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Abstract/Summary

The auditory system comprises multiple subcortical brain structures that process and refine
incoming acoustic signals along the primary auditory pathway. Due to technical limitations of
imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory
system is based on research in animal models using invasive methodologies. Advances in ultra-
high field functional magnetic resonance imaging (fMRI) acquisition have enabled novel non-
invasive investigations of the human auditory subcortex, including fundamental features of
auditory representation such as tonotopy and periodotopy. However, functional connectivity
across subcortical networks is still underexplored in humans, with ongoing development of
related methods. Traditionally, functional connectivity is estimated from fMRI data with full
correlation matrices. However, partial correlations reveal the relationship between two regions

after removing the effects of all other regions, reflecting more direct connectivity. Partial
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correlation analysis is particularly promising in the ascending auditory system, where sensory
information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory
pathway, providing redundant but also increasingly abstract representations of auditory stimuli.
While most existing methods for learning conditional dependency structures based on partial
correlations assume independently and identically Gaussian distributed data, fMRI data exhibit
significant deviations from Gaussianity as well as high temporal autocorrelation. In this paper,
we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach
to estimate the partial correlations and thereby infer the functional connectivity patterns within
the auditory system while appropriately accounting for autocorrelations between successive
fMRI scans. Our results show strong positive partial correlations between successive structures
in the primary auditory pathway on each side (left and right), including between auditory
midbrain and thalamus, and between primary and associative auditory cortex. These results are
highly stable when splitting the data in halves according to the acquisition schemes and
computing partial correlations separately for each half of the data, as well as across cross-
validation folds. In contrast, full correlation-based analysis identified a rich network of
interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results
demonstrate that unique functional connectivity patterns along the auditory pathway are
recoverable using novel connectivity approaches and that our connectivity methods are reliable

across multiple acquisitions.

Keywords (6):

functional MRI, Gaussian copula graphical model, partial correlation, resting state connectivity,

subcortical auditory system, timeseries
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1. Introduction

The mammalian auditory pathway conveys acoustic information between the inner ear—where
sounds are mechanoelectrically transduced in the cochlea—and auditory cortex by way of
multiple subcortical nuclei across the brainstem, midbrain, and thalamus. Much of our
knowledge of the auditory system arises from anatomical and physiological research with non-
human animal models (Mcintosh and Gonzalez-Lima, 1991; Popper and Fay, 1992; Webster et
al., 1992). This work has contributed tremendously to our understanding of the mammalian
auditory system. However, due to methodological and ethical limitations, our ability to directly
assess auditory function in the human nervous system is severely constrained (as discussed in

(Moerel et al., 2021)).

This is particularly true for subcortical auditory structures. In mammals, the ascending central
auditory pathway receives signals from the cochlea of the inner ear by way of the cochlear nerve,
which principally innervates the cochlear nucleus in the brainstem. Auditory signals are then
transmitted to the superior olivary complex, which is the first decussation point at which signals
largely pass contralaterally from the left cochlear nucleus to the right superior olive (and similarly
from right to left). From the superior olive, auditory signals travel (via the lateral lemniscus) to
the inferior colliculus in the midbrain. The last subcortical auditory structure is the medial
geniculate nucleus of the thalamus, which then passes information to primary auditory cortex. In
addition to the ascending “lemniscal” auditory pathway, an equal number of efferent
connections transmit top-down information from higher order auditory regions to earlier
auditory structures (Malmierca and Ryugo, 2011; Winer, 2005). Due to the small size of the
subcortical auditory structures—tightly packed in with other heterogeneous nuclei and white
matter pathways—and their anatomical location deep within the cranium, the subcortical

auditory structures have received limited attention in non-invasive human research.

Functional magnetic resonance imaging (fMRI) is the most popular non-invasive method for
probing macroscopic network-related brain activity. While studies of the human subcortical
auditory system are somewhat limited, previous task-based fMRI research has functionally
localized the subcortical auditory structures (Sitek et al., 2019), identified the tonotopic
frequency mappings within the auditory midbrain and thalamus (De Martino et al., 2013; Moerel

3
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81 et al.,, 2015; Ress and Chandrasekaran, 2013), separated top-down and bottom-up speech-
82 selective subregions of auditory thalamus (Mihai et al., 2019; Tabas et al., 2021), and recorded
83 level-dependent BOLD signals throughout the auditory pathway (Hawley et al., 2005; Sigalovsky
84 and Melcher, 2006).

85 In contrast to task-related BOLD activity, fMRI connectivity methods (often utilizing resting state
86 fMRI paradigms and full correlation analysis) are commonly used to assay cortical brain networks
87 (Biswal et al., 1995; Gordon, Laumann, Adeyemo, et al., 2017; Power et al., 2011; Smith,
88 Beckmann, et al., 2013), including the cortical auditory system (Abrams et al., 2020; Cha et al.,
89 2016; Chen et al., 2020; Eckert et al., 2008; Maudoux et al., 2012; Ren et al., 2021). However,
90 fMRI connectivity methods have limited history in subcortical research, especially in the auditory
91 system, where they have—to our knowledge—only been utilized a handful of times to assess
92 connectivity differences between individuals with and without tinnitus percepts (Berlot et al.,

93 2020; Hofmeier et al., 2018; Leaver et al., 2016; Zhang et al., 2015).

94  From the seminal resting state connectivity studies identifying human default mode and motor
95 networks (Biswal et al., 1995; Fox and Raichle, 2007), to work linking functional connectivity with
96 behavioral variability (Baldassarre et al., 2012; Deng et al., 2016), to investigations into brain
97 network differences associated with disorders (Chai et al., 2016; Di Martino et al., 2011; Ferri et
98 al., 2018; Greicius et al., 2007; Hahn et al., 2011; Husain and Schmidt, 2014, Kaiser et al., 2015;
99 Sitek et al., 2016; Wilson et al., 2022), full correlation analysis has contributed tremendously to
100 our understanding of human brain networks. However, moving beyond the traditional full
101 correlation analysis should enable greater specificity in assessing functional connectivity
102 patterns, particularly in identifying specific node-to-node connectivity patterns within an
103 established brain network (Marrelec et al., 2006; Smith, 2012). In contrast to full correlations,
104  which represent both direct and indirect connections, partial correlation analyses represent the
105 direct association between two specific nodes after filtering out the effects of the remaining
106 nodes and thus hold great promise for estimating direct functional connectivity within a network
107 (Smith, Beckmann, et al., 2013). (Please refer to the illustration in the Supplementary Materials.)
108 For these reasons, partial correlation approaches are increasingly used to study functional

109 connectivity networks in the brain (Wang et al., 2016; Warnick et al., 2018), including improved

4
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110 identification of individualized connectivity profiles compared to full correlation methods
111 (Menon and Krishnamurthy, 2019), as well as improved prediction of brain disorders (Reeves et
112 al., 2023; Skatun et al., 2017; de Vos et al., 2018) and identification of general cognitive ability
113 (Sripada et al., 2021). However, we are unaware of the application of such methods to assess
114  functional connectivity within subcortical networks, particularly within the human auditory

115 system.

