

1 **Genomic architecture of migration timing in a long-distance migratory songbird**

2

3 Evelien de Greef^{1*}, Alexander Suh^{2,3}, Matt J. Thorstensen¹, Kira E. Delmore,^{4†} Kevin C. Fraser^{1†}

4

5 ¹Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2.

6 ²Department of Organismal Biology, Uppsala University, Uppsala, Sweden SE-752 36.

7 ³School of Biological Sciences, University of East Anglia, Norwich, United Kingdom NR4 7TU.

8 ⁴Department of Biology, Texas A&M University, College Station, Texas 77843.

9

10 *corresponding author: Evelien de Greef

11 †contributed equally

12

13 **Email:** eveliendegreef@gmail.com

14 Abstract

15 The impact of climate change on spring phenology poses risks to migratory birds, as
16 migration timing is controlled predominantly by endogenous mechanisms. Despite numerous
17 studies on internal cues controlling migration, the underlying genetic basis of migration timing
18 remains largely unknown. We investigated the genetic architecture of migration timing in a long-
19 distance migratory songbird (purple martin, *Progne subis subis*) by integrating genomic data
20 with an extensive dataset of direct migratory tracks. Our findings show migration has a
21 predictable genetic basis in martins and maps to a region on chromosome 1. This region contains
22 genes that could facilitate nocturnal flights and act as epigenetic modifiers. Additionally, we
23 found that genomic variance explained a higher proportion of historic than recent environmental
24 spring phenology data, which may suggest a reduction in the adaptive potential of migratory
25 behavior in contemporary populations. Overall, these results advance our understanding of the
26 genomic underpinnings of migration timing and could provide context for conservation action.

27

28 Introduction

29 Climate change affects spring phenology in temperate zones and could have significant,
30 negative impacts on migratory animals [1]. For example, migrants must synchronize arrival at
31 the breeding grounds to coincide with seasonal resources [2]. These resources are becoming
32 available earlier and it is unclear if migrants will be able to match these advances, potentially
33 leading to substantial population declines [3]. Migratory timing is largely endogenously
34 controlled [4], and thus knowledge of its genetic architecture (e.g., the identity, number, and
35 location of genetic loci involved) is essential for predicting if and how migrants will respond to
36 phenological changes that accompany climate change.

37 Previous genetic studies provide important insights regarding migration timing, such as in
38 genes associated with circadian and circannual rhythms [5,6]; however, results vary across
39 species [7] and are limited to small portions of the genome. Another limitation associated with
40 earlier studies was an inability to quantify migratory behavior in the wild—prior to 2007, it was
41 not possible to track animals <100 g on migration [8] and, for example, most migratory avian
42 species fall into this size class. We overcame these limitations here, combining high resolution
43 genomic data with an extensive migration tracking dataset for purple martins (*P.s. subis*). The
44 purple martin is a Nearctic-neotropical migrant that travels over 7,000 km between North
45 America and South America [9] and exhibits extensive latitudinal variation in migration timing.
46 It is thus a powerful system to study migration genomics. For example, individuals breeding in
47 the southern edge of the range in Florida may arrive as early as mid-January, while their northern
48 counterparts in Alberta may arrive as late as June [10].

49 Our first objective was to examine the genomic architecture of migration timing by
50 assembling a reference genome for the purple martin and integrating sequencing data with light-
51 level geolocator tracks. We examined results from genome-wide association studies (GWAS),
52 polygenic scores (PGS), and genomic differentiation analyses. Our second objective was to
53 examine the adaptive potential of migration timing by comparing genomic variation associated
54 with historic and contemporary spring phenology. We reran our GWAS using environmental
55 proxies for spring timing and tested if the proportion of phenotypic variation explained by our
56 genomic data (hereafter “PVE”) was lower in contemporary datasets, which could suggest a
57 change in adaptive potential. This study expands our understanding of the whole-genome
58 contribution to migration and yields insight into the adaptability of migration timing behavior.

59

60 **Results**

61 **Reference and resequencing data**

62 The final *P. subis* reference genome assembly based on long reads and linked reads was
63 1.17 Gb in length, consisted of 2,896 scaffolds, had an N50 scaffold length of 6.13 Mb and an
64 N50 contig length of 3.08 Mb. The annotation included 12,686 genes (SI Appendix, Table S1).
65 The assembly length was similar to other avian genomes, which are typically between 1.0–1.2
66 Gb [11]. BUSCO analysis revealed that the *P. subis* genome was relatively complete with 91%
67 of avian orthologs detected as complete sequences (89.1% being single-copy and 1.9% being
68 duplicated), which was in range of other non-model avian genomes [12]. We aligned
69 resequencing data for 87 individuals to this reference resulting in 4.6 million SNPs after filtering.
70 All these individuals were tracked on migration with light-level geolocators yielding precise
71 estimates for migratory timing.

