

1 **Title:** Functional connectivity across the human subcortical auditory system using an
2 autoregressive matrix-Gaussian copula graphical model approach with partial correlations

3

4 **Authors:** Noirrit Kiran Chandra^{1*}, Kevin R. Sitek^{2*}, Bharath Chandrasekaran², Abhra Sarkar³

5 *=contributed equally

6

7 **Affiliations:** (1) The University of Texas at Dallas, Dept. of Mathematical Sciences; (2)
8 Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences
9 and Disorders; (3) The University of Texas at Austin, Dept. of Statistics and Data Sciences

10

11 **Corresponding author:**

12 Bharath Chandrasekaran (b.chandra@northwestern.edu)

13 Abhra Sarkar (abhra.sarkar@utexas.edu)

14

15 **Abstract/Summary**

16 The auditory system comprises multiple subcortical brain structures that process and refine
17 incoming acoustic signals along the primary auditory pathway. Due to technical limitations of
18 imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory
19 system is based on research in animal models using invasive methodologies. Advances in ultra-
20 high field functional magnetic resonance imaging (fMRI) acquisition have enabled novel non-
21 invasive investigations of the human auditory subcortex, including fundamental features of
22 auditory representation such as tonotopy and periodotopy. However, functional connectivity
23 across subcortical networks is still underexplored in humans, with ongoing development of
24 related methods. Traditionally, functional connectivity is estimated from fMRI data with full
25 correlation matrices. However, partial correlations reveal the relationship between two regions
26 after removing the effects of all other regions, reflecting more direct connectivity. Partial

27 correlation analysis is particularly promising in the ascending auditory system, where sensory
28 information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory
29 pathway, providing redundant but also increasingly abstract representations of auditory stimuli.
30 While most existing methods for learning conditional dependency structures based on partial
31 correlations assume independently and identically Gaussian distributed data, fMRI data exhibit
32 significant deviations from Gaussianity as well as high temporal autocorrelation. In this paper,
33 we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach
34 to estimate the partial correlations and thereby infer the functional connectivity patterns within
35 the auditory system while appropriately accounting for autocorrelations between successive
36 fMRI scans. Our results show strong positive partial correlations between successive structures
37 in the primary auditory pathway on each side (left and right), including between auditory
38 midbrain and thalamus, and between primary and associative auditory cortex. These results are
39 highly stable when splitting the data in halves according to the acquisition schemes and
40 computing partial correlations separately for each half of the data, as well as across cross-
41 validation folds. In contrast, full correlation-based analysis identified a rich network of
42 interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results
43 demonstrate that unique functional connectivity patterns along the auditory pathway are
44 recoverable using novel connectivity approaches and that our connectivity methods are reliable
45 across multiple acquisitions.

46

47 **Keywords (6):**

48 functional MRI, Gaussian copula graphical model, partial correlation, resting state connectivity,
49 subcortical auditory system, timeseries

50

51

52 **1. Introduction**

53 The mammalian auditory pathway conveys acoustic information between the inner ear—where
54 sounds are mechanoelectrically transduced in the cochlea—and auditory cortex by way of
55 multiple subcortical nuclei across the brainstem, midbrain, and thalamus. Much of our
56 knowledge of the auditory system arises from anatomical and physiological research with non-
57 human animal models (McIntosh and Gonzalez-Lima, 1991; Popper and Fay, 1992; Webster *et*
58 *al.*, 1992). This work has contributed tremendously to our understanding of the mammalian
59 auditory system. However, due to methodological and ethical limitations, our ability to directly
60 assess auditory function in the human nervous system is severely constrained (as discussed in
61 (Moerel *et al.*, 2021)).

62 This is particularly true for subcortical auditory structures. In mammals, the ascending central
63 auditory pathway receives signals from the cochlea of the inner ear by way of the cochlear nerve,
64 which principally innervates the cochlear nucleus in the brainstem. Auditory signals are then
65 transmitted to the superior olivary complex, which is the first decussation point at which signals
66 largely pass contralaterally from the left cochlear nucleus to the right superior olive (and similarly
67 from right to left). From the superior olive, auditory signals travel (via the lateral lemniscus) to
68 the inferior colliculus in the midbrain. The last subcortical auditory structure is the medial
69 geniculate nucleus of the thalamus, which then passes information to primary auditory cortex. In
70 addition to the ascending “lemniscal” auditory pathway, an equal number of efferent
71 connections transmit top-down information from higher order auditory regions to earlier
72 auditory structures (Malmierca and Ryugo, 2011; Winer, 2005). Due to the small size of the
73 subcortical auditory structures—tightly packed in with other heterogeneous nuclei and white
74 matter pathways—and their anatomical location deep within the cranium, the subcortical
75 auditory structures have received limited attention in non-invasive human research.

76 Functional magnetic resonance imaging (fMRI) is the most popular non-invasive method for
77 probing macroscopic network-related brain activity. While studies of the human subcortical
78 auditory system are somewhat limited, previous task-based fMRI research has functionally
79 localized the subcortical auditory structures (Sitek *et al.*, 2019), identified the tonotopic
80 frequency mappings within the auditory midbrain and thalamus (De Martino *et al.*, 2013; Moerel

81 *et al.*, 2015; Ress and Chandrasekaran, 2013), separated top-down and bottom-up speech-
82 selective subregions of auditory thalamus (Mihai *et al.*, 2019; Tabas *et al.*, 2021), and recorded
83 level-dependent BOLD signals throughout the auditory pathway (Hawley *et al.*, 2005; Sigalovsky
84 and Melcher, 2006).

85 In contrast to task-related BOLD activity, fMRI connectivity methods (often utilizing resting state
86 fMRI paradigms and full correlation analysis) are commonly used to assay cortical brain networks
87 (Biswal *et al.*, 1995; Gordon, Laumann, Adeyemo, *et al.*, 2017; Power *et al.*, 2011; Smith,
88 Beckmann, *et al.*, 2013), including the cortical auditory system (Abrams *et al.*, 2020; Cha *et al.*,
89 2016; Chen *et al.*, 2020; Eckert *et al.*, 2008; Maudoux *et al.*, 2012; Ren *et al.*, 2021). However,
90 fMRI connectivity methods have limited history in subcortical research, especially in the auditory
91 system, where they have—to our knowledge—only been utilized a handful of times to assess
92 connectivity differences between individuals with and without tinnitus percepts (Berlot *et al.*,
93 2020; Hofmeier *et al.*, 2018; Leaver *et al.*, 2016; Zhang *et al.*, 2015).

94 From the seminal resting state connectivity studies identifying human default mode and motor
95 networks (Biswal *et al.*, 1995; Fox and Raichle, 2007), to work linking functional connectivity with
96 behavioral variability (Baldassarre *et al.*, 2012; Deng *et al.*, 2016), to investigations into brain
97 network differences associated with disorders (Chai *et al.*, 2016; Di Martino *et al.*, 2011; Ferri *et*
98 *al.*, 2018; Greicius *et al.*, 2007; Hahn *et al.*, 2011; Husain and Schmidt, 2014; Kaiser *et al.*, 2015;
99 Sitek *et al.*, 2016; Wilson *et al.*, 2022), full correlation analysis has contributed tremendously to
100 our understanding of human brain networks. However, moving beyond the traditional full
101 correlation analysis should enable greater specificity in assessing functional connectivity
102 patterns, particularly in identifying specific node-to-node connectivity patterns within an
103 established brain network (Marrelec *et al.*, 2006; Smith, 2012). In contrast to full correlations,
104 which represent both direct and indirect connections, partial correlation analyses represent the
105 direct association between two specific nodes after filtering out the effects of the remaining
106 nodes and thus hold great promise for estimating direct functional connectivity within a network
107 (Smith, Beckmann, *et al.*, 2013). (Please refer to the illustration in the Supplementary Materials.)
108 For these reasons, partial correlation approaches are increasingly used to study functional
109 connectivity networks in the brain (Wang *et al.*, 2016; Warnick *et al.*, 2018), including improved

110 identification of individualized connectivity profiles compared to full correlation methods
111 (Menon and Krishnamurthy, 2019), as well as improved prediction of brain disorders (Reeves *et*
112 *al.*, 2023; Skåtun *et al.*, 2017; de Vos *et al.*, 2018) and identification of general cognitive ability
113 (Sripada *et al.*, 2021). However, we are unaware of the application of such methods to assess
114 functional connectivity within subcortical networks, particularly within the human auditory
115 system.

116 In this article, we build on the Bayesian precision factor model (PFM) introduced recently in
117 Chandra *et al.* (2021) to develop a novel highly robust autoregressive matrix-Gaussian copula
118 graphical model (ARMGCGM) to assess partial correlation-based functional connectivity in a
119 specific network in the human brain that spans subcortical and cortical regions, the auditory
120 system. The PFM decomposes the model precision matrix into a flexible low-rank and diagonal
121 structure, then exploits that to design very efficient estimation algorithms. However, it makes
122 the restrictive assumption that each variable is marginally Gaussian distributed. Several studies
123 in the literature also make this assumption (Yu *et al.*, 2022; Zhang *et al.*, 2014) which has the very
124 useful implication that a zero partial correlation between two variables (equivalent to a zero
125 entry in the precision matrix in the corresponding position) also means independence between
126 them after removing the effects of other variables. However, in many applications—including
127 ours—data are often not Gaussian distributed. Additionally, data from successive fMRI volumes
128 exhibit strong autocorrelation. The ARMGCGM extends the PFM to the case where the univariate
129 marginals can be any arbitrary distribution while also accounting for the autocorrelations
130 between successive fMRI scans. The association between the variables are modeled using a
131 Gaussian copula that implies conditional independence for zero partial correlation, allowing easy
132 interpretability of the conditional dependence graph. As developed, the ARMGCGM approach is
133 broadly applicable for studying undirected functional graphs using large-scale fMRI data.

134 We use the novel ARMGCGM to investigate functional connectivity between specific nodes
135 across the human auditory system. We used publicly available 7T resting state fMRI from over
136 one hundred participants to examine auditory connectivity. To probe connectivity within the
137 auditory system, we included auditory cortical regions of interest as well as subcortical auditory
138 regions derived from human histology (Sitek *et al.*, 2019). As the auditory pathway comprises a

139 chain of multiple subcortical structures, and due to the largely lateralized organization of the
140 lemniscal auditory system, we hypothesized that partial correlations would be greatest between
141 adjacent nodes in the same hemisphere, over and above the contributions from other auditory
142 (and non-auditory) regions of interest. In particular, because of the critical position of auditory
143 midbrain and thalamus as computational hubs involving bottom-up and top-down information
144 transfer (Mihai *et al.*, 2019; Tabas *et al.*, 2021), we hypothesized strong partial correlations
145 between inferior colliculus and medial geniculate. We further assessed reliability across
146 acquisitions by separately analyzing data with anterior–posterior and posterior–anterior phase-
147 encoding directions, as well as leave-10%-out cross-validation. We then compared our
148 ARMGCGM-based connectivity results with those from a full correlation approach as well as
149 alternative partial correlation methods. Overall, our consistent findings of hierarchical
150 connectivity within the auditory system using our novel partial correlation method—consistent
151 across data partitions and leave-10%-out validation—demonstrate the methodological reliability
152 of our ARMGCGM approach as well as the neurobiological organization of auditory structures in
153 the human primary auditory system.

154

155 **2. Materials and methods**

156 *2.1 Magnetic resonance imaging acquisition and processing*

157 We used resting state fMRI from 106 participants in the 7T Human Connectome Project (Elam *et*
158 *al.*, 2021; Van Essen *et al.*, 2012). Specifically, we utilized the minimally preprocessed volumetric
159 data in common space (Glasser *et al.*, 2013). BOLD fMRI data were acquired with 1.6 mm isotropic
160 voxel size across four runs of a resting state paradigm (repetition time [TR] = 1 s, 900 TRs per
161 run). Two runs were acquired with anterior–posterior (AP) phase encoding, and two were
162 acquired with posterior–anterior (PA) phase encoding. For all ROIs and runs, we discarded the
163 first 50 TRs to increase stability.

164 For each individual and each run, we extracted mean timeseries from predefined regions of
165 interest (ROIs). Subcortical auditory ROIs were defined using the Sitek–Gulban atlas (Sitek *et al.*,
166 2019). Cortical ROIs were defined using FreeSurfer’s implementation of the DKT atlas (Dale *et al.*,

167 1999; Klein and Tourville, 2012). For this study we used transverse temporal gyrus (TTG) and
168 superior temporal gyrus (STG) as auditory ROIs, as well as pericalcarine cortex (Calc) and superior
169 frontal gyrus (SFG) as non-auditory control ROIs (see Supplementary Materials). Mean timeseries
170 were extracted for each ROI using nilearn's [Masker] function.

171 *2.2 Data partitioning and cross-validation*

172 BOLD fMRI is prone to geometric distortions in the phase-encoding direction which can be largely
173 corrected using a variety of methods (Esteban *et al.*, 2021; Jezzard and Balaban, 1995). Adjacent
174 to motion-sensitive cerebrospinal fluid (CSF), the brainstem is particularly susceptible to such
175 geometric distortions. Although the HCP minimal preprocessing pipeline corrects for phase-
176 encoding distortions (Glasser *et al.*, 2013), to isolate the potential residual contribution of phase-
177 encoding direction on functional connectivity estimates, we conducted separate analyses on data
178 collected with posterior–anterior (PA) phase encoding direction (runs 1 and 3) and anterior–
179 posterior (AP) phase encoding direction (runs 2 and 4) and compared the results. As the fMRI
180 data acquired in the two phases will be analyzed separately but using the same probability-
181 model, we use the same notations for the different phases to describe our proposed model in
182 the following sections.

