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Abstract

The impact of climate change on spring phenology poses risks to migratory birds, as
migration timing is controlled predominantly by endogenous mechanisms. Despite numerous
studies on internal cues controlling migration, the underlying genetic basis of migration timing
remains largely unknown. We investigated the genetic architecture of migration timing in a long-
distance migratory songbird (purple martin, Progne subis subis) by integrating genomic data
with an extensive dataset of direct migratory tracks. Our findings show migration has a
predictable genetic basis in martins and maps to a region on chromosome 1. This region contains
genes that could facilitate nocturnal flights and act as epigenetic modifiers. Additionally, we
found that genomic variance explained a higher proportion of historic than recent environmental
spring phenology data, which may suggest a reduction in the adaptive potential of migratory
behavior in contemporary populations. Overall, these results advance our understanding of the

genomic underpinnings of migration timing and could provide context for conservation action.

Introduction

Climate change affects spring phenology in temperate zones and could have significant,
negative impacts on migratory animals [1]. For example, migrants must synchronize arrival at
the breeding grounds to coincide with seasonal resources [2]. These resources are becoming
available earlier and it is unclear if migrants will be able to match these advances, potentially
leading to substantial population declines [3]. Migratory timing is largely endogenously
controlled [4], and thus knowledge of its genetic architecture (e.g., the identity, number, and
location of genetic loci involved) is essential for predicting if and how migrants will respond to

phenological changes that accompany climate change.
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Previous genetic studies provide important insights regarding migration timing, such as in
genes associated with circadian and circannual rhythms [5,6]; however, results vary across
species [7] and are limited to small portions of the genome. Another limitation associated with
earlier studies was an inability to quantify migratory behavior in the wild—prior to 2007, it was
not possible to track animals <100 g on migration [8] and, for example, most migratory avian
species fall into this size class. We overcame these limitations here, combining high resolution
genomic data with an extensive migration tracking dataset for purple martins (P.s. subis). The
purple martin is a Nearctic-neotropical migrant that travels over 7,000 km between North
America and South America [9] and exhibits extensive latitudinal variation in migration timing.
It is thus a powerful system to study migration genomics. For example, individuals breeding in
the southern edge of the range in Florida may arrive as early as mid-January, while their northern
counterparts in Alberta may arrive as late as June [10].

Our first objective was to examine the genomic architecture of migration timing by
assembling a reference genome for the purple martin and integrating sequencing data with light-
level geolocator tracks. We examined results from genome-wide association studies (GWAS),
polygenic scores (PGS), and genomic differentiation analyses. Our second objective was to
examine the adaptive potential of migration timing by comparing genomic variation associated
with historic and contemporary spring phenology. We reran our GWAS using environmental
proxies for spring timing and tested if the proportion of phenotypic variation explained by our
genomic data (hereafter “PVE”) was lower in contemporary datasets, which could suggest a
change in adaptive potential. This study expands our understanding of the whole-genome

contribution to migration and yields insight into the adaptability of migration timing behavior.
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Results

Reference and resequencing data

The final P. subis reference genome assembly based on long reads and linked reads was
1.17 Gb in length, consisted of 2,896 scaffolds, had an N50 scaffold length of 6.13 Mb and an
N50 contig length of 3.08 Mb. The annotation included 12,686 genes (SI Appendix, Table S1).
The assembly length was similar to other avian genomes, which are typically between 1.0—1.2
Gb [11]. BUSCO analysis revealed that the P. subis genome was relatively complete with 91%
of avian orthologs detected as complete sequences (89.1% being single-copy and 1.9% being
duplicated), which was in range of other non-model avian genomes [12]. We aligned
resequencing data for 87 individuals to this reference resulting in 4.6 million SNPs after filtering.
All these individuals were tracked on migration with light-level geolocators yielding precise

estimates for migratory timing.

