

1 **Title:** Cell-type-specific roles of inhibitory interneurons in the rehabilitation of auditory cortex after
2 peripheral damage

3

4 **Authors:** Manoj Kumar^{1#}, Gregory Handy², Stylianos Kouvaros¹, Lovisa Ljungqvist Brinson¹,
5 Brandon Bizup¹, Brent Doiron², and Thanos Tzounopoulos^{1#}

6 ¹Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh,
7 Pittsburgh, PA 15261.

8 ²Departments of Neurobiology and Statistics, University of Chicago

9

10 # Correspondence: Thanos@pitt.edu (TT) or Mak328@pitt.edu (MK)

11

12

13 **Acknowledgments:** We thank Dr. Patrick Cody for help in data analysis.

14

15 **Funding sources:** NIH award DC019618 (T.T), Hearing Health Foundation award 855358 (MK),
16 Swartz Foundation Fellowship for Theory in Neuroscience, and the Burroughs Wellcome Fund's
17 Career Award at the Scientific Interface (G.H), and grants from the Simons Foundation
18 Collaboration on the Global Brain (B.D).

19

20 **Abstract**

21 Peripheral sensory organ damage leads to compensatory cortical plasticity that supports a
22 remarkable recovery of perceptual capabilities. A major knowledge gap is the lack of precise
23 mechanisms that explain how this plasticity is implemented and distributed over a diverse
24 collection of excitatory and inhibitory cortical neurons. Here, we explored these mechanisms in
25 mouse A1. After peripheral damage, we found recovered sound-evoked activity of excitatory
26 principal neurons (PNs) and parvalbumin (PVs) interneurons (INs), reduced activity in
27 somatostatin-INs (SOMs), and recovered activity in vasoactive intestinal peptide-INs (VIPs).
28 Given the sequentially organized cortical network where VIPs inhibit INs, SOMs inhibit PVs and
29 PNs, and PVs inhibit PNs, our results suggest that PVs contribute to PN stability, SOMs allow for
30 increased PN and PV activity, and VIPs enable the PN and PV recovery by inhibiting SOMs.
31 These results highlight a strategic, cooperative, and cell-type-specific plasticity program that
32 restores cortical sound processing after peripheral damage.

33

34 **Introduction**

35 In all sensory systems, damage to peripheral organs leads to compensatory cortical
36 reorganization and increased cortical sensitivity to the non-damaged (spared) sensory input¹⁻⁹.
37 This plasticity is crucial for survival, for it supports a remarkable recovery of perceptual
38 capabilities^{10,11}. Despite the great importance of this plasticity, the underlying system, circuit, and
39 cellular mechanisms remain poorly understood. The establishment of these mechanisms will
40 reveal major concepts in cellular and functional cortical rehabilitation after peripheral damage.
41 Moreover, it holds the promise to highlight novel strategies for enhancing perceptual recovery and
42 mitigating brain disorders associated with sensory deficits and subsequent pathogenic cortical
43 plasticity, such as schizophrenia, tinnitus, phantom limb pain, and neuropathic pain¹²⁻¹⁶.

44

45 In the auditory system, while the auditory nerve input to the brainstem is significantly reduced
46 after cochlear damage, the cortical sound-evoked activity is maintained or even enhanced¹⁶⁻¹⁸,
47 due to increased cortical gain, the sensitivity of neuronal responses against sound levels. As such,
48 this plasticity contributes to the recovery of perceptual sound-detection thresholds after cochlear
49 damage^{10,11,19-21}. The increased cortical gain is associated with reduced inhibitory (GABAergic)
50 cortical activity, increased spontaneous firing, and reorganization of frequency tuning towards
51 less damaged regions of the cochlea^{6,10,18,22-26}. Moreover, a steep drop in PV-mediated inhibition
52 to principal neurons (PNs) is a predictor of auditory cortical response rehabilitation after cochlear
53 nerve damage²². Although the role of general or PV-centric reduced inhibition is well
54 documented^{11,22,24,26-29}, it does not provide the precise cellular and circuit mechanisms that
55 mediate cortical rehabilitation.

56

57 The recent use of cell-type-specific labeling and optogenetic manipulations³⁰, combined with the
58 genetic and physiological dissection of cortical interneurons (INs)^{31,32}, have established a new
59 picture of our understanding of cortical circuits. The canonical cortical circuit includes (at a

60 minimum) vasoactive intestinal-peptide (VIP), somatostatin (SOM), and parvalbumin (PV)
61 expressing IN sub-classes, all with distinct and sequentially organized synaptic connections
62 among themselves and PNs^{33,34}. This circuit design begs for a more precise mechanistic
63 understanding of how specific cortical gain modulations associated with an overall and non-
64 specific decrease in inhibition, such as increased cortical gain after peripheral trauma, are
65 implemented and distributed over these distinct IN sub-classes. Namely, cortical inhibition is
66 crucial for suppressing neuronal activity³⁵⁻³⁸, firing rate gain modulation³⁹⁻⁴⁴, and spike timing
67 control^{45,46}, as well as for correlated neuronal^{47,48} and population activity^{49,50}. Cortical inhibition is
68 also essential for the prevention of runaway cortical activity that would otherwise lead to
69 pathologic activity^{37,51,52}. As such, this complex role of inhibition is expected to pose constraints
70 on how reduced inhibition can safely modulate cortical gain⁵³, for a global and non-specific
71 inhibitory reduction could lead to instability and pathology, such as epileptic-like activity⁵².

72

73 To study the precise mechanisms of inhibition in cortical plasticity after peripheral damage, we
74 used a mouse model of noise-induced cochlear damage. We employed electrophysiological and
75 immunohistochemical assays to assess peripheral damage, behavioral assays to assess
76 perceptual hearing thresholds, longitudinal *in vivo* two-photon calcium imaging to assess the
77 activity of different cortical neuronal types, *ex vivo* electrophysiology assays to assess cellular
78 excitability, and computational models to shape our hypotheses and predictions. Our results
79 demonstrate that the recovery of cortical sensory processing after peripheral damage is supported
80 by a remarkable cell-type-specific contribution and cooperativity among multiple types of cortical
81 INs.

82

83 **Results**

84 To cause peripheral damage in mice, we used a noise-induced hearing loss (NIHL) paradigm.

85 Mice were bilaterally exposed to an octave band (8-16 kHz) noise at 100 dB SPL for 2 hours (**Fig.**

86 **1a, b**). To assess the consequences of this noise exposure on peripheral structures, we measured

87 and quantified the auditory brainstem response (ABR) before and one, three, and ten days after

88 noise exposure. ABR represents the sound-evoked action potentials generated by the

89 synchronized activity of various nuclei of the auditory pathway from the auditory nerve to the

90 brainstem, where ABR wave 1 represents the sound-evoked synchronized activity of the auditory

91 nerve (AN) type-I spiral ganglion neurons (SGNs) (**Fig. 1c**). We found that noise exposure

92 increased the ABR threshold, the sound-level which elicited a significant wave 1 amplitude (**Fig.**

93 **1c-e**) and reduced the gain of that AN sound-evoked activity, the slope of ABR wave I amplitude

94 against sound level, (**Fig. 1f, g**), suggesting reduced sound information relayed from the cochlea

95 to the AN. Moreover, we found that noise exposure increased the distortion product otoacoustic

96 emissions (DPOAE) threshold (**Fig. 1h**), suggesting dysfunction of the cochlear outer hair cells

97 (OHCs) sound amplification function. ABR threshold and gain represent the combined

98 functionality of inner hair cells (IHCs), OHCs, type-I SGNs, and synapses between the IHCs and

99 type-I SGN dendrites called ribbon synapses⁵⁴. To identify the anatomical markers of reduced AN

100 gain and elevated ABR and DPOAE thresholds after noise exposure, we performed

101 immunohistochemical analysis across the tonotopic axis of the cochlea to quantify the survival of

102 IHCs, OHCs, and the number of ribbon synapses between the IHCs and type-I SGN dendrites

103 (**Fig. 1i and supplement Fig. 1**). We found that noise exposure significantly reduced the number

104 of ribbon synapses per inner hair cell in the high-frequency region (16-32 kHz) of the cochlea

105 (**Fig. 1i, j**), without affecting the survival of either IHCs or OHCs (**supplement Fig. 1**). We did not

106 observe any changes in sham-exposed mice, which underwent identical procedures but without

107 the presentation of sound (**Fig. 1 and supplement Fig. 1**). Together, our noise trauma protocol,

108 by reducing the AN gain and increasing peripheral hearing thresholds, reduces the amount and

109 transfer of peripheral auditory input to the brain. We will use this protocol to assess perceptual
110 recovery and the cellular mechanisms of cortical rehabilitation after peripheral damage.

111

112 To test for perceptual recovery, we employed an operant auditory avoidance task (**Fig. 1k**).

113 Namely, following a 6-sec long noise-bursts at 70 dB SPL, mice were trained to cross from one
114 side of the shuttle-box to another side to avoid a mild foot-shock (200 - 400 μ A) (Methods). A

115 successful crossing during the noise-bursts trial was called *Hit*, whereas crossing during a random

116 6-sec long silent window was called *False-Alarm (FA)* (**Fig. 1k**). Once mice completed their

117 behavioral training, we measured their perceptual sound thresholds (**Fig. 1l**). To do this, we

118 presented noise-bursts at various sound intensity levels (20-80 dB SPL) in random order,

119 measured the Hit and FA rates at individual sound-levels, and then calculated sound-detection

120 rate (Hit% - FA%). To quantify the perceptual sound detection threshold, we plotted the sound-

121 detection rate against the sound-level and the sound-level with a 50% sound-detection rate was

122 defined as the sound-detection threshold (**Fig. 1l**). When we measured the detection thresholds

123 ten days after noise trauma, we found that perceptual thresholds in noise-exposed mice were

124 significantly lower than ABR thresholds, and almost identical to the sham-exposed mice's

125 perceptual threshold (**Fig. 1m**). These results support that ten days after peripheral damage

126 perceptual hearing thresholds have fully recovered, despite the persistent peripheral damage as

127 evidenced by increased peripheral hearing thresholds, and thus suggest the involvement of

128 central plasticity mechanisms in this recovery. Given the full recovery of perceptual thresholds

129 within ten days after noise trauma, we opted to study the mechanisms of cortical plasticity for ten

130 days after trauma.

131

132 To study the mechanisms of central plasticity after peripheral damage, we focused on the primary
133 auditory cortex (A1), which is a site of robust plasticity after peripheral damage^{5-7,10,11,13,14,26,55-59}.

134 Because the cellular mechanisms of this plasticity are not fully understood, we investigated the

135 plasticity in the different neuronal subtypes. We first investigated the plasticity in the sound-
136 evoked activity of A1 principal neurons (PNs) one, three, and ten days after noise trauma (**Fig.**
137 **2**). To selectively image sound-evoked responses from populations of PNs, we used adeno-
138 associated virus (AAV) driven by the calcium/calmodulin-dependent protein kinase 2 (CaMKII)
139 promoter to express the genetically encoded calcium indicator GCaMP6f (AAV-CaMKII-
140 GCaMP6f) in putative PNs (**Fig. 2ab**). Twelve to 16 days after stereotaxic viral injections of
141 GCaMP6f (**Fig. 2a**), we employed acute *in vivo* wide-field transcranial fluorescent imaging in
142 head-fixed unanesthetized (awake) mice (**Fig. 2b**). After localizing A1 (Methods), we presented
143 broadband sounds (6-64 kHz, 100 ms long) at 30-80 dB SPL and imaged the sound-evoked
144 changes in the A1 GCaMP6f fluorescence ($\Delta F/F\%$) (**Fig. 2c**). Each sound was presented 8-10
145 times in a pseudo-random order. We first measured PNs' response threshold, the sound-level
146 which elicits a significant response. Consistent with the increased ABR wave I response
147 threshold, identified as the AN threshold, we found that the PNs' response threshold was
148 significantly increased 1 and 3 days after NIHL (**Fig. 2d**). However, 10 days after NIHL, PNs'
149 response threshold was significantly lower than the AN threshold (**Fig. 2d** right). Importantly,
150 when we compared the PNs' response threshold on day 10 after NIHL with the perceptual
151 threshold on day 10 after NIHL (**Fig. 2d** right), we did not find a significant difference, suggesting
152 that the reduced response threshold A1 PNs after NIHL may contribute to, or at least is consistent
153 with, the recovery of the perceptual threshold after peripheral damage.

154
155 Next, we measured the amplitudes of sound-evoked responses of A1 PNs (**Fig. 2e**). We found
156 that PN response amplitudes were reduced 1 day after NIHL (**Fig. 2e**, red), but showed significant
157 recovery in 3 and 10 days after NIHL (**Fig. 2e**, cyan), and even surpassed pre-noise-exposed
158 response amplitudes in response to suprathreshold sound levels (at 75 and 80 dB SPL). We next
159 quantified the response gain of sound-evoked activity of A1 PNs (**Fig. 2f**). In contrast to ABR
160 wave I response gain (AN gain) which remained decreased after noise trauma (**Fig. 2f**, light grey),

161 PN gain was increased and remained increased elevated during the 10 days after NIHL (**Fig. 2f**,
162 dark grey), which is consistent with previous results^{10,16,17}. Moreover, we did not find any changes
163 in response threshold, response amplitude, and gain in sham-exposed mice (**supplement Fig.**
164 **2b-d**). Together, these results suggest that ten days after peripheral damage, A1 PNs display
165 increased gain and recovered response thresholds and amplitudes.

166

167 Wide-field imaging reflects neuronal responses arising from different neuronal compartments
168 (e.g., somata, dendrites, and axons) and different cortical layers⁶⁰. Moreover, wide-field imaging
169 reflects responses from a population of neurons, but individual neurons may have distinct sound-
170 evoked responses (e.g., recovered vs. non-recovered) after NIHL. To address these caveats and
171 questions, we performed longitudinal two-photon imaging of the same individual A1 L2/3 PNs in
172 awake mice for 10 days after NIHL (**Fig. 2g-p, and supplement Fig. 2e-j**). After locating A1, we
173 presented trains of broadband sounds and imaged the sound-evoked responses of individual A1
174 L2/3 PNs' somata (**Fig. 2i, j**). To use each neuron as its own control, we tracked the same
175 individual neurons for 10 days after NIHL (**Fig. 2i**). Pre-exposure sessions lasted two days, and
176 average responses of individual neurons from both days were used as pre-exposure responses.
177 After motion and neuropil correction (Methods), we were able to track 531 L2/3 PNs from 11 mice
178 for 10 days after NIHL. To identify the sound-responsive neurons, we first calculated the individual
179 neurons' tuning strength during pre-exposure conditions, and only the neurons with $d' \geq 0$ were
180 analyzed further ($n = 358/531$ PNs from 11 mice, Methods). Consistent with our transcranial
181 results, we found that the response thresholds of individual L2/3 PNs' were fully recovered 10
182 days after NIHL and had a similar cumulative distribution of response thresholds compared to
183 pre-noise-exposure thresholds (**Fig. 2k, l**). Also, we found that the sound-evoked responses of
184 individual PNs were reduced 1 day after NIHL, but overall recovered or surpassed pre-noise-
185 exposure responses 10 days after NIHL (**Fig. 2m**). Also, consistent with our transcranial results,
186 the gain of individual PNs' was increased after NIHL and remained elevated even 10 days after

187 NIHL (**Fig. 2n**), showing a shift in cumulative distribution towards higher gain (**Fig. 2o**). When we
188 plotted individual PN gain after noise-exposure against pre-noise-exposure gain, we also found
189 that on average the gain was increased after noise exposure (**Fig. 2p**) and the majority of PNs
190 showed increased gain after NIHL (**Fig. 2p insets and supplement Fig. 2j**: day1: 228/358, day3:
191 208/358, and day 10: 199/358). Finally, we did not observe a change in either the threshold (**Fig.**
192 **2k**) or the gain (**Fig. 2n**) in sham-exposed mice (218 neurons from 5 mice, **Fig. 2k, n and**
193 **supplement Fig. 2f-j**). Together, our results show that despite peripheral damage, A1 L2/3 PNs
194 show recovered response thresholds, response amplitudes, and increased response gain. The
195 central goal of this study is to identify the core mechanism underlying this PN recovery from
196 peripheral damage.

197
198 To begin, we considered the possible role of inhibitory circuitry on the recovery of A1 L2/3 PNs
199 after NIHL. To this end, we first used a computational model to investigate the possible changes
200 in inhibition that can achieve PN high gain. Past modeling work has shown that a decrease in the
201 recurrent inhibition in a recurrently coupled cortical model results in higher PN gain^{53,61}, thus an
202 NIHL-induced reduction in inhibition could be a candidate mechanism. However, strong recurrent
203 PN connections can yield unstable, runaway behavior if a recurrently coupled inhibitory population
204 is unable to dynamically track and cancel the recurrent excitatory activity^{51,53,62}. As such, the
205 stabilization role for inhibition poses constraints on how reduced inhibition can safely modulate
206 cortical gain, because a global and non-specific inhibitory reduction could lead to instability and
207 pathology, such as epileptic-like activity⁵². Thus, a simplified two-population model, consisting of
208 generic excitatory and inhibitory neurons, would likely fall short of capturing the experimental
209 results presented thus far⁵³ (**Fig. 2**). As a result, we started our investigation by considering a
210 computational network of leaky integrate-and-fire neuron models (Methods) of three
211 subpopulations of neurons (PN, PV, and SOM neurons) (**Fig. 3a**). PN and PV neurons received
212 a feedforward presynaptic drive, and we modeled sound level by increasing the firing rate of the

213 feedforward inputs. We considered four sound levels: none (no sound), low, medium, and high.
214 The control (pre-exposure) behavior of the network lies in an asynchronous (stable) regime, with
215 the firing rate of all three populations increasing monotonically with sound level (**Fig. 3b, c**). Since
216 peripheral damage reduces the intensity of peripheral sensory drive from the cochlea to the AN
217 and the brain, noise-induced damage in our model is implemented by decreasing the feedforward
218 (evoked) and background (spontaneous) firing rates. We modeled recovery after NIHL, as
219 observed 10 days after NIHL (**Fig. 2**), either as a static depolarization or hyperpolarization of
220 individual cortical neurons. The underlying cause behind these inputs could be due to intrinsic or
221 synaptic mechanisms that restore neuronal threshold post NIHL. Consistent with our prediction
222 on the constraints on how reduced inhibition can safely modulate cortical gain, we found that
223 depending on the magnitude and sign of these currents to each subpopulation, the network
224 spiking behavior varied drastically, from oscillatory and unstable, to asynchronous and stable with
225 high gain (**Fig. 3d**).

226
227 Because our major focus is to understand the circuit pathways responsible for the recovery of
228 PNs' threshold, high gain, and stability after NIHL, we utilized a mean-field circuit theory (see
229 Methods), which captures the average neuronal firing rate for each of the subpopulations, to
230 perform an extensive, brute force parameter sweep (**Fig. 3c, d**). Viable parameter sets that
231 matched our experimental observations of PNs were defined as those that produced stable
232 network dynamics with lower PN response thresholds and higher PN gain than in control (see
233 Methods for additional details). Parameter sets that met these criteria yielded average SOM firing
234 rates that were suppressed compared to control, exhibiting little-to-no SOM recovery after
235 damage and PV neurons with recovery similar to that of the PN population (**Fig. 3e**). These
236 successful parameter sets can be further explored by examining the strength and sign
237 (depolarizing vs. hyperpolarizing) of the recovery currents injected into each of the subpopulations
238 (**Fig. 3f**). Specifically, while the PN and PV neurons received depolarizing inputs, SOM cells

239 largely received hyperpolarizing inputs. These results suggest that the selective suppression of
240 SOM neurons allows for PNs to overcome the loss of feedforward input and thereby recover their
241 response threshold and exhibit higher gain after peripheral damage compared to the control
242 (sham-exposed) case. These modeling results lead to a pair of testable hypotheses: 1) the PV
243 population will have a matched recovery to that of the PN populations, and 2) SOM neurons will
244 not recover post-NIHL.

245

246 To test the first hypothesis, we first investigated the effect of NIHL on response threshold,
247 amplitude, and gain in A1 L2/3 PV neurons. To selectively target and image sound-evoked
248 responses from populations of PV neurons, we injected AAV expressing Cre-dependent
249 GCaMP6f (AAV-Flex-GCaMP6f) into the A1 of PV-Cre mice (**Fig. 4a**). We first employed *in vivo*
250 wide-field transcranial imaging of populations of PV neurons in awake mice (**Fig. 4a-f**). We found
251 that the response threshold of PV neurons was increased 1 day after noise exposure (**Fig. 4d**,
252 magenta). However, 3 days after noise exposure, the PV population response threshold was
253 lower than the response threshold of A1 PNs (**Fig. 4d**), suggesting that the response thresholds
254 of PV neurons are recovered even before the response threshold of PNs. Ten days after NIHL,
255 PV neurons response thresholds remain low and were not different from the PN response
256 thresholds (**Fig. 4d**). Moreover, we found the reduced sound-evoked response amplitudes of A1
257 PV neurons 1 day after NIHL (**Fig. 4e**, red), which recovered by 10 days after NIHL (**Fig. 4e**,
258 cyan). Importantly, we found that noise exposure increased the gain of the PV population, which
259 remained elevated for 10 days after NIHL (**Fig. 4f**). We did not observe a change in the PV
260 population response threshold and gain in sham-exposed mice (**supplement Fig. 4a, b**).
261 Together, these results demonstrate that PV population recovery is overall similar to PN recovery.

262

263 Next, we performed longitudinal 2P imaging of A1 L2/3 PV neurons (**Fig 4g-j**). We tracked and
264 included in our analysis 82 PV neurons from 6 mice for 10 days after NIHL. Consistent with our

265 transcranial imaging results, PV neurons displayed recovered response thresholds (**Fig. 4k, l**),
266 and even surpassed pre-noise-exposure responses 10 days after NIHL amplitudes (**Fig. 4m**,
267 **cyan**). Moreover, the gain of individual PV neurons increased after NIHL and remained increased
268 during the 10 days after NIHL (**Fig. 4n-p**). The majority of PV neurons showed increased response
269 gain after NIHL (day1: 63/82, day3: 65/82, and day10: 61/82) (**Fig. 4p insets and supplement**
270 **Fig. 4g**). We did not observe any changes in the response threshold, amplitude, and gain of L2/3
271 PV neurons in sham-exposed mice (80 neurons from 7 mice, **Fig. 4k, n and supplement Fig.**
272 **4c-g**). These results demonstrate that, in response to peripheral damage, A1 L2/3 PV neurons
273 match the recovery of PNs to act as stabilizers of A1 network activity, validating the first modeling
274 hypothesis. Consequently, PV neurons likely do not contribute to the increased PN gain after
275 recovery from NIHL.

276
277 To test our second hypothesis, we investigated the role of SOM neurons during recovery from
278 NIHL. We started our investigation with *in vivo* wide-field transcranial imaging (**Fig. 5**) and found
279 that the response threshold of the A1 SOM population was very high 1 day after NIHL, above 80
280 dB (**Fig. 5c**, red). Importantly, response thresholds did not recover and remained significantly
281 higher than the response threshold of PV neurons and PNs even 10 days after noise exposure
282 (**Fig. 5d**). Additionally, response amplitudes were reduced after NIHL and did not fully recover
283 even 10 days after NIHL (**Fig. 5e**, cyan). Finally, we did not observe any gain changes in SOM
284 population response (**Fig. 5f**). We did not observe a change in the response threshold and gain
285 of SOM neurons in sham-exposed mice (**supplement Fig. 5a-b**). Overall, in contrast to the robust
286 sound-evoked PN and PV neurons activity after noise trauma, SOM neurons' sound-evoked
287 activity remained significantly reduced throughout the 10 days after noise trauma.