183 We further evaluated our results using a leave-10%-out cross-validation (CV) approach. We
184 assessed the stability of the connectivity estimates by checking the correlation between the
185 results obtained from each acquisition scheme.

186

187 *2.3 Autoregressive matrix-Gaussian copula graphical models*

188 The Bayesian precision factor model (PFM), developed recently in (Chandra *et al.*, 2021),
189 provided a novel computationally efficient robust technique for estimating precision matrices.
190 Since partial correlations can be readily obtained from the precision matrix, the approach allowed
191 straightforward estimation of the underlying connectivity graphs. Previously, (Lee and Kim, 2021)
192 obtained the precision matrix by inverting the estimated covariance matrix. However, this
193 approach often tends to exhibit poor empirical performance (Pourahmadi, 2013).

194 Most partial correlation-based conditional dependency graph estimation procedures in the
195 statistical literature (Cai *et al.*, 2020; Chandra *et al.*, 2021; Friedman *et al.*, 2008; Warnick *et al.*,
196 2018) assume that the joint distribution of the data is independent and identically distributed
197 (iid) multivariate Gaussian, which implies that the univariate marginal distributions are also all
198 Gaussians. However, successive fMRI scans have strong autocorrelations, and their marginal
199 distributions exhibit substantial deviance from the Gaussian assumption. In this paper, we
200 therefore extend the PFM to accommodate non-Gaussian marginals, while appropriately
201 accounting for the temporal dependence between successive fMRI scans.

202 Let $Y_{t,j}^{(r,i)}$ be the fMRI timeseries corresponding to the i -th individual's j -th ROI at the t -th
203 timepoint in the r -th run. In our application we are interested in studying the connectivity
204 between $d = 12$ ROIs along the central auditory pathway using fMRI timeseries of length $T =$
205 850 from $N = 106$ individuals each undergoing $R = 2$ runs. We let $f_j^{(r,i)}$ be the (unknown)
206 marginal density of $Y_{t,j}^{(r,i)}$ with corresponding cumulative distribution function (CDF) $F_j^{(r,i)}$.

207 Copulas provide a broadly applicable class of tools that allow the joint distribution of $Y_{t,j}^{(r,i)}$ to be
208 flexibly characterized by first modeling the univariate marginals $f_j^{(r,i)}$ and then hierarchically
209 modeling their joint dependencies by mapping the $F_j^{(r,i)}(Y_{t,j}^{(r,i)})$'s to a joint probability space. For
210 Gaussian copulas, this is done by setting $Z_{t,j}^{(r,i)} = \Phi^{-1}\{F_j^{(r,i)}(Y_{t,j}^{(r,i)})\}$, where $\Phi(\cdot)$ is the CDF of a
211 standard Gaussian distribution. This implies marginally $Z_{t,j}^{(r,i)} \sim N(0,1)$ for all r, i, j, t , where
212 $N(\mu, \sigma^2)$ denotes a univariate Gaussian distribution with mean μ and variance σ^2 . We let $\mathbf{Z}^{(r,i)} =$
213 $\left(\left(Z_{t,j}^{(r,i)}\right)\right)_{T \times d}$ denote the matrix of fMRI signals corresponding to the i -th individual in the r -th
214 run in the transformed Gaussian space. The Gaussian copula assumption on $F_{t,j}^{(r,i)}(Y_{t,j}^{(r,i)})$'s
215 implies that the joint distribution of $\mathbf{Z}^{(r,i)}$ is Gaussian as well. The dependencies between the
216 $Z_{t,j}^{(r,i)}$'s are therefore characterized entirely by their correlations. Additionally, since the
217 dependence relationships between the observed $Y_{t,j}^{(r,i)}$'s are modeled only through $Z_{t,j}^{(r,i)}$'s, these
218 correlations also completely characterize the dependencies between the $Y_{t,j}^{(r,i)}$'s.

219 Note that probabilistic dependencies exist between $Z_{t,j}^{(r,i)}$'s across both j and t ; dependence
 220 across j incurs due to the interaction between the ROIs whereas dependence across t occurs due
 221 to the temporal dependence between successive fMRI scans. We let \mathbf{R}_Ω denote the $d \times d$
 222 correlation matrix accounting for the dependence across the d different ROIs across all runs and
 223 individuals.

224 While our main interest lies in estimating these dependencies between the ROIs, it is also crucial
 225 to consider the temporal dependence in the $Y_{t,j}^{(r,i)}$'s. Let $\mathbf{Z}_{\cdot,j}^{(r,i)} = (Z_{1,j}^{(r,i)}, \dots, Z_{T,j}^{(r,i)})^T$ be the j -th
 226 column of $\mathbf{Z}^{(r,i)}$, i.e., the timeseries corresponding to the i -th individual's j -th ROI in the r -th run.
 227 We develop our model in a hierarchical manner. To begin with, we use autoregressive (AR)
 228 processes of order L to model higher-order temporal dependencies in the $Z_{t,j}^{(r,i)}$'s as

$$Z_{t,j}^{(r,i)} = \sum_{t'=1}^L \beta_{t',j}^{(r,i)} Z_{t-t',j}^{(r,i)} + \epsilon_{t,j}^{(r,i)}, \quad \epsilon_{1,j}^{(r,i)}, \dots, \epsilon_{T,j}^{(r,i)} \stackrel{iid}{\sim} N(0, \varsigma_j^{2(r,i)}), \quad (1)$$

with $Z_{t-t',j}^{(r,i)} = 0$ if $t' \geq t$. We assume separate $(\boldsymbol{\beta}, \varsigma^2)$ parameters across (r, i, j) in (1) to make the model adapt to different timeseries patterns across different ROIs, individuals, and runs.

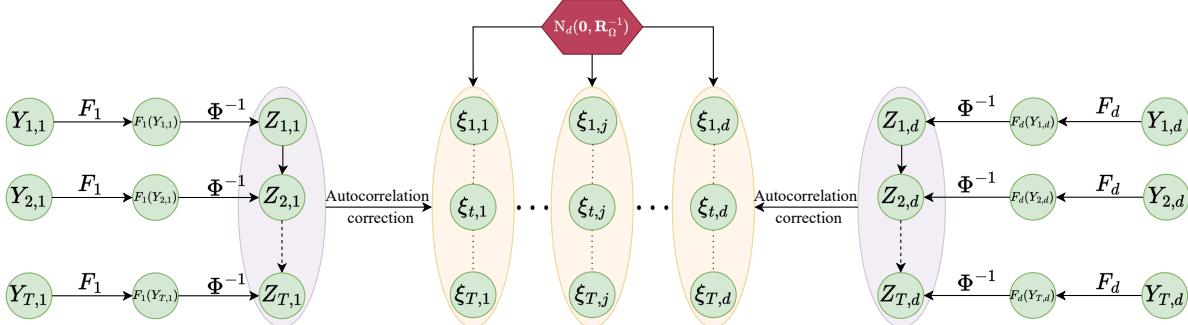
Let $\mathbf{R}_{T,j}^{(r,i)}$ be the correlation matrix of $\mathbf{Z}_{\cdot,j}^{(r,i)}$ induced by the AR(L) model in (1). We let $\boldsymbol{\xi}_{\cdot,j}^{(r,i)} = (\mathbf{R}_{T,j}^{(r,i)})^{-\frac{1}{2}} \mathbf{Z}_{\cdot,j}^{(r,i)}$ be the AR corrected timeseries corresponding to the j -th ROI for $j = 1, \dots, d$. We define the $T \times d$ matrix $\boldsymbol{\Xi}^{(r,i)} = (\boldsymbol{\xi}_{\cdot,1}^{(r,i)} \ \dots \ \boldsymbol{\xi}_{\cdot,d}^{(r,i)}) = (\boldsymbol{\xi}_{1,\cdot}^{(r,i)} \ \dots \ \boldsymbol{\xi}_{T,\cdot}^{(r,i)})^T$ where $\boldsymbol{\xi}_{t,\cdot}^{(r,i)}$ is the t -th row of $\boldsymbol{\Xi}^{(r,i)}$ and can be interpreted as the fMRI signals in the Gaussian copula space subsequent to filtering out the temporal dependence at time point t . We then let

$$\boldsymbol{\xi}_{1,\cdot}^{(r,i)}, \dots, \boldsymbol{\xi}_{T,\cdot}^{(r,i)} \stackrel{iid}{\sim} N(\mathbf{0}, \mathbf{R}_\Omega). \quad (2)$$

229 The formulations in (1)-(2) imply the following joint distribution on $\mathbf{Z}^{(r,i)}$

$$f(\mathbf{Z}^{(r,i)} \mid \mathbf{R}_\Omega, \mathbf{R}_{T,1}^{(r,i)}, \dots, \mathbf{R}_{T,d}^{(r,i)}) = \frac{e^{-\frac{1}{2}\text{tr}(\mathbf{R}_\Omega^{-1} \boldsymbol{\Xi}^{(r,i)T} \boldsymbol{\Xi}^{(r,i)})}}{(2\pi)^{\frac{dT}{2}} |\mathbf{R}_\Omega|^{\frac{T}{2}} \prod_{j=1}^d |\mathbf{R}_{T,j}^{(r,i)}|^{\frac{1}{2}}}. \quad (3)$$

230



231

Figure 1 Graphical illustration of the hierarchical structure of the autoregressive matrix-Gaussian copula graphical model (ARMGCGM): For brevity, we omit the superscript (r, i) —the run and subject indicators, respectively, in this illustration. $Y_{t,j}$ is the observed BOLD signal from the j -th ROI at the t -th time point. $Z_{t,j} = \Phi^{-1}(F_j(Y_{t,j}))$ is the BOLD signal in the Gaussian copula space. Probabilistic dependencies exist between $Z_{t,j}$'s across both j and t ; dependence across j incurs due to the interaction between the ROIs whereas dependence across t occurs due to the temporal dependence between successive fMRI scans. $\xi_{t,j}$'s are the autocorrelation corrected $Z_{t,j}$'s with $(\xi_{t,1}, \dots, \xi_{t,d})^T \stackrel{iid}{\sim} N_d(\mathbf{0}, R_\Omega^{-1})$ for all $t = 1, \dots, T$.

232 Although the $R_{T,j}^{(r,i)}$'s are massive dimensional $T \times T$ matrices, notably they are characterized
 233 entirely by the associated autoregressive parameters $\{\beta_{1,j}^{(r,i)}, \dots, \beta_{L,j}^{(r,i)}, \varsigma_j^{2(r,i)}\}$, leading to their
 234 straightforward numerically inexpensive evaluations in (3); we discuss the details in the posterior
 235 computation section in Supplementary Materials. Let $\Omega = ((\omega_{j,j'}))$ be the precision matrix
 236 corresponding to R_Ω , i.e., $R_\Omega = \Psi^{-\frac{1}{2}}\Omega^{-1}\Psi^{-\frac{1}{2}}$ with $\Psi = \text{diag}(\Omega^{-1})$. Then, by properties of
 237 copula and the simple multivariate Gaussian distribution, it can be shown that, irrespective of
 238 the form of the marginal $f_j^{(r,i)}$'s, the ROIs $Y_{t,j}^{(r,i)}$ and $Y_{t,j'}^{(r,i)}$ will be conditionally dependent on
 239 (and hence functionally connected with) each other given the rest if and only if $\omega_{j,j'} \neq 0$. This
 240 way, the precision matrix Ω characterizes the functional connectivity between the different
 241 $Y_{t,j}^{(r,i)}$'s across j .

242 We model the unknown univariate marginal distributions $f_j^{(r,i)}$'s using location-scale mixtures of
 243 Gaussians. Such mixtures can flexibly estimate a very large class of unknown densities (Ghosal *et*
 244 *al.*, 1999). Specifically, we let

$$f_j^{(r,i)} = \sum_{h=1}^K \pi_{h,j}^{(r,i)} N\left(\mu_{h,j}^{(r,i)}, \sigma_{h,j}^{2(r,i)}\right), \quad (4)$$

245 where $\pi_{h,j}^{(r,i)}$ is the weight attached to the h -th mixture component and $\sum_{h=1}^K \pi_{h,j}^{(r,i)} = 1$ with K
246 being a suitably chosen, moderately large, fixed integer.

247 While fMRI timeseries often showcase very distinct patterns and distributions for different
248 individuals as well as across different ROIs of the same individual, we expect primary sensory
249 region to be highly similar between healthy participants due to strongly stereotyped processing
250 across individuals and well-conserved auditory function in these brain regions across evolution
251 (Hutchison *et al.*, 2013). In (4), we therefore consider separate mixture models across different
252 ROIs, individuals, and runs, whereas in (3), the $Z^{(r,i)}$'s share a common correlation matrix R_Ω
253 across all individuals and runs. This modeling strategy also allows borrowing of information
254 across individuals and runs to amplify signals for estimating resting-state functional connectivity
255 in adult humans while accounting for subject and run-specific variabilities using separate
256 marginal distributions. This is conceptually similar to approaches used in group independent
257 component analysis (Calhoun *et al.*, 2001) and cohort-level brain mapping (Varoquaux *et al.*,
258 2013). In later sections, we showed that this approach yields highly consistent estimates of
259 functional connectivity graphs even though BOLD signals from small deep brain regions have very
260 low signal-to-noise ratio (Bianciardi *et al.*, 2016; Colizoli *et al.*, 2020; de Hollander *et al.*, 2017;
261 Scocco *et al.*, 2018).

