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Summary

The cellular diversity and complex organization of the brain have hindered systematic
characterization of age-related changes in its cellular and molecular architecture, limiting our
ability to understand the mechanisms underlying its functional decline during aging. Here we
generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using
spatially resolved single-cell transcriptomics and quantified the changes in gene expression and
spatial organization of major cell types in these brain regions over the lifespan of mice. We
observed substantially more pronounced changes in the composition, gene expression and
spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial
signatures of glial and immune cell activation during aging, particularly enriched in subcortical
white matter, and identified both similarities and notable differences in cell activation patterns
induced by aging and systemic inflammatory challenge. These results provide critical insights into

age-related decline and inflammation in the brain.
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INTRODUCTION

The mammalian brain exhibits remarkable stability over periods ranging from years to
decades (Yankner et al., 2008). Due to the brain’s limited regenerative abilities, neurons must
faithfully perform their function for the entire lifetime of an animal. However, as the animals age,
this longevity of neurons makes the brain sensitive to the accumulation of damage over time
(Yankner et al., 2008). This neuronal damage, in combination with age-dependent changes in
non-neuronal cells that support neural circuit function, is thought to cause the decline of brain
function, increased sensitivity to damage, and drastic increase in the prevalence of
neurodegenerative disorders (Bishop et al., 2010; Lindenberger, 2014; Yankner et al., 2008).
Decades of research have provided rich insights into the molecular and cellular factors associated

with brain aging, suggesting a complex process that so far escapes full understanding.

One prominent hypothesis suggests that changes in neuronal and synaptic functions
associated with age and neurodegeneration are the result of disruptions to the brain’s homeostatic
environment (Labzin et al., 2018; Mosher and Wyss-Coray, 2014; Richard M. Ransohoff, 2016).
Neurons are supported by a host of non-neuronal cells, including glial cells such as astrocytes
and oligodendrocytes, immune cells such as microglia, and various vascular cells, each
maintaining different aspects of the tissue homeostasis (Meizlish et al., 2021) to ensure proper
brain function. For example, oligodendrocytes myelinate axons and provide metabolic support to
neurons; astrocytes provide trophic and ionic support to neurons and modulate synaptic function;
and microglia provide immune surveillance, synaptic pruning, as well as debris removal by
phagocytosis (Alves De Lima et al., 2020; Andreone et al., 2015; Croese et al., 2021; Ben Haim
and Rowitch, 2016; Hammond et al., 2018; Li and Barres, 2018; Monje, 2018; Sofroniew, 2020).
Brain injury, infection, and neurodegeneration have been shown to trigger inflammatory activation

of these resident non-neuronal cell types and recruit peripheral immune cells, resulting in both
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protective and deleterious effects for neighboring neurons (Bohlen et al., 2019; Croese et al.,

2021; Hammond et al., 2018; Labzin et al., 2018; Sofroniew, 2020).

Recent transcriptomic studies of normal brain aging (Almanzar et al., 2020; Benayoun et
al., 2019; Schaum et al., 2020; Ximerakis et al., 2019) and neurodegenerative disease (Chen et
al., 2020b; Grubman et al., 2019; Lau et al., 2020; Mathys et al., 2019), as well as studies focusing
on specific non-neuronal cell types such as astrocytes (Boisvert et al., 2018; Clarke et al., 2018;
Habib et al., 2020), microglia (Hammond et al., 2019; Olah et al., 2018), and endothelial cells
(Chen et al., 2020a), have further highlighted a role for inflammatory activation and the disruption
of non-neuronal cell states in aging-related decline. In particular, reactive states that are typically
triggered in both microglia and astrocytes during infection or injury and that disrupt the normal
homeostatic functions of these cell types, emerge naturally over the course of normal aging, even

in the absence of overt neurodegenerative diseases.

While these studies suggest broad age-related disruptions to brain homeostasis that
manifest in a variety of cell types, they also raise many questions. For example, how do the
composition, molecular signatures, and spatial organization of different cell types and states in
the brain change over aging and how do these changes relate to age-induced inflammatory
activation? How are activated cells spatially distributed and does this activation depend on
particular environmental factors and specific cell-cell communications? How does age-induced
infammation relate to systemic inflammation? Answering these questions is challenging as the
brain’s enormous cellular and molecular complexity has so far prevented a comprehensive

understanding of the changes in brain architecture over an animal’s lifetime.

Here, we performed a systematic characterization of the changes in molecular signatures
and spatial organizations of cells during brain aging by using an experimental approach that

combines single-nucleus RNA sequencing (snRNA-seq) (Habib et al., 2017) with a single-cell


https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.508048; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

transcriptome imaging method, multiplexed error-robust fluorescent in situ hybridization
(MERFISH) (Chen et al., 2015). This approach allowed us to profile gene expression and identify
cell types in the mouse frontal cortex and stratum, thus generating a spatially resolved cell atlas
of these regions at various ages during the lifespan of mice. This high-resolution cell atlas
revealed age-related changes in both neurons and non-neuronal cells and uncovered molecular
and spatial signatures of glial and immune cell activation during aging. Comparison of these
changes with those induced by lipopolysaccharide (LPS) further revealed previously unknown
differences in non-neuronal cell activation induced by aging and by systemic inflammatory

challenge.

RESULTS

Spatially resolved single-cell transcriptomic profiling of the aging brain

We started with snRNA-seq measurements to probe the transcriptomic profiles of
individual cells from the frontal cortex and striatum of mice at two different ages, 4-week and 90-
week postnatal (Figure 1A and 1B). These brain regions have been previously shown to be
susceptible to various age-related neurodegenerative diseases in humans (O’Callaghan et al.,
2014; Seelaar et al., 2011). We sequenced ~50,000 nuclei from these regions from two female
animals at each age and performed unsupervised clustering analysis of the ~80,000 cells that

passed quality control (Figure S1).

We then selected two sets of genes for spatially resolved single-cell transcriptomic
measurements by MERFISH based on the snRNA-seq results (Figure 1A): i) cell type markers
that were differentially expressed between cell clusters determined by snRNA-seq; ii) aging-

related genes that were differentially expressed between the two ages in individual cell clusters.
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In addition, we selected previously known cell-type marker genes that define major neuronal, glial,
and immune cell types and genes previously reported to be highly upregulated in various cell
types during aging. Together, these resulted in a total of 212 cell-type markers and 204 aging-
related genes, which we imaged in the same tissue sections through two back-to-back MERFISH

runs, each with a 20-bit barcoding scheme (STAR Methods and Table S1).

We performed MERFISH imaging of these 416 genes in the frontal cortex and striatum
across three different ages, 4-week (young), 24-week (middle-age), and 90-week (old) postnatal,
including 3 — 5 female animals at each age, measuring a total of ~400,000 cells after quality
control (Figure 1B). The expression levels of individual genes measured by MERFISH showed
good correlation with results from bulk RNA sequencing and were highly reproducible between
biological replicates (Figure S2A-C). We then co-embedded the MERFISH and snRNA-seq data
and performed an integrated clustering analysis across these two data modalities (Figure 1C and
1D), which showed good correspondence with the clustering results from the snRNA-seq alone
(Figure S2D). The integrated analysis resulted in a total of 43 neuronal and non-neuronal cell
types (Figure 1E). Compared to our previous MERFISH results in the mouse cortex (Zhang et
al., 2021) and striatum (Chen et al., 2021), cell clusters were dissected here at a lower granularity
to capture age-related changes of major cell types. The neuronal clusters included layer-specific
excitatory neuronal cell types (ExN) in the cortex (ExN-L2/3-IT, EXN-L5-IT, ExN-L5-ET, ExN-L5/6-
NP, ExN-L6-IT, and ExN-L6-CT), inhibitory neuronal cell types (InN) in the cortex marked by
canonical inhibitory neuronal markers (Sst, Pvalb, Lamp5, and Vip), excitatory and inhibitory
neurons in the subcortical olfactory areas (ExN-OIf and InN-OIf), and Drd1+ (D1) or Drd2+ (D2)
medium spiny neurons (MSN) and Lhx6+ or Chat+ interneurons in the striatum, as well as spatially
dispersed Calb2+ interneurons. The non-neuronal clusters include oligodendrocytes (Oligo),
oligodendrocyte precursor cells (OPC), astrocytes (Astro), ependymal cells (Epen), pericytes

(Peri), vascular leptomeningeal cells (VLMC), endothelial cells (Endo), and microglia (Micro),
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macrophages (Macro), and T cells. snRNA-seq and MERFISH data co-embedded well with each
other and the vast majority of cell clusters were well represented in both datasets with high
correspondence in gene expression between the clusters from each dataset (Figure 1C and 1E;
Figure S2E). However, we noted that some vascular cell types (pericytes and endothelial cells)

were poorly sampled by snRNA-seq (Figure 1E).

In addition to leveraging both snRNA-seq and MERFISH data for cell type identification,
this integration also allowed us to impute genome-wide expression profiles for individual cells
measured by MERFISH using the transcriptomic profiles of neighboring snRNA-seq cells in the
gene-expression space (STAR Methods). As a validation for the imputation results, the spatial
distributions of the genes determined from the imputation results showed good agreement with
both the results directly measured by MERFISH (for genes included in the MERFISH gene panel)
and the results from Allen brain in situ hybridization atlas (for genes not included in the MERFISH

gene panel) (Figure S3).