116 In this article, we build on the Bayesian precision factor model (PFM) introduced recently in
117 Chandra et al. (2021) to develop a novel highly robust autoregressive matrix-Gaussian copula
118 graphical model (ARMGCGM) to assess partial correlation-based functional connectivity in a
119 specific network in the human brain that spans subcortical and cortical regions, the auditory
120 system. The PFM decomposes the model precision matrix into a flexible low-rank and diagonal
121  structure, then exploits that to design very efficient estimation algorithms. However, it makes
122 the restrictive assumption that each variable is marginally Gaussian distributed. Several studies
123 inthe literature also make this assumption (Yu et al., 2022; Zhang et al., 2014) which has the very
124  useful implication that a zero partial correlation between two variables (equivalent to a zero
125 entry in the precision matrix in the corresponding position) also means independence between
126 them after removing the effects of other variables. However, in many applications—including
127 ours—data are often not Gaussian distributed. Additionally, data from successive fMRI volumes
128 exhibit strong autocorrelation. The ARMGCGM extends the PFM to the case where the univariate
129 marginals can be any arbitrary distribution while also accounting for the autocorrelations
130 between successive fMRI scans. The association between the variables are modeled using a
131 Gaussian copula that implies conditional independence for zero partial correlation, allowing easy
132 interpretability of the conditional dependence graph. As developed, the ARMGCGM approach is

133  broadly applicable for studying undirected functional graphs using large-scale fMRI data.

134 We use the novel ARMGCGM to investigate functional connectivity between specific nodes
135 across the human auditory system. We used publicly available 7T resting state fMRI from over
136 one hundred participants to examine auditory connectivity. To probe connectivity within the
137 auditory system, we included auditory cortical regions of interest as well as subcortical auditory

138 regions derived from human histology (Sitek et al., 2019). As the auditory pathway comprises a
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139 chain of multiple subcortical structures, and due to the largely lateralized organization of the
140 lemniscal auditory system, we hypothesized that partial correlations would be greatest between
141 adjacent nodes in the same hemisphere, over and above the contributions from other auditory
142 (and non-auditory) regions of interest. In particular, because of the critical position of auditory
143  midbrain and thalamus as computational hubs involving bottom-up and top-down information
144 transfer (Mihai et al., 2019; Tabas et al., 2021), we hypothesized strong partial correlations
145 between inferior colliculus and medial geniculate. We further assessed reliability across
146 acquisitions by separately analyzing data with anterior—posterior and posterior—anterior phase-
147 encoding directions, as well as leave-10%-out cross-validation. We then compared our
148 ARMGCGM-based connectivity results with those from a full correlation approach as well as
149 alternative partial correlation methods. Overall, our consistent findings of hierarchical
150 connectivity within the auditory system using our novel partial correlation method—consistent
151 across data partitions and leave-10%-out validation— demonstrate the methodological reliability
152  of our ARMGCGM approach as well as the neurobiological organization of auditory structures in

153 the human primary auditory system.

154

155 2. Materials and methods

156 2.1 Magnetic resonance imaging acquisition and processing

157 We used resting state fMRI from 106 participants in the 7T Human Connectome Project (Elam et
158 al., 2021; Van Essen et al., 2012). Specifically, we utilized the minimally preprocessed volumetric
159 datain common space (Glasser et al., 2013). BOLD fMRI data were acquired with 1.6 mm isotropic
160 voxel size across four runs of a resting state paradigm (repetition time [TR] = 1 s, 900 TRs per
161 run). Two runs were acquired with anterior—posterior (AP) phase encoding, and two were
162 acquired with posterior—anterior (PA) phase encoding. For all ROIs and runs, we discarded the

163 first 50 TRs to increase stability.

164  For each individual and each run, we extracted mean timeseries from predefined regions of
165 interest (ROls). Subcortical auditory ROIs were defined using the Sitek—Gulban atlas (Sitek et al.,

166 2019). Cortical ROIs were defined using FreeSurfer’s implementation of the DKT atlas (Dale et al.,
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167 1999; Klein and Tourville, 2012). For this study we used transverse temporal gyrus (TTG) and
168 superior temporal gyrus (STG) as auditory ROls, as well as pericalcarine cortex (Calc) and superior
169 frontal gyrus (SFG) as non-auditory control ROls (see Supplementary Materials). Mean timeseries

170 were extracted for each ROl using nilearn’s [Masker] function.
171 2.2 Data partitioning and cross-validation

172 BOLD fMRlI is prone to geometric distortions in the phase-encoding direction which can be largely
173 corrected using a variety of methods (Esteban et al., 2021; Jezzard and Balaban, 1995). Adjacent
174 to motion-sensitive cerebrospinal fluid (CSF), the brainstem is particularly susceptible to such
175 geometric distortions. Although the HCP minimal preprocessing pipeline corrects for phase-
176 encoding distortions (Glasser et al., 2013), to isolate the potential residual contribution of phase
177 encoding direction on functional connectivity estimates, we conducted separate analyses on data
178 collected with posterior—anterior (PA) phase encoding direction (runs 1 and 3) and anterior—
179 posterior (AP) phase encoding direction (runs 2 and 4) and compared the results. As the fMRI
180 data acquired in the two phases will be analyzed separately but using the same probability-
181 model, we use the same notations for the different phases to describe our proposed model in

182 the following sections.

183 We further evaluated our results using a leave-10%-out cross-validation (CV) approach. We
184 assessed the stability of the connectivity estimates by checking the correlation between the

185 results obtained from each acquisition scheme.
186
187 2.3 Autoregressive matrix-Gaussian copula graphical models

188 The Bayesian precision factor model (PFM), developed recently in (Chandra et al.,, 2021),
189 provided a novel computationally efficient robust technique for estimating precision matrices.
190 Since partial correlations can be readily obtained from the precision matrix, the approach allowed
191 straightforward estimation of the underlying connectivity graphs. Previously, (Lee and Kim, 2021)
192 obtained the precision matrix by inverting the estimated covariance matrix. However, this

193 approach often tends to exhibit poor empirical performance (Pourahmadi, 2013).
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194 Most partial correlation-based conditional dependency graph estimation procedures in the
195 statistical literature (Cai et al., 2020; Chandra et al., 2021; Friedman et al., 2008; Warnick et al.,
196 2018) assume that the joint distribution of the data is independent and identically distributed
197 (iid) multivariate Gaussian, which implies that the univariate marginal distributions are also all
198 Gaussians. However, successive fMRI scans have strong autocorrelations, and their marginal
199 distributions exhibit substantial deviance from the Gaussian assumption. In this paper, we
200 therefore extend the PFM to accommodate non-Gaussian marginals, while appropriately

201 accounting for the temporal dependence between successive fMRI scans.