262 To estimate the precision matrix Ω , we consider the framework of Chandra *et al.* (2021). Recall
263 that $R_\Omega = \Psi^{-\frac{1}{2}} \Omega^{-1} \Psi^{-\frac{1}{2}}$ with $\Psi = \text{diag}(\Omega^{-1})$. We assume Ω to admit a lower-rank plus diagonal
264 (LRD) decomposition $\Omega = \Lambda \Lambda^T + \Delta$ where Λ is a $d \times q$ matrix and a diagonal matrix $\Delta =$
265 $\text{diag}(\delta_1^2, \dots, \delta_d^2)$ with positive δ_j^2 's. Notably, all positive definite matrices admit such a
266 representation for some $q \leq d$.

267 We take a Bayesian route to estimation and inference, where we assign priors to the model
268 parameters, and then infer them based on samples drawn from the posterior using a Markov
269 chain Monte Carlo (MCMC) algorithm discussed in detail in the Supplementary Materials. As was
270 shown in Chandra *et al.* (2021), the LRD representation makes the MCMC sampling very efficient

271 via a latent variable augmentation scheme. In the Supplementary Materials, we also discuss a
 272 multiple hypothesis testing-based edge discovery procedure that utilizes the posterior
 273 uncertainty of the parameters and controls the false discovery rate (FDR) at 10% level in a
 274 principled manner.

275 *2.4 Priors on the parameters*

276 For the autoregressive parameters in equation (1), for all r, i, j we assume

277 $\beta_{1,j}^{(r,i)}, \dots, \beta_{L,j}^{(r,i)} \mid \varsigma_j^{2(r,i)} \stackrel{iid}{\sim} N(0, \nu_\beta^{-1} \varsigma_j^{2(r,i)})$, $\varsigma_j^{-2(r,i)} \stackrel{iid}{\sim} Ga(a_\varsigma, b_\varsigma)$, where $\nu_\beta, a_\varsigma, b_\varsigma > 0$ are
 278 fixed hyperparameters, and $Ga(a, b)$ denotes a gamma distribution with mean a/b and variance
 279 a/b^2 . For the parameters of the mixture models specifying the marginals in equation (4), we
 280 consider the following priors

281 $(\pi_{1,j}^{(r,i)}, \dots, \pi_{K,j}^{(r,i)}) \sim Dir\left(\frac{\alpha_\pi}{K}, \dots, \frac{\alpha_\pi}{K}\right)$, $(\mu_{h,j}^{(r,i)}, \sigma_{h,j}^{2(r,i)}) \stackrel{iid}{\sim} NIG(\mu_0, \nu_0, a_0, b_0)$,

282 where $(\mu, \sigma^2) \sim NIG(\mu_0, \nu_0, a_0, b_0)$, implying that $\mu|\sigma^2 \sim N(\mu_0, \nu_0^{-1}\sigma^2)$ and $\sigma^{-2} \sim Ga(a_0, b_0)$.

283 We consider a shrinkage prior on the elements of Λ that shrinks redundant elements of Λ to
 284 zero allowing additional model-based parameter reduction. In particular, we assign a two-
 285 parameter generalization of the Dirichlet-Laplace (DL) prior from Bhattacharya et al.
 286 (Bhattacharya *et al.*, 2015) that allows more flexible tail behavior on the elements of Λ . On
 287 a d -dimensional vector $\theta = (\theta_1, \dots, \theta_d)^T$, our DL prior with parameters a and b , denoted by
 288 $DL(a, b)$, can be specified in the following hierarchical manner.

289 $\theta_j \mid \varrho, \phi, \tau \stackrel{ind}{\sim} N(0, \varrho_j \phi_j^2 \tau^2)$, $\varrho_j \stackrel{iid}{\sim} Exp(1/2)$, $\phi \sim Dir(a, \dots, a)$, $\tau \sim Ga(da, b)$,

290 where θ_j is the j -th element of θ , ϕ and ϱ are vectors of same length as θ , $Exp(a)$ is an
 291 exponential distribution with mean $1/a$, $Dir(a_1, \dots, a_d)$ is a d -dimensional Dirichlet distribution.
 292 The original DL prior is a special case with $b = 1/2$. We let $vec(\Lambda) \sim DL(a, b)$.

293 We use a Dirichlet process (DP) prior (Ferguson, 1973) on the δ_j^2 's as $\delta_j^2 \mid G \stackrel{iid}{\sim} G, G \mid \alpha \sim$
 294 $DP(\alpha, G_0)$ with $G_0 = Ga(a_\delta, b_\delta)$, $\alpha \sim Ga(a_\alpha, b_\alpha)$, where α is the concentration parameter and
 295 G_0 is the base measure to favor a smaller number of unique δ_j^2 's in a model-based manner. The
 296 DP model allows clustering the δ_j^2 's facilitating additional data-adaptive parameter reduction

297 when necessary. Additionally a DP prior has full prior support on the range-space of the number
298 of unique δ_j^2 's implying a fully flexible model (see Chapter 4 of (Ghosal and van der Vaart, 2017)).

299 We discuss a Markov chain monte Carlo (MCMC) based strategy of sampling from the posterior
300 of ARMGCGM in Section S1.2 of the Supplementary Materials, where the involving steps are
301 parallelized over the subjects, allowing scalability. In Section S1.3 of the Supplementary
302 Materials, we discuss the choice of hyperparameters used for the analyses presented in this
303 paper. Our implementation using the proposed parallelized MCMC scheme ran in 125 min in a
304 system with 13th Gen Intel(R) Core(TM) i9-13900K CPU and 128GB RAM, fitting the ARMGCGM
305 to the 12-node auditory network with 7,500 MCMC iterations, *including* both phase-encoding
306 schemes.

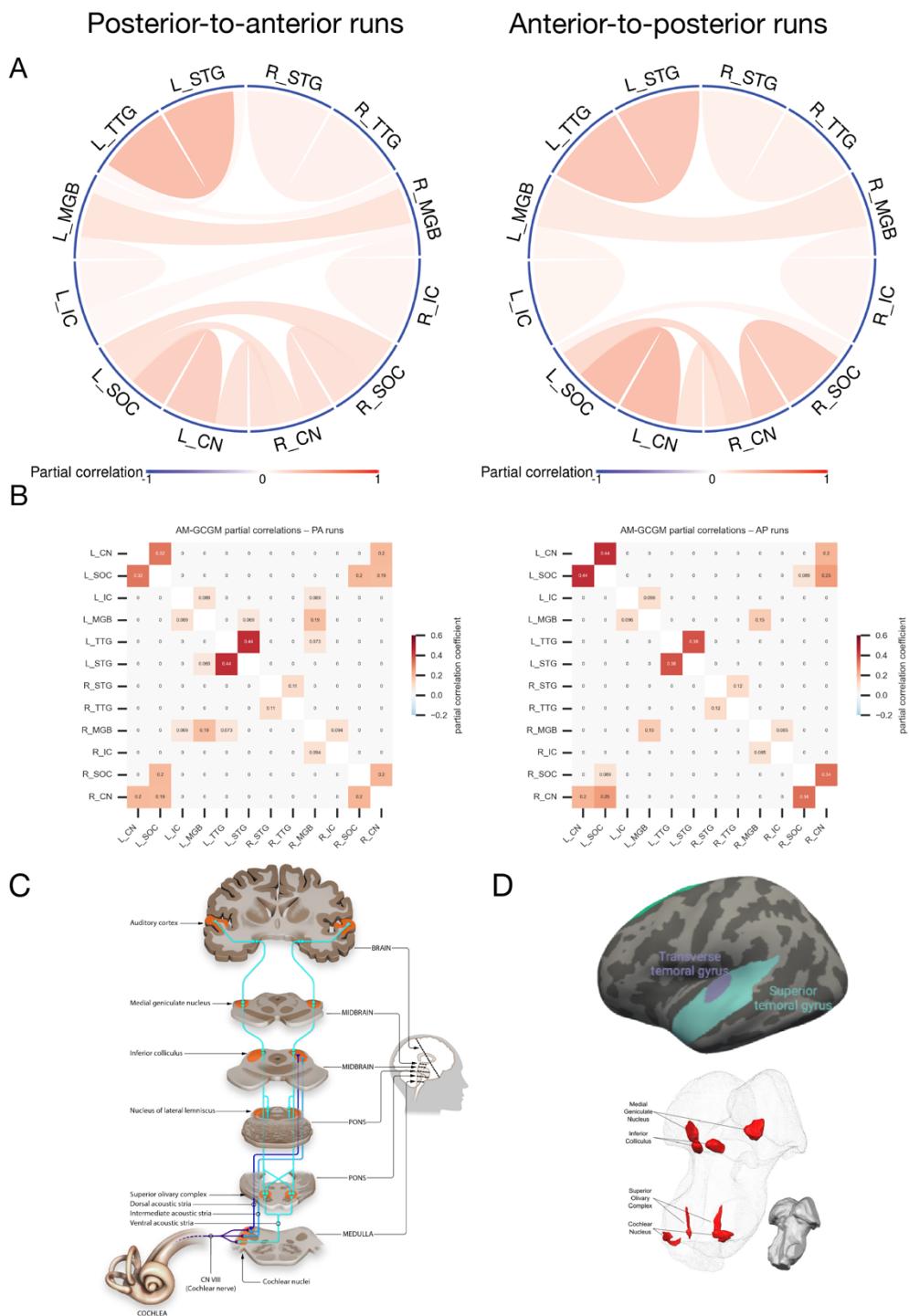
307 **3. Results**

308 *3.1 Partial correlations between regions of interest*

309 Using our ARMGCGM approach, we first estimate the precision matrix Ω and subsequently
310 compute the partial correlation matrix. We report the significant edges subject to controlling the
311 posterior false discovery rate (Sarkar *et al.*, 2008) at the 10% level. (Details are provided in Section
312 S1.4 in the Supplementary Materials.) In Figure 2 we provide the circos plots of the connectivity
313 graphs along with respective weighted adjacency matrices. The (j, h) -th off-diagonal element of
314 the adjacency matrices admit the value 0 if the edge between ROIs j and h is not statistically
315 significant, if the edge is significant then the corresponding partial correlation is plugged in to
316 indicate the strength of the edge.

317 We found that the strongest auditory connectivity was between adjacent structures in the same
318 hemisphere, particularly between the auditory midbrain (inferior colliculus, or IC) and thalamus
319 (medial geniculate body, or MGB) and between core and associative auditory cortex (TTG and
320 STG). Minimal connectivity was observed between homologous auditory structures across
321 hemispheres. Connectivity was also present between adjacent brainstem auditory structures
322 (cochlear nucleus [CN] and superior olivary complex [SOC]), largely bilaterally. Interestingly,
323 despite the SOC being the primary (and earliest) decussation point in the primary auditory

324 pathway, we only observed partial correlations between right CN and left SOC (in both data
 325 partitions), not left CN and right SOC. (See the Discussion section for potential explanations.)



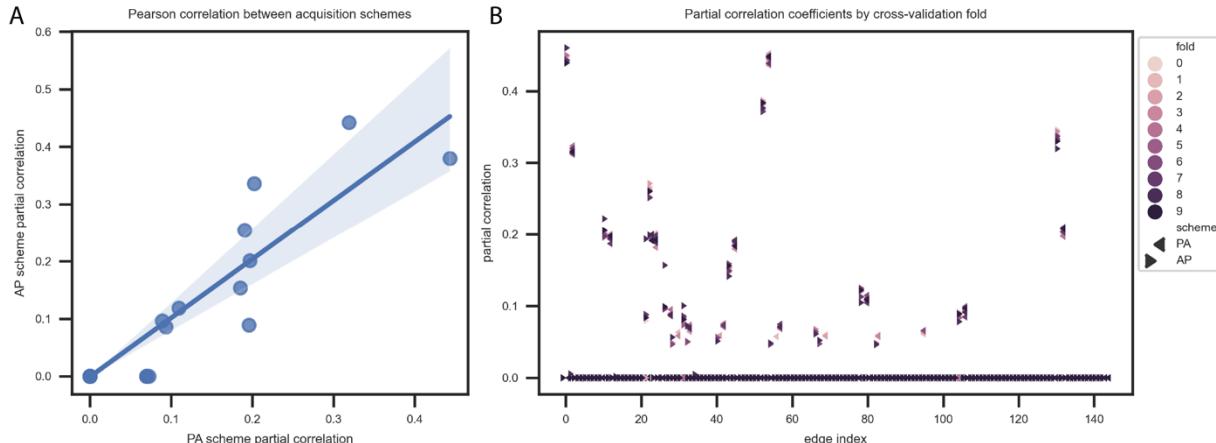
326

Figure 2. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) and anterior-to-posterior (AP; right) phase-encoding directions using the ARMGCGM approach in subcortical and cortical auditory regions. Positive (negative) associations are represented by red

(blue) links, their opacities being proportional to the corresponding association strengths. The link widths are inversely proportional to the number of edges associated with the corresponding nodes. B: The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs). C: Schematic of the auditory pathway from the cochlea through brainstem to cortex (<https://osf.io/u2gxc/>). D: Regions of interest from which functional timeseries were extracted. Top: cortical regions from FreeSurfer's DKT atlas. Bottom: subcortical auditory regions (Sitek et al., 2019).

327 3.2 Effect of phase encoding scheme on subcortical connectivity

328 Due to the anatomical location of the subcortical auditory structures—in dense, heterogeneous
329 subcortical regions and largely adjacent to CSF—we conducted connectivity analyses separately
330 on AP- and PA-acquired fMRI runs. We then compared the connectivity results from the two
331 acquisition schemes. Overall connectivity patterns were highly similar between the two phase-
332 encoding schemes, as seen in panels A and B of Figure 2. Subcortical connectivity was quite robust
333 between the brainstem auditory regions. To quantify the similarity between the results in PA and
334 AP acquisitions (plotted in Figure 3A), we computed the Pearson correlation coefficient r
335 between the estimated partial correlations. For the proposed ARMGCGM, $r = 0.940$ with p -
336 value < 0.001 . To assess the similarity in sign of connectivity between acquisition schemes, we
337 computed the Jaccard dissimilarity on the signed off-diagonals of each adjacency matrix. For the
338 proposed ARMGCGM, the Jaccard dissimilarity was 0.231. Additionally, we computed the
339 Euclidean distance between partial correlations in the two acquisition schemes, compared it with
340 some selected approaches from the literature and report the results in Table 1. These results
341 indicate strong consistency between the findings in the two different acquisition schemes.