72

73 **Genomic architecture of migration timing**

74 Birds in this study exhibited considerable latitudinal variation in migratory timing
75 (sampling locations in Table S2), ranging over 120 to 131 days for spring departure and arrival
76 dates (Figure S1). Spring departure and arrival locations are displayed in Figure 1, showing weak
77 migratory connectivity between breeding and wintering sites (i.e. mixing of breeding populations
78 at shared wintering areas) such as observed in Fraser et al. 2012 and Fraser et al. 2017 [9,13].
79 Estimates of PVE from Bayesian sparse linear mixed models (BSLMMs) [14] were high, with a
80 median value of 0.70 (89% ETI: 0.09–1.00). PGS estimated from linear mixed models [15] were
81 strongly correlated with spring timing (R^2 of 0.25, $p = 1.4e^{-148}$). Through jackknife cross-
82 validation partitions, we assessed predictive power of the PGS model and found that birds with

83 lower PGS deciles exhibited earlier migration timing compared with individuals in higher PGS
84 deciles with later migration timing (Figure 2a). BSLMMs did not identify any specific genomic
85 regions linked to migratory timing, except for one SNP with PIP = 0.18 (Figure S2), 79 kb
86 upstream of gene *tsc-22*. However, a survey of net genomic differentiation (ΔF_{ST}) between the
87 earliest and latest spring migrants in our dataset did reveal a region of elevated differentiation on
88 chromosome 1 (Figure 3). ΔF_{ST} controls for processes unrelated to migration that could elevate
89 F_{ST} (including population structure, see Methods). This elevation was additionally present in
90 comparisons of early and late migrants within populations in Florida (southernmost colony) and
91 Alberta (northernmost colony) (Figure 3b) suggesting population structure did not generate this
92 pattern. Reductions in nucleotide diversity and Tajima's D indicative of a selective sweep are
93 also present in this region, which covers 2 Mb region and consist of 13 genes (Table S3)
94 including *ppfia2* and *nts*, which may be related to sleep [16,17], and *mettl25* and *acss3* that may
95 serve as important epigenetic modifiers [18,19].

96

97 **Genomic association with ecological spring indices**

98 We extracted green-up [20] and first bloom [21] data for sites where purple martins were
99 tracked. Green-up data were available for all sites (US & Canada; 2001–2015); first bloom data
100 were available for US sites only but spanned a longer period (1981–2015). There was a strong
101 correlation between these environmental variables and spring migration timing ($R = 0.76–0.90$),
102 thus we used these variables as proxies for current and historic migration timing in our analyses.
103 Estimates of PVE were consistently higher in the historic datasets (green-up PVE = 0.98, SD =
104 0.06, 89% ETI = 0.91–1.00; first-bloom PVE = 0.99, SD = 0.07, 89% ETI = 0.91–1.00),

105 compared to PVE in recent years (green-up PVE = 0.79, SD = 0.3, 89% ETI = 0.07–1.00; first
106 bloom PVE = 0.89, SD = 0.16, 89% ETI = 0.52–1.00) (Figure S3).

107

108 **Discussion**

109 We used one of the largest tracking datasets available for a long-distance migratory
110 songbird and a genome-wide SNP dataset to reveal the genetic underpinnings of migration
111 timing. Our results demonstrate a strong genetic basis to migration timing in the purple martin.
112 We discovered a previously unidentified 2 Mb genetically differentiated region on chromosome
113 1, illuminating components underlying migration timing. Additionally, lower PVE with recent
114 environmental data suggest a reduced adaptive potential with advancing spring phenology.

115 Phenotypes that vary across individuals are a result of both environmental and genetic
116 factors, and PVE represents the proportion of variance attributed to genetic factors. The large
117 PVE estimate (0.7) is evidence that variation in migration timing is largely determined by
118 genetics. The predictive utility of the polygenic model across multiple deciles showed it is
119 possible to predict early and late migrants using genetic variants, which could potentially aid in
120 estimating a birds' phenotype in the wild. With overlapping wintering grounds among purple
121 martin colonies [9], the model may also help predict an individuals' timing tendency in addition
122 to breeding region when captured during the winter. While the high genomic variation explaining
123 migratory timing does not preclude phenotypic plasticity, it suggests that changes in timing may
124 occur through microevolutionary processes. It is important to understand the source of
125 considerable genetic variation in migratory traits [24], and future work will inform how
126 influences such as standing genetic variation (presence of more than one allele at a locus in a
127 population) may play a role in facilitating rapid microevolutionary changes [25]. While our

128 sample size limits our estimates of PVE (the ETIs were quite wide), our polygenic scores (PGS)
129 supported prediction of individual migration timing. Given the present sample size, it is
130 remarkable that a substantial proportion of variation was explained through genomics. Whether
131 this proportion could be even greater with larger sample sizes [22,23] could be determined in
132 future studies. However, collecting enough samples to capture strong power in tests of genomic
133 associations with phenotypes in field-based wildlife research will be challenging.

