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Abstract/Summary 15 

The auditory system comprises multiple subcortical brain structures that process and refine 16 

incoming acoustic signals along the primary auditory pathway. Due to technical limitations of 17 

imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory 18 

system is based on research in animal models using invasive methodologies. Advances in ultra-19 

high field functional magnetic resonance imaging (fMRI) acquisition have enabled novel non-20 

invasive investigations of the human auditory subcortex, including fundamental features of 21 

auditory representation such as tonotopy and periodotopy. However, functional connectivity 22 

across subcortical networks is still underexplored in humans, with ongoing development of 23 

related methods. Traditionally, functional connectivity is estimated from fMRI data with full 24 

correlation matrices. However, partial correlations reveal the relationship between two regions 25 

after removing the effects of all other regions, reflecting more direct connectivity. Partial 26 
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correlation analysis is particularly promising in the ascending auditory system, where sensory 27 

information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory 28 

pathway, providing redundant but also increasingly abstract representations of auditory stimuli. 29 

While most existing methods for learning conditional dependency structures based on partial 30 

correlations assume independently and identically Gaussian distributed data, fMRI data exhibit 31 

significant deviations from Gaussianity as well as high temporal autocorrelation. In this paper, 32 

we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach 33 

to estimate the partial correlations and thereby infer the functional connectivity patterns within 34 

the auditory system while appropriately accounting for autocorrelations between successive 35 

fMRI scans. Our results show strong positive partial correlations between successive structures 36 

in the primary auditory pathway on each side (left and right), including between auditory 37 

midbrain and thalamus, and between primary and associative auditory cortex. These results are 38 

highly stable when splitting the data in halves according to the acquisition schemes and 39 

computing partial correlations separately for each half of the data, as well as across cross-40 

validation folds. In contrast, full correlation-based analysis identified a rich network of 41 

interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results 42 

demonstrate that unique functional connectivity patterns along the auditory pathway are 43 

recoverable using novel connectivity approaches and that our connectivity methods are reliable 44 

across multiple acquisitions.  45 

 46 
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1. Introduction 52 

The mammalian auditory pathway conveys acoustic information between the inner ear—where 53 

sounds are mechanoelectrically transduced in the cochlea—and auditory cortex by way of 54 

multiple subcortical nuclei across the brainstem, midbrain, and thalamus. Much of our 55 

knowledge of the auditory system arises from anatomical and physiological research with non-56 

human animal models (McIntosh and Gonzalez-Lima, 1991; Popper and Fay, 1992; Webster et 57 

al., 1992). This work has contributed tremendously to our understanding of the mammalian 58 

auditory system. However, due to methodological and ethical limitations, our ability to directly 59 

assess auditory function in the human nervous system is severely constrained (as discussed in 60 

(Moerel et al., 2021)).  61 

This is particularly true for subcortical auditory structures. In mammals, the ascending central 62 

auditory pathway receives signals from the cochlea of the inner ear by way of the cochlear nerve, 63 

which principally innervates the cochlear nucleus in the brainstem. Auditory signals are then 64 

transmitted to the superior olivary complex, which is the first decussation point at which signals 65 

largely pass contralaterally from the left cochlear nucleus to the right superior olive (and similarly 66 

from right to left). From the superior olive, auditory signals travel (via the lateral lemniscus) to 67 

the inferior colliculus in the midbrain. The last subcortical auditory structure is the medial 68 

geniculate nucleus of the thalamus, which then passes information to primary auditory cortex. In 69 

addition to the ascending “lemniscal” auditory pathway, an equal number of efferent 70 

connections transmit top-down information from higher order auditory regions to earlier 71 

auditory structures (Malmierca and Ryugo, 2011; Winer, 2005). Due to the small size of the 72 

subcortical auditory structures—tightly packed in with other heterogeneous nuclei and white 73 

matter pathways—and their anatomical location deep within the cranium, the subcortical 74 

auditory structures have received limited attention in non-invasive human research. 75 

Functional magnetic resonance imaging (fMRI) is the most popular non-invasive method for 76 

probing macroscopic network-related brain activity. While studies of the human subcortical 77 

auditory system are somewhat limited, previous task-based fMRI research has functionally 78 

localized the subcortical auditory structures (Sitek et al., 2019), identified the tonotopic 79 

frequency mappings within the auditory midbrain and thalamus (De Martino et al., 2013; Moerel 80 
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et al., 2015; Ress and Chandrasekaran, 2013), separated top-down and bottom-up speech-81 

selective subregions of auditory thalamus (Mihai et al., 2019; Tabas et al., 2021), and recorded 82 

level-dependent BOLD signals throughout the auditory pathway (Hawley et al., 2005; Sigalovsky 83 

and Melcher, 2006).  84 

In contrast to task-related BOLD activity, fMRI connectivity methods (often utilizing resting state 85 

fMRI paradigms and full correlation analysis) are commonly used to assay cortical brain networks 86 

(Biswal et al., 1995; Gordon, Laumann, Adeyemo, et al., 2017; Power et al., 2011; Smith, 87 

Beckmann, et al., 2013), including the cortical auditory system (Abrams et al., 2020; Cha et al., 88 

2016; Chen et al., 2020; Eckert et al., 2008; Maudoux et al., 2012; Ren et al., 2021). However, 89 

fMRI connectivity methods have limited history in subcortical research, especially in the auditory 90 

system, where they have—to our knowledge—only been utilized a handful of times to assess 91 

connectivity differences between individuals with and without tinnitus percepts (Berlot et al., 92 

2020; Hofmeier et al., 2018; Leaver et al., 2016; Zhang et al., 2015). 93 

From the seminal resting state connectivity studies identifying human default mode and motor 94 

networks (Biswal et al., 1995; Fox and Raichle, 2007), to work linking functional connectivity with 95 

behavioral variability (Baldassarre et al., 2012; Deng et al., 2016), to investigations into brain 96 

network differences associated with disorders (Chai et al., 2016; Di Martino et al., 2011; Ferri et 97 

al., 2018; Greicius et al., 2007; Hahn et al., 2011; Husain and Schmidt, 2014; Kaiser et al., 2015; 98 

Sitek et al., 2016; Wilson et al., 2022), full correlation analysis has contributed tremendously to 99 

our understanding of human brain networks. However, moving beyond the traditional full 100 

correlation analysis should enable greater specificity in assessing functional connectivity 101 

patterns, particularly in identifying specific node-to-node connectivity patterns within an 102 

established brain network (Marrelec et al., 2006; Smith, 2012). In contrast to full correlations, 103 

which represent both direct and indirect connections, partial correlation analyses represent the 104 

direct association between two specific nodes after filtering out the effects of the remaining 105 

nodes and thus hold great promise for estimating direct functional connectivity within a network 106 

(Smith, Beckmann, et al., 2013). (Please refer to the illustration in the Supplementary Materials.) 107 

For these reasons, partial correlation approaches are increasingly used to study functional 108 

connectivity networks in the brain (Wang et al., 2016; Warnick et al., 2018), including improved 109 
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identification of individualized connectivity profiles compared to full correlation methods 110 

(Menon and Krishnamurthy, 2019), as well as improved prediction of brain disorders (Reeves et 111 

al., 2023; Skåtun et al., 2017; de Vos et al., 2018) and identification of general cognitive ability 112 

(Sripada et al., 2021). However, we are unaware of the application of such methods to assess 113 

functional connectivity within subcortical networks, particularly within the human auditory 114 

system. 115 

In this article, we build on the Bayesian precision factor model (PFM) introduced recently in 116 