Genomic architecture of migration timing

Birds in this study exhibited considerable latitudinal variation in migratory timing
(sampling locations in Table S2), ranging over 120 to 131 days for spring departure and arrival
dates (Figure S1). Spring departure and arrival locations are displayed in Figure 1, showing weak
migratory connectivity between breeding and wintering sites (i.e. mixing of breeding populations
at shared wintering areas) such as observed in Fraser et al. 2012 and Fraser et al. 2017 [9,13].
Estimates of PVE from Bayesian sparse linear mixed models (BSLMMs) [14] were high, with a
median value of 0.70 (89% ETI: 0.09-1.00). PGS estimated from linear mixed models [15] were
strongly correlated with spring timing (R? of 0.25, p = 1.4e"'*®). Through jackknife cross-

validation partitions, we assessed predictive power of the PGS model and found that birds with
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lower PGS deciles exhibited earlier migration timing compared with individuals in higher PGS
deciles with later migration timing (Figure 2a). BSLMMs did not identify any specific genomic
regions linked to migratory timing, except for one SNP with PIP = 0.18 (Figure S2), 79 kb
upstream of gene tsc-22. However, a survey of net genomic differentiation (AFst) between the
earliest and latest spring migrants in our dataset did reveal a region of elevated differentiation on
chromosome 1 (Figure 3). AF'st controls for processes unrelated to migration that could elevate
Fst (including population structure, see Methods). This elevation was additionally present in
comparisons of early and late migrants within populations in Florida (southernmost colony) and
Alberta (northernmost colony) (Figure 3b) suggesting population structure did not generate this
pattern. Reductions in nucleotide diversity and Tajima’s D indicative of a selective sweep are
also present in this region, which covers 2 Mb region and consist of 13 genes (Table S3)
including ppfia2 and nts, which may be related to sleep [16,17], and mettl25 and acss3 that may

serve as important epigenetic modifiers [18,19].

Genomic association with ecological spring indices

We extracted green-up [20] and first bloom [21] data for sites where purple martins were
tracked. Green-up data were available for all sites (US & Canada; 2001-2015); first bloom data
were available for US sites only but spanned a longer period (1981-2015). There was a strong
correlation between these environmental variables and spring migration timing (R = 0.76—0.90),
thus we used these variables as proxies for current and historic migration timing in our analyses.
Estimates of PVE were consistently higher in the historic datasets (green-up PVE = 0.98, SD =

0.06, 89% ETI = 0.91-1.00; first-bloom PVE = 0.99, SD = 0.07, 89% ETI = 0.91-1.00),
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compared to PVE in recent years (green-up PVE =0.79, SD = 0.3, 89% ETI = 0.07-1.00; first

bloom PVE = 0.89, SD = 0.16, 89% ETI = 0.52—-1.00) (Figure S3).

Discussion

We used one of the largest tracking datasets available for a long-distance migratory
songbird and a genome-wide SNP dataset to reveal the genetic underpinnings of migration
timing. Our results demonstrate a strong genetic basis to migration timing in the purple martin.
We discovered a previously unidentified 2 Mb genetically differentiated region on chromosome
1, illuminating components underlying migration timing. Additionally, lower PVE with recent
environmental data suggest a reduced adaptive potential with advancing spring phenology.

Phenotypes that vary across individuals are a result of both environmental and genetic
factors, and PVE represents the proportion of variance attributed to genetic factors. The large
PVE estimate (0.7) is evidence that variation in migration timing is largely determined by
genetics. The predictive utility of the polygenic model across multiple deciles showed it is
possible to predict early and late migrants using genetic variants, which could potentially aid in
estimating a birds’ phenotype in the wild. With overlapping wintering grounds among purple
martin colonies [9], the model may also help predict an individuals’ timing tendency in addition
to breeding region when captured during the winter. While the high genomic variation explaining
migratory timing does not preclude phenotypic plasticity, it suggests that changes in timing may
occur through microevolutionary processes. It is important to understand the source of
considerable genetic variation in migratory traits [24], and future work will inform how
influences such as standing genetic variation (presence of more than one allele at a locus in a

population) may play a role in facilitating rapid microevolutionary changes [25]. While our
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sample size limits our estimates of PVE (the ETIs were quite wide), our polygenic scores (PGS)
supported prediction of individual migration timing. Given the present sample size, it is
remarkable that a substantial proportion of variation was explained through genomics. Whether
this proportion could be even greater with larger sample sizes [22,23] could be determined in
future studies. However, collecting enough samples to capture strong power in tests of genomic
associations with phenotypes in field-based wildlife research will be challenging.