288
289 Consistent with our transcranial results, longitudinal 2P imaging of individual A1 L2/3 SOM
290 neurons (82 neurons from 15 mice) showed increased response thresholds after injury, which

291 remained elevated throughout the 10 days after NIHL (**Fig. 5g-k**), and a shift in the cumulative
292 distribution of response threshold towards higher sound levels (**Fig. 5l**). Also, consistent with the
293 transcranial results, we found reduced sound-evoked amplitudes of individual SOM neuron
294 response (**Fig. 5m, cyan**). Moreover, we did not observe any change in the gain of A1 L2/3 SOM
295 neurons after NIHL (**Fig. 5n-p**). Finally, we did not observe a change in the SOM neurons'
296 response threshold, amplitude, and gain in sham-exposed mice (**Fig. 5k, n and supplement Fig.**
297 **5c-g**, 42 neurons from 9 mice). In total, these results support the second modeling hypothesis
298 that SOM neurons' responses are suppressed during recovery from NIHL. These results support
299 the notion that the reduced activity of SOM neurons disinhibits PV neurons and PNs post-NIHL,
300 thus allowing for high PV and PN response gain.

301
302 We next explored the mechanism underlying the SOM neuron suppression, which in turn
303 contributes to the enhanced gain of L2/3 A1 PNs and PV neurons. The reduction in overall SOM
304 activity might be due to changes in the intrinsic cellular makeup of SOM neurons, the synaptic
305 input afferent to SOM neurons, or a combination of the two mechanisms. To test for changes in
306 intrinsic properties, we performed *ex vivo* brain slice electrophysiology of AC L2/3 SOM neurons
307 after NIHL (**Fig. 6**). Due to the lack of cytoarchitectural features, it is challenging to locate the AC
308 in brain slices. Therefore, to localize the AC, we labeled AC corticocollicular (CCol) L5B PNs (red)
309 projecting to the inferior colliculus, by injecting red fluorescent retrograde microspheres into the
310 inferior colliculus of SOM-GFP mice (**Fig. 6a**, Methods). The localization of CCol PNs in the AC
311 (**Fig. 6b**), along with anatomical landmarks, such as the rhinal fissure and the underlying
312 hippocampal formation allowed us to locate the AC as described previously⁶³⁻⁶⁵. After localizing
313 the AC, we measured the intrinsic properties of AC L2/3 SOM neurons in noise- and sham-
314 exposed mice (**Fig. 6b**). The input resistance (R_{input}) and the membrane resting potential (V_{rest})
315 did not change over the 10 days after noise- compared to sham-exposure (**Fig. 6c-e**). Similarly,
316 noise trauma did not affect action potential width (AP_{width}), AP threshold ($AP_{threshold}$), and firing rate

317 of SOM neurons (**Fig. 6f-k**). Finally, the firing rate adaptation ratio of the SOM neurons, calculated
318 as the ratio of instantaneous firing frequency between the ninth and tenth AP and instantaneous
319 frequency between the second and third AP (f_9/f_2)⁶⁴, showed no significant difference between
320 sham- vs. noise-exposed mice (**Fig. 6l, m**). Taken together, these results suggest that the
321 reduced sound-evoked activity in SOM neurons after NIHL is likely not due to changes in intrinsic,
322 cellular properties in the SOM neurons themselves.

323

324 We next investigated whether changes in the synaptic inputs to SOM neurons could contribute to
325 the suppression of SOM neurons after NIHL. Despite our three-population model correctly
326 predicting that the suppression of SOM neurons can lead to the recovery of PNs, it cannot capture
327 such a synaptic mechanism in its current form: SOM neurons lack significant recurrent inhibition
328 from themselves and PV neurons^{33,34,66} (**Fig. 3a**). However, VIP neurons, which were not included
329 in our initial model, are strongly embedded in the AC recurrent network. They have substantial
330 incoming connections from PNs, PV, and SOM neurons, and considerable outgoing connections
331 into SOM neurons^{66,67}. Most notably, the strong mutual inhibition between SOM and VIP neurons
332 (**Fig. 7a**; highlighted) potentially drives a competitive dynamic between these two IN
333 subpopulations, where tipping the activity in favor of one subpopulation could lead to a dramatic
334 suppression of the other subpopulation⁶⁸. We, therefore, extend our computational model to
335 include these VIP INs to investigate whether they could contribute to the observed SOM
336 suppression.

337

338 For the control (pre-damaged) state, we found that the four-population model exhibited similar
339 spiking behavior as in the three-population model (**Fig. 7b**) and that the mean-field theory was
340 readily extendable to accurately capture the underlying steady-state firing rates (**Fig. 7c**). With
341 this baseline behavior in hand, we next performed a similar parameter sweep as before (see
342 Methods for additional details). We found that the firing rates corresponding to the viable

343 parameter sets (i.e., parameter values that yielded a low threshold, high gain, and stable
344 dynamics for the PN population) for the PN, PV, and SOM subpopulations in the extended four-
345 population model matched those found in our simplified three-population model (**Fig. 3e**).
346 Specifically, the population-averaged firing rates of the PNs and PV neurons showed a low
347 threshold and high gain, while the SOM neurons were largely suppressed (**Fig. 7d**). The
348 difference here was that the inhibition of SOM neurons was brought on solely by VIP neurons and
349 not by a hyperpolarizing recovery current (as was the case in the three-population model). In line
350 with this observation, VIP neurons exhibited an increase in firing rates after damage compared to
351 control, while also showing similar characteristics as the PNs and PV neurons, namely a low
352 threshold and high gain (**Fig. 7d**). After examining the recovery currents responsible for these
353 results, we observed that PN, PV, and VIP neurons were all subject to significant depolarizing
354 currents, with VIP neurons receiving the strongest level of depolarization (**Fig. 7e**). This result
355 combined with the strong VIP to SOM neuron connection suggests that, during recovery after
356 trauma, SOM neurons are more inhibited compared to the control state.

357
358 To test this directly, we measured the average synaptic input to the SOM neurons for all viable
359 parameter sets (**Fig. 7f**, see Methods for additional details). We found that the average synaptic
360 input was less after trauma when compared to control across all viable parameter sets and
361 stimulus values. Further, for a majority (51.47%) of these tested conditions, SOM neurons
362 received a net inhibitory input. In total, these modeling results from the four-population model
363 provide a clear, testable hypothesis: VIP neurons show a strong recovery post NIHL.

364
365 To test this hypothesis experimentally, we first used *in vivo* wide-field transcranial imaging of
366 populations of VIP neurons (**Fig. 8a-f**). We found that the response threshold of A1 VIP neurons
367 was significantly lower than the response threshold of PNs, PV, and SOM neurons 1 day after
368 NIHL and showed full recovery by 10 days after NIHL (**Fig. 8d**, cyan). Further, VIP neuron

369 response amplitudes surpassed their pre-noise-exposure amplitudes 10 days after NIHL (**Fig. 8e**,
370 cyan), and the gain was also increased throughout the 10 days after NIHL (**Fig. 8f**). We did not
371 observe a change in the response threshold and gain of VIP neurons in sham-exposed mice
372 (**supplement Fig. 8ab**). Consistent with our transcranial results, longitudinal 2P imaging of
373 individual A1 L2/3 VIP neurons, also revealed recovered (low) response thresholds, robust and
374 even enhanced response amplitudes, and increased gain (**Fig. 8g-p**, 70 neurons from 8 mice).
375 Also, the majority of VIP neurons showed increased gain after NIHL (**Fig. 8p insets and**
376 **supplement Fig. 8g**; day1: 36/66, day3: 43/70, and day70: 47/70). On the other hand, we
377 observed slightly reduced gain and no change in the response threshold and amplitude of A1 L2/3
378 VIP neurons in sham-exposed mice (60 neurons from 6 mice, **Fig. 8k, n and supplement Fig.**
379 **8c-g**). Taken together, our results support a strong recovery of the VIP neurons activity after noise
380 trauma, even surpassing the control activity. Because VIP neurons inhibit SOM neurons³³ (**Fig.**
381 **8b**), these results support the following circuit mechanism for cortical recovery after peripheral
382 damage: robust VIP activity enables SOM neuron suppression, which in turn leads to high PN
383 and PV neuron gain.

384

385

386 **Discussion**

387 **Division-of-labor between the cortical IN subtypes**

388 Extensive evidence supports divergence, complementarity, and division-of-labor between the
389 cortical IN subtypes in terms of their tuning properties⁶⁹⁻⁷², and their role in contextual and adaptive
390 cortical sound processing^{40,43,73,74}. However, despite the established role of reduced GABAergic
391 signaling in A1 plasticity after cochlear damage^{11,22,26,27,75,76}, the roles of different IN subtypes in
392 cortical recovery remained unknown. We found that while auditory nerve input to the brainstem is
393 significantly reduced after cochlear damage, sound-evoked cortical activity is maintained or even
394 enhanced. Importantly we revealed a strategic, cell-type-specific, and time-dependent plasticity

395 scheme that restores cortical responses. Namely, after noise trauma, we found enhanced sound-
396 evoked activity in PN (**Fig. 2**), PV (**Fig. 4**), and VIP neurons (**Fig. 8**), but reduced sound-evoked
397 activity in SOM neurons (**Fig. 5**). Based on the known sequentially organized inhibitory cortical
398 network³³, where VIP neurons inhibit SOM neurons, SOM neurons inhibit PV neurons and PNs,
399 and PV neurons inhibit PV neurons and PNs, we propose that the underlying SOM → PV → PN
400 and SOM → PN circuits support a cell-specific plasticity mechanism in which, robust PV activity
401 provides network stability by balancing PN activity; and vastly decreased SOM IN activity allows
402 for increased PV IN and PN gain, which supports stability and high gain. The VIP → SOM → PN
403 disinhibitory pathway completes the task, whereby robust VIP IN activity enables reduced SOM
404 IN activity. These results highlight a novel strategic, cooperative, and cell type-specific plasticity
405 program that restores cortical sound processing after cochlear damage and provides novel
406 cellular targets that may also aid in the development of pharmacotherapeutic or rehabilitative
407 treatment options for impaired hearing after NIHL.

408
409 Several key cortical circuit features are consistent with our proposed hypothesis, regarding the
410 roles of PV neurons as stabilizers and SOM neurons as modulators of A1 plasticity after NIHL.
411 PN and PV neurons are embedded into very similar synaptic environments. Both receive the
412 excitatory drive from upstream areas^{33,34}, and both receive strong recurrent excitation, as well as
413 PV- and SOM-mediated inhibition⁶⁶. This symmetry places PV neurons in a strategic position for
414 monitoring and stabilizing PNs activity⁵³. On the other hand, SOM neurons are in a better position
415 to modulate the cortical inhibition and excitation⁵³, such that a higher gain state of PNs can be
416 achieved without compromising the stability of the network. For example, the increased gain of
417 PNs via reduced activity of SOM neurons would lead to the increased firing of PV neurons
418 because of the strong excitatory feedback from PNs to PV neurons. In turn, these hyperactive PV
419 neurons would then stabilize the recurrently activated PNs. Further, consistent with our model

420 predictions (**Fig. 3e**), suppression of SOM neurons enhances cortical plasticity without
421 compromising the stability of the network^{52,77,78}, whereas suppression of PV neurons can result in
422 uncontrolled network activity, evidenced by unstable ictal-like events in most⁵², but not all cases⁷⁹.
423 These observations support the notion that PV neurons act as the stabilizers whereas SOM
424 neurons act as the modulators of A1 plasticity.

425
426 Similarly, our proposed role of VIP neurons as the enablers of A1 plasticity after NIHL is consistent
427 with previous reports showing that VIP neurons enable cortical plasticity across the sensory
428 cortices^{68,74,77,78,80-82}. In the visual cortex, synaptic transmission from VIP to SOM neurons is
429 necessary and sufficient for the increased cortical responses in PNs after monocular deprivation
430 in adult mice⁷⁷. In the somatosensory cortex, increased activity of VIP neurons facilitates the
431 increased activity of PNs in a mouse model of neuropathic pain⁸³. Here, we found the enhanced
432 activity of A1 L2/3 VIP neurons after NIHL (**Fig. 8**), suggesting that VIP neurons enable the
433 enhanced activity of PNs (**Fig. 2**) via the disinhibitory pathway VIP → SOM → PN. Together, our
434 results provide the first comprehensive, and precise cell-type- and circuit-mechanism for how
435 cortex rebuilds itself after peripheral damage.

436
437 **Maladaptive aspects of cortical plasticity**
438 Compensatory plasticity in the A1 after peripheral damage supports the recovery of the perceptual
439 sound-detection threshold but does not support sound processing encoded by precise spike
440 timing, such as modulated noise or speech and restricts hearing in a noisy environment^{10,11,15,84,85}.
441 Interestingly, A1 SOM neurons, which are critically important for sound processing encoded by
442 precise spike timing of neuronal firing^{43,44,86,87}, showed reduced sound-evoked activity after NIHL
443 (**Fig. 5**). Based on these results, we propose that the reduced activity of A1 SOM neurons after
444 cochlear damage may contribute to the hearing problems peripheral damage, such as difficulty in

445 understanding speech and trouble hearing in noisy environments.

446

447 Another maladaptive aspect of increased AC gain after peripheral damage is the development of
448 tinnitus, the perception of phantom sounds¹⁵, and hyperacusis, the painful sensitivity to everyday
449 sounds¹⁶. Both these disorders have many similarities with neuropathic pain and phantom limb
450 syndrome⁸⁸. These neurological disorders are developed after damage to the peripheral organs
451 and manifest increased activity of PNs in the respective sensory cortices, suggesting a common
452 underlying cortical circuit mechanism. In the allodynia mouse model of neuropathic pain⁸³, where
453 sensory touch that does not normally provoke pain becomes painful in the spared nerve injury
454 model, SOM activity was drastically reduced in the somatosensory cortex. This is consistent with
455 the notion that reduced activity of SOM neurons disinhibits the PNs and leads to increased activity
456 of PNs. Interestingly, selective activation of SOM neurons in the somatosensory cortex after nerve
457 injury was sufficient to prevent the increased activity of PNs and to mitigate the development of
458 neuropathic pain⁸³. Together, these results suggest that the reduced activity of cortical SOM
459 neurons after peripheral organ damage may be a common mechanism across sensory cortices
460 that permits for the increased gain of PNs. Moreover, these results suggest that modulation of A1
461 SOM neuron activity after noise trauma could be a potential target for mitigating noise-induced
462 tinnitus and hyperacusis.

463

464 **PV neurons and cortical plasticity after peripheral trauma**

465 Our results suggest that the increased sound-evoked activity of PV neurons 10 days after NIHL
466 (**Fig. 4d and k, cyan**) may stabilize the increased activity of PNs (**Fig. 2**). However, 1 day after
467 NIHL we observed reduced sound-evoked PV neuron activity (**Fig. 4d and k, red**). Since, PV
468 neurons initiate cortical plasticity in juvenile and adult brain⁸⁵, an initial reduction in the activity of
469 PV neurons activity after NIHL may initiate cortical plasticity. Consistent with this notion, a rapid
470 drop in PV-mediated inhibition of PNs as early as 1 day after cochlear denervation precedes the

471 recovery of cortical sound processing¹⁰. In the visual cortex, PV neurons show reduced firing rates
472 1 day after monocular deprivation⁸⁰, and in the somatosensory cortex PV neurons also show
473 reduction in their intrinsic excitability 1 day after whisker plugging⁸⁹. These results suggest that a
474 rapid reduction in PV-mediated inhibition of PNs may be a common feature of sensory cortices
475 plasticity that plays a critical role in initiating cortical recovery after sensory organ damage.

476

477 A recent study¹¹ reported that the sound-evoked activity of PV neurons was reduced after cochlear
478 denervation and remained reduced for two weeks. However, unlike our model of noise-induced
479 cochlear damage, cochlear denervation was induced with bilateral cochlear application of
480 ouabain, which eliminates ~95% of the type 1 SGNs. Since the type and the severity of peripheral
481 organ damage may result in heterogeneous cortical plasticity^{7,10,16,22,29,90-96}, noise- and ouabain-
482 induced damage to the cochlea may trigger different trajectories of plasticity in A1 cell-types.
483 Another explanation for the observed differences could arise from differences in the experimental
484 design, such as the sound-stimuli used (broadband vs. 12 kHz pure tones¹¹) and the number of
485 PV neurons tracked (82 vs 29¹¹). Overall, the observed differences point to the need for further
486 rigorous investigations on the role of distinct INs in A1 plasticity in different types and degrees of
487 hearing loss, including unilateral vs. bilateral land noise vs. ototoxic compounds induced hearing
488 loss. Nonetheless, our results provide a comprehensive model of cortical rehabilitation after noise
489 trauma whereby the precise and well-timed division-of-labor and cooperativity among cortical
490 interneurons secure high gain and stability.

491

492 **Model assumptions and limitations**

493 In this work, we leveraged a computational model to assist with exploring cortical mechanisms
494 responsible for the recovery of PNs following NIHL. We modeled recovery at the neuronal level
495 as either depolarization or hyperpolarization of the resting membrane potential. After peripheral
496 injury such as NIHL, it is plausible to assume that homeostatic mechanisms could activate such

497 mechanisms, either intrinsically or synaptically, in an attempt to return neuronal populations to
498 previous baseline levels. However, of the two, it is perhaps less likely that mechanics would lead
499 to a hyperpolarization, as was predicted for SOM neurons since this would lead to further
500 population suppression. Despite this shortcoming, the experimental data confirmed our model's
501 prediction. It also suggested that this current arose from synaptic pathways, which pointed to a
502 possible model update: include VIP neurons within the model AC circuit. This extension of our
503 computational model allowed it to capture the experimental results with the use of only
504 depolarization of neuronal membrane post-injury. However, it remains an open question as to the
505 exact source of such currents.

506

507 The computational model assumes that after NIHL, the network must balance the mechanics of
508 recovery and stabilization. This assumption, namely that cortical inhibition is needed to prevent
509 pathologic activity, places the model in the inhibition-stabilized network (ISN) regime^{46,51,53,62}.
510 While we have already mentioned the evidence pointing to PV neurons as the best IN subtype to
511 play the role of the stabilizer, after suffering NIHL, synaptic plasticity and other mechanisms may
512 divert this role to an alternative IN or shift the entire circuit out of the ISN regime. If this were the
513 case, the region of viable parameter sets for the computational model would grow and, as a result,
514 would suggest alternative recovery pathways (e.g., hyperpolarizing PV neurons). Yet, the
515 absence of such pathways in our experimental results implies that the dynamics observed in the
516 ISN regime constrain the mechanisms utilized in recovery. Whether the cortex lies in the ISN
517 regime post-NIHL or remains wired to resist instability despite no longer requiring it remains an
518 open question.

519

520 In conclusion, our results create a new framework for understanding the cellular and circuit
521 mechanisms underlying AC plasticity after peripheral trauma and hold the promise to advance
522 understanding of the cortical mechanisms underlying disorders associated with maladaptive

523 cortical plasticity after peripheral damage, such as tinnitus^{14,15}, hyperacusis^{16,59}, visual
524 hallucinations⁹⁷, and phantom limb pain^{13,98}.

525

526

527 **Methods**

528 **Animals:** All procedures were approved by the Institutional Animal Care and Use Committee at
529 the University of Pittsburgh. For experiments shown in Figure 1, male and female C57/B6 mice
530 and PV-Cre, SOM-Cre mice, and VIP-Cre mice with C57/B6 mice backgrounds (The Jackson
531 Laboratory) were used. For experiments shown in Figures 2 and 4, male and female PV-Cre mice
532 were used. For experiments shown in Figure 5, male and female SOM-Cre were used. For
533 experiments shown in Figure 6, male and female SOM-GFP (GIN) mice with C57/B6 mice
534 backgrounds were used. For experiments shown in Figure 8, male and female VIP-Cre mice were
535 used.

536

537 **Speaker Calibration:** Acoustic sound stimuli used in the study were calibrated with pre-amp
538 attached microphones (1/8 inch 4138-A-015 and 1/4 inch 4954-B, Brüel and Kjær) and a
539 reference 1 kHz, 94 dB SPL certified speaker (Type 4231, Brüel & Kjaer). More specifically, we
540 placed the microphone at the same position as the mouse ear and delivered the pure tones and
541 broadband stimuli at a specific voltage input and recorded output voltage using the pre-amp
542 microphone. Then, we determined the voltage input needed to generate the desired dB SPL
543 output using the 1 kHz 94 dB SPL speaker as the reference voltage.

544

545 **Behavioral Training and Testing:** Behavioral training and testing were performed in a shuttle-
546 cage (14" W x 7" D x 12" H) bisected into two virtual zones⁹⁹. The shuttle-cage was placed within
547 a sound- and light-attenuation chamber and was equipped with 8 poled shocking floor, calibrated
548 speaker, and mouse position sensors (Coulbourn Instruments). Sound-stimuli were generated
549 using a programmable tone/noise generator (A12-33, Coulbourn Instruments) and delivered via
550 calibrated multi-field speaker (MF1, Coulbourn Instruments) hung in the middle of the shuttle cage
551 to provide a homogenous sound field. Foot-shock signals were generated using a programmable
552 animal shocker (H13-17A, Coulbourn Instruments). Presentation of sound-stimuli, foot-shock

553 signals and mouse position detection were performed using scripts programmed in GRAPHIC
554 STATE 4 (Coulbourn Instruments).

555

556 On the day of training and testing, mice were given at least 5 min to acclimate to the shuttle-cage
557 before beginning the training or testing session. Six to seven-week-old C57B6 mice were initially
558 trained to cross from one side of the shuttle-box to another side to terminate a 200 μ A foot-shock.
559 Foot-shock was terminated upon crossing to the other side of the shuttle-box or 10 seconds,
560 whichever occurred first. Seven to eight blocks of 10-foot-shock trials were performed during a
561 training session for two days. Next, mice were trained to cross from one side of the shuttle-box to
562 the opposite side following a sound-stimuli (50 ms noise-burst, 6-sec long train with a repetition
563 rate of 2.5 Hz at 70 SPL, with a randomized intertrial interval of 30-40 sec) to avoid a mild foot-
564 shock (200 - 400 μ A)A successful crossing during the noise-bursts trial was called Hit, whereas
565 crossing during a random 6-sec long silent window was called False-Alarm (FA). Seven to eight
566 blocks of 10 sound-stimuli trials were performed during a training session every day for 4-6 days.
567 Mice were trained every day until their behavioral performance d' exceeded the value of 1.5 [$d' =$
568 $z\text{-score}(\text{Hit rate}) - z\text{-score}(\text{FA rate})$]. During the behavioral testing sessions, we presented noise-
569 bursts at various sound intensity levels (20-80 dB SPL) in random order. Each sound level was
570 presented at least 10 times with a randomized intertrial interval of 30-40 sec. We measured the
571 Hit and FA rates at individual sound-level and calculated the sound-detection rate (Hit% - FA%).
572 To quantify the sound-detection threshold, we plotted the sound-detection rate against the sound-
573 levels, and the sound-level with a 50% sound-detection rate was defined as the sound-detection
574 threshold.

575

576 **Noise Exposure:** Unanesthetized and unrestrained mice were placed within a 5x4-inch
577 acoustically transparent box, and bilaterally exposed to an octave band (8-16 kHz) noise at 100
578 dB SPL for 2 hours noise from a calibrated speaker. For sham-exposed mice, unanesthetized

579 and unrestrained mice were placed within the same box for 2 hours, but the noise was not
580 presented.

581

582 **Auditory brainstem responses:** Auditory brainstem response (ABR) thresholds and ABR wave
583 1 amplitude were measured with subdermal electrodes in mice under isoflurane anesthesia at a
584 stable temperature (~37° C) using the RZ6 processor (Tucker-Davis Technologies, Kumar al.,
585 2019). We recorded ABRs after presenting broadband clicks (1 ms duration, 0 – 80 dB SPL in 10
586 dB steps) at a rate of 18.56 per second with a calibrated MF1 speaker (Tucker-Davis
587 Technologies), via a probe tube inserted in the ear canal. We presented each sound 512 times
588 and analyzed the average evoked potential after bandpass filtering the waveform between 300
589 and 3000 Hz. ABR threshold was defined as the lowest sound intensity that generated ABR wave
590 1 amplitudes that were 3 SDs above the baseline noise level. Baseline noise levels were measured
591 using the ABRs obtained at 0 dB SPL sound intensity. ABR wave 1 amplitude was measured from
592 peak to trough levels.