202 Let Yt(‘]r.'i) be the fMRI timeseries corresponding to the i-th individual’s j-th ROI at the t-th
203 timepoint in the r-th run. In our application we are interested in studying the connectivity
204 between d = 12 ROIs along the central auditory pathway using fMRI timeseries of length T =
205 850 from N = 106 individuals each undergoing R = 2 runs. We let fj(r’i) be the (unknown)
)

(i)

206 marginal density of thjr. with corresponding cumulative distribution function (CDF) F] .

207 Copulas provide a broadly applicable class of tools that allow the joint distribution of Yt(’]r.‘i) to be
208 flexibly characterized by first modeling the univariate marginals fj(r‘i) and then hierarchically
209 modeling their joint dependencies by mapping the I?(r'i)(Yt(Jr.'i))'s to a joint probability space. For
210 Gaussian copulas, this is done by setting Zt(,rj’i) =¢ 1! {Fj(r'i)(Yt(Jr.'i))}, where ®(-) is the CDF of a
211 standard Gaussian distribution. This implies marginally AR N(0,1) for all r,i,j,t, where

t,j

212 N(u, 0?) denotes a univariate Gaussian distribution with mean p and variance g2. We let Z00 =

213 ((Zt(r]l))) denote the matrix of fMRI signals corresponding to the i-th individual in the r-th
Txd

214 run in the transformed Gaussian space. The Gaussian copula assumption on Ft(;'i)(Yt(Jr.'i))'s

215 implies that the joint distribution of Z™D is Gaussian as well. The dependencies between the

216 Zt(’rj’i)'s are therefore characterized entirely by their correlations. Additionally, since the

(r,i),

0 S these

217 dependence relationships between the observed Yt(j.’i)’s are modeled only through Z

218 correlations also completely characterize the dependencies between the Yt(]r.’i)’s.
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(r i),

219 Note that probabilistic dependencies exist between Z; /’s across both j and t; dependence

220 across j incurs due to the interaction between the ROIs whereas dependence across t occurs due
221 to the temporal dependence between successive fMRI scans. We let Ry denote the d X d
222  correlation matrix accounting for the dependence across the d different ROls across all runs and

223 individuals.
224  While our main interest lies in estimating these dependencies between the ROIs, it is also crucial

N\ T
225 to consider the temporal dependence in the Y(r D, Let Z(r D = (Zfrjl), ...,Z;Z'.l)) be the j-th

226  columnof ZD j.e., the timeseries corresponding to the i-th individual’s j-th ROl in the r-th run.

227 We develop our model in a hierarchical manner. To being with, we use autoregressive (AR)

228 processes of order L to model higher-order temporal dependencies in the Zt(,rj’i)’s as

L
Zg.'i) = z ﬁ(r A e(r 2 eilrj'i), ...,eg]’.i) e N(O gz(r l)), (1)

t—t',j
t'=1
with Zt(igj = 0if t' = t. We assume separate (8, ¢?) parameters across (r,1,j) in (1) to make
the model adapt to different timeseries patterns across different ROIs, individuals, and runs.

Let R(Tr"ji) be the correlation matrix of ZE;’i) induced by the AR(L) model in (1). We let f,(;’i) =

1

(R(Tr"ji))_gl,(;‘i) be the AR corrected timeseries corresponding to the j-th ROl forj = 1, ...,d. We

define the T x d matrix £ = (600 gmd) = (¢nh - gl ‘)) where £V is the t-
th row of ™D and can be interpreted as the fMRI signals in the Gaussian copula space
subsequent to filtering out the temporal dependence at time point t. We then let

0, 00 N, Ry @
229 The formulations in (1)-(2) imply the following joint distribution on Z!)

L (pm1z@DTg(D)
tr(Rg EDTE(MD)
, . ; e 2
(200 | R B, RED ) = o
()7 IRalZ TTY, [RYY[

230
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231

Figure 1 Graphical illustration of the hierarchical structure of the autoregressive matrix-Gaussian
copula graphical model (ARMGCGM): For brevity, we omit the superscript (r,i)—the run and
subject indicators, respectively, in this illustration. Y, ; is the observed BOLD signal from the j-th

ROl at the t-th time point. Z, ; = ®~* (F] (v, ])) is the BOLD signal in the Gaussian copula space.

Probabilistic dependencies exist between Z, ;’s across both j and t; dependence across j incurs
due to the interaction between the ROIs whereas dependence across t occurs due to the temporal
dependence between successive fMRI scans. &, ;’s are the autocorrelation corrected Z, j’s with

T i
(1 r8ea) = Ng(O,RZY forallt =1,...,T.

232 Although the R(Tr"j")'s are massive dimensional T X T matrices, notably they are characterized

. . . (i) (ri) 2(r0) . .

233 entirely by the associated autoregressive parameters {Bu ,...,BLJ S }, leading to their

234  straightforward numerically inexpensive evaluations in (3); we discuss the details in the posterior

235 computation section in Supplementary Materials. Let Q = ((coj_jr)) be the precision matrix

236 corresponding to R, i.e.,, Rq = ‘P_%ﬂ‘l‘l’_% with ¥ = diag(Q~1). Then, by properties of
237 copula and the simple multivariate Gaussian distribution, it can be shown that, irrespective of
238 the form of the marginal fj(r’i)’s, the ROIs Yt(']r.'i) and Yt(JT.;i) will be conditionally dependent on
239  (and hence functionally connected with) each other given the rest if and only if w; ;s # 0. This
240 way, the precision matrix Q characterizes the functional connectivity between the different

241 Yé]r.'i)’s across j.

242 We model the unknown univariate marginal distributions fj(r’i)'s using location-scale mixtures of

243  Gaussians. Such mixtures can flexibly estimate a very large class of unknown densities (Ghosal et

244 al., 1999). Specifically, we let

10
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K

(ri) _ (D) (r,i) _2(ri)
fj = Z my, ;N (.“h,j »Op )' (4)
h=1

245  where ngj) is the weight attached to the h-th mixture component and Z’,fﬂn;lrj) =1 with K

246 being a suitably chosen, moderately large, fixed integer.