Age-related changes in cell state and composition

We next analyzed how the cellular composition of these brain regions changed over aging
based on the in situ MERFISH data. The neuronal clusters did not exhibit significant changes in
abundance across the three ages (Figure 2A). By contrast, several non-neuronal cell types
exhibited substantial age-dependent changes in the overall abundance of the cell type and/or the
relative proportions of cells among different subtypes or states within the cell type (Figure 1E;
Figure 2A and 2B). In particular, the abundance of oligodendrocytes increased and that of the
OPCs decreased substantially as the animal aged (Figure 2A). Of the three subtypes or states
of oligodendrocytes, Oligo-1 was predominant in young animals and diminished to nearly non-
existent in middle-aged and old animals, Oligo-2 was predominant in middle-aged animals and

decreased in abundance in old animals, while a third cluster Oligo-3 emerged in old animals
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(Figure 2B). The aging-related cluster Oligo-3 exhibited substantially upregulated expression of
C4b (Figure 2C), a complement protein of the innate immunity system, and interleukin 33 (//33)
(Figure 2C), a cytokine involved in inflammatory and innate immune response (Molofsky et al.,
2015) and previously shown to be upregulated in oligodendrocytes in the aging brain (Ximerakis
et al., 2019). These results suggest an initial maturation and proliferation of oligodendrocytes,
likely a result of late-stage development, followed by inflammatory activation of matured
oligodendrocytes with aging. Microglia, endothelial cells, and astrocytes did not exhibit substantial
overall abundance change but showed age-dependent shift in population among subtypes or
states. For example, Micro-1 and Endo-1 were enriched in young animals; Micro-3 and Endo-3
were enriched old animals; Astro-2 showed increased abundance in old animals (Figure 2B).
These aging-related cell subtypes or states exhibit upregulation of genes (e.g., B2m and Trem2
in Micro-3, Xdh in Endo-3, and Gfap and C4b in Astro-2) (Figure 2C), some of which have been
previously shown to be enriched in microglia, endothelial cells, and astrocytes activated by
infammation and/or aging (Boisvert et al., 2018; Chen et al., 2020a; Clarke et al., 2018; Hammond
et al., 2019; Liddelow et al., 2017; Ximerakis et al., 2019). Consistent with previously observed T
cell infiltration into the aging brain (Dulken et al., 2019), we also observed a substantial increase
in the abundance of T cells in old animals (Figure 2A), although the change did not reach

statistical significance due to the small total number of cells detected for this rare cell type.

Age-related changes in the spatial organization of individual cell types

The in situ cell-type identification by MERFISH further allowed us to map the spatial
organization of individual cell types across different ages. To visualize the overall spatial
organization of cells, we performed hierarchical clustering of cells based on the cell composition
in their spatial neighborhood (STAR Methods) and the resulting spatial clusters naturally
segmented the imaged brain regions into several subregions that corresponded to known

anatomical features, including the pia, different cortical layers, corpus callosum, striatum,
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ventricle, and subcortical olfactory regions (Figure 3A). As expected, different excitatory clusters
adopted laminar distributions in the cortex and medium spiny neurons were localized to the
striatum (Figure 3A and 3B); oligodendrocytes were enriched in the corpus callosum, vascular
leptomeningeal cells and a specific pericyte cluster (Peri-2) were enriched in the pia, and
ependymal cells were localized around the ventricle, whereas OPCs, astrocytes, microglia and
endothelial cells were distributed largely uniformly throughout the imaged regions (Figure 3A and

3B).

Interestingly, although the overall spatial organization of neuronal cell types appeared
similar across different ages (Figure 3A and 3B), some non-neuronal cell clusters showed
changes in anatomical enrichment with age. For example, the oligodendrocyte cluster that
emerged in old animals (Oligo-3) was located nearly exclusively in the corpus callosum, whereas
cells from the Oligo-1 and Oligo-2 clusters, albeit being enriched in the corpus callosum, could be
found throughout the imaged regions (Figure 3C). Likewise, astrocytes belonging to the aging-
related Astro-2 cluster were localized to the corpus callosum, whereas cells from Astro-1 adopted
a complementary distribution that became depleted in corpus callosum in adult and aged animals
(Figure 3D). Not all cell types that exhibited age-dependent shift in subtypes or states showed
spatial heterogeneity — different microglial and endothelial clusters were more-or-less evenly

distributed throughout all anatomical regions (Figure 3E and 3F).

In addition, we observed that certain non-neuronal cell types exhibited a tendency to be
spatially colocalized, which further increased with age. Specifically, vascular cells (endothelial
cells, pericytes and vascular leptomeningeal cells) showed a significant tendency to be proximal
to each other and this tendency increased with age (Figure S4). Moreover, macrophages tended
to be enriched near vascular cells and this tendency also increased with age (Figure S4). A similar

trend was also observed for microglia, albeit to a lesser degree (Figure S4).
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Age-related changes in the gene expression profiles of individual cell types

Overall, the above results showed that both the composition and the spatial organization
of cells exhibited aging-induced changes primarily in non-neuronal cell types. Next, we examined
how gene expression profiles of individual cell types changed with age. To this end, we
determined the number of genes that were differentially expressed across different ages in
individual neuronal and non-neuronal cell types based on the gene expression profiles determined
by snRNA-seq (Figure 4A). While essentially all cell types had at least some genes that were
differentially expressed over aging, non-neuronal cell types tended to exhibit a greater number of
age-dependent differentially expressed genes (Figure 4A). The majority of the age-dependent
genes were differentially expressed in a cell-type-specific manner, with relatively few genes
broadly differently expressed across all cell types (Figure 4B). Gene Ontology (GO) and KEGG
(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that genes
upregulated with age in neurons, in particular in inhibitory neurons, were enriched in pathways
associated with neurodegenerative diseases, oxidative response and mitochondria function,
whereas genes upregulated with age in non-neuronal cell types tended to be associated with
inflammatory and immune response (Figure 4C), consistent with the previous observations of
broad upregulation of oxidative stress and immune pathways in the aging brain (Lu et al., 2004;
Almanzar et al., 2020; Benayoun et al., 2019; Ximerakis et al., 2019). Specifically, these age-
upregulated genes in non-neuronal cells included cytokines (e.g. /33 and /18 in
oligodendrocytes), complement proteins (e.g. C4b in astrocytes and oligodendrocytes), and
proteins involved in interferon response (e.g. /fit3 and Ifitm3 in ependymal cells and pericytes)
(Figure 4B).

Imputation of the genome-wide expression profiles of the cells measured by MERFISH
allowed us the determine the spatial distributions of all genes across different ages. Many of the
age-upregulated genes exhibited specific spatial patterns, such as being highly enriched in the

corpus callosum, specific cortical layers, striatum or other anatomical regions (see examples in
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Figure 4D). Using these imputed genome-wide expression profiles, we systematically quantified
the number of genes differentially expressed over aging for each major cell type in individual
anatomical regions. We observed substantial spatial heterogeneity in the total number of genes
upregulated or downregulated with age even among cells of the same type (Figure 4E). In
particular, oligodendrocytes, astrocytes, and microglia all exhibited the greatest number of
differentially expressed genes with age in the white matter of the corpus callosum, relative to other
anatomical regions. Endothelial cells, on the other hand, had more age-upregulated or -
downregulated genes in the striatum and specific cortical layers, with more genes upregulated in

upper layers.

To further investigate age-related changes in gene expression in non-neuronal cell types,
we performed gene-gene correlation analysis to identify groups of genes whose expression
showed correlated variations with each other and hence likely belong to the same gene regulatory
networks. Within each cell type, we determined pair-wise Pearson correlation coefficient of gene
expression across all cells measured at all ages for any pair of genes. Such gene-gene correlation
matrices for oligodendrocytes, astrocytes, and microglia revealed, for each cell type, many groups
of genes that showed correlated expression, which we referred to as gene modules (Figure S5).
Many of these gene modules showed up- or down-regulation in expression with age (Figure S5).
GO or KEGG term analysis showed that many of these modules were related to development or
immune response, often capturing cell-type specific functions. For example, microglia module 20
and oligodendrocyte module 23 were upregulated with age and enriched for terms related to

LT

inflammatory and immune response, such as “innate immune response”, “response to cytokine”,
and “cellular response to interferon beta”, whereas oligodendrocyte module 12 was enriched for
terms related to myelination, such as “axon ensheathment” and “nervous system development”

(Figure S5). These results suggest the presence of specific gene regulatory networks that

function in a cell-type-specific and age-dependent manner, whose functional annotation suggests
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specific biological functions of those cell types (e.g. myelination) or responses to external stimuli

(e.g. cytokines).

Age-dependent activation of glial and immune cells

For microglia and astrocytes, we observed that the genes highly upregulated with age
overlapped substantially with genes that have been previously reported as being upregulated in
the activated (or ‘reactive’) state of these cell types (e.g. Gfap and C4b for astrocytes; B2m and
Lyz2 for microglia) (Clarke et al., 2018; Hammond et al., 2019; Keren-Shaul et al., 2017; Liddelow
et al., 2017). These activated astrocytes and microglia have been observed in both healthy and
diseased brains, often responding to brain injury, inflammation, or degeneration, and have been
shown to have protective or deleterious effects on neighboring neurons depending on the specific
type and level of activation (Bohlen et al., 2019; Croese et al., 2021; Hammond et al., 2018; Labzin
et al., 2018; Mhatre et al., 2015; Sofroniew, 2020). Microglial and astrocytic activation has been
reported in aged rodent and human brains (Boisvert et al., 2018; Clarke et al., 2018; Habib et al.,
2020; Hammond et al., 2019; Olah et al., 2018), but how such activation depends on the spatial

context remains unclear.

To quantify the activation of these cell types and determine the spatial distributions of
activated cells, we scored the activation levels of astrocytes and microglia imaged by MERFISH
using genes previously shown to be specific for activated cells (STAR Methods). The activation
scores for both astrocytes and microglia increased on average with age (Figure 5A). The specific
subtypes or states of astrocytes and microglia enriched in old animals (Astro-2 and Micro-3) had

higher activation scores than the other subtypes or states (Figure 5B).

Notably, astrocyte and microglia exhibited distinct spatial signatures in their activation
patterns. Astrocytes showed pronounced spatial heterogeneity in activation, with the highest level

of activation in the corpus callosum, as well as relatively strong activation in the striatum and near
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the ventricle and pia, but minimal activation in the cortex (Figure 5C and 5D). This spatial pattern
was already apparent in young animals and became more pronounced with aging. Microglia
activation, on the other hand, was more uniform across different regions, with hardly any spatial
heterogeneity in young animals (Figure 5C and 5D). As the animal aged, microglia activation
level increased more-or-less uniformly across different regions, except that the corpus callosum

showed a notably higher level of activation (Figure 5C and 5D).

