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Abstract 14 

The impact of climate change on spring phenology poses risks to migratory birds, as 15 

migration timing is controlled predominantly by endogenous mechanisms. Despite numerous 16 

studies on internal cues controlling migration, the underlying genetic basis of migration timing 17 

remains largely unknown. We investigated the genetic architecture of migration timing in a long-18 

distance migratory songbird (purple martin, Progne subis subis) by integrating genomic data 19 

with an extensive dataset of direct migratory tracks. Our findings show migration has a 20 

predictable genetic basis in martins and maps to a region on chromosome 1. This region contains 21 

genes that could facilitate nocturnal flights and act as epigenetic modifiers. Additionally, we 22 

found that genomic variance explained a higher proportion of historic than recent environmental 23 

spring phenology data, which may suggest a reduction in the adaptive potential of migratory 24 

behavior in contemporary populations. Overall, these results advance our understanding of the 25 

genomic underpinnings of migration timing and could provide context for conservation action. 26 

 27 

Introduction 28 

Climate change affects spring phenology in temperate zones and could have significant, 29 

negative impacts on migratory animals [1]. For example, migrants must synchronize arrival at 30 

the breeding grounds to coincide with seasonal resources [2]. These resources are becoming 31 

available earlier and it is unclear if migrants will be able to match these advances, potentially 32 

leading to substantial population declines [3]. Migratory timing is largely endogenously 33 

controlled [4], and thus knowledge of its genetic architecture (e.g., the identity, number, and 34 

location of genetic loci involved) is essential for predicting if and how migrants will respond to 35 

phenological changes that accompany climate change. 36 
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Previous genetic studies provide important insights regarding migration timing, such as in 37 

genes associated with circadian and circannual rhythms [5,6]; however, results vary across 38 

species [7] and are limited to small portions of the genome. Another limitation associated with 39 

earlier studies was an inability to quantify migratory behavior in the wild—prior to 2007, it was 40 

not possible to track animals <100 g on migration [8] and, for example, most migratory avian 41 

species fall into this size class. We overcame these limitations here, combining high resolution 42 

genomic data with an extensive migration tracking dataset for purple martins (P.s. subis). The 43 

purple martin is a Nearctic-neotropical migrant that travels over 7,000 km between North 44 

America and South America [9] and exhibits extensive latitudinal variation in migration timing. 45 

It is thus a powerful system to study migration genomics. For example, individuals breeding in 46 

the southern edge of the range in Florida may arrive as early as mid-January, while their northern 47 

counterparts in Alberta may arrive as late as June [10]. 48 

Our first objective was to examine the genomic architecture of migration timing by 49 

assembling a reference genome for the purple martin and integrating sequencing data with light-50 

level geolocator tracks. We examined results from genome-wide association studies (GWAS), 51 

polygenic scores (PGS), and genomic differentiation analyses. Our second objective was to 52 

examine the adaptive potential of migration timing by comparing genomic variation associated 53 

with historic and contemporary spring phenology. We reran our GWAS using environmental 54 

proxies for spring timing and tested if the proportion of phenotypic variation explained by our 55 

genomic data (hereafter “PVE”) was lower in contemporary datasets, which could suggest a 56 

change in adaptive potential. This study expands our understanding of the whole-genome 57 

contribution to migration and yields insight into the adaptability of migration timing behavior. 58 

 59 
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Results 60 

Reference and resequencing data  61 

The final P. subis reference genome assembly based on long reads and linked reads was 62 

1.17 Gb in length, consisted of 2,896 scaffolds, had an N50 scaffold length of 6.13 Mb and an 63 

N50 contig length of 3.08 Mb. The annotation included 12,686 genes (SI Appendix, Table S1). 64 

The assembly length was similar to other avian genomes, which are typically between 1.0–1.2 65 

Gb [11]. BUSCO analysis revealed that the P. subis genome was relatively complete with 91% 66 

of avian orthologs detected as complete sequences (89.1% being single-copy and 1.9% being 67 

duplicated), which was in range of other non-model avian genomes [12]. We aligned 68 

resequencing data for 87 individuals to this reference resulting in 4.6 million SNPs after filtering. 69 

All these individuals were tracked on migration with light-level geolocators yielding precise 70 

estimates for migratory timing. 71 

 72 

Genomic architecture of migration timing 73 

  Birds in this study exhibited considerable latitudinal variation in migratory timing 74 

