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Summary  

The cellular diversity and complex organization of the brain have hindered systematic 

characterization of age-related changes in its cellular and molecular architecture, limiting our 

ability to understand the mechanisms underlying its functional decline during aging. Here we 

generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using 

spatially resolved single-cell transcriptomics and quantified the changes in gene expression and 

spatial organization of major cell types in these brain regions over the lifespan of mice. We 

observed substantially more pronounced changes in the composition, gene expression and 

spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial 

signatures of glial and immune cell activation during aging, particularly enriched in subcortical 

white matter, and identified both similarities and notable differences in cell activation patterns 

induced by aging and systemic inflammatory challenge. These results provide critical insights into 

age-related decline and inflammation in the brain.  
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INTRODUCTION 

The mammalian brain exhibits remarkable stability over periods ranging from years to 

decades (Yankner et al., 2008). Due to the brain’s limited regenerative abilities, neurons must 

faithfully perform their function for the entire lifetime of an animal. However, as the animals age, 

this longevity of neurons makes the brain sensitive to the accumulation of damage over time  

(Yankner et al., 2008). This neuronal damage, in combination with age-dependent changes in 

non-neuronal cells that support neural circuit function, is thought to cause the decline of brain 

function, increased sensitivity to damage, and drastic increase in the prevalence of 

neurodegenerative disorders (Bishop et al., 2010; Lindenberger, 2014; Yankner et al., 2008). 

Decades of research have provided rich insights into the molecular and cellular factors associated 

with brain aging, suggesting a complex process that so far escapes full understanding.  

One prominent hypothesis suggests that changes in neuronal and synaptic functions 

associated with age and neurodegeneration are the result of disruptions to the brain’s homeostatic 

environment (Labzin et al., 2018; Mosher and Wyss-Coray, 2014; Richard M. Ransohoff, 2016). 

Neurons are supported by a host of non-neuronal cells, including glial cells such as astrocytes 

and oligodendrocytes, immune cells such as microglia, and various vascular cells, each 

maintaining different aspects of the tissue homeostasis (Meizlish et al., 2021) to ensure proper 

brain function. For example, oligodendrocytes myelinate axons and provide metabolic support to 

neurons; astrocytes provide trophic and ionic support to neurons and modulate synaptic function; 

and microglia provide immune surveillance, synaptic pruning, as well as debris removal by 

phagocytosis (Alves De Lima et al., 2020; Andreone et al., 2015; Croese et al., 2021; Ben Haim 

and Rowitch, 2016; Hammond et al., 2018; Li and Barres, 2018; Monje, 2018; Sofroniew, 2020). 

Brain injury, infection, and neurodegeneration have been shown to trigger inflammatory activation 

of these resident non-neuronal cell types and recruit peripheral immune cells, resulting in both 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.14.508048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/


 3 

protective and deleterious effects for neighboring neurons (Bohlen et al., 2019; Croese et al., 

2021; Hammond et al., 2018; Labzin et al., 2018; Sofroniew, 2020).  

Recent transcriptomic studies of normal brain aging (Almanzar et al., 2020; Benayoun et 

al., 2019; Schaum et al., 2020; Ximerakis et al., 2019) and neurodegenerative disease (Chen et 

al., 2020b; Grubman et al., 2019; Lau et al., 2020; Mathys et al., 2019), as well as studies focusing 

on specific non-neuronal cell types such as astrocytes (Boisvert et al., 2018; Clarke et al., 2018; 

Habib et al., 2020), microglia (Hammond et al., 2019; Olah et al., 2018), and endothelial cells 

(Chen et al., 2020a), have further highlighted a role for inflammatory activation and the disruption 

of non-neuronal cell states in aging-related decline. In particular, reactive states that are typically 

triggered in both microglia and astrocytes during infection or injury and that disrupt the normal 

homeostatic functions of these cell types, emerge naturally over the course of normal aging, even 

in the absence of overt neurodegenerative diseases.   

While these studies suggest broad age-related disruptions to brain homeostasis that 

manifest in a variety of cell types, they also raise many questions. For example, how do the 

composition, molecular signatures, and spatial organization of different cell types and states in 

the brain change over aging and how do these changes relate to age-induced inflammatory 

activation? How are activated cells spatially distributed and does this activation depend on 

particular environmental factors and specific cell-cell communications? How does age-induced 

inflammation relate to systemic inflammation? Answering these questions is challenging as the 

brain’s enormous cellular and molecular complexity has so far prevented a comprehensive 

understanding of the changes in brain architecture over an animal’s lifetime. 

Here, we performed a systematic characterization of the changes in molecular signatures 

and spatial organizations of cells during brain aging by using an experimental approach that 

combines single-nucleus RNA sequencing (snRNA-seq) (Habib et al., 2017) with a single-cell 
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transcriptome imaging method, multiplexed error-robust fluorescent in situ hybridization 

(MERFISH) (Chen et al., 2015). This approach allowed us to profile gene expression and identify 

cell types in the mouse frontal cortex and stratum, thus generating a spatially resolved cell atlas 

of these regions at various ages during the lifespan of mice. This high-resolution cell atlas 

revealed age-related changes in both neurons and non-neuronal cells and uncovered molecular 

and spatial signatures of glial and immune cell activation during aging. Comparison of these 

changes with those induced by lipopolysaccharide (LPS) further revealed previously unknown 

differences in non-neuronal cell activation induced by aging and by systemic inflammatory 

challenge. 

 

RESULTS 

Spatially resolved single-cell transcriptomic profiling of the aging brain 

We started with snRNA-seq measurements to probe the transcriptomic profiles of 

individual cells from the frontal cortex and striatum of mice at two different ages, 4-week and 90-

week postnatal (Figure 1A and 1B). These brain regions have been previously shown to be 

susceptible to various age-related neurodegenerative diseases in humans (O’Callaghan et al., 

2014; Seelaar et al., 2011). We sequenced ~50,000 nuclei from these regions from two female 

animals at each age and performed unsupervised clustering analysis of the ~80,000 cells that 

passed quality control (Figure S1).  

We then selected two sets of genes for spatially resolved single-cell transcriptomic 

measurements by MERFISH based on the snRNA-seq results (Figure 1A): i) cell type markers 

that were differentially expressed between cell clusters determined by snRNA-seq; ii) aging-

related genes that were differentially expressed between the two ages in individual cell clusters. 
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In addition, we selected previously known cell-type marker genes that define major neuronal, glial, 

and immune cell types and genes previously reported to be highly upregulated in various cell 

types during aging. Together, these resulted in a total of 212 cell-type markers and 204 aging-

related genes, which we imaged in the same tissue sections through two back-to-back MERFISH 

runs, each with a 20-bit barcoding scheme (STAR Methods and Table S1).   

We performed MERFISH imaging of these 416 genes in the frontal cortex and striatum 

across three different ages, 4-week (young), 24-week (middle-age), and 90-week (old) postnatal, 

including 3 – 5 female animals at each age, measuring a total of ~400,000 cells after quality 

control (Figure 1B). The expression levels of individual genes measured by MERFISH showed 

good correlation with results from bulk RNA sequencing and were highly reproducible between 

biological replicates (Figure S2A-C).  We then co-embedded the MERFISH and snRNA-seq data 

and performed an integrated clustering analysis across these two data modalities (Figure 1C and 

1D), which showed good correspondence with the clustering results from the snRNA-seq alone 

(Figure S2D). The integrated analysis resulted in a total of 43 neuronal and non-neuronal cell 

types (Figure 1E). Compared to our previous MERFISH results in the mouse cortex (Zhang et 

al., 2021) and striatum (Chen et al., 2021), cell clusters were dissected here at a lower granularity 

to capture age-related changes of major cell types. The neuronal clusters included layer-specific 

excitatory neuronal cell types (ExN) in the cortex (ExN-L2/3-IT, ExN-L5-IT, ExN-L5-ET, ExN-L5/6-

NP, ExN-L6-IT, and ExN-L6-CT), inhibitory neuronal cell types (InN) in the cortex marked by 

canonical inhibitory neuronal markers (Sst, Pvalb, Lamp5, and Vip), excitatory and inhibitory 

neurons in the subcortical olfactory areas (ExN-Olf and InN-Olf), and Drd1+ (D1) or Drd2+ (D2) 

medium spiny neurons (MSN) and Lhx6+ or Chat+ interneurons in the striatum, as well as spatially 

dispersed Calb2+ interneurons. The non-neuronal clusters include oligodendrocytes (Oligo), 

oligodendrocyte precursor cells (OPC), astrocytes (Astro), ependymal cells (Epen), pericytes 

(Peri), vascular leptomeningeal cells (VLMC), endothelial cells (Endo), and microglia (Micro), 
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macrophages (Macro), and T cells. snRNA-seq and MERFISH data co-embedded well with each 

other and the vast majority of cell clusters were well represented in both datasets with high 

correspondence in gene expression between the clusters from each dataset (Figure 1C and 1E; 

Figure S2E). However, we noted that some vascular cell types (pericytes and endothelial cells) 

were poorly sampled by snRNA-seq (Figure 1E).  

In addition to leveraging both snRNA-seq and MERFISH data for cell type identification, 

this integration also allowed us to impute genome-wide expression profiles for individual cells 

measured by MERFISH using the transcriptomic profiles of neighboring snRNA-seq cells in the 

gene-expression space (STAR Methods). As a validation for the imputation results, the spatial 

distributions of the genes determined from the imputation results showed good agreement with 

both the results directly measured by MERFISH (for genes included in the MERFISH gene panel) 

and the results from Allen brain in situ hybridization atlas (for genes not included in the MERFISH 

gene panel) (Figure S3).          

