

1 **Widespread convergent evolution of alpha-neurotoxin resistance in African mammals**

2 Danielle H. Drabeck¹, Jennifer Holt¹, Suzanne E. McGaugh¹

3

4 ¹Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, United States

5

6

7 Convergent evolution is central to the study of adaptation and has been used to understand both the limits
8 of evolution and the diverse patterns and processes which result in adaptive change. Resistance to snake
9 venom α -neurotoxins (α NTXs) is a case of widespread convergence having evolved several times in snakes,
10 lizards, and mammals. Despite extreme toxicity of α NTXs, substitutions in its target, the nicotinic
11 acetylcholine receptor (nAChR), prevent α NTX binding and render species resistant. Recently, the
12 published meerkat (Herpestidae) genome revealed that meerkats have the same substitutions in nAChR as
13 the venom resistant Egyptian mongoose (Herpestidae), suggesting that venom-resistant nAChRs may be
14 ancestral to Herpestids. Like the mongoose, many other species of feliform carnivores prey on venomous
15 snakes, though their venom resistance has never been explored. To evaluate the prevalence and ancestry of
16 α NTX resistance in mammals, we generate a dataset of mammalian nAChR utilizing museum specimens
17 and public datasets. We find five instances of convergent evolution within feliform carnivores, and an
18 additional eight instances across all mammals sampled. Tests of selection show that these substitutions are
19 evolving under positive selection. Repeated convergence suggests that this adaptation played an important
20 role in the evolution of mammalian physiology and potentially venom evolution.

21

22

23

24

25

26

27 **Introduction**

28 Convergent evolution has offered insight into the ways that diverse organisms evolved to cope with
29 similar selective pressures [1-2]. Within mammals, venom resistance has convergently evolved in
30 marsupials, rodents, carnivores, eulypotyphlans, and artiodactyls [3-9]. Old world mammals which prey
31 upon and sustain bites from venomous snakes in the family Elapidae face envenomation with deadly α -
32 neurotoxins (α NTXs) which bind to the muscular nicotinic acetylcholine receptor (nAChR), blocking
33 nerve-muscle communication and causing rapid muscular paralysis and death. Despite this, the Egyptian
34 mongoose, honey badger, domestic pig, and hedgehogs regularly prey on Elapids and have convergently
35 evolved mutations in their nAChRs which confer resistance to α -NTXs and experience strong positive
36 selection [3].

37 Mutations associated with α NTX resistance in mammals occur at four sites in the nAChR epitope, and
38 function via three distinct biophysical mechanisms [9]. The first two sites 187 and 189, are aromatic amino
39 acids (W¹⁸⁷, F¹⁸⁹) in most mammals, and directly interact with α NTX. Resistance at these sites is present
40 either via steric hindrance mediated by a glycosylation (N¹⁸⁷, T¹⁸⁹) in mongooses or via arginine mediated
41 electrostatic repulsion (R¹⁸⁷) in honey badgers, hedgehogs, and pigs. The second two sites involved in
42 mammalian resistance, 194 and 197 are prolines in most mammals, are necessary for α NTX binding, and
43 replacement of either (e.g., P¹⁹⁴ to L¹⁹⁴, P¹⁹⁷ to H¹⁹⁷ in the Egyptian mongoose) results in loss of α NTX
44 binding [9]. Extensive experimental work has validated the function of these substitutions in diverse genetic
45 backgrounds [10-20]. Hereafter, we refer to these mechanisms as electrostatic repulsion resistance,
46 glycosylation resistance, and proline resistance, respectively.

47 Other species of mongooses and meerkats in the same family (Herpestidae) are well-known to exhibit lack-
48 of-avoidance, cooperative mobbing, and predation upon venomous snakes (Figure 1, Supplementary Table
49 3) [7,21]. The newly published meerkat genome reveals that meerkats share the same changes as the
50 Egyptian mongoose (i.e., N