134 The small number of genomic loci in the GWAS significantly associated with spring
135 migration suggest this trait is controlled by many alleles of small effect, which may have been
136 undetected, or could have been located in assembly gaps [11]. However, elevated genomic
137 differentiation on chromosome 1 illuminates a potential connection between migration timing in
138 purple martins with some genes related to rest and epigenetic modifiers. *Ppfia2* and *nts* are 2 of
139 the 13 genes located in this region. *Ppfia2* has been linked to sleep and wakefulness in white-
140 crowned sparrows [16], and *nts* has been linked to sleep regulation in European mice [17]. While
141 purple martins are primarily diurnal migrants, they can incorporate both day and night flights on
142 spring migration [26], and the former genes could play a role in these nocturnal flights. *Mettl25*
143 and *acss3* could mediate epigenetic changes in response to environmental cues important for
144 migratory timing; *mettl25* encodes a methyltransferase that represses gene expression [18,19]
145 and *acss3* produces acetyl-CoA which promotes gene expression by acetylating histones. Acetyl-
146 CoA is also important for generating, using, and storing energy [27]. While this study suggests
147 associations with these genes, further work could elucidate these mechanisms and their roles in
148 migration timing. While estimates of F_{ST} are often considered bottom-up comparisons, we
149 compared extreme phenotypes while controlling for population differentiation to identify
150 genomic regions associated with migration timing. Results from this approach were further

151 supported by a comparison of early and late migrants within populations that recovered a similar
152 elevated pattern of genomic differentiation.

153 Our comparison of contemporary and historical data on spring phenology suggests that
154 the adaptive potential of migration timing in purple martins may have declined in recent years,
155 with lower values of PVE in contemporary datasets. These reductions could derive from
156 selection for earlier arrival on the breeding grounds and will ultimately affect the amount of
157 genetic variation available for future change. Interpretation of these results requires caution (e.g.,
158 our analyses assume phenotypic plasticity has not changed, we are using environmental variables
159 as a proxy for migration timing and are using data from a small subset of populations). In
160 addition, environmental and genetic differences between the present day and when historical
161 spring phenology data were recorded (1981–1984 and 2001–2004) may have affected the
162 interactions between genotype, phenotype, and environment in ways not captured by the samples
163 collected more recently (2008 – 2015). Therefore, generalizability of GWAS and PVE over time
164 cannot be rigorously assessed with the present data. Nevertheless, the presence of this pattern in
165 our data set could be a signal of a broader underlying change in adaptive potential which should
166 be further investigated.

167 This study presents novel findings on migration timing, opening the door to
168 understanding components of the genomic architecture of migration timing in other long-
169 distance migrants. The strong genomic variation and significant regions associated with purple
170 martin migration timing could have important implications for adaptability in long-distance
171 migrants. If the genomic potential for adaptability has decreased in recent years, this could
172 hinder the ability of migrants to keep up with the pace of changing climates. Many portions of
173 the genome are conserved across other bird species and vertebrates [28] and climate change

174 continues to affect migratory animals all over the world. Therefore, these findings bring us closer
175 to understanding a common basis for migration, which may have broad implications for a variety
176 of organisms.

177

178 **Methods**

179 **Reference and resequencing data**

180 The reference genome was assembled using PacBio long and 10X linked reads generated
181 for a female martin from Manitoba, Canada. We used FALCON [29,30] to create the initial
182 assembly, then polished and scaffolded the genome with ArrowGrid, Pilon, and ARKS
183 [31,32,33]. Then we annotated the genome through MAKER [34]. We used skimSeq (low-
184 coverage whole-genome sequencing) to generate resequencing data [35] for an additional 87
185 birds (average coverage 2.7x per sample). Missing genotypes were then imputed with Beagle
186 [36], using information from the reference, surrounding genotypes, linkage disequilibrium
187 structure, and haplotype blocks [37]. These included 45 male and 42 female blood samples
188 collected from 13 different breeding colonies across North America between 2008–2015 (Table
189 S2). We filtered SNPs for quality (QUAL>20, MQ>20), max-missing (20%), minor allele
190 frequency (MAF>0.05), Hard-Weinberg equilibrium, and biallelic sites. Details on assembly,
191 annotation, sequencing, and filtering are in supplementary information.