342

Figure 3. A: Pearson correlation of partial correlation values between posterior-to-anterior and anterior-to-posterior phase-encoding acquisition schemes across all edges in the graph (region-to-region connections). B: Partial correlation coefficients across cross-validation folds (10 folds for each of the two phase-encoding acquisition schemes).

343 3.3 Cross-validation of partial correlations

344 To assess the stability of our proposed ARMGCGM, we ran leave-10%-out cross-validation by
 345 removing 10% randomly selected subjects in each fold. We repeated this for each phase encoding
 346 scheme for a total of 20 folds; partial correlation coefficients for each fold are presented in Figure
 347 3B. Across all folds (and both phase encoding schemes), the results are very highly similar
 348 (intraclass correlation of edgewise partial correlations across cross-validation folds = 0.991).

349

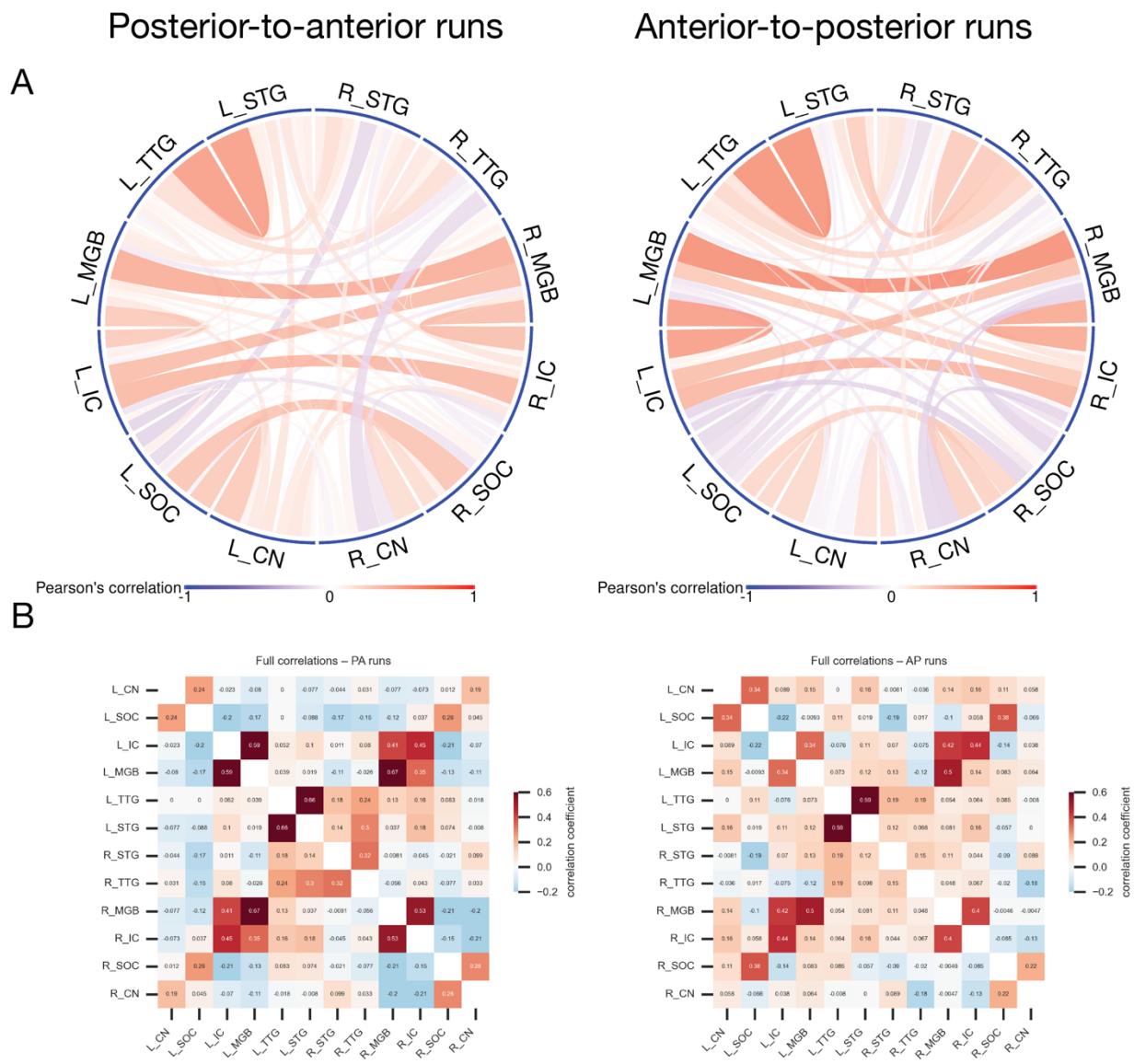
350 3.4 Comparison with existing approaches

351 We compared with three standard approaches in the literature: (1) correlation analysis between
 352 the ROIs (Biswal *et al.*, 1995; Cordes *et al.*, 2000; Fox and Raichle, 2007; Lowe *et al.*, 1998; Smith,
 353 Vidaurre, *et al.*, 2013); and partial correlation analyses using (2) the graphical lasso (Friedman *et*
 354 *al.*, 2008) and (3) the precision factor model (Chandra *et al.*, 2021). In all comparisons, we did
 355 separate analyses for each of the acquisition schemes.

356 **Comparison 1: Full correlation approach:** Here we study the marginal correlation between the
 357 ROIs. Letting $\rho_{j,j'}$ denote the correlation between ROIs j and j' in resting state we test

$$358 H_{0,j,j'}: |\rho_{j,j'}| = 0 \text{ versus } H_{1,j,j'}: |\rho_{j,j'}| \neq 0 \text{ for all } 1 \leq j < j' \leq d.$$

359 For each acquisition scheme, we first concatenate the timeseries across all runs and individuals.
360 Then we perform t -tests for correlation for all (j, j') pairs followed by the Benjamini-Hochberg
361 false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) for multiplicity adjustment
362 and control the FDR at level 0.10. Traditionally, full correlations are used to measure functional
363 “connectivity” in resting state fMRI studies (Biswal *et al.*, 1995; Cordes *et al.*, 2000; Lowe *et al.*,
364 1998). In Figure 4 we provide the correlation graphs and correlation matrices separately for each
365 acquisition schemes. We find the correlation graphs to be much denser compared to the partial
366 correlation graphs presented in Figure 2. Unlike in the ARMGCGM method, we observed negative
367 values when using full correlations (particularly in the PA acquisition scheme), although the
368 negative correlations are generally closer to 0 than the positive correlations are. In this full
369 correlation approach, the similarity between runs split by data acquisition scheme was
370 characterized by Pearson’s r of 0.811 (p -value < 0.001) and a Euclidean distance of 1.016. The
371 Jaccard dissimilarity of the signed adjacency matrix was 0.338.



372

Figure 4. A: Full correlation connectivity in data acquired with posterior-to-anterior (PA; left) and anterior-to-posterior (AP; right) phase-encoding directions using t-tests. Positive (negative) associations are represented by red (blue) links, their opacities being proportional to the corresponding association strengths. The link widths are inversely proportional to the number of edges associated with the corresponding nodes. **B:** The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).

373

374 **Comparison 2: Partial correlations with Glasso approach:** We first consider the graphical lasso
 375 (Glasso) approach (Friedman *et al.*, 2008) as another alternative choice for partial correlation
 376 based conditional graph estimation. Glasso assumes iid data from a multivariate Gaussian
 377 distribution (i.e., without any correction for autocorrelation) with $\ell_1(\cdot)$ penalty on the precision

18

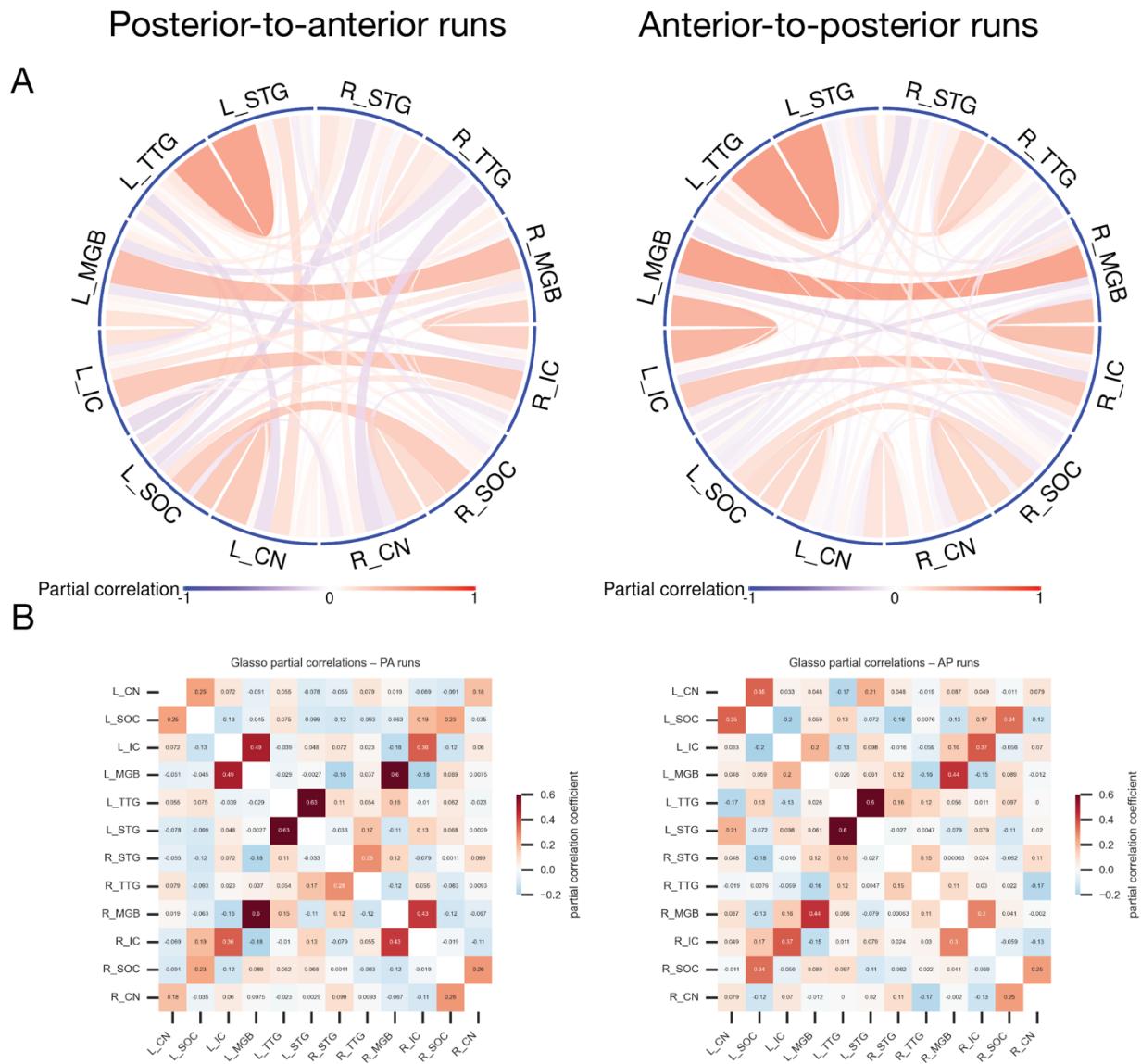
378 matrix. In this analysis we concatenated the $Y_{t,j}^{(r,i)}$ values across (r, i) and created a $(TR) \times d$
379 matrix, say \mathbf{Y} , for each acquisition scheme, and applied the Glasso model on \mathbf{Y} . We use 10-fold
380 cross-validation to choose the optimal penalty parameter. The Glasso approach provides a point
381 estimate of the sparse precision matrix and hence the functional connectivity network. In panels
382 A and B of Figure 5, we plot the connectivity graphs and weighted adjacency matrices,
383 respectively, separately for each acquisition scheme.

384 These functional connectivity graphs in Figure 5 are much denser compared to the estimates
385 obtained by our proposed ARMGCGM in Figure 2. To quantify the robustness and stability of the
386 Glasso graphs in this application, we compute Pearson correlation coefficient and Euclidean
387 distance between the estimated partial correlations, and the Jaccard dissimilarity between the
388 signs of the adjacency matrices in PA and AP acquisitions in the same manner as we did for
389 ARMGCGM elaborated in Section 3.2. We reported the values in Table 1. Figure 5 indicates that
390 the strong positive correlations are consistent across the acquisition schemes. However,
391 substantial discrepancy can be observed for the weak edges, particularly for the negative

392 correlations. This is a common phenomenon for graphical models if the Gaussian assumption is
 393 made on non-Gaussian distributed data; see, e.g., Section 5, example 1(a) in (Guha *et al.*, 2020).