Chandra et al. (2021) to develop a novel highly robust autoregressive matrix-Gaussian copula 117 

graphical model (ARMGCGM) to assess partial correlation-based functional connectivity in a 118 

specific network in the human brain that spans subcortical and cortical regions, the auditory 119 

system. The PFM decomposes the model precision matrix into a flexible low-rank and diagonal 120 

structure, then exploits that to design very efficient estimation algorithms. However, it makes 121 

the restrictive assumption that each variable is marginally Gaussian distributed. Several studies 122 

in the literature also make this assumption (Yu et al., 2022; Zhang et al., 2014) which has the very 123 

useful implication that a zero partial correlation between two variables (equivalent to a zero 124 

entry in the precision matrix in the corresponding position) also means independence between 125 

them after removing the effects of other variables. However, in many applications—including 126 

ours—data are often not Gaussian distributed. Additionally, data from successive fMRI volumes 127 

exhibit strong autocorrelation. The ARMGCGM extends the PFM to the case where the univariate 128 

marginals can be any arbitrary distribution while also accounting for the autocorrelations 129 

between successive fMRI scans. The association between the variables are modeled using a 130 

Gaussian copula that implies conditional independence for zero partial correlation, allowing easy 131 

interpretability of the conditional dependence graph. As developed, the ARMGCGM approach is 132 

broadly applicable for studying undirected functional graphs using large-scale fMRI data. 133 

We use the novel ARMGCGM to investigate functional connectivity between specific nodes 134 

across the human auditory system. We used publicly available 7T resting state fMRI from over 135 

one hundred participants to examine auditory connectivity. To probe connectivity within the 136 

auditory system, we included auditory cortical regions of interest as well as subcortical auditory 137 

regions derived from human histology (Sitek et al., 2019). As the auditory pathway comprises a 138 
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chain of multiple subcortical structures, and due to the largely lateralized organization of the 139 

lemniscal auditory system, we hypothesized that partial correlations would be greatest between 140 

adjacent nodes in the same hemisphere, over and above the contributions from other auditory 141 

(and non-auditory) regions of interest. In particular, because of the critical position of auditory 142 

midbrain and thalamus as computational hubs involving bottom-up and top-down information 143 

transfer (Mihai et al., 2019; Tabas et al., 2021), we hypothesized strong partial correlations 144 

between inferior colliculus and medial geniculate. We further assessed reliability across 145 

acquisitions by separately analyzing data with anterior–posterior and posterior–anterior phase-146 

encoding directions, as well as leave-10%-out cross-validation. We then compared our 147 

ARMGCGM-based connectivity results with those from a full correlation approach as well as 148 

alternative partial correlation methods. Overall, our consistent findings of hierarchical 149 

connectivity within the auditory system using our novel partial correlation method—consistent 150 

across data partitions and leave-10%-out validation— demonstrate the methodological reliability 151 

of our ARMGCGM approach as well as the neurobiological organization of auditory structures in 152 

the human primary auditory system. 153 

 154 

2. Materials and methods 155 

2.1 Magnetic resonance imaging acquisition and processing 156 

We used resting state fMRI from 106 participants in the 7T Human Connectome Project (Elam et 157 

al., 2021; Van Essen et al., 2012). Specifically, we utilized the minimally preprocessed volumetric 158 

data in common space (Glasser et al., 2013). BOLD fMRI data were acquired with 1.6 mm isotropic 159 

voxel size across four runs of a resting state paradigm (repetition time [TR] = 1 s, 900 TRs per 160 

run). Two runs were acquired with anterior–posterior (AP) phase encoding, and two were 161 

acquired with posterior–anterior (PA) phase encoding. For all ROIs and runs, we discarded the 162 

first 50 TRs to increase stability. 163 

For each individual and each run, we extracted mean timeseries from predefined regions of 164 

interest (ROIs). Subcortical auditory ROIs were defined using the Sitek–Gulban atlas (Sitek et al., 165 

2019). Cortical ROIs were defined using FreeSurfer’s implementation of the DKT atlas (Dale et al., 166 
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1999; Klein and Tourville, 2012). For this study we used transverse temporal gyrus (TTG) and 167 

superior temporal gyrus (STG) as auditory ROIs, as well as pericalcarine cortex (Calc) and superior 168 

frontal gyrus (SFG) as non-auditory control ROIs (see Supplementary Materials). Mean timeseries 169 

were extracted for each ROI using nilearn’s [Masker] function.  170 

2.2 Data partitioning and cross-validation 171 

BOLD fMRI is prone to geometric distortions in the phase-encoding direction which can be largely 172 

corrected using a variety of methods (Esteban et al., 2021; Jezzard and Balaban, 1995). Adjacent 173 

to motion-sensitive cerebrospinal fluid (CSF), the brainstem is particularly susceptible to such 174 

geometric distortions. Although the HCP minimal preprocessing pipeline corrects for phase-175 

encoding distortions (Glasser et al., 2013), to isolate the potential residual contribution of phase 176 

encoding direction on functional connectivity estimates, we conducted separate analyses on data 177 

collected with posterior–anterior (PA) phase encoding direction (runs 1 and 3) and anterior–178 

posterior (AP) phase encoding direction (runs 2 and 4) and compared the results. As the fMRI 179 

data acquired in the two phases will be analyzed separately but using the same probability-180 

model, we use the same notations for the different phases to describe our proposed model in 181 

the following sections. 182 

We further evaluated our results using a leave-10%-out cross-validation (CV) approach. We 183 

assessed the stability of the connectivity estimates by checking the correlation between the 184 

results obtained from each acquisition scheme.  185 

 186 

2.3 Autoregressive matrix-Gaussian copula graphical models 187 

The Bayesian precision factor model (PFM), developed recently in (Chandra et al., 2021), 188 

provided a novel computationally efficient robust technique for estimating precision matrices. 189 

Since partial correlations can be readily obtained from the precision matrix, the approach allowed 190 

straightforward estimation of the underlying connectivity graphs. Previously, (Lee and Kim, 2021) 191 

obtained the precision matrix by inverting the estimated covariance matrix. However, this 192 

approach often tends to exhibit poor empirical performance (Pourahmadi, 2013). 193 
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Most partial correlation-based conditional dependency graph estimation procedures in the 194 

statistical literature (Cai et al., 2020; Chandra et al., 2021; Friedman et al., 2008; Warnick et al., 195 

2018) assume that the joint distribution of the data is independent and identically distributed 196 

(iid) multivariate Gaussian, which implies that the univariate marginal distributions are also all 197 

Gaussians. However, successive fMRI scans have strong autocorrelations, and their marginal 198 

distributions exhibit substantial deviance from the Gaussian assumption. In this paper, we 199 

therefore extend the PFM to accommodate non-Gaussian marginals, while appropriately 200 

accounting for the temporal dependence between successive fMRI scans.  201 

Let 𝑌!,#
(%,&) be the fMRI timeseries corresponding to the 𝑖-th individual’s 𝑗-th ROI at the 𝑡-th 202 

timepoint in the 𝑟-th run. In our application we are interested in studying the connectivity 203 

between 𝑑 = 12 ROIs along the central auditory pathway using fMRI timeseries of length 𝑇 =204 

850 from 𝑁 = 106 individuals each undergoing 𝑅 = 2 runs. We let 𝑓#
(%,&) be the (unknown) 205 

marginal density of 𝑌!,#
(%,&) with corresponding cumulative distribution function (CDF) 𝐹#

