, Quinnan G V. 1989.
613 Quantitation of poliovirus antigens in inactivated viral vaccines by enzyme-linked
614 immunosorbent assay using animal sera and monoclonal antibodies. *J Biol Stand*
615 17:137–50.

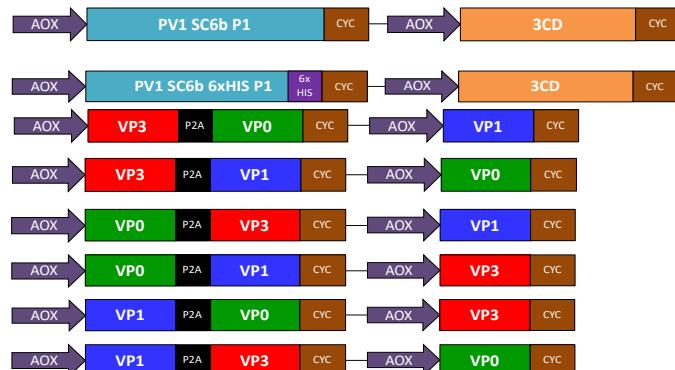
616 46. Minor PD, Ferguson M, Katrak K, Wood D, John A, Howlett J, Dunn G, Burke K,
617 Almond JW. 1991. Antigenic structure of chimeras of type 1 and type 3 polioviruses
618 involving antigenic sites 2, 3 and 4. *J Gen Virol* 72:2475–2481.

619 47. Ferguson M, Wood DJ, Minor PD. 1993. Antigenic structure of poliovirus in

620 inactivated vaccines. *J Gen Virol* 74:685–690.


621 48. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch
622 S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K,
623 Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image
624 analysis. *Nat Methods* 9:676–682.

625 49. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of
626 image analysis. *Nat Methods* 9:671–5.