394

395

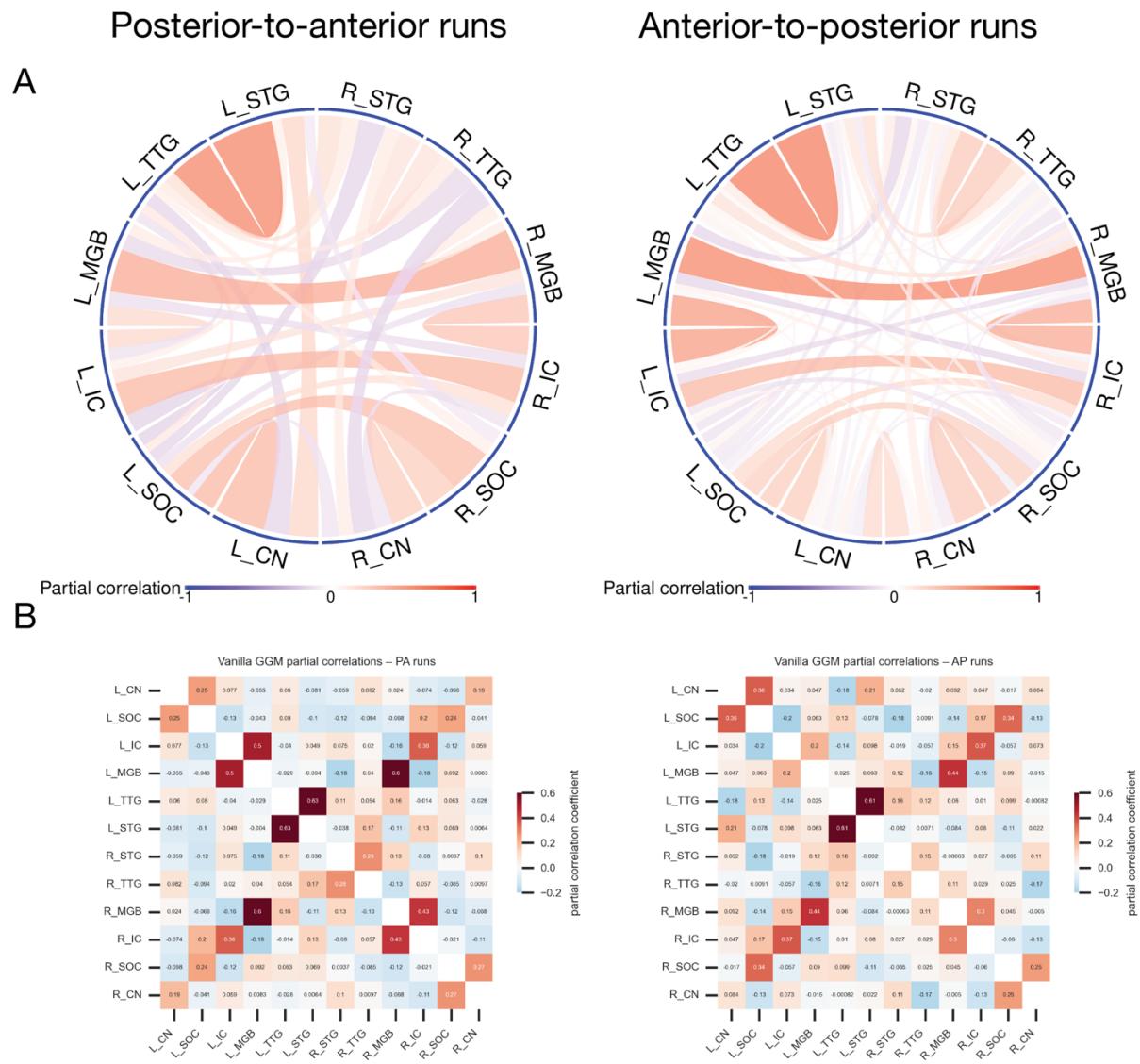


396

Figure 5. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) and anterior-to-posterior (AP; right) phase-encoding directions using the Glasso approach. Positive (negative) associations are represented by red (blue) links, their opacities being proportional to the corresponding association strengths. The link widths are inversely proportional to the number of edges associated with the corresponding nodes. **B:** The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).

397 **Comparison 3: Partial correlations with PFM:** In this analysis we concatenated the $Y_{t,j}^{(r,i)}$ values
398 across (r, i) and created a $(TR) \times d$ matrix, say \mathbf{Y} , for each acquisition scheme, and applied the
399 PFM on \mathbf{Y} . Similar to Glasso, the PFM also assumes iid data from a multivariate Gaussian
400 distribution and does not correct for temporal autocorrelations in the data. We infer on the graph
401 using the Bayesian multiple comparison technique described in the Supplementary Materials.
402 Results are provided in Figure 6. The connectivity graphs majorly differed with our ARMCGCM
403 results, with the PFA model-derived graph being much denser and including more (weakly)
404 negative edges. In the top panel of Figure 7 we plot the marginal Gaussian fits on the histograms
405 of some BOLD signals. Clearly the simple Gaussian assumption does not hold here and a more
406 sophisticated approach like ours is required.
407 To assess the robustness and stability of the PFM, we computed Pearson correlation coefficient
408 and Euclidean distance between the estimated partial correlations, and the Jaccard dissimilarity
409 between the signs of the adjacency matrices in PA and AP acquisitions in the same manner as we
410 did for ARMCGCM elaborated in Section 3.2. We reported the values in Table 1, where we see
411 that PFM exhibits more consistency than Glasso but ARMCGCM performed best.

412



413

Figure 6. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left) and anterior-to-posterior (AP; right) phase-encoding directions using the PFA approach (comparison 3). Positive (negative) associations are represented by red (blue) links, their opacities being proportional to the corresponding association strengths. The link widths are inversely proportional to the number of edges associated with the corresponding nodes. **B:** The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).

Table 1 Several measures of dissimilarities between the functional connectivity networks (using full and partial correlations) estimated in each of the acquisition schemes are reported here. We provide results for all the correlation-based functional connectivity analyses, viz. ARMGCGM, full correlation, Glasso and PFA. Note that lower values of Jaccard dissimilarity and Euclidean distance implies better method.

Method	Pearson's Correlation Coefficient	Jaccard Dissimilarity	Euclidean Distance
ARMGCGM	0.940 (p -value < 0.001)	0.231	0.262
Full correlation	0.811 (p -value < 0.001)	0.338	1.016
Glasso	0.749 (p -value < 0.001)	0.414	0.959
PFM	0.747 (p -value < 0.001)	0.379	0.975

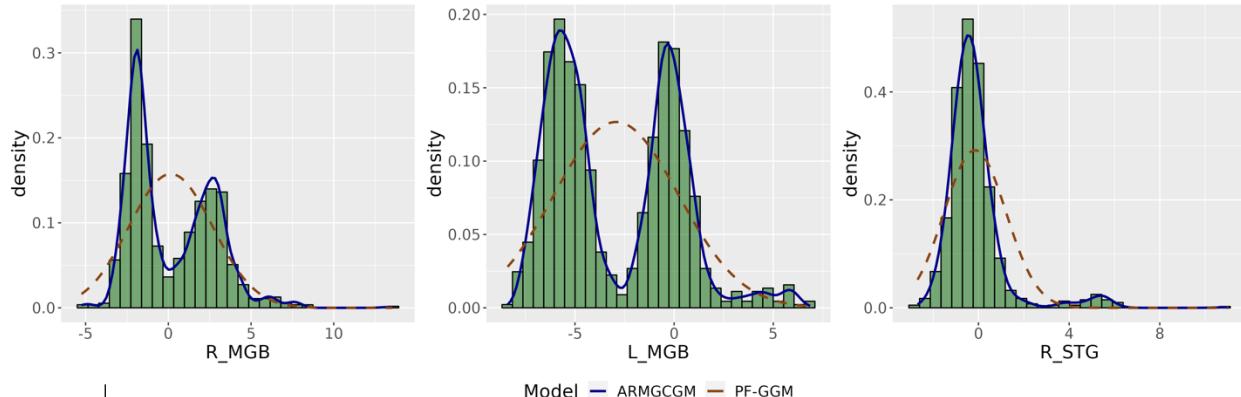
414

415 *3.5 Fit of the autoregressive matrix-Gaussian copula graphical model*

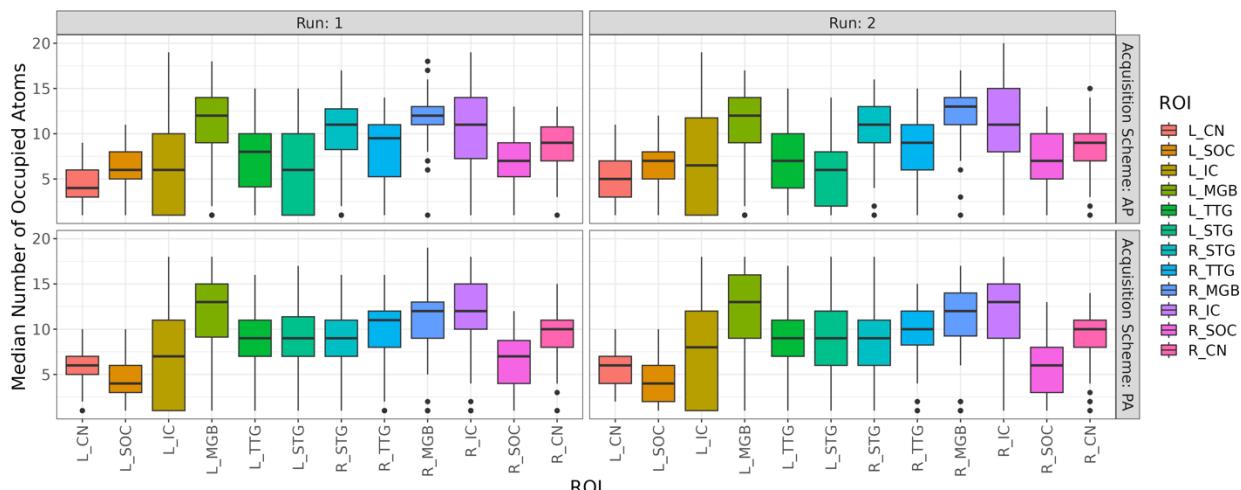
416 **Density fits:** We studied the goodness-of-fit of the proposed ARMGCGM. In the top panel of
417 Figure 7, we plotted the sample histograms and the corresponding fitted marginal densities for
418 some selected ROIs. The sample histograms strongly indicate the distribution of the data to
419 substantially deviate from Gaussian distributions, including some with multiple well-separated
420 modes. Figure 7 also shows that our flexible location-scale mixture of Gaussians fit the data very
421 well, even for the most complicated distributions.

422 Note that finite mixture models with reasonably large number of mixture components can
423 approximate nonparametric Dirichlet process mixture models (Ishwaran and Zarepour, 2002b,
424 2002a). To validate whether the number of mixtures ($K = 20$) in model (4) is adequate, we
425 computed the median number of non-empty clusters across MCMC samples for each subject and
426 ROI in each run. In the bottom panel of Figure 7 we plotted the histograms of the medians across
427 the subjects. As the number of non-empty clusters are smaller than K consistently across all
428 setups yielding excellent fits for complicated distributions, we conclude that our model
429 specifications are adequate.

430



431

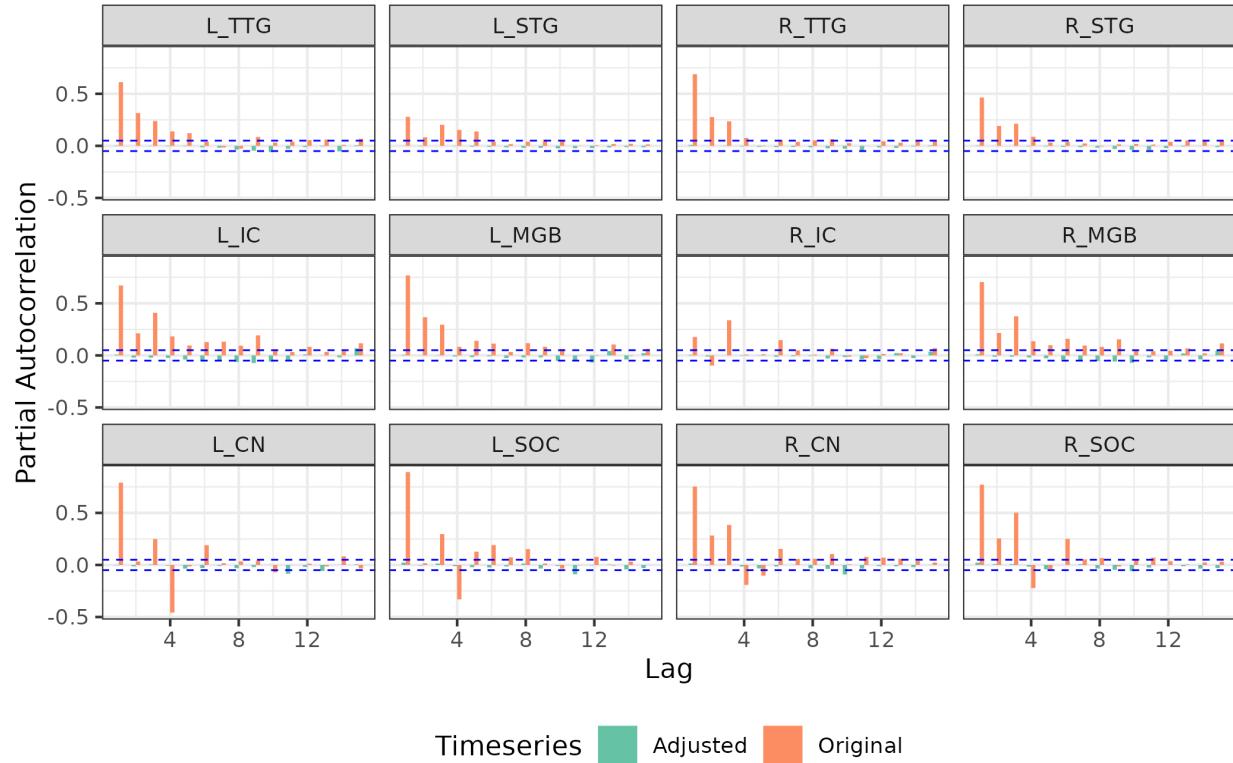


432

Figure 7. Marginal fits for the location-scale mixture of Gaussian distributions: The sample histograms in the top panel in green showed that distribution of the ROIs substantially deviates from Gaussian assumption. The blue lines were the respective fitted densities corresponding to the mixture model in equation (4). These figures indicated excellent goodness-of-fit. The dashed brown lines corresponded to marginal Gaussian fits of the vanilla PFM which were evidently underfitted. In the bottom panel we plotted the histogram of the number of occupied clusters across subjects corresponding to the mixture model indicating that our model specifications are adequate.