247 While fMRI timeseries often showcase very distinct patterns and distributions for different
248 individuals as well as across different ROIs of the same individual, we expect primary sensory
249 region to be highly similar between healthy participants due to strongly stereotyped processing
250 across individuals and well-conserved auditory function in these brain regions across evolution
251 (Hutchison et al., 2013). In (4), we therefore consider separate mixture models across different
252 ROIs, individuals, and runs, whereas in (3), the ZTD’s share a common correlation matrix Rq
253 across all individuals and runs. This modeling strategy also allows borrowing of information
254  across individuals and runs to amplify signals for estimating resting-state functional connectivity
255 in adult humans while accounting for subject and run-specific variabilities using separate
256 marginal distributions. This is conceptually similar to approaches used in group independent
257 component analysis (Calhoun et al., 2001) and cohort-level brain mapping (Varoquaux et al.,
258 2013). In later sections, we showed that this approach yields highly consistent estimates of
259 functional connectivity graphs even though BOLD signals from small deep brain regions have very
260 low signal-to-noise ratio (Bianciardi et al., 2016; Colizoli et al., 2020; de Hollander et al., 2017;

261 Sclocco et al., 2018).
262 To estimate the precision matrix , we consider the framework of Chandra et al. (2021). Recall

1 1
263 that Ry = P zQ W2 with ¥ = diag(Q™1). We assume Q to admit a lower-rank plus diagonal
264 (LRD) decomposition @ = AAT + A where A is a d X g matrix and a diagonal matrix A =
265 diag(6%,...,83) with positive 5]-2'5. Notably, all positive definite matrices admit such a

266 representation for some g < d.

267 We take a Bayesian route to estimation and inference, where we assign priors to the model

268 parameters, and then infer them based on samples drawn from the posterior using a Markov

269 chain Monte Carlo (MCMC) algorithm discussed in detail in the Supplementary Materials. As was

270 shownin Chandra et al. (2021), the LRD representation makes the MCMC sampling very efficient
11
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271 via a latent variable augmentation scheme. In the Supplementary Materials, we also discuss a
272 multiple hypothesis testing-based edge discovery procedure that utilizes the posterior
273 uncertainty of the parameters and controls the false discovery rate (FDR) at 10% level in a

274 principled manner.
275 2.4 Priors on the parameters

276  For the autoregressive parameters in equation (1), for all r, i, j we assume

277 BET]’."), ...,B,(L'.i) | g?(”) w N(O, vglg?(r’i)), Q;Z(r’i) W Ga(ac, b), where vg,a,b. >0 are
278 fixed hyperparameters, and Ga(a, b) denotes a gamma distribution with mean a/b and variance
279 a/b?. For the parameters of the mixture models specifying the marginals in equation (4), we
280 consider the following priors
281 (n(r'i) n(r'i)) ~ Dir (& ﬁ) ( (i) O'Z(r'i)) e NIG(pg, Vo, @g, bg)

1']' ) ey K,j K )y K ) I‘lh’j ) h,j IJO’ 0“0, Y0/,
282  where (1, 62) ~ NIG(ug, Vo, ag, bo), implying that u|o? ~ N(ug, vy 1a?) and 672 ~ Ga(ay, by).

283 We consider a shrinkage prior on the elements of A that shrinks redundant elements of A to
284  zero allowing additional model-based parameter reduction. In particular, we assign a two-
285 parameter generalization of the Dirichlet-Laplace (DL) prior from Bhattacharya et al.
286 (Bhattacharya et al, 2015) that allows more flexible tail behavior on the elements of A. On
287 ad-dimensional vector @ = (04, ...,04)7, our DL prior with parameters a and b, denoted by

288 DL(a, b), can be specified in the following hierarchical manner.
289 0l ¢t 7 N(0,0;957%), o; " Exp(1/2), ¢ ~ Dir(a, ...,a), T ~ Ga(da, b),

290 where 6; is the j-th element of 6, ¢ and @ are vectors of same length as 6, Exp(a) is an
291 exponential distribution with mean 1/a, Dir(ay, ..., a;) is a d-dimensional Dirichlet distribution.

292 The original DL prior is a special case with b = 1/2. We let vec(A) ~ DL(a, b).

293 We use a Dirichlet process (DP) prior (Ferguson, 1973) on the 6]-2'5 as 6]-2 |G 5 G,G|a ~
294 DP(a, G,) with G, = Ga(ag, bs), @ ~ Ga(a,, b,), where « is the concentration parameter and
295 Gy is the base measure to favor a smaller number of unique 8]2'5 in @ model-based manner. The
296 DP model allows clustering the 8]?’5 facilitating additional data-adaptive parameter reduction
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297 when necessary. Additionally a DP prior has full prior support on the range-space of the number

298 of unique 8]?'5 implying a fully flexible model (see Chapter 4 of (Ghosal and van der Vaart, 2017).

299 We discuss a Markov chain monte Carlo (MCMC) based strategy of sampling from the posterior
300 of ARMGCGM in Section S1.2 of the Supplementary Materials, where the involving steps are
301 parallelized over the subjects, allowing scalability. In Section S1.3 of the Supplementary
302 Materials, we discuss the choice of hyperparameters used for the analyses presented in this
303 paper. Our implementation using the proposed parallelized MCMC scheme ran in 125 min in a
304 system with 13th Gen Intel(R) Core(TM) i9-13900K CPU and 128GB RAM, fitting the ARMGCGM
305 to the 12-node auditory network with 7,500 MCMC iterations, including both phase-encoding

306 schemes.
307 3. Results
308 3.1 Partial correlations between regions of interest

309 Using our ARMGCGM approach, we first estimate the precision matrix  and subsequently
310 compute the partial correlation matrix. We report the significant edges subject to controlling the
311 posterior false discovery rate (Sarkar et al., 2008) at the 10% level. (Details are provided in Section
312 S1.4in the Supplementary Materials.) In Figure 2 we provide the circos plots of the connectivity
313 graphs along with respective weighted adjacency matrices. The (j, h)-th off-diagonal element of
314 the adjacency matrices admit the value 0 if the edge between ROIs j and h is not statistically
315 significant, if the edge is significant then the corresponding partial correlation is plugged in to

316 indicate the strength of the edge.

317 We found that the strongest auditory connectivity was between adjacent structures in the same
318 hemisphere, particularly between the auditory midbrain (inferior colliculus, or IC) and thalamus
319 (medial geniculate body, or MGB) and between core and associative auditory cortex (TTG and
320 STG). Minimal connectivity was observed between homologous auditory structures across
321 hemispheres. Connectivity was also present between adjacent brainstem auditory structures
322 (cochlear nucleus [CN] and superior olivary complex [SOC]), largely bilaterally. Interestingly,

323 despite the SOC being the primary (and earliest) decussation point in the primary auditory
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324 pathway, we only observed partial correlations between right CN and left SOC (in both data

325 partitions), not left CN and right SOC. (See the Discussion section for potential explanations.)
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Figure 2. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left)
and anterior-to-posterior (AP; right) phase-encoding directions using the ARMGCGM approach in
subcortical and cortical auditory regions. Positive (negative) associations are represented by red
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(blue) links, their opacities being proportional to the corresponding association strengths. The link
widths are inversely proportional to the number of edges associated with the corresponding
nodes. B: The same results as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).
C: Schematic of the auditory pathway from the cochlea through brainstem to cortex
(https://osf.io/u2gxc/). D: Regions of interest from which functional timeseries were extracted.
Top: cortical regions from FreeSurfer’s DKT atlas. Bottom: subcortical auditory regions (Sitek et
al., 2019).