192

193 **Light-level geolocator analysis**

194 Light-level geolocators were mounted during the breeding season using leg-loop
195 backpack harnesses and retrieved through recapture in the following year. Purple martin
196 behavior of aerial foraging and use of open habitats makes light-level geolocators ideal for

197 capturing sunrises and sunsets with minimal shading. The timing of these twilights is used to
198 estimate the daily locations of birds over the entire year, using the midpoint of rise-set events to
199 determine longitudes and day length for estimating latitudes [38]. We analyzed twilight times
200 with BAStag and GeoLight [39,40], producing estimated daily locations to obtain migratory
201 departure and arrival dates. Due to the correlation of departure with arrival timing for migratory
202 journeys, we ranked individuals in order of timing for both dates and combined these values to
203 determine overall timing phenotypes for spring migration.

204

205 **Genomic architecture of migration timing**

206 BSLMMs and LMMs were run using GEMMA [14], where we included the covariates of
207 sex, year, age, and the first principal component (PC1) from a PCA summarizing genetic
208 variation in our dataset. We summarized results from these runs for PVE and used posterior
209 inclusion probabilities (PIP) to identify specific SNPs with strong associations to the timing
210 phenotypes. PIP is the probability that the SNP is associated with the phenotypic variation [41]
211 and following [42] we considered SNPs with PIPs > 0.1 important. Polygenic models were
212 created using the PLINK v1.9 [43] and following Choi et al. (2020)'s PGS pipeline [44]. We
213 used VCFtools [45] to estimate F_{ST} between the 10 earliest (originating from two Florida
214 colonies) and 10 latest (originating from two Alberta colonies and one Virginia colony) spring
215 migrants. Since this F_{ST} could be elevated by processes unrelated to migration, including linked
216 background selection and population structure [46], we controlled for these potential effects by
217 subtracting F_{ST} between Alberta and Florida (representing the northernmost and southernmost
218 breeding regions) from values estimated between extreme timing phenotypes. This approached
219 has been used in crows [47] and blackcaps [48] to isolate differentiation associated with specific

220 phenotypes. Additionally, we estimated F_{ST} between early and late migrants within Alberta and
221 Florida populations separately to examine if we could recover the same signature of elevated F_{ST}
222 in the same genomic region.

223

224 **Genomic association with ecological spring indices**

225 Green-up data were extracted from MODIS [20] and first bloom dates from the USA
226 National Phenology Network [21]. We extracted data for each purple martin colony location over
227 all available years. We ran BSLMMs for “historic” (2001-2004 for green-up and 1981-1984 for
228 first bloom) and recent phenology data (up till 2015) and ran BSLMMs for each association test,
229 using year, PC1, and colony as covariates. PC1 controls for population structure and colony
230 accounts for the fact that birds from the same colony are assigned the same values for each
231 environmental variable each year. The green-up (MODIS) association used all 87 purple martin
232 individuals, and the first bloom (NPN) dates spanned 63 purple martin individuals (USA only).

233

234 **References**

- 235 1. Walther, G. *et al.* Ecological response to recent climate change. *Nature* **416**, 389–395
236 (2002).
- 237 2. Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological
238 responses to climate change. *Nature Climate Change* **8**, 224–228 (2018).
- 239 3. Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population
240 declines in a long-distance migratory bird. *Nature* **441**, 81–83 (2006).
- 241 4. Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. *Trends
242 in Ecology and Evolution* **26**, 561–569 (2011).
- 243 5. Caprioli, M. *et al.* Clock gene variation is associated with breeding phenology and maybe
244 under directional selection in the migratory barn swallow. *PLoS ONE* **7**, e35140 (2012).

245

250 6. Mettler, R., Segelbacher, G. & Schaefer, M. H. Interactions between a candidate gene for
251 migration (ADCYAP1), morphology and sex predict spring arrival in blackcap
252 populations. *PLoS ONE* **10**, e0144587 (2015).

253
254 7. Peterson, M. P. *et al.* Variation in candidate genes CLOCK and ADCYAP1 does not
255 consistently predict differences in migratory behavior in the songbird genus Junco.
256 *F1000Research* **2** (2013).

257
258 8. McKinnon, E. A. & Love, O. P. Ten years tracking the migrations of small landbirds:
259 Lessons learned in the golden age of bio-logging. *The Auk* **135**, 834–856 (2018).

260
261 9. Fraser, K. C. *et al.*, Continent-wide tracking to determine migratory connectivity and
262 tropical habitat associations of a declining aerial insectivore. *Proc. R. Soc. B.* **279**, 4901–
263 4906 (2012).

264
265 10. Neufeld, L. R., Muthukumarana, S., Fischer, J. D., Ray, J. D., Siegrist, J. & Fraser, K. C.
266 Breeding latitude is associated with the timing of nesting and migration around the
267 annual calendar among purple martin *Progne subis* populations. *Journal of Ornithology*
268 162:1009-1024 (2021).