Because microglia and astrocytes may be directly or indirectly activated by pro-
inflammatory cytokines and chemokines that circulate in the blood (Pluvinage and Wyss-Coray,
2020) or are released by brain-infiltrating immune cells (Croese et al., 2021), and we observed
enrichment of macrophages near vascular cells in old animals (Figure S4), we further examined
whether the activation levels of astrocytes and microglia depended on their distance to vascular
cells that separate the bloodstream (e.g. endothelial cells) or cerebrospinal fluid (e.g. vascular
leptomeningeal cells (VLMCs)) from the interior of the brain. In addition, since we observed that
several genes involved in inflammatory response and innate immune signaling (//18, 1133, and
C4b) were upregulated in oligodendrocytes (Figure 4B), we also examined the dependence of

astrocyte and microglia activation on the distance to oligodendrocytes.

Again, these dependencies were notably different between astrocytes and microglia.
Astrocyte activation exhibited a strong dependence on the proximity to VLMCs in both young and
old animals, and a dependence on the proximity to oligodendrocytes that increased substantially
with age (Figure 5E). Only the other hand, microglia did not show any preferential activation near
vascular cells, but aging-induced activation of microglia showed a strong dependence on their
proximity to oligodendrocytes (Figure 5E). Moreover, we scored the inflammation level of
oligodendrocytes using the expression levels of /33, 1/18, and C4b, and observed that within the
corpus callosum, the aging-induced activation levels of astrocytes and microglia were correlated

with the inflammation level of nearby oligodendrocytes (Figure 5F), suggesting that the
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dependence on the proximity to oligodendrocytes was not simply a reflection of stronger activation
of astrocytes and microglia in the corpus callosum but are likely related to the inflammatory
response of oligodendrocytes over aging. The activation levels of astrocytes and microglia in the

corpus callosum were also correlated with each other (Figure 5F).

The above results suggest multiple different mechanisms of non-neuronal cell activation,
two of which showed strong spatial dependence: 1) activation of astrocytes near the surface of
the vascular structures separating the cerebrospinal fluid and the brain, potentially caused by
factors derived from cerebrospinal fluid; 2) activation of microglia and astrocytes near
oligodendrocytes in corpus callosum, potentially caused by pro-inflammatory factors expressed
by oligodendrocytes. Supporting this notion, the molecular signatures of activated astrocytes near
the pia were different from those in the corpus callosum (Figure S6). Interestingly, only the second

mechanism was aging specific.

Activation of glial and immune cells in response to systemic inflammatory challenge

The activation of astrocytes and microglia with age, reminiscent of brain inflammation,
raises an interesting question as to how these age-related states compare with those induced by
systemic inflammation. Peripheral administration of LPS is widely used to model brain
inflammation associated with neurodegenerative disease (Ribeiro et al., 2019). Although LPS
itself is thought not to cross the blood-brain barrier, systemic release of cytokines and chemokines
by peripheral immune cells upon LPS administration can broadly activate microglia and astrocytes
throughout the brain (Clarke et al., 2018; Qin et al., 2007), as well as induce fever (Elmquist et

al., 1996).

We injected mice at the three ages (4-week, 24-week, and 90-week postnatal) with LPS
(Figure 6A), sacrificed the animals 24 hours after LPS injection, and performed MERFISH

measurements using our cell type and aging gene panels. ~350,000 cells passed quality control
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analysis, and we classified these cells by integrating the LPS dataset with the normal brain
MERFISH dataset described earlier and transferred cell-type annotations without re-clustering

(Figure 6B; Figure S7A).

We observed a high degree of similarity between untreated and LPS-treated mice in terms
of both the composition (Figure S7A-C) and the global spatial organization (Figure S8A and
S8B) of the cell types. However, compared to untreated animals, young animals treated with LPS
showed a substantially higher degree of enrichment of macrophages near vascular cells (Figure

S8C), similar to that observed over the course of normal aging (Figure S4).

Notably, LPS induced substantial changes in the gene expression in a cell-type-specific
manner and some of the upregulated genes overlapped with those observed over normal aging.
To quantify these effects, we fit a regression model for each gene on young untreated and LPS-
treated animals, or on untreated young and old animals, and compared the extent to which
specific genes were upregulated across the two conditions (Figure 6C; Figure S7D). Here, we
limited our analyses to the genes in the MERFISH panel and did not impute genome-wide
expression because we did not perform scRNA-seq measurements on the LPS-treated animals.
Nonetheless, these analyses provided interesting similarities and differences between aging- and
LPS-induced changes. Many of the genes involved in innate immune response that were
observed to be upregulated with age were also upregulated in responses to LPS (Figure 6C;
Figure S7D). There was, however, substantial quantitative variations in the relative extent of
upregulation under the two conditions. For example, C4b was highly upregulated over aging and
further upregulated by LPS treatment, consistent with previous observations in astrocytes using
bulk RNA-seq (Clarke et al., 2018); //I33 was strongly upregulated with age whereas LPS
treatment induced only very small additional upregulation of this gene; Rsrp1 was more strongly
upregulated in response to LPS and only weakly upregulate with age (Figure 6D). There was

also a subset of immune-response related genes that were only upregulated under one of the two
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conditions, for example Nfib, Sparc, Mef2c, and Zeb1 in response to LPS, and Cd74 and Mfge8

over aging (Figure 6C).

Because the MERFISH gene panel includes genes that are upregulated in reactive
astrocytes and microglia in response to inflammation, the MERFISH data also allowed us to
analyze the activation patterns of these cells under LPS treatment and compare with those
induced by aging. LPS increased the activation of astrocytes and microglia in young and old
animals (Figure 6E). Astrocytes were preferentially activated by LPS in or near the pia, corpus
callosum, striatum, and ventricle but not the cortex, whereas microglia were largely uniformly
activated by LPS across all regions (Figure 6E and 6F). Moreover, the activation of microglia by
LPS did not depend on the proximity to oligodendrocytes or VLMCs, whereas the activation of
astrocytes showed a strong dependence on the proximity to VLMCs and only a weak dependence
to oligodendrocytes (Figure 6G and 6H). These results suggest interesting commonality and
differences between age- and LPS-induced activations of non-neuronal cells: while both
conditions induced spatially heterogeneous activation of astrocytes with particular enrichment
near the cerebrospinal-fluid—brain barriers and dispersed activation of microglia, aging uniquely
induced microglia activation, and potentially related increase in astrocyte activation, near

oligodendrocytes in corpus callosum.

DISCUSSION

How the brain ages and why these changes lead to functional decline are questions with
major fundamental and practical significance, as one expects an increase in the prevalence of
neurodegenerative diseases over the coming decades due to the aging global population. Many
hypotheses have been proposed for the causes of brain function decline with age, ranging from

changes in synaptic connectivity or physiology (Bishop et al., 2010), to senescence of glial and
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immune cells and the role of circulating inflammatory factors (Wyss-Coray, 2016). Previous
transcriptomic studies have revealed widespread changes in cellular state with age, highlighting
specific cell types and biological processes that might be involved in mediating age-related
decline (Almanzar et al., 2020; Benayoun et al., 2019; Boisvert et al., 2018; Chen et al., 2020a;
Clarke et al., 2018; Habib et al., 2020; Hammond et al., 2019; Olah et al., 2018; Schaum et al.,
2020; Ximerakis et al., 2019). In particular, some of these studies have highlighted a role for
increased inflammation as a key aspect of brain aging (Benayoun et al., 2019; Clarke et al., 2018;
Hammond et al., 2019; Wyss-Coray, 2016). However, to understand how these changes may
impact specific brain functions and gain insights into the mechanisms underlying age-related
functional decline, it is crucial to characterize both the molecular and cellular signatures and the

spatial locations of these changes within the brain.

To fill this gap, we used spatially resolved single-cell transcriptomic analysis to
systemically uncover changes in the cellular composition, molecular signatures, and spatial
organizations of brain cells in the mouse frontal cortex and striatum over the animal’s lifespan. By
integrating snRNA-seq and MERFISH measurements, we generated a spatially resolved cell atlas
of the aging brain with a genome-wide expression profile associated with each cell. Notably, we
observed substantially more pronounced, and qualitatively different, age-induced changes in non-
neuronal cells compared to neurons, and these changes in non-neuronal cell exhibited specific
spatial patterns. This atlas provides a rich resource for understanding the changes in cell state

associated with aging.

At the molecular level, many of the genes upregulated in non-neuronal cells during aging
were related to activation of inflammatory pathways associated with innate immunity, while
neuronal cell populations displayed different transcriptional changes, many of which related to
neurodegenerative diseases, oxidative stress, and mitochondria functions. Immune cells and

secreted factors such as cytokines are widely involved in the maintenance of tissue homeostasis
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across many organs (Meizlish et al., 2021). Hence, the observed upregulation of genes related to
inflammation and innate immunity by immune and glial cells within the brain could be an indication
of dysregulated tissue homeostasis that may broadly affect nervous system function.
Furthermore, in each individual non-neuronal cell types, such as oligodendrocytes, astrocytes,
and microglia, we observed dozens of gene modules that contained genes with correlated
expression variation across cells, and many of these gene modules showed up- or down-
regulated expression with aging. These modules suggest the presence of multiple, potentially

interconnected, gene-regulatory networks related to aging.

While the cell composition and spatial organization of neurons were stable with age, we
observed notable changes in the composition and spatial distributions of non-neuronal cells, with
specific oligodendrocyte and astrocyte subtypes or states emerging in the corpus callosum of the
aging brain. Interestingly, inflammatory activation of microglia and astrocytes during aging
showed distinct spatial patterns: both cell types exhibited the strongest activation in the corpus
callosum, a location that also showed strong inflammatory changes of oligodendrocytes, whereas
astrocytes but not microglia showed increased activation near the pial surface. Overall, astrocyte
activation appeared to be substantially more spatially localized than microglia activation. Taken
together, these results highlight the white matter of the corpus callosum as a hotspot of age-

associated inflammatory changes in the brain.