(%,&) . 206 

Copulas provide a broadly applicable class of tools that allow the joint distribution of 𝑌!,#
(%,&) to be 207 

flexibly characterized by first modeling the univariate marginals 𝑓#
(%,&) and then hierarchically 208 

modeling their joint dependencies by mapping the 𝐹#
(%,&)3𝑌!,#

(%,&)4’s to a joint probability space. For 209 

Gaussian copulas, this is done by setting 𝑍!,#
(%,&) = Φ() 7𝐹#

(%,&)3𝑌!,#
(%,&)48, where Φ(⋅) is the CDF of a 210 

standard Gaussian distribution. This implies marginally 𝑍!,#
(%,&) ∼ N(0,1) for all 𝑟, 𝑖, 𝑗, 𝑡, where 211 

N(𝜇, 𝜎*) denotes a univariate Gaussian distribution with mean 𝜇 and variance 𝜎*. We let 𝒁(%,&) =212 

B3𝑍!,#
(%,&)4C

+×-
 denote the matrix of fMRI signals corresponding to the 𝑖-th individual in the 𝑟-th 213 

run in the transformed Gaussian space. The Gaussian copula assumption on 𝐹!,#
(%,&)3𝑌!,#

(%,&)4’s 214 

implies that the joint distribution of 𝒁(%,&) is Gaussian as well. The dependencies between the 215 

𝑍!,#
(%,&)’s are therefore characterized entirely by their correlations. Additionally, since the 216 

dependence relationships between the observed 𝑌!,#
(%,&)’s are modeled only through 𝑍!,#

(%,&)’s, these 217 

correlations also completely characterize the dependencies between the 𝑌!,#
(%,&)’s. 218 
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Note that probabilistic dependencies exist between 𝑍!,#
(%,&)’s across both 𝑗 and 𝑡; dependence 219 

across 𝑗 incurs due to the interaction between the ROIs whereas dependence across 𝑡 occurs due 220 

to the temporal dependence between successive fMRI scans. We let 𝑹. denote the 𝑑	 × 𝑑 221 

correlation matrix accounting for the dependence across the 𝑑 different ROIs across all runs and 222 

individuals.  223 

While our main interest lies in estimating these dependencies between the ROIs, it is also crucial 224 

to consider the temporal dependence in the 𝑌!,#
(%,&)’s. Let 𝒁⋅,#

(%,&) = 3𝑍),#
(%,&), … , 𝑍+,#

(%,&)4
+

be the 𝑗-th 225 

column of 𝒁(%,&), i.e., the timeseries corresponding to the 𝑖-th individual’s 𝑗-th ROI in the 𝑟-th run. 226 

We develop our model in a hierarchical manner. To being with, we use autoregressive (AR) 227 

processes of order 𝐿 to model higher-order temporal dependencies in the 𝑍!,#
(%,&)’s as 228 

𝑍!,#
(%,&) = I 𝛽!!,#

(%,&)
0

!!1)

𝑍!(!!,#
(%,&) + 𝜖!,#

(%,&), 	 	 𝜖),#
(%,&), … , 𝜖+,#

(%,&) ∼&&- N30, 𝜍#
*(%,&)4, (1) 

with 𝑍!(!!,#
(%,&) = 0 if 𝑡2 ≥ 𝑡. We assume separate (𝜷, 𝝇*) parameters across (𝑟, 𝑖, 𝑗) in (1) to make 

the model adapt to different timeseries patterns across different ROIs, individuals, and runs.  

Let 𝑹𝒯,#
(%,&) be the correlation matrix of 𝒁⋅,#

(%,&) induced by the AR(𝐿) model in (1). We let 𝝃⋅,#
(%,&) =

3𝑹𝒯,#
(%,&)4

("#𝒁⋅,#
(%,&) be the AR corrected timeseries corresponding to the 𝑗-th ROI for 𝑗 = 1,… , 𝑑. We 

define the 𝑇 × 𝑑 matrix 𝜩(%,&) = U𝝃⋅,)
(%,&) … 𝝃⋅,-

(%,&)V = U𝝃),⋅
(%,&) … 𝝃+,⋅

(%,&)V
+

 where 𝝃!,⋅
(%,&) is the 𝑡-

th row of 𝜩(%,&) and can be interpreted as the fMRI signals in the Gaussian copula space 
subsequent to filtering out the temporal dependence at time point 𝑡. We then let 

𝝃),⋅
(%,&), … , 𝝃+,⋅

(%,&) ∼&&- N(𝟎, 𝑹4). (2) 

The formulations in (1)-(2) imply the following joint distribution on 𝒁(%,&) 229 

𝑓3𝒁(%,&) ∣∣ 𝑹., 𝑹𝒯,)
(%,&), … , 𝑹𝒯,-

(%,&) 4 =
𝑒(

)
*tr7𝑹𝛀

%𝟏𝚵((,*),𝚵((,*):

(2π)
-+
* |𝑹.|

+
*∏ ^𝑹𝒯,#

(%,&)^
)
*-

#1)

. (3) 

 230 
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 231 

Figure 1 Graphical illustration of the hierarchical structure of the autoregressive matrix-Gaussian 
copula graphical model (ARMGCGM): For brevity, we omit the superscript (𝑟, 𝑖)—the run and 
subject indicators, respectively, in this illustration. 𝑌!,#  is the observed BOLD signal from the 𝑗-th 

ROI at the 𝑡-th time point. 𝑍!,# = 𝛷() 3𝐹#U𝑌!,#V4 is the BOLD signal in the Gaussian copula space. 
Probabilistic dependencies exist between 𝑍!,#’s across both 𝑗 and 𝑡; dependence across 𝑗 incurs 
due to the interaction between the ROIs whereas dependence across 𝑡 occurs due to the temporal 
dependence between successive fMRI scans. 𝜉!,#’s are the autocorrelation corrected 𝑍!,#’s with 

U𝜉!,), … , 𝜉!,-V
+ ∼&&- N-(𝟎, 𝑹4()) for all 𝑡 = 1,… , 𝑇. 

Although the 𝑹𝒯,#
(%,&)’s are massive dimensional 𝑇	 × 𝑇 matrices, notably they are characterized 232 

entirely by the associated autoregressive parameters 7β),#
(%,&), … , β0,#

(%,&), ς#
*(%,&)8, leading to their 233 

straightforward numerically inexpensive evaluations in (3); we discuss the details in the posterior 234 

computation section in Supplementary Materials. Let 𝛀 = 3Uω#,#!V4 be the precision matrix 235 

corresponding to 𝑹., i.e., 𝑹. = 𝚿("#𝛀()𝚿("# with 𝚿 = diag(𝛀()). Then, by properties of 236 

copula and the simple multivariate Gaussian distribution, it can be shown that, irrespective of 237 

the form of the marginal 𝑓#
(%,&)’s, the ROIs 𝑌!,#

(%,&) and 𝑌!,#!
(%,&)  will be conditionally dependent on 238 

(and hence functionally connected with) each other given the rest if and only if ω#,#! ≠ 0. This 239 

way, the precision matrix Ω characterizes the functional connectivity between the different 240 

𝑌!,#
(%,&)’s across 𝑗.  241 

We model the unknown univariate marginal distributions 𝑓#
(%,&)’s using location-scale mixtures of 242 

Gaussians. Such mixtures can flexibly estimate a very large class of unknown densities (Ghosal et 243 

al., 1999). Specifically, we let 244 

Autocorrelation
correction

Autocorrelation
correction
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𝑓#
(%,&) =I𝜋;,#

(%,&)N
<

;1)

3𝜇;,#
(%,&), 𝜎;,#

*(%,&)4, (4) 

where π;,#
(%,&) is the weight attached to the ℎ-th mixture component and ∑ π;,#

(%,&)<
;1) = 1 with 𝐾 245 

being a suitably chosen, moderately large, fixed integer.  246 

While fMRI timeseries often showcase very distinct patterns and distributions for different 247 

individuals as well as across different ROIs of the same individual, we expect primary sensory 248 

region to be highly similar between healthy participants due to strongly stereotyped processing 249 

across individuals and well-conserved auditory function in these brain regions across evolution 250 