269
270 11. Peona, V. *et al.* Identifying the causes and consequences of assembly gaps using a
271 multiplatform genome assembly of a bird-of-paradise. *Molecular Ecology* **21**(1), 263-286
272 (2020).

273
274 12. Coelho, L. A., Musher, L. J., & Cracraft, J. A Multireference-Based Whole Genome
275 Assembly for the Obligate Ant-Following Antbird, *Rhegmatorhina melanosticta*
276 (*Thamnophilidae*). *Diversity*, **11**(19), 144 (2019).

277
278 13. Fraser, K. C. *et al.*, Determining fine-scale migratory connectivity and habitat selection
279 for a migratory songbird by using new GPS technology. *Journal of Avian Biology* **48**,
280 001-007 (2017).

281
282 14. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear
283 mixed models. *PLoS Genetics* **9**, e1003264 (2013).

284
285 15. Fuller, Z. L. *et al.* Population genetics of the coral *Acropora millepora*: Towards a
286 genomic predictor of bleaching. *Science* **369**(6501). 2019

287
288 16. Jones, S., Pfister-Genskow, M. Benca, R. M. & Cirelli, C. Molecular correlates of sleep
289 and wakefulness in the brain of the white-crowned sparrow. *Journal of Neurochemistry*
290 **105**, 46-62 (2008).

291
292 17. Ma, C. *et al.* Sleep regulation by neurotensinergic neurons in a thalamo-amygda circuit.
293 *Neron* **103** (2019).

294

295 18. Wong, J. M. & Eirin-Lopez, J. M. Evolution of methyltransferase-like (METTL) proteins
296 in metazoan: a complex gene family involved in epitranscriptomic regulation and other
297 epigenetic processes. *Molecular Biology and Evolution* **38**, 5309-5327 (2021).

298

299 19. Saino, N. *et al.* Migration phenology and breeding success are predicted by methylation
300 of a photoperiodic gene in the barn swallow. *Scientific Reports* **7**, 45412 (2017).

301

302 20. Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover
303 Dynamics Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land
304 Processes DAAC. (2019).

305

306 21. USA National Phenology Network. Spring Indices, Current Year - First Bloom - Spring
307 Index. <https://www.usanpn.org/data/visualizations>. Accessed on 17 April 2020. (2017).

308

309 22. Colodro-Conde, L. *et al.* A direct test of the diathesis-stress model for depression.
310 *Molecular psychiatry* **23**, 1590-1596. (2017).

311

312 23. Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. *PLOS Genetics*
313 **9**(4) (2013).

314

315 24. Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. *Trends
316 in Ecology and Evolution* **26**(11), 561–569 (2011).

317

318 25. Barret, R. D. H. & Schluter, D. Adaptation from standing genetic variation. . *Trends in
319 Ecology and Evolution* **23**(1), 38-44. (2008)

320

321 26. Lavallée, C. D. *et al.* The use of nocturnal flights for barrier crossing in a diurnally
322 migrating songbird. *Movement Ecology* **9**, 21 (2021).

323

324 27. Henry, R. A. *et al.* Changing the selectivity of p300 by Acetyl-CoA modulation of
325 histone acetylation. *ACS Chem. Biol* **10**, 146-156 (2015).

326

327 28. Sun, H., Skorgerbø, G., Wang, Z., Liu, W. & Li, Y. Structural relationships between
328 highly conserved elements and genes in vertebrate genomes. *PLoS ONE* **3**, e3727 (2008).

329

330 29. Chin, C. S. *et al.* Phased diploid genome assembly with single-molecule real-time
331 sequencing. *Nature Methods* **13**, 1050–1054 (2016).

332

333 30. Chin, C. S. *et al.* Nonhybrid, finished microbial genome assemblies from long-read
334 SMRT sequencing data. *Nature Methods* **10**, 563–569 (2013).

335

336 31. Koren, S. *et al.* Canu: scalable and accurate long-read assembly via adaptive k-mer
337 weighting and repeat separation. *Genome Research* **27**, 722–736 (2017).

338

339 32. Walker, B. J. *et al.* Pilon: An integrated tool for comprehensive microbial variant
340 detection and genome assembly improvement. *PLoS ONE* **9**, e112963 (2014).

341

342 33. Coombe, L. *et al.*, ARKS: Chromosome-scale scaffolding of human genome drafts with
343 linked read kmers. *BMC Bioinformatics* **19**, 1–10 (2018).

344

345 34. Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome Annotation and Curation
346 Using MAKER and MAKER-P. *Current Protocols in Bioinformatics* **48**, 4.11.1-4.11.39
347 (2014).

348

349 35. Malmberg, M. M. *et al.* Evaluation and recommendations for routine genotyping using
350 skim whole genome re-sequencing in canola. *Front. Plant. Sci.* **9** (2018).