(sampling locations in Table S2), ranging over 120 to 131 days for spring departure and arrival 75 

dates (Figure S1). Spring departure and arrival locations are displayed in Figure 1, showing weak 76 

migratory connectivity between breeding and wintering sites (i.e. mixing of breeding populations 77 

at shared wintering areas) such as observed in Fraser et al. 2012 and Fraser et al. 2017 [9,13]. 78 

Estimates of PVE from Bayesian sparse linear mixed models (BSLMMs) [14] were high, with a 79 

median value of 0.70 (89% ETI: 0.09–1.00). PGS estimated from linear mixed models [15] were 80 

strongly correlated with spring timing (R2 of 0.25, p = 1.4e-148). Through jackknife cross-81 

validation partitions, we assessed predictive power of the PGS model and found that birds with 82 
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lower PGS deciles exhibited earlier migration timing compared with individuals in higher PGS 83 

deciles with later migration timing (Figure 2a). BSLMMs did not identify any specific genomic 84 

regions linked to migratory timing, except for one SNP with PIP = 0.18 (Figure S2), 79 kb 85 

upstream of gene tsc-22. However, a survey of net genomic differentiation (ΔFST) between the 86 

earliest and latest spring migrants in our dataset did reveal a region of elevated differentiation on 87 

chromosome 1 (Figure 3). ΔFST controls for processes unrelated to migration that could elevate 88 

FST (including population structure, see Methods). This elevation was additionally present in 89 

comparisons of early and late migrants within populations in Florida (southernmost colony) and 90 

Alberta (northernmost colony) (Figure 3b) suggesting population structure did not generate this 91 

pattern. Reductions in nucleotide diversity and Tajima’s D indicative of a selective sweep are 92 

also present in this region, which covers 2 Mb region and consist of 13 genes (Table S3) 93 

including ppfia2 and nts, which may be related to sleep [16,17], and mettl25 and acss3 that may 94 

serve as important epigenetic modifiers [18,19]. 95 

 96 

Genomic association with ecological spring indices 97 

We extracted green-up [20] and first bloom [21] data for sites where purple martins were 98 

tracked. Green-up data were available for all sites (US & Canada; 2001–2015); first bloom data 99 

were available for US sites only but spanned a longer period (1981–2015). There was a strong 100 

correlation between these environmental variables and spring migration timing (R = 0.76–0.90), 101 

thus we used these variables as proxies for current and historic migration timing in our analyses. 102 

Estimates of PVE were consistently higher in the historic datasets (green-up PVE = 0.98, SD = 103 

0.06, 89% ETI = 0.91–1.00; first-bloom PVE = 0.99, SD = 0.07, 89% ETI = 0.91–1.00), 104 
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compared to PVE in recent years (green-up PVE = 0.79, SD = 0.3, 89% ETI = 0.07–1.00; first 105 

bloom PVE = 0.89, SD = 0.16, 89% ETI = 0.52–1.00) (Figure S3).  106 

 107 

Discussion 108 

We used one of the largest tracking datasets available for a long-distance migratory 109 

songbird and a genome-wide SNP dataset to reveal the genetic underpinnings of migration 110 

timing. Our results demonstrate a strong genetic basis to migration timing in the purple martin. 111 

We discovered a previously unidentified 2 Mb genetically differentiated region on chromosome 112 

1, illuminating components underlying migration timing. Additionally, lower PVE with recent 113 

environmental data suggest a reduced adaptive potential with advancing spring phenology. 114 

Phenotypes that vary across individuals are a result of both environmental and genetic 115 

factors, and PVE represents the proportion of variance attributed to genetic factors. The large 116 

PVE estimate (0.7) is evidence that variation in migration timing is largely determined by 117 

genetics. The predictive utility of the polygenic model across multiple deciles showed it is 118 

possible to predict early and late migrants using genetic variants, which could potentially aid in 119 

estimating a birds’ phenotype in the wild. With overlapping wintering grounds among purple 120 

martin colonies [9], the model may also help predict an individuals’ timing tendency in addition 121 

to breeding region when captured during the winter. While the high genomic variation explaining 122 

migratory timing does not preclude phenotypic plasticity, it suggests that changes in timing may 123 

occur through microevolutionary processes. It is important to understand the source of 124 

considerable genetic variation in migratory traits [24], and future work will inform how 125 

influences such as standing genetic variation (presence of more than one allele at a locus in a 126 

population) may play a role in facilitating rapid microevolutionary changes [25]. While our 127 
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sample size limits our estimates of PVE (the ETIs were quite wide), our polygenic scores (PGS) 128 

supported prediction of individual migration timing. Given the present sample size, it is 129 

remarkable that a substantial proportion of variation was explained through genomics. Whether 130 

this proportion could be even greater with larger sample sizes [22,23] could be determined in 131 

future studies. However, collecting enough samples to capture strong power in tests of genomic 132 

associations with phenotypes in field-based wildlife research will be challenging. 133 