433 **Autocorrelation corrections:** From Section 2.3 recall that $Z_{t,j}^{(r,i)}$'s were the transformed BOLD
 434 signal timeseries in the Gaussian space and $\xi_{t,j}^{(r,i)}$'s were the autocorrelation corrected timeseries.
 435 To check for autocorrelation corrections using model (1), we plotted the partial autocorrelations
 436 between $Z_{t,j}^{(r,i)}$'s and $\xi_{t,j}^{(r,i)}$'s across time for all ROIs. Since the Z and ξ values vary across MCMC
 437 iterations, we used their posterior expectations in this analysis. In Figure 8 we plot the partial
 438 autocorrelations for a randomly selected individual in run 1 of posterior-to-anterior acquisition

439 scheme; the blue horizontal dashed lines represent the 5% band. The figure clearly indicates that
440 the autoregressive model of order $L = 5$ corrects for the autocorrelations. As we obtained very
441 similar results for other runs and acquisition schemes, we omit those in the paper.



442

Figure 8. Partial autocorrelation plots of the fMRI timeseries for a randomly selected subject in the posterior-to-anterior acquisition scheme across the ROIs before (orange) and after (green) autocorrelation corrections; the horizontal dashed blue lines represent the 5% band. The plot indicates that autocorrelations are corrected in our model.

443

444 4. Discussion

445 The mammalian auditory pathway consists of a series of obligatory and interconnected
446 subcortical and cortical brain structures. Assessing the connectivity of the human subcortical
447 auditory structures has been limited due to methodological challenges of non-invasive imaging
448 of the deep, small structures. Recent acquisition and analytical advances enable finer grained
449 investigations of connectivity throughout the brain, including the brainstem. In this paper, we
450 validated a novel autoregressive matrix Gaussian copula graphical model to estimate

451 functional auditory connectivity patterns from a publicly available high-resolution resting state
452 functional MRI dataset. Using partial correlations (as opposed to full correlations) allowed us to
453 identify specific relationships between nodes in a connectivity graph by removing shared
454 variance across nodes (Supplementary Figures S1 and S2). We found highly consistent
455 connectivity patterns between adjacent auditory brain regions along the auditory pathway that
456 demonstrate the efficacy of our connectivity method as well as the potential for functional
457 connectivity investigations of the subcortical auditory system. Below, we separately discuss our
458 novel scientific findings and our novel contributions to the statistics literature.

459 *Novel contributions to the human auditory neuroscience literature*

460 To date, there have been only limited applications of functional MRI methods to study subcortical
461 auditory connectivity (Berlot *et al.*, 2020; Hofmeier *et al.*, 2018). Using our novel ARMCGCM
462 approach in the present study, we found strong partial correlations between cochlear nucleus
463 (CN) and superior olivary complex (SOC) bilaterally using resting state functional MRI data. Most
464 interestingly, we observed contralateral CN–SOC connectivity between right CN and left SOC (and
465 in both data acquisition schemes), fitting the ground truth primary auditory pathway crossing
466 from left to right (and vice versa) between CN and SOC (Barnes *et al.*, 1943; Schofield, 1994).
467 These functional connectivity patterns between CN and SOC have not been previously observed
468 in human auditory brainstem *in vivo* but follow our understanding of the mammalian primary
469 auditory pathway based on research in animal models (Barnes *et al.*, 1943; Doucet and Ryugo,
470 2003; Harrison and Irving, 1966). Principally, auditory information that is transduced by the
471 cochlea of each ear is transmitted via the cochlear nerve to the cochlear nucleus, the first stage
472 of the central auditory pathway, on each side of the brainstem. In the primary auditory pathway,
473 the lemniscal anteroventral subdivision of the cochlear nucleus enhances the fine temporal
474 precision of incoming auditory signals (Pickles, 2015). From there, auditory signals are passed to
475 both the ipsilateral and contralateral SOC for further auditory processing, including spatial
476 localization (Moore, 2000). The SOC is comprised of multiple distinct subdivisions, which receive
477 ipsilateral and contralateral connections from cochlear nucleus to varying degrees (Pickles,
478 2015), aligning with our overall bilateral connectivity results between CN and SOC.

479 While we observed consistent right CN and left SOC connectivity, it is unclear why similar patterns
480 were not observed between left CN and right SOC. One contributor is the lower signal-to-noise
481 ratio in fMRI data from the lower brainstem. Paired with the small size of each of the brainstem
482 auditory nuclei, we may still be at the edge of what is detectable using present functional
483 connectivity methods. Additionally, this analysis was conducted on “resting state” fMRI data,
484 during which no auditory stimuli of interest were presented or overt tasks were conducted.
485 Resting state fMRI connectivity in the cochlear nucleus and superior olivary complex has not been
486 examined in the previous literature to our knowledge; it is possible that sound-evoked
487 connectivity methods would evoke greater functional connectivity, particularly in these earliest
488 stages of the auditory pathway. Further, ipsilateral connections (i.e., between left CN and left
489 SOC and between right CN and right SOC) may be artifactually stronger due to their close physical
490 proximity. Even with relatively high 1.05 mm spatial resolution 7T fMRI data, CN and SOC on each
491 side are only separated by a few voxels. These regions are thus at increased likelihood of sharing
492 temporal fluctuations due to partial volume effects, wide point-spread functions, spatial
493 dependence, or other as-yet-unsolved fMRI confounds that are particularly acute in the lower
494 brainstem.

495 Moving up the primary auditory pathway, we observed significant partial correlations between
496 ipsilateral inferior colliculus (IC) in midbrain and medial geniculate body (MGB) of the thalamus
497 in both hemispheres and in both phase-encoding schemes. Inferior colliculus is a major
498 convergence point in the auditory system, with the lemniscal IC subdivision being thought to
499 convert distinct auditory features into discrete auditory objects for the first time in the auditory
500 pathway. MGB continues the refinement of auditory objects via direct lemniscal connections
501 from IC as well as rich corticofugal connections from auditory cortex to non-lemniscal MGB
502 subdivisions (Pickles, 2015). Interestingly, we found strong partial correlations between left and
503 right MGB in both datasets. Although not directly connected by large white matter bundles, left
504 and right MGB are expected to process auditory information from IC at similar levels of
505 abstraction. Thus, partial correlations may reflect indirect but shared neural mechanisms of
506 auditory processing in the thalamus.

507 We did not observe IC partial correlation connectivity with either brainstem or cortical structures.
508 IC is a key hub in the auditory system, receiving bottom-up sensory information as well as top-
509 down modulating signals from auditory cortex and other brain regions. The lack of partial
510 correlation connectivity with IC may be due to strong IC subdivision-specific functionality, with IC
511 core primarily serving an ascending lemniscal role and dorsal and external IC having top-down
512 and non-lemniscal functions. Averaging over these subdivisions may obfuscate specific
513 connectivity patterns. Alternatively, our results may suggest that it does not have a specialized
514 relationship with any one region beyond MGB but rather integrates and transforms auditory and
515 other neural signals.

516 Finally in auditory cortex, transverse temporal gyrus (TTG)—the location of primary auditory
517 cortex—was strongly connected with ipsilateral superior temporal gyrus (STG), which contains
518 secondary and associative auditory cortices. Primary auditory cortex receives direct input from
519 lemniscal MGB and is the last auditory structure with fine-grained tonotopy (Pickles, 2015). In
520 humans, STG is hierarchically structured, with portions further away from primary auditory
521 cortex having increasingly wider temporal integration windows (Hamilton *et al.*, 2018; Norman-
522 Haignere *et al.*, 2022) and greater categorical specificity (Bhaya-Grossman and Chang, 2022; Feng
523 *et al.*, 2021; Hamilton *et al.*, 2020; Keshishian *et al.*, 2023; Nourski *et al.*, 2018; Pernet *et al.*, 2015;
524 Rauschecker and Tian, 2000; Rupp *et al.*, 2022). While invasive recordings from human STG
525 suggest a potential direct connection between MGB and posterior STG (Hamilton *et al.*, 2021),
526 we found mixed evidence for such a direct pathway in ourOur partial correlation data (in one
527 hemisphere in only one of the data partitions). Our partial correlation functional connectivity
528 results align with a vast literature demonstrating information flow between primary and non-
529 primary auditory cortex (for review, see (Hackett, 2011). The lack of contralateral partial
530 correlation approach measures the correlation between the concerned ROIs after filtering out
531 the indirect effects of the remaining ROIs. Complementarily, some literature suggests that left
532 and right auditory cortex process auditory information at distinct timescales and levels of
533 abstraction (Güntürkün *et al.*, 2020; Hickok and Poeppel, 2007; Zatorre *et al.*, 2002), with left
534 auditory cortex being uniquely tuned to rapidly changing temporal information—such as the

535 phonetics of speech sounds—while right auditory cortex is more sensitive to slower changes in
536 the spectral domain, particularly for speech prosody as well as music.

537 In comparison to our ARMGCGM partial correlation approach, we computed full correlations in
538 the same network. Connections were much denser in the full correlation approach, aligning with
539 the rich interconnectedness of the auditory system (Pickles, 2015). Unlike with partial
540 correlations, which highlighted hierarchical connections between adjacent notes along the
541 auditory pathway, we observed positive full correlations between all auditory cortical regions,
542 regardless of hemisphere. Additionally, we found a strong positive subnetwork including IC and
543 MGB bilaterally, whereas many of these connections (such as between left and right IC) were
544 absent in the ARMGCGM partial correlation analysis. Since partial correlations characterize
545 connectivity between two nodes after filtering out the effects of the other nodes, our combined
546 results point to widespread shared information across the auditory system (per full correlation
547 analysis) with additional shared processing between adjacent nodes of the canonical auditory
548 pathway (per partial correlation analysis). This suggests distinct but complementary use of full
549 and partial correlations, with full correlation analysis identifying a rich network of interconnected
550 nodes, while partial correlations are sensitive to strong node-to-node connections.

551 *Novel contributions to the graphical model literature*

552 In this article, we developed an autoregressive matrix-Gaussian copula graphical model
553 (ARMGCGM) for non-Gaussian distributed data with temporal autocorrelation, the problem of
554 estimating brain connectivity patterns from resting state fMRI data being the motivating
555 problem. The ARMGCGM first uses higher order autoregressive models to capture the temporal
556 dependence in the time series for each brain region of interest, then uses flexible location-scale
557 mixtures of Gaussians for modeling component wise residual marginal distributions associated
558 with different regions, and finally uses a Gaussian copula to capture the dependence across the
559 different regions. The ARMGCGM allows borrowing of information across subjects to infer on a
560 common connectivity graph while appropriately taking into account subject and run-specific
561 variability via flexible mixture models. We leverage recent advances on modeling precision
562 matrices via a flexible but computationally efficient low-rank-diagonal decomposition method
563 that not only allows efficient exploration of the posterior space for estimating the connectivity

564 graph but also enables easy assessment of associated uncertainty. Compared to alternative
565 approaches to exploiting partial correlations to estimate connectivity graphs, our proposed
566 ARMGCGM method produces results that are more consistent across the acquisition schemes
567 with respect to multiple metrics. Additionally, the results remain highly stable in a leave-10%-out
568 cross-validation. Considering the low signal to noise ratio in BOLD signals from deep small
569 auditory structures, our results demonstrate the sensitivity and specificity of our model to
570 neurobiologically plausible connections. Although the proposed ARMGCGM is a more nuanced
571 approach and potentially capable of fitting arbitrary complicated distributions, it can be
572 numerically expensive compared to simplistic parametric models. However, our parallelized
573 Markov chain Monte Carlo implementation ran across all participants and runs in just over two
574 hours, demonstrating a feasible computation time given the size of the data.

575 *Comparisons to connectivity literature*

576 Our study is the first to systematically assess connectivity across the human auditory pathway
577 using multiple connectivity measures, with previous subcortical connectivity studies limited to
578 full correlation analysis (Berlot *et al.*, 2020; Hofmeier *et al.*, 2018; Leaver *et al.*, 2016; Zhang *et*
579 *al.*, 2015). Given the anatomical and methodological constraints with subcortical fMRI, the
580 limited fMRI connectivity literature is not too surprising. First, the deep location of the subcortical
581 structures places them far from MRI transmit and receive coils, limiting the signal-to-noise ratio
582 from these regions (Miletić *et al.*, 2020). Because the brainstem is relatively centrally located
583 relative to the multiple receiver coils, accelerated acquisition techniques that are based on phase
584 differences between receiver coils are less effective (Preibisch *et al.*, 2015). Second, subcortical
585 nuclei can be quite small, requiring higher resolution imaging protocols (which unfortunately
586 trade off SNR in order to achieve greater spatial resolution). Third, subcortical nuclei are densely
587 organized adjacent to nuclei with heterogeneous functions, so voxels immediately next to those
588 containing core auditory structures could contain visual, motor, or sensory nuclei, white matter,
589 CSF, or a combination of any of these. Ultimately, each of these constraints limits the SNR from
590 subcortical auditory nuclei.