327 3.2 Effect of phase encoding scheme on subcortical connectivity

328 Due to the anatomical location of the subcortical auditory structures—in dense, heterogeneous
329 subcortical regions and largely adjacent to CSF—we conducted connectivity analyses separately
330 on AP- and PA-acquired fMRI runs. We then compared the connectivity results from the two
331 acquisition schemes. Overall connectivity patterns were highly similar between the two phase-
332 encoding schemes, as seen in panels A and B of Figure 2. Subcortical connectivity was quite robust
333 between the brainstem auditory regions. To quantify the similarity between the results in PA and
334 AP acquisitions (plotted in Figure 3A), we computed the Pearson correlation coefficient r
335 between the estimated partial correlations. For the proposed ARMGCGM, r = 0.940 with p-
336 value < 0.001. To assess the similarity in sign of connectivity between acquisition schemes, we
337 computed the Jaccard dissimilarity on the signed off-diagonals of each adjacency matrix. For the
338 proposed ARMGCGM, the Jaccard dissimilarity was 0.231. Additionally, we computed the
339 Euclidean distance between partial correlations in the two acquisition schemes, compared it with
340 some selected approaches from the literature and report the results in Table 1. These results

341 indicate strong consistency between the findings in the two different acquisition schemes.
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Figure 3. A: Pearson correlation of partial correlation values between posterior-to-anterior and
anterior-to-posterior phase-encoding acquisition schemes across all edges in the graph (region-
to-region connections). B: Partial correlation coefficients across cross-validation folds (10 folds for
each of the two phase-encoding acquisition schemes).

3.3 Cross-validation of partial correlations

To assess the stability of our proposed ARMGCGM, we ran leave-10%-out cross-validation by
removing 10% randomly selected subjects in each fold. We repeated this for each phase encoding
scheme for a total of 20 folds; partial correlation coefficients for each fold are presented in Figure
3B. Across all folds (and both phase encoding schemes), the results are very highly similar

(intraclass correlation of edgewise partial correlations across cross-validation folds = 0.991).

3.4 Comparison with existing approaches

We compared with three standard approaches in the literature: (1) correlation analysis between
the ROIs (Biswal et al., 1995; Cordes et al., 2000; Fox and Raichle, 2007; Lowe et al., 1998; Smith,
Vidaurre, et al., 2013); and partial correlation analyses using (2) the graphical lasso (Friedman et
al., 2008) and (3) the precision factor model (Chandra et al., 2021). In all comparisons, we did

separate analyses for each of the acquisition schemes.

Comparison 1: Full correlation approach: Here we study the marginal correlation between the

ROIs. Letting p; ;» denote the correlation between ROIs j and j' in resting state we test

Ho’j,j’: |pj,jr| = 0 versus Hl,j,j': |pj,j'| # 0O forall 1 S] <j’ <d.
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359 For each acquisition scheme, we first concatenate the timeseries across all runs and individuals.
360 Then we perform t-tests for correlation for all (j,j') pairs followed by the Benjamini-Hochberg
361 false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) for multiplicity adjustment
362 and control the FDR at level 0.10. Traditionally, full correlations are used to measure functional
363 “connectivity” in resting state fMRI studies (Biswal et al., 1995; Cordes et al., 2000; Lowe et al.,
364 1998). In Figure 4 we provide the correlation graphs and correlation matrices separately for each
365 acquisition schemes. We find the correlation graphs to be much denser compared to the partial
366 correlation graphs presented in Figure 2. Unlike in the ARMGCGM method, we observed negative
367 values when using full correlations (particularly in the PA acquisition scheme), although the
368 negative correlations are generally closer to 0 than the positive correlations are. In this full
369 correlation approach, the similarity between runs split by data acquisition scheme was
370 characterized by Pearson’s r of 0.811 (p-value < 0.001) and a Euclidean distance of 1.016. The

371 Jaccard dissimilarity of the signed adjacency matrix was 0.338.
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Figure 4. A: Full correlation connectivity in data acquired with posterior-to-anterior (PA; left) and
anterior-to-posterior (AP; right) phase-encoding directions using t-tests. Positive (negative)
associations are represented by red (blue) links, their opacities being proportional to the
corresponding association strengths. The link widths are inversely proportional to the number of
edges associated with the corresponding nodes. B: The same results as (A), viewed as adjacency
matrices (left = PA runs; right = AP runs).

373

374  Comparison 2: Partial correlations with Glasso approach: We first consider the graphical lasso
375 (Glasso) approach (Friedman et al., 2008) as another alternative choice for partial correlation
376 based conditional graph estimation. Glasso assumes iid data from a multivariate Gaussian
377 distribution (i.e., without any correction for autocorrelation) with €1(-) penalty on the precision
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)

378 matrix. In this analysis we concatenated the Yt(]r.’i values across (r,i) and created a (TR) X d

379 matrix, say Y, for each acquisition scheme, and applied the Glasso model on Y. We use 10-fold
380 cross-validation to choose the optimal penalty parameter. The Glasso approach provides a point
381 estimate of the sparse precision matrix and hence the functional connectivity network. In panels
382 A and B of Figure 5, we plot the connectivity graphs and weighted adjacency matrices,

383 respectively, separately for each acquisition scheme.

384 These functional connectivity graphs in Figure 5 are much denser compared to the estimates
385 obtained by our proposed ARMGCGM in Figure 2. To quantify the robustness and stability of the
386 Glasso graphs in this application, we compute Pearson correlation coefficient and Euclidean
387 distance between the estimated partial correlations, and the Jaccard dissimilarity between the
388 signs of the adjacency matrices in PA and AP acquisitions in the same manner as we did for
389 ARMGCGM elaborated in Section 3.2. We reported the values in Table 1. Figure 5 indicates that
390 the strong positive correlations are consistent across the acquisition schemes. However,

391 substantial discrepancy can be observed for the weak edges, particularly for the negative
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392 correlations. This is a common phenomenon for graphical models if the Gaussian assumption is

393 made on non-Gaussian distributed data; see, e.g., Section 5, example 1(a) in (Guha et al., 2020).

394
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Figure 5. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left)
and anterior-to-posterior (AP; right) phase-encoding directions using the Glasso approach.
Positive (negative) associations are represented by red (blue) links, their opacities being
proportional to the corresponding association strengths. The link widths are inversely
proportional to the number of edges associated with the corresponding nodes. B: The same results
as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).
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rj Vvalues

397 Comparison 3: Partial correlations with PFM: In this analysis we concatenated the

398 across (1, i) and created a (TR) X d matrix, say Y, for each acquisition scheme, and applied the
399 PFM on Y. Similar to Glasso, the PFM also assumes iid data from a multivariate Gaussian
400 distribution and does not correct for temporal autocorrelations in the data. We infer on the graph
401 using the Bayesian multiple comparison technique described in the Supplementary Materials.
402 Results are provided in Figure 6. The connectivity graphs majorly differed with our ARMGCGM
403 results, with the PFA model-derived graph being much denser and including more (weakly)
404 negative edges. In the top panel of Figure 7 we plot the marginal Gaussian fits on the histograms
405 of some BOLD signals. Clearly the simple Gaussian assumption does not hold here and a more

406 sophisticated approach like ours is required.