593

594 **Distortion product otoacoustic emissions:** Mice were anesthetized using isoflurane (3%
595 Induction/ 1.5% Maintenance, in oxygen) and kept at a stable temperature using a heating pad
596 (~37° C). Measurements for DPOAE thresholds were taken with the RZ6 processor and BioSigRX
597 software (Tucker-Davis Technologies). Tone pairs were presented with an f1 and f2 primary ratio
598 of 1.2 at center frequencies. The f1 and f2 primaries were presented using 2 separate MF1
599 speakers (Tucker-Davis Technologies) that each presented a frequency into the outer ear canal,
600 by using tubing that came together within an acoustic probe to limit artificial distortion. The
601 presentation of these tones into the cochlea results in a distortion product, which is generated by
602 the outer hair cells and recorded by a sensitive microphone. Recordings were taken at 8, 12, 16,
603 20, and 24 kHz in ascending order from 0-80 dB. Each test frequency and intensity were averaged
604 over one hundred sweeps. DPOAE threshold was determined as the lowest intensity that was

605 able to generate a distortion product (2f1-f2) with an amplitude that was at least three standard
606 deviations above the noise floor.

607

608 **Adeno-associated virus injections for in vivo imaging:** Male or female PV-Cre mice, SOM-
609 Cre mice, and VIP-Cre mice (The Jackson Laboratory) were injected with
610 AAV9.CaMKII.GCaMP6f.WPRE.SV40 and AAV9.CAG.Flex.GCaMP6f.WPRE.SV40 into the right
611 auditory cortex as described previously^{65,100,101}. Briefly, mice were anesthetized with isoflurane,
612 and a craniotomy (~0.4 mm diameter) was made over the temporal cortex (~4 mm lateral to
613 lambda). With a micromanipulator (Kopf), a glass micropipette containing AAVs was inserted into
614 the cortex 0.5–0.7 mm past the surface of the dura and ~500 nL of each viral vector was injected
615 over 5 min. Next, the scalp of the mouse was closed with cyanoacrylate adhesive. Mice were
616 given carprofen 5 mg/kg (Henry Schein Animal Health) to reduce the pain associated with the
617 surgery and monitored for signs of postoperative stress and pain.

618

619 **Animal preparation for acute in vivo wide-field imaging:** Twelve to 16 days after AAV
620 injections, mice were prepared for *in vivo* calcium imaging^{65,100,101}. Mice were anesthetized with
621 inhaled isoflurane (induction, 3% in oxygen; maintenance, 1.5% in oxygen) and positioned into a
622 custom-made head holder. Core body temperature was maintained at ~37°C with a heating pad,
623 and eyes were protected with ophthalmic ointment. Lidocaine (1%) was injected under the scalp,
624 and an incision (~1.5 cm long) was made into the skin over the right temporal cortex. The head
625 of the mouse was rotated ~45° in the coronal plane to align the pial surface of the right temporal
626 cortex with the imaging plane of the upright microscope optics. The skull of the mouse was
627 secured to the head holder using dental acrylic (Lang) and cyanoacrylate adhesive. A tube (the
628 barrel of a 25 ml syringe or an SM1 tube from Thorlabs) was placed around the animal's body to
629 reduce movement. A dental acrylic reservoir was created to hold warm (37°C) ACSF over the
630 exposed skull. The ACSF contained (in mM) 130 NaCl, 3 KCl, 2.4 CaCl₂, 1.3 MgCl₂, 20 NaHCO₃,

631 3 HEPES, and 10 D-glucose, pH 7.25–7.35, ~300 mOsm. For better optical access to the auditory
632 cortex, we injected lidocaine– epinephrine (2% lidocaine, 1:100,000 w/v epinephrine) into the
633 temporal muscle and retracted a small portion of the muscle from the skull. Mice were then
634 positioned under the microscope objective in a sound- and light-attenuation chamber containing
635 the microscope and a calibrated speaker (ES1, Tucker-Davis).

636

637 ***In vivo* wide-field imaging:** We performed transcranial imaging to locate the primary auditory
638 cortex (A1) and image sound-evoked activity from specific populations of A1 neurons in awake
639 mice. We removed the isoflurane from the oxygen flowing to the animal and began imaging sound-
640 evoked responses after 60 min of recovery from isoflurane^{65,100,101}. Sounds were delivered from a
641 free-field speaker 10 cm from the left ear of the animal (ES1 speaker, ED1 driver, Tucker-Davis
642 Technologies), controlled by a digital-to-analog converter with an output rate of 250 kHz (USB-
643 6229, National Instruments). We used ephus¹⁰² to generate sound waveforms and synchronize
644 the sound delivery and image acquisition hardware. We presented 6 or 32 kHz, 50 dB SPL tones
645 to the animal while illuminating the skull with a blue LED (nominal wavelength, 490 nm; M490L2,
646 Thorlabs). We imaged the change in green GCaMP6f emission with epifluorescence optics (eGFP
647 filter set, U-N41017, Olympus) and a 4x objective (Olympus) using a cooled CCD camera (Rolera,
648 Q-Imaging). Images were acquired at a resolution of 174 x 130 pixels (using 4x spatial binning,
649 each pixel covered an area of 171.1 μm^2 of the image) at a frame rate of 20 Hz to locate A1 in
650 each animal (see below, Analysis). To locate the A1, we presented low-frequency tones (5 or 6
651 kHz, 40–60 dB SPL) and imaged the sound-evoked changes in transcranial GCaMP6s
652 fluorescence. Due to the mirror-like reversal of tonotopic gradients between A1 and the anterior
653 auditory field (AAF)^{64,103}, these sounds activated two discrete regions of the auditory cortex
654 corresponding to the low-frequency regions of A1 and the AAF (**supplement Fig. 2a**). To extract
655 change sound-evoked change in fluorescence ($\Delta F/F$), we normalized the sound-evoked change
656 in fluorescence after the sound presentation (ΔF) to the baseline fluorescence (F), where F is the

657 average fluorescence of 1 s preceding the sound onset (for each pixel in the movie). We applied
658 a two-dimensional, low-pass Butterworth filter to each frame of the $\Delta F/F$ movie and created an
659 image consisting of a temporal average of 10 consecutive frames (0.5 s) beginning at the end of
660 the sound stimulus. After localizing A1, we presented broadband sounds (6-64 kHz, 100 ms long)
661 at 30-80 db SPL in 5 db SPL steps from a calibrated speaker (ES1, TDT) and imaged the sound-
662 evoked changes in transcranial GCaMP6f fluorescence signals ($\Delta F/F\%$). Each sound was
663 presented 8-10 times in pseudo-random order.

664

665 ***In vivo* wide-field imaging analysis:** A region of interest (ROI, 150–200 mm x 150–200 mm)
666 over A1 was then used to quantify the sound-evoked responses to broadband sounds (6-64 kHz,
667 100 ms long) sounds. We averaged the fluorescent intensity from all pixels in the ROI for each
668 frame and normalized the ΔF to the F of the ROI to yield $\Delta F/F$ responses. $\Delta F/F$ responses from
669 8 to 10 presentations of the same sound level were averaged. Response amplitude was the peak
670 (50 msec window) of the transcranial response that occurred within one second of the sound
671 onset. Response threshold was defined as sound-level which elicit a significant increase in
672 fluorescent signals (2 standard deviations above baseline fluorescence F). The response gain
673 was defined as the slope of response amplitudes against the sound levels and calculated as the
674 average change in the fluorescence signals ($\Delta F/F\%$) per 5 dB SPL step starting from response
675 threshold^{10,11}.

676

677 **Longitudinal *in vivo* two-photon imaging:** After AAV injections into the right AC as described
678 above, we implanted a 3 mm wide cranial glass window over the AC following a published
679 protocol^{80,104}. A metal head-plate was also affixed to the mice's heads using dental cement to hold
680 them under the 2P microscope. Twelve to 16 days after the surgery, mice were first
681 conditioned/habituated under the 2P microscope. Mice were head-fixed under a 2P microscope
682 with the head-plate and allowed to acclimate to the rig set up for 30-40 minutes while we passively

683 played broadband and pure-tone sounds in the background. The next day, after locating A1 using
684 wide-field imaging as described above, we performed two-photon imaging of A1 L2/3 neurons
685 (175-225 μ m below the pial surface) in awake mice. Mode-locked infrared laser light (940 nm,
686 intensity at the back focal plane of the objective, MaiTai HP, Newport, Santa Clara, CA) was
687 delivered through a galvanometer-based scanning two-photon microscope (Scientifica, Uckfield,
688 UK) controlled with scanimage 3.8¹⁰⁵, using a 40 \times , 0.8 NA objective (Olympus) with motorized
689 stage and focus controls. We imaged green and red fluorescence simultaneously with two
690 photomultiplier tubes behind red and green emission filters (FF01-593/40, FF03-525/50,
691 Semrock) using a dichroic splitter (Di02-R561, Semrock) at a frame rate of 5 Hz over an area of
692 145 \times 145 μ m and at a resolution of 256 \times 256 pixels. We imaged PNs, PV, SOM, and VIP
693 neurons in L2/3 at a depth of \sim 200 μ m from pia. Next, we presented trains of broadband sounds
694 at interstimuli intervals of 5 s (6-64 kHz, 100 ms long) at 30-80 db SPL in 5 db SPL steps in
695 pseudo-random order and imaged the sound-evoked changes in GCaMP6f fluorescence signals
696 (Δ F/F%). The whole two-photon imaging session lasted 20-30 mins long and upon completion,
697 the mice were returned to their cage. To use each neuron as its own control, we manually tracked
698 the same neurons for 10 days after noise- or sham-exposure and imaged sound-evoked changes
699 in GCaMP6f fluorescence signals to sound-trains. Mice were habituated under the 2-photon
700 objective for 20-30 minutes a day before the pre-exposure recording sessions. Pre-exposure
701 sessions lasted two days and average responses of individual neurons from both days were used
702 as pre-exposure responses.

703

704 **Two-Photon Analysis:** Images were analyzed post hoc using a custom program, and open-
705 source routines, written using Python and MATLAB as described previously¹⁰⁶. Before extracting
706 Δ F/F, we used the NoRMCorre software to correct motion artifacts from individual tiff movies¹⁰⁷.
707 Next, using FISSA: A neuropil decontamination toolbox for calcium imaging signals¹⁰⁸, we

708 selected ROIs around the soma of each L2/3 neuron from the temporal average of all tiff movies
709 from a single recording session. Fluorescence values were extracted from each ROI for each
710 frame, and the mean for each cell was computed. FISSA, gave us two vectors of fluorescence
711 values for the somatic and the neuropil. We weighted the neuropil vector by 0.8 as described
712 previously^{106,109,110}. The weighted neuropil vector was subtracted from the somatic vector to
713 produce a corrected vector of fluorescence values. These FISSA corrected fluorescence (F) value
714 from each sound trial were then converted to $\Delta F/F$ values by using baseline fluorescence
715 measured 1 sec before each sound onset. We then averaged the $\Delta F/F$ values from each sound-
716 trail (5-8 trials) to get mean $\Delta F/F$ from each neuron. To identify the sound-responsive neurons,
717 we used a tone sensitivity index, d-prime (d'), from preexposure sessions as described
718 previously^{103,106,111}. Briefly, we presented trains of pure tones at interstimuli intervals of 3 s in
719 pseudo-random order that spanned in the range of 4–40 kHz frequencies (500-ms long) in 0.20-
720 octave increments at 30-80 dB SPL in 10 dB SPL steps. For each neuron, we calculated the
721 average response amplitude from responses at and immediately adjacent to the frequency/level
722 combination eliciting the maximum response (average of 5 values if the maximum response is
723 observed at dB < 80, 4 values if the maximum response is observed at 80 dB). We then averaged
724 the same number of values selected at random frequency/level locations of the frequency
725 response area (FRA). We took the difference between these averages and iterated this process
726 1000 times. The tone sensitivity index, d-prime (d'), was calculated as the average of the iterated
727 differences, and the neurons with $d' \geq 0$ only were analyzed further. We then used these sound-
728 responsive cells to assess sound-evoked activities, such as response threshold, amplitude, and
729 gain. The sound-evoked responses were measured for 1 s after the sound onset and were
730 defined as significant responses if the sound-evoked changes in $\Delta F/F$ were larger than the
731 mean+2 standard deviations (SDs) of the baseline fluorescence measured before the sound
732 onset. Peak fluorescence signals during the 1-s period after the sound presentation were
733 quantified as the sound-evoked response amplitude. The response gain was defined as the slope

734 of response amplitudes against the sound levels and calculated as the average change in the
735 fluorescence signals ($\Delta F/F\%$) per 5 dB SPL step starting from response threshold^{10,11}.

736

737 **Brain slice ex vivo electrophysiology:** We recorded intrinsic properties of AC SOM neurons as
738 described previously^{64,65}. Due to the lack of cytoarchitectural features, it is challenging to locate
739 the AC in brain slices. Therefore, to localize the AC, we labeled AC corticocollicular (CCol) L5B
740 PNs (red) projecting to the inferior colliculus, by injecting red fluorescent retrograde microspheres
741 into the inferior colliculus of SOM-GFP mice. Briefly, P28-35 male or female, SOM-GFP (GIN)
742 mice were injected with red fluorescent retrograde microspheres into the ipsilateral inferior
743 colliculus (IC) (1 mm posterior to lambda and 1mm lateral, injection depth 0.75 mm). A volume of
744 ~0.12 μ L of microspheres was pressure-injected (25 psi, 10–15 ms duration) from capillary
745 pipettes (Drummond Scientific) with a Picospritzer (Parker–Hannifin). The localization of CCol
746 PNs in the AC (**Fig. 6b**), along with anatomical landmarks, such as the rhinal fissure and the
747 underlying hippocampal formation allowed us to locate the AC as described previously⁶³⁻⁶⁵. On
748 the day of recordings, brains were rapidly removed and coronal slices (300 μ m) containing the
749 right AC were prepared in a cutting solution at 1 °C using a Vibratome (VT1200 S; Leica). The
750 cutting solution, pH 7.4, ~300 mOsm, contained the following (in mM): 2.5 KCl, 1.25 NaH₂PO₄,
751 25 NaHCO₃, 0.5 CaCl₂, 7 MgCl₂, 7 glucose, 205 sucrose, 1.3 ascorbic acid, and 3 sodium
752 pyruvate (bubbled with 95% O₂/5% CO₂). The slices were immediately transferred and incubated
753 at 34 °C in a holding chamber for 40 min before recording. The holding chamber contained artificial
754 cerebrospinal fluid (ACSF), pH 7.4, ~300 mOsm containing the following (in mM): 125 NaCl, 2.5
755 KCl, 26.25 NaHCO₃, 2 CaCl₂, 1MgCl₂, 10 glucose, 1.3 ascorbic acid, and 3 sodium pyruvate,
756 pH 7.4, ~300 mOsm (bubbled with 95% O₂/5% CO₂). Next, whole-cell recordings in voltage- and
757 current-clamp modes were performed on slices bathed in carbogenated ACSF, which was
758 identical to the incubating solution. For electrophysiological recordings, we used a MultiClamp-
759 700B amplifier equipped with Digidata-1440A A/D converter and Clampex (Molecular Devices).

760 Data were sampled at 10 kHz and filtered at 4 kHz. To study the intrinsic properties of SOM
761 neurons, we added the following drugs: 20 μ M DNQX (AMPA receptor antagonist), 50 μ M APV
762 (NMDA receptor antagonist), and 20 μ M SR 95531 Hydrobromide (Gabazine—a GABA_A receptor
763 antagonist). Pipette capacitance was compensated and series resistance for recordings was
764 lower than 15M Ω . Series resistance (R_{series}) was determined by giving a -5-mV voltage step for
765 50 ms in voltage-clamp mode (command potential set either at -70 mV or at 0 mV) and was
766 monitored throughout the experiments. R_{series} was calculated by dividing the -5 mV voltage step
767 by the peak current value generated immediately after the step in the command potential.
768 Recordings were excluded from further analysis if the series resistance changed by more than
769 15% throughout the experiment. Input resistance (R_{input}) was calculated by giving a -5-mV step
770 in voltage-clamp mode (command potential set either at -70 mV or at 0 mV), which resulted in
771 transient current responses. The difference between baseline and steady-state hyperpolarized
772 current (ΔI) was used to calculate R_{input} using the following formula: $R_{\text{input}} = (-5 \text{ mV}/\Delta I) - R_{\text{series}}$.
773 The average resting membrane potential (V_m) was calculated by holding the neuron in voltage-
774 follower mode (current clamp, at $I = 0$) immediately after breaking in and averaging the membrane
775 potential over the next 20 s. In the current clamp, depolarizing current pulses (0–450 pA in 50 pA
776 increments of 1-s duration) were used to examine each neuron's basic suprathreshold
777 electrophysiological properties (baseline V_m was maintained at -70 mV). Action potential (AP)
778 width was calculated as the full width at the half-maximum amplitude of the first resulting AP at
779 rheobase. The AP threshold was measured in the phase plane as the membrane potential at
780 which the depolarization slope exhibited the first abrupt change ($\Delta \text{slope} > 10 \text{ V/s}$). The adaptation
781 ratio was calculated by dividing the instantaneous frequency between the ninth and tenth AP by
782 the instantaneous frequency between the second and third AP (f_9/f_2).
783

784 **Cochlear Immunohistochemistry:** Mice were deeply anesthetized with isoflurane and sacrificed
785 by decapitation within one week of behavior testing. Cochleas were extracted and perfused
786 intralabyrinthly with 4% paraformaldehyde in 0.1 M phosphate buffer. Cochleas were post-fixed
787 for 2 hr at room temperature and decalcified in 120 mM EDTA for 2-3 days at room temperature
788 on a rocker. Decalcified cochleas were then microdissected under a stereomicroscope. Cochlear
789 sections were blocked in 5% normal goat serum with 0.3% Triton X-100 in phosphate-buffered
790 saline (PBS) for 1 hr at room temperature. Sections were then incubated in primary antibodies
791 diluted in blocking buffer overnight (18-24 hr) at room temperature. Primary antibodies used were
792 anti-myosin VIIa (rabbit anti-MyoVIIa; Proteus Biosciences; 1:500), anti-C-terminal binding protein
793 2 (mouse anti-CtBP2 IgG1; BD Biosciences; 1:200), and anti-glutamate receptor 2 (mouse anti-
794 GluR2 IgG2a; Millipore; 1:2000). Sections were then washed with PBS and incubated in Alexa
795 Fluor-conjugated fluorescent secondary antibodies (Invitrogen; 1:500) for 2 hr at room
796 temperature. Sections were again washed in PBS and finally mounted on microscope slides using
797 Prolong Diamond Antifade Mountant (Invitrogen).
798 Cochlear sections were imaged in their entirety at low magnification to reconstruct the cochlear
799 frequency map using an ImageJ plugin provided by Eaton Peabody Laboratories.
800 [http://www.masseyeandear.org/research/otolaryngology/investigators/laboratories/eaton-](http://www.masseyeandear.org/research/otolaryngology/investigators/laboratories/eaton-peabody-laboratories/epl-histology-resources/imagej-plugin-for-cochlear-frequency-mapping-in-whole-mounts)
801 [peabody-laboratories/epl-histology-resources/imagej-plugin-for-cochlear-frequency-mapping-in-](http://www.masseyeandear.org/research/otolaryngology/investigators/laboratories/eaton-peabody-laboratories/epl-histology-resources/imagej-plugin-for-cochlear-frequency-mapping-in-whole-mounts)
802 whole-mounts. This preparation allows us to trace the organ of Corti in its entirety from base to
803 apex, and the plugin superimposes the frequency map on the traced sections. Confocal z-stacks
804 (0.25 mm step size) of the 8, 12, 16, 24, and 32 kHz regions from each cochlea were captured
805 using a Nikon A1 microscope under a 60x oil immersion lens. Images were imported to ImageJ
806 imaging software for quantification, where maximum projections were rendered from the z-stacks.
807 CtBP2 and GluR2 puncta were counted to identify intact ribbon synapses. Synapses were only
808 considered intact if CtBP2 and GluR2 puncta were juxtaposed. Orphan synapses were defined

809 as CtBP2 puncta that lacked GluR2 puncta. Between 14-18 inner hair cells were included for
810 synapse quantification.

811

812 **Computation Modelling, LIF network:** We consider a four ($a = PN, PV, SOM$, and VIP)
813 population network of leaky integrate-and-fire (LIF) neurons, where the membrane potential (V_j^a)
814 of the j^{th} neuron in population a is governed by the equation

815
$$\tau_m \frac{dV_j^a}{dt} = -(V_j^a - E_L^a) + I_j^a(t) + I_{\text{ext}}^a(t),$$

816 where E_L^a is the resting potential, τ_m is the membrane time constant, and $I_j^a(t)$ and $I_{\text{ext}}^a(t)$ are the
817 recurrent and external synaptic currents, respectively. When $V_j^a(t) \geq V_{th}$, its value is reset to V_r
818 and undergoes a refractory period of length τ_r .

819

820 The recurrent synaptic currents are modeled with exponentially decaying synapses

821
$$\tau_s \frac{dI_j^a}{dt} = I_j^a + \tau_m \left[\sum_b \sum_{k=1}^{N_b} w_{jk}^{ab} \sum_n \delta(t - t_k^n) \right],$$

822 where τ_s is the synaptic time constant, w_{jk}^{ab} is the strength of the connection from neuron k in
823 population b to neuron j in population a and t_k^n are the spike times of neuron k . The probability of
824 a connection from population b to a is given by $p_{a,b}$, and if a connection exists, w_{jk}^{ab} is set to either
825 w or $-gw$ for incoming excitatory or inhibitory inputs, respectively, and 0 otherwise.

826

827 $I_{\text{ext}}^a(t)$ models the synaptic current from N_{ext}^a Poisson sources with connection strength w and
828 firing rate $r_{\text{ext}} = r_{bg}^a + r_{\text{stim}}^a$, where r_{bg}^a is the fixed background firing rate and r_{stim}^a is the stimulus
829 firing rate, which depends on the magnitude of the input stimulus (none, low, medium, or high).
830 Instead of explicitly modeling the spiking behavior of this source, we make use of a diffusion
831 approximation

832
$$\tau_s \frac{dI_{ext}^a}{dt} = -(I_{ext}^a - \mu_{ext}) + \sigma_{ext} \sqrt{\tau_m} \xi(t),$$

833 with

834 $\mu_{ext}^a = w N_{ext}^a \tau_m r_{ext}^a$, and

835
$$\sigma_{ext}^a = \sqrt{w^2 N_{ext}^a \tau_m r_{ext}^a + \sigma_{inh}^2},$$

836 where σ_{inh}^2 is a fixed level of background noise that accounts for additional variability from
837 inhibitory inputs.

838

839 **Modeling noise-induced damage and recovery:** To model the noise-induced damage seen
840 experimentally, we decrease both the background and stimulus-related firing rates by factors
841 $\gamma, \beta^a < 1$, so that the external firing rate becomes

842
$$\hat{r}_{ext}^a = \gamma r_{bg}^a + \beta^a r_{stim}^a.$$

843 Recovery was modeled as a depolarizing or hyperpolarizing current that adjusted the resting
844 potential directly,

845
$$\hat{E}_L^a = E_L^a + I_{recov}^a.$$

846 All parameter values for the LIF model can be found in Tables 1 and 2.

847

848 **Mean-field and diffusion approximation:** Using the results from [3], we make a diffusion
849 approximation for the recurrent inputs to a neuron. This approximation assumes that the input
850 spike trains follow a Poisson distribution, are uncorrelated, and the amplitude of the depolarization
851 due to each input is small ($w_{ij}^{ab} \ll \theta - V_r$).