Age-related changes in cell state and composition  

We next analyzed how the cellular composition of these brain regions changed over aging 

based on the in situ MERFISH data. The neuronal clusters did not exhibit significant changes in 

abundance across the three ages (Figure 2A). By contrast, several non-neuronal cell types 

exhibited substantial age-dependent changes in the overall abundance of the cell type and/or the 

relative proportions of cells among different subtypes or states within the cell type (Figure 1E; 

Figure 2A and 2B). In particular, the abundance of oligodendrocytes increased and that of the 

OPCs decreased substantially as the animal aged (Figure 2A). Of the three subtypes or states 

of oligodendrocytes, Oligo-1 was predominant in young animals and diminished to nearly non-

existent in middle-aged and old animals, Oligo-2 was predominant in middle-aged animals and 

decreased in abundance in old animals, while a third cluster Oligo-3 emerged in old animals 
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(Figure 2B). The aging-related cluster Oligo-3 exhibited substantially upregulated expression of 

C4b (Figure 2C), a complement protein of the innate immunity system, and interleukin 33 (Il33) 

(Figure 2C), a cytokine involved in inflammatory and innate immune response (Molofsky et al., 

2015) and previously shown to be upregulated in oligodendrocytes in the aging brain (Ximerakis 

et al., 2019). These results suggest an initial maturation and proliferation of oligodendrocytes, 

likely a result of late-stage development, followed by inflammatory activation of matured 

oligodendrocytes with aging. Microglia, endothelial cells, and astrocytes did not exhibit substantial 

overall abundance change but showed age-dependent shift in population among subtypes or 

states. For example, Micro-1 and Endo-1 were enriched in young animals; Micro-3 and Endo-3 

were enriched old animals; Astro-2 showed increased abundance in old animals (Figure 2B). 

These aging-related cell subtypes or states exhibit upregulation of genes (e.g., B2m and Trem2 

in Micro-3, Xdh in Endo-3, and Gfap and C4b in Astro-2) (Figure 2C), some of which have been 

previously shown to be enriched in microglia, endothelial cells, and astrocytes activated by 

inflammation and/or aging (Boisvert et al., 2018; Chen et al., 2020a; Clarke et al., 2018; Hammond 

et al., 2019; Liddelow et al., 2017; Ximerakis et al., 2019). Consistent with previously observed T 

cell infiltration into the aging brain (Dulken et al., 2019), we also observed a substantial increase 

in the abundance of T cells in old animals (Figure 2A), although the change did not reach 

statistical significance due to the small total number of cells detected for this rare cell type.   

Age-related changes in the spatial organization of individual cell types          

 The in situ cell-type identification by MERFISH further allowed us to map the spatial 

organization of individual cell types across different ages. To visualize the overall spatial 

organization of cells, we performed hierarchical clustering of cells based on the cell composition 

in their spatial neighborhood (STAR Methods) and the resulting spatial clusters naturally 

segmented the imaged brain regions into several subregions that corresponded to known 

anatomical features, including the pia, different cortical layers, corpus callosum, striatum, 
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ventricle, and subcortical olfactory regions (Figure 3A). As expected, different excitatory clusters 

adopted laminar distributions in the cortex and medium spiny neurons were localized to the 

striatum (Figure 3A and 3B); oligodendrocytes were enriched in the corpus callosum, vascular 

leptomeningeal cells and a specific pericyte cluster (Peri-2) were enriched in the pia, and 

ependymal cells were localized around the ventricle, whereas OPCs, astrocytes, microglia and 

endothelial cells were distributed largely uniformly throughout the imaged regions (Figure 3A and 

3B).  

Interestingly, although the overall spatial organization of neuronal cell types appeared 

similar across different ages (Figure 3A and 3B), some non-neuronal cell clusters showed 

changes in anatomical enrichment with age. For example, the oligodendrocyte cluster that 

emerged in old animals (Oligo-3) was located nearly exclusively in the corpus callosum, whereas 

cells from the Oligo-1 and Oligo-2 clusters, albeit being enriched in the corpus callosum, could be 

found throughout the imaged regions (Figure 3C). Likewise, astrocytes belonging to the aging-

related Astro-2 cluster were localized to the corpus callosum, whereas cells from Astro-1 adopted 

a complementary distribution that became depleted in corpus callosum in adult and aged animals 

(Figure 3D).  Not all cell types that exhibited age-dependent shift in subtypes or states showed 

spatial heterogeneity – different microglial and endothelial clusters were more-or-less evenly 

distributed throughout all anatomical regions (Figure 3E and 3F). 

 In addition, we observed that certain non-neuronal cell types exhibited a tendency to be 

spatially colocalized, which further increased with age. Specifically, vascular cells (endothelial 

cells, pericytes and vascular leptomeningeal cells) showed a significant tendency to be proximal 

to each other and this tendency increased with age (Figure S4). Moreover, macrophages tended 

to be enriched near vascular cells and this tendency also increased with age (Figure S4). A similar 

trend was also observed for microglia, albeit to a lesser degree (Figure S4).  
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Age-related changes in the gene expression profiles of individual cell types 

Overall, the above results showed that both the composition and the spatial organization 

of cells exhibited aging-induced changes primarily in non-neuronal cell types. Next, we examined 

how gene expression profiles of individual cell types changed with age. To this end, we 

determined the number of genes that were differentially expressed across different ages in 

individual neuronal and non-neuronal cell types based on the gene expression profiles determined 

by snRNA-seq (Figure 4A). While essentially all cell types had at least some genes that were 

differentially expressed over aging, non-neuronal cell types tended to exhibit a greater number of 

age-dependent differentially expressed genes (Figure 4A). The majority of the age-dependent 

genes were differentially expressed in a cell-type-specific manner, with relatively few genes 

broadly differently expressed across all cell types (Figure 4B).  Gene Ontology (GO) and KEGG 

(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that genes 

upregulated with age in neurons, in particular in inhibitory neurons, were enriched in pathways 

associated with neurodegenerative diseases, oxidative response and mitochondria function, 

whereas genes upregulated with age in non-neuronal cell types tended to be associated with 

inflammatory and immune response (Figure 4C), consistent with the previous observations of 

broad upregulation of oxidative stress and immune pathways in the aging brain (Lu et al., 2004; 

Almanzar et al., 2020; Benayoun et al., 2019; Ximerakis et al., 2019). Specifically, these age-

upregulated genes in non-neuronal cells included cytokines (e.g. Il33 and Il18 in 

oligodendrocytes), complement proteins (e.g. C4b in astrocytes and oligodendrocytes), and 

proteins involved in interferon response (e.g. Ifit3 and Ifitm3 in ependymal cells and pericytes) 

(Figure 4B).  

Imputation of the genome-wide expression profiles of the cells measured by MERFISH 

allowed us the determine the spatial distributions of all genes across different ages. Many of the 

age-upregulated genes exhibited specific spatial patterns, such as being highly enriched in the 

corpus callosum, specific cortical layers, striatum or other anatomical regions (see examples in 
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Figure 4D). Using these imputed genome-wide expression profiles, we systematically quantified 

the number of genes differentially expressed over aging for each major cell type in individual 

anatomical regions. We observed substantial spatial heterogeneity in the total number of genes 

upregulated or downregulated with age even among cells of the same type (Figure 4E). In 

particular, oligodendrocytes, astrocytes, and microglia all exhibited the greatest number of 

differentially expressed genes with age in the white matter of the corpus callosum, relative to other 

anatomical regions. Endothelial cells, on the other hand, had more age-upregulated or -

downregulated genes in the striatum and specific cortical layers, with more genes upregulated in 

upper layers.  

To further investigate age-related changes in gene expression in non-neuronal cell types, 

we performed gene-gene correlation analysis to identify groups of genes whose expression 

showed correlated variations with each other and hence likely belong to the same gene regulatory 

networks. Within each cell type, we determined pair-wise Pearson correlation coefficient of gene 

expression across all cells measured at all ages for any pair of genes. Such gene-gene correlation 

matrices for oligodendrocytes, astrocytes, and microglia revealed, for each cell type, many groups 

of genes that showed correlated expression, which we referred to as gene modules (Figure S5). 

Many of these gene modules showed up- or down-regulation in expression with age (Figure S5). 

GO or KEGG term analysis showed that many of these modules were related to development or 

immune response, often capturing cell-type specific functions. For example, microglia module 20 

and oligodendrocyte module 23 were upregulated with age and enriched for terms related to 

inflammatory and immune response, such as “innate immune response”, “response to cytokine”, 

and “cellular response to interferon beta”, whereas oligodendrocyte module 12 was enriched for 

terms related to myelination, such as “axon ensheathment” and “nervous system development” 

(Figure S5). These results suggest the presence of specific gene regulatory networks that 

function in a cell-type-specific and age-dependent manner, whose functional annotation suggests 
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specific biological functions of those cell types (e.g. myelination) or responses to external stimuli 

(e.g. cytokines).  

Age-dependent activation of glial and immune cells 

For microglia and astrocytes, we observed that the genes highly upregulated with age 

overlapped substantially with genes that have been previously reported as being upregulated in 

the activated (or ‘reactive’) state of these cell types (e.g. Gfap and C4b for astrocytes; B2m and 

Lyz2 for microglia) (Clarke et al., 2018; Hammond et al., 2019; Keren-Shaul et al., 2017; Liddelow 

et al., 2017). These activated astrocytes and microglia have been observed in both healthy and 

diseased brains, often responding to brain injury, inflammation, or degeneration, and have been 

shown to have protective or deleterious effects on neighboring neurons depending on the specific 

type and level of activation (Bohlen et al., 2019; Croese et al., 2021; Hammond et al., 2018; Labzin 

et al., 2018; Mhatre et al., 2015; Sofroniew, 2020). Microglial and astrocytic activation has been 

reported in aged rodent and human brains (Boisvert et al., 2018; Clarke et al., 2018; Habib et al., 

2020; Hammond et al., 2019; Olah et al., 2018), but how such activation depends on the spatial 

context remains unclear. 

To quantify the activation of these cell types and determine the spatial distributions of 

activated cells, we scored the activation levels of astrocytes and microglia imaged by MERFISH 

using genes previously shown to be specific for activated cells (STAR Methods). The activation 

scores for both astrocytes and microglia increased on average with age (Figure 5A). The specific 

subtypes or states of astrocytes and microglia enriched in old animals (Astro-2 and Micro-3) had 

higher activation scores than the other subtypes or states (Figure 5B).  

Notably, astrocyte and microglia exhibited distinct spatial signatures in their activation 

patterns. Astrocytes showed pronounced spatial heterogeneity in activation, with the highest level 

of activation in the corpus callosum, as well as relatively strong activation in the striatum and near 
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the ventricle and pia, but minimal activation in the cortex (Figure 5C and 5D). This spatial pattern 

was already apparent in young animals and became more pronounced with aging. Microglia 

activation, on the other hand, was more uniform across different regions, with hardly any spatial 

heterogeneity in young animals (Figure 5C and 5D). As the animal aged, microglia activation 

level increased more-or-less uniformly across different regions, except that the corpus callosum 

showed a notably higher level of activation (Figure 5C and 5D).  