Previous MRI studies in humans have revealed that prefrontal white matter is highly
susceptible to age-related reduction in volume (Gunning-Dixon et al., 2009), and that the degree
of white matter changes are associated with cognitive decline (Gunning-Dixon and Raz, 2000).
Electron microscopy studies of non-human primate brain aging have revealed major alterations
specifically in the white matter, particularly in the disruption of myelin sheath structure (Peters,
2002). White matter microglia reactivity has also been related to aging (Safaiyan et al., 2021) and

diseases, including, recently, SARS-CoV-2 induced long-term neurological impairment
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(Fernandez-Castarieda et al., 2022). Expanding upon these pervious findings, our results suggest
that changes in the oligodendrocytes and myelinated axons and their associated microglial and
astrocytic reactivity in the white matter may be an important factor in age-associated cognitive
deficits. Our observations that the activation levels of microglia and astrocytes in the corpus
callosum are correlated with each other and both correlated with the inflammation level of
oligodendrocytes marked by cytokines like 1133 further suggest potential molecular mechanisms
underlying this inflammatory activation. In one scenario, the elevated expression of pro-
inflammatory cytokine 1133 in aged oligodendrocytes may activate microglia through the 1133
receptors, which is known to be expressed in microglia (Vainchtein et al., 2018). In a second and
potentially related model, myelin itself can activate microglia in vitro (Williams et al., 1994), and
excessive myelin degradation can induce activation of phagocytosing microglia that become
overloaded with myelin fragments (Safaiyan et al., 2016), in a process that depends on TREM2
signaling (Safaiyan et al., 2021). In both scenarios, activated microglia can in turn activate
astrocytes through secretion of pro-inflammatory cytokines and complement proteins (Liddelow
et al., 2017). Activated astrocytes and microglia may in turn exacerbate oligodendrocyte and

myelin degeneration (Gibson et al., 2019; Liddelow et al., 2017).

Our result further showed that microglia and astrocyte activation induced by aging
exhibited similarities but also significant differences to that induced by systemic inflammatory
challenge. On the one hand, many of the same genes were upregulated by acute LPS treatment
and during aging, consistent with previous findings (Clarke et al., 2018). On the other hand, we
also observed notable differences in cell activation induced by aging and acute systemic
inflammation, in both gene-expression and spatial patterns. In particular, the activation of
microglia and astrocytes associated with the inflammation of oligodendrocytes in white matter of
the corpus callosum were uniquely observed in the aging brain. Identifying the detailed molecular

mechanisms underlying these commonalities and differences will require further mechanistic
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investigation of the roles of specific cytokines and other signaling pathways in the brain. Indeed,
these two processes may intersect: intrinsic aging-related degenerative processes within the
brain, such as degenerating myelin, which locally disrupt tissue homeostasis, may prime cells into
a pro-inflammatory state, which could then be exacerbated by systemic factors (Pluvinage and

Wyss-Coray, 2020).

The functional consequences of the disruptions to non-neuronal cellular homeostasis on
neural circuits remain to be investigated. Many of the genes that we observed to be upregulated
during aging, such as interleukins and complement proteins, have been shown to play a crucial
role in regulating neural circuit organization and function via interactions between neurons and
non-neuronal cells during development (Stevens et al., 2007; Vainchtein et al., 2018). Our cell
atlas of the aging brain could facilitate future studies aiming to determine whether spatially
localized upregulation of these molecules with age in turn causes localized disruptions to neural
circuit function. Integrating these functional studies in mice with spatial transcriptomic
measurements in humans in multiple conditions (normal aging, acute brain injuries, as well as
chronic neurodegenerative disorders) will reveal how the inflammatory activation of non-neuronal
cells contributes to cognitive impairment associated with advanced age and diseases at the

neuronal and circuit levels.
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Figure 1: Spatially resolved single-cell transcriptomic profiling of the mouse frontal cortex

and striatum over the animal’s lifespan.
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(A) Profiling of the mouse frontal cortex and striatum via integrated snRNA-seq and MERFISH
analyses.

(B) Sampling time points for snRNA-seq and MERFISH measurements across the lifespan of
mice.

(C) (Left) Uniform Manifold Approximation (UMAP) visualization of cells from all timepoints, from
both snRNA-seq and MERFISH measurements. (Right) Separate UMAP visualization of cells
measured by snRNA-seq (top) and MERFISH (bottom). Cells are colored by cell-type assignment.
(D) (Left) As in (C) but with cells colored by age. Only two of the time points (Young and OId) are
shown. (Right) Individual UMAP plots, shown as the density of cells at each time point (Young;
Middle age; Old) overlaid on total cell population (grey) across all three ages.

(E) Molecularly defined cell types determined from integrated snRNA-seq and MERFISH
clustering analysis. (Top) Dendrogram of the hierarchical relationship among clusters and number
of measured cells per cluster. (Middle) Expression of marker genes, showing major marker genes
for different cell types. (Bottom) Fraction of cells per cluster by age and by modality, normalized

to sampling depth such that equal representation in each condition will have the same fraction.
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Figure 2: Changes in cell-type composition of the mouse frontal cortex and striatum across
ages.

(A) Density of different major cell types (in cells'rmm?) across the three ages (young: 4 weeks;
middle: 24 weeks; old: 90 weeks). Inset shows magnified view of lower abundance cell types. *
indicates FDR-adjusted P-value < 0.05 for independent sample t-test in difference in density
between young and old animals. Error bars: 95% confidence interval.

(B) Fraction of cells that belong to different subtypes or states of oligodendrocytes, microglia,
endothelial cells, and astrocytes across different ages.

(C) Violin plot of expression of example genes that change expression across different subtypes

or states of oligodendrocytes, microglia, endothelial cells, and astrocytes.
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Figure 3: Spatial organization of cells in the mouse frontal cortex and striatum across ages.
(A) (Left) Spatial segmentation of anatomical regions. (Right) Spatial organization of major cell
types at the three different ages, colored by cluster identity. Dashed lines outlining anatomical
regions were manually traced from spatial segmentation for visualization purpose.

(B) Fraction cells resided in individual anatomical regions for each cell cluster at the three different

ages. CC: corpus callosum. OIf: Subcortical olfactory areas. The lower abundance of ependymal
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cells in younger animals may be due to classification as molecularly similar astrocytes or loss of
ventricle surface during tissue sectioning.
(C—F) Spatial organizations of oligodendrocyte (C), astrocyte (D), microglial (E), and endothelial

(F) clusters at different ages.
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Figure 4: Cell-type-specific and spatially localized molecular signatures of brain aging.

(A) Number of genes differentially expressed between young and old animals in individual cell

clusters, with genes upregulated with age shown in red bars and downregulated with age shown

in blue bars. Differentially expressed (DE) genes were defined as genes with age-related change

in log(gene expression) > 2 (light colored bars) or > 2.5 (dark colored bars) and FDR-adjusted P-

value < 0.05 between the two ages.

(B) Age-related change in Z-scored log(gene expression) between young and old animals for DE

genes in different cell clusters.
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(C) —logio(P-value) of enrichment for Gene Ontology (GO) Biological Process terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) terms enriched among DE genes with an age-
related change in log(gene expression) > 2 and FDR-adjusted P-value < 0.05 between the two
ages. Only GO or KEGG terms with P-value < 0.05 are listed and when the number of terms
exceeds 10, only top 10 terms are listed for each major cell class.

(D) Spatial maps of examples of DE genes across the three different ages.

(E) Quantification of the number of DE genes for each major cell type as a function of spatial
location, using imputed gene expression data. DE genes with an age-related change in log(gene
expression) > 2 and FDR-adjusted P-values < 0.05 are considered. Size of dot indicates total
number of DE genes for a particular cell type within a region, color shade of dot indicates the

fractional number of DE genes relative to the maximum value across all regions.
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Figure 5: Spatially heterogeneous and cell-type-specific inflammatory activation
signatures of brain aging.

(A) Activation scores of all astrocytes and microglia across the three different ages. Activation
score is defined as the summed expression of a cell-type-specific subset of gene related to
inflammatory activation, relative to background of randomly selected genes (STAR Methods).
(B) Activation scores of specific astrocyte and microglia clusters.

(C) Spatial maps of activation scores of astrocytes and microglia across the three different ages.

Cell are colored by activation scores.
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(D) Quantifications of per-cell activation scores of astrocytes and microglia in different
anatomical regions across three ages.

(E) Average activation scores of astrocytes and microglia as a function of distance from
neighboring oligodendrocytes, vascular leptomeningeal cells (VLMCs), and endothelial cells.
(F) (Left) Correlation plots of activation scores of each microglial cell in corpus callosum versus
the average inflammation scores of oligodendrocytes within 30 um of that microglial cell.
(Middle) Same as (Left) but for astrocytes and oligodendrocytes. (Right) Same as (Left) but for

astrocytes and microglia. Pearson correlation coefficients R are given in the plots.
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Figure 6: Gene expression changes and activations of cells in response to systemic

inflammatory challenge.
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(A) Experimental paradigm for systemic inflammatory challenge with lipopolysaccharide (LPS).
(B) UMAP visualization of cells colored by cell types (left) or age (right) measured by MERFISH.
(C) Change in gene expression in response to LPS only (purple), aging only (green), or both LPS
and aging (black) for different cell types measured by MERFISH. Only genes with age- or LPS-
related change in Z-scored log(gene expression) > 2 in at least one condition for at least one cell
type are shown.

(D) Spatial maps of example genes that are upregulated over aging and upon LPS treatment.
(E) Spatial maps of activated microglia and astrocytes across the three different ages, with and
without LPS treatment. Cells are colored by activation scores.

(F) Quantification of per-cell activation scores for microglia and astrocytes in different anatomical
regions, in young mice with LPS treatment.

(G) Activation scores of astrocytes and microglia as a function of distance from neighboring
oligodendrocytes, VMLCs, and endothelial cells in young mice after LPS treatment.