407 To assess the robustness and stability of the PFM, we computed Pearson correlation coefficient
408 and Euclidean distance between the estimated partial correlations, and the Jaccard dissimilarity
409 between the signs of the adjacency matrices in PA and AP acquisitions in the same manner as we
410 did for ARMGCGM elaborated in Section 3.2. We reported the values in Table 1, where we see

411 that PFM exhibits more consistency than Glasso but ARMGCGM performed best.
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Figure 6. A: Partial correlation connectivity in data acquired with posterior-to-anterior (PA; left)
and anterior-to-posterior (AP; right) phase-encoding directions using the PFA approach
(comparison 3). Positive (negative) associations are represented by red (blue) links, their opacities
being proportional to the corresponding association strengths. The link widths are inversely
proportional to the number of edges associated with the corresponding nodes. B: The same results
as (A), viewed as adjacency matrices (left = PA runs; right = AP runs).

Table 1 Several measures of dissimilarities between the functional connectivity networks (using
full and partial correlations) estimated in each of the acquisition schemes are reported here. We
provide results for all the correlation-based functional connectivity analyses, viz. ARMGCGM, full
correlation, Glasso and PFA. Note that lower values of Jaccard dissimilarity and Euclidean
distance implies better method.
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Method Pearson’s Correlation Jaccard Euclidean
Coefficient Dissimilarity Distance
ARMGCGM 0.940 (p-value < 0.001) 0.231 0.262
Full correlation | 0.811 (p-value < 0.001) 0.338 1.016
Glasso 0.749 (p-value < 0.001) 0.414 0.959
PFM 0.747 (p-value < 0.001) 0.379 0.975

414
415 3.5 Fit of the autoregressive matrix-Gaussian copula graphical model

416 Density fits: We studied the goodness-of-fit of the proposed ARMGCGM. In the top panel of
417 Figure 7, we plotted the sample histograms and the corresponding fitted marginal densities for
418 some selected ROIs. The sample histograms strongly indicate the distribution of the data to
419 substantially deviate from Gaussian distributions, including some with multiple well-separated
420 modes. Figure 7 also shows that our flexible location-scale mixture of Gaussians fit the data very

421 well, even for the most complicated distributions.

422 Note that finite mixture models with reasonably large number of mixture components can
423 approximate nonparametric Dirichlet process mixture models (Ishwaran and Zarepour, 2002b,
424 2002a). To validate whether the number of mixtures (K = 20) in model (4) is adequate, we
425 computed the median number of non-empty clusters across MCMC samples for each subject and
426 ROl in each run. In the bottom panel of Figure 7 we plotted the histograms of the medians across
427 the subjects. As the number of non-empty clusters are smaller than K consistently across all
428 setups yielding excellent fits for complicated distributions, we conclude that our model

429 specifications are adequate.

430
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Figure 7. Marginal fits for the location-scale mixture of Gaussian distributions: The sample
histograms in the top panel in green showed that distribution of the ROIs substantially deviates
from Gaussian assumption. The blue lines were the respective fitted densities corresponding to
the mixture model in equation (4). These figures indicated excellent goodness-of-fit. The dashed
brown lines corresponded to marginal Gaussian fits of the vanilla PFM which were evidently
underfitted. In the bottom panel we plotted the histogram of the number of occupied clusters
across subjects corresponding to the mixture model indicating that our model specifications are
adequate.

Autocorrelation corrections: From Section 2.3 recall that Zt(;'i)'s were the transformed BOLD

ET")’S were the autocorrelation corrected timeseries.

signal timeseries in the Gaussian space and § ;

To check for autocorrelation corrections using model (1), we plotted the partial autocorrelations

r:i)l

;s across time for all ROIs. Since the Z and & values vary across MCMC

(.0, (
between Z; ”’s and &
iterations, we used their posterior expectations in this analysis. In Figure 8 we plot the partial

autocorrelations for a randomly selected individual in run 1 of posterior-to-anterior acquisition
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439 scheme; the blue horizontal dashed lines represent the 5% band. The figure clearly indicates that
440 the autoregressive model of order L = 5 corrects for the autocorrelations. As we obtained very

441 similar results for other runs and acquisition schemes, we omit those in the paper.
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Figure 8. Partial autocorrelation plots of the fMRI timeseries for a randomly selected subject in
the posterior-to-anterior acquisition scheme across the ROIs before (orange) and after (green)
autocorrelation corrections; the horizontal dashed blue lines represent the 5% band. The plot
indicates that autocorrelations are corrected in our model.
443

444 4, Discussion

445 The mammalian auditory pathway consists of a series of obligatory and interconnected
446  subcortical and cortical brain structures. Assessing the connectivity of the human subcortical
447  auditory structures has been limited due to methodological challenges of non-invasive imaging
448 of the deep, small structures. Recent acquisition and analytical advances enable finer grained
449 investigations of connectivity throughout the brain, including the brainstem. In this paper, we

450 validated a novel an autoregressive matrix Gaussian copula graphical model to estimate
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451 functional auditory connectivity patterns from a publicly available high-resolution resting state
452 functional MRI dataset. Using partial correlations (as opposed to full correlations) allowed us to
453 identify specific relationships between nodes in a connectivity graph by removing shared
454 variance across nodes (Supplementary Figures S1 and S2). We found highly consistent
455  connectivity patterns between adjacent auditory brain regions along the auditory pathway that
456 demonstrate the efficacy of our connectivity method as well as the potential for functional
457  connectivity investigations of the subcortical auditory system. Below, we separately discuss our

458 novel scientific findings and our novel contributions to the statistics literature.
459  Novel contributions to the human auditory neuroscience literature

460 Todate, there have been only limited applications of functional MRI methods to study subcortical
461 auditory connectivity (Berlot et al., 2020; Hofmeier et al., 2018). Using our novel ARMGCGM
462 approach in the present study, we found strong partial correlations between cochlear nucleus
463 (CN) and superior olivary complex (SOC) bilaterally using resting state functional MRI data. Most
464 interestingly, we observed contralateral CN—SOC connectivity between right CN and left SOC (and
465 in both data acquisition schemes), fitting the ground truth primary auditory pathway crossing
466 from left to right (and vice versa) between CN and SOC (Barnes et al., 1943; Schofield, 1994).
467 These functional connectivity patterns between CN and SOC have not been previously observed
468 in human auditory brainstem in vivo but follow our understanding of the mammalian primary
469 auditory pathway based on research in animal models (Barnes et al., 1943; Doucet and Ryugo,
470 2003; Harrison and Irving, 1966). Principally, auditory information that is transduced by the
471 cochlea of each ear is transmitted via the cochlear nerve to the cochlear nucleus, the first stage
472  of the central auditory pathway, on each side of the brainstem. In the primary auditory pathway,
473 the lemniscal anteroventral subdivision of the cochlear nucleus enhances the fine temporal
474  precision of incoming auditory signals (Pickles, 2015). From there, auditory signals are passed to
475 both the ipsilateral and contralateral SOC for further auditory processing, including spatial
476 localization (Moore, 2000). The SOC is comprised of multiple distinct subdivisions, which receive
477 ipsilateral and contralateral connections from cochlear nucleus to varying degrees (Pickles,