852

853 Let N_a denote the size of population a and $p_{a,b}$ denote the connection probability of a neuron in
854 population b to a neuron in population a . The average number of incoming connections is
855 therefore given by

856
$$\mathbf{C} = \begin{bmatrix} p_{PN,PN}N_{PN} & p_{PN,PV}N_{PV} & p_{PN,SOM}N_{SOM} & 0 \\ p_{PV,PN}N_{PN} & p_{PV,PV}N_{PV} & p_{PN,SOM}N_{SOM} & 0 \\ p_{SOM,PN}N_{PN} & 0 & 0 & p_{SOM,VIP}N_{VIP} \\ p_{VIP,PN}N_{PN} & p_{VIP,PV}N_{PV} & p_{VIP,SOM}N_{SOM} & 0 \end{bmatrix}.$$

857 Letting \mathbf{W} be a matrix of connection strengths

858
$$\mathbf{W} = w \cdot \begin{bmatrix} 1 & -g & -g & -g \\ 1 & -g & -g & -g \\ 1 & -g & -g & -g \\ 1 & -g & -g & -g \end{bmatrix},$$

859 it follows that the average connectivity between populations is described by

860
$$\mathbf{J} = \mathbf{C} \odot \mathbf{W},$$

861 where \odot denotes the Hadamard product.

862

863 Denoting the steady-state firing rates as $\vec{r} = [r_{PN}, r_{PV}, r_{SOM}, r_{VIP}]^T$, we define

864
$$\vec{\mu}_{\text{eff}} = \mathbf{J}\vec{r}\tau_m + \vec{\mu}_{\text{ext}},$$

865
$$\vec{\sigma}_{\text{eff}}^2 = (\mathbf{J} \odot \mathbf{W})\vec{r}\tau_m + \vec{\sigma}_{\text{ext}}^2,$$

866 and the mean-field neuronal dynamics are described by the following system of stochastic

867 differential equations

868
$$\tau_m \frac{dV^a}{dt} = -(V^a - E_L) + I^a(t),$$

869
$$\tau_s \frac{dI^a}{dt} = -I^a + \mu_{\text{eff}}^a + \sigma_{\text{eff}}^a \sqrt{\tau_m} \xi(t),$$

870 where ξ is a white noise term, with zero mean and unit variance density. It follows by [3] that up

871 to the first order in $\sqrt{\tau_s/\tau_m}$, the steady state firing rates are given by

872
$$r_a = \Phi(\mu_{\text{eff}}^a + I_{\text{recov}}^a, \sigma_{\text{eff}}^a) = \left[\tau_r + \tau_m \sqrt{\pi} \int_{y_r(\mu_{\text{eff}}^a + I_{\text{recov}}^a, \sigma_{\text{eff}}^a)}^{y_{th}(\mu_{\text{eff}}^a + I_{\text{recov}}^a, \sigma_{\text{eff}}^a)} \Psi(s) ds \right]^{-1},$$

873 where

874
$$\Psi(s) = e^{s^2} (1 + \text{erf}(s)), \text{ and}$$

875

$$y_{th,r}(\mu_{\text{eff}}^a + I_{\text{recov}}^a, \sigma_{\text{eff}}^a) = \frac{V_{th,r} - (\mu_{\text{eff}}^a + I_{\text{recov}}^a)}{\sigma_{\text{eff}}^a} + \frac{\alpha}{2} \sqrt{\frac{\tau_s}{\tau_m}}.$$

876 Here, $\alpha = \sqrt{2}|\zeta(1/2)|$, $\zeta(\cdot)$ is the Riemann zeta function. Further, the population firing rate
877 dynamics can be described by the following Wilson-Cowan equation

878

$$\tau \frac{d\vec{r}}{dt} = -\vec{r} + \Phi(\mu_{\text{eff}}^a + I_{\text{recov}}^a, \sigma_{\text{eff}}^a). \quad (1)$$

879

880 **Parameter sweep and stability criteria:** For the three-population model, we estimated the firing
881 rate of the excitatory population (r_{PN}) at four stimulus levels (r_{stim}) using the mean-field theory
882 and took the excitatory gain to be the slope of the line of best fit (\hat{m})

883
$$r_{PN}(r_{stim}) = m^* \cdot r_{stim} + b^*.$$

884 We then perform an extensive sweep in the $(\beta^{PN}, \beta^{PV}, I_{\text{recov}}^{PN}, I_{\text{recov}}^{PV}, I_{\text{recov}}^{SOM})$ parameter space
885 consisting of 225,000 possible parameter sets, estimating the firing rate and gain in the same way
886 as the default case.

887

888 A parameter set $(\hat{\beta}^{PN}, \hat{\beta}^{PV}, \hat{I}_{\text{recov}}^{PN}, \hat{I}_{\text{recov}}^{PV}, \hat{I}_{\text{recov}}^{SOM})$ with gain \hat{m} was deemed viable if it demonstrates
889 the following traits observed in the experimental data:

890 1. $\hat{m} > m^*$
891 2. $(\hat{\beta}^{PN}, \hat{\beta}^{PV}, 0, 0, 0)$, meaning the parameter set without recovery, show decrease gain from
892 the default value m^*
893 3. The firing rate of all populations monotonically increased with stimulus strength
894 4. A low PN response threshold, defined to be >1Hz for the low stimulus value
895 5. Stable dynamics (see details below)

896

897 Some parameter sets were immediately discarded due to the stability criteria because the mean-
898 field theory failed to converge to a stable solution. However, for some of the considered parameter
899 sets, we found examples where the converged mean-field theory disagreed with the
900 corresponding result from the spiking model, due to the spiking model being pushed into an
901 unstable, synchronous, and heavily correlated regime. Due to this disagreement, we wanted to
902 discard such parameter sets from the analysis.

903
904 As stated previously, the mean-field theory assumes that the spiking dynamics lays in an
905 asynchronous regime, and this disagreement arises when this assumption breaks down.
906 Unfortunately, it is not straight forward to use the theory to predict exactly when this disagreement
907 will occur for a given parameter set^{68,112}. Here, we use the eigenvalues of the Jacobian of the
908 deterministic model to provide a conservative and unbiased threshold to disregard such
909 parameter sets. Specifically, we linearize Eq (1) around the fixed point

910
$$\tau \frac{d\vec{r}}{dt} = -\vec{r} + A\vec{r},$$

911 and then disregard parameter sets where $\max \Re(\lambda(A - I)) = \kappa > \kappa_{thres}$. The deterministic
912 system is unstable when $\kappa > 0$, but in order to discard parameter sets that lead to the
913 disagreement between the theory and the spiking model described above, we consider the
914 conservative threshold of $\kappa_{thres} = -0.7$.

915
916 The methods and criteria are the same for the four-population model, but having eliminated
917 intrinsic changes in the SOM population experimentally and adding the VIP population to the
918 model, we consider the parameter space $(\beta^{PN}, \beta^{PV}, \beta^{VIP}, I_{recov}^{PN}, I_{recov}^{PV}, I_{recov}^{VIP})$. Following the
919 results of the first model, the parameter space hypercube was also adjusted to only consider
920 positive values of I_{recov}^a . In total, 15,625 total parameter sets were considered.

921

922 **Numerical details:** The spiking network is implemented Euler's method with a timestep of 0.01
 923 ms. Each trial consisted of 5 seconds, and the steady state firing rates were computed after
 924 averaging the spiking activity of the neurons across each population after discarding the first
 925 second of each trial. The firing rates for the mean-field theory were found via fixed point iteration
 926 of Eq (1), which halted when $\|\vec{r}^{n+1} - \vec{r}^n\| < 10^{-5}$.

927

928 **Table 1: Default parameter values.**

Parameter	Value	Description
τ_m	10 (ms)	membrane time constant
τ_s	0.5 (ms)	synaptic time constant
τ_r	2 (ms)	refractory period
E_L	-65 (mV)	resting potential
V_{th}	-50 (mV)	spike threshold
V_r	-65 (mV)	reset potential
w	0.6 (mV)	synaptic strength of the excitatory connection
g	3	the synaptic factor for inhibitory connection
N_e	5000	Num. of PN neurons
N_p	520	Num. of PV neurons
N_s	520	Num. SOM neurons
N_v	0 / 520	Num. VIP neurons (3/4 populations)
N_{ext}^e	500	Num. external inputs to PN neurons
N_{ext}^p	400	Num. external inputs to PV neurons
N_{ext}^s	0	Num. external inputs to SOM neurons
N_{ext}^v	-- / 400	Num. external inputs to VIP neurons (3/4 populations)
σ_{fixed}^2	10	Fixed background noise level
r_{bg}^a	3 (Hz)	Background excitatory firing rate
r_{stim}^a	0, 2, 4, or 8 (Hz)	Stimulus firing rate (none, low, med, high)
γ	0.5	Damage to background firing rate
β^a	[0.05,0.5]	Damage to input stimulus firing rate to pop a
I_{recov}^a	[-5, 5]	Recovery current to pop a
κ_{thres}	-0.7	Stability threshold

929

930

931 **Table 2: The probability of a connection between presynaptic (columns) and postsynaptic**
932 **(rows) populations.**

	E	PV	SOM	VIP
E	0.03	0.10	0.10	0
PV	0.05	0.10	0.07	0
SOM	0.05	0	0	0.10
VIP	0.05	0.15	0.05	0

933
934 **Statistics:** For statistical comparisons between two independent groups that passed the Shapiro–
935 Wilk normality test, we used unpaired t-tests. Otherwise, we used the Mann–Whitney rank-sum
936 test, Kruskal–Wallis one-way analysis of variance, or Friedman test for non-normally distributed
937 data. For comparisons between multiple groups having within-subject factors, a repeated
938 measures two-way ANOVA test was used, Bonferroni corrections were used for multiple two-
939 sample post hoc comparisons among sample groups; the significance level ($\alpha = 0.05$) of the test
940 was corrected via scaling by the reciprocal of the number of comparisons. Greenhouse-Geisser
941 correction was used when the assumption of sphericity was violated. A permutation test
942 (Wasserman, 2004) was used for two sample comparisons. Samples for which 5000 of 100,000
943 random permutations of the data resulted in mean differences greater than the observed
944 difference in sample means were considered significant ($p < 0.05$). Significance levels are denoted
945 as *, $P < 0.05$. The details of statistical tests are described in the figure legends. Group data are
946 presented as mean \pm SEM. Sample sizes were not predetermined by statistical methods but were
947 based on those commonly used in the field.

948
949 **Rigor and Transparency:** Behavioral, *in vitro* electrophysiology, and histology experiments were
950 conducted and analyzed in a blind mode regarding noise- and sham-exposed conditions. For *in*
951 *vivo* imaging experiments, analysis was also done in a blind mode. Although the experimenter
952 was not “blind” during the acquisition of the *in vivo* imaging experiments, those experiments

953 involved identical and automated signal detection, inclusion, and analysis for both noise- and
954 sham-exposed mice (as described in Methods). Thus, the experimenter did not have any
955 influence over the experiment. Thus, between the data acquisition and analyses, all experiments
956 and analyses are transparent, rigorous, and reproducible.

957

958 **Code and Data availability:** Source data for all figures will be made available from the
959 corresponding author upon reasonable request. The code is written in a combination of C and
960 MATLAB, and those corresponding to the main results can be found on GitHub
961 (<https://github.com/gregoryhandy>) upon acceptance for publication. Other custom Matlab codes
962 used in this study will be made available from the corresponding author upon reasonable request.

963

964 **Author contributions:** M.K., and T.T. designed the study. M.K performed *in vivo* experiments
965 and analyzed data. G.H. and B.D. designed and programmed the computational modelling. S.K.
966 performed electrophysiology experiments. L.L.B performed behavioral experiments. B.B
967 performed cochlear histology. M.K., G.H., B.D., and T.T. wrote the manuscript.

968

969 **Figure Legends**

970 **Figure 1. Perceptual sound-detection threshold recovers despite elevated ABR threshold**
971 **after NIHL.** **(a)** Timetable of experimental design. **(b)** Noise-exposure paradigm. **(c-d)**
972 Representative ABR traces to clicks before and 10 days after noise exposure. **(e)** Average ABR
973 thresholds from noise-exposed ($n = 35$) and sham-exposed ($n = 19$) mice, before and 1, 3, and
974 10 days after exposure. (Noise vs. sham: 2-way ANOVA; exposure x time interaction, $F = 21.7$,
975 $p = 2.8 \times 10^{-12}$; effect of exposure, $F = 221.3$, $p = 1.4 \times 10^{-34}$; *, $p < .05$, compared to pre-noise-
976 exposed, Holm-Bonferroni's post hoc). **(f)** Average ABR wave 1 amplitude to clicks before and
977 after noise exposure. (1-way repeated measure ANOVA; $F = 227.7$, $p = 4.9 \times 10^{-38}$; *, $p < .05$,
978 compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(g)** Average ABR gain from noise-
979 exposed and sham-exposed mice, before and after exposure. (Noise vs. sham: 2-way ANOVA;
980 exposure x time interaction, $F = 11.3$, $p = 6.3 \times 10^{-7}$; effect of exposure, $F = 99.8$, $p = 1.8 \times 10^{-19}$;
981 *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(h)** Average DPOAE
982 thresholds from noise-exposed ($n = 5$) and sham-exposed mice ($n = 4$), before and after exposure.
983 (Noise vs. sham: 2-way ANOVA; exposure x time interaction, $F = 10.9$, $p = 1.4 \times 10^{-6}$; effect of
984 exposure, $F = 145.6$, $p = 1.9 \times 10^{-23}$; *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's
985 post hoc). **(i)** Cochlear histology images of a 32 kHz frequency region from noise-exposed mice
986 showing reduced ribbon synapses onto inner hair cells (blue) compared to sham-exposed mice.
987 The CtBP2 (red) and GluR2 (green) are pre- and postsynaptic markers, respectively. **(j)** Average
988 ribbon synapses onto per inner hair across the tonotopic region of the cochlea from noise-
989 exposed and sham-exposed mice. (Noise vs. sham, 2-way ANOVA; exposure x frequency, $F =$
990 24.2 , $p = 1.1 \times 10^{-9}$; effect of exposure, $F = 126.3$, $p < 1.9 \times 10^{-10}$; *, $p < .05$, compared to sham-
991 exposed, Holm-Bonferroni's post hoc). **(k)** Schematic of operant auditory avoidance task. **(l)** Plots
992 of average sound-detection performance against the sound levels tested 10 days after noise ($n =$
993 5) and sham ($n = 4$) exposure. **(m)** Bar graph representing the average ABR and perceptual
994 thresholds from noise- and sham-exposed mice. Filled circles represent individual data point.

995 (Kruskal-Wallis test: Kruskal-Wallis statistic = 13.63, $p < 1.1 \times 10^{-4}$; *, $p < .05$, Holm-Bonferroni's
996 post hoc).

997

998 **Figure 2. Robust sound-evoked activity (recovery) of A1 L2/3 PN neurons after NIHL. (a)**
999 Timetable of wide-field (WF) imaging experimental design for A1 PNs. **(b)** Schematic of
1000 experimental setup illustrating transcranial imaging of A1 PNs using GCaMP6f in a head-fixed
1001 awake mouse. **(c)** Representative transcranial fluorescence responses of A1 PNs to broadband
1002 sounds from sham- and noise-exposed mice. **(d)** Left: Average change in response thresholds of
1003 A1 PNs (dark grey) at 1, 3, and 10 days after noise exposure. (Noise: 8-11 mice vs. sham: 3 mice,
1004 mixed model ANOVA; exposure x time interaction, $F = 30.4$, $p = 4.3 \times 10^{-9}$; effect of exposure, F
1005 = 63.5, $p = 3.8 \times 10^{-6}$; *, $p < 0.05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc).
1006 Average change in AN threshold (light grey) reproduced from **Figure 1**. Right: Bar graphs
1007 representing the average PNs, AN, and perception thresholds. (1-way ANOVA; $F = 8.6$, $p = 6.8 \times$
1008 10^{-4} ; *, $p < 0.05$, compared to AN, Holm-Bonferroni's post hoc). **(e)** Average sound-evoked
1009 responses of A1 PNs to broadband sounds from noise-exposed mice. ($n = 8-11$ mice, 2-way
1010 ANOVA; time x sound level interaction, $F = 5.06$, $p < 1.1 \times 10^{-10}$; effect of time, $F = 66.18$, $p = <$
1011 1.1×10^{-10} ; Compared to pre-noise-exposed: NE-day1, $p = 2.8 \times 10^{-5}$; NE-day3, $p = 0.0007$ and
1012 NE-day10, $p > 0.99$, Holm-Bonferroni's post hoc; Pre-NE vs. NE-day10 responses to 75 and 80
1013 dB SPL, $p < 0.05$, Holm-Bonferroni's post hoc). **(f)** Average response gain of A1 PNs (dark grey)
1014 normalized to pre-noise-exposed gain after noise exposure at 1, 3, and 10 days. (Noise vs. sham,
1015 mixed model ANOVA; exposure x time interaction, $F = 30.4$, $p = 4.3 \times 10^{-10}$; effect of exposure, F
1016 = 63.5, $p = 3.8 \times 10^{-6}$; *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc).
1017 Normalized AN gain (light grey) reproduced from **Figure 1**. **(g)** Timetable of longitudinal 2-photon
1018 imaging experimental design for A1 L2/3 PNs. **(h)** Schematic of experimental setup illustrating 2-
1019 photon imaging of A1 L2/3 PNs via cranial glass windows. **(i)** Z-stack images of a population of
1020 A1 L2/3 PNs tracked before and after NIHL. **(j)** Representative sound-evoked responses from an

1021 A1 L2/3 PN before and after NIHL. **(k)** Average change in response threshold of A1 L2/3 individual
1022 PNs from noise (dark grey) and sham (light grey) exposed mice. (Noise-exposed: 358 neurons
1023 from 11 mice, sham-exposed: 218 neurons from 5 mice, noise vs. sham: 2-way ANOVA; exposure
1024 x time interaction, $F = 12.4$, $p = 5.0 \times 10^{-8}$; effect of exposure, $F = 11.6$, $p = 6.9 \times 10^{-4}$; *, $p < .05$,
1025 compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(l)** Cumulative response threshold
1026 of A1 L2/3 PNs, before and after NIHL. Inset: Average mean threshold of PNs per mouse
1027 (Friedman test; friedman statistic = 11.95, $p = 0.007$. *, $p < .05$, compared to pre-noise-exposed,
1028 Holm-Bonferroni's post hoc). **(m)** Average sound-evoked responses of A1 L2/3 individual PNs to
1029 broadband sounds from noise-exposed mice. (2-way ANOVA; effect of time, $F = 12.55$, $p = 5.3 \times$
1030 10^{-7} ; compared to pre-noise-exposed, NEday1: $p = 0.01$, NEday3: $p = 0.80$, and NEday10: $p =$
1031 0.001; Holm-Bonferroni's post hoc). **(n)** Average gain of A1 L2/3 individual PNs normalized to pre-
1032 exposed gain from noise (dark grey) and sham (light grey) mice. (Noise vs. sham: 2-way ANOVA;
1033 exposure x time interaction, $F = 4.7$, $p = 0.002$; effect of exposure, $F = 23.3$, $p = 1.7 \times 10^{-6}$; *, $p <$
1034 .05, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(o)** Cumulative gain of A1 L2/3
1035 PNs, before and after NIHL. Inset: Average mean gain of PNs per mouse (Friedman test; friedman
1036 statistic = 10.31, $p = 0.01$. *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post
1037 hoc). **(p)** Scatter plots of the gain of individual A1 L2/3 PNs before and after NIHL. Dotted line
1038 represents unity. Insets: Bar graphs representing the number of neurons showing increased gain
1039 (\uparrow above unity) and reduced gain (\downarrow below unity) after NIHL. PreNE vs. NEday1: $p = 9.9 \times 10^{-5}$,
1040 PreNE vs. NEday3: $p = 0.006$, and PreNE vs. NEday10: $p = 0.007$; permutation test.
1041

1042 **Figure 3. Three-population model suggests that SOM suppression is responsible for**
1043 **threshold and gain recovery.** **(a)** Schematic of connectivity across the three populations (PN,
1044 SOM, and PV). **(b)** Raster plots showing the spiking activity of a subset of neurons at four stimulus
1045 levels for the PN (black), PV (magenta), and SOM populations (orange). **(c)** Firing rate for the
1046 spiking model (dot-line) and mean-field theory (asterisks). **(d)** Schematic of the parameter sweep

1047 algorithm. For specific pairs of damage values (β_{PN}, β_{PV}), the mean-field theory was used to find
1048 the firing rates of the model for points in the recovery current space ($I_{recov}^{PN}, I_{recov}^{PV}, I_{recov}^{SOM}$).
1049 Parameter sets that yielded stable behavior (asynchronous), along with a low threshold and
1050 improved gain (bottom arrow) were accepted, while all others were rejected (e.g., oscillatory, top
1051 arrow). Viable parameter regions were identified. This process was looped over all damage
1052 values. **(e)** Firing rate for the three populations. Translucent lines correspond to distinct parameter
1053 sets, while bolded lines are the average firing rates across all viable parameter sets. **(f)**
1054 Histograms of the recovery currents were found in the viable parameter sets for the three
1055 populations. All parameter values can be found in Tables 1 and 2.