627

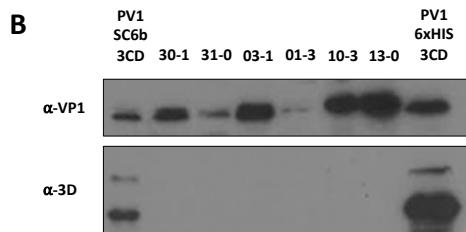
628 **Figures**

629

630

631

632


633

634

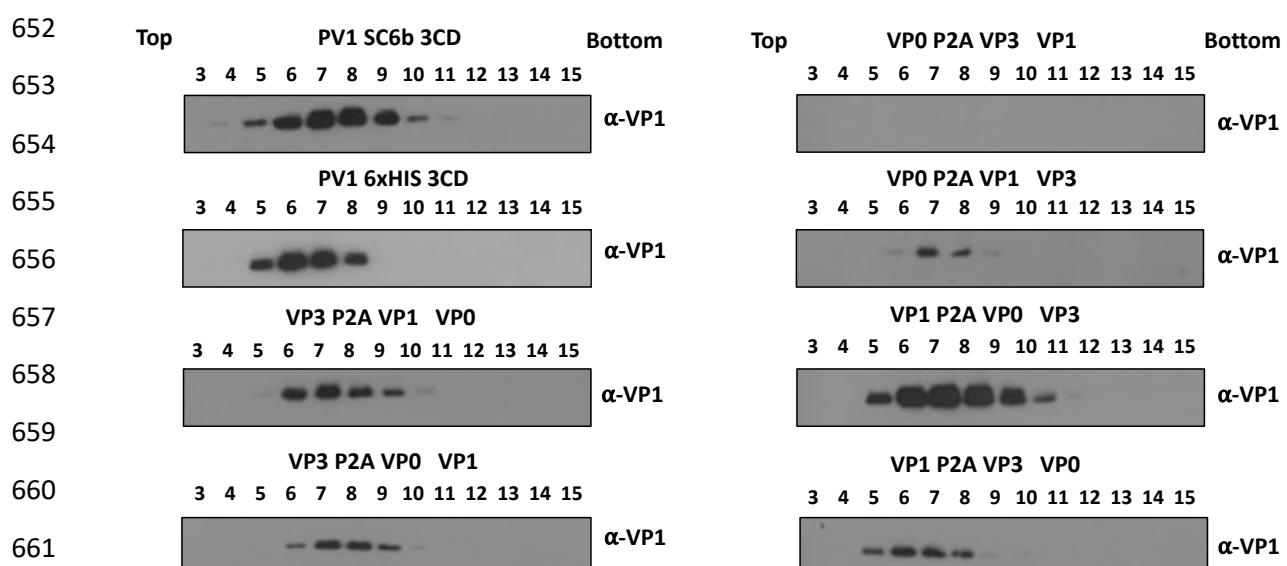
635

636

637

638

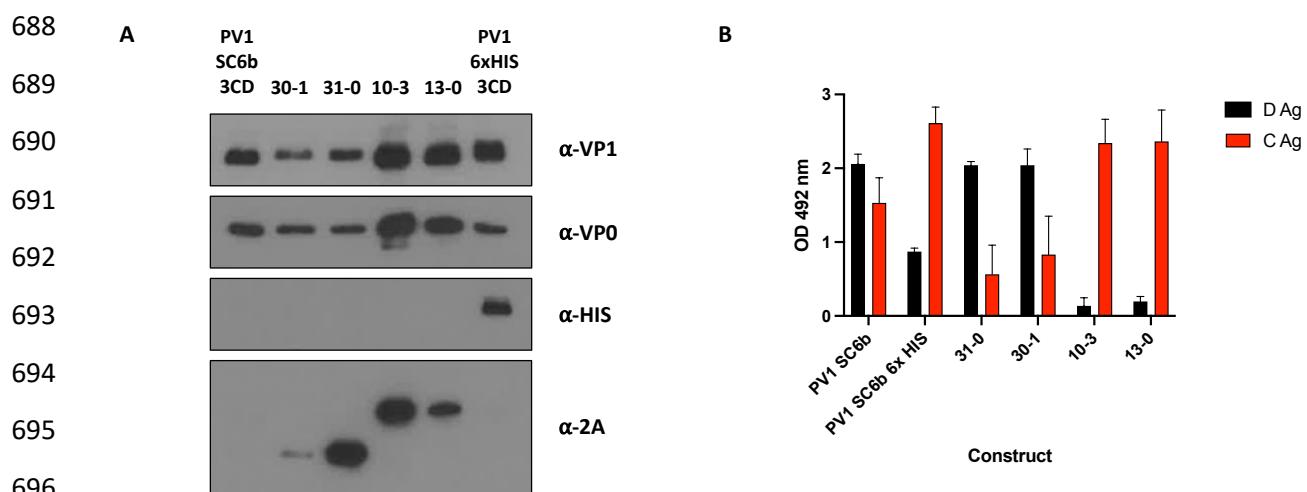
639


640

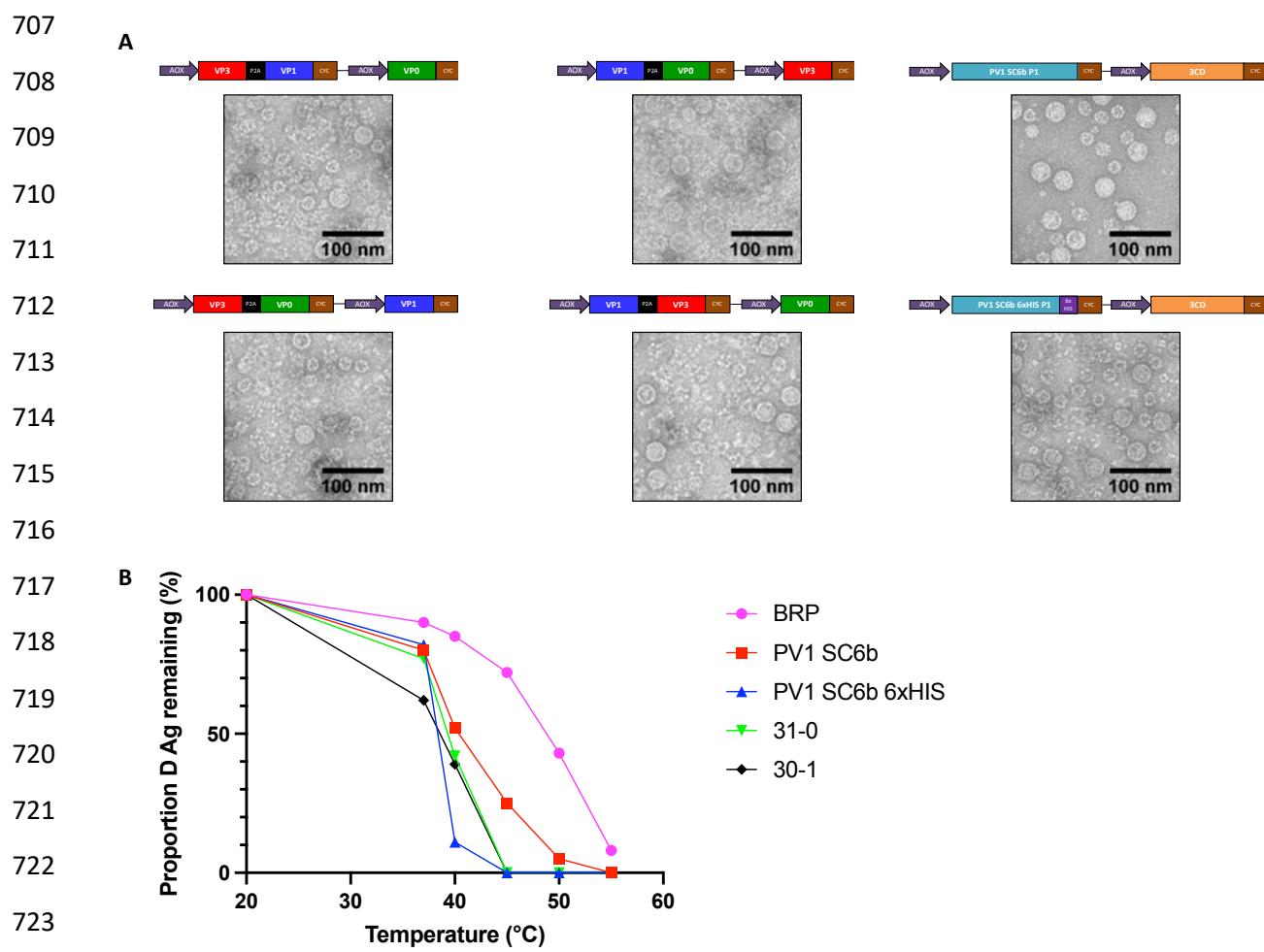
641

642

643 **Figure 1: Schematic of expression cassettes and immunoblots.** A: The pPink HC expression vector
644 with the dual alcohol oxidase (AOX) promoter expression constructs which drive the expression of
645 the P1 capsid protein and the viral protease, 3CD or the expression of protease-free constructs with
646 VP0 (green), VP3 (red), and VP1 (blue). B: Immunoblot for PV VP1 and 3D. Samples were collected
647 48 hours post-induction and lysed using 0.1 M NaOH. All samples were boiled in 2x Laemmli buffer
648 and separated by SDS PAGE prior to analysis by immunoblot using mouse monoclonal α -VP1 and
649 rabbit monoclonal α -3D antibody. The figure is a representative example of three separate
650 experiments for each construct.


651

662


663 **Figure 2: Gradient purification of protease-dependent and protease-free PV-1 SC6b VLPs.** All
664 samples were purified by ultracentrifugation and fractionated from top to bottom in 1 mL aliquots. A 12
665 μ L sample from each fraction was then taken and boiled in 5x Laemmli buffer and separated by SDS
666 PAGE prior to analysis by immunoblot using mouse monoclonal α -VP1. The figure is a representative