 Because microglia and astrocytes may be directly or indirectly activated by pro-

inflammatory cytokines and chemokines that circulate in the blood (Pluvinage and Wyss-Coray, 

2020) or are released by brain-infiltrating immune cells (Croese et al., 2021), and we observed 

enrichment of macrophages near vascular cells in old animals (Figure S4), we further examined 

whether the activation levels of astrocytes and microglia depended on their distance to vascular 

cells that separate the bloodstream (e.g. endothelial cells) or cerebrospinal fluid (e.g. vascular 

leptomeningeal cells (VLMCs)) from the interior of the brain. In addition, since we observed that 

several genes involved in inflammatory response and innate immune signaling (Il18, Il33, and 

C4b) were upregulated in oligodendrocytes (Figure 4B), we also examined the dependence of 

astrocyte and microglia activation on the distance to oligodendrocytes.  

Again, these dependencies were notably different between astrocytes and microglia. 

Astrocyte activation exhibited a strong dependence on the proximity to VLMCs in both young and 

old animals, and a dependence on the proximity to oligodendrocytes that increased substantially 

with age (Figure 5E). Only the other hand, microglia did not show any preferential activation near 

vascular cells, but aging-induced activation of microglia showed a strong dependence on their 

proximity to oligodendrocytes (Figure 5E). Moreover, we scored the inflammation level of 

oligodendrocytes using the expression levels of Il33, Il18, and C4b, and observed that within the 

corpus callosum, the aging-induced activation levels of astrocytes and microglia were correlated 

with the inflammation level of nearby oligodendrocytes (Figure 5F), suggesting that the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.14.508048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/


 13 

dependence on the proximity to oligodendrocytes was not simply a reflection of stronger activation 

of astrocytes and microglia in the corpus callosum but are likely related to the inflammatory 

response of oligodendrocytes over aging. The activation levels of astrocytes and microglia in the 

corpus callosum were also correlated with each other (Figure 5F). 

The above results suggest multiple different mechanisms of non-neuronal cell activation, 

two of which showed strong spatial dependence: 1) activation of astrocytes near the surface of 

the vascular structures separating the cerebrospinal fluid and the brain, potentially caused by 

factors derived from cerebrospinal fluid; 2) activation of microglia and astrocytes near 

oligodendrocytes in corpus callosum, potentially caused by pro-inflammatory factors expressed 

by oligodendrocytes. Supporting this notion, the molecular signatures of activated astrocytes near 

the pia were different from those in the corpus callosum (Figure S6). Interestingly, only the second 

mechanism was aging specific.  

Activation of glial and immune cells in response to systemic inflammatory challenge  

The activation of astrocytes and microglia with age, reminiscent of brain inflammation, 

raises an interesting question as to how these age-related states compare with those induced by 

systemic inflammation. Peripheral administration of LPS is widely used to model brain 

inflammation associated with neurodegenerative disease (Ribeiro et al., 2019). Although LPS 

itself is thought not to cross the blood-brain barrier, systemic release of cytokines and chemokines 

by peripheral immune cells upon LPS administration can broadly activate microglia and astrocytes 

throughout the brain (Clarke et al., 2018; Qin et al., 2007), as well as induce fever (Elmquist et 

al., 1996).  

We injected mice at the three ages (4-week, 24-week, and 90-week postnatal) with LPS 

(Figure 6A), sacrificed the animals 24 hours after LPS injection, and performed MERFISH 

measurements using our cell type and aging gene panels. ~350,000 cells passed quality control 
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analysis, and we classified these cells by integrating the LPS dataset with the normal brain 

MERFISH dataset described earlier and transferred cell-type annotations without re-clustering 

(Figure 6B; Figure S7A).  

We observed a high degree of similarity between untreated and LPS-treated mice in terms 

of both the composition (Figure S7A-C) and the global spatial organization (Figure S8A and 

S8B) of the cell types. However, compared to untreated animals, young animals treated with LPS 

showed a substantially higher degree of enrichment of macrophages near vascular cells (Figure 

S8C), similar to that observed over the course of normal aging (Figure S4).   

Notably, LPS induced substantial changes in the gene expression in a cell-type-specific 

manner and some of the upregulated genes overlapped with those observed over normal aging. 

To quantify these effects, we fit a regression model for each gene on young untreated and LPS-

treated animals, or on untreated young and old animals, and compared the extent to which 

specific genes were upregulated across the two conditions (Figure 6C; Figure S7D). Here, we 

limited our analyses to the genes in the MERFISH panel and did not impute genome-wide 

expression because we did not perform scRNA-seq measurements on the LPS-treated animals. 

Nonetheless, these analyses provided interesting similarities and differences between aging- and 

LPS-induced changes. Many of the genes involved in innate immune response that were 

observed to be upregulated with age were also upregulated in responses to LPS (Figure 6C; 

Figure S7D). There was, however, substantial quantitative variations in the relative extent of 

upregulation under the two conditions. For example, C4b was highly upregulated over aging and 

further upregulated by LPS treatment, consistent with previous observations in astrocytes using 

bulk RNA-seq (Clarke et al., 2018); Il33 was strongly upregulated with age whereas LPS 

treatment induced only very small additional upregulation of this gene; Rsrp1 was more strongly 

upregulated in response to LPS and only weakly upregulate with age (Figure 6D). There was 

also a subset of immune-response related genes that were only upregulated under one of the two 
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conditions, for example Nfib, Sparc, Mef2c, and Zeb1 in response to LPS, and Cd74 and Mfge8 

over aging (Figure 6C).         

 Because the MERFISH gene panel includes genes that are upregulated in reactive 

astrocytes and microglia in response to inflammation, the MERFISH data also allowed us to 

analyze the activation patterns of these cells under LPS treatment and compare with those 

induced by aging. LPS increased the activation of astrocytes and microglia in young and old 

animals (Figure 6E). Astrocytes were preferentially activated by LPS in or near the pia, corpus 

callosum, striatum, and ventricle but not the cortex, whereas microglia were largely uniformly 

activated by LPS across all regions (Figure 6E and 6F). Moreover, the activation of microglia by 

LPS did not depend on the proximity to oligodendrocytes or VLMCs, whereas the activation of 

astrocytes showed a strong dependence on the proximity to VLMCs and only a weak dependence 

to oligodendrocytes (Figure 6G and 6H). These results suggest interesting commonality and 

differences between age- and LPS-induced activations of non-neuronal cells: while both 

conditions induced spatially heterogeneous activation of astrocytes with particular enrichment 

near the cerebrospinal-fluid–brain barriers and dispersed activation of microglia, aging uniquely 

induced microglia activation, and potentially related increase in astrocyte activation, near 

oligodendrocytes in corpus callosum. 

 

DISCUSSION 

How the brain ages and why these changes lead to functional decline are questions with 

major fundamental and practical significance, as one expects an increase in the prevalence of 

neurodegenerative diseases over the coming decades due to the aging global population. Many 

hypotheses have been proposed for the causes of brain function decline with age, ranging from 

changes in synaptic connectivity or physiology (Bishop et al., 2010), to senescence of glial and 
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immune cells and the role of circulating inflammatory factors (Wyss-Coray, 2016). Previous 

transcriptomic studies have revealed widespread changes in cellular state with age, highlighting 

specific cell types and biological processes that might be involved in mediating age-related 

decline (Almanzar et al., 2020; Benayoun et al., 2019; Boisvert et al., 2018; Chen et al., 2020a; 

Clarke et al., 2018; Habib et al., 2020; Hammond et al., 2019; Olah et al., 2018; Schaum et al., 

2020; Ximerakis et al., 2019). In particular, some of these studies have highlighted a role for 

increased inflammation as a key aspect of brain aging (Benayoun et al., 2019; Clarke et al., 2018; 

Hammond et al., 2019; Wyss-Coray, 2016). However, to understand how these changes may 

impact specific brain functions and gain insights into the mechanisms underlying age-related 

functional decline, it is crucial to characterize both the molecular and cellular signatures and the 

spatial locations of these changes within the brain.   

 To fill this gap, we used spatially resolved single-cell transcriptomic analysis to 

systemically uncover changes in the cellular composition, molecular signatures, and spatial 

organizations of brain cells in the mouse frontal cortex and striatum over the animal’s lifespan. By 

integrating snRNA-seq and MERFISH measurements, we generated a spatially resolved cell atlas 

of the aging brain with a genome-wide expression profile associated with each cell. Notably, we 

observed substantially more pronounced, and qualitatively different, age-induced changes in non-

neuronal cells compared to neurons, and these changes in non-neuronal cell exhibited specific 

spatial patterns. This atlas provides a rich resource for understanding the changes in cell state 

associated with aging.  

At the molecular level, many of the genes upregulated in non-neuronal cells during aging 

were related to activation of inflammatory pathways associated with innate immunity, while 

neuronal cell populations displayed different transcriptional changes, many of which related to 

neurodegenerative diseases, oxidative stress, and mitochondria functions. Immune cells and 

secreted factors such as cytokines are widely involved in the maintenance of tissue homeostasis 
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across many organs (Meizlish et al., 2021). Hence, the observed upregulation of genes related to 

inflammation and innate immunity by immune and glial cells within the brain could be an indication 

of dysregulated tissue homeostasis that may broadly affect nervous system function.  

Furthermore, in each individual non-neuronal cell types, such as oligodendrocytes, astrocytes, 

and microglia, we observed dozens of gene modules that contained genes with correlated 

expression variation across cells, and many of these gene modules showed up- or down-

regulated expression with aging. These modules suggest the presence of multiple, potentially 

interconnected, gene-regulatory networks related to aging.  

While the cell composition and spatial organization of neurons were stable with age, we 

observed notable changes in the composition and spatial distributions of non-neuronal cells, with 

specific oligodendrocyte and astrocyte subtypes or states emerging in the corpus callosum of the 

aging brain. Interestingly, inflammatory activation of microglia and astrocytes during aging 

showed distinct spatial patterns: both cell types exhibited the strongest activation in the corpus 

callosum, a location that also showed strong inflammatory changes of oligodendrocytes, whereas 

astrocytes but not microglia showed increased activation near the pial surface. Overall, astrocyte 

activation appeared to be substantially more spatially localized than microglia activation. Taken 

together, these results highlight the white matter of the corpus callosum as a hotspot of age-

associated inflammatory changes in the brain. 

Previous MRI studies in humans have revealed that prefrontal white matter is highly 

susceptible to age-related reduction in volume (Gunning-Dixon et al., 2009), and that the degree 

of white matter changes are associated with cognitive decline (Gunning-Dixon and Raz, 2000). 