591 Constraints in human subcortical auditory research have translational consequences beyond
592 basic science. For instance, while cochlear implants have been widely successful at providing

593 sensory information to individuals with sensorineural hearing impairments with an intact
594 cochlear nerve (Kral *et al.*, 2019; Reiss, 2020), auditory prostheses in the central auditory system
595 have been less successful (Lim *et al.*, 2009; Shetty *et al.*, 2021), due in no small part to our limited
596 understanding of the complexity of sound representation in the ascending auditory pathway.

597 *Limitations and future directions*

598 As the canonical neuroanatomy of the primary auditory pathway is consistent across individuals
599 and well-described in the literature (Sitek *et al.*, 2019), we have the *a priori* expectation of a
600 shared auditory graph across all participants. As the goal of this study was to map a network that
601 is strongly expected based on anatomy and non-human neurophysiology, we built a joint model
602 that includes data from all participants. This is similar to approaches used in group independent
603 component analysis (Calhoun *et al.*, 2001) and cohort-level brain mapping (Varoquaux *et al.*,
604 2013). However, subject-specific differences in the distributions of the BOLD signals as well as
605 autocorrelations between successive scans can induce artifactual and noisy edges in functional
606 connectivity graphs, as seen in the Glasso and PFMs; we take care of these issues in ARMGCGM.
607 Nevertheless, we did not investigate differences in functional connectivity between participants
608 in the current article. Building on ARMGCGM to explore how functional connectivity varies
609 between individuals and groups or as a function of behavior is a priority for future work.

610 In general, resting state fMRI connectivity measures become more reliable with longer scans (Zuo
611 *et al.*, 2019). Measurement correlations increase as time in the scanner increases, from Pearson's
612 $r = 0.82$ at 9 min to $r = 0.92$ at 27 min to $r = 0.97$ at 90 min (Laumann *et al.*, 2015). Others
613 described improved intraclass correlation coefficients with datasets beyond 20 minutes and up
614 to 50 minutes (Xu *et al.*, 2016). The Midnight Scan Club group (Gordon, Laumann, Gilmore, *et al.*,
615 2017) computed a range of network connectivity metrics and found that reliability generally
616 required at least 30 minutes of resting state data per subject. One paper (Greene *et al.*, 2020)
617 specifically investigated functional connectivity in subcortical structures and found even longer
618 scan requirements (up to 100 minutes) for subcortical structures due to decreased signal-to-
619 noise ratios deeper in the brain. Additionally, primary sensory networks are among the most
620 stable within and across participants (Gratton *et al.*, 2018; Hutchison *et al.*, 2013). We therefore

621 believe it is appropriate and necessary to use datasets with longer scans of resting state data in
622 order to investigate even static subcortical auditory connectivity.

623 Further, while many brain networks exhibit temporal dynamics that can tell us about mental state
624 (Fornito *et al.*, 2012) or disease ((Sakoğlu *et al.*, 2010); see (Hutchison *et al.*, 2013) for a review),
625 functional connectivity within primary sensory networks are among the most stable over time
626 (Gratton *et al.*, 2018), as they share bidirectional physical connections, share contributions to the
627 same physiological tasks, and are evolutionarily conserved across species (Hutchison and
628 Everling, 2012). In the present work, we were interested in characterizing the stationary
629 connectivity in the primary auditory pathway that is present at rest across individuals. Adapting
630 time-varying dynamics into this model is a promising future direction, particularly if we are
631 interested in higher level cognitive brain networks that vary as a function of task or mental state.

632

633 **5. Conclusions**

634 In this article, we validated a novel autoregressive matrix Gaussian copula graphical model for
635 partial correlation estimation while appropriately correcting for temporal autocorrelations. Using
636 this approach, we identified functional connectivity in the human auditory system using resting
637 state functional MRI. Whereas a complementary approach using full correlations identified a rich
638 network of interconnected auditory regions, partial correlations highlighted direct connections
639 between adjacent structures along auditory pathways. In particular, subcortical connectivity was
640 highly consistent across acquisitions, demonstrating the utility and applicability of functional
641 connectivity methods in deep brain structures. In the future, we plan to investigate whole-brain
642 partial correlation connectivity across sensory, motor, and higher cognitive networks using the
643 proposed models and their relationship to behavior across individuals.

644

645 **Acknowledgements:**

646 Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal
647 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH

648 Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the
649 McDonnell Center for Systems Neuroscience at Washington University.

650

651 **Ethics:**

652 Data usage adhered to the Open Access Data Use Terms from the Human Connectome Project
653 (WU-Minn HCP).

654

655 **Data and Code Availability:**

656 Data are publicly available through the Human Connectome Project
657 (<https://www.humanconnectome.org/study/hcp-young-adult>). Analysis code is available in the
658 Supplementary Materials.

659

660 **Author Contributions:**

661 Noirrit Chandra: conceptualization (equal); formal analysis (lead); software (lead); visualization
662 (equal); writing – original draft (equal); writing – review and editing (equal).

663 Kevin R. Sitek: conceptualization (equal); formal analysis (equal); visualization (equal); writing –
664 original draft (lead); writing – review and editing (equal).

665 Bharath Chandrasekaran: conceptualization (equal); writing – review and editing (equal).

666 Abhra Sarkar: conceptualization (equal); writing – review and editing (equal).

667

668 **Funding:**

669 This work was supported by the National Science Foundation grant NSF DMS- 1953712 (to AS and
670 BC) and the National Institutes of Health/National Institute on Deafness and Other
671 Communication Disorders (K01DC019421 to KRS and R01DC01550 to BC).

672

673 **Declaration of Competing Interests:**

674 The authors have no competing interests.

675

676 **References**

677 **Bibliography**

678

679 Abrams DA, Kochalka J, Bhide S, Ryali S, Menon V. Intrinsic functional architecture of the
680 human speech processing network. *Cortex* 2020; 129: 41–56.

681 Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M. Individual
682 variability in functional connectivity predicts performance of a perceptual task. *Proc. Natl. Acad.*
683 *Sci. USA* 2012; 109: 3516–3521.

684 Barnes WT, Magoun HW, Ranson SW. The ascending auditory pathway in the brain stem of the
685 monkey. *J. Comp. Neurol.* 1943; 79: 129–152.

686 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
687 approach to multiple testing. *Journal of the Royal Statistical Society: Series B (Methodological)*
688 1995; 57: 289–300.

689 Berlot E, Arts R, Smit J, George E, Gulban OF, Moerel M, et al. A 7 Tesla fMRI investigation of
690 human tinnitus percept in cortical and subcortical auditory areas. *Neuroimage Clin.* 2020; 25:
691 102166.

692 Bhattacharya A, Pati D, Pillai NS, Dunson DB. Dirichlet-Laplace priors for optimal shrinkage. *J.*
693 *Am. Stat. Assoc.* 2015; 110: 1479–1490.

694 Bhaya-Grossman I, Chang EF. Speech computations of the human superior temporal gyrus.
695 *Annu. Rev. Psychol.* 2022; 73: 79–102.

696 Bianciardi M, Toschi N, Eichner C, Polimeni JR, Setsompop K, Brown EN, et al. In vivo
697 functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and
698 motor systems by high spatial resolution 7-Tesla fMRI. *MAGMA* 2016; 29: 451–462.

699 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of
700 resting human brain using echo-planar MRI. *Magn. Reson. Med.* 1995; 34: 537–541.

701 Cai MB, Shvartsman M, Wu A, Zhang H, Zhu X. Incorporating structured assumptions with
702 probabilistic graphical models in fMRI data analysis. *Neuropsychologia* 2020; 144: 107500.

703 Calhoun VD, Adali T, Pearson GD, Pekar JJ. A method for making group inferences from
704 functional MRI data using independent component analysis. *Hum. Brain Mapp.* 2001; 14: 140–
705 151.

706 Cha K, Zatorre RJ, Schönwiesner M. Frequency Selectivity of Voxel-by-Voxel Functional
707 Connectivity in Human Auditory Cortex. *Cereb. Cortex* 2016; 26: 211–224.

708 Chai XJ, Hirshfeld-Becker D, Biederman J, Uchida M, Doehrmann O, Leonard JA, et al. Altered
709 intrinsic functional brain architecture in children at familial risk of major depression. *Biol.*

710 Psychiatry 2016; 80: 849–858.

711 Chandra NK, Mueller P, Sarkar A. Bayesian Scalable Precision Factor Analysis for Massive
712 Sparse Gaussian Graphical Models. arXiv 2021: arXiv:2107.11316.

713 Chen J, Hu B, Qin P, Gao W, Liu C, Zi D, et al. Altered brain activity and functional
714 connectivity in unilateral sudden sensorineural hearing loss. Neural Plast. 2020; 2020: 9460364.

715 Colizoli O, de Gee JW, van der Zwaag W, Donner TH. Comparing fMRI responses measured at
716 3 versus 7 Tesla across human cortex, striatum, and brainstem. BioRxiv 2020

717 Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping
718 functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J.
719 Neuroradiol. 2000; 21: 1636–1644.

720 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface
721 reconstruction. Neuroimage 1999; 9: 179–194.

722 De Martino F, Moerel M, van de Moortele P-F, Ugurbil K, Goebel R, Yacoub E, et al. Spatial
723 organization of frequency preference and selectivity in the human inferior colliculus. Nat.
724 Commun. 2013; 4: 1386.

725 Deng Z, Chandrasekaran B, Wang S, Wong PCM. Resting-state low-frequency fluctuations
726 reflect individual differences in spoken language learning. Cortex 2016; 76: 63–78.

727 Di Martino A, Kelly C, Grzadzinski R, Zuo X-N, Mennes M, Mairena MA, et al. Aberrant
728 striatal functional connectivity in children with autism. Biol. Psychiatry 2011; 69: 847–856.

729 Doucet JR, Ryugo DK. Axonal pathways to the lateral superior olive labeled with biotinylated
730 dextran amine injections in the dorsal cochlear nucleus of rats. J. Comp. Neurol. 2003; 461: 452–
731 465.

732 Eckert MA, Kamdar NV, Chang CE, Beckmann CF, Greicius MD, Menon V. A cross-modal
733 system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity
734 analysis. Hum. Brain Mapp. 2008; 29: 848–857.

735 Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, et al. The
736 Human Connectome Project: A retrospective. Neuroimage 2021; 244: 118543.

737 Esteban O, Adebimpe A, Markiewicz CJ, Goncalves M, Blair RW, Cieslak M, et al. The
738 Bermuda Triangle of d- and f-MRI sailors - software for susceptibility distortions (SDCFlows).
739 2021

740 Feng G, Gan Z, Yi HG, Ell SW, Roark CL, Wang S, et al. Neural dynamics underlying the
741 acquisition of distinct auditory category structures. Neuroimage 2021; 244: 118565.

742 Ferguson TS. A Bayesian Analysis of Some Nonparametric Problems on JSTOR [Internet].
743 1973[cited 2022 May 10] Available from: <https://www.jstor.org/stable/2958008>

744 Ferri J, Ford JM, Roach BJ, Turner JA, van Erp TG, Voyvodic J, et al. Resting-state thalamic
745 dysconnectivity in schizophrenia and relationships with symptoms. Psychol. Med. 2018; 48:
746 2492–2499.

747 Fornito A, Harrison BJ, Zalesky A, Simons JS. Competitive and cooperative dynamics of large-
748 scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. USA 2012; 109:
749 12788–12793.

750 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional
751 magnetic resonance imaging. *Nat. Rev. Neurosci.* 2007; 8: 700–711.

752 Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical
753 lasso. *Biostatistics* 2008; 9: 432–441.

754 Ghosal S, Ghosh JK, Ramamoorthi RV. Posterior consistency of Dirichlet mixtures in density
755 estimation. *Ann. Statist.* 1999; 27

756 Ghosal S, van der Vaart A. Fundamentals of nonparametric bayesian inference. Cambridge:
757 Cambridge University Press; 2017.

758 Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The
759 minimal preprocessing pipelines for the Human Connectome Project. *Neuroimage* 2013; 80:
760 105–124.

761 Gordon EM, Laumann TO, Adeyemo B, Petersen SE. Individual Variability of the System-Level
762 Organization of the Human Brain. *Cereb. Cortex* 2017; 27: 386–399.

763 Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision
764 functional mapping of individual human brains. *Neuron* 2017; 95: 791–807.e7.

765 Gratton C, Laumann TO, Nielsen AN, Greene DJ, Gordon EM, Gilmore AW, et al. Functional
766 brain networks are dominated by stable group and individual factors, not cognitive or daily
767 variation. *Neuron* 2018; 98: 439–452.e5.

768 Greene DJ, Marek S, Gordon EM, Siegel JS, Gratton C, Laumann TO, et al. Integrative and
769 Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals.
770 *Neuron* 2020; 105: 742–758.e6.

771 Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state
772 functional connectivity in major depression: abnormally increased contributions from subgenual
773 cingulate cortex and thalamus. *Biol. Psychiatry* 2007; 62: 429–437.

774 Guha N, Baladandayuthapani V, Mallick BK. Quantile Graphical Models: a Bayesian Approach.
775 *Journal of Machine Learning Research* 2020

776 Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: A comparative perspective.
777 *Physiol. Rev.* 2020; 100: 1019–1063.

778 Hackett TA. Information flow in the auditory cortical network. *Hear. Res.* 2011; 271: 133–146.

779 Hahn A, Stein P, Windischberger C, Weissenbacher A, Spindelegger C, Moser E, et al. Reduced
780 resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety
781 disorder. *Neuroimage* 2011; 56: 881–889.