(Hutchison et al., 2013). In (4), we therefore consider separate mixture models across different 251 

ROIs, individuals, and runs, whereas in (3), the 𝒁(%,&)’s share a common correlation matrix 𝑹. 252 

across all individuals and runs. This modeling strategy also allows borrowing of information 253 

across individuals and runs to amplify signals for estimating resting-state functional connectivity 254 

in adult humans while accounting for subject and run-specific variabilities using separate 255 

marginal distributions. This is conceptually similar to approaches used in group independent 256 

component analysis (Calhoun et al., 2001) and cohort-level brain mapping (Varoquaux et al., 257 

2013). In later sections, we showed that this approach yields highly consistent estimates of 258 

functional connectivity graphs even though BOLD signals from small deep brain regions have very 259 

low signal-to-noise ratio (Bianciardi et al., 2016; Colizoli et al., 2020; de Hollander et al., 2017; 260 

Sclocco et al., 2018).  261 

To estimate the precision matrix 𝛀, we consider the framework of Chandra et al. (2021). Recall 262 

that 𝑹. = 𝚿("#𝛀()𝚿("# with 𝚿 = diag(𝛀()). We assume 𝛀 to admit a lower-rank plus diagonal 263 

(LRD) decomposition 𝛀 = 𝚲𝚲+ + 𝚫  where 𝚲 is a 𝑑 × 𝑞 matrix and a diagonal matrix 𝚫 =264 

diag(𝛿)*, … , 𝛿-*) with positive 𝛿#*’s. Notably, all positive definite matrices admit such a 265 

representation for some 𝑞 ≤ 𝑑.  266 

We take a Bayesian route to estimation and inference, where we assign priors to the model 267 

parameters, and then infer them based on samples drawn from the posterior using a Markov 268 

chain Monte Carlo (MCMC) algorithm discussed in detail in the Supplementary Materials. As was 269 

shown in Chandra et al. (2021), the LRD representation makes the MCMC sampling very efficient 270 
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via a latent variable augmentation scheme. In the Supplementary Materials, we also discuss a 271 

multiple hypothesis testing-based edge discovery procedure that utilizes the posterior 272 

uncertainty of the parameters and controls the false discovery rate (FDR) at 10% level in a 273 

principled manner. 274 

2.4 Priors on the parameters 275 

For the autoregressive parameters in equation (1), for all 𝑟, 𝑖, 𝑗 we assume  276 

β),#
(%,&), … , β0,#

(%,&) ∣ ς#
*(%,&) ∼&&- N30, 𝜈=()ς#

*(%,&)4,	 ς#
(*(%,&) ∼&&- GaU𝑎>, 𝑏>V,		where 𝜈= , 𝑎? , 𝑏? > 0 are 277 

fixed hyperparameters, and Ga(𝑎, 𝑏) denotes a gamma distribution with mean 𝑎/𝑏 and variance 278 

𝑎/𝑏*. For the parameters of the mixture models specifying the marginals in equation (4), we 279 

consider the following priors  280 

3π),#
(%,&), … , π<,#

(%,&)4 ∼ Dir 3
α@
𝐾 ,… ,

α@
𝐾 4 ,	 	 3µ;,#

(%,&), σ;,#
*(%,&)4 ∼&&- NIG(µA, νA, 𝑎A, 𝑏A), 281 

where (𝜇, 𝜎*) ∼ NIG(𝜇A, 𝜈A, 𝑎A, 𝑏A), implying that 𝜇|𝜎* ∼ N(𝜇A, 𝜈A()𝜎*) and 𝜎(* ∼ Ga(𝑎A, 𝑏A). 282 

We	consider	a	shrinkage	prior	on	the	elements	of	𝚲		that	shrinks	redundant	elements	of	𝚲	to	283 

zero	allowing	additional	model-based	parameter	reduction.	In	particular,	we	assign	a	two-284 

parameter	 generalization	 of	 the	 Dirichlet-Laplace	 (DL)	 prior	 from	 Bhattacharya	 et	 al.	285 

(Bhattacharya	et	al.,	2015)	that	allows	more	flexible	tail	behavior	on	the	elements	of	𝚲.		On	286 

a	𝑑-dimensional	vector	𝜽 = (θ), … , θ-)+ ,	our	DL	prior	with	parameters	𝑎	and	𝑏,	denoted	by	287 

DL(𝑎, 𝑏),	can	be	specified	in	the	following	hierarchical	manner.	288 

Θ# ∣ 𝝔, 𝝓, τ ∼&B- NU0, ϱ#ϕ#*τ*V, 		ϱ# ∼
&&- Exp(1/2), 		𝝓 ∼ Dir(𝑎, … , 𝑎), 		τ ∼ Ga(𝑑𝑎, 𝑏), 289 

where 𝜃#  is the 𝑗-th element of 𝜽, 𝝓 and 𝝔 are vectors of same length as 𝜽, Exp(𝑎) is an 290 

exponential distribution with mean 1/𝑎, Dir(𝑎), … , 𝑎-) is a 𝑑-dimensional Dirichlet distribution. 291 

The original DL prior is a special case with 𝑏 = 1/2. We let vec(𝚲) ∼ DL(𝑎, 𝑏).  292 

We use a Dirichlet process (DP) prior (Ferguson, 1973) on the 𝛿#*'s as 𝛿#* ^𝐺 ∼&&- 𝐺, 𝐺^ 𝛼 ∼293 

DP(𝛼, 𝐺A)	with	𝐺A = Ga(𝑎C , 𝑏C), 𝛼 ∼ Ga(𝑎D , 𝑏D), where 𝛼 is the concentration parameter and 294 

𝐺A is the base measure to favor a smaller number of unique δ#*’s in a model-based manner. The 295 

DP model allows clustering the δ#*’s facilitating additional data-adaptive parameter reduction 296 
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when necessary. Additionally a DP prior has full prior support on the range-space of the number 297 

of unique δ#*’s implying a fully flexible model (see Chapter 4 of (Ghosal and van der Vaart, 2017).  298 

We discuss a Markov chain monte Carlo (MCMC) based strategy of sampling from the posterior 299 

of ARMGCGM in Section S1.2 of the Supplementary Materials, where the involving steps are 300 

parallelized over the subjects, allowing scalability. In Section S1.3 of the Supplementary 301 

Materials, we discuss the choice of hyperparameters used for the analyses presented in this 302 

paper. Our implementation using the proposed parallelized MCMC scheme ran in 125 min in a 303 

system with 13th Gen Intel(R) Core(TM) i9-13900K CPU and 128GB RAM, fitting the ARMGCGM 304 

to the 12-node auditory network with 7,500 MCMC iterations, including both phase-encoding 305 

schemes. 306 

3. Results 307 

3.1 Partial correlations between regions of interest 308 

Using our ARMGCGM approach, we first estimate the precision matrix 𝛀 and subsequently 309 

compute the partial correlation matrix. We report the significant edges subject to controlling the 310 

posterior false discovery rate (Sarkar et al., 2008) at the 10% level. (Details are provided in Section 311 

S1.4 in the Supplementary Materials.) In Figure 2 we provide the circos plots of the connectivity 312 

graphs along with respective weighted adjacency matrices. The (𝑗, ℎ)-th off-diagonal element of 313 

the adjacency matrices admit the value 0 if the edge between ROIs 𝑗 and ℎ is not statistically 314 

significant, if the edge is significant then the corresponding partial correlation is plugged in to 315 

indicate the strength of the edge. 316 

 We found that the strongest auditory connectivity was between adjacent structures in the same 317 

hemisphere, particularly between the auditory midbrain (inferior colliculus, or IC) and thalamus 318 