1056

1057 **Figure 4. Robust sound-evoked activity (recovery) of A1 L2/3 PV neurons after NIHL. (a)**
1058 Timetable of wide-field (WF) imaging experimental design for A1 PV neurons. **(b)** Schematic of
1059 the cortical circuit and experimental setup illustrating transcranial imaging of A1 PV neurons using
1060 GCaMP6f in a head-fixed awake mouse. **(c)** Representative transcranial fluorescence responses
1061 of A1 PV neurons to broadband sounds from sham- and noise-exposed mice. **(d)** Average change
1062 in response thresholds of A1 PV neurons (magenta) at 1, 3, and 10 days after noise exposure.
1063 (Noise: 5-6 mice vs. sham: 3 mice, mixed model ANOVA; exposure x time interaction, $F = 22.4$,
1064 $p = 2.8 \times 10^{-7}$; effect of exposure, $F = 89.0$, $p = 1.0 \times 10^{-9}$; *, $p < 0.05$, compared to pre-noise-
1065 exposed, Holm-Bonferroni's post hoc). Average change in PN threshold (dark grey) reproduced
1066 from **Figure 2**. (PV vs. PN: mixed model ANOVA; cell-type x time interaction, $F = 3.7$, $p = 0.01$;
1067 effect of time, $F = 120$, $p < 10^{-10}$; *, $p < 0.05$, compared to PNs at NEday3, Holm-Bonferroni's post
1068 hoc). **(e)** Average sound-evoked threshold responses of A1 PV neurons to broadband sounds
1069 from noise-exposed mice. ($n = 5-6$ mice, 2-way ANOVA; time x sound level interaction, $F = 2.9$,
1070 $p = 3.3 \times 10^{-6}$; effect of time, $F = 98.5$, $p < 1.1 \times 10^{-10}$; Compared to pre-noise-exposed: NE-day1,
1071 $p < 1.1 \times 10^{-10}$; NE-day3, $p = 4.5 \times 10^{-10}$, and NE-day10, $p = 0.11$, Holm-Bonferroni's post hoc).
1072 **(f)** Average response gain of A1 PV neurons (magenta) normalized to pre-noise exposed gain

1073 after noise exposure at 1, 3, and 10 days. (Noise vs. sham, mixed model ANOVA; exposure x
1074 time interaction, $F = 7.4$, $p = 9.6 \times 10^{-4}$; effect of exposure, $F = 53.7$, $p = 1.1 \times 10^{-7}$; *, $p < .05$,
1075 compared to pre-noise-exposed, Holm-Bonferroni's post hoc). Normalized PN gain (dark grey)
1076 reproduced from **Figure 2. (g)** Timetable of longitudinal 2-photon imaging experimental design
1077 for A1 L2/3 PV neurons. **(h)** Schematic of experimental setup illustrating longitudinal 2-photon
1078 imaging of A1 L2/3 PV neurons. **(i)** Z-stack images of a population of A1 L2/3 PV neurons tracked
1079 before and after NIHL. **(j)** Representative sound-evoked responses from an A1 L2/3 PV before
1080 and after NIHL. **(k)** Average change in response threshold of A1 L2/3 individual PV neurons from
1081 noise (magenta) and sham (grey) exposed mice. (Noise-exposed: 82 neurons from 6 mice, sham-
1082 exposed: 80 neurons from 7 mice, noise vs. sham: 2-way ANOVA; exposure x time interaction, F
1083 $= 7.3$, $p = 8.5 \times 10^{-5}$; effect of exposure, $F = 11.17$, $p = 0.001$; *, $p < .05$, compared to pre-noise-
1084 exposed, Holm-Bonferroni's post hoc). **(l)** Cumulative response threshold of A1 L2/3 PV neurons,
1085 before and after NIHL. Inset: Average mean threshold of PV neurons per mouse (Friedman test;
1086 friedman statistic $= 11.53$, $p = 0.003$. *, $p < .05$, compared to pre-noise-exposed, Holm-
1087 Bonferroni's post hoc). **(m)** Average sound-evoked responses of A1 L2/3 individual PV neurons
1088 to broadband sounds from noise-exposed mice. (2-way ANOVA; time x sound level interaction, F
1089 $= 2.2$, $p = 3.4 \times 10^{-4}$; effect of time, $F = 29.9$, $p < 1.1 \times 10^{-10}$; Compared to pre-noise-exposed: NE-
1090 day1, $p > 0.99$; NE-day3, $p = 1.7 \times 10^{-7}$ and NE-day10, $p < 1.1 \times 10^{-10}$, Holm-Bonferroni's post
1091 hoc. Compared to pre-noise-exposed 50 dB SPL and lower: NE-day1, $p < 0.05$, Holm-Bonferroni's
1092 post hoc). **(n)** Average gain of A1 L2/3 individual PV neurons normalized to pre-exposed gain
1093 from noise (magenta) and sham (grey) mice. (Noise vs. sham: 2-way ANOVA; exposure x time
1094 interaction, $F = 10.1$, $p = 1.6 \times 10^{-6}$; effect of exposure, $F = 26.9$, $p = 6.1 \times 10^{-7}$; *, $p < .05$, compared
1095 to pre-noise-exposed, Holm-Bonferroni's post hoc). **(o)** Cumulative gain of A1 L2/3 PV neurons,
1096 before and after NIHL. Inset: Average mean gain of PV neurons per mouse (Friedman test;
1097 friedman statistic $= 12.2$, $p = 0.002$. *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's
1098 post hoc). **(p)** Scatter plots of the gain of individual A1 L2/3 PV neurons before and after NIHL.

1099 Dotted line represents unity. Insets: Bar graphs representing the number of neurons showing
1100 increased gain (\uparrow above unity) and reduced gain (\downarrow below unity) after NIHL. PreNE vs. NEday1:
1101 $p = 9.9 \times 10^{-5}$, PreNE vs. NEday3: $p = 0.006$, and PreNE vs. NEday10: $p = 0.007$; permutation
1102 test. PreNE vs. NEday1: $p = 3.9 \times 10^{-4}$, PreNE vs. NEday3: $p = 9.9 \times 10^{-5}$, and PreNE vs. NEday10:
1103 $p = 5.9 \times 10^{-4}$; permutation test.

1104

1105 **Figure 5. Reduced sound-evoked activity (recovery) of A1 L2/3 SOM neurons after NIHL.**
1106 **(a)** Timetable of wide-field (WF) imaging experimental design for A1 SOM neurons. **(b)** Schematic
1107 of the cortical circuit and experimental setup illustrating transcranial imaging of A1 SOM neurons
1108 using GCaMP6f in a head-fixed awake mouse. **(c)** Representative transcranial fluorescence
1109 responses of A1 SOM neurons to broadband sounds from sham- and noise-exposed mice. **(d)**
1110 Average change in response thresholds of A1 SOM neurons (orange) after noise exposure at 1,
1111 3, and 10 days. Note: Since we did not observe an sound-evoked activity in SOM neurons at 1
1112 day after noise-exposure even at 80 dB SPL sounds, we did not assign a threshold shift at this
1113 time point, but it is >50 dB SPL (Noise: 5-6 mice vs. sham: 4 mice, mixed model ANOVA; exposure
1114 \times time interaction, $F = 81.4$, $p < 10^{-10}$; effect of exposure, $F = 682.1$, $p < 10^{-10}$; *, $p < 0.05$, compared
1115 to pre-noise-exposed, Holm-Bonferroni's post hoc). Average change in PN (grey) and PV (red)
1116 threshold reproduced from **Figure 4**. (PV vs. PN vs. SOM neurons: mixed model ANOVA; cell-
1117 type \times time interaction, $F = 11.43$, $p = 7.65 \times 10^{-8}$; effect of time, $F = 181.6$, $p < 10^{-10}$; *, $p < 0.05$,
1118 compared to PNs and PV neurons at NEday3 and NEday10, Holm-Bonferroni's post hoc). **(e)**
1119 Average sound-evoked responses of A1 SOM neurons to broadband sounds from noise-exposed
1120 mice. ($n = 5-6$, 2-way ANOVA; time \times sound level interaction, $F = 2.8$, $p = 2.3 \times 10^{-5}$; effect of time,
1121 $F = 82.97$, $p < 1.1 \times 10^{-10}$; Compared to pre-noise-exposed: NE-day1, $p < 1.1 \times 10^{-10}$; NE-day3, p
1122 $< 1.1 \times 10^{-10}$ and NE-day10, $p < 1.1 \times 10^{-10}$, Holm-Bonferroni's post hoc). **(f)** Average response
1123 gain of A1 SOM neurons (orange) normalized to pre-noise-exposed gain at 1, 3, and 10 days
1124 after noise exposure. (Noise: 5-6 mice vs. sham: 3 mice, mixed model ANOVA; exposure \times time

1125 interaction, $F = 2.1$, $p = 0.12$; effect of exposure, $F = 0.38$, $p = 0.54$). Normalized PN (grey) and
1126 PV (red) neurons' gain reproduced from **Figure 4**. **(g)** Timetable of longitudinal 2-photon imaging
1127 experimental design for A1 L2/3 SOM neurons. **(h)** Schematic of experimental setup illustrating
1128 longitudinal 2-photon imaging of A1 L2/3 SOM neurons. **(i)** Z-stack images of a population of A1
1129 L2/3 SOM neurons tracked before and after NIHL. **(j)** Representative sound-evoked responses
1130 from A1 L2/3 SOM neurons before and after NIHL. **(k)** Average change in response threshold of
1131 A1 L2/3 individual SOM neurons from noise (orange) and sham (grey) exposed mice. (Noise-
1132 exposed: 82 neurons from 15 mice, sham-exposed: 42 neurons from 9 mice, noise vs. sham: 2-
1133 way ANOVA; exposure x time interaction, $F = 5.3$, $p = 0.001$; effect of exposure, $F = 16.60$, $p =$
1134 8.2×10^{-5} ; *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(l)** Cumulative
1135 response threshold of A1 L2/3 SOM neurons, before and after NIHL. Inset: Average mean
1136 threshold of SOM neurons per mouse (Repeated measure one-way ANOVA; $F = 11.02$, $p = 5.4$
1137 $\times 10^{-5}$. *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(m)** Average
1138 sound-evoked responses of A1 L2/3 individual SOM neurons to broadband sounds from noise-
1139 exposed mice. (2-way ANOVA; time x sound level interaction, $F = 1.6$, $p = 0.02$; effect of time, F
1140 $= 45.97$, $p < 1.1 \times 10^{-10}$; Compared to pre-noise-exposed: NE-day1, $p = p < 1.1 \times 10^{-10}$; NE-day3,
1141 $p = p < 1.1 \times 10^{-10}$ and NE-day10, $p < 1.1 \times 10^{-10}$, Holm-Bonferroni's post hoc). **(n)** Average gain
1142 of A1 L2/3 individual SOM neurons normalized to pre-exposed gain from noise (orange) and sham
1143 (grey) mice. (Noise vs. sham: 2-way ANOVA; exposure x time interaction, $F = 0.28$, $p = 0.83$;
1144 effect of exposure, $F = 1.2$, $p = 0.27$). **(o)** Cumulative gain of A1 L2/3 SOM neurons, before and
1145 after NIHL. Inset: Average mean gain of SOM neurons per mouse (Repeated measure one-way
1146 ANOVA; $F = 1.46$, $p = 0.24$). **(p)** Scatter plots of the gain of individual A1 L2/3 SOM neurons
1147 before and after NIHL. Dotted line represents unity. Insets: Bar graphs representing the number
1148 of neurons showing increased gain (\uparrow above unity) and reduced gain (\downarrow below unity) after NIHL.
1149 PreNE vs. NEday1: $p = 0.30$, PreNE vs. NEday3: $p = 0.71$, and PreNE vs. NEday10: $p = 0.36$;
1150 permutation test.

1151 **Figure 6. Intrinsic properties of AC L2/3 SOM neurons do not change after NIHL. a)**
1152 Schematic illustration of stereotaxic injections of red retrograde microspheres into the right inferior
1153 colliculus to label corticocollicular neurons and identify the AC in the brain slices. **b)** Schematic
1154 illustration of brain slice electrophysiology experiment showing recordings of L2/3 SOM neurons'
1155 intrinsic properties. Red circles represent the L5B corticocollicular neurons. Green circles
1156 represent the L2/3 SOM neurons. **c)** Schematic of hyperpolarizing pulses (top) and representative
1157 transient current (bottom) responses in SOM neurons in voltage-clamp recording mode. **d)**
1158 Average input resistance of L2/3 SOM neurons after noise- or sham-exposure. Filled circles
1159 represent the input resistance of individual SOM neurons. (SEday1: 20 neurons from 3 mice,
1160 NEday1: 19 neurons from 3 mice, SEday10: 20 neurons from 3 mice, and NEday10: 20 neurons
1161 from 3 mice, mixed model ANOVA; exposure x time interaction, $F = 2.0$, $p = 0.16$; effect of
1162 exposure, $F = 0.89$, $p = 0.34$). **e)** Average resting membrane potential of SOM neurons after noise-
1163 or sham-exposure. Filled circles represent the resting membrane potential of individual SOM
1164 neurons. (Mixed model ANOVA; exposure x time interaction, $F = 1.68$, $p = 0.20$; effect of
1165 exposure, $F = 0.07$, $p = 0.78$). **f)** Representative action potential (AP) waveforms. Arrows indicate
1166 AP width. **g)** Average AP width of SOM neurons after noise- or sham-exposure. Filled circles
1167 represent AP width of individual SOM neurons. (Mixed model ANOVA; exposure x time
1168 interaction, $F = 0.09$, $p = 0.76$; effect of exposure, $F = 2.6$, $p = 0.11$). **h)** Average AP threshold of
1169 SOM neurons after noise- or sham-exposure. Filled circles represent AP threshold of individual
1170 SOM neurons. (Mixed model ANOVA; exposure x time interaction, $F = 1.5$, $p = 0.22$; effect of
1171 exposure, $F = 0.02$, $p = 0.86$). **i)** Representing firing of L2/3 SOM neurons in response to increasing
1172 depolarizing current (100, 200, 400 pA current injections) 1 day after sham (grey) and noise
1173 (orange) exposure. **j)** Average firing frequency of SOM neurons as a function of injected current
1174 amplitude 1 day after sham (grey) and noise (orange) exposure. **k)** Average firing frequency as a
1175 function of injected current amplitude 10 days after sham (grey) and noise (orange) exposure. **l)**
1176 Temporal pattern of action potential generation in SOM neurons after sham (grey) and noise

1177 (orange) **m**) Average adaptation ratio (f_9/f_2 , see panel I for traces) of SOM neurons firing rate
1178 after noise- or sham-exposure. Filled circles represent the adaptation ratio of individual SOM
1179 neurons. (Mixed model ANOVA; exposure x time interaction, $F = 3.04$, $p = 0.08$; effect of
1180 exposure, $F = 0.42$, $p = 0.51$).

1181

1182 **Figure 7. Four-population model demonstrates that VIP can lead to the threshold and gain**
1183 **recovery via the suppression of SOM cells. (a)** Schematic of the four-population model, with
1184 the mutual inhibition between VIP and SOM neurons highlighted. **(b)** Raster plots showing the
1185 spiking activity of a subset of neurons at four stimulus levels for the PN (black), PV (magenta),
1186 SOM (orange), and VIP (cyan) neuron populations. **(c)** Firing rate for the spiking model (dot-line)
1187 and mean-field theory (asterisks). **(d)** Firing rate for the four populations. Translucent lines
1188 correspond to distinct parameter sets, while bolded lines are the average firing rates across all
1189 viable parameter sets. **(e)** Histograms of the recovery currents were found in the viable parameter
1190 sets for the PN, PV, and VIP neuron populations. SOM neurons did not receive a direct recovery
1191 current in this parameter search. **(f)** Box plots showing the range of average synaptic input to
1192 SOM neurons for the viable parameter sets, along with the value for the default (sham) case
1193 (black dot). All parameter values can be found in Tables 1 and 2.

1194

1195 **Figure 8. Robust sound-evoked activity (recovery) of A1 VIP neurons after NIHL. (a)**
1196 Timetable of wide-field (WF) imaging experimental design for A1 VIP neurons. **(b)** Schematic of
1197 the cortical circuit and experimental setup illustrating transcranial imaging of A1 VIP neurons
1198 using GCaMP6f in a head-fixed awake mouse. **(c)** Representative transcranial fluorescence
1199 responses of A1 VIP neurons to broadband sounds from sham- and noise-exposed mice. **(d)**
1200 Average change in response thresholds of A1 VIP neurons (cyan) before and at 1, 3, and 10 days
1201 after noise exposure. (Noise: 4-6 mice vs. sham: 3 mice, mixed model ANOVA; exposure x time
1202 interaction, $F = 8.8$, $p = 3.1 \times 10^{-4}$; effect of exposure, $F = 34.6$, $p = 3.3 \times 10^{-6}$; *, $p < 0.05$, compared

1203 to pre-noise-exposed, Holm-Bonferroni's post hoc). Average change in PN (grey), PV (red), and
1204 SOM (orange) threshold reproduced from **Figure 5**. (PV vs. PN vs. SOM vs. VIP: mixed model
1205 ANOVA; cell-type x time interaction, $F = 9.3$, $p = 1.0 \times 10^{-8}$; effect of time, $F = 182.5$, $p < 10^{-10}$; *,
1206 $p < 0.05$, compared to PNs, PV, and SOM neurons at NEday1, Holm-Bonferroni's post hoc). **(e)**
1207 Average sound-evoked responses of A1 VIP neurons to broadband sounds from noise-exposed
1208 mice. ($n = 4-6$, 2-way ANOVA; time x sound level interaction, $F = 1.02$, $p = 0.44$; effect of time, F
1209 $= 29.66$, $p < 1.1 \times 10^{-10}$. Compared to pre-noise-exposed: NE-day1, $p = 5.2 \times 10^{-7}$; NE-day3, $p =$
1210 0.86 , and NE-day10, $p = 2.6 \times 10^{-4}$, Holm-Bonferroni's post hoc). **(f)** Average response gain of A1
1211 VIP neurons (cyan), normalized to pre-noise-exposed gain, at 1, 3, and 10 days after noise
1212 exposure. (Noise: 4-6 mice vs. sham: 3 mice, mixed model ANOVA; exposure x time interaction,
1213 $F = 3.1$, $p = 0.04$; effect of exposure, $F = 13.51$, $p = 0.007$). Normalized PN (grey), PV (magenta),
1214 and SOM (orange) neuron gain reproduced from **Figure 5**. **(g)** Timetable of longitudinal 2-photon
1215 imaging experimental design for A1 L2/3 VIP neurons. **(h)** Schematic of experimental setup
1216 illustrating longitudinal 2-photon imaging of A1 L2/3 VIP neurons. **(i)** Z-stack images of a
1217 population of A1 L2/3 VIP neurons tracked before and after NIHL. **(j)** Representative sound-
1218 evoked responses from A1 L2/3 VIP neurons before and after NIHL. **(k)** Average change in
1219 response threshold of A1 L2/3 individual VIP neurons from noise (cyan) and sham (grey) exposed
1220 mice. (Noise-exposed: 70 neurons from 8 mice, sham-exposed: 60 neurons from 6 mice, noise
1221 vs. sham: 2-way ANOVA; exposure x time interaction, $F = 3.8$, $p = 0.01$; effect of exposure, $F =$
1222 9.2 , $p = 0.002$; *, $p < 0.05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(l)**
1223 Cumulative response threshold of A1 L2/3 VIP neurons, before and after NIHL. Inset: Average
1224 mean threshold of VIP neurons per mouse (Repeated measure one-way ANOVA; $F = 8.3$, $p =$
1225 0.001 . *, $p < .05$, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(m)** Average
1226 sound-evoked responses of A1 L2/3 individual VIP neurons to broadband sounds from noise-
1227 exposed mice. (2-way ANOVA; time x sound level interaction, $F = 2.6$, $p = 1.1 \times 10^{-9}$; effect of
1228 time, $F = 39.9$, $p < 1.1 \times 10^{-10}$; Compared to pre-noise-exposed: NE-day1, $p = 5.1 \times 10^{-9}$; NE-day3,

1229 p = 0.004 and NE-day10, p = 1.1×10^{-5} , Holm-Bonferroni's post hoc). **(n)** Average gain of A1 L2/3
1230 VIP neurons normalized to pre-exposed gain from noise (cyan) and sham (grey) mice. (Noise vs.
1231 sham: 2-way ANOVA; exposure x time interaction, F = 4.7, p = 0.002; effect of exposure, F =
1232 13.7, p = 3.1×10^{-4} *, p < 0.05, compared to pre-noise-exposed, Holm-Bonferroni's post hoc). **(o)**
1233 Cumulative gain of A1 L2/3 VIP neurons, before and after NIHL. Inset: Average mean gain of PNs
1234 per mouse (Friedman test; friedman statistic = 9.4, p = 0.02. *, p < .05, compared to pre-noise-
1235 exposed, Holm-Bonferroni's post hoc). **(p)** Scatter plots of the gain of individual A1 L2/3 VIP
1236 neurons before and after NIHL. Dotted line represents unity. Insets: Bar graphs representing the
1237 number of neurons showing increased gain (\uparrow above unity) and reduced gain (\downarrow below unity)
1238 after NIHL. PreNE vs. NEday1: p = 0.4, PreNE vs. NEday3: p = 0.04, and PreNE vs. NEday10: p
1239 = 3.9×10^{-4} ; permutation test.

1240

1241 **Figure 1 supplement. Noise exposure did not alter the IHC and OHC structures. a)**
1242 Representative images of OHCs from the 32 kHz region of sham- (left) and noise- (right) exposed
1243 mice. **b)** Quantification of IHC survival from sham- (grey) and noise- (red) exposed mice. (Noise:
1244 5 mice vs. sham: 4 mice, 2-way ANOVA; exposure x frequency, F = 1.89, p = 0.13; effect of
1245 exposure, F = 2.7, p = 0.10). **c)** Quantification of OHC survival from sham- (grey) and noise- (red)
1246 exposed mice. (Noise: 5 mice vs. sham: 4 mice, 2-way ANOVA; exposure x frequency, F = 0.26,
1247 p = 0.89; effect of exposure, F = 0.81, p = 0.37).

1248

1249 **Figure 2 supplement. Sham exposure did not alter the sound-evoked activity of A1 L2/3 PN**
1250 **neurons. (a)** Localization of A1. A 6 kHz 50 dB SPL tone triggered GCaMP6s fluorescence
1251 responses in two regions of the auditory cortex representing A1 and the anterior auditory field
1252 (AAF; D stands dorsal and R for rostral). **(b)** Average change in response thresholds of A1 PNs
1253 (dark grey) at 1, 3, and 10 days after sham exposure. (n = 3 mice, 1-way repeated measure
1254 ANOVA, F = 0, p > 0.99). Average change in AN threshold (light grey) reproduced from **Figure 1**.

1255 **(c)** Average sound-evoked responses of A1 PNs to broadband sounds from sham-exposed mice.
1256 (n = 3 mice, 2-way ANOVA; time x sound level interaction, $F = 1.3$, $p = 0.35$; effect of time, $F =$
1257 0.54, $p = 0.56$). **(d)** Average response gain of A1 PNs (dark grey) normalized to pre-sham-
1258 exposed gain after sham exposure at 1, 3, and 10 days. (n = 3 mice, 1-way repeated measure
1259 ANOVA, $F = 1.3$, $p = 0.34$). Normalized AN gain (light grey) reproduced from **Figure 1. e**).
1260 Implantation of cranial glass window over A1. **(f)** Cumulative response threshold of A1 L2/3 PNs,
1261 before and after sham exposure. Inset: Average mean threshold of PNs per mouse (n = 5 mice,
1262 1-way repeated measure ANOVA, $F = 0.17$, $p = 0.87$). **(g)** Average sound-evoked responses of
1263 A1 L2/3 individual PNs to broadband sounds from sham-exposed mice. (2-way ANOVA; sound
1264 intensity and time interaction, $F = 1.6$, $p = 0.072$; effect of time, $F = 2.9$, $p = 0.065$). **(h)** Cumulative
1265 gain of A1 L2/3 PNs, before and after sham exposure. Inset: Average mean gain of PNs per
1266 mouse (1-way repeated measure ANOVA, $F = 0.29$, $p = 0.71$). **(p)** Scatter plots of the gain of
1267 individual A1 L2/3 PNs before and after sham exposure. Dotted line represents unity. Insets: Bar
1268 graphs representing the number of neurons showing increased gain (\uparrow above unity) and reduced
1269 gain (\downarrow below unity) after NIHL. PreSE vs. SEday1: $p = 0.006$, PreSE vs. SEday3: $p = 0.11$, and
1270 PreSE vs. SEday10: $p = 0.06$; permutation test. **j)** Histograms showing percentage changes in
1271 the gain of L2/3 PNs after noise (top) and sham (bottom) exposure.
1272

1273 **Figure 4 supplement. Sham exposure did not alter the sound-evoked activity of A1 L2/3 PV**
1274 **neurons. (a)** Average change in response thresholds of A1 PV neurons at 1, 3, and 10 days after
1275 sham exposure. (n = 3 mice, 1-way repeated measure ANOVA, $F = 0$, $p > 0.99$). **(b)** Average
1276 response gain of A1 PV neurons normalized to pre-sham-exposed gain after sham exposure at
1277 1, 3, and 10 days. (n = 3 mice, 1-way repeated measure ANOVA, $F = 1.09$, $p = 0.40$). **(c)**
1278 Cumulative response threshold of A1 L2/3 PV neurons, before and after sham-exposure. Inset:
1279 Average mean threshold of PV neurons per mouse (n = 8 mice, 1-way repeated measure ANOVA,
1280 $F = 0.79$, $p = 0.46$). **(d)** Average sound-evoked responses of A1 L2/3 individual PV neurons to

1281 broadband sounds from sham-exposed mice. (2-way ANOVA; sound intensity and time
1282 interaction, $F = 1.3$, $p = 0.16$; effect of time, $F = 1.6$, $p = 0.16$). **(e)** Cumulative gain of A1 L2/3 PV
1283 neurons, before and after sham exposure. Inset: Average mean gain of PV neurons per mouse
1284 (1-way repeated measure ANOVA, $F = 0.14$, $p = 0.86$). **(f)** Scatter plots of the gain of individual
1285 A1 L2/3 PV neurons, before and after sham exposure. Dotted line represents unity. Insets: Bar
1286 graphs representing number of neurons showing increased gain (\uparrow above unity) and reduced
1287 gain (\downarrow below unity) after NIHL. PreSE vs. SEday1: $p = 0.98$, PreSE vs. SEday3: $p = 0.67$, and
1288 PreSE vs. SEday10: $p = 0.96$; permutation test. **g)** Histograms showing percentage changes in
1289 the gain of L2/3 PV neurons after noise (top) and sham (bottom) exposure.