351

352 36. Browning, B. L. & Browning, S. R. Genotype Imputation with Millions of Reference
353 Samples. *American Journal of Human Genetics* **98**, 116–126 (2016).

354

355 37. Golicz, A. A., Bayer, P. E. & Edwards, D. Skim-Based Genotyping by Sequencing.
356 *Methods in Molecular Biology* **1245**, 257–270 (2015).

357

358 38. Hill, R. D. Theory of geolocation by light levels. In B.J.L. Boeuf, & R.M. Laws (Ed.),
359 Elephant seals: Population ecology, behaviour and physiology p. 227-236. Berkeley, CA:
360 University of California Press (1994).

361

362 39. Wotherspoon, S., Summer, M. & Lisovski, S. BAStag: Basic Data Processing for Light
363 Based Geolocation Archival Tags. Version 0.1.3. (2016).

364

365 40. Lisovski, S. & Hahn, S. GeoLight-processing and analysing light-based geolocator data
366 in R. *Methods in Ecology and Evolution* **3**, 1055–1059 (2012).

367

368 41. Gompert, Z., Lucas, L. K., Nice, C. C. & Buerkle, C. A. Genome divergence and the
369 genetic architecture of barriers to gene flow between *Lycaeides idas* and *L. melissa*.
370 *Evolution* **67**, 2498–2514 (2013).

371

372 42. Pfeifer, S. P. *et al.* The evolutionary history of Nebraska deer mice: local adaptation in
373 the face of strong gene flow. *Molecular Biology and Evolution* **35**, 792–806 (2018).

374

375 43. Purcell, S. *et al.* PLINK: a toolset for whole-genome association and population-based
376 linkage analysis. *American Journal of Human Genetics* **81**, 559–575 (2007).

377

378 44. Choi, S. W., Mak, T. S. & O'Reilly, P. F.. Tutorial: a guide to performing polygenic risk
379 score analysis. *Nat Protoc* **15**, 2759–2772 (2020).

380

381 45. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
382 (2011).

383

384 46. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of
385 speciation are due to reduced diversity, not reduced gene flow. *Molecular Ecology* **23**,
386 3133–3157 (2014).

387

388 47. Vijay, N. *et al.* Evolution of heterogeneous genome differentiation across multiple
389 contact zones in a crow species complex. *Nature Communications* **7**, 13195 (2016).

390

391 48. Delmore, K. *et al.* The evolutionary history and genomics of European blackcap
392 migration. *eLife* **9**, e54462 (2020).

393

394 **Acknowledgements**

395 We thank K. Applegate, J. Barrow, L. Burgess, L. Chambers, T. Cheskey, P. Clifton, B.
396 Dietrich, J. Fischer, G. Hvenegaard, P. Kramer, P. Mammenga, N. Mickle, M. North, M.
397 Pearman, J. Ray, A. Ritchie, A. Savage, T. Shaheen, J. Siegrist, C. Silverio, B. Stutchbury, and J.
398 Tautin for sample collection; M. Przeworski, Z. Fuller, and C.J. Garroway for conceptual input;
399 F. Taborsak-Lines, M. Ormestad, P. Ewels, C. Wang, O.V. Pettersson, M.B. Mosbech, and C.
400 Tellgren-Roth for generating data for the reference assembly; K. Jeffries, National Genomics
401 Infrastructure (NGI)/Uppsala Genome Center, and Texas A&M AgriLife Genomics and
402 Bioinformatics Service for laboratory support; Texas A&M High Performance Research
403 Computing and Compute Canada for computing services. This work was supported by funding
404 from the University of Manitoba, Texas A&M University, Natural Sciences and Engineering
405 Research Council, Research Manitoba, the Society of Canadian Ornithologists, Sigma Xi,
406 RFI/VR & Science for Life Laboratory, Sweden, and we further acknowledge the Knut and Alice
407 Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary
408 Center for Advanced Computational Science for assistance with massively parallel sequencing
409 and access to the UPPMAX computational infrastructure.