(medial geniculate body, or MGB) and between core and associative auditory cortex (TTG and 319 

STG). Minimal connectivity was observed between homologous auditory structures across 320 

hemispheres. Connectivity was also present between adjacent brainstem auditory structures 321 

(cochlear nucleus [CN] and superior olivary complex [SOC]), largely bilaterally. Interestingly, 322 

despite the SOC being the primary (and earliest) decussation point in the primary auditory 323 
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pathway, we only observed partial correlations between right CN and left SOC (in both data 324 

partitions), not left CN and right SOC. (See the Discussion section for potential explanations.) 325 

 326 

Figure 2. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) 
and anterior-to-posterior (AP; right) phase-encoding directions using the ARMGCGM approach in 
subcortical and cortical auditory regions. Positive (negative) associations are represented by red 
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(blue) links, their opacities being proportional to the corresponding association strengths. The link 
widths are inversely proportional to the number of edges associated with the corresponding 
nodes. B: The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs). 
C: Schematic of the auditory pathway from the cochlea through brainstem to cortex 
(https://osf.io/u2gxc/).  D: Regions of interest from which functional timeseries were extracted. 
Top: cortical regions from FreeSurfer’s DKT atlas. Bottom: subcortical auditory regions (Sitek et 
al., 2019).  

 

3.2 Effect of phase encoding scheme on subcortical connectivity 327 

Due to the anatomical location of the subcortical auditory structures—in dense, heterogeneous 328 

subcortical regions and largely adjacent to CSF—we conducted connectivity analyses separately 329 

on AP- and PA-acquired fMRI runs. We then compared the connectivity results from the two 330 

acquisition schemes. Overall connectivity patterns were highly similar between the two phase-331 

encoding schemes, as seen in panels A and B of Figure 2. Subcortical connectivity was quite robust 332 

between the brainstem auditory regions. To quantify the similarity between the results in PA and 333 

AP acquisitions (plotted in Figure 3A), we computed the Pearson correlation coefficient 𝑟 334 

between the estimated partial correlations. For the proposed ARMGCGM, 𝑟 = 0.940 with 𝑝-335 

value < 0.001. To assess the similarity in sign of connectivity between acquisition schemes, we 336 

computed the Jaccard dissimilarity on the signed off-diagonals of each adjacency matrix. For the 337 

proposed ARMGCGM, the Jaccard dissimilarity was 0.231. Additionally, we computed the 338 

Euclidean distance between partial correlations in the two acquisition schemes, compared it with 339 

some selected approaches from the literature and report the results in Table 1. These results 340 

indicate strong consistency between the findings in the two different acquisition schemes.  341 
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 342 
Figure 3. A: Pearson correlation of partial correlation values between posterior-to-anterior and 
anterior-to-posterior phase-encoding acquisition schemes across all edges in the graph (region- 
to-region connections). B: Partial correlation coefficients across cross-validation folds (10 folds for 
each of the two phase-encoding acquisition schemes). 

3.3 Cross-validation of partial correlations 343 

To assess the stability of our proposed ARMGCGM, we ran leave-10%-out cross-validation by 344 

removing 10% randomly selected subjects in each fold. We repeated this for each phase encoding 345 

scheme for a total of 20 folds; partial correlation coefficients for each fold are presented in Figure 346 

3B. Across all folds (and both phase encoding schemes), the results are very highly similar 347 

(intraclass correlation of edgewise partial correlations across cross-validation folds = 0.991). 348 

 349 

3.4 Comparison with existing approaches 350 

We compared with three standard approaches in the literature: (1) correlation analysis between 351 

the ROIs  (Biswal et al., 1995; Cordes et al., 2000; Fox and Raichle, 2007; Lowe et al., 1998; Smith, 352 

Vidaurre, et al., 2013); and partial correlation analyses using (2) the graphical lasso (Friedman et 353 

al., 2008) and (3) the precision factor model (Chandra et al., 2021). In all comparisons, we did 354 

separate analyses for each of the acquisition schemes. 355 

Comparison 1: Full correlation approach: Here we study the marginal correlation between the 356 

ROIs. Letting ρ#,#!  denote the correlation between ROIs 𝑗 and 𝑗2 in resting state we test 357 

𝐻A,#,#!: ®ρ#,#!® = 0 versus 𝐻),#,#!: ®ρ#,#!® ≠ 0 for all 1 ≤ 𝑗 < 𝑗2 ≤ 𝑑. 358 
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For each acquisition scheme, we first concatenate the timeseries across all runs and individuals. 359 

Then we perform 𝑡-tests for correlation for all (𝑗, 𝑗2) pairs followed by the Benjamini-Hochberg 360 

false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) for multiplicity adjustment 361 

and control the FDR at level 0.10. Traditionally, full correlations are used to measure functional 362 

“connectivity” in resting state fMRI studies (Biswal et al., 1995; Cordes et al., 2000; Lowe et al., 363 

1998). In Figure 4 we provide the correlation graphs and correlation matrices separately for each 364 

acquisition schemes. We find the correlation graphs to be much denser compared to the partial 365 

correlation graphs presented in Figure 2. Unlike in the ARMGCGM method, we observed negative 366 

values when using full correlations (particularly in the PA acquisition scheme), although the 367 

negative correlations are generally closer to 0 than the positive correlations are. In this full 368 

correlation approach, the similarity between runs split by data acquisition scheme was 369 

characterized by Pearson’s 𝑟 of 0.811 (𝑝-value < 	0.001) and a Euclidean distance of 1.016. The 370 

Jaccard dissimilarity of the signed adjacency matrix was 0.338. 371 
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 372 

Figure 4. A: Full correlation connectivity in data acquired with posterior-to-anterior (PA; left) and 
anterior-to-posterior (AP; right) phase-encoding directions using 𝑡-tests. Positive (negative) 
associations are represented by red (blue) links, their opacities being proportional to the 
corresponding association strengths. The link widths are inversely proportional to the number of 
edges associated with the corresponding nodes. B: The same results as (A), viewed as adjacency 
matrices (left = PA runs; right = AP runs). 

 373 

 Comparison 2: Partial correlations with Glasso approach: We first consider the graphical lasso 374 

(Glasso) approach (Friedman et al., 2008) as another alternative choice for partial correlation 375 

based conditional graph estimation. Glasso assumes iid data from a multivariate Gaussian 376 

distribution (i.e., without any correction for autocorrelation) with l1(⋅) penalty on the precision 377 
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matrix. In this analysis we concatenated the 𝑌!,#
(%,&)	values across (𝑟, 𝑖) and created a (𝑇𝑅) × 𝑑 378 

matrix, say 𝒀, for each acquisition scheme, and applied the Glasso model on 𝒀. We use 10-fold 379 

cross-validation to choose the optimal penalty parameter. The Glasso approach provides a point 380 

estimate of the sparse precision matrix and hence the functional connectivity network. In panels 381 

A and B of Figure 5, we plot the connectivity graphs and weighted adjacency matrices, 382 

respectively, separately for each acquisition scheme.  383 

These functional connectivity graphs in Figure 5 are much denser compared to the estimates 384 

obtained by our proposed ARMGCGM in Figure 2. To quantify the robustness and stability of the 385 

Glasso graphs in this application, we compute Pearson correlation coefficient and Euclidean 386 

distance between the estimated partial correlations, and the Jaccard dissimilarity between the 387 

signs of the adjacency matrices in PA and AP acquisitions in the same manner as we did for 388 