The small number of genomic loci in the GWAS significantly associated with spring 134 

migration suggest this trait is controlled by many alleles of small effect, which may have been 135 

undetected, or could have been located in assembly gaps [11]. However, elevated genomic 136 

differentiation on chromosome 1 illuminates a potential connection between migration timing in 137 

purple martins with some genes related to rest and epigenetic modifiers. Ppfia2 and nts are 2 of 138 

the 13 genes located in this region. Ppfia2 has been linked to sleep and wakefulness in white-139 

crowned sparrows [16], and nts has been linked to sleep regulation in European mice [17]. While 140 

purple martins are primarily diurnal migrants, they can incorporate both day and night flights on 141 

spring migration [26], and the former genes could play a role in these nocturnal flights. Mettl25 142 

and acss3 could mediate epigenetic changes in response to environmental cues important for 143 

migratory timing; mettl25 encodes a methyltransferase that represses gene expression [18,19] 144 

and acss3 produces acetyl-CoA which promotes gene expression by acetylating histones. Acetyl-145 

CoA is also important for generating, using, and storing energy [27]. While this study suggests 146 

associations with these genes, further work could elucidate these mechanisms and their roles in 147 

migration timing. While estimates of FST are often considered bottom-up comparisons, we 148 

compared extreme phenotypes while controlling for population differentiation to identify 149 

genomic regions associated with migration timing. Results from this approach were further 150 
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supported by a comparison of early and late migrants within populations that recovered a similar 151 

elevated pattern of genomic differentiation.  152 

Our comparison of contemporary and historical data on spring phenology suggests that 153 

the adaptive potential of migration timing in purple martins may have declined in recent years, 154 

with lower values of PVE in contemporary datasets. These reductions could derive from 155 

selection for earlier arrival on the breeding grounds and will ultimately affect the amount of 156 

genetic variation available for future change. Interpretation of these results requires caution (e.g., 157 

our analyses assume phenotypic plasticity has not changed, we are using environmental variables 158 

as a proxy for migration timing and are using data from a small subset of populations). In 159 

addition, environmental and genetic differences between the present day and when historical 160 

spring phenology data were recorded (1981–1984 and 2001–2004) may have affected the 161 

interactions between genotype, phenotype, and environment in ways not captured by the samples 162 

collected more recently (2008 – 2015). Therefore, generalizability of GWAS and PVE over time 163 

cannot be rigorously assessed with the present data. Nevertheless, the presence of this pattern in 164 

our data set could be a signal of a broader underlying change in adaptive potential which should 165 

be further investigated. 166 

This study presents novel findings on migration timing, opening the door to 167 

understanding components of the genomic architecture of migration timing in other long-168 

distance migrants. The strong genomic variation and significant regions associated with purple 169 

martin migration timing could have important implications for adaptability in long-distance 170 

migrants. If the genomic potential for adaptability has decreased in recent years, this could 171 

hinder the ability of migrants to keep up with the pace of changing climates. Many portions of 172 

the genome are conserved across other bird species and vertebrates [28] and climate change 173 
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continues to affect migratory animals all over the world. Therefore, these findings bring us closer 174 

to understanding a common basis for migration, which may have broad implications for a variety 175 

of organisms. 176 

 177 

Methods 178 

Reference and resequencing data  179 

The reference genome was assembled using PacBio long and 10X linked reads generated 180 

for a female martin from Manitoba, Canada. We used FALCON [29,30] to create the initial 181 

assembly, then polished and scaffolded the genome with ArrowGrid, Pilon, and ARKS 182 

[31,32,33]. Then we annotated the genome through MAKER [34]. We used skimSeq (low-183 

coverage whole-genome sequencing) to generate resequencing data [35] for an additional 87 184 

birds (average coverage 2.7x per sample). Missing genotypes were then imputed with Beagle 185 

[36], using information from the reference, surrounding genotypes, linkage disequilibrium 186 

structure, and haplotype blocks [37]. These included 45 male and 42 female blood samples 187 

collected from 13 different breeding colonies across North America between 2008–2015 (Table 188 