1290

1291 **Figure 5 supplement. Sham exposure did not alter the sound-evoked activity of A1 L2/3**
1292 **SOM neurons. (a)** Average change in response thresholds of A1 SOM neurons at 1, 3, and 10
1293 days after sham exposure. ($n = 4$ mice, 1-way repeated measure ANOVA, $F = 0$, $p > 0.99$). **(b)**
1294 Average response gain of A1 SOM neurons normalized to pre-sham-exposed gain after sham
1295 exposure at 1, 3, and 10 days. ($n = 4$ mice, 1-way repeated measure ANOVA, $F = 0.85$, $p = 0.42$).
1296 **(c)** Cumulative response threshold of A1 L2/3 SOM neurons, before and after sham exposure.
1297 Inset: Average mean threshold of SOM neurons per mouse ($n = 9$ mice, 1-way repeated measure
1298 ANOVA, $F = 1.1$, $p = 0.33$). **(d)** Average sound-evoked responses of A1 L2/3 individual SOM
1299 neurons to broadband sounds from sham-exposed mice. (2-way ANOVA; sound intensity and
1300 time interaction, $F = 0.92$, $p = 0.43$; effect of time, $F = 0.62$, $p = 0.49$). **(e)** Cumulative gain of A1
1301 L2/3 SOM neurons, before and after sham exposure. Inset: Average mean gain of SOM neurons
1302 per mouse (1-way repeated measure ANOVA, $F = 0.35$, $p = 0.70$). **(f)** Scatter plots of the gain of
1303 individual A1 L2/3 SOM neurons, before and after sham exposure. Dotted line represents unity.
1304 Insets: Bar graphs representing the number of neurons showing increased gain (\uparrow above unity)
1305 and reduced gain (\downarrow below unity) after NIHL. PreSE vs. SEday1: $p = 0.55$, PreSE vs. SEday3: p

1306 = 0.94, and PreSE vs. SEday10: $p = 0.89$; permutation test. **g)** Histograms showing percentage
1307 changes in the gain of L2/3 SOM neurons after noise (top) and sham (bottom) exposure.

1308

1309 **Figure 8 supplement. Sham exposure reduced the gain of A1 L2/3 VIP neurons. (a)** Average
1310 change in response thresholds of A1 VIP neurons at 1, 3, and 10 days after sham exposure. ($n =$
1311 3 mice, 1-way repeated measure ANOVA, $F = 0$, $p > 0.99$). **(b)** Average response gain of A1 VIP
1312 neurons normalized to pre-sham-exposed gain after sham exposure at 1, 3, and 10 days. ($n = 3$
1313 mice, 1-way repeated measure ANOVA, $F = 0.03$, $p = 0.98$). **(c)** Cumulative response threshold
1314 of A1 L2/3 VIP neurons, before and after sham-exposure. Inset: Average mean threshold of VIP
1315 neurons per mouse ($n = 6$ mice, 1-way repeated measure ANOVA, $F = 0.52$, $p = 0.62$). **(d)**
1316 Average sound-evoked responses of A1 L2/3 individual VIP neurons to broadband sounds from
1317 sham-exposed mice. (2-way ANOVA; sound intensity and time interaction, $F = 4.5$, $p = 0.01$; effect
1318 of time, $F = 0.49$, $p = 0.69$). **(e)** Cumulative gain of A1 L2/3 VIP neurons, before and after sham
1319 exposure. Inset: Average mean gain of VIP neurons per mouse (1-way repeated measure
1320 ANOVA, $F = 0.44$, $p = 0.61$). **(f)** Scatter plots of the gain of individual A1 L2/3 VIP neurons, before
1321 and after sham exposure. Dotted line represents unity. Insets: Bar graphs representing number
1322 of neurons showing increased gain (\uparrow above unity) and reduced gain (\downarrow below unity) after NIHL.
1323 PreSE vs. SEday1: $p = 0.01$, PreSE vs. SEday3: $p = 0.005$, and PreSE vs. SEday10: $p = 0.006$;
1324 permutation test. **g)** Histograms showing percentage changes in the gain of L2/3 VIP neurons
1325 after noise (top) and sham (bottom) exposure.

1326

1327 **References**

1328 1 Rasmusson, D. D. Reorganization of raccoon somatosensory cortex following removal of
1329 the fifth digit. *The Journal of comparative neurology* **205**, 313-326,
1330 doi:10.1002/cne.902050402 (1982).

1331 2 Merzenich, M. M. et al. Topographic reorganization of somatosensory cortical areas 3b
1332 and 1 in adult monkeys following restricted deafferentation. *Neuroscience* **8**, 33-55,
1333 doi:10.1016/0306-4522(83)90024-6 (1983).

1334 3 Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex.
1335 *Nature* **356**, 150-152, doi:10.1038/356150a0 (1992).

1336 4 Kaas, J. H. et al. Reorganization of retinotopic cortical maps in adult mammals after
1337 lesions of the retina. *Science (New York, N.Y.)* **248**, 229-231,
1338 doi:10.1126/science.2326637 (1990).

1339 5 Robertson, D. & Irvine, D. R. Plasticity of frequency organization in auditory cortex of
1340 guinea pigs with partial unilateral deafness. *The Journal of comparative neurology* **282**,
1341 456-471, doi:10.1002/cne.902820311 (1989).

1342 6 Kotak, V. C. et al. Hearing loss raises excitability in the auditory cortex. *The Journal of
1343 neuroscience : the official journal of the Society for Neuroscience* **25**, 3908-3918,
1344 doi:10.1523/jneurosci.5169-04.2005 (2005).

1345 7 Yazaki-Sugiyama, Y., Kang, S., Cateau, H., Fukai, T. & Hensch, T. K. Bidirectional
1346 plasticity in fast-spiking GABA circuits by visual experience. *Nature* **462**, 218-221,
1347 doi:10.1038/nature08485 (2009).

1348 8 Gainey, M. A., Aman, J. W. & Feldman, D. E. Rapid disinhibition by adjustment of PV
1349 intrinsic excitability during whisker map plasticity in mouse S1. *The Journal of
1350 neuroscience : the official journal of the Society for Neuroscience*,
1351 doi:10.1523/jneurosci.3628-17.2018 (2018).

1352 9 Keck, T. et al. Loss of sensory input causes rapid structural changes of inhibitory
1353 neurons in adult mouse visual cortex. *Neuron* **71**, 869-882,
1354 doi:10.1016/j.neuron.2011.06.034 (2011).

1355 10 Chambers, A. R. et al. Central Gain Restores Auditory Processing following Near-
1356 Complete Cochlear Denervation. *Neuron* **89**, 867-879, doi:10.1016/j.neuron.2015.12.041
1357 (2016).

1358 11 Resnik, J. & Polley, D. B. Cochlear neural degeneration disrupts hearing in background
1359 noise by increasing auditory cortex internal noise. *Neuron*,
1360 doi:<https://doi.org/10.1016/j.neuron.2021.01.015> (2021).

1361 12 Javitt, D. C. & Sweet, R. A. Auditory dysfunction in schizophrenia: integrating clinical and
1362 basic features. *Nature reviews. Neuroscience* **16**, 535-550, doi:10.1038/nrn4002 (2015).

1363 13 Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization
1364 following arm amputation. *Nature* **375**, 482-484, doi:10.1038/375482a0 (1995).

1365 14 Tzounopoulos, T., Balaban, C., Zitelli, L. & Palmer, C. Towards a Mechanistic-Driven
1366 Precision Medicine Approach for Tinnitus. *Journal of the Association for Research in
1367 Otolaryngology : JARO* **20**, 115-131, doi:10.1007/s10162-018-00709-9 (2019).

1368 15 Henton, A. & Tzounopoulos, T. What's the buzz? The neuroscience and the treatment of
1369 tinnitus. *Physiol Rev* **101**, 1609-1632, doi:10.1152/physrev.00029.2020 (2021).

1370 16 Auerbach, B. D., Rodrigues, P. V. & Salvi, R. J. Central gain control in tinnitus and
1371 hyperacusis. *Frontiers in neurology* **5**, 206, doi:10.3389/fneur.2014.00206 (2014).

1372 17 Salvi, R. et al. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to
1373 Sensory Deprivation and Enhanced Central Auditory Gain. *Frontiers in neuroscience* **10**,
1374 621, doi:10.3389/fnins.2016.00621 (2016).

1375 18 Seki, S. & Eggermont, J. J. Changes in spontaneous firing rate and neural synchrony in
1376 cat primary auditory cortex after localized tone-induced hearing loss. *Hearing research*
1377 **180**, 28-38 (2003).

1378 19 McGill, M. *et al.* Neural signatures of auditory hypersensitivity following acoustic trauma.
1379 *bioRxiv*, 2022.2005.2024.493204, doi:10.1101/2022.05.24.493204 (2022).

1380 20 Lauer, A. M., Dooling, R. J., Leek, M. R. & Poling, K. Detection and discrimination of
1381 simple and complex sounds by hearing-impaired Belgian Waterslager canaries. *The*
1382 *Journal of the Acoustical Society of America* **122**, 3615-3627, doi:10.1121/1.2799482
1383 (2007).

1384 21 Henry, K. S. & Abrams, K. S. Normal Tone-In-Noise Sensitivity in Trained Budgerigars
1385 despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss. *The*
1386 *Journal of neuroscience : the official journal of the Society for Neuroscience* **41**, 118-
1387 129, doi:10.1523/jneurosci.2104-20.2020 (2021).

1388 22 Resnik, J. & Polley, D. B. Fast-spiking GABA circuit dynamics in the auditory cortex
1389 predict recovery of sensory processing following peripheral nerve damage. *eLife* **6**,
1390 doi:10.7554/eLife.21452 (2017).

1391 23 Yang, S., Weiner, B. D., Zhang, L. S., Cho, S. J. & Bao, S. Homeostatic plasticity drives
1392 tinnitus perception in an animal model. *Proc Natl Acad Sci U S A* **108**, 14974-14979,
1393 doi:10.1073/pnas.1107998108 [pii]
1394 10.1073/pnas.1107998108 (2011).

1395 24 Scholl, B. & Wehr, M. Disruption of balanced cortical excitation and inhibition by acoustic
1396 trauma. *J Neurophysiol* **100**, 646-656, doi:10.1152/jn.90406.2008 (2008).

1397 25 Takesian, A. E., Kotak, V. C., Sharma, N. & Sanes, D. H. Hearing loss differentially
1398 affects thalamic drive to two cortical interneuron subtypes. *J Neurophysiol* **110**, 999-
1399 1008, doi:jn.00182.2013 [pii]
1400 10.1152/jn.00182.2013 (2013).

1401 26 Sarro, E. C., Kotak, V. C., Sanes, D. H. & Aoki, C. Hearing loss alters the subcellular
1402 distribution of presynaptic GAD and postsynaptic GABA receptors in the auditory
1403 cortex. *Cereb Cortex* **18**, 2855-2867, doi:10.1093/cercor/bhn044 (2008).

1404 27 Balaraj, P., Hackett, T. A. & Polley, D. B. Synergistic Transcriptional Changes in AMPA
1405 and GABA Receptor Genes Support Compensatory Plasticity Following Unilateral
1406 Hearing Loss. *Neuroscience*, doi:10.1016/j.neuroscience.2018.08.023 (2018).

1407 28 North, R. Y. *et al.* Electrophysiological and transcriptomic correlates of neuropathic pain
1408 in human dorsal root ganglion neurons. *Brain* **142**, 1215-1226, doi:10.1093/brain/awz063
1409 (2019).

1410 29 Persic, D. *et al.* Regulation of auditory plasticity during critical periods and following
1411 hearing loss. *Hearing research* **397**, 107976, doi:10.1016/j.heares.2020.107976 (2020).

1412 30 Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics.
1413 *Annu Rev Neurosci* **34**, 389-412, doi:10.1146/annurev-neuro-061010-113817 (2011).

1414 31 Jiang, X. *et al.* Principles of connectivity among morphologically defined cell types in
1415 adult neocortex. *Science* **350**, aac9462, doi:10.1126/science.aac9462 (2015).

1416 32 Markram, H. *et al.* Interneurons of the neocortical inhibitory system. *Nat Rev Neurosci* **5**,
1417 793-807, doi:10.1038/nrn1519 (2004).

1418 33 Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. *Nature*
1419 *neuroscience* **18**, 170-181, doi:10.1038/nn.3917 (2015).

1420 34 Tremblay, R., Lee, S. & Rudy, B. GABAergic Interneurons in the Neocortex: From
1421 Cellular Properties to Circuits. *Neuron* **91**, 260-292, doi:10.1016/j.neuron.2016.06.033
1422 (2016).

1423 35 Adesnik, H. Synaptic Mechanisms of Feature Coding in the Visual Cortex of Awake
1424 Mice. *Neuron* **95**, 1147-1159 e1144, doi:10.1016/j.neuron.2017.08.014 (2017).

1425 36 Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for
1426 spatial summation in visual cortex. *Nature* **490**, 226-231, doi:10.1038/nature11526
1427 (2012).

1428 37 Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses in the
1429 awake cortex. *Nature* **493**, 97-100, doi:10.1038/nature11665 (2013).

1430 38 Kato, H. K., Asinof, S. K. & Isaacson, J. S. Network-Level Control of Frequency Tuning
1431 in Auditory Cortex. *Neuron* **95**, 412-423 e414, doi:10.1016/j.neuron.2017.06.019 (2017).

1432 39 Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain modulation in the cortex.
1433 *Nat Rev Neurosci* **21**, 80-92, doi:10.1038/s41583-019-0253-y (2020).

1434 40 Phillips, E. A. & Hasenstaub, A. R. Asymmetric effects of activating and inactivating
1435 cortical interneurons. *eLife* **5**, doi:10.7554/eLife.18383 (2016).

1436 41 Silver, R. A. Neuronal arithmetic. *Nat Rev Neurosci* **11**, 474-489, doi:10.1038/nrn2864
1437 (2010).

1438 42 Zhou, M. *et al.* Scaling down of balanced excitation and inhibition by active behavioral
1439 states in auditory cortex. *Nat Neurosci* **17**, 841-850, doi:10.1038/nn.3701 (2014).

1440 43 Natan, R. G., Rao, W. & Geffen, M. N. Cortical Interneurons Differentially Shape
1441 Frequency Tuning following Adaptation. *Cell reports* **21**, 878-890,
1442 doi:10.1016/j.celrep.2017.10.012 (2017).

1443 44 Adesnik, H. Synaptic Mechanisms of Feature Coding in the Visual Cortex of Awake
1444 Mice. *Neuron* **95**, 1147-1159.e1144, doi:10.1016/j.neuron.2017.08.014 (2017).

1445 45 Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing
1446 in auditory cortex. *Nature* **426**, 442-446, doi:10.1038/nature02116
1447 nature02116 [pii] (2003).

1448 46 D'Amour, J. A. & Froemke, R. C. Inhibitory and excitatory spike-timing-dependent
1449 plasticity in the auditory cortex. *Neuron* **86**, 514-528, doi:10.1016/j.neuron.2015.03.014
1450 (2015).

1451 47 Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during
1452 ongoing and sensory-evoked activities. *Nat Neurosci* **11**, 535-537, doi:10.1038/nn.2105
1453 (2008).

1454 48 Kuchibhotla, K. V. *et al.* Parallel processing by cortical inhibition enables context-
1455 dependent behavior. *Nature neuroscience* **20**, 62-71, doi:10.1038/nn.4436 (2017).

1456 49 Atallah, B. V. & Scanziani, M. Instantaneous modulation of gamma oscillation frequency
1457 by balancing excitation with inhibition. *Neuron* **62**, 566-577,
1458 doi:10.1016/j.neuron.2009.04.027 (2009).

1459 50 Womelsdorf, T., Valiante, T. A., Sahin, N. T., Miller, K. J. & Tiesinga, P. Dynamic circuit
1460 motifs underlying rhythmic gain control, gating and integration. *Nat Neurosci* **17**, 1031-
1461 1039, doi:10.1038/nn.3764 (2014).

1462 51 Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D. & Ferster, D. Inhibitory stabilization of
1463 the cortical network underlies visual surround suppression. *Neuron* **62**, 578-592,
1464 doi:10.1016/j.neuron.2009.03.028 (2009).

1465 52 Veit, J., Hakim, R., Jadi, M. P., Sejnowski, T. J. & Adesnik, H. Cortical gamma band
1466 synchronization through somatostatin interneurons. *Nat Neurosci* **20**, 951-959,
1467 doi:10.1038/nn.4562 (2017).

1468 53 Bos, H., Oswald, A.-M. & Doiron, B. Untangling stability and gain modulation in cortical
1469 circuits with multiple interneuron classes. *bioRxiv*, 2020.2006.2015.148114,
1470 doi:10.1101/2020.06.15.148114 (2020).

1471 54 Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration
1472 after "temporary" noise-induced hearing loss. *The Journal of neuroscience : the official*
1473 *journal of the Society for Neuroscience* **29**, 14077-14085, doi:10.1523/jneurosci.2845-
1474 09.2009 (2009).

1475 55 Teichert, M., Liebmann, L., Hubner, C. A. & Bolz, J. Homeostatic plasticity and synaptic
1476 scaling in the adult mouse auditory cortex. *Scientific reports* **7**, 17423,
1477 doi:10.1038/s41598-017-17711-5 (2017).

1478 56 Reinhard, S. M., Abundez-Toledo, M., Espinoza, K. & Razak, K. A. Effects of
1479 developmental noise exposure on inhibitory cell densities and perineuronal nets in A1
1480 and AAF of mice. *Hearing research* **381**, 107781, doi:10.1016/j.heares.2019.107781
1481 (2019).

1482 57 Novák, O., Zelenka, O., Hromádka, T. & Syka, J. Immediate manifestation of acoustic
1483 trauma in the auditory cortex is layer specific and cell type dependent. *Journal of*
1484 *neurophysiology* **115**, 1860-1874, doi:10.1152/jn.00810.2015 (2016).

1485 58 Asokan, M. M., Williamson, R. S., Hancock, K. E. & Polley, D. B. Sensory
1486 overamplification in layer 5 auditory corticofugal projection neurons following cochlear
1487 nerve synaptic damage. *Nature communications* **9**, 2468, doi:10.1038/s41467-018-
1488 04852-y (2018).

1489 59 Shore, S. E., Roberts, L. E. & Langguth, B. Maladaptive plasticity in tinnitus--triggers,
1490 mechanisms and treatment. *Nat Rev Neurosci* **12**, 150-160, doi:10.1038/nrneurol.2016.12
1491 (2016).

1492 60 Waters, J. Sources of widefield fluorescence from the brain. *eLife* **9**,
1493 doi:10.7554/eLife.59841 (2020).

1494 61 Sutherland, C., Doiron, B. & Longtin, A. Feedback-induced gain control in stochastic
1495 spiking networks. *Biol Cybern* **100**, 475-489, doi:10.1007/s00422-009-0298-5 (2009).

1496 62 Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Paradoxical
1497 effects of external modulation of inhibitory interneurons. *The Journal of neuroscience :
1498 the official journal of the Society for Neuroscience* **17**, 4382-4388,
1499 doi:10.1523/jneurosci.17-11-04382.1997 (1997).

1500 63 Joshi, A., Kalappa, B. I., Anderson, C. T. & Tzounopoulos, T. Cell-Specific Cholinergic
1501 Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex. *The
1502 Journal of neuroscience : the official journal of the Society for Neuroscience* **36**, 8487-
1503 8499, doi:10.1523/jneurosci.0780-16.2016 (2016).

1504 64 Joshi, A. *et al.* Cell-specific activity-dependent fractionation of layer 2/3-->5B excitatory
1505 signaling in mouse auditory cortex. *The Journal of neuroscience : the official journal of
1506 the Society for Neuroscience* **35**, 3112-3123, doi:10.1523/jneurosci.0836-14.2015
1507 (2015).

1508 65 Kouvaros, S., Kumar, M. & Tzounopoulos, T. Synaptic Zinc Enhances Inhibition
1509 Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex.
1510 *Cerebral cortex (New York, N.Y. : 1991)* **30**, 3895-3909, doi:10.1093/cercor/bhaa005
1511 (2020).

1512 66 Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in
1513 visual cortex: the logic of connections between molecularly distinct interneurons. *Nature
1514 neuroscience* **16**, 1068-1076, doi:10.1038/nn.3446 (2013).

1515 67 Karnani, M. M. *et al.* Cooperative Subnetworks of Molecularly Similar Interneurons in
1516 Mouse Neocortex. *Neuron* **90**, 86-100, doi:10.1016/j.neuron.2016.02.037 (2016).

1517 68 Keller, A. J. *et al.* A Disinhibitory Circuit for Contextual Modulation in Primary Visual
1518 Cortex. *Neuron* **108**, 1181-1193.e1188, doi:10.1016/j.neuron.2020.11.013 (2020).

1519 69 Kato, H. K., Asinof, S. K. & Isaacson, J. S. Network-Level Control of Frequency Tuning
1520 in Auditory Cortex. *Neuron* **95**, 412-423.e414, doi:10.1016/j.neuron.2017.06.019 (2017).

1521 70 Mesik, L. *et al.* Functional response properties of VIP-expressing inhibitory neurons in
1522 mouse visual and auditory cortex. *Front Neural Circuits* **9**, 22,
1523 doi:10.3389/fncir.2015.00022 (2015).

1524 71 Li, L. Y. *et al.* Differential Receptive Field Properties of Parvalbumin and Somatostatin
1525 Inhibitory Neurons in Mouse Auditory Cortex. *Cerebral cortex (New York, N.Y. : 1991)*
1526 **25**, 1782-1791, doi:10.1093/cercor/bht417 (2015).

1527 72 Moore, A. K. & Wehr, M. Parvalbumin-expressing inhibitory interneurons in auditory
1528 cortex are well-tuned for frequency. *The Journal of neuroscience : the official journal of*
1529 *the Society for Neuroscience* **33**, 13713-13723, doi:10.1523/jneurosci.0663-13.2013
1530 (2013).

1531 73 Natan, R. G. *et al.* Complementary control of sensory adaptation by two types of cortical
1532 interneurons. *eLife* **4**, doi:10.7554/eLife.09868 (2015).

1533 74 Takesian, A. E., Bogart, L. J., Lichtman, J. W. & Hensch, T. K. Inhibitory circuit gating of
1534 auditory critical-period plasticity. *Nature neuroscience* **21**, 218-227, doi:10.1038/s41593-
1535 017-0064-2 (2018).

1536 75 Wang, W. *et al.* Correlation of Electrophysiological and Gene Transcriptional
1537 Dysfunctions in Single Cortical Parvalbumin Neurons After Noise Trauma. *Neuroscience*
1538 **482**, 87-99, doi:10.1016/j.neuroscience.2021.12.006 (2022).

1539 76 Zinsmaier, A. K., Wang, W., Zhang, L., Hossainy, N. N. & Bao, S. Resistance to noise-
1540 induced gap detection impairment in FVB mice is correlated with reduced
1541 neuroinflammatory response and parvalbumin-positive neuron loss. *Scientific reports* **10**,
1542 20445, doi:10.1038/s41598-020-75714-1 (2020).

1543 77 Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A. & Stryker, M. P. A cortical disinhibitory
1544 circuit for enhancing adult plasticity. *eLife* **4**, e05558, doi:10.7554/eLife.05558 (2015).