ARMGCGM elaborated in Section 3.2. We reported the values in Table 1. Figure 5 indicates that 389 

the strong positive correlations are consistent across the acquisition schemes. However, 390 

substantial discrepancy can be observed for the weak edges, particularly for the negative 391 
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correlations. This is a common phenomenon for graphical models if the Gaussian assumption is 392 

made on non-Gaussian distributed data; see, e.g., Section 5, example 1(a) in (Guha et al., 2020). 393 

 394 

 395 

 396 

Figure 5. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) 
and anterior-to-posterior (AP; right) phase-encoding directions using the Glasso approach. 
Positive (negative) associations are represented by red (blue) links, their opacities being 
proportional to the corresponding association strengths. The link widths are inversely 
proportional to the number of edges associated with the corresponding nodes. B: The same results 
as (A), viewed as adjacency matrices (left = PA runs; right = AP runs). 
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Comparison 3: Partial correlations with PFM: In this analysis we concatenated the 𝑌!,#
(%,&)	values 397 

across (𝑟, 𝑖) and created a (𝑇𝑅) × 𝑑 matrix, say 𝒀, for each acquisition scheme, and applied the 398 

PFM on 𝒀. Similar to Glasso, the PFM also assumes iid data from a multivariate Gaussian 399 

distribution and does not correct for temporal autocorrelations in the data. We infer on the graph 400 

using the Bayesian multiple comparison technique described in the Supplementary Materials. 401 

Results are provided in Figure 6. The connectivity graphs majorly differed with our ARMGCGM 402 

results, with the PFA model-derived graph being much denser and including more (weakly) 403 

negative edges. In the top panel of Figure 7 we plot the marginal Gaussian fits on the histograms 404 

of some BOLD signals. Clearly the simple Gaussian assumption does not hold here and a more 405 

sophisticated approach like ours is required. 406 

To assess the robustness and stability of the PFM, we computed Pearson correlation coefficient 407 

and Euclidean distance between the estimated partial correlations, and the Jaccard dissimilarity 408 

between the signs of the adjacency matrices in PA and AP acquisitions in the same manner as we 409 

did for ARMGCGM elaborated in Section 3.2. We reported the values in Table 1, where we see 410 

that PFM exhibits more consistency than Glasso but ARMGCGM performed best.  411 
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 412 

 413 

Figure 6. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) 
and anterior-to-posterior (AP; right) phase-encoding directions using the PFA approach 
(comparison 3). Positive (negative) associations are represented by red (blue) links, their opacities 
being proportional to the corresponding association strengths. The link widths are inversely 
proportional to the number of edges associated with the corresponding nodes. B: The same results 
as (A), viewed as adjacency matrices (left = PA runs; right = AP runs). 

Table 1 Several measures of dissimilarities between the functional connectivity networks (using 
full and partial correlations) estimated in each of the acquisition schemes are reported here. We 
provide results for all the correlation-based functional connectivity analyses, viz. ARMGCGM, full 
correlation, Glasso and PFA. Note that lower values of Jaccard dissimilarity and Euclidean 
distance implies better method. 
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Method Pearson’s Correlation 
 Coefficient 

Jaccard  
Dissimilarity 

Euclidean  
Distance 

ARMGCGM 0.940 (𝑝-value < 0.001) 0.231 0.262 

Full correlation 0.811 (𝑝-value < 	0.001)  0.338	 1.016	

Glasso 0.749 (𝑝-value < 0.001) 0.414 0.959 

PFM 0.747 (𝑝-value < 0.001) 0.379 0.975 

 414 

3.5 Fit of the autoregressive matrix-Gaussian copula graphical model 415 

Density fits: We studied the goodness-of-fit of the proposed ARMGCGM. In the top panel of 416 

Figure 7, we plotted the sample histograms and the corresponding fitted marginal densities for 417 

some selected ROIs. The sample histograms strongly indicate the distribution of the data to 418 

substantially deviate from Gaussian distributions, including some with multiple well-separated 419 

modes. Figure 7 also shows that our flexible location-scale mixture of Gaussians fit the data very 420 

well, even for the most complicated distributions. 421 

Note that finite mixture models with reasonably large number of mixture components can 422 

approximate nonparametric Dirichlet process mixture models (Ishwaran and Zarepour, 2002b, 423 

2002a). To validate whether the number of mixtures (𝐾 = 20) in model (4) is adequate, we 424 

computed the median number of non-empty clusters across MCMC samples for each subject and 425 

ROI in each run. In the bottom panel of Figure 7 we plotted the histograms of the medians across 426 

the subjects. As the number of non-empty clusters are smaller than 𝐾 consistently across all 427 

setups yielding excellent fits for complicated distributions, we conclude that our model 428 

specifications are adequate. 429 

 430 
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 431 

 432 

Figure 7. Marginal fits for the location-scale mixture of Gaussian distributions: The sample 
histograms in the top panel in green showed that distribution of the ROIs substantially deviates 
from Gaussian assumption. The blue lines were the respective fitted densities corresponding to 
the mixture model in equation (4). These figures indicated excellent goodness-of-fit. The dashed 
brown lines corresponded to marginal Gaussian fits of the vanilla PFM which were evidently 
underfitted. In the bottom panel we plotted the histogram of the number of occupied clusters 
across subjects corresponding to the mixture model indicating that our model specifications are 
adequate. 

Autocorrelation corrections: From Section 2.3 recall that 𝑍!,#
(%,&)’s were the transformed BOLD 433 

signal timeseries in the Gaussian space and ξ!,#
(%,&)’s were the autocorrelation corrected timeseries. 434 

To check for autocorrelation corrections using model (1), we plotted the partial autocorrelations 435 

between 𝑍!,#
(%,&)’s and ξ!,#

(%,&)’s across time for all ROIs. Since the 𝒁 and 𝛏 values vary across MCMC 436 

iterations, we used their posterior expectations in this analysis. In Figure 8 we plot the partial 437 

autocorrelations for a randomly selected individual in run 1 of posterior-to-anterior acquisition 438 
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scheme; the blue horizontal dashed lines represent the 5% band. The figure clearly indicates that 439 

the autoregressive model of order 𝐿	 = 5 corrects for the autocorrelations. As we obtained very 440 

similar results for other runs and acquisition schemes, we omit those in the paper. 441 

 442 

Figure 8. Partial autocorrelation plots of the fMRI timeseries for a randomly selected subject in 
the posterior-to-anterior acquisition scheme across the ROIs before (orange) and after (green) 
autocorrelation corrections; the horizontal dashed blue lines represent the 5% band. The plot 
indicates that autocorrelations are corrected in our model. 