667 example of three separate experiments for each construct.

697 **Figure 4: Characterisation of protease-dependent and protease-free PV-1 SC6b VLPs. A:**
698 Immunoblot for PV VP1, VP0, 6xHIS and 2A peptide. Peak gradient fractions for each VLP
699 preparation were concentrated using 100 kDa microcentrifuge concentrators (Amicon) to ~100 μ L.
700 All samples were mixed 1:1 with 2x Laemlli buffer, boiled and separated by SDS PAGE prior to
701 analysis by immunoblot using mouse monoclonal α -VP1, a rabbit polyclonal α -VP0, mouse
702 monoclonal α -HIS and mouse monoclonal α -2A. **B:** Antigenicity of concentrated PV-1 VLPs.
703 Reactivity of concentrated fractions with Mab 234 (D antigen) and Mab 1588 (C antigen) in ELISA.
704 OD at $\lambda=492$ nm is represented in arbitrary units. The figure is a representative example of three
705 separate experiments for each construct.

706

725 **Figure 5: Transmission Electron Microscopy of VLPs and Thermostability. A:** Representative
726 micrographs of protease-dependent and protease-free PV-1 SC6b VLPs. (Scale bar shows 100 nm). **B:**
727 Reactivity of purified PV-1 SC6b VLPs and BRP aliquots to D-antigen specific MAb 234 in ELISA
728 after incubation at different temperatures for 10 minutes, normalised to corresponding aliquot
729 incubated at 4 °C. The figure is a representative example of two separate experiments for each
730 construct

731