478 2015), aligning with our overall bilateral connectivity results between CN and SOC.
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479 While we observed consistent right CN and left SOC connectivity, it is unclear why similar patterns
480 were not observed between left CN and right SOC. One contributor is the lower signal-to-noise
481 ratio in fMRI data from the lower brainstem. Paired with the small size of each of the brainstem
482 auditory nuclei, we may still be at the edge of what is detectable using present functional
483 connectivity methods. Additionally, this analysis was conducted on “resting state” fMRI data,
484 during which no auditory stimuli of interest were presented or overt tasks were conducted.
485 Resting state fMRI connectivity in the cochlear nucleus and superior olivary complex has not been
486 examined in the previous literature to our knowledge; it is possible that sound-evoked
487 connectivity methods would evoke greater functional connectivity, particularly in these earliest
488 stages of the auditory pathway. Further, ipsilateral connections (i.e., between left CN and left
489 SOCand between right CN and right SOC) may be artifactually stronger due to their close physical
490 proximity. Even with relatively high 1.05 mm spatial resolution 7T fMRI data, CN and SOC on each
491 side are only separated by a few voxels. These regions are thus at increased likelihood of sharing
492 temporal fluctuations due to partial volume effects, wide point-spread functions, spatial
493 dependence, or other as-yet-unsolved fMRI confounds that are particularly acute in the lower

494  Dbrainstem.

495 Moving up the primary auditory pathway, we observed significant partial correlations between
496 ipsilateral inferior colliculus (IC) in midbrain and medial geniculate body (MGB) of the thalamus
497 in both hemispheres and in both phase-encoding schemes. Inferior colliculus is a major
498 convergence point in the auditory system, with the lemniscal IC subdivision being thought to
499 convert distinct auditory features into discrete auditory objects for the first time in the auditory
500 pathway. MGB continues the refinement of auditory objects via direct lemniscal connections
501 from IC as well as rich corticofugal connections from auditory cortex to non-lemniscal MGB
502 subdivisions (Pickles, 2015). Interestingly, we found strong partial correlations between left and
503 right MGB in both datasets. Although not directly connected by large white matter bundles, left
504 and right MGB are expected to process auditory information from IC at similar levels of
505 abstraction. Thus, partial correlations may reflect indirect but shared neural mechanisms of

506 auditory processing in the thalamus.
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507 Wedid not observe IC partial correlation connectivity with either brainstem or cortical structures.
508 ICis a key hub in the auditory system, receiving bottom-up sensory information as well as top-
509 down modulating signals from auditory cortex and other brain regions. The lack of partial
510 correlation connectivity with IC may be due to strong IC subdivision-specific functionality, with IC
511 core primarily serving an ascending lemniscal role and dorsal and external IC having top-down
512 and non-lemniscal functions. Averaging over these subdivisions may obfuscate specific
513 connectivity patterns. Alternatively, our results may suggest that it does not have a specialized
514 relationship with any one region beyond MGB but rather integrates and transforms auditory and

515 other neural signals.

516 Finally in auditory cortex, transverse temporal gyrus (TTG)—the location of primary auditory
517 cortex—was strongly connected with ipsilateral superior temporal gyrus (STG), which contains
518 secondary and associative auditory cortices. Primary auditory cortex receives direct input from
519 lemniscal MGB and is the last auditory structure with fine-grained tonotopicity (Pickles, 2015). In
520 humans, STG is hierarchically structured, with portions further away from primary auditory
521 cortex having increasingly wider temporal integration windows (Hamilton et al., 2018; Norman-
522 Haignere et al., 2022) and greater categorical specificity (Bhaya-Grossman and Chang, 2022; Feng
523 etal., 2021; Hamilton et al., 2020; Keshishian et al., 2023; Nourski et al., 2018; Pernet et al., 2015;
524 Rauschecker and Tian, 2000; Rupp et al., 2022). While invasive recordings from human STG
525 suggest a potential direct connection between MGB and posterior STG (Hamilton et al., 2021),
526 we found mixed evidence for such a direct pathway in ourOur partial correlation data (in one
527 hemisphere in only one of the data partitions). Our partial correlation functional connectivity
528 results align with a vast literature demonstrating information flow between primary and non-
529 primary auditory cortex (for review, see (Hackett, 2011). The lack of contralateral partial
530 correlation approach measures the correlation between the concerned ROIs after filtering out
531 the indirect effects of the remaining ROIs. Complementarily, some literature suggests that left
532 and right auditory cortex process auditory information at distinct timescales and levels of
533 abstraction (Gunturkin et al., 2020; Hickok and Poeppel, 2007; Zatorre et al., 2002), with left

534 auditory cortex being uniquely tuned to rapidly changing temporal information—such as the
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535 phonetics of speech sounds—while right auditory cortex is more sensitive to slower changes in

536 the spectral domain, particularly for speech prosody as well as music.

537 In comparison to our ARMGCGM partial correlation approach, we computed full correlations in
538 the same network. Connections were much denser in the full correlation approach, aligning with
539 the rich interconnectedness of the auditory system (Pickles, 2015). Unlike with partial
540 correlations, which highlighted hierarchical connections between adjacent notes along the
541 auditory pathway, we observed positive full correlations between all auditory cortical regions,
542 regardless of hemisphere. Additionally, we found a strong positive subnetwork including IC and
543 MGB bilaterally, whereas many of these connections (such as between left and right IC) were
544 absent in the ARMGCGM partial correlation analysis. Since partial correlations characterize
545  connectivity between two nodes after filtering out the effects of the other nodes, our combined
546 results point to widespread shared information across the auditory system (per full correlation
547 analysis) with additional shared processing between adjacent nodes of the canonical auditory
548 pathway (per partial correlation analysis). This suggests distinct but complementary use of full
549 and partial correlations, with full correlation analysis identifying a rich network of interconnected

550 nodes, while partial correlations are sensitive to strong node-to-node connections.
551 Novel contributions to the graphical model literature