 443 

4. Discussion 444 

The mammalian auditory pathway consists of a series of obligatory and interconnected 445 

subcortical and cortical brain structures. Assessing the connectivity of the human subcortical 446 

auditory structures has been limited due to methodological challenges of non-invasive imaging 447 

of the deep, small structures. Recent acquisition and analytical advances enable finer grained 448 

investigations of connectivity throughout the brain, including the brainstem. In this paper, we 449 

validated a novel an autoregressive matrix Gaussian copula graphical model to estimate 450 
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functional auditory connectivity patterns from a publicly available high-resolution resting state 451 

functional MRI dataset. Using partial correlations (as opposed to full correlations) allowed us to 452 

identify specific relationships between nodes in a connectivity graph by removing shared 453 

variance across nodes (Supplementary Figures S1 and S2). We found highly consistent 454 

connectivity patterns between adjacent auditory brain regions along the auditory pathway that 455 

demonstrate the efficacy of our connectivity method as well as the potential for functional 456 

connectivity investigations of the subcortical auditory system. Below, we separately discuss our 457 

novel scientific findings and our novel contributions to the statistics literature. 458 

Novel contributions to the human auditory neuroscience literature  459 

To date, there have been only limited applications of functional MRI methods to study subcortical 460 

auditory connectivity (Berlot et al., 2020; Hofmeier et al., 2018). Using our novel ARMGCGM 461 

approach in the present study, we found strong partial correlations between cochlear nucleus 462 

(CN) and superior olivary complex (SOC) bilaterally using resting state functional MRI data. Most 463 

interestingly, we observed contralateral CN–SOC connectivity between right CN and left SOC (and 464 

in both data acquisition schemes), fitting the ground truth primary auditory pathway crossing 465 

from left to right (and vice versa) between CN and SOC (Barnes et al., 1943; Schofield, 1994). 466 

These functional connectivity patterns between CN and SOC have not been previously observed 467 

in human auditory brainstem in vivo but follow our understanding of the mammalian primary 468 

auditory pathway based on research in animal models (Barnes et al., 1943; Doucet and Ryugo, 469 

2003; Harrison and Irving, 1966). Principally, auditory information that is transduced by the 470 

cochlea of each ear is transmitted via the cochlear nerve to the cochlear nucleus, the first stage 471 

of the central auditory pathway, on each side of the brainstem. In the primary auditory pathway, 472 

the lemniscal anteroventral subdivision of the cochlear nucleus enhances the fine temporal 473 

precision of incoming auditory signals (Pickles, 2015). From there, auditory signals are passed to 474 

both the ipsilateral and contralateral SOC for further auditory processing, including spatial 475 

localization (Moore, 2000). The SOC is comprised of multiple distinct subdivisions, which receive 476 

ipsilateral and contralateral connections from cochlear nucleus to varying degrees (Pickles, 477 

2015), aligning with our overall bilateral connectivity results between CN and SOC. 478 
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While we observed consistent right CN and left SOC connectivity, it is unclear why similar patterns 479 

were not observed between left CN and right SOC. One contributor is the lower signal-to-noise 480 

ratio in fMRI data from the lower brainstem. Paired with the small size of each of the brainstem 481 

auditory nuclei, we may still be at the edge of what is detectable using present functional 482 

connectivity methods. Additionally, this analysis was conducted on “resting state” fMRI data, 483 

during which no auditory stimuli of interest were presented or overt tasks were conducted. 484 

Resting state fMRI connectivity in the cochlear nucleus and superior olivary complex has not been 485 

examined in the previous literature to our knowledge; it is possible that sound-evoked 486 

connectivity methods would evoke greater functional connectivity, particularly in these earliest 487 

stages of the auditory pathway. Further, ipsilateral connections (i.e., between left CN and left 488 

SOC and between right CN and right SOC) may be artifactually stronger due to their close physical 489 

proximity. Even with relatively high 1.05 mm spatial resolution 7T fMRI data, CN and SOC on each 490 

side are only separated by a few voxels. These regions are thus at increased likelihood of sharing 491 

temporal fluctuations due to partial volume effects, wide point-spread functions, spatial 492 

dependence, or other as-yet-unsolved fMRI confounds that are particularly acute in the lower 493 

brainstem. 494 

Moving up the primary auditory pathway, we observed significant partial correlations between 495 

ipsilateral inferior colliculus (IC) in midbrain and medial geniculate body (MGB) of the thalamus 496 

in both hemispheres and in both phase-encoding schemes. Inferior colliculus is a major 497 

convergence point in the auditory system, with the lemniscal IC subdivision being thought to 498 

convert distinct auditory features into discrete auditory objects for the first time in the auditory 499 

pathway. MGB continues the refinement of auditory objects via direct lemniscal connections 500 

from IC as well as rich corticofugal connections from auditory cortex to non-lemniscal MGB 501 

subdivisions (Pickles, 2015). Interestingly, we found strong partial correlations between left and 502 

right MGB in both datasets. Although not directly connected by large white matter bundles, left 503 

and right MGB are expected to process auditory information from IC at similar levels of 504 

abstraction. Thus, partial correlations may reflect indirect but shared neural mechanisms of 505 

auditory processing in the thalamus. 506 
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We did not observe IC partial correlation connectivity with either brainstem or cortical structures. 507 

IC is a key hub in the auditory system, receiving bottom-up sensory information as well as top-508 

down modulating signals from auditory cortex and other brain regions. The lack of partial 509 

correlation connectivity with IC may be due to strong IC subdivision-specific functionality, with IC 510 

core primarily serving an ascending lemniscal role and dorsal and external IC having top-down 511 

and non-lemniscal functions. Averaging over these subdivisions may obfuscate specific 512 

connectivity patterns. Alternatively, our results may suggest that it does not have a specialized 513 

relationship with any one region beyond MGB but rather integrates and transforms auditory and 514 

other neural signals.  515 

Finally in auditory cortex, transverse temporal gyrus (TTG)—the location of primary auditory 516 

cortex—was strongly connected with ipsilateral superior temporal gyrus (STG), which contains 517 

secondary and associative auditory cortices. Primary auditory cortex receives direct input from 518 

lemniscal MGB and is the last auditory structure with fine-grained tonotopicity (Pickles, 2015). In 519 

humans, STG is hierarchically structured, with portions further away from primary auditory 520 

cortex having increasingly wider temporal integration windows (Hamilton et al., 2018; Norman-521 

Haignere et al., 2022) and greater categorical specificity (Bhaya-Grossman and Chang, 2022; Feng 522 

et al., 2021; Hamilton et al., 2020; Keshishian et al., 2023; Nourski et al., 2018; Pernet et al., 2015; 523 

Rauschecker and Tian, 2000; Rupp et al., 2022). While invasive recordings from human STG 524 

suggest a potential direct connection between MGB and posterior STG (Hamilton et al., 2021), 525 

we found mixed evidence for such a direct pathway in ourOur partial correlation data (in one 526 

hemisphere in only one of the data partitions). Our partial correlation functional connectivity 527 

results align with a vast literature demonstrating information flow between primary and non-528 

primary auditory cortex (for review, see (Hackett, 2011). The lack of contralateral partial 529 

correlation approach measures the correlation between the concerned ROIs after filtering out 530 

the indirect effects of the remaining ROIs. Complementarily, some literature suggests that left 531 

and right auditory cortex process auditory information at distinct timescales and levels of 532 

abstraction (Güntürkün et al., 2020; Hickok and Poeppel, 2007; Zatorre et al., 2002), with left 533 

auditory cortex being uniquely tuned to rapidly changing temporal information—such as the 534 
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phonetics of speech sounds—while right auditory cortex is more sensitive to slower changes in 535 

the spectral domain, particularly for speech prosody as well as music. 536 

In comparison to our ARMGCGM partial correlation approach, we computed full correlations in 537 

the same network. Connections were much denser in the full correlation approach, aligning with 538 

the rich interconnectedness of the auditory system (Pickles, 2015). Unlike with partial 539 

correlations, which highlighted hierarchical connections between adjacent notes along the 540 

auditory pathway, we observed positive full correlations between all auditory cortical regions, 541 

regardless of hemisphere. Additionally, we found a strong positive subnetwork including IC and 542 

MGB bilaterally, whereas many of these connections (such as between left and right IC) were 543 

absent in the ARMGCGM partial correlation analysis. Since partial correlations characterize 544 

connectivity between two nodes after filtering out the effects of the other nodes, our combined 545 

results point to widespread shared information across the auditory system (per full correlation 546 

analysis) with additional shared processing between adjacent nodes of the canonical auditory 547 

pathway (per partial correlation analysis). This suggests distinct but complementary use of full 548 

and partial correlations, with full correlation analysis identifying a rich network of interconnected 549 

nodes, while partial correlations are sensitive to strong node-to-node connections.     550 