(H) Correlation of activation score of microglia and astrocytes and inflammation score of

oligodendrocytes, as defined in Figure 5F, in young animals treated with LPS.
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o Analysis of MERFISH data obtained from LPS-treated mice
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REAGENT or RESOURCE | SOURCE | IDENTIFIER
Biological samples
Mouse: C57BL/6J Jackson Labs Cat# 664;

RRID:IMSR_JAX:0

00664

Chemicals, peptides, and recombinant proteins

Formamide Ambion Cat# AM9342
20xSSC Ambion Cat# AM9763
Triton-X Sigma Cat# T8787
Glucose oxidase Sigma Cat# G2133
Phusion® Hot Start Flex 2X Master Mix glg\;v England Cat# M0536

iolabs

Maxima H Minus Reverse Transcriptase

ThermoFisher

Cat# EP0752

dNTP mix

ThermoFisher

Cat# R1121

32% Paraformaldehyde

Electron Microscopy

Cat# 15714S

Sciences
RNase inhibitor, Murine New England Cat# M0314
Biolabs
1M Tris, pH 8 ThermoFisher Cat# 15568025
Catalase Sigma Cat# C3155
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic | Sigma Cat# 238813
acid (Trolox)
Tris(2-carboxyethyl)phosphine (TCEP) HCI GoldBio Cat# TCEP1
Hoescht 33342, Trihydrochloride, Trihydrate ThermoFisher Cat# H3570
Lipopolysaccharides from E. coli O111:B4 Sigma Cat# L4391
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Yeast tRNA ThermoFisher Cat#t AM7119
Dextran sulfate Sigma Cat# S4030
Ethanol Decon Labs Cat# V1016

Sodium dodecyl sulfate

ThermoFisher

Cat# 15553027

Proteinase K New England Cat# P8107S
Biolabs
Ethylene carbonate Sigma Cat# 676802-1L
Glucose Sigma Cat# G7021
Oligonucleotides
Readout probes Integrated DNA See Table S3
Technologies
Encoding oligonucleotide probe library Twist Biosciences See Table S2
Anchor probe: Integrated DNA N/A
Technologies
I5Acryd/ TTGAGTGGATGGAGTGTAATT+TT+TT+
TTHTT+TT+TTHTT+TT+TTHT
Software and algorithms
MERIin Github https://github.com/
ZhuangLab/MERIi
n
Custom Python analysis software This paper https://github.com/

weallen/project_tit
honus

RESOURCE AVAILABILITY

Lead Contact

Requests for resources and reagents should be directed to the lead contact, Xiaowei Zhuang

(zhuang@chemistry.harvard.edu).

Materials Availability
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Oligonucleotide encoding probe sequences used for MERFISH imaging can be found in Table
S2. Oligonucleotide readout probe sequences used for MERFISH imaging can be found in
Table S3. These probes or templates for making these probes can be purchased from

commercial sources, as described in the Key Resources Table.

Data and Code Availability
Single-cell RNA-seq data have been deposited to NCBI GEO data repository (GSE207848).

All original code used in this work is available at: https://github.com/weallen/project_tithonus.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Animals

Female C57BL6/J mice were used in this study. Mice were obtained from Jackson Laboratory at
an age one week younger than the target age for sacrifice (4-week, 24-week, 90-week postnatal),
and then housed at Harvard University Animal Facility for 1 week to acclimate before sacrifice.
Mice were maintained on a 12 hr light/12 hr dark cycle (14:00 to 02:00 dark period) at a
temperature of 22 + 1°C, a humidity of 30-70%, with ad libitum access to food and water. Animal
care and experiments were carried out in accordance with NIH guidelines and were approved by

the Harvard University Institutional Animal Care and Use Committee (IACUC).

METHOD DETAILS

Single-nucleus RNA-sequencing

Female mice aged 4 weeks or 90 weeks old were anesthetized with isofluorane and then acutely
decapitated. Their brains were quickly harvested and cut into hemispheres and each hemisphere
was frozen immediately on dry ice Optimal Cutting Temperature Compound (OCT, Fisher
HealthCare) and then stored at —80°C until sectioning. Brains were taken from storage at -80°C

and warmed to —18°C in a cryostat (Leica) for 20 minutes before sectioning. Sections were
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discarded until the beginning of frontal cortex was apparent. Brains were then blocked on the
cryostat using a razor blade to a region containing frontal cortex and striatum. 100 ym coronal
sections were then collected approximately from A/P +2 mm to A/P +1 mm, relative to bregma.
The resulting sections were collected in an Eppendorft tube and stored at —80°C until snRNA-seq
library preparation.

For snRNA-seq library preparation, nuclei were dounced in Nuclei EZ Prep nuclei
extraction buffer (Sigma) + 1% RNase Inhibitor. Nuclei were then spun down, filtered through a
70 pm filter, stained with DAPI, and sorted on a FACS machine (BD FacsAria) to separate nuclei
from debris. The resulting clean nuclei preparation were then counted and encapsulated on a 10X
Genomics Chromium machine, using the 3’ Transcriptome V3.1 kit (10X Genomics). After
encapsulation, the resulting libraries were reverse transcribed, amplified as cDNA, fragmented,
and amplified as a final library following the manufacturer’s instructions. The resulting libraries
were sequenced on a NovaSeq S4 flowcell (lllumina) to a target depth of ~50,000 reads per

nucleus.

snRNA-seq data analysis

Raw reads were mapped to the mm10 mouse reference genome and demultiplexed to generate
a per-cell count matrix using CellRanger pipeline (10X Genomics). The resulting data were
analyzed in Python using standard methods implemented in the package Scanpy. Briefly, putative
doublets were first removed using Scrublet (Wolock et al., 2019). Cells with < 2,500 UMIs per cell
and < 1,000 genes per cell were removed. Genes detected in < 3 cells were removed. Following
standard procedures in Scanpy, per-cell counts were normalized to sum to 10* counts per cells
and log-transformed. A multi-level clustering approach was taken, where the cells were first
clustered into major cell types then into clusters within those cell types as described in Figure
S1A. Briefly, at each level highly variable genes were determined and included in the per-cell

expression matrix, the total UMI number per cell and expression of mitochondrial genes were

43


https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.508048; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

regressed out, and the resulting residuals were Z-scored. Principal component analysis was used
to reduce the dimensionality to 50 principal components. A nearest neighbor graph was computed
between cells using these principal components, and Leiden clustering was applied to separate
the cells into distinct clusters.

First all cells were clustered into neurons and non-neuronal cells. Within the neurons, cells
were clustered into inhibitory and excitatory neurons. Inhibitory neurons were further subclustered
into medium spiny neurons (MSNs) and non-MSNs. Non-neuronal cells were subclustered into
astrocytes, microglia, macrophages, oligodendrocytes, pericytes, vascular leptomeningeal cells
(VLMCs). Each major cell type (excitatory, inhibitory, MSN, astrocytes, microglia, macrophages

oligodendrocytes, pericytes, VLMCs) was then subclustered to obtain the final list of cell clusters.

Gene selection for MERFISH measurements

Genes were selected for MERFISH using a combination of automated and manual approaches.
First, to identify age-related genes, linear regression was used to identify genes that were
differentially expressed between two different ages (4-week and 90-week postnatal) in individual
cell types or clusters determined by snRNA-seq. Briefly, using statsmodels, a Generalized Linear
Model with a Negative Binomial link function was fit to the log-transformed UMI counts per cell for

each gene y;.

yi ~ C(age) + logio(total_counts) + intercept + ¢

where C(age) is a binary categorical variable with the 4-week value set to be the reference level

(i.e. C(4-week) = 0) and the C(90-week) value determined from the model. This model was fit

separately for each cell type or cluster, which was compared with a null model that only accounts

for technical variation in the total molecule counts per cell:
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yi ~ logio(total_counts.) + intercept + €

A likelihood ratio test was then computed between the full and reduced models to determine a P-
value. These P-values were corrected for multiple hypothesis testing across all genes in all cell
types or clusters to give the FDR-adjusted P-values, and genes with an FDR-adjusted P-value <
10 were considered. For each cell type and cluster, the genes differentially expressed between
the two ages were sorted by the fitted C(90-week) value, and the top N genes with at least C(90-
week) > 1.5 were included in the aging gene panel. For each major cell type, we included 5 genes
and for each fine-leaflet cell cluster we included 2 genes. This approach attempts to balance the
gene panel across all cell types and clusters, even if certain cell types or clusters may have more
or fewer total numbers of differentially expressed genes with age.

To identify cell-type-marker genes, marker genes were identified for a particular cell
population (cell type or cluster) using a one-vs-all approach. For each cell population, a t-test was
performed for each gene between the cells within the cell population and all other cells not in that
population. The resulting P-values were corrected for multiple hypothesis testing to give FDR-
adjusted P-value. A gene was identified as a cell-type marker for a certain cell population if it
satisfy the following conditions: i) it was expressed in at least 40% of cells within the specified cell
population, ii) it had an FDR-adjusted P-value < 0.05, iii) it had a gene expression in the specified
cell population that was at least two fold higher than the average expression in all cells not in that
population, and iv) it was expressed in a fraction of cells within the specified cell population that
was at least three times higher than the fraction of cells not in this population that expression the
gene. Finally, the marker genes for each cell population were sorted by fold change in expression
relative to the cell outside the cell population, and the top 15 marker genes for each cell population
were then saved and used for marker selection. To select the final set of markers, we greedily
added marker genes to the list such that each cell type or cluster had at least two marker genes

included in the final gene panel.
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In addition to these markers, known cortical layer markers (Zhang et al., 2021), genes
related to microglial (Bohlen et al., 2019; Chen et al., 2020b; Keren-Shaul et al., 2017) and
astrocyte (Clarke et al., 2018; Liddelow et al., 2017) activation, broad transcriptomic markers of
aging (Benayoun et al., 2019), and markers for various immune cell types (T cells, B cells,
macrophages) (Dong, 2021; Meizlish et al., 2021; Salvador et al., 2021) were curated from the
literature and included. In total, 212 genes were included in the cell-type-marker gene panel and

204 genes were included in the aging gene panel.

Design and construction of MERFISH encoding probes

After the aging and cell-type-marker MERFISH gene panels were selected, a 20-bit code was
created for the gene panels. Briefly, a 20-bit Hamming-weight 4 code was generated by first listing
all possible combinations of 4 “on” bits embedded within 20 bits. This list was shuffled, and the
first bit combination was randomly selected as the initial barcode. Additional barcodes were then
added from this list by iterating through the other randomly shuffled barcodes and greedily adding
to the codebook each additional barcode that had a Hamming Distance of at least 4 from all
barcodes currently in the codebook. A collection of 500 such randomly sampled codes was
generated, and each was scored on the total number of barcodes and the variance of number of
barcodes utilizing each bit. A 20-bit, Hamming Distance 4 and Hamming-weight 4 code with the
lowest variance that included at least 200 codewords was then used for both libraries, resulting
in a 223-codeword final codebook.