Electron microscopy studies of non-human primate brain aging have revealed major alterations 

specifically in the white matter, particularly in the disruption of myelin sheath structure (Peters, 

2002). White matter microglia reactivity has also been related to aging (Safaiyan et al., 2021) and 

diseases, including, recently, SARS-CoV-2 induced long-term neurological impairment 
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(Fernández-Castañeda et al., 2022). Expanding upon these pervious findings, our results suggest 

that changes in the oligodendrocytes and myelinated axons and their associated microglial and 

astrocytic reactivity in the white matter may be an important factor in age-associated cognitive 

deficits. Our observations that the activation levels of microglia and astrocytes in the corpus 

callosum are correlated with each other and both correlated with the inflammation level of 

oligodendrocytes marked by cytokines like Il33 further suggest potential molecular mechanisms 

underlying this inflammatory activation. In one scenario, the elevated expression of pro-

inflammatory cytokine Il33 in aged oligodendrocytes may activate microglia through the Il33 

receptors, which is known to be expressed in microglia (Vainchtein et al., 2018). In a second and 

potentially related model, myelin itself can activate microglia in vitro (Williams et al., 1994), and 

excessive myelin degradation can induce activation of phagocytosing microglia that become 

overloaded with myelin fragments (Safaiyan et al., 2016), in a process that depends on TREM2 

signaling (Safaiyan et al., 2021).  In both scenarios, activated microglia can in turn activate 

astrocytes through secretion of pro-inflammatory cytokines and complement proteins (Liddelow 

et al., 2017). Activated astrocytes and microglia may in turn exacerbate oligodendrocyte and 

myelin degeneration (Gibson et al., 2019; Liddelow et al., 2017). 

Our result further showed that microglia and astrocyte activation induced by aging 

exhibited similarities but also significant differences to that induced by systemic inflammatory 

challenge. On the one hand, many of the same genes were upregulated by acute LPS treatment 

and during aging, consistent with previous findings (Clarke et al., 2018). On the other hand, we 

also observed notable differences in cell activation induced by aging and acute systemic 

inflammation, in both gene-expression and spatial patterns. In particular, the activation of 

microglia and astrocytes associated with the inflammation of oligodendrocytes in white matter of 

the corpus callosum were uniquely observed in the aging brain. Identifying the detailed molecular 

mechanisms underlying these commonalities and differences will require further mechanistic 
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investigation of the roles of specific cytokines and other signaling pathways in the brain. Indeed, 

these two processes may intersect: intrinsic aging-related degenerative processes within the 

brain, such as degenerating myelin, which locally disrupt tissue homeostasis, may prime cells into 

a pro-inflammatory state, which could then be exacerbated by systemic factors (Pluvinage and 

Wyss-Coray, 2020). 

The functional consequences of the disruptions to non-neuronal cellular homeostasis on 

neural circuits remain to be investigated. Many of the genes that we observed to be upregulated 

during aging, such as interleukins and complement proteins, have been shown to play a crucial 

role in regulating neural circuit organization and function via interactions between neurons and 

non-neuronal cells during development (Stevens et al., 2007; Vainchtein et al., 2018). Our cell 

atlas of the aging brain could facilitate future studies aiming to determine whether spatially 

localized upregulation of these molecules with age in turn causes localized disruptions to neural 

circuit function. Integrating these functional studies in mice with spatial transcriptomic 

measurements in humans in multiple conditions (normal aging, acute brain injuries, as well as 

chronic neurodegenerative disorders) will reveal how the inflammatory activation of non-neuronal 

cells contributes to cognitive impairment associated with advanced age and diseases at the 

neuronal and circuit levels.  
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Figures 

 

Figure 1: Spatially resolved single-cell transcriptomic profiling of the mouse frontal cortex 

and striatum over the animal’s lifespan.  
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(A) Profiling of the mouse frontal cortex and striatum via integrated snRNA-seq and MERFISH 

analyses.   

(B) Sampling time points for snRNA-seq and MERFISH measurements across the lifespan of 

mice.  

(C) (Left) Uniform Manifold Approximation (UMAP) visualization of cells from all timepoints, from 

both snRNA-seq and MERFISH measurements. (Right) Separate UMAP visualization of cells 

measured by snRNA-seq (top) and MERFISH (bottom). Cells are colored by cell-type assignment.  

(D) (Left) As in (C) but with cells colored by age. Only two of the time points (Young and Old) are 

shown. (Right) Individual UMAP plots, shown as the density of cells at each time point (Young; 

Middle age; Old) overlaid on total cell population (grey) across all three ages.  

(E) Molecularly defined cell types determined from integrated snRNA-seq and MERFISH 

clustering analysis. (Top) Dendrogram of the hierarchical relationship among clusters and number 

of measured cells per cluster. (Middle) Expression of marker genes, showing major marker genes 

for different cell types. (Bottom) Fraction of cells per cluster by age and by modality, normalized 

to sampling depth such that equal representation in each condition will have the same fraction. 
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Figure 2: Changes in cell-type composition of the mouse frontal cortex and striatum across 

ages.  

(A) Density of different major cell types (in cells/mm2) across the three ages (young: 4 weeks; 

middle: 24 weeks; old: 90 weeks). Inset shows magnified view of lower abundance cell types. * 

indicates FDR-adjusted P-value < 0.05 for independent sample t-test in difference in density 

between young and old animals. Error bars: 95% confidence interval.  

(B) Fraction of cells that belong to different subtypes or states of oligodendrocytes, microglia, 

endothelial cells, and astrocytes across different ages.  

(C) Violin plot of expression of example genes that change expression across different subtypes 

or states of oligodendrocytes, microglia, endothelial cells, and astrocytes.  
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Figure 3: Spatial organization of cells in the mouse frontal cortex and striatum across ages.  

(A) (Left) Spatial segmentation of anatomical regions. (Right) Spatial organization of major cell 

types at the three different ages, colored by cluster identity. Dashed lines outlining anatomical 

regions were manually traced from spatial segmentation for visualization purpose.  

(B) Fraction cells resided in individual anatomical regions for each cell cluster at the three different 

ages. CC: corpus callosum. Olf: Subcortical olfactory areas. The lower abundance of ependymal 
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cells in younger animals may be due to classification as molecularly similar astrocytes or loss of 

ventricle surface during tissue sectioning.  

(C–F) Spatial organizations of oligodendrocyte (C), astrocyte (D), microglial (E), and endothelial 

(F) clusters at different ages.  
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Figure 4: Cell-type-specific and spatially localized molecular signatures of brain aging.  

(A) Number of genes differentially expressed between young and old animals in individual cell 

clusters, with genes upregulated with age shown in red bars and downregulated with age shown 

in blue bars. Differentially expressed (DE) genes were defined as genes with age-related change 

in log(gene expression) > 2 (light colored bars) or > 2.5 (dark colored bars) and FDR-adjusted P-

value < 0.05 between the two ages.  

(B) Age-related change in Z-scored log(gene expression) between young and old animals for DE 

genes in different cell clusters.  
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(C) –log10(P-value) of enrichment for Gene Ontology (GO) Biological Process terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) terms enriched among DE genes with an age-

related change in log(gene expression)  > 2 and FDR-adjusted P-value < 0.05 between the two 

ages. Only GO or KEGG terms with P-value < 0.05 are listed and when the number of terms 

exceeds 10, only top 10 terms are listed for each major cell class.   

(D) Spatial maps of examples of DE genes across the three different ages.  

(E) Quantification of the number of DE genes for each major cell type as a function of spatial 

location, using imputed gene expression data. DE genes with an age-related change in log(gene 

expression) > 2 and FDR-adjusted P-values < 0.05 are considered. Size of dot indicates total 

number of DE genes for a particular cell type within a region, color shade of dot indicates the 

fractional number of DE genes relative to the maximum value across all regions. 
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Figure 5: Spatially heterogeneous and cell-type-specific inflammatory activation 

signatures of brain aging.  

(A) Activation scores of all astrocytes and microglia across the three different ages. Activation 

score is defined as the summed expression of a cell-type-specific subset of gene related to 

inflammatory activation, relative to background of randomly selected genes (STAR Methods).  

(B) Activation scores of specific astrocyte and microglia clusters.   

(C) Spatial maps of activation scores of astrocytes and microglia across the three different ages. 

Cell are colored by activation scores.  
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(D) Quantifications of per-cell activation scores of astrocytes and microglia in different 

anatomical regions across three ages.  

(E) Average activation scores of astrocytes and microglia as a function of distance from 

neighboring oligodendrocytes, vascular leptomeningeal cells (VLMCs), and endothelial cells.  

(F) (Left) Correlation plots of activation scores of each microglial cell in corpus callosum versus 

the average inflammation scores of oligodendrocytes within 30 µm of that microglial cell. 

(Middle) Same as (Left) but for astrocytes and oligodendrocytes. (Right) Same as (Left) but for 

astrocytes and microglia. Pearson correlation coefficients R are given in the plots.  
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Figure 6: Gene expression changes and activations of cells in response to systemic 

inflammatory challenge.  
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(A) Experimental paradigm for systemic inflammatory challenge with lipopolysaccharide (LPS).  

(B) UMAP visualization of cells colored by cell types (left) or age (right) measured by MERFISH.  

(C) Change in gene expression in response to LPS only (purple), aging only (green), or both LPS 

and aging (black) for different cell types measured by MERFISH. Only genes with age- or LPS-

related change in Z-scored log(gene expression) > 2 in at least one condition for at least one cell 

type are shown.  

(D) Spatial maps of example genes that are upregulated over aging and upon LPS treatment.  

(E) Spatial maps of activated microglia and astrocytes across the three different ages, with and 

without LPS treatment. Cells are colored by activation scores.  

(F) Quantification of per-cell activation scores for microglia and astrocytes in different anatomical 

regions, in young mice with LPS treatment.  

(G) Activation scores of astrocytes and microglia as a function of distance from neighboring 

oligodendrocytes, VMLCs, and endothelial cells in young mice after LPS treatment.  