Novel contributions to the graphical model literature  551 

In this article, we developed an autoregressive matrix-Gaussian copula graphical model 552 

(ARMGCGM) for non-Gaussian distributed data with temporal autocorrelation, the problem of 553 

estimating brain connectivity patterns from resting state fMRI data being the motivating 554 

problem. The ARMGCGM first uses higher order autoregressive models to capture the temporal 555 

dependence in the time series for each brain region of interest, then uses flexible location-scale 556 

mixtures of Gaussians for modeling component wise residual marginal distributions associated 557 

with different regions, and finally uses a Gaussian copula to capture the dependence across the 558 

different regions. The ARMGCGM allows borrowing of information across subjects to infer on a 559 

common connectivity graph while appropriately taking into account subject and run-specific 560 

variability via flexible mixture models. We leverage recent advances on modeling precision 561 

matrices via a flexible but computationally efficient low-rank-diagonal decomposition method 562 

that not only allows efficient exploration of the posterior space for estimating the connectivity 563 
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graph but also enables easy assessment of associated uncertainty. Compared to alternative 564 

approaches to exploiting partial correlations to estimate connectivity graphs, our proposed 565 

ARMGCGM method produces results that are more consistent across the acquisition schemes 566 

with respect to multiple metrics. Additionally, the results remain highly stable in a leave-10%-out 567 

cross-validation. Considering the low signal to noise ratio in BOLD signals from deep small 568 

auditory structures, our results demonstrate the sensitivity and specificity of our model to 569 

neurobiologically plausible connections. Although the proposed ARMGCGM is a more nuanced 570 

approach and potentially capable of fitting arbitrary complicated distributions, it can be 571 

numerically expensive compared to simplistic parametric models. However, our parallelized 572 

Markov chain Monte Carlo implementation ran across all participants and runs in just over two 573 

hours, demonstrating a feasible computation time given the size of the data.  574 

Comparisons to connectivity literature 575 

Our study is the first to systematically assess connectivity across the human auditory pathway 576 

using multiple connectivity measures, with previous subcortical connectivity studies limited to 577 

full correlation analysis (Berlot et al., 2020; Hofmeier et al., 2018; Leaver et al., 2016; Zhang et 578 

al., 2015). Given the anatomical and methodological constraints with subcortical fMRI, the 579 

limited fMRI connectivity literature is not too surprising. First, the deep location of the subcortical 580 

structures places them far from MRI transmit and receive coils, limiting the signal-to-noise ratio 581 

from these regions (Miletić et al., 2020). Because the brainstem is relatively centrally located 582 

relative to the multiple receiver coils, accelerated acquisition techniques that are based on phase 583 

differences between receiver coils are less effective (Preibisch et al., 2015). Second, subcortical 584 

nuclei can be quite small, requiring higher resolution imaging protocols (which unfortunately 585 

trade off SNR in order to achieve greater spatial resolution). Third, subcortical nuclei are densely 586 

organized adjacent to nuclei with heterogeneous functions, so voxels immediately next to those 587 

containing core auditory structures could contain visual, motor, or sensory nuclei, white matter, 588 

CSF, or a combination of any of these. Ultimately, each of these constraints limits the SNR from 589 

subcortical auditory nuclei. 590 

Constraints in human subcortical auditory research have translational consequences beyond 591 

basic science. For instance, while cochlear implants have been widely successful at providing 592 
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sensory information to individuals with sensorineural hearing impairments with an intact 593 

cochlear nerve (Kral et al., 2019; Reiss, 2020), auditory prostheses in the central auditory system 594 

have been less successful (Lim et al., 2009; Shetty et al., 2021), due in no small part to our limited 595 

understanding of the complexity of sound representation in the ascending auditory pathway.  596 

Limitations and future directions 597 

As the canonical neuroanatomy of the primary auditory pathway is consistent across individuals 598 

and well-described in the literature (Sitek et al., 2019), we have the a priori expectation of a 599 

shared auditory graph across all participants. As the goal of this study was to map a network that 600 

is strongly expected based on anatomy and non-human neurophysiology, we built a joint model 601 

that includes data from all participants. This is similar to approaches used in group independent 602 

component analysis (Calhoun et al., 2001) and cohort-level brain mapping (Varoquaux et al., 603 

2013). However, subject-specific differences in the distributions of the BOLD signals as well as 604 

autocorrelations between successive scans can induce artifactual and noisy edges in functional 605 

connectivity graphs, as seen in the Glasso and PFMs; we take care of these issues in ARMGCGM. 606 

Nevertheless, we did not investigate differences in functional connectivity between participants 607 

in the current article. Building on ARMGCGM to explore how functional connectivity varies 608 

between individuals and groups or as a function of behavior is a priority for future work. 609 

In general, resting state fMRI connectivity measures become more reliable with longer scans (Zuo 610 

et al., 2019). Measurement correlations increase as time in the scanner increases, from Pearson’s 611 

𝑟	 = 	0.82 at 9 min to 𝑟	 = 	0.92 at 27 min to 𝑟	 = 	0.97 at 90 min (Laumann et al., 2015). Others 612 

described improved intraclass correlation coefficients with datasets beyond 20 minutes and up 613 

to 50 minutes (Xu et al., 2016). The Midnight Scan Club group (Gordon, Laumann, Gilmore, et al., 614 

2017) computed a range of network connectivity metrics and found that reliability generally 615 

required at least 30 minutes of resting state data per subject. One paper (Greene et al., 2020) 616 

specifically investigated functional connectivity in subcortical structures and found even longer 617 

scan requirements (up to 100 minutes) for subcortical structures due to decreased signal-to-618 

noise ratios deeper in the brain. Additionally, primary sensory networks are among the most 619 

stable within and across participants (Gratton et al., 2018; Hutchison et al., 2013). We therefore 620 
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believe it is appropriate and necessary to use datasets with longer scans of resting state data in 621 

order to investigate even static subcortical auditory connectivity. 622 

Further, while many brain networks exhibit temporal dynamics that can tell us about mental state 623 

(Fornito et al., 2012) or disease ((Sakoğlu et al., 2010); see (Hutchison et al., 2013) for a review), 624 

functional connectivity within primary sensory networks are among the most stable over time 625 

(Gratton et al., 2018), as they share bidirectional physical connections, share contributions to the 626 

same physiological tasks, and are evolutionarily conserved across species (Hutchison and 627 

Everling, 2012). In the present work, we were interested in characterizing the stationary 628 

connectivity in the primary auditory pathway that is present at rest across individuals. Adapting 629 

time-varying dynamics into this model is a promising future direction, particularly if we are 630 

interested in higher level cognitive brain networks that vary as a function of task or mental state.  631 

 632 

5. Conclusions 633 

In this article, we validated a novel autoregressive matrix Gaussian copula graphical model for 634 

partial correlation estimation while appropriately correcting for temporal autocorrelations. Using 635 

this approach, we identified functional connectivity in the human auditory system using resting 636 

state functional MRI. Whereas a complementary approach using full correlations identified a rich 637 

network of interconnected auditory regions, partial correlations highlighted direct connections 638 

between adjacent structures along auditory pathways. In particular, subcortical connectivity was 639 

highly consistent across acquisitions, demonstrating the utility and applicability of functional 640 

connectivity methods in deep brain structures. In the future, we plan to investigate whole-brain 641 

partial correlation connectivity across sensory, motor, and higher cognitive networks using the 642 

proposed models and their relationship to behavior across individuals.  643 
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