Next, individual genes were assigned to barcodes in the codebooks. This assignment was
initially random, then optimized to increase the average expected uniformity of the density of
molecules per cell that were detected in each bit. This optimization was performed iteratively,
using a simulated annealing algorithm to maximize the uniformity of expression across bits on

average across all cell types.
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First, we estimated the expected total number of molecules per cell for each bit as the sum
of the expression (determined by snRNA-seq) of genes with barcode reading “1” at that bit. This
was computed for each cell type, and the weighted average across cell types was computed
weighted by the cell abundance in individual cell types. Individual gene assignments to barcodes
were then swapped, and the average expression per cell per bit was recomputed. Assignment
swaps that decreased the variance across bits were kept. This process was repeated until the
algorithm converged when the variance stopped decreasing.

For each gene, we then designed a total of 92 encoding probes targeting that gene’s
mRNA sequence. The encoding probes were designed as previously described (Moffitt et al.,
2016a). Briefly, we selected regions with GC content between 30% and 70%, melting temperature
Tm within 60-80 °C, isoform specificity index between 0.75 and 1, gene specificity index between
0.75 and 1, and no homology longer than 15 nt to rRNAs or tRNAs. For each library, each of the
20 bits was assigned to a 20-nt three-letter (A, T, C) readout sequence. Each encoding probe
was constructed by concatenating the 30-nt target region with three 20-nt readout sequences for
each probe. The readout sequences for each gene were randomly shuffled across all 92 encoding
probes for that gene. The encoding probes additionally contained a 20-nt reverse transcription
primer sequence at the 5’ end and a T7 promoter at the 3’ end, which also functioned as PCR

primer sequences.

MERFISH encoding probe library and readout probe preparation

The encoding probe library was synthesized using large-scale arrayed oligo synthesis (Twist
Biosciences) and then amplified, as previously described (Moffitt et al., 2016a). Briefly, the initial
library was amplified using limited cycle PCR (Phusion Polymerase, NEB) monitored via qPCR.
The library was then converted to RNA via in vitro T7 transcription (HiScribe T7 Quick High Yield
Kit, New England Biolabs) from a T7 promoter integrated into the PCR product. The resulting

RNA product was purified (RNA Clean and Concentrate, Zymo Research) and reverse transcribed
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(Maxima H- Reverse Transcriptase, ThermoFisher). The RNA in the resulting RNA:DNA hybrid
was degraded using alkaline hydrolysis, and the final ssDNA product was first desalted via buffer
exchange through a 7K MWCO desalting column (ThermoFisher) then concentrated using a
phenol:chloroform extraction and ethanol precipitation, resulting in a 5-10 nM/probe final library.
For the 416-gene panel used in this study, 40 readout probes were used, each
complementary to one of the 40 readout sequences on the encoding probes. For readout, the first
twenty readout probes correspond to the 20 bits of the code used for the cell-type-marker gene
panel and the remaining twenty readout probes correspond to the 20 bits of the code used for the
aging-related gene panel. Each readout probe was conjugated to one of the two dye molecule
(Alexa Fluor 750 or Cy5) via a disulfide linkage, as previously described (Moffitt et al., 2016a).
The readout probes were obtained from Integrated DNA Technologies and resuspended
immediately in Tris-EDTA (TE) buffer, pH 8 (Thermo Fisher), to a concentration of 100 yM, and

stored at —20 °C until use.

Tissue sample preparation for MERFISH

Brains were prepared as described for snRNA-seq, with the addition of mice at the age of 24-
week postnatal without LPS treatment, and mice at the ages of 4-week, 24-week, and 90-week
postnatal following LPS injection. Sectioning was performed on a cryostat at —18°C. slices were
removed and discarded until the frontal cortex and striatal target region was reached. In order to
capture comparable sections across animals, starting from approximately A/P +2 mm relative to
bregma, every other 10 um section was captured onto a set of 6-8 lysine-coat silanized coverslips
for MERFISH imaging, with each coverslip ultimately containing 3 to 4 individual sections. The
coverslips were cleaned, silanized, and treated with poly-lysine as previously described (Zhang
et al., 2021). The same anatomical region was identified for imaging post hoc after sample

preparation, before the start of MERFISH imaging.
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Tissue sections were fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for
20 minutes, washed three times in 1x D-PBS, and then stored in 70% EtOH (Koptec) at 4°C for
at least 18 hours to permeabilize the tissue. Tissue slices from the same mouse were cut at the
same time and distributed onto 6-8 coverslips; multiple mice were sectioned at the same time.
Coverslips were stored in 70% EtOH for less than two weeks until each biological replicate was
successfully imaged once.

The tissue sections were stained with MERFISH encoding probes as previously described
(Moffitt et al., 2016b). Briefly, the samples were removed from 70% EtOH and washed with
2x saline sodium citrate (SSC) three times. We then removed excess 2x SSC by blotting with a
Kimwipe and inverted the coverslip onto a 50 pl droplet of encoding probe mixture in a Parafilm-
coated Petri dish. The encoding probe mixture contained approximately 1 nM of each encoding
probe, 1 uM of polyA-anchor probe (Integrated DNA Technologies) in 2x SSC with 30% v/v
formamide, 0.1% wt/v yeast tRNA (ThermoFisher), 10% v/v dextran sulfate (Sigma), and 1% v/v
murine RNase inhibitor (New England Biolabs). The polyA-anchor probe containing a mixture of
DNA and LNA nucleotides
(/5Acryd/ TTGAGTGGATGGAGTGTAATT+TT+TT+TT+TT+TT+TT+TT+TT+TT+T, where T+ is
locked nucleic acid, and /5Acryd!/ is 5" acrydite modification) was hybridized to the polyA sequence
on the polyadenylated mRNAs, allowing these RNAs to be anchored to a polyacrylamide gel as
described below. The sample was then incubated for 36-48 hours at 37°C.

After hybridization, the samples were washed in 2x SSC with 30% v/v formamide for 30
min at 47 °C for a total of two times to remove excess encoding probes and polyA-anchor probes.
Tissue samples were cleared to remove lipids and proteins that contribute fluorescence
background, as previously described (Moffitt et al., 2016b) Briefly, the samples were embedded
in a thin 4% polyacrylamide gel and were then treated with a digestion buffer of 2% v/v sodium
dodecyl sulfate (Thermo Fisher), 0.5% v/v Triton X-100 (Sigma) and 1% v/v proteinase K (New

England Biolabs) in 2x SSC for 36 — 48 hours at 37 °C. After digestion, the coverslips were
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washed in 2x SSC for 30 min for a total of four washes and then stored at 4 °C in storage buffer

of 2x SSC, 1% v/v murine RNase inhibitor (New England Biolabs) before imaging.

MERFISH imaging

We used a custom-built imaging setup in this study as previously described (Xia et al., 2019). All
buffers and readout-probe mixtures were flowed onto the sample using a home-built, automatic
fluidics system as previously described (Xia et al., 2019). Briefly, the samples were stained with
1 pg/mL Hoechst 33342 (ThermoFisher) and then loaded into a commercial flow chamber
(Bioptechs) with a 0.75-mm-thick flow gasket. The first MERFISH round, containing both the first
two readout probes labeled with Cy5 and AlexaFluor 750, as well as a probe complementary to
the polyA anchor labeled with AlexaFluor 488, were then stained on the microscope. For each
hybridization round, the fluorescent probes were hybridized in a buffer containing 2x SSC, 10%
v/v ethylene carbonate (Sigma), and 0.1% Triton X-100, and were diluted to a final concentration
of 3 nM. The samples were stained for 15 min, and then washed with readout probe buffer. Finally,
imaging buffer was flowed into the chamber. The imaging buffer consisted of 2x SSC, 10% w/v
glucose (Sigma), 60 mM Tris-HCI pH8.0, ~0.5 mg/ml glucose oxidase (Sigma), 0.05 mg/ml
catalase (Sigma) 50 uM trolox quinone (generated by UV irradiation of Trolox, 0.5 mg/ml 6-
hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, Sigma), and 0.2% v/v murine
RNAase inhibitor (New England Biolabs).

After the readouts for the first round were hybridized, the sample was imaging with a low
magnification objective (CFI Plan Apo Lambda x10, Nikon) with 405-nm illumination to produce
a low-resolution mosaic of the sections in the Hoeschst channel. We used this mosaic to
generate a grid of tiled fields-of-view (FOV) covering the relevant areas of frontal cortex and
striatum. We then switched to a high-magnification, high-numerical aperture objective (CFI Plan
Apo Lambda %60, Nikon), and imaged each FOV with a 7-plane z-stack with 1.5 ym spacing

between the adjacent z-planes to cover the entire 10 um thickness of the tissue section. For
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each FOV, we took images in the 750-nm, 650-nm, 560-nm, 488-nm and 405-nm channels: one
image of the orange fiducial beads (560-nm) at the bottom z-plane, which was used as a fiducial
marker to register the position of each FOV across multiple rounds of hybridization. For each z-
plane, we took images of the readout probes (Alexa Fluor 750 and Cy5, 750-nm and 650-nm
respectively), polyA probes (488-nm), and Hoeschst nuclear DNA stain (405-nm).

After the first round of imaging, the dyes were cleaved from the readout probes by flowing
2.5 mL of cleavage buffer (2x SSC and 50 mM of Tris (2-carboxyethyl) phosphine [GoldBio]) and
incubating for 15 min, which cleaved the disulfide bond linking the dye to the readout
oligonucleotide. The excess TCEP was removed by washing with 1.5 mL of 2x SSC.

For subsequent rounds of imaging, the same steps were carried out using readout-probe
mixture containing 3 nM of the appropriate Alexa Fluor 750- and Cy5-labeled readout probes for
each round.

The two gene panels (cell-type-marker panel and age-related gene panel) were imaged
back-to-back on the same tissue sections, each gene panel was imaged in 10 rounds with two
readout probes per round to readout the 20 bits. Each experiment took approximately 24-36 hours

to image the relevant fields of view from 2 — 4 coronal slices.