1545 78 Veit, J., Handy, G., Mossing, D. P., Doiron, B. & Adesnik, H. Cortical VIP neurons locally
1546 control the gain but globally control the coherence of gamma band rhythms. *bioRxiv*,
1547 2021.2005.2020.444979, doi:10.1101/2021.05.20.444979 (2021).

1548 79 Moore, A. K., Weible, A. P., Balmer, T. S., Trussell, L. O. & Wehr, M. Rapid Rebalancing
1549 of Excitation and Inhibition by Cortical Circuitry. *Neuron* **97**, 1341-1355.e1346,
1550 doi:10.1016/j.neuron.2018.01.045 (2018).

1551 80 Kuhlman, S. J. *et al.* A disinhibitory microcircuit initiates critical-period plasticity in the
1552 visual cortex. *Nature* **501**, 543-546, doi:10.1038/nature12485 (2013).

1553 81 Williams, L. E. & Holtmaat, A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-
1554 Term Potentiation via Disinhibition. *Neuron* **101**, 91-102.e104,
1555 doi:10.1016/j.neuron.2018.10.049 (2019).

1556 82 Apicella, A. J. & Marchionni, I. VIP-Expressing GABAergic Neurons: Disinhibitory vs.
1557 Inhibitory Motif and Its Role in Communication Across Neocortical Areas. *Frontiers in*
1558 *cellular neuroscience* **16**, 811484, doi:10.3389/fncel.2022.811484 (2022).

1559 83 Cichon, J., Blanck, T. J. J., Gan, W. B. & Yang, G. Activation of cortical somatostatin
1560 interneurons prevents the development of neuropathic pain. *Nature neuroscience* **20**,
1561 1122-1132, doi:10.1038/nn.4595 (2017).

1562 84 Burke, K. *et al.* Effects of noise exposure and aging on behavioral tone detection in quiet
1563 and noise by mice. *eNeuro*, doi:10.1523/eneuro.0391-21.2022 (2022).

1564 85 Parida, S. & Heinz, M. G. Distorted Tonotopy Severely Degrades Neural
1565 Representations of Connected Speech in Noise following Acoustic Trauma. *The Journal*
1566 *of neuroscience : the official journal of the Society for Neuroscience* **42**, 1477-1490,
1567 doi:10.1523/jneurosci.1268-21.2021 (2022).

1568 86 Lakunina, A. A., Nardoci, M. B., Ahmadian, Y. & Jaramillo, S. Somatostatin-Expressing
1569 Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral
1570 Surround. *The Journal of neuroscience : the official journal of the Society for*
1571 *Neuroscience* **40**, 3564-3575, doi:10.1523/jneurosci.1735-19.2020 (2020).

1572 87 Chen, N., Sugihara, H. & Sur, M. An acetylcholine-activated microcircuit drives temporal
1573 dynamics of cortical activity. *Nature neuroscience* **18**, 892-902, doi:10.1038/nn.4002
1574 (2015).

1575 88 Møller, A. R. Tinnitus and pain. *Progress in brain research* **166**, 47-53,
1576 doi:10.1016/s0079-6123(07)66004-x (2007).

1577 89 Gainey, M. A., Aman, J. W. & Feldman, D. E. Rapid Disinhibition by Adjustment of PV
1578 Intrinsic Excitability during Whisker Map Plasticity in Mouse S1. *The Journal of
1579 neuroscience : the official journal of the Society for Neuroscience* **38**, 4749-4761,
1580 doi:10.1523/jneurosci.3628-17.2018 (2018).

1581 90 Lauer, A. M., Dent, M. L., Sun, W. & Xu-Friedman, M. A. Effects of Non-traumatic Noise
1582 and Conductive Hearing Loss on Auditory System Function. *Neuroscience*,
1583 doi:10.1016/j.neuroscience.2019.01.020 (2019).

1584 91 Novak, O., Zelenka, O., Hromadka, T. & Syka, J. Immediate manifestation of acoustic
1585 trauma in the auditory cortex is layer specific and cell type dependent. *Journal of
1586 neurophysiology* **115**, 1860-1874, doi:10.1152/jn.00810.2015 (2016).

1587 92 Liberman, M. C. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold
1588 Shifts and the Effects of Hair Cell Versus Neuronal Degeneration. *Advances in
1589 experimental medicine and biology* **875**, 1-7, doi:10.1007/978-1-4939-2981-8_1 (2016).

1590 93 Polley, D. B., Thompson, J. H. & Guo, W. Brief hearing loss disrupts binaural integration
1591 during two early critical periods of auditory cortex development. *Nature communications*
1592 **4**, 2547, doi:10.1038/ncomms3547 (2013).

1593 94 Vanderauwera, J., Hellemans, E. & Verhaert, N. Research Insights on Neural Effects of
1594 Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review. *J
1595 Clin Med* **9**, doi:10.3390/jcm9030812 (2020).

1596 95 Lambertz, N., Gizewski, E. R., de Greiff, A. & Forsting, M. Cross-modal plasticity in deaf
1597 subjects dependent on the extent of hearing loss. *Brain Res Cogn Brain Res* **25**, 884-
1598 890, doi:10.1016/j.cogbrainres.2005.09.010 (2005).

1599 96 Hübener, M. & Bonhoeffer, T. Neuronal plasticity: beyond the critical period. *Cell* **159**,
1600 727-737, doi:10.1016/j.cell.2014.10.035 (2014).

1601 97 Coerver, K. A. & Subramanian, P. S. Visual hallucinations in psychiatric, neurologic, and
1602 ophthalmologic disease. *Curr Opin Ophthalmol* **31**, 475-482,
1603 doi:10.1097/icu.0000000000000701 (2020).

1604 98 Kaur, A. & Guan, Y. Phantom limb pain: A literature review. *Chin J Traumatol* **21**, 366-
1605 368, doi:10.1016/j.cjtee.2018.04.006 (2018).

1606 99 Marinos, L. et al. Transient Delivery of a KCNQ2/3-Specific Channel Activator 1 Week
1607 After Noise Trauma Mitigates Noise-Induced Tinnitus. *Journal of the Association for
1608 Research in Otolaryngology : JARO* **22**, 127-139, doi:10.1007/s10162-021-00786-3
1609 (2021).

1610 100 Kumar, M., Xiong, S., Tzounopoulos, T. & Anderson, C. T. Fine Control of Sound
1611 Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in
1612 Mouse Auditory Cortex. *The Journal of neuroscience : the official journal of the Society
1613 for Neuroscience* **39**, 854-865, doi:10.1523/jneurosci.1339-18.2018 (2019).

1614 101 Anderson, C. T., Kumar, M., Xiong, S. & Tzounopoulos, T. Cell-specific gain modulation
1615 by synaptically released zinc in cortical circuits of audition. *eLife* **6**,
1616 doi:10.7554/eLife.29893 (2017).

1617 102 Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience
1618 experiments. *Front Neural Circuits* **4**, 100, doi:10.3389/fncir.2010.00100 (2010).

1619 103 Guo, W. et al. Robustness of cortical topography across fields, laminae, anesthetic
1620 states, and neurophysiological signal types. *The Journal of neuroscience : the official
1621 journal of the Society for Neuroscience* **32**, 9159-9172, doi:10.1523/jneurosci.0065-
1622 12.2012 (2012).

1623 104 Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a
1624 chronic cranial window. *Nature protocols* **4**, 1128-1144, doi:10.1038/nprot.2009.89
1625 (2009).

1626 105 Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for
1627 operating laser scanning microscopes. *Biomed Eng Online* **2**, 13, doi:10.1186/1475-
1628 925x-2-13 (2003).
1629 106 Cody, P. A. & Tzounopoulos, T. Neuromodulatory mechanisms underlying contrast gain
1630 control in mouse auditory cortex. *The Journal of Neuroscience*, JN-RM-2054-2021,
1631 doi:10.1523/jneurosci.2054-21.2022 (2022).
1632 107 Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise
1633 rigid motion correction of calcium imaging data. *J Neurosci Methods* **291**, 83-94,
1634 doi:10.1016/j.jneumeth.2017.07.031 (2017).
1635 108 Keemink, S. W. *et al.* FISSA: A neuropil decontamination toolbox for calcium imaging
1636 signals. *Scientific reports* **8**, 3493, doi:10.1038/s41598-018-21640-2 (2018).
1637 109 Chen, Q. *et al.* Dysfunction of cortical GABAergic neurons leads to sensory hyper-
1638 reactivity in a Shank3 mouse model of ASD. *Nature neuroscience* **23**, 520-532,
1639 doi:10.1038/s41593-020-0598-6 (2020).
1640 110 Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned
1641 response properties of diverse inhibitory neuron subtypes in mouse visual cortex.
1642 *Neuron* **67**, 858-871, doi:10.1016/j.neuron.2010.08.002 (2010).
1643 111 Romero, S. *et al.* Cellular and Widefield Imaging of Sound Frequency Organization in
1644 Primary and Higher Order Fields of the Mouse Auditory Cortex. *Cerebral cortex (New*
1645 *York, N.Y. : 1991)* **30**, 1603-1622, doi:10.1093/cercor/bhz190 (2020).
1646 112 Engelken, R., Farkhooi, F., Hansel, D., van Vreeswijk, C. & Wolf, F. A reanalysis of "Two
1647 types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".
1648 *F1000Research* **5**, 2043, doi:10.12688/f1000research.9144.1 (2016).
1649