The small number of genomic loci in the GWAS significantly associated with spring
migration suggest this trait is controlled by many alleles of small effect, which may have been
undetected, or could have been located in assembly gaps [11]. However, elevated genomic
differentiation on chromosome 1 illuminates a potential connection between migration timing in
purple martins with some genes related to rest and epigenetic modifiers. Ppfia2 and nts are 2 of
the 13 genes located in this region. Ppfia2 has been linked to sleep and wakefulness in white-
crowned sparrows [16], and nts has been linked to sleep regulation in European mice [17]. While
purple martins are primarily diurnal migrants, they can incorporate both day and night flights on
spring migration [26], and the former genes could play a role in these nocturnal flights. Mett/25
and acss3 could mediate epigenetic changes in response to environmental cues important for
migratory timing; mett/25 encodes a methyltransferase that represses gene expression [18,19]
and acss3 produces acetyl-CoA which promotes gene expression by acetylating histones. Acetyl-
CoA is also important for generating, using, and storing energy [27]. While this study suggests
associations with these genes, further work could elucidate these mechanisms and their roles in
migration timing. While estimates of Fst are often considered bottom-up comparisons, we
compared extreme phenotypes while controlling for population differentiation to identify

genomic regions associated with migration timing. Results from this approach were further
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supported by a comparison of early and late migrants within populations that recovered a similar
elevated pattern of genomic differentiation.

Our comparison of contemporary and historical data on spring phenology suggests that
the adaptive potential of migration timing in purple martins may have declined in recent years,
with lower values of PVE in contemporary datasets. These reductions could derive from
selection for earlier arrival on the breeding grounds and will ultimately affect the amount of
genetic variation available for future change. Interpretation of these results requires caution (e.g.,
our analyses assume phenotypic plasticity has not changed, we are using environmental variables
as a proxy for migration timing and are using data from a small subset of populations). In
addition, environmental and genetic differences between the present day and when historical
spring phenology data were recorded (1981-1984 and 2001-2004) may have affected the
interactions between genotype, phenotype, and environment in ways not captured by the samples
collected more recently (2008 — 2015). Therefore, generalizability of GWAS and PVE over time
cannot be rigorously assessed with the present data. Nevertheless, the presence of this pattern in
our data set could be a signal of a broader underlying change in adaptive potential which should
be further investigated.

This study presents novel findings on migration timing, opening the door to
understanding components of the genomic architecture of migration timing in other long-
distance migrants. The strong genomic variation and significant regions associated with purple
martin migration timing could have important implications for adaptability in long-distance
migrants. If the genomic potential for adaptability has decreased in recent years, this could
hinder the ability of migrants to keep up with the pace of changing climates. Many portions of

the genome are conserved across other bird species and vertebrates [28] and climate change
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174  continues to affect migratory animals all over the world. Therefore, these findings bring us closer
175  to understanding a common basis for migration, which may have broad implications for a variety
176  of organisms.

177

178 Methods

179  Reference and resequencing data

180 The reference genome was assembled using PacBio long and 10X linked reads generated
181  for a female martin from Manitoba, Canada. We used FALCON [29,30] to create the initial

182  assembly, then polished and scaffolded the genome with ArrowGrid, Pilon, and ARKS

183  [31,32,33]. Then we annotated the genome through MAKER [34]. We used skimSeq (low-

184  coverage whole-genome sequencing) to generate resequencing data [35] for an additional 87
185  birds (average coverage 2.7x per sample). Missing genotypes were then imputed with Beagle
186  [36], using information from the reference, surrounding genotypes, linkage disequilibrium

187  structure, and haplotype blocks [37]. These included 45 male and 42 female blood samples

188  collected from 13 different breeding colonies across North America between 2008—2015 (Table
189  S2). We filtered SNPs for quality (QUAL>20, MQ>20), max-missing (20%), minor allele

190  frequency (MAF>0.05), Hard-Weinberg equilibrium, and biallelic sites. Details on assembly,
191  annotation, sequencing, and filtering are in supplementary information.