(H) Correlation of activation score of microglia and astrocytes and inflammation score of 

oligodendrocytes, as defined in Figure 5F, in young animals treated with LPS.  
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o Aging-related analysis 

o Cell-cell proximity analysis 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.14.508048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.508048
http://creativecommons.org/licenses/by/4.0/


 40 

o Analysis of MERFISH data obtained from LPS-treated mice 

 
Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological samples 

Mouse: C57BL/6J  Jackson Labs Cat# 664; 
RRID:IMSR_JAX:0
00664 

Chemicals, peptides, and recombinant proteins 

Formamide Ambion Cat# AM9342 

20xSSC Ambion Cat# AM9763 

Triton-X Sigma Cat# T8787 

Glucose oxidase Sigma Cat# G2133 

Phusion® Hot Start Flex 2X Master Mix New England 
Biolabs 

Cat# M0536 

Maxima H Minus Reverse Transcriptase ThermoFisher Cat# EP0752 

dNTP mix ThermoFisher Cat# R1121 

32% Paraformaldehyde Electron Microscopy 
Sciences  

Cat# 15714S 

RNase inhibitor, Murine New England 
Biolabs 

Cat# M0314 

1M Tris, pH 8 ThermoFisher Cat# 15568025 

Catalase Sigma  Cat# C3155 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid (Trolox) 

Sigma Cat# 238813 

 

Tris(2-carboxyethyl)phosphine (TCEP) HCl GoldBio Cat# TCEP1 

Hoescht 33342, Trihydrochloride, Trihydrate ThermoFisher  Cat# H3570 

Lipopolysaccharides from E. coli O111:B4 Sigma Cat# L4391 
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Yeast tRNA ThermoFisher Cat# AM7119 

Dextran sulfate Sigma Cat# S4030 

Ethanol Decon Labs Cat# V1016 

Sodium dodecyl sulfate ThermoFisher Cat# 15553027  

Proteinase K New England 
Biolabs 

Cat# P8107S 

Ethylene carbonate Sigma Cat# 676802-1L 

Glucose Sigma Cat# G7021 

Oligonucleotides 

Readout probes Integrated DNA 
Technologies 

See Table S3 

Encoding oligonucleotide probe library  Twist Biosciences See Table S2 

Anchor probe: 

/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT+

TT+TT+TT+TT+TT+TT+TT+T 

Integrated DNA 
Technologies 

N/A 

Software and algorithms 

MERlin Github https://github.com/
ZhuangLab/MERli
n 

Custom Python analysis software  This paper https://github.com/
weallen/project_tit
honus 

 

RESOURCE AVAILABILITY 

Lead Contact 

Requests for resources and reagents should be directed to the lead contact, Xiaowei Zhuang 

(zhuang@chemistry.harvard.edu). 

 

Materials Availability 
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Oligonucleotide encoding probe sequences used for MERFISH imaging can be found in Table 

S2. Oligonucleotide readout probe sequences used for MERFISH imaging can be found in 

Table S3. These probes or templates for making these probes can be purchased from 

commercial sources, as described in the Key Resources Table. 

 

Data and Code Availability 

Single-cell RNA-seq data have been deposited to NCBI GEO data repository (GSE207848).  

All original code used in this work is available at: https://github.com/weallen/project_tithonus.  

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

Animals 

Female C57BL6/J mice were used in this study. Mice were obtained from Jackson Laboratory at 

an age one week younger than the target age for sacrifice (4-week, 24-week, 90-week postnatal), 

and then housed at Harvard University Animal Facility for 1 week to acclimate before sacrifice. 

Mice were maintained on a 12 hr light/12 hr dark cycle (14:00 to 02:00 dark period) at a 

temperature of 22 ± 1°C, a humidity of 30–70%, with ad libitum access to food and water. Animal 

care and experiments were carried out in accordance with NIH guidelines and were approved by 

the Harvard University Institutional Animal Care and Use Committee (IACUC).  

 

METHOD DETAILS 

Single-nucleus RNA-sequencing  

Female mice aged 4 weeks or 90 weeks old were anesthetized with isofluorane and then acutely 

decapitated. Their brains were quickly harvested and cut into hemispheres and each hemisphere 

was frozen immediately on dry ice Optimal Cutting Temperature Compound (OCT, Fisher 

HealthCare) and then stored at –80oC until sectioning. Brains were taken from storage at –80oC 

and warmed to –18oC in a cryostat (Leica) for 20 minutes before sectioning.  Sections were 
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discarded until the beginning of frontal cortex was apparent. Brains were then blocked on the 

cryostat using a razor blade to a region containing frontal cortex and striatum. 100 µm coronal 

sections were then collected approximately from A/P +2 mm to A/P +1 mm, relative to bregma. 

The resulting sections were collected in an Eppendorft tube and stored at –80oC until snRNA-seq 

library preparation. 

 For snRNA-seq library preparation, nuclei were dounced in Nuclei EZ Prep nuclei 

extraction buffer (Sigma) + 1% RNase Inhibitor. Nuclei were then spun down, filtered through a 

70 µm filter, stained with DAPI, and sorted on a FACS machine (BD FacsAria) to separate nuclei 

from debris. The resulting clean nuclei preparation were then counted and encapsulated on a 10X 

Genomics Chromium machine, using the 3’ Transcriptome V3.1 kit (10X Genomics). After 

encapsulation, the resulting libraries were reverse transcribed, amplified as cDNA, fragmented, 

and amplified as a final library following the manufacturer’s instructions. The resulting libraries 

were sequenced on a NovaSeq S4 flowcell (Illumina) to a target depth of ~50,000 reads per 

nucleus.  

 

snRNA-seq data analysis 

Raw reads were mapped to the mm10 mouse reference genome and demultiplexed to generate 

a per-cell count matrix using CellRanger pipeline (10X Genomics). The resulting data were 

analyzed in Python using standard methods implemented in the package Scanpy. Briefly, putative 

doublets were first removed using Scrublet (Wolock et al., 2019). Cells with < 2,500 UMIs per cell 

and < 1,000 genes per cell were removed. Genes detected in < 3 cells were removed. Following 

standard procedures in Scanpy, per-cell counts were normalized to sum to 104 counts per cells 

and log-transformed. A multi-level clustering approach was taken, where the cells were first 

clustered into major cell types then into clusters within those cell types as described in Figure 

S1A.  Briefly, at each level highly variable genes were determined and included in the per-cell 

expression matrix, the total UMI number per cell and expression of mitochondrial genes were 
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regressed out, and the resulting residuals were Z-scored. Principal component analysis was used 

to reduce the dimensionality to 50 principal components. A nearest neighbor graph was computed 

between cells using these principal components, and Leiden clustering was applied to separate 

the cells into distinct clusters.  

First all cells were clustered into neurons and non-neuronal cells. Within the neurons, cells 

were clustered into inhibitory and excitatory neurons. Inhibitory neurons were further subclustered 

into medium spiny neurons (MSNs) and non-MSNs. Non-neuronal cells were subclustered into 

astrocytes, microglia, macrophages, oligodendrocytes, pericytes, vascular leptomeningeal cells 

(VLMCs). Each major cell type (excitatory, inhibitory, MSN, astrocytes, microglia, macrophages 

oligodendrocytes, pericytes, VLMCs) was then subclustered to obtain the final list of cell clusters.  

 

Gene selection for MERFISH measurements 

Genes were selected for MERFISH using a combination of automated and manual approaches. 

First, to identify age-related genes, linear regression was used to identify genes that were 

differentially expressed between two different ages (4-week and 90-week postnatal) in individual 

cell types or clusters determined by snRNA-seq. Briefly, using statsmodels, a Generalized Linear 

Model with a Negative Binomial link function was fit to the log-transformed UMI counts per cell for 

each gene yi: 

 

yi  ~ C(age) + log10(total_counts) + intercept + ε 

 

where C(age) is a binary categorical variable with the 4-week value set to be the reference level 

(i.e. C(4-week) = 0) and the C(90-week) value determined from the model. This model was fit 

separately for each cell type or cluster, which was compared with a null model that only accounts 

for technical variation in the total molecule counts per cell: 
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yi  ~ log10(total_countsc) + intercept + ε 

 

A likelihood ratio test was then computed between the full and reduced models to determine a P-

value. These P-values were corrected for multiple hypothesis testing across all genes in all cell 

types or clusters to give the FDR-adjusted P-values, and genes with an FDR-adjusted P-value < 

10-6 were considered. For each cell type and cluster, the genes differentially expressed between 

the two ages were sorted by the fitted C(90-week) value, and the top N genes with at least C(90-

week) > 1.5 were included in the aging gene panel. For each major cell type, we included 5 genes 

and for each fine-leaflet cell cluster we included 2 genes. This approach attempts to balance the 

gene panel across all cell types and clusters, even if certain cell types or clusters may have more 

or fewer total numbers of differentially expressed genes with age.  

 To identify cell-type-marker genes, marker genes were identified for a particular cell 

population (cell type or cluster) using a one-vs-all approach. For each cell population, a t-test was 

performed for each gene between the cells within the cell population and all other cells not in that 

population. The resulting P-values were corrected for multiple hypothesis testing to give FDR-

adjusted P-value. A gene was identified as a cell-type marker for a certain cell population if it 

satisfy the following conditions: i) it was expressed in at least 40% of cells within the specified cell 

population, ii) it had an FDR-adjusted P-value < 0.05, iii) it had a gene expression in the specified 

cell population that was at least two fold higher than the average expression in all cells not in that 

population, and iv) it was expressed in a fraction of cells within the specified cell population that 

was at least three times higher than the fraction of cells not in this population that expression the 

gene. Finally, the marker genes for each cell population were sorted by fold change in expression 

relative to the cell outside the cell population, and the top 15 marker genes for each cell population 

were then saved and used for marker selection. To select the final set of markers, we greedily 

added marker genes to the list such that each cell type or cluster had at least two marker genes 

included in the final gene panel.  
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In addition to these markers, known cortical layer markers (Zhang et al., 2021), genes 

related to microglial (Bohlen et al., 2019; Chen et al., 2020b; Keren-Shaul et al., 2017) and 

astrocyte (Clarke et al., 2018; Liddelow et al., 2017) activation, broad transcriptomic markers of 

aging (Benayoun et al., 2019), and markers for various immune cell types (T cells, B cells, 

macrophages) (Dong, 2021; Meizlish et al., 2021; Salvador et al., 2021) were curated from the 

literature and included. In total, 212 genes were included in the cell-type-marker gene panel and 

204 genes were included in the aging gene panel.  

 

Design and construction of MERFISH encoding probes 

After the aging and cell-type-marker MERFISH gene panels were selected, a 20-bit code was 

created for the gene panels. Briefly, a 20-bit Hamming-weight 4 code was generated by first listing 

all possible combinations of 4 “on” bits embedded within 20 bits. This list was shuffled, and the 

first bit combination was randomly selected as the initial barcode.  Additional barcodes were then 

added from this list by iterating through the other randomly shuffled barcodes and greedily adding 

to the codebook each additional barcode that had a Hamming Distance of at least 4 from all 

barcodes currently in the codebook. A collection of 500 such randomly sampled codes was 

generated, and each was scored on the total number of barcodes and the variance of number of 

barcodes utilizing each bit. A 20-bit, Hamming Distance 4 and Hamming-weight 4 code with the 

lowest variance that included at least 200 codewords was then used for both libraries, resulting 

in a 223-codeword final codebook.   