552 In this article, we developed an autoregressive matrix-Gaussian copula graphical model
553 (ARMGCGM) for non-Gaussian distributed data with temporal autocorrelation, the problem of
554 estimating brain connectivity patterns from resting state fMRI data being the motivating
555 problem. The ARMGCGM first uses higher order autoregressive models to capture the temporal
556 dependence in the time series for each brain region of interest, then uses flexible location-scale
557 mixtures of Gaussians for modeling component wise residual marginal distributions associated
558 with different regions, and finally uses a Gaussian copula to capture the dependence across the
559 different regions. The ARMGCGM allows borrowing of information across subjects to infer on a
560 common connectivity graph while appropriately taking into account subject and run-specific
561 variability via flexible mixture models. We leverage recent advances on modeling precision
562 matrices via a flexible but computationally efficient low-rank-diagonal decomposition method
563 that not only allows efficient exploration of the posterior space for estimating the connectivity
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564 graph but also enables easy assessment of associated uncertainty. Compared to alternative
565 approaches to exploiting partial correlations to estimate connectivity graphs, our proposed
566 ARMGCGM method produces results that are more consistent across the acquisition schemes
567 with respect to multiple metrics. Additionally, the results remain highly stable in a leave-10%-out
568 cross-validation. Considering the low signal to noise ratio in BOLD signals from deep small
569 auditory structures, our results demonstrate the sensitivity and specificity of our model to
570 neurobiologically plausible connections. Although the proposed ARMGCGM is a more nuanced
571 approach and potentially capable of fitting arbitrary complicated distributions, it can be
572 numerically expensive compared to simplistic parametric models. However, our parallelized
573  Markov chain Monte Carlo implementation ran across all participants and runs in just over two

574 hours, demonstrating a feasible computation time given the size of the data.
575 Comparisons to connectivity literature

576 Our study is the first to systematically assess connectivity across the human auditory pathway
577 using multiple connectivity measures, with previous subcortical connectivity studies limited to
578 full correlation analysis (Berlot et al., 2020; Hofmeier et al., 2018; Leaver et al., 2016; Zhang et
579 al., 2015). Given the anatomical and methodological constraints with subcortical fMRI, the
580 limited fMRI connectivity literature is not too surprising. First, the deep location of the subcortical
581 structures places them far from MRI transmit and receive coils, limiting the signal-to-noise ratio
582 from these regions (Mileti¢ et al., 2020). Because the brainstem is relatively centrally located
583 relative to the multiple receiver coils, accelerated acquisition techniques that are based on phase
584 differences between receiver coils are less effective (Preibisch et al., 2015). Second, subcortical
585 nuclei can be quite small, requiring higher resolution imaging protocols (which unfortunately
586 trade off SNR in order to achieve greater spatial resolution). Third, subcortical nuclei are densely
587 organized adjacent to nuclei with heterogeneous functions, so voxels immediately next to those
588 containing core auditory structures could contain visual, motor, or sensory nuclei, white matter,
589 CSF, or a combination of any of these. Ultimately, each of these constraints limits the SNR from

590 subcortical auditory nuclei.

591 Constraints in human subcortical auditory research have translational consequences beyond
592 basic science. For instance, while cochlear implants have been widely successful at providing
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593 sensory information to individuals with sensorineural hearing impairments with an intact
594  cochlear nerve (Kral et al., 2019; Reiss, 2020), auditory prostheses in the central auditory system
595 have been less successful (Lim et al., 2009; Shetty et al., 2021), due in no small part to our limited

596 understanding of the complexity of sound representation in the ascending auditory pathway.
597 Limitations and future directions

598 As the canonical neuroanatomy of the primary auditory pathway is consistent across individuals
599 and well-described in the literature (Sitek et al., 2019), we have the a priori expectation of a
600 shared auditory graph across all participants. As the goal of this study was to map a network that
601 is strongly expected based on anatomy and non-human neurophysiology, we built a joint model
602 that includes data from all participants. This is similar to approaches used in group independent
603 component analysis (Calhoun et al., 2001) and cohort-level brain mapping (Varoquaux et al.,
604 2013). However, subject-specific differences in the distributions of the BOLD signals as well as
605 autocorrelations between successive scans can induce artifactual and noisy edges in functional
606 connectivity graphs, as seen in the Glasso and PFMs; we take care of these issues in ARMGCGM.
607 Nevertheless, we did not investigate differences in functional connectivity between participants
608 in the current article. Building on ARMGCGM to explore how functional connectivity varies

609 between individuals and groups or as a function of behavior is a priority for future work.

610 Ingeneral, resting state fMRI connectivity measures become more reliable with longer scans (Zuo
611 etal., 2019). Measurement correlations increase as time in the scanner increases, from Pearson’s
612 r = 0.82at9mintor = 0.92at27 mintor = 0.97 at 90 min (Laumann et al., 2015). Others
613 described improved intraclass correlation coefficients with datasets beyond 20 minutes and up
614 to 50 minutes (Xu et al., 2016). The Midnight Scan Club group (Gordon, Laumann, Gilmore, et al.,
615 2017) computed a range of network connectivity metrics and found that reliability generally
616 required at least 30 minutes of resting state data per subject. One paper (Greene et al., 2020)
617 specifically investigated functional connectivity in subcortical structures and found even longer
618 scan requirements (up to 100 minutes) for subcortical structures due to decreased signal-to-
619 noise ratios deeper in the brain. Additionally, primary sensory networks are among the most

620 stable within and across participants (Gratton et al., 2018; Hutchison et al., 2013). We therefore
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621 believe it is appropriate and necessary to use datasets with longer scans of resting state data in

622 order to investigate even static subcortical auditory connectivity.

623  Further, while many brain networks exhibit temporal dynamics that can tell us about mental state
624 (Fornito et al., 2012) or disease ((Sakoglu et al., 2010); see (Hutchison et al., 2013) for a review),
625 functional connectivity within primary sensory networks are among the most stable over time
626 (Gratton et al., 2018), as they share bidirectional physical connections, share contributions to the
627 same physiological tasks, and are evolutionarily conserved across species (Hutchison and
628 Everling, 2012). In the present work, we were interested in characterizing the stationary
629 connectivity in the primary auditory pathway that is present at rest across individuals. Adapting
630 time-varying dynamics into this model is a promising future direction, particularly if we are

631 interested in higher level cognitive brain networks that vary as a function of task or mental state.
632
633 5. Conclusions

634 In this article, we validated a novel autoregressive matrix Gaussian copula graphical model for
635 partial correlation estimation while appropriately correcting for temporal autocorrelations. Using
636 this approach, we identified functional connectivity in the human auditory system using resting
637 state functional MRI. Whereas a complementary approach using full correlations identified a rich
638 network of interconnected auditory regions, partial correlations highlighted direct connections
639 between adjacent structures along auditory pathways. In particular, subcortical connectivity was
640 highly consistent across acquisitions, demonstrating the utility and applicability of functional
641 connectivity methods in deep brain structures. In the future, we plan to investigate whole-brain
642 partial correlation connectivity across sensory, motor, and higher cognitive networks using the

643 proposed models and their relationship to behavior across individuals.
644
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