192

193  Light-level geolocator analysis

194 Light-level geolocators were mounted during the breeding season using leg-loop

195  backpack harnesses and retrieved through recapture in the following year. Purple martin

196  behavior of aerial foraging and use of open habitats makes light-level geolocators ideal for
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197  capturing sunrises and sunsets with minimal shading. The timing of these twilights is used to
198  estimate the daily locations of birds over the entire year, using the midpoint of rise-set events to
199  determine longitudes and day length for estimating latitudes [38]. We analyzed twilight times
200  with BAStag and GeoLight [39,40], producing estimated daily locations to obtain migratory
201  departure and arrival dates. Due to the correlation of departure with arrival timing for migratory
202  journeys, we ranked individuals in order of timing for both dates and combined these values to
203  determine overall timing phenotypes for spring migration.

204

205  Genomic architecture of migration timing

206 BSLMMs and LMMs were run using GEMMA [14], where we included the covariates of
207  sex, year, age, and the first principal component (PC1) from a PCA summarizing genetic

208  wvariation in our dataset. We summarized results from these runs for PVE and used posterior
209  inclusion probabilities (PIP) to identify specific SNPs with strong associations to the timing
210  phenotypes. PIP is the probability that the SNP is associated with the phenotypic variation [41]
211  and following [42] we considered SNPs with PIPs > 0.1 important. Polygenic models were

212 created using the PLINK v1.9 [43] and following Choi et al. (2020)’s PGS pipeline [44]. We
213 used VCFtools [45] to estimate F'st between the 10 earliest (originating from two Florida

214 colonies) and 10 latest (originating from two Alberta colonies and one Virginia colony) spring
215  migrants. Since this Fst could be elevated by processes unrelated to migration, including linked
216  background selection and population structure [46], we controlled for these potential effects by
217  subtracting Fst between Alberta and Florida (representing the northernmost and southernmost
218  breeding regions) from values estimated between extreme timing phenotypes. This approached

219  has been used in crows [47] and blackcaps [48] to isolate differentiation associated with specific
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220  phenotypes. Additionally, we estimated F'st between early and late migrants within Alberta and
221  Florida populations separately to examine if we could recover the same signature of elevated Fst
222 in the same genomic region.

223

224  Genomic association with ecological spring indices

225 Green-up data were extracted from MODIS [20] and first bloom dates from the USA

226  National Phenology Network [21]. We extracted data for each purple martin colony location over
227  all available years. We ran BSLMMs for “historic” (2001-2004 for green-up and 1981-1984 for
228  first bloom) and recent phenology data (up till 2015) and ran BSLMMs for each association test,
229  using year, PC1, and colony as covariates. PC1 controls for population structure and colony

230  accounts for the fact that birds from the same colony are assigned the same values for each

231  environmental variable each year. The green-up (MODIS) association used all 87 purple martin
232 individuals, and the first bloom (NPN) dates spanned 63 purple martin individuals (USA only).
233
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428  Figure 1. Purple martin breeding and wintering distribution (purple), including sampling sites
429  for 87 individuals in their North American breeding range (circles) and their respective South
430  American wintering destination before spring departure (triangles). Individuals from distinct
431  breeding colonies overlapping at the wintering grounds demonstrate weak connectivity between

432  breeding and wintering sites (such as observed in Fraser et al. 2012, 2017).
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436  Figure 2. (a) Polygenic scores of spring migration timing for purple martins (z = 87) colored in
437  order by latitude, and linear regression standard error is colored in gray. (b) Individuals in lowest
438  decile of predicated polygenic scores (PGS) had earlier migration timing compared with

439  individuals in higher deciles with later timing.
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Figure 3. (a) Net genetic differentiation (AFst) across autosomes in 5 kb non-overlapping
windows between earliest and latest spring migrants. The elevated region on chromosome 1 is
highlighted in orange, with plots examining this region to show (b) Fst within Alberta and within
Florida, (c) nucleotide diversity (m), (d) Tajima’s D, and (e) location of genes in this region as

black dots.
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