Next, individual genes were assigned to barcodes in the codebooks. This assignment was 

initially random, then optimized to increase the average expected uniformity of the density of 

molecules per cell that were detected in each bit. This optimization was performed iteratively, 

using a simulated annealing algorithm to maximize the uniformity of expression across bits on 

average across all cell types.  
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First, we estimated the expected total number of molecules per cell for each bit as the sum 

of the expression (determined by snRNA-seq) of genes with barcode reading “1” at that bit. This 

was computed for each cell type, and the weighted average across cell types was computed 

weighted by the cell abundance in individual cell types. Individual gene assignments to barcodes 

were then swapped, and the average expression per cell per bit was recomputed. Assignment 

swaps that decreased the variance across bits were kept. This process was repeated until the 

algorithm converged when the variance stopped decreasing.  

 For each gene, we then designed a total of 92 encoding probes targeting that gene’s 

mRNA sequence. The encoding probes were designed as previously described (Moffitt et al., 

2016a). Briefly, we selected regions with GC content between 30% and 70%, melting temperature 

Tm within 60-80 oC, isoform specificity index between 0.75 and 1, gene specificity index between 

0.75 and 1, and no homology longer than 15 nt to rRNAs or tRNAs. For each library, each of the 

20 bits was assigned to a 20-nt three-letter (A, T, C) readout sequence. Each encoding probe 

was constructed by concatenating the 30-nt target region with three 20-nt readout sequences for 

each probe. The readout sequences for each gene were randomly shuffled across all 92 encoding 

probes for that gene. The encoding probes additionally contained a 20-nt reverse transcription 

primer sequence at the 5’ end and a T7 promoter at the 3’ end, which also functioned as PCR 

primer sequences.   

 

MERFISH encoding probe library and readout probe preparation 

The encoding probe library was synthesized using large-scale arrayed oligo synthesis (Twist 

Biosciences) and then amplified, as previously described (Moffitt et al., 2016a). Briefly, the initial 

library was amplified using limited cycle PCR (Phusion Polymerase, NEB) monitored via qPCR. 

The library was then converted to RNA via in vitro T7 transcription (HiScribe T7 Quick High Yield 

Kit, New England Biolabs) from a T7 promoter integrated into the PCR product. The resulting 

RNA product was purified (RNA Clean and Concentrate, Zymo Research) and reverse transcribed 
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(Maxima H– Reverse Transcriptase, ThermoFisher). The RNA in the resulting RNA:DNA hybrid 

was degraded using alkaline hydrolysis, and the final ssDNA product was first desalted via buffer 

exchange through a 7K MWCO  desalting column (ThermoFisher) then concentrated using a 

phenol:chloroform extraction and ethanol precipitation, resulting in a 5-10 nM/probe final library.   

For the 416-gene panel used in this study, 40 readout probes were used, each 

complementary to one of the 40 readout sequences on the encoding probes. For readout, the first 

twenty readout probes correspond to the 20 bits of the code used for the cell-type-marker gene 

panel and the remaining twenty readout probes correspond to the 20 bits of the code used for the 

aging-related gene panel. Each readout probe was conjugated to one of the two dye molecule 

(Alexa Fluor 750 or Cy5) via a disulfide linkage, as previously described (Moffitt et al., 2016a). 

The readout probes were obtained from Integrated DNA Technologies and resuspended 

immediately in Tris-EDTA (TE) buffer, pH 8 (Thermo Fisher), to a concentration of 100 µM, and 

stored at –20 °C until use. 

 

Tissue sample preparation for MERFISH 

Brains were prepared as described for snRNA-seq, with the addition of mice at the age of 24-

week postnatal without LPS treatment, and mice at the ages of 4-week, 24-week, and 90-week 

postnatal following LPS injection. Sectioning was performed on a cryostat at –18oC. slices were 

removed and discarded until the frontal cortex and striatal target region was reached. In order to 

capture comparable sections across animals, starting from approximately A/P +2 mm relative to 

bregma, every other 10 µm section was captured onto a set of 6-8 lysine-coat silanized coverslips 

for MERFISH imaging, with each coverslip ultimately containing 3 to 4 individual sections. The 

coverslips were cleaned, silanized, and treated with poly-lysine as previously described (Zhang 

et al., 2021). The same anatomical region was identified for imaging post hoc after sample 

preparation, before the start of MERFISH imaging.  
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Tissue sections were fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for 

20 minutes, washed three times in 1× D-PBS, and then stored in 70% EtOH (Koptec) at 4oC for 

at least 18 hours to permeabilize the tissue. Tissue slices from the same mouse were cut at the 

same time and distributed onto 6-8 coverslips; multiple mice were sectioned at the same time. 

Coverslips were stored in 70% EtOH for less than two weeks until each biological replicate was 

successfully imaged once. 

The tissue sections were stained with MERFISH encoding probes as previously described 

(Moffitt et al., 2016b). Briefly, the samples were removed from 70% EtOH and washed with 

2× saline sodium citrate (SSC) three times. We then removed excess 2× SSC by blotting with a 

Kimwipe and inverted the coverslip onto a 50 µl droplet of encoding probe mixture in a Parafilm-

coated Petri dish. The encoding probe mixture contained approximately 1 nM of each encoding 

probe, 1 µM of polyA-anchor probe (Integrated DNA Technologies) in 2× SSC with 30% v/v 

formamide, 0.1% wt/v yeast tRNA (ThermoFisher), 10% v/v dextran sulfate (Sigma), and 1% v/v 

murine RNase inhibitor (New England Biolabs). The polyA-anchor probe containing a mixture of 

DNA and LNA nucleotides 

(/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT+TT+TT+TT+TT+TT+TT+TT+T, where T+ is 

locked nucleic acid, and /5Acryd/ is 5′ acrydite modification) was hybridized to the polyA sequence 

on the polyadenylated mRNAs, allowing these RNAs to be anchored to a polyacrylamide gel as 

described below. The sample was then incubated for 36-48 hours at 37oC.  

After hybridization, the samples were washed in 2× SSC with 30% v/v formamide for 30 

min at 47 °C for a total of two times to remove excess encoding probes and polyA-anchor probes. 

Tissue samples were cleared to remove lipids and proteins that contribute fluorescence 

background, as previously described (Moffitt et al., 2016b) Briefly, the samples were embedded 

in a thin 4% polyacrylamide gel and were then treated with a digestion buffer of 2% v/v sodium 

dodecyl sulfate (Thermo Fisher), 0.5% v/v Triton X-100 (Sigma) and 1% v/v proteinase K (New 

England Biolabs) in 2× SSC for 36 – 48 hours at 37 °C. After digestion, the coverslips were 
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washed in 2× SSC for 30 min for a total of four washes and then stored at 4 °C in storage buffer 

of 2× SSC, 1% v/v murine RNase inhibitor (New England Biolabs) before imaging. 

 

MERFISH imaging 

We used a custom-built imaging setup in this study as previously described (Xia et al., 2019). All 

buffers and readout-probe mixtures were flowed onto the sample using a home-built, automatic 

fluidics system as previously described (Xia et al., 2019). Briefly, the samples were stained with 

1 µg/mL Hoechst 33342 (ThermoFisher) and then loaded into a commercial flow chamber 

(Bioptechs) with a 0.75-mm-thick flow gasket. The first MERFISH round, containing both the first 

two readout probes labeled with Cy5 and AlexaFluor 750, as well as a probe complementary to 

the polyA anchor labeled with AlexaFluor 488, were then stained on the microscope. For each 

hybridization round, the fluorescent probes were hybridized in a buffer containing 2× SSC, 10% 

v/v ethylene carbonate (Sigma), and 0.1% Triton X-100, and were diluted to a final concentration 

of 3 nM. The samples were stained for 15 min, and then washed with readout probe buffer. Finally, 

imaging buffer was flowed into the chamber. The imaging buffer consisted of 2× SSC, 10% w/v 

glucose (Sigma), 60 mM Tris-HCl pH8.0, ~0.5 mg/ml glucose oxidase (Sigma), 0.05 mg/ml 

catalase (Sigma) 50 µM trolox quinone (generated by UV irradiation of Trolox, 0.5 mg/ml 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, Sigma), and 0.2% v/v murine 

RNAase inhibitor (New England Biolabs).  

After the readouts for the first round were hybridized, the sample was imaging with a low 

magnification objective (CFI Plan Apo Lambda ×10, Nikon) with 405-nm illumination to produce 

a low-resolution mosaic of the sections in the Hoeschst channel. We used this mosaic to 

generate a grid of tiled fields-of-view (FOV) covering the relevant areas of frontal cortex and 

striatum. We then switched to a high-magnification, high-numerical aperture objective (CFI Plan 

Apo Lambda ×60, Nikon), and imaged each FOV with a 7-plane z-stack with 1.5 µm spacing 

between the adjacent z-planes to cover the entire 10 µm thickness of the tissue section. For 
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each FOV, we took images in the 750-nm, 650-nm, 560-nm, 488-nm and 405-nm channels: one 

image of the orange fiducial beads (560-nm) at the bottom z-plane, which was used as a fiducial 

marker to register the position of each FOV across multiple rounds of hybridization. For each z-

plane, we took images of the readout probes (Alexa Fluor 750 and Cy5, 750-nm and 650-nm 

respectively), polyA probes (488-nm), and Hoeschst nuclear DNA stain (405-nm).  

 After the first round of imaging, the dyes were cleaved from the readout probes by flowing 

2.5 mL of cleavage buffer (2× SSC and 50 mM of Tris (2-carboxyethyl) phosphine [GoldBio]) and 

incubating for 15 min, which cleaved the disulfide bond linking the dye to the readout 

oligonucleotide. The excess TCEP was removed by washing with 1.5 mL of 2× SSC.  

 For subsequent rounds of imaging, the same steps were carried out using readout-probe 

mixture containing 3 nM of the appropriate Alexa Fluor 750- and Cy5-labeled readout probes for 

each round.  

The two gene panels (cell-type-marker panel and age-related gene panel) were imaged 

back-to-back on the same tissue sections, each gene panel was imaged in 10 rounds with two 

readout probes per round to readout the 20 bits. Each experiment took approximately 24-36 hours 

to image the relevant fields of view from 2 – 4 coronal slices.  