782 Hamilton LS, Edwards E, Chang EF. A spatial map of onset and sustained responses to speech in
783 the human superior temporal gyrus. *Curr. Biol.* 2018; 28: 1860–1871.e4.

784 Hamilton LS, Oganian Y, Chang EF. Topography of speech-related acoustic and phonological
785 feature encoding throughout the human core and parabelt auditory cortex. *BioRxiv* 2020

786 Harrison JM, Irving R. Ascending connections of the anterior ventral cochlear nucleus in the rat.
787 *J. Comp. Neurol.* 1966; 126: 51–63.

788 Hawley ML, Melcher JR, Fullerton BC. Effects of sound bandwidth on fMRI activation in

789 human auditory brainstem nuclei. *Hear. Res.* 2005; 204: 101–110.

790 Hickok G, Poeppel D. The cortical organization of speech processing. *Nat. Rev. Neurosci.* 2007; 791 8: 393–402.

792 Hofmeier B, Wolpert S, Aldamer ES, Walter M, Thericke J, Braun C, et al. Reduced sound- 793 evoked and resting-state BOLD fMRI connectivity in tinnitus. *Neuroimage Clin.* 2018; 20: 637– 794 649.

795 de Hollander G, Keuken MC, van der Zwaag W, Forstmann BU, Trampel R. Comparing 796 functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic 797 nucleus at 7 T and 3 T. *Hum. Brain Mapp.* 2017; 38: 3226–3248.

798 Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of 799 tinnitus. *Hear. Res.* 2014; 307: 153–162.

800 Hutchison RM, Everling S. Monkey in the middle: why non-human primates are needed to 801 bridge the gap in resting-state investigations. *Front. Neuroanat.* 2012; 6: 29.

802 Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, et al. 803 Dynamic functional connectivity: promise, issues, and interpretations. *Neuroimage* 2013; 80: 804 360–378.

805 Ishwaran H, Zarepour M. DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES . 806 *Stat Sin* 2002a

807 Ishwaran H, Zarepour M. Exact and approximate sum representations for the Dirichlet process. 808 *Can. J. Statistics* 2002b; 30: 269–283.

809 Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field 810 variations. *Magn. Reson. Med.* 1995; 34: 65–73.

811 Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in 812 Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. *JAMA 813 Psychiatry* 2015; 72: 603–611.

814 Keshishian M, Akkol S, Herrero J, Bickel S, Mehta AD, Mesgarani N. Joint, distributed and 815 hierarchically organized encoding of linguistic features in the human auditory cortex. *Nat. Hum. 816 Behav.* 2023

817 Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. 818 *Front. Neurosci.* 2012; 6: 171.

819 Kral A, Dorman MF, Wilson BS. Neuronal development of hearing and language: cochlear 820 implants and critical periods. *Annu. Rev. Neurosci.* 2019; 42: 47–65.

821 Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen M-Y, et al. Functional system 822 and areal organization of a highly sampled individual human brain. *Neuron* 2015; 87: 657–670.

823 Leaver AM, Turesky TK, Seydel-Greenwald A, Morgan S, Kim HJ, Rauschecker JP. Intrinsic 824 network activity in tinnitus investigated using functional MRI. *Hum. Brain Mapp.* 2016; 37: 825 2717–2735.

826 Lee N, Kim J-M. Dynamic functional connectivity analysis based on time-varying partial 827 correlation with a copula-DCC-GARCH model. *Neurosci. Res.* 2021; 169: 27–39.

828 Lim HH, Lenarz M, Lenarz T. Auditory midbrain implant: a review. *Trends Amplif.* 2009; 13:
829 149–180.

830 Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar
831 imaging using resting-state fluctuations. *Neuroimage* 1998; 7: 119–132.

832 Malmierca MS, Ryugo DK. Descending connections of auditory cortex to the midbrain and brain
833 stem. In: Winer JA, Schreiner CE, editor(s). *The Auditory Cortex*. Boston, MA: Springer US;
834 2011. p. 189–208.

835 Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, Doyon J, et al. Partial
836 correlation for functional brain interactivity investigation in functional MRI. *Neuroimage* 2006;
837 32: 228–237.

838 Maudoux A, Lefebvre P, Cabay J-E, Demertzis A, Vanhaudenhuyse A, Laureys S, et al. Auditory
839 resting-state network connectivity in tinnitus: a functional MRI study. *PLoS One* 2012; 7:
840 e36222.

841 McIntosh AR, Gonzalez-Lima F. Structural modeling of functional neural pathways mapped
842 with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system. *Brain Res.*
843 1991; 547: 295–302.

844 Menon SS, Krishnamurthy K. A comparison of static and dynamic functional connectivities for
845 identifying subjects and biological sex using intrinsic individual brain connectivity. *Sci. Rep.*
846 2019; 9: 5729.

847 Mihai PG, Moerel M, de Martino F, Trampel R, Kiebel S, von Kriegstein K. Modulation of
848 tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition. *Elife*
849 2019; 8

850 Miletic S, Bazin PL, Weiskopf N, Van der Zwaag W, Forstmann BU, Trampel R. fMRI protocol
851 optimization for simultaneously studying small subcortical and cortical areas at 7 T. *Neuroimage*
852 2020: 116992.

853 Moerel M, De Martino F, Uğurbil K, Yacoub E, Formisano E. Processing of frequency and
854 location in human subcortical auditory structures. *Sci. Rep.* 2015; 5: 17048.

855 Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial
856 resolution fMRI to understand representation in the auditory network. *Prog. Neurobiol.* 2021;
857 207: 101887.

858 Moore JK. Organization of the human superior olfactory complex. *Microsc. Res. Tech.* 2000

859 Norman-Haignere SV, Long LK, Devinsky O, Doyle W, Irobunda I, Merricks EM, et al.
860 Multiscale temporal integration organizes hierarchical computation in human auditory cortex.
861 *Nat. Hum. Behav.* 2022; 6: 455–469.

862 Nourski KV, Steinschneider M, Rhone AE, Kawasaki H, Howard MA, Banks MI. Processing of
863 auditory novelty across the cortical hierarchy: An intracranial electrophysiology study.
864 *Neuroimage* 2018; 183: 412–424.

865 Pernet CR, McAleer P, Latinus M, Gorgolewski KJ, Charest I, Bestelmeyer PEG, et al. The
866 human voice areas: Spatial organization and inter-individual variability in temporal and extra-
867 temporal cortices. *Neuroimage* 2015; 119: 164–174.

868 Pickles JO. Auditory pathways: anatomy and physiology. *Handb Clin Neurol* 2015; 129: 3–25.

869 Pourahmadi M. High-Dimensional Covariance Estimation: With High-Dimensional Data.

870 illustrated. John Wiley & Sons; 2013.

871 Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network

872 organization of the human brain. *Neuron* 2011; 72: 665–678.

873 Preibisch C, Castrillón G JG, Bührer M, Riedl V. Evaluation of Multiband EPI Acquisitions for

874 Resting State fMRI. *PLoS One* 2015; 10: e0136961.

875 Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in

876 auditory cortex. *Proc. Natl. Acad. Sci. USA* 2000; 97: 11800–11806.

877 Reeves WD, Ahmed I, Jackson BS, Sun W, Brown ML, Williams CF, et al. Characterization of

878 Resting-State Functional Connectivity Changes in Hypertension by a Modified Difference

879 Degree Test. *Brain Connect.* 2023

880 Reiss LA. Cochlear implants and other inner ear prostheses: today and tomorrow. *Curr. Opin.*

881 *Physiol.* 2020; 18: 49–55.

882 Ren J, Xu T, Wang D, Li M, Lin Y, Schoeppe F, et al. Individual variability in functional

883 organization of the human and monkey auditory cortex. *Cereb. Cortex* 2021; 31: 2450–2465.

884 Ress D, Chandrasekaran B. Tonotopic organization in the depth of human inferior colliculus.

885 *Front. Hum. Neurosci.* 2013; 7: 586.

886 Rupp K, Hect JL, Remick M, Ghuman A, Chandrasekaran B, Holt LL, et al. Neural responses in

887 human superior temporal cortex support coding of voice representations. *PLoS Biol.* 2022; 20:

888 e3001675.

889 Sakoğlu U, Pearson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for

890 evaluating dynamic functional network connectivity and task-modulation: application to

891 schizophrenia. *MAGMA* 2010; 23: 351–366.

892 Sarkar SK, Zhou T, Ghosh D. A General Decision Theoretic Formulation of Procedures

893 Controlling FDR and FNR from a Bayesian Perspective. *Stat Sin* 2008; 18

894 Schofield BR. Projections to the cochlear nuclei from principal cells in the medial nucleus of the

895 trapezoid body in guinea pigs. *J. Comp. Neurol.* 1994; 344: 83–100.

896 Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for

897 brainstem neuroimaging with ultrahigh field MRI. *Neuroimage* 2018; 168: 412–426.

898 Shetty KR, Ridge SE, Kanumuri V, Zhu A, Brown MC, Lee DJ. Clinical and scientific

899 innovations in auditory brainstem implants. *World J. Otorhinolaryngol. Head Neck Surg.* 2021;

900 7: 109–115.

901 Sigalovsky IS, Melcher JR. Effects of sound level on fMRI activation in human brainstem,

902 thalamic and cortical centers. *Hear. Res.* 2006; 215: 67–76.

903 Sitek KR, Cai S, Beal DS, Perkell JS, Guenther FH, Ghosh SS. Decreased Cerebellar-

904 Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and

905 Structural Connectivity Associations with Persistent Developmental Stuttering. *Front. Hum.*

906 *Neurosci.* 2016; 10: 190.

907 Sitek KR, Gulban OF, Calabrese E, Johnson GA, Lage-Castellanos A, Moerel M, et al. Mapping
908 the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T.
909 *Elife* 2019; 8

910 Skåtun KC, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Jönsson EG, et al.
911 Consistent functional connectivity alterations in schizophrenia spectrum disorder: A multisite
912 study. *Schizophr. Bull.* 2017; 43: 914–924.

913 Smith SM. The future of fMRI connectivity. *Neuroimage* 2012; 62: 1257–1266.

914 Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, et al. Resting-
915 state fMRI in the Human Connectome Project. *Neuroimage* 2013; 80: 144–168.

916 Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional
917 connectomics from resting-state fMRI. *Trends Cogn. Sci. (Regul. Ed.)* 2013; 17: 666–682.

918 Sripada C, Angstadt M, Taxali A, Clark DA, Greathouse T, Rutherford S, et al. Brain-wide
919 functional connectivity patterns support general cognitive ability and mediate effects of
920 socioeconomic status in youth. *Transl. Psychiatry* 2021; 11: 571.

921 Tabas A, Kiebel S, Marxen M, von Kriegstein K. Fast frequency modulation is encoded
922 according to the listener expectations in the human subcortical auditory pathway. *arXiv* 2021

923 Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al. The Human
924 Connectome Project: a data acquisition perspective. *Neuroimage* 2012; 62: 2222–2231.

925 Varoquaux G, Schwartz Y, Pinel P, Thirion B. Cohort-level brain mapping: learning cognitive
926 atoms to single out specialized regions. *Inf. Process. Med. Imaging* 2013; 23: 438–449.

927 de Vos F, Koini M, Schouten TM, Seiler S, van der Grond J, Lechner A, et al. A comprehensive
928 analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease.
929 *Neuroimage* 2018; 167: 62–72.

930 Wang Y, Kang J, Kemmer PB, Guo Y. An efficient and reliable statistical method for estimating
931 functional connectivity in large scale brain networks using partial correlation. *Front. Neurosci.*
932 2016; 10: 123.

933 Warnick R, Guindani M, Erhardt E, Allen E, Calhoun V, Vannucci M. A Bayesian Approach for
934 Estimating Dynamic Functional Network Connectivity in fMRI Data. *J. Am. Stat. Assoc.* 2018;
935 113: 134–151.

936 Wilson KC, Kornisch M, Ikuta T. Disrupted functional connectivity of the primary auditory
937 cortex in autism. *Psychiatry Research: Neuroimaging* 2022; 111490.

938 Winer JA. Decoding the auditory corticofugal systems. *Hear. Res.* 2005; 207: 1–9.

939 Xu T, Opitz A, Craddock RC, Wright MJ, Zuo X-N, Milham MP. Assessing variations in areal
940 organization for the intrinsic brain: from fingerprints to reliability. *Cereb. Cortex* 2016; 26:
941 4192–4211.

942 Yu Z, Guindani M, Grieco SF, Chen L, Holmes TC, Xu X. Beyond t test and ANOVA:
943 applications of mixed-effects models for more rigorous statistical analysis in neuroscience
944 research. *Neuron* 2022; 110: 21–35.

945 Zatorre R, Belin P, Penhune VB. Structure and function of auditory cortex: music and speech.
946 *Trends Cogn. Sci. (Regul. Ed.)* 2002; 6: 37–46.

947 Zhang J, Chen Y-C, Feng X, Yang M, Liu B, Qian C, et al. Impairments of thalamic resting-state
948 functional connectivity in patients with chronic tinnitus. *Eur. J. Radiol.* 2015; 84: 1277–1284.

949 Zhang L, Guindani M, Versace F, Vannucci M. A spatio-temporal nonparametric Bayesian
950 variable selection model of fMRI data for clustering correlated time courses. *Neuroimage* 2014;
951 95: 162–175.

952 Zuo X-N, Xu T, Milham MP. Harnessing reliability for neuroscience research. *Nat. Hum. Behav.*
953 2019; 3: 768–771.

954 The mammalian auditory pathway: neurophysiology. New York, NY: Springer New York; 1992.

955 The Mammalian Auditory Pathway: Neuroanatomy. New York, NY: Springer New York; 1992.

956