S2). We filtered SNPs for quality (QUAL>20, MQ>20), max-missing (20%), minor allele 189 

frequency (MAF>0.05), Hard-Weinberg equilibrium, and biallelic sites. Details on assembly, 190 

annotation, sequencing, and filtering are in supplementary information.  191 

 192 

Light-level geolocator analysis 193 

Light-level geolocators were mounted during the breeding season using leg-loop 194 

backpack harnesses and retrieved through recapture in the following year. Purple martin 195 

behavior of aerial foraging and use of open habitats makes light-level geolocators ideal for 196 
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capturing sunrises and sunsets with minimal shading. The timing of these twilights is used to 197 

estimate the daily locations of birds over the entire year, using the midpoint of rise-set events to 198 

determine longitudes and day length for estimating latitudes [38]. We analyzed twilight times 199 

with BAStag and GeoLight [39,40], producing estimated daily locations to obtain migratory 200 

departure and arrival dates. Due to the correlation of departure with arrival timing for migratory 201 

journeys, we ranked individuals in order of timing for both dates and combined these values to 202 

determine overall timing phenotypes for spring migration. 203 

 204 

Genomic architecture of migration timing 205 

BSLMMs and LMMs were run using GEMMA [14], where we included the covariates of 206 

sex, year, age, and the first principal component (PC1) from a PCA summarizing genetic 207 

variation in our dataset. We summarized results from these runs for PVE and used posterior 208 

inclusion probabilities (PIP) to identify specific SNPs with strong associations to the timing 209 

phenotypes. PIP is the probability that the SNP is associated with the phenotypic variation [41] 210 

and following [42] we considered SNPs with PIPs > 0.1 important. Polygenic models were 211 

created using the PLINK v1.9 [43] and following Choi et al. (2020)’s PGS pipeline [44]. We 212 

used VCFtools [45] to estimate FST between the 10 earliest (originating from two Florida 213 

colonies) and 10 latest (originating from two Alberta colonies and one Virginia colony) spring 214 

migrants. Since this FST could be elevated by processes unrelated to migration, including linked 215 

background selection and population structure [46], we controlled for these potential effects by 216 

subtracting FST between Alberta and Florida (representing the northernmost and southernmost 217 

breeding regions) from values estimated between extreme timing phenotypes. This approached 218 

has been used in crows [47] and blackcaps [48] to isolate differentiation associated with specific 219 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.508039doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.508039
http://creativecommons.org/licenses/by-nc-nd/4.0/


phenotypes. Additionally, we estimated FST between early and late migrants within Alberta and 220 

Florida populations separately to examine if we could recover the same signature of elevated FST 221 

in the same genomic region. 222 

 223 

Genomic association with ecological spring indices 224 

Green-up data were extracted from MODIS [20] and first bloom dates from the USA 225 

National Phenology Network [21]. We extracted data for each purple martin colony location over 226 

all available years. We ran BSLMMs for “historic” (2001-2004 for green-up and 1981-1984 for 227 

first bloom) and recent phenology data (up till 2015) and ran BSLMMs for each association test, 228 

using year, PC1, and colony as covariates. PC1 controls for population structure and colony 229 

accounts for the fact that birds from the same colony are assigned the same values for each 230 

environmental variable each year. The green-up (MODIS) association used all 87 purple martin 231 

individuals, and the first bloom (NPN) dates spanned 63 purple martin individuals (USA only). 232 

 233 
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Figures 426 

 427 

Figure 1. Purple martin breeding and wintering distribution (purple), including sampling sites 428 

for 87 individuals in their North American breeding range (circles) and their respective South 429 

American wintering destination before spring departure (triangles). Individuals from distinct 430 

breeding colonies overlapping at the wintering grounds demonstrate weak connectivity between 431 

breeding and wintering sites (such as observed in Fraser et al. 2012, 2017). 432 

  433 

 434 
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 435 

Figure 2. (a) Polygenic scores of spring migration timing for purple martins (n = 87) colored in 436 

order by latitude, and linear regression standard error is colored in gray. (b) Individuals in lowest 437 

decile of predicated polygenic scores (PGS) had earlier migration timing compared with 438 

individuals in higher deciles with later timing. 439 
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 440 

Figure 3. (a) Net genetic differentiation (ΔFST) across autosomes in 5 kb non-overlapping 441 

windows between earliest and latest spring migrants. The elevated region on chromosome 1 is 442 

highlighted in orange, with plots examining this region to show (b) FST within Alberta and within 443 

Florida, (c) nucleotide diversity (π), (d) Tajima’s D, and (e) location of genes in this region as 444 

black dots.  445 
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