 

MERFISH data processing 

Imaging data were uploaded to the Harvard FAS Research Computing cluster and 

decoded using  our previously published MERlin pipeline (Xia et al., 2019) with modifications on 

cell segmentation as described below. This pipeline provides the gene identity and spatial 

coordinates of each decoded molecules. For cell segmentation, we used the ‘cyto2’ model 

CellPose (Stringer et al., 2021), a deep learning based cell segmentation algorithm. This was 

applied only to Hoeschst-stained nuclei in order to avoid incorrect segmentation of neighboring 

cells. Decoding molecules were then assigned to the segmented nuclei to produce a cell-by-gene 

matrix that list the number of molecules decoded for each gene in each cell.  
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The cell-type-marker gene panel and aging-related gene panel were decoded separately. 

The segmented nuclei determined in these two decoding runs were then aligned by identifying 

the mutual nearest neighbor nuclei that were within 5 µm of each other. The very small number 

of nuclei that did not have a mutual nearest neighbor within this distance cutoff were removed 

from the dataset, as potentially incorrectly segmented cells, and the remaining nuclei were each 

assigned a vector of gene expression counts that included decoding results from both decoding 

runs. During data analysis, we observed that the readout of bit #20 of the aging-related gene 

panel was consistently dim in the majority of experiments, suggesting that genes detected in this 

bit may have a reduced detection efficiency. We thus excluded from all subsequent analysis the 

40 genes that should be detected in this bit (i.e. genes whose barcodes read “1” at this bit), 

although the major conclusions in this paper were not altered if we included these genes in the 

subsequent analysis. 

After decoding, cells from all MERFISH experiments were combined into a single dataset. 

Putative doublets were removed using Scrublet. Cells were then filtered to remove all cells with < 

20 molecule counts per cell or with < 5 genes detected per cell. Cells that had a volume < 100 

µm3 or a volume > 3 times the median volume across all cells were removed. Each cell’s gene 

expression values were normalized by dividing by the volume of that cell.  The total normalized 

gene expression was computed for each cell, and cells with total normalized expression in the 

top and bottom 2% quantile were removed. Finally, these normalized values were scaled such 

that the sum of gene expression values per cell was equal to 250. The gene expression values 

were then log-transformed and Z-scored. 

 

Integrated clustering analysis of the MERFISH and snRNA-seq data 

The MERFISH expression matrix was concatenated with the normalized, log-transformed, and Z-

score snRNA-seq expression matrix, which was subseted to include only the genes in the 

MERFISH gene panels. These data were then subjected to a two-step data integration and batch 
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correction process, to first correct for modality-specific bias then for batch-specific bias using 

Harmony (Korsunsky et al., 2019) and BBKNN (Polański et al., 2020) respectively. First, Principal 

component analysis was performed on the join data matrix. Harmony was then used to adjust the 

principal components for modality-specific (MERFISH or snRNA-seq) effects, producing an 

integrated representation in the principal component space. Second, these integrated principal 

components were then used by BBKNN to compute a batch-corrected nearest neighbor graph, 

where each batch was an experimental run of MERFISH or snRNA-seq. This batch corrected 

nearest neighbor graph was subsequently used to further reduce the dimensionality of the dataset 

via UMAP or to compute integrated clusters via Leiden clustering. 

 To arrive at the final set of clusters, a semi-automated multi-level clustering approach was 

performed. Similar to the clustering approach used for snRNA-seq alone, cells were first clustered 

into neurons and non-neuronal cells. The neurons were then subclustered into excitatory and 

inhibitory neurons, and the inhibitory neurons were subclustered into MSNs and non-MSNs. The 

non-neuronal cells were clustered into oligodendrocytes, OPCs, astrocytes, microglia, vascular 

cells, and immune cells. These major cell types were then subclustered to arrive at the final list of 

clusters. Briefly, for each major cell type, the Harmony-corrected principal components were used 

via BBKNN to compute a batch-corrected nearest neighbor graph. This nearest neighbor graph 

was then used to perform Leiden clustering and to compute a UMAP plot for each major cell type. 

For each major cell type, differential gene expression was computed between each pair of 

subclusters using a t-test and the spatial locations of each cluster were plotted for manual 

inspection. The few clusters that appeared over-segmented based on heuristic criteria (no unique 

differentially expressed genes between the two clusters, largely overlap in UMAP space between 

the two clusters, a cluster with a very small cell number intermingled with a cluster with larger cell 

number in UMAP space) were then manually merged. The final set of clusters were annotated 

based on comparison of their key marker genes and/or spatial locations with previously annotated 

datasets (Chen et al., 2021; Tasic et al., 2018; Zeisel et al., 2018; Zhang et al., 2021).  
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Imputation of Gene Expression 

To impute the genome-wide expression profiles of the cells measured by MERFISH, the gene 

expression profiles of the snRNA-seq cells most similar to each cell measured with MERFISH 

were averaged together. This computation used the PCA embedding produced through Harmony 

integration to identify the nearest neighboring snRNA-seq cells for each MERFISH cell, using the 

top 30 principal components in the jointly embedded PCA decomposition. The genome-wide 

expression profiles of the 10 nearest neighboring snRNA-seq cells for each MERFISH cell was 

averaged together to produce the imputed gene expression profile for that MERFISH cell.  

 

LPS Injection Experiment 

Female C57BL6/J mice were injected intraperitoneally with 0.5 mg/kg lipopolysaccharide (LPS) 

derived from Escherichia coli O111:B4 (Sigma) diluted in PBS at Zeitgeiber Time 9. Animals were 

euthanized 24 hours after injection and brains harvested for MERFISH analysis. LPS was titrated 

following reconstitution to optimize dosage and ensure consistent potency across experiments.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Brain region segmentation 

In order to automatically segment anatomical regions across the many individual sections 

included in the MERFISH experiment, we developed a semi-supervised method to cluster cells 

based on the cell type composition of their local spatial neighborhood. For each cell, we computed 

the abundance of cells from all clusters within a 100 µm radius of this cell, presented in the form 

of a vector with Ncluster dimensions, where Ncluster in the number of clusters. We then combined 

these vectors across all cells to form an Ncell x Ncluster matrix, where Ncell is the number of cells. We 

applied principal components analysis to this matrix to reduce the dimensionality of this matrix, 
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and then applied k-means clustering to segment the cells into k = 20 spatial clusters. This 

produced an overclustered segmentation of cells in space. We then hierarchically ordered these 

spatial clusters and manually merged spatial clusters that were near each other in the cluster 

hierarchy and appeared over-segmented when their spatial profiles were plotted, to arrive at a 

final set of 8 spatial clusters, which map closely to known anatomical structures, including the pia, 

cortical layer 2/3 (L2/3), cortical layer 5 (L5), cortical layer 6 (L6), corpus callosum, striatum, 

ventricle, and subcortical olfactory areas.  

 

Gene Module Analysis 

Gene modules were identified from scRNA-seq data by first grouping cells from each major cell 

type. For each group, variable genes were then selected and a gene-gene correlation matrix was 

computed by taking the first 50 singular values from the singular value decomposition of the gene 

expression matrix and computing the dot product of it with its transpose. This gene-gene 

correlation matrix was then Z-scored and Z-scores less than 0.1 were set to zero to sparsify the 

matrix. Each gene in this matrix was then reduced to 2 dimensions using UMAP. Genes were 

then clustered into modules in this reduced dimensional space using the DBSCAN clustering 

algorithm. To remove modules that were not associated with any genes in a statistically significant 

manner, we compared the mean gene-gene correlation per module under this clustering with a 

shuffled distribution where the module identities of the genes were randomly permuted 1000 times 

to determine the P-value. These P-values were then FDR corrected and any modules with FDR 

< 0.1 were removed.   

 

Aging-related analysis 

Activation scores were computed from the normalized, log-transformed, Z-scored gene 

expression values using the score_genes function in Scanpy, which computes the summed 

expression value of a set of genes minus the average expression of randomly selected 
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background genes. The genes used for astrocyte activation were: C4b, C3, Serpina3n, Cxcl10, 

Gfap, Vim (Clarke et al., 2018; Liddelow et al., 2017; Zamanian et al., 2012). The genes used for 

microglial activation were: B2m, Trem2, Ccl2, Apoe, Axl, Itgax, Cd9, C1qa, C1qc, Lyz2, Ctss 

(Bohlen et al., 2019; Chen et al., 2020b; Keren-Shaul et al., 2017). The genes used for 

oligodendrocyte activation were: C4b, Il33, Il18, which were identified based on differential gene 

expression of oligodendrocytes over aging. 

To compute the activation scores of microglia or astrocytes as a function of distance to another 

cell type, the average activation scores of all microglia or astrocytes were computed as a function 

of distance from a reference cell type (Oligo, Endo, or VLMC). For each individual astrocyte or 

microglial cell, the nearest neighbor of a particular comparison cell type was identified within a 

radius of 80 µm of that astrocyte or microglia using a kD-tree search implemented in scikit-learn. 

The distance from the astrocyte or microglia to that comparison cell type was saved along with 

that astrocyte or microglia’s activation score. The average activation score for all microglia or 

astrocytes were computed at 1 µm stepping from 0 to 80 µm, with a sliding 30-µm-wide window. 

Finally, the mean activation across this range was subtracted.  

 

Cell-cell proximity analysis 

To compute the proximity frequency between two sets of cells, i.e. cell type A and cell type B, first 

the true cell-cell proximity frequency µtrue was computed as follows: for each cell in cell type A, 

the average number of cells of cell type B were counted within a radius of 30 µm. To compute the 

null distribution of proximity (the probability that two cell types would be within 30 µm just by 

chance, given their local density), the locations of each cell of cell type B were then randomly 

jittered independently in both spatial dimensions (x and y) using a uniform distribution over the 

interval (–100 µm, 100 µm), and the number of cells in cell type B within 30 µm of each cell in cell 

type A was re-computed. This was repeated 1,000 times, to form a background distribution of the 

frequency of cell-cell proximity that would be expected to occur due to chance. The enrichment 
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of cell-cell proximity between cell type A and cell type B was then computed as the log of the ratio 

between the true proximity frequency µtrue and the average background frequency µbackground: 

log2(µtrue/ µbackground). A P-value for this fold change was found by computing the Z-score 

distribution across the 1,000 randomizations:  

 

Z = (µtrue–µbackground)/σbackground 

P = 2(1–CDF(|Z|)) 

 

The enrichment and P-value were computed for each pair of major cell types, and the resulting 

P-values were FDR adjusted across all cell type pairs.  