MERFISH data processing

Imaging data were uploaded to the Harvard FAS Research Computing cluster and
decoded using our previously published MERIin pipeline (Xia et al., 2019) with modifications on
cell segmentation as described below. This pipeline provides the gene identity and spatial
coordinates of each decoded molecules. For cell segmentation, we used the ‘cyto2’ model
CellPose (Stringer et al., 2021), a deep learning based cell segmentation algorithm. This was
applied only to Hoeschst-stained nuclei in order to avoid incorrect segmentation of neighboring
cells. Decoding molecules were then assigned to the segmented nuclei to produce a cell-by-gene

matrix that list the number of molecules decoded for each gene in each cell.
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The cell-type-marker gene panel and aging-related gene panel were decoded separately.
The segmented nuclei determined in these two decoding runs were then aligned by identifying
the mutual nearest neighbor nuclei that were within 5 um of each other. The very small number
of nuclei that did not have a mutual nearest neighbor within this distance cutoff were removed
from the dataset, as potentially incorrectly segmented cells, and the remaining nuclei were each
assigned a vector of gene expression counts that included decoding results from both decoding
runs. During data analysis, we observed that the readout of bit #20 of the aging-related gene
panel was consistently dim in the majority of experiments, suggesting that genes detected in this
bit may have a reduced detection efficiency. We thus excluded from all subsequent analysis the
40 genes that should be detected in this bit (i.e. genes whose barcodes read “1” at this bit),
although the major conclusions in this paper were not altered if we included these genes in the
subsequent analysis.

After decoding, cells from all MERFISH experiments were combined into a single dataset.
Putative doublets were removed using Scrublet. Cells were then filtered to remove all cells with <
20 molecule counts per cell or with < 5 genes detected per cell. Cells that had a volume < 100
um?® or a volume > 3 times the median volume across all cells were removed. Each cell’s gene
expression values were normalized by dividing by the volume of that cell. The total normalized
gene expression was computed for each cell, and cells with total normalized expression in the
top and bottom 2% quantile were removed. Finally, these normalized values were scaled such
that the sum of gene expression values per cell was equal to 250. The gene expression values

were then log-transformed and Z-scored.

Integrated clustering analysis of the MERFISH and snRNA-seq data
The MERFISH expression matrix was concatenated with the normalized, log-transformed, and Z-
score snRNA-seq expression matrix, which was subseted to include only the genes in the

MERFISH gene panels. These data were then subjected to a two-step data integration and batch

52


https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.508048; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

correction process, to first correct for modality-specific bias then for batch-specific bias using
Harmony (Korsunsky et al., 2019) and BBKNN (Polanski et al., 2020) respectively. First, Principal
component analysis was performed on the join data matrix. Harmony was then used to adjust the
principal components for modality-specific (MERFISH or snRNA-seq) effects, producing an
integrated representation in the principal component space. Second, these integrated principal
components were then used by BBKNN to compute a batch-corrected nearest neighbor graph,
where each batch was an experimental run of MERFISH or snRNA-seq. This batch corrected
nearest neighbor graph was subsequently used to further reduce the dimensionality of the dataset
via UMAP or to compute integrated clusters via Leiden clustering.

To arrive at the final set of clusters, a semi-automated multi-level clustering approach was
performed. Similar to the clustering approach used for snRNA-seq alone, cells were first clustered
into neurons and non-neuronal cells. The neurons were then subclustered into excitatory and
inhibitory neurons, and the inhibitory neurons were subclustered into MSNs and non-MSNs. The
non-neuronal cells were clustered into oligodendrocytes, OPCs, astrocytes, microglia, vascular
cells, and immune cells. These major cell types were then subclustered to arrive at the final list of
clusters. Briefly, for each major cell type, the Harmony-corrected principal components were used
via BBKNN to compute a batch-corrected nearest neighbor graph. This nearest neighbor graph
was then used to perform Leiden clustering and to compute a UMAP plot for each major cell type.
For each major cell type, differential gene expression was computed between each pair of
subclusters using a t-test and the spatial locations of each cluster were plotted for manual
inspection. The few clusters that appeared over-segmented based on heuristic criteria (no unique
differentially expressed genes between the two clusters, largely overlap in UMAP space between
the two clusters, a cluster with a very small cell number intermingled with a cluster with larger cell
number in UMAP space) were then manually merged. The final set of clusters were annotated
based on comparison of their key marker genes and/or spatial locations with previously annotated

datasets (Chen et al., 2021; Tasic et al., 2018; Zeisel et al., 2018; Zhang et al., 2021).
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Imputation of Gene Expression

To impute the genome-wide expression profiles of the cells measured by MERFISH, the gene
expression profiles of the snRNA-seq cells most similar to each cell measured with MERFISH
were averaged together. This computation used the PCA embedding produced through Harmony
integration to identify the nearest neighboring snRNA-seq cells for each MERFISH cell, using the
top 30 principal components in the jointly embedded PCA decomposition. The genome-wide
expression profiles of the 10 nearest neighboring snRNA-seq cells for each MERFISH cell was

averaged together to produce the imputed gene expression profile for that MERFISH cell.

LPS Injection Experiment

Female C57BL6/J mice were injected intraperitoneally with 0.5 mg/kg lipopolysaccharide (LPS)
derived from Escherichia coli O111:B4 (Sigma) diluted in PBS at Zeitgeiber Time 9. Animals were
euthanized 24 hours after injection and brains harvested for MERFISH analysis. LPS was titrated

following reconstitution to optimize dosage and ensure consistent potency across experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Brain region segmentation

In order to automatically segment anatomical regions across the many individual sections
included in the MERFISH experiment, we developed a semi-supervised method to cluster cells
based on the cell type composition of their local spatial neighborhood. For each cell, we computed
the abundance of cells from all clusters within a 100 ym radius of this cell, presented in the form
of a vector with Neuster dimensions, where Neuster in the number of clusters. We then combined
these vectors across all cells to form an Ncei X Neuster matrix, where Ncei is the number of cells. We

applied principal components analysis to this matrix to reduce the dimensionality of this matrix,
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and then applied k-means clustering to segment the cells into k = 20 spatial clusters. This
produced an overclustered segmentation of cells in space. We then hierarchically ordered these
spatial clusters and manually merged spatial clusters that were near each other in the cluster
hierarchy and appeared over-segmented when their spatial profiles were plotted, to arrive at a
final set of 8 spatial clusters, which map closely to known anatomical structures, including the pia,
cortical layer 2/3 (L2/3), cortical layer 5 (L5), cortical layer 6 (L6), corpus callosum, striatum,

ventricle, and subcortical olfactory areas.

Gene Module Analysis

Gene modules were identified from scRNA-seq data by first grouping cells from each major cell
type. For each group, variable genes were then selected and a gene-gene correlation matrix was
computed by taking the first 50 singular values from the singular value decomposition of the gene
expression matrix and computing the dot product of it with its transpose. This gene-gene
correlation matrix was then Z-scored and Z-scores less than 0.1 were set to zero to sparsify the
matrix. Each gene in this matrix was then reduced to 2 dimensions using UMAP. Genes were
then clustered into modules in this reduced dimensional space using the DBSCAN clustering
algorithm. To remove modules that were not associated with any genes in a statistically significant
manner, we compared the mean gene-gene correlation per module under this clustering with a
shuffled distribution where the module identities of the genes were randomly permuted 1000 times
to determine the P-value. These P-values were then FDR corrected and any modules with FDR

< 0.1 were removed.

Aging-related analysis
Activation scores were computed from the normalized, log-transformed, Z-scored gene
expression values using the score_genes function in Scanpy, which computes the summed

expression value of a set of genes minus the average expression of randomly selected
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background genes. The genes used for astrocyte activation were: C4b, C3, Serpina3n, Cxcl10,
Gfap, Vim (Clarke et al., 2018; Liddelow et al., 2017; Zamanian et al., 2012). The genes used for
microglial activation were: B2m, Trem2, Ccl2, Apoe, Axl, ltgax, Cd9, C1qa, C1qc, Lyz2, Ctss
(Bohlen et al.,, 2019; Chen et al., 2020b; Keren-Shaul et al., 2017). The genes used for
oligodendrocyte activation were: C4b, 1133, 1118, which were identified based on differential gene
expression of oligodendrocytes over aging.

To compute the activation scores of microglia or astrocytes as a function of distance to another
cell type, the average activation scores of all microglia or astrocytes were computed as a function
of distance from a reference cell type (Oligo, Endo, or VLMC). For each individual astrocyte or
microglial cell, the nearest neighbor of a particular comparison cell type was identified within a
radius of 80 um of that astrocyte or microglia using a kD-tree search implemented in scikit-learn.
The distance from the astrocyte or microglia to that comparison cell type was saved along with
that astrocyte or microglia’s activation score. The average activation score for all microglia or
astrocytes were computed at 1 um stepping from 0 to 80 um, with a sliding 30-um-wide window.

Finally, the mean activation across this range was subtracted.

Cell-cell proximity analysis

To compute the proximity frequency between two sets of cells, i.e. cell type A and cell type B, first
the true cell-cell proximity frequency pwe Was computed as follows: for each cell in cell type A,
the average number of cells of cell type B were counted within a radius of 30 ym. To compute the
null distribution of proximity (the probability that two cell types would be within 30 uym just by
chance, given their local density), the locations of each cell of cell type B were then randomly
jittered independently in both spatial dimensions (x and y) using a uniform distribution over the
interval (—100 um, 100 um), and the number of cells in cell type B within 30 um of each cell in cell
type A was re-computed. This was repeated 1,000 times, to form a background distribution of the

frequency of cell-cell proximity that would be expected to occur due to chance. The enrichment
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of cell-cell proximity between cell type A and cell type B was then computed as the log of the ratio
between the true proximity frequency pwe and the average background frequency Wbackground:
l0g2(Mirue/ Mbackground). A P-value for this fold change was found by computing the Z-score

distribution across the 1,000 randomizations:

Z= (Utrue—u background)/abackground

P =2(1-CDF(|Z]))

The enrichment and P-value were computed for each pair of major cell types, and the resulting

P-values were FDR adjusted across all cell type pairs.