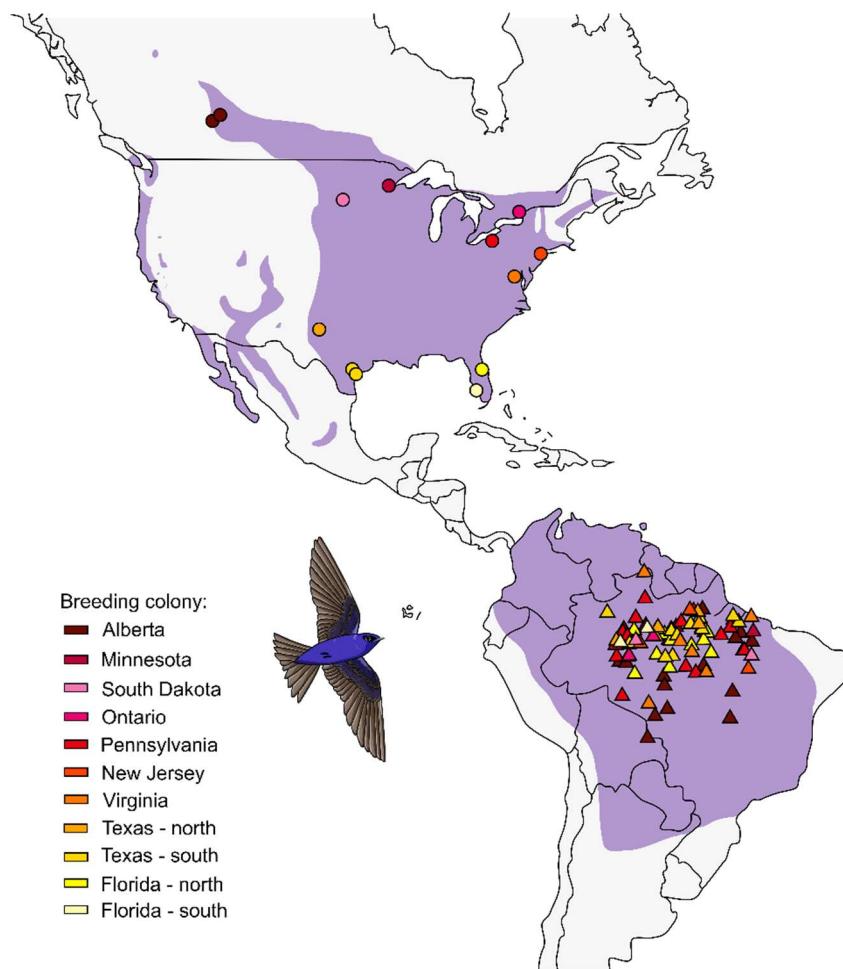
410

411 **Author contributions**

412 K.F. and K.D. designed and supervised the study. K.F. conducted/coordinated the collection of
413 migration data and blood sampling. E.D. conducted laboratory work and performed genomic
414 analyses with K.D.'s guidance. M.T. assisted with association modelling and conducted
415 polygenic score analyses. A.S. coordinated sequencing for the reference genome and provided
416 guidance on the assembly. E.D. analyzed light-level geolocator data K.F.'s guidance. E.D., K.F.,
417 and K.D. wrote the manuscript with feedback from M.T. and A.S.

418

419 **Data availability statement**

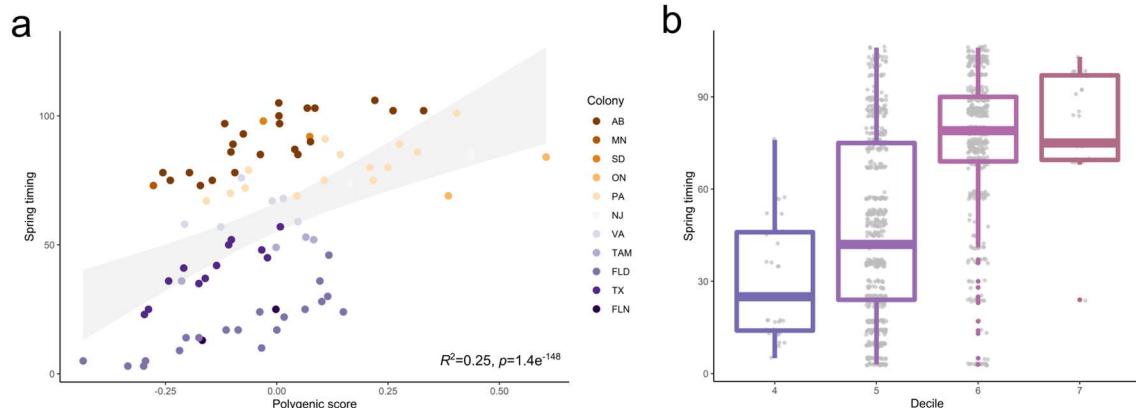

420 Raw sequencing data is available on SRA NCBI BioProject PRJNA772931. Source code for
421 reference genome and resequencing work is available at <https://github.com/edegreef/PUMA->
422 [reference-genome](https://github.com/edegreef/PUMA-reference-genome) and <https://github.com/edegreef/PUMA-resequencing-data>.

423

424 **Competing interests statement.** The authors declare no competing interests.