 

Analysis of MERFISH data obtained from LPS-treated mice 

To transfer cell type and cluster labels obtained from cells in the non-LPS-treated mice to cells 

from mice treated with LPS, we took a supervised classification approach. First, the +LPS data 

were pre-processed as described earlier to remove doublets and obtain normalize, log-

transformed, and Z-scored expression values.  The –LPS and +LPS MERFISH data were then 

co-embedded in a joint principal component space using Harmony to compute the first 25 principal 

components. A multilayer perceptron classifier from scikit-learn was trained on the cell type and 

cluster annotations from the –LPS cells, using the first joint principal components as input. The 

classifier was then applied to the +LPS cells, to yield a final set of predicted cluster annotations 

that were used for subsequent analysis.  

To identify genes differentially expression between the +LPS and –LPS conditions, for each gene 

in the MERFISH library, a model was fit using ordinary least squares that compared the two 

conditions for young (4-week) mice. For each gene i, the average expression was modeled for 

cells in a given cell type in the +LPS and –LPS conditions using the following ordinary least 

squares model, fit to the normalize, log-transformed, Z-scored MERFISH expression data: 
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yi  ~ C(LPS) + intercept + ε 

 

where C(LPS) is a categorical variable with the –LPS value set to be the reference level (i.e. C(–

LPS) = 0) and the C(+LPS) value determined from the model. This was then compared with a null 

model lacking the C(LPS) categorical variable, i.e. yi  ~ intercept + ε, to determine the gene’s FDR-

adjusted P-value. Likewise, we performed similar analysis to determine genes differentially 

expression between the 4-week-old and 90-week-old mice without LPS treatment from the 

MERFISH data. To identify whether a gene was upregulated by LPS-only, aging-only, or by both 

LPS and aging, the C(+LPS) or C(90-week) values for each gene for each cell type were 

computed. These values were then Z-scored across genes, and genes with a Z-score > 2 and 

FDR-adjusted P-value < 0.05 in a particular condition was determined as being significant for that 

condition.  
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Supplementary Figures 

 

Figure S1: Clustering of cell types measured by snRNA-seq.  

(A) Flow chart for multi-step cell clustering analysis. First, cells were divided into neurons and 

non-neuronal cells. Neurons were then divided into excitatory and non-excitatory neurons, and 

the latter were then divided into medium spiny neurons (MSN) and other inhibitory neurons. Each 

of these major types were further divided into finer clusters. Non-neuronal cells were divided into 

astrocytes (Astro), microglia (Micro), macrophages (Macro), oligodendrocytes (Oligo), pericytes 

(Peri), and vascular leptomeningeal cells (VLMC), which were further divided into finer clusters.  

(B) UMAP visualization of cells colored by cell types (left) or ages (right).  
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(C, D) UMAP plots of neuronal clusters (C) and non-neuronal clusters (D).  

(E, F) Heatmap of top differentially-expressed marker genes across different neuronal clusters 

(E) and non-neuronal clusters (F). Marker genes were determined using a t-test, with FDR-

adjusted P-value < 0.05 and a fold change > 1.5. Expression values are normalized to the 

maximum value within each row.  
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Figure S2: Correlation of MERFISH measurement with bulk RNA-seq, between MERFISH 

replicates, and with snRNA-seq.  

(A) Correlation of average expression values of individual genes included in the cell-type marker 

gene panel and aging-related gene panel measured by MERFISH with FPKM values of the same 
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genes measured by bulk RNA-seq for motor cortex (left) and striatum (right). Pearson correlation 

coefficients R are given in the plots. 

(B) Correlation of average expression values of individual genes between two biological replicates 

measured by MERFISH. Pearson correlation coefficient R is given in the plot. 

(C) Correlation of average expression values of individual genes between all replicates from 

young mice and all replicates from old mice measured by MERFISH. Pearson correlation 

coefficient R is given in the plot.  

(D) Correspondence between MERFISH clusters, determined from an integrated snRNA-seq and 

MERFISH clustering analysis shown in Figure 1, and snRNA-seq clusters, determined from a 

separate clustering analysis of the snRNA-seq data alone shown in Figure S1. 

(E) Correspondence between MERFISH and snRNA-seq clusters, both determined from the 

integrated MERFISH and snRNA-seq clustering analysis. In (D) and (E), a multilayer perceptron 

neural network classifier was used to predict a MERFISH cluster identity for each cell measured 

in the snRNA-seq dataset. The fraction of cells from any given snRNA-seq cluster (columns) that 

was predicted to have each MERFISH cluster label (rows) was plotted. 
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Figure S3: Comparison of imputed genes with MERFISH-measured genes and with Allen 

Brain Institute in situ hybridization data.  

(A) Spatial plot of expression of marker genes for different excitatory, inhibitory, and medium 

spiny neurons, and non-neuronal cell types in measured MERFISH data, imputed gene 

expression, and corresponding Allen Institute for Brain Science (AIBS) in situ hybridization (ISH) 

data.  

(B) Spatial plots of imputed genes that were not measured in the MERFISH gene panel and 

corresponding AIBS ISH data. Genes in (B) were randomly selected from imputed genes with 

clear spatial patterns. The AIBS ISH data in (A) and (B) are taken from https://mouse.brain-

map.org/ (credit: Allen Institute), 
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Figure S4: Cell-cell proximity between different cell types.  

(Left) Enrichment of cell-cell proximity between different cell-types. Enrichment in proximity 

between any give pair of cell types, A and B, was computed as the Log2 (Fold change) in the 

frequency of A-B cell pairs within a 30 µm radius, relative to the average A-B cell-pair frequency 

in a background distribution where each cell was randomly shifted by up to 100 µm to disrupt the 

original spatial relationship between neighboring cells. Plot shows only cell-type pairs with an 

FDR-adjusted P-value < 0.05. (Right) Difference in enrichment of cell-cell proximity between 

young and old animals.  
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Figure S5: Gene modules analysis for astrocytes, microglia, and oligodendrocytes. 

(A, B, C) Top: Gene-gene correlation matrix for variable genes in astrocytes (A), microglia (B), 

and oligodendrocytes (C). Z-scored Pearson correlation coefficient for the expression levels of 

pairs of genes are shown and ordered by hierarchical clustering to show groups of genes with 
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correlated expression, which we termed gene modules. Middle: Top Gene Ontology (GO) or 

Kyoto Encyclopedia of Genes and Genomes (KEGG) terms enriched in modules (up to three 

terms from the top five terms are shown per module). Only modules with any enriched terms are 

shown. Development-related terms are colored green and immune-related terms are colored red. 

Bottom: Expression levels for each module (calculated as the mean expression of the genes 

included in the module) in young and old mice, sorted by average difference between young and 

old. Box plots show the distribution of each module’s expression across individual cells within a 

cell type grouped by age. Box shows median and interquartile range, whiskers show minimum 

and maximum, outliers are shown as fliers. * FDR-adjusted P-value < 0.05, from independent t-

test of module expression levels across cells between young and old mice.  
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 Figure S6: Molecular heterogeneity of activated astrocytes in pia and corpus callosum. 

(A) Left: UMAP plot of astrocytes colored by the age of cells. Middle: UMAP plot of astrocytes 

colored by the activation score of cells. Right: UMAP plot of astrocytes colored by the spatial 

location of activated cells (black: activated astrocytes in corpus callosum [CC]; Yellow: activated 

astrocytes in pia: Grey: all other astrocytes).  

(B, C) Relative expression levels of differentially expressed genes between activated astrocytes 

in pia vs corpus callosum, showing genes that are upregulated in pia relative to corpus callosum 

(B) and upregulated in corpus callosum vs pia (C). Activated cells were defined as having 

activation score greater than 1 standard deviation above the mean.  
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Figure S7: Comparison of cell-type compositions between –LPS and +LPS treatment 

conditions, and changes in gene expression during aging and in response to LPS 

treatment. 

(A) (Left) Visualization of clusters in an integrated UMAP space for cells measured in the –LPS 

condition and cells measured in the +LPS condition. Cells are colored by their cluster identities. 

(Right) Overlay of cells colored by –LPS or +LPS condition.  
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(B) Pie chart of major neuronal cell-type composition across the three different ages, for –LPS 

and +LPS conditions.  

(C) Pie chart of major non-neuronal cell-type composition across three different ages, for –LPS 

and +LPS conditions.  

(D) Quantification of changes in expression of individual genes for each cell type designated on 

the left, where alternating rows show the change in Z-scored log(gene expression) for LPS-related 

changes (comparing +LPS vs. –LPS, young mice) and aging-related changes (comparing young 

vs old mice, –LPS). Black circles mark genes that are upregulated in both conditions, magenta 

circles mark genes upregulated in response to LPS treatment only, and green circles mark genes 

upregulated in aging only. Only genes with change in Z-scored log(gene expression)  > 2 and 

FDR-adjusted P-value < 0.05 in at least one condition for at least on cell type are shown. 
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Figure S8: Spatial organization of cells after LPS treatment. 
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(A) Visualization of spatial organization of different neuronal and non-neuronal cell types across 

three different ages in +LPS condition, as in Figure 3A.  

(B) Quantification of fraction of cells in different anatomical regions in +LPS condition across three 

different ages, as in Figure 3B.  

(C) (Left) Enrichment of cell-cell proximity between different cell types for –LPS condition and 

+LPS condition in young animals. Enrichment is defined as in Figure S4. (Right) Difference in 

enrichment of cell-cell proximity between –LPS and +LPS condition in young animals. 
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Supplementary Table Captions 

Table S1: MERFISH codebooks for the cell-type marker gene and aging-related gene panels. 

The "Celltype Codebook" sheet contains the codebook for genes that are cell-type markers and 

the "Aging Codebook" sheet contains the codebook for aging-related genes. The first column 

lists the gene names. The following columns list the binary values for each of the 20 bits and 

each bit is indicated by name of the corresponding readout sequence. Barcodes used as blank 

controls are denoted by a gene name that begins with “Blank-”. 

Table S2: MERFISH encoding probes for the cell-type marker gene and aging-related gene 

panels. The "Celltype Encoding Probes" sheet contains encoding probes for genes related to 

cell type identity and the "Aging Encoding Probes" sheet contains encoding probes for aging-

related genes. The targeted gene name and encoding probe sequence are provided for each 

encoding probe.  

Table S3: MERFISH readout probes. For each readout probe, the bit number, readout probe 

sequence name, and readout probe sequence are provided. 
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