Analysis of MERFISH data obtained from LPS-treated mice

To transfer cell type and cluster labels obtained from cells in the non-LPS-treated mice to cells
from mice treated with LPS, we took a supervised classification approach. First, the +LPS data
were pre-processed as described earlier to remove doublets and obtain normalize, log-
transformed, and Z-scored expression values. The —LPS and +LPS MERFISH data were then
co-embedded in a joint principal component space using Harmony to compute the first 25 principal
components. A multilayer perceptron classifier from scikit-learn was trained on the cell type and
cluster annotations from the —LPS cells, using the first joint principal components as input. The
classifier was then applied to the +LPS cells, to yield a final set of predicted cluster annotations
that were used for subsequent analysis.

To identify genes differentially expression between the +LPS and —LPS conditions, for each gene
in the MERFISH library, a model was fit using ordinary least squares that compared the two
conditions for young (4-week) mice. For each gene i, the average expression was modeled for
cells in a given cell type in the +LPS and —LPS conditions using the following ordinary least

squares model, fit to the normalize, log-transformed, Z-scored MERFISH expression data:
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yi ~ C(LPS) + intercept + ¢

where C(LPS) is a categorical variable with the —LPS value set to be the reference level (i.e. C(—
LPS) = 0) and the C(+LPS) value determined from the model. This was then compared with a null
model lacking the C(LPS) categorical variable, i.e. y; ~ intercept + €, to determine the gene’s FDR-
adjusted P-value. Likewise, we performed similar analysis to determine genes differentially
expression between the 4-week-old and 90-week-old mice without LPS treatment from the
MERFISH data. To identify whether a gene was upregulated by LPS-only, aging-only, or by both
LPS and aging, the C(+LPS) or C(90-week) values for each gene for each cell type were
computed. These values were then Z-scored across genes, and genes with a Z-score > 2 and
FDR-adjusted P-value < 0.05 in a particular condition was determined as being significant for that

condition.
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Figure S1: Clustering of cell types measured by snRNA-seq.

(A) Flow chart for multi-step cell clustering analysis. First, cells were divided into neurons and
non-neuronal cells. Neurons were then divided into excitatory and non-excitatory neurons, and
the latter were then divided into medium spiny neurons (MSN) and other inhibitory neurons. Each
of these maijor types were further divided into finer clusters. Non-neuronal cells were divided into
astrocytes (Astro), microglia (Micro), macrophages (Macro), oligodendrocytes (Oligo), pericytes
(Peri), and vascular leptomeningeal cells (VLMC), which were further divided into finer clusters.

(B) UMAP visualization of cells colored by cell types (left) or ages (right).
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(C, D) UMAP plots of neuronal clusters (C) and non-neuronal clusters (D).

(E, F) Heatmap of top differentially-expressed marker genes across different neuronal clusters
(E) and non-neuronal clusters (F). Marker genes were determined using a t-test, with FDR-
adjusted P-value < 0.05 and a fold change > 1.5. Expression values are normalized to the

maximum value within each row.
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Figure S2: Correlation of MERFISH measurement with bulk RNA-seq, between MERFISH
replicates, and with snRNA-seq.
(A) Correlation of average expression values of individual genes included in the cell-type marker

gene panel and aging-related gene panel measured by MERFISH with FPKM values of the same
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genes measured by bulk RNA-seq for motor cortex (left) and striatum (right). Pearson correlation
coefficients R are given in the plots.

(B) Correlation of average expression values of individual genes between two biological replicates
measured by MERFISH. Pearson correlation coefficient R is given in the plot.

(C) Correlation of average expression values of individual genes between all replicates from
young mice and all replicates from old mice measured by MERFISH. Pearson correlation
coefficient R is given in the plot.

(D) Correspondence between MERFISH clusters, determined from an integrated snRNA-seq and
MERFISH clustering analysis shown in Figure 1, and snRNA-seq clusters, determined from a
separate clustering analysis of the snRNA-seq data alone shown in Figure S1.

(E) Correspondence between MERFISH and snRNA-seq clusters, both determined from the
integrated MERFISH and snRNA-seq clustering analysis. In (D) and (E), a multilayer perceptron
neural network classifier was used to predict a MERFISH cluster identity for each cell measured
in the snRNA-seq dataset. The fraction of cells from any given snRNA-seq cluster (columns) that

was predicted to have each MERFISH cluster label (rows) was plotted.
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Figure S3: Comparison of imputed genes with MERFISH-measured genes and with Allen
Brain Institute in situ hybridization data.

(A) Spatial plot of expression of marker genes for different excitatory, inhibitory, and medium
spiny neurons, and non-neuronal cell types in measured MERFISH data, imputed gene
expression, and corresponding Allen Institute for Brain Science (AIBS) in situ hybridization (ISH)
data.

(B) Spatial plots of imputed genes that were not measured in the MERFISH gene panel and
corresponding AIBS ISH data. Genes in (B) were randomly selected from imputed genes with

clear spatial patterns. The AIBS ISH data in (A) and (B) are taken from https://mouse.brain-

map.org/ (credit: Allen Institute),
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Figure S4: Cell-cell proximity between different cell types.

(Left) Enrichment of cell-cell proximity between different cell-types. Enrichment in proximity
between any give pair of cell types, A and B, was computed as the Log. (Fold change) in the
frequency of A-B cell pairs within a 30 um radius, relative to the average A-B cell-pair frequency
in a background distribution where each cell was randomly shifted by up to 100 um to disrupt the
original spatial relationship between neighboring cells. Plot shows only cell-type pairs with an
FDR-adjusted P-value < 0.05. (Right) Difference in enrichment of cell-cell proximity between

young and old animals.
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Figure S5: Gene modules analysis for astrocytes, microglia, and oligodendrocytes.

(A, B, C) Top: Gene-gene correlation matrix for variable genes in astrocytes (A), microglia (B),

and oligodendrocytes (C). Z-scored Pearson correlation coefficient for the expression levels of

pairs of genes are shown and ordered by hierarchical clustering to show groups of genes with
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correlated expression, which we termed gene modules. Middle: Top Gene Ontology (GO) or
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms enriched in modules (up to three
terms from the top five terms are shown per module). Only modules with any enriched terms are
shown. Development-related terms are colored green and immune-related terms are colored red.
Bottom: Expression levels for each module (calculated as the mean expression of the genes
included in the module) in young and old mice, sorted by average difference between young and
old. Box plots show the distribution of each module’s expression across individual cells within a
cell type grouped by age. Box shows median and interquartile range, whiskers show minimum
and maximum, outliers are shown as fliers. * FDR-adjusted P-value < 0.05, from independent t-

test of module expression levels across cells between young and old mice.
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Figure S6: Molecular heterogeneity of activated astrocytes in pia and corpus callosum.
(A) Left: UMAP plot of astrocytes colored by the age of cells. Middle: UMAP plot of astrocytes
colored by the activation score of cells. Right: UMAP plot of astrocytes colored by the spatial
location of activated cells (black: activated astrocytes in corpus callosum [CC]; Yellow: activated
astrocytes in pia: Grey: all other astrocytes).

(B, C) Relative expression levels of differentially expressed genes between activated astrocytes
in pia vs corpus callosum, showing genes that are upregulated in pia relative to corpus callosum
(B) and upregulated in corpus callosum vs pia (C). Activated cells were defined as having

activation score greater than 1 standard deviation above the mean.
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Figure S7: Comparison of cell-type compositions between —LPS and +LPS treatment
conditions, and changes in gene expression during aging and in response to LPS
treatment.

(A) (Left) Visualization of clusters in an integrated UMAP space for cells measured in the —LPS
condition and cells measured in the +LPS condition. Cells are colored by their cluster identities.

(Right) Overlay of cells colored by —LPS or +LPS condition.
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(B) Pie chart of major neuronal cell-type composition across the three different ages, for —-LPS
and +LPS conditions.

(C) Pie chart of major non-neuronal cell-type composition across three different ages, for -LPS
and +LPS conditions.

(D) Quantification of changes in expression of individual genes for each cell type designated on
the left, where alternating rows show the change in Z-scored log(gene expression) for LPS-related
changes (comparing +LPS vs. —LPS, young mice) and aging-related changes (comparing young
vs old mice, —LPS). Black circles mark genes that are upregulated in both conditions, magenta
circles mark genes upregulated in response to LPS treatment only, and green circles mark genes
upregulated in aging only. Only genes with change in Z-scored log(gene expression) > 2 and

FDR-adjusted P-value < 0.05 in at least one condition for at least on cell type are shown.
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Figure S8: Spatial organization of cells after LPS treatment.

70


https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.508048; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(A) Visualization of spatial organization of different neuronal and non-neuronal cell types across
three different ages in +LPS condition, as in Figure 3A.

(B) Quantification of fraction of cells in different anatomical regions in +LPS condition across three
different ages, as in Figure 3B.

(C) (Left) Enrichment of cell-cell proximity between different cell types for —LPS condition and
+LPS condition in young animals. Enrichment is defined as in Figure S4. (Right) Difference in

enrichment of cell-cell proximity between —LPS and +LPS condition in young animals.
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Supplementary Table Captions

Table S1: MERFISH codebooks for the cell-type marker gene and aging-related gene panels.
The "Celltype Codebook" sheet contains the codebook for genes that are cell-type markers and
the "Aging Codebook" sheet contains the codebook for aging-related genes. The first column
lists the gene names. The following columns list the binary values for each of the 20 bits and
each bit is indicated by name of the corresponding readout sequence. Barcodes used as blank

controls are denoted by a gene name that begins with “Blank-".

Table S2: MERFISH encoding probes for the cell-type marker gene and aging-related gene

panels. The "Celltype Encoding Probes" sheet contains encoding probes for genes related to
cell type identity and the "Aging Encoding Probes" sheet contains encoding probes for aging-
related genes. The targeted gene name and encoding probe sequence are provided for each

encoding probe.

Table S3: MERFISH readout probes. For each readout probe, the bit number, readout probe

sequence name, and readout probe sequence are provided.
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