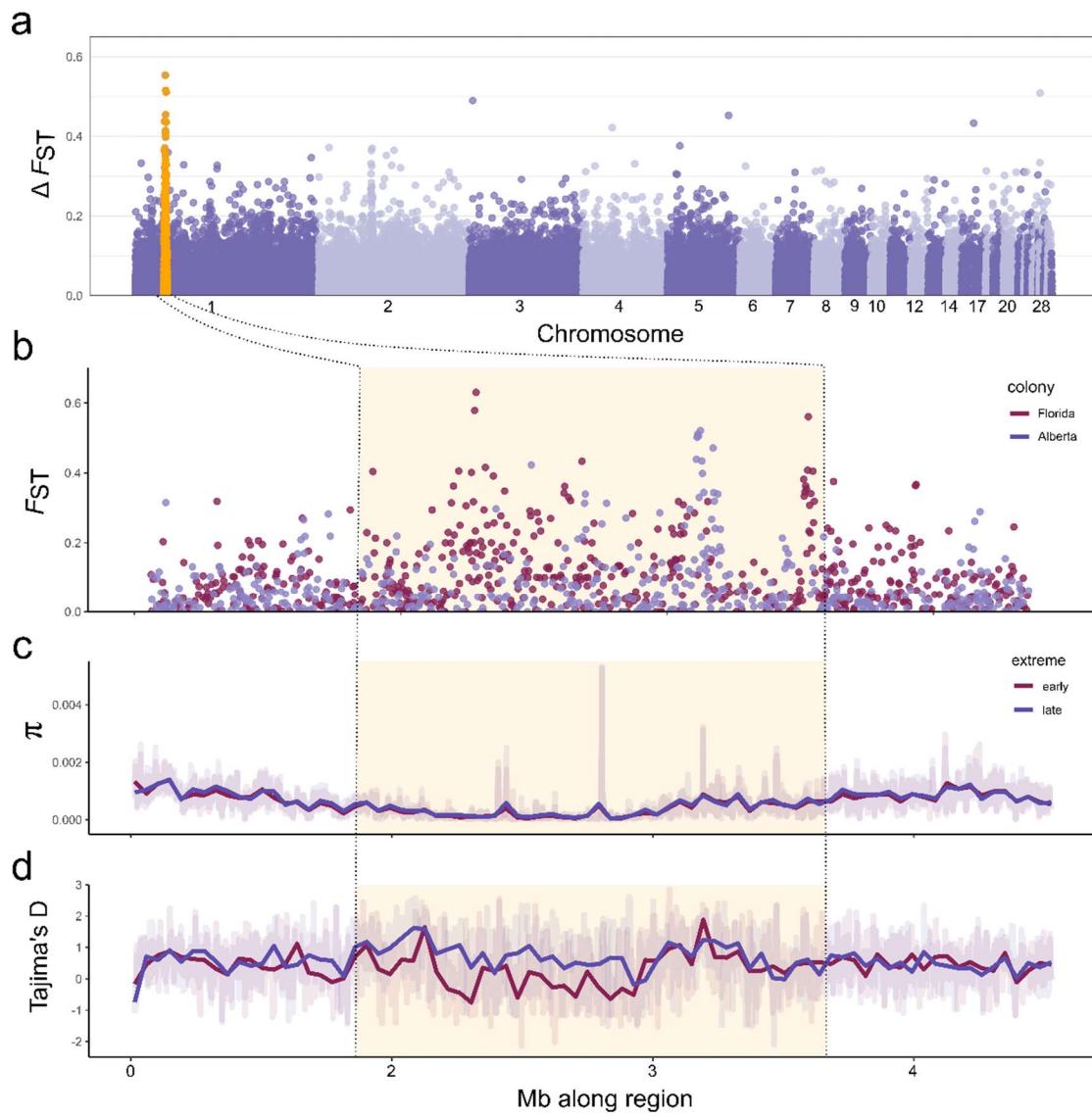
425

426 **Figures**



427

428 **Figure 1.** Purple martin breeding and wintering distribution (purple), including sampling sites
429 for 87 individuals in their North American breeding range (circles) and their respective South
430 American wintering destination before spring departure (triangles). Individuals from distinct
431 breeding colonies overlapping at the wintering grounds demonstrate weak connectivity between
432 breeding and wintering sites (such as observed in Fraser et al. 2012, 2017).


433

434

435

436 **Figure 2.** (a) Polygenic scores of spring migration timing for purple martins ($n = 87$) colored in
437 order by latitude, and linear regression standard error is colored in gray. (b) Individuals in lowest
438 decile of predicated polygenic scores (PGS) had earlier migration timing compared with
439 individuals in higher deciles with later timing.

440

441 **Figure 3.** (a) Net genetic differentiation (ΔF_{ST}) across autosomes in 5 kb non-overlapping

442 windows between earliest and latest spring migrants. The elevated region on chromosome 1 is

443 highlighted in orange, with plots examining this region to show (b) F_{ST} within Alberta and within

444 Florida, (c) nucleotide diversity (π), (d) Tajima's D, and (e) location of genes in this region as

445 black dots.