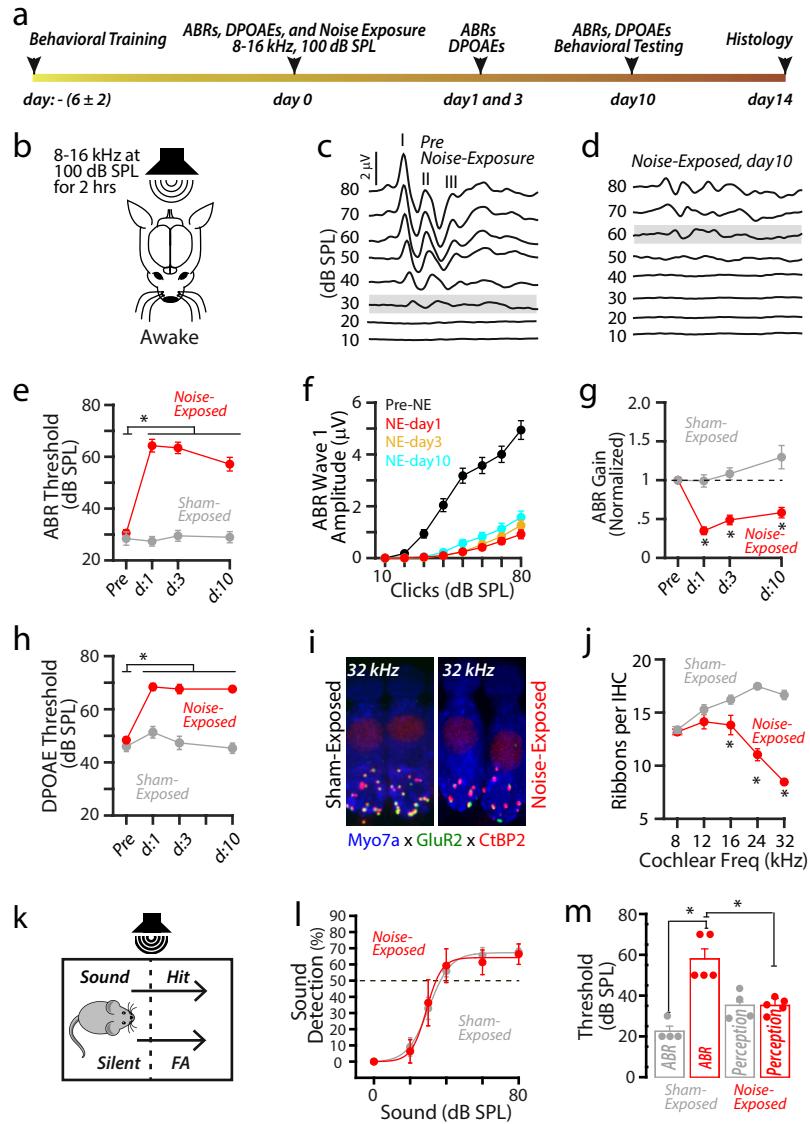


Figure 1

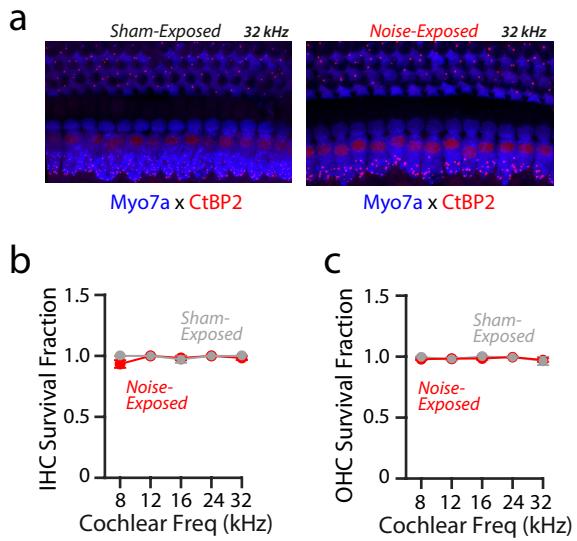


Figure 1 Supplement

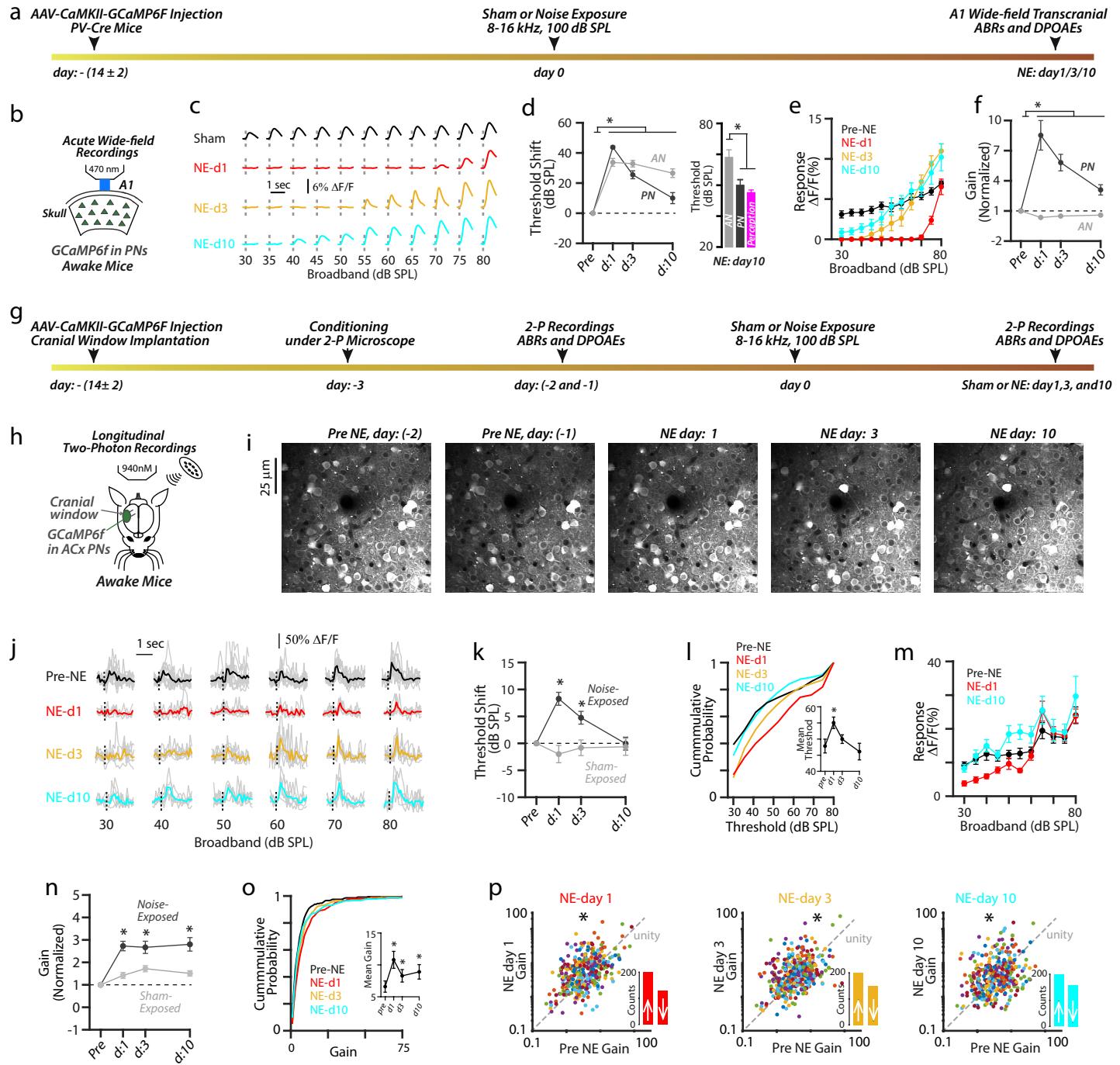


Figure 2

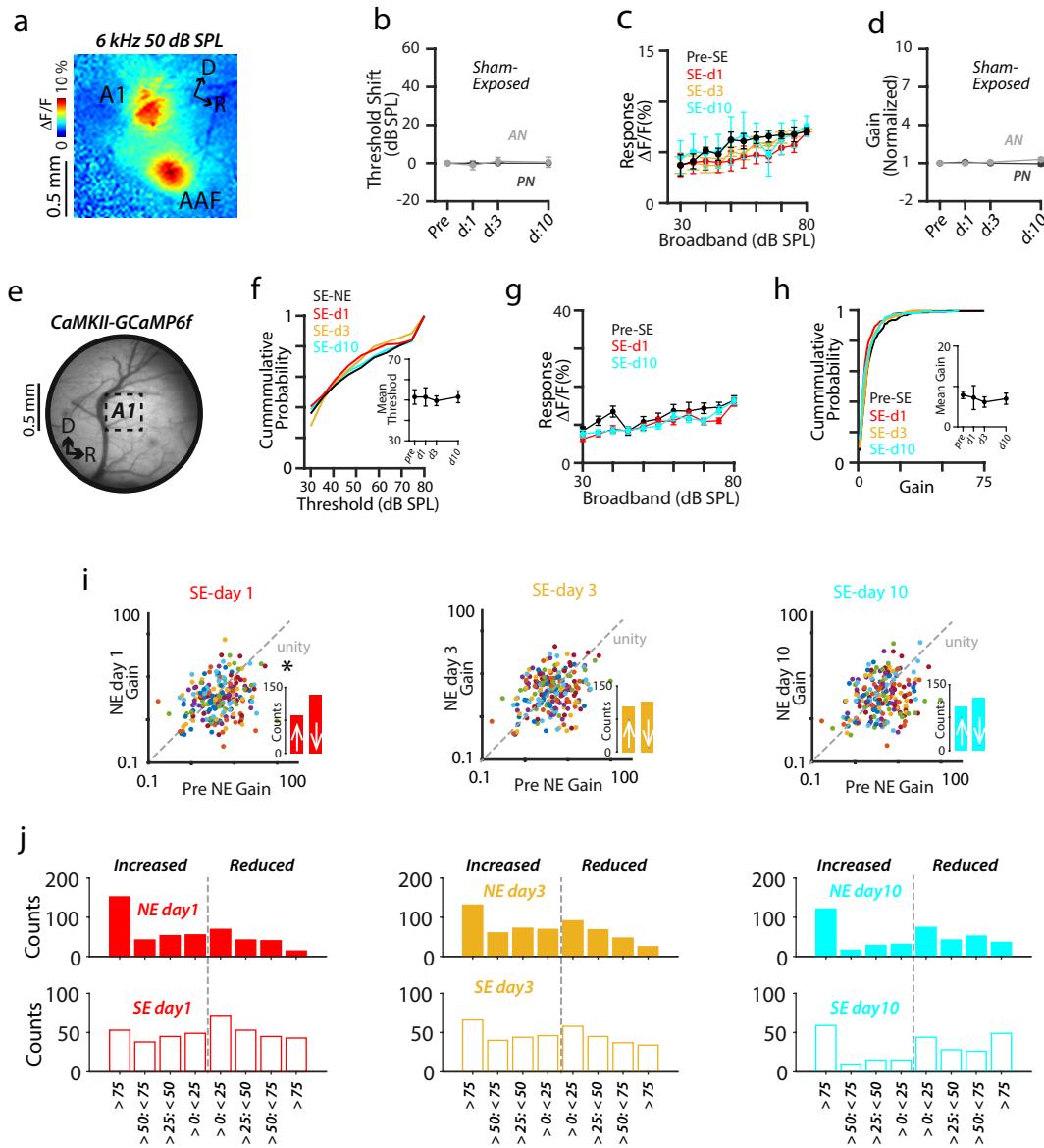


Figure 2 Supplement

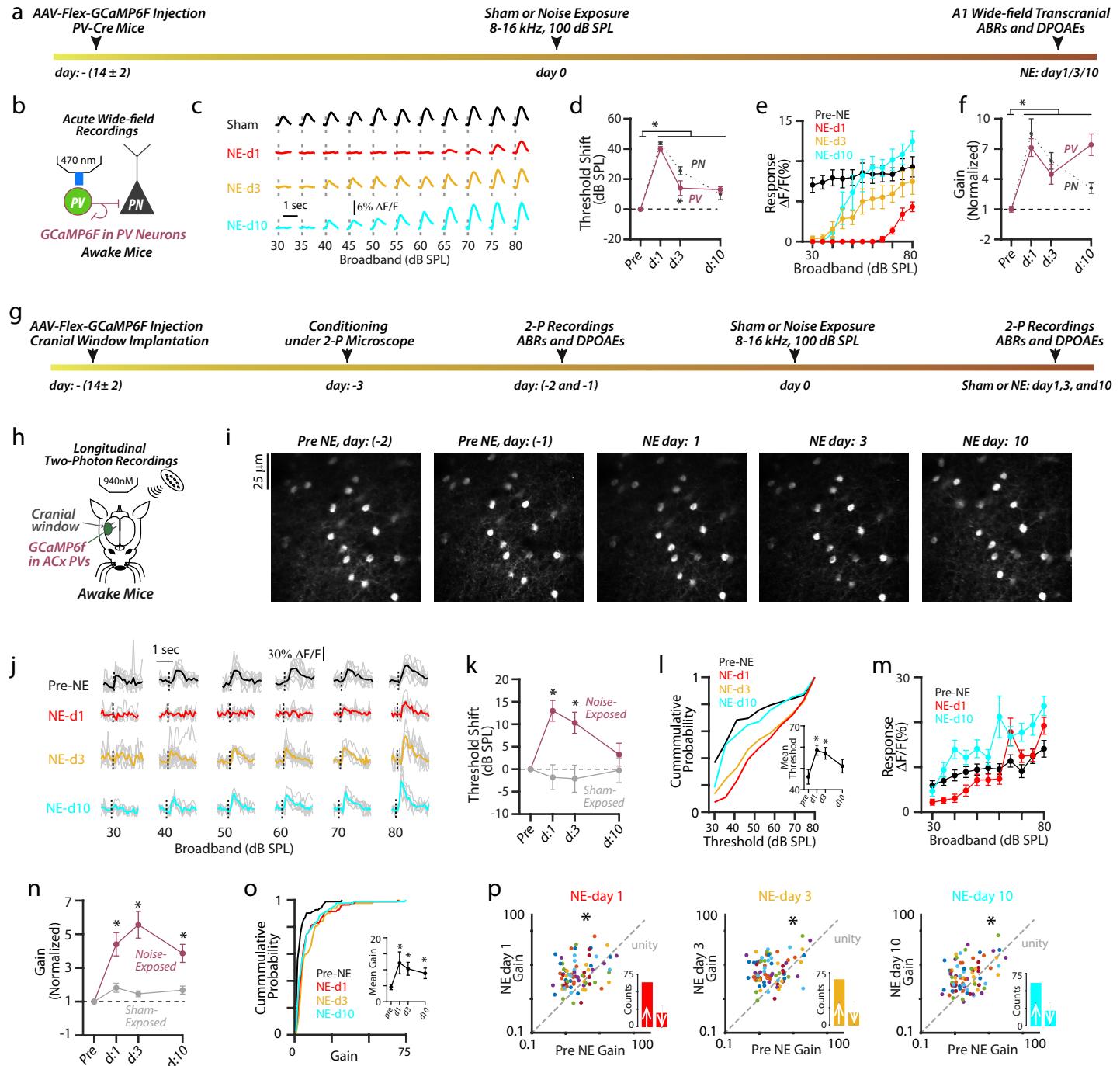



Figure 3

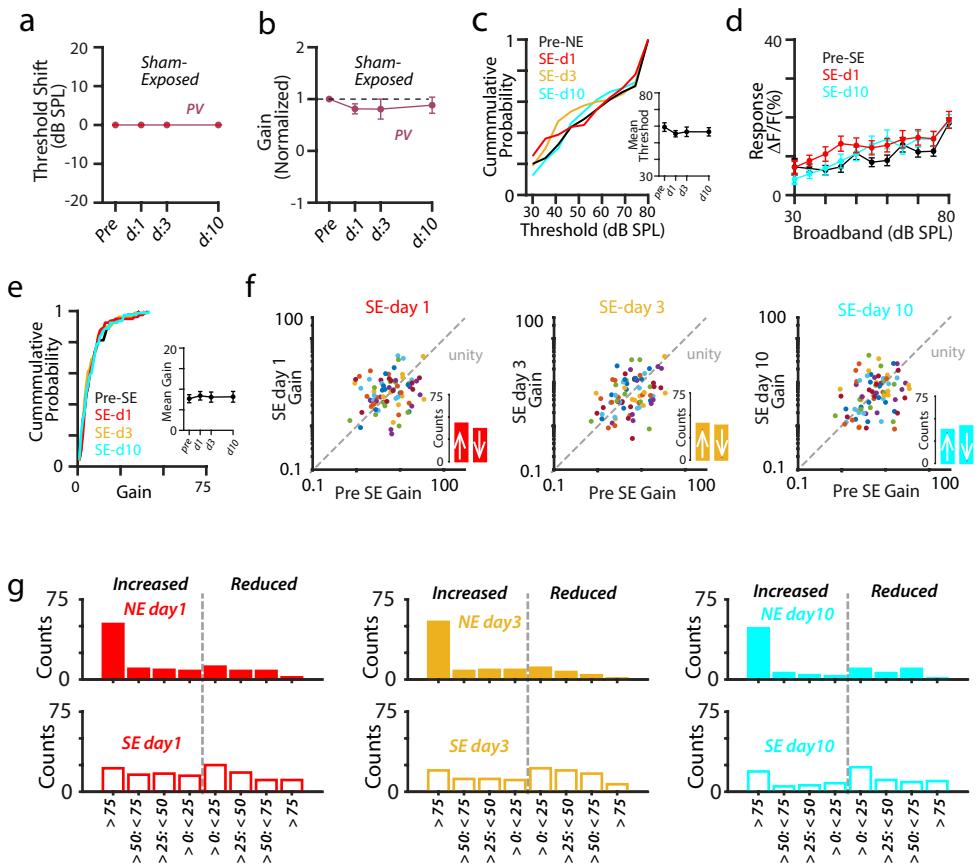


Figure 4 Supplement

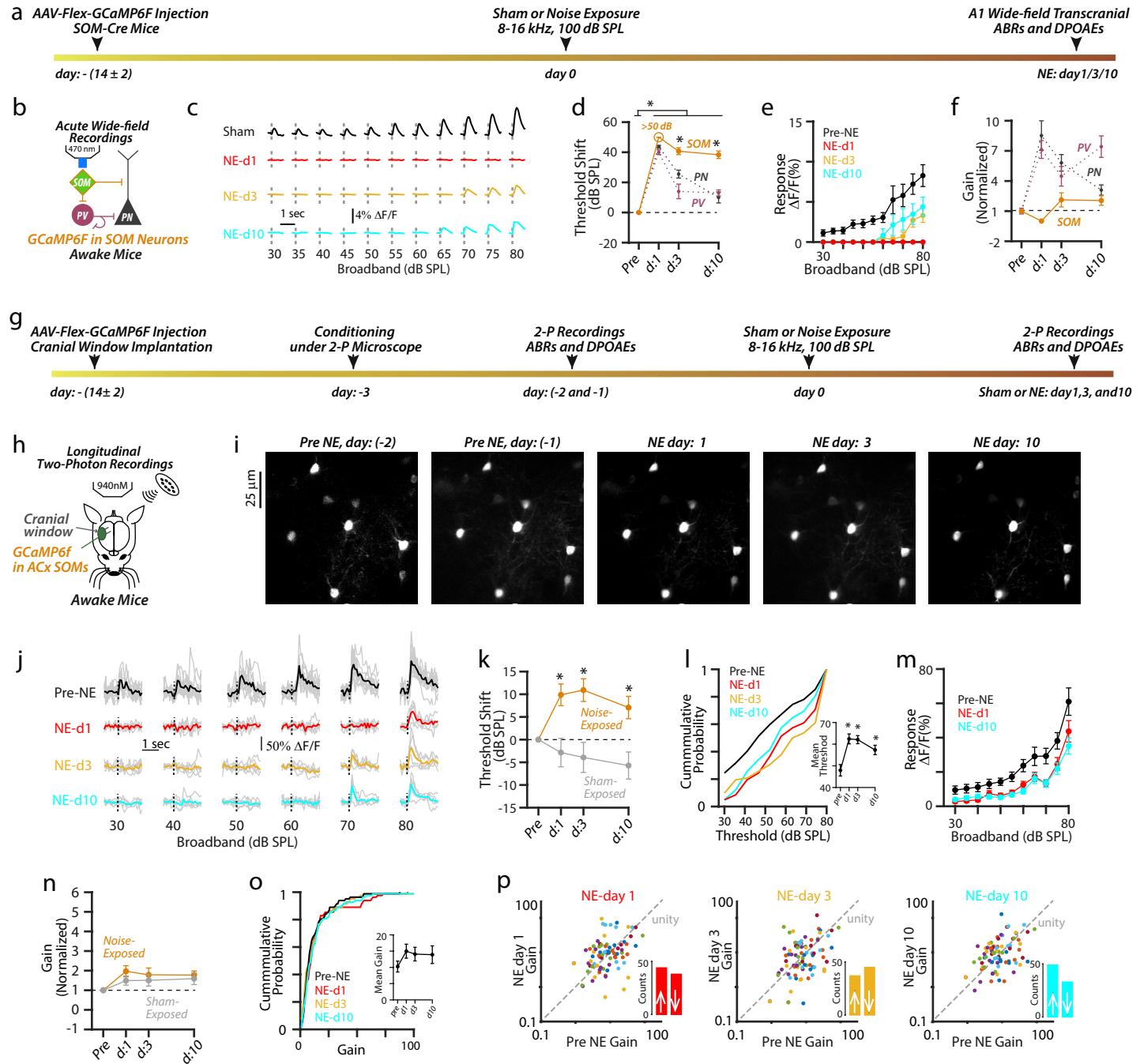


Figure 5

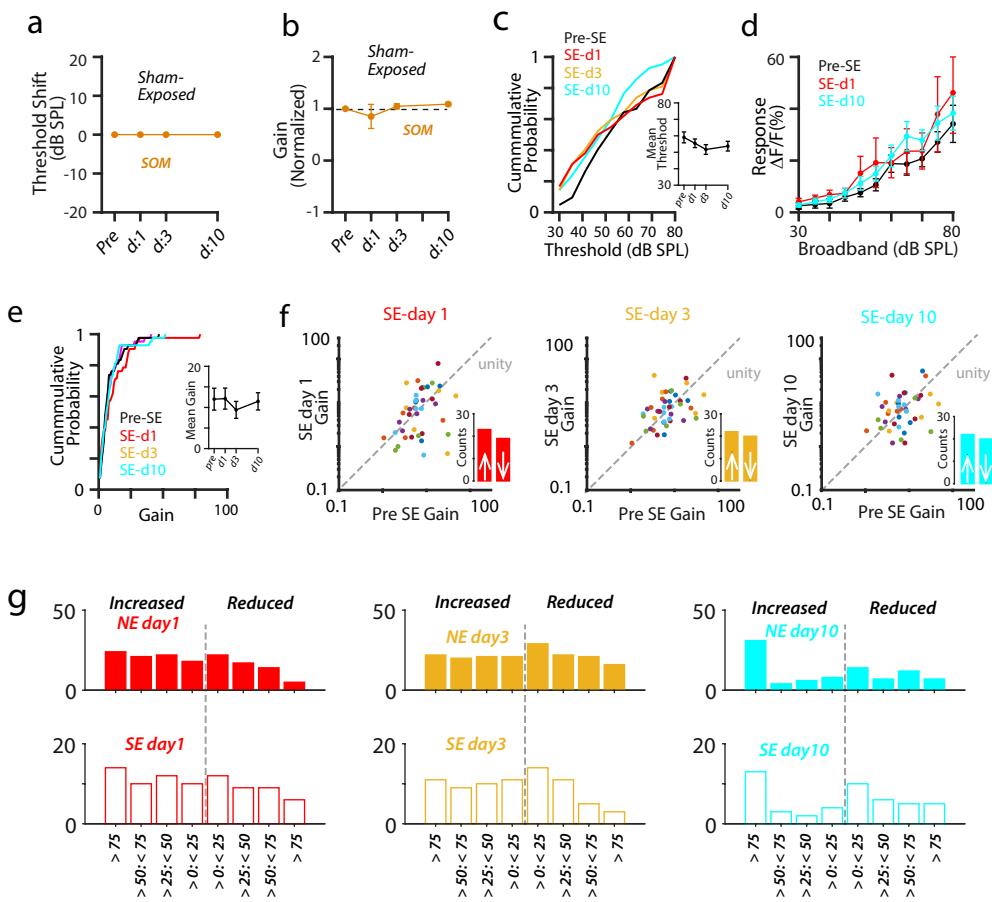


Figure 5 Supplement

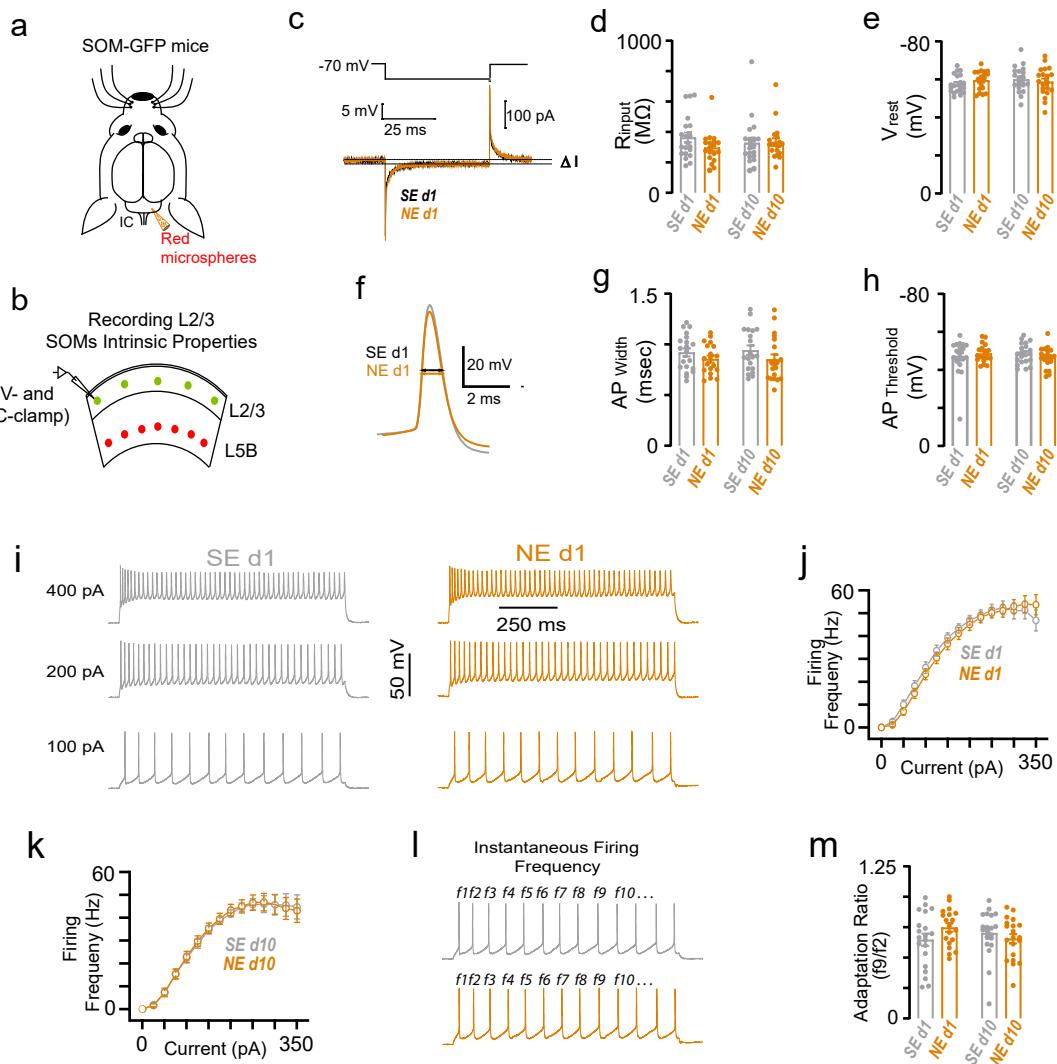


Figure 6

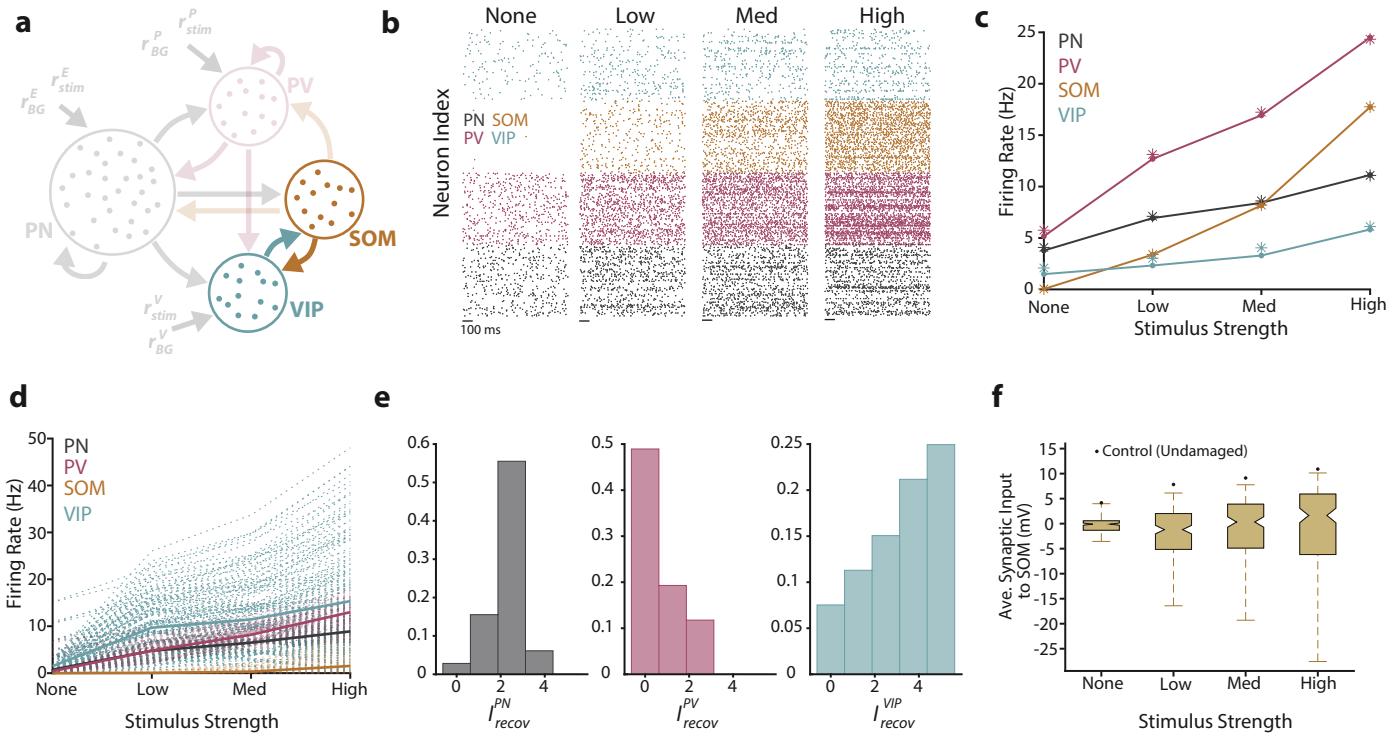
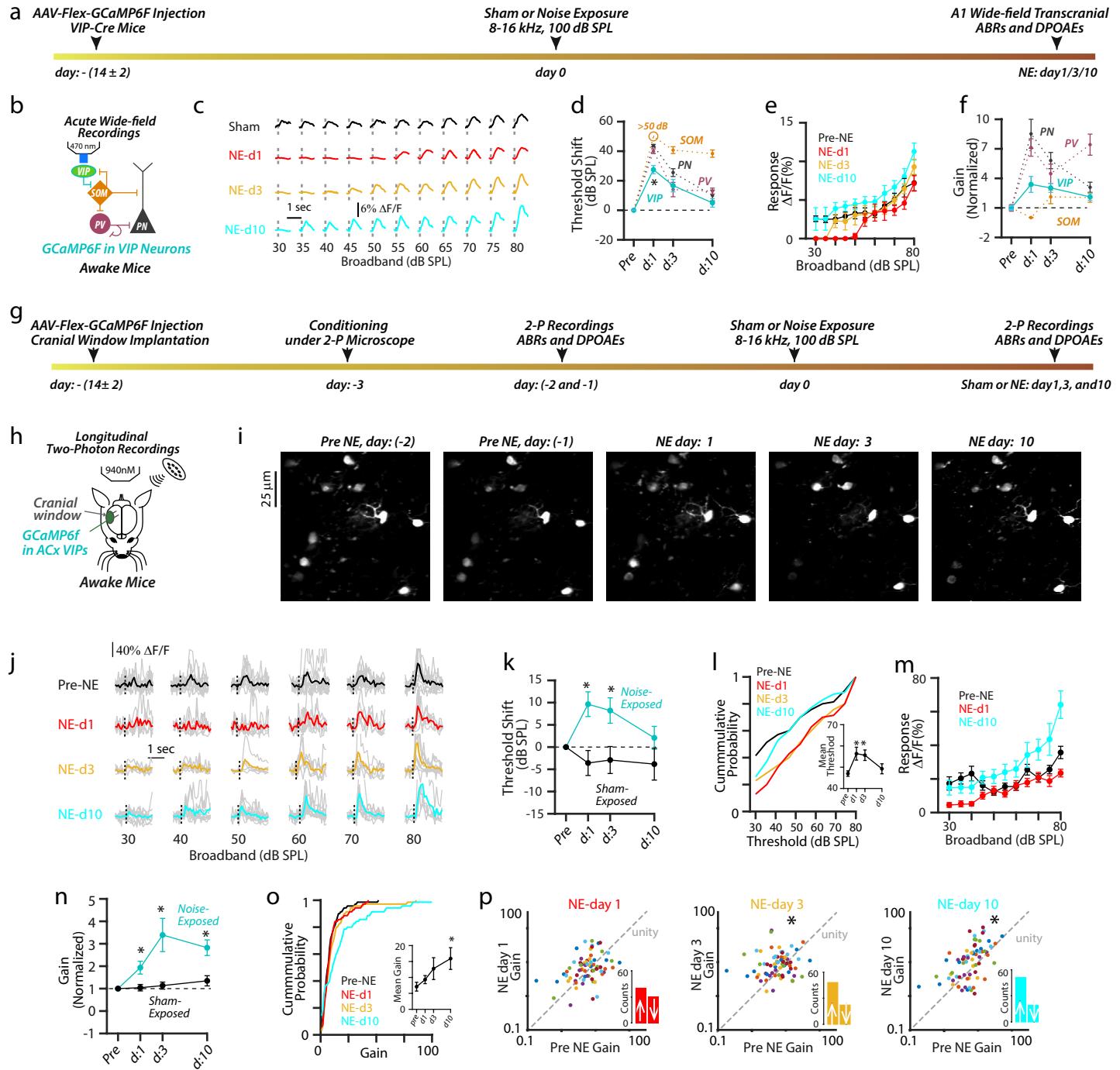



Figure 7

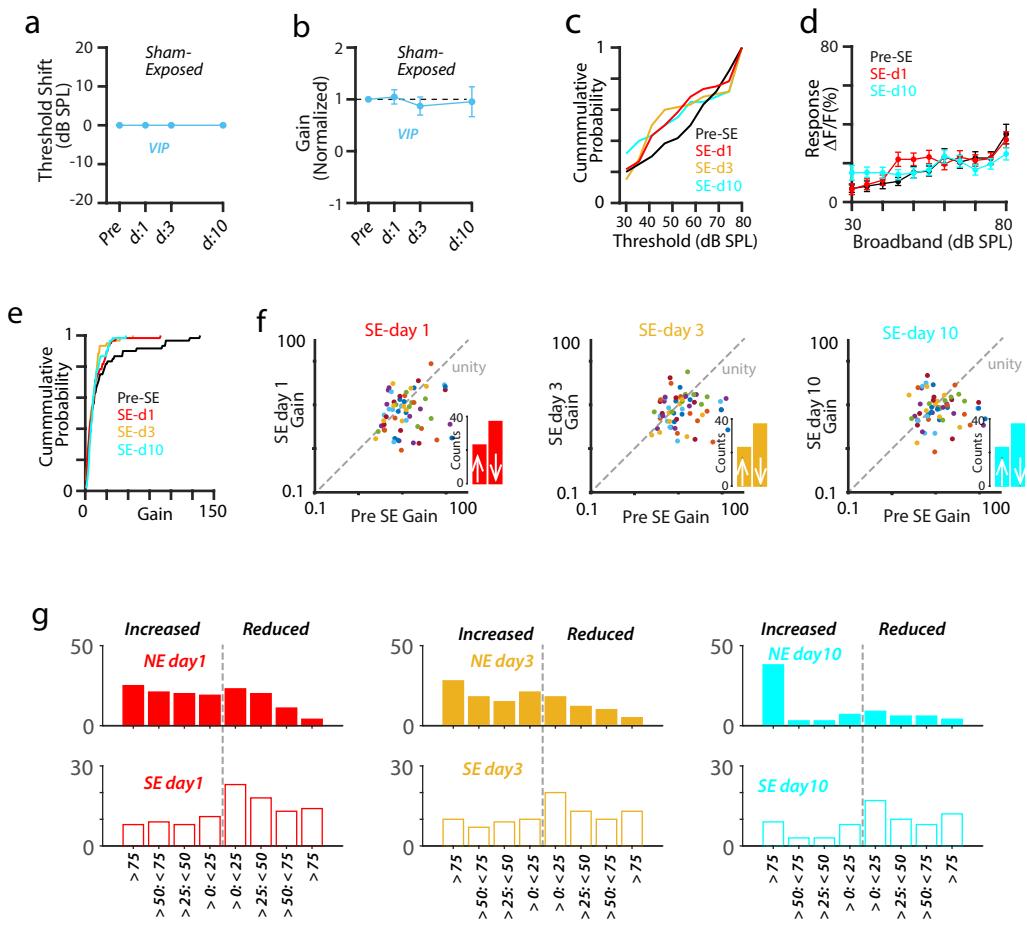


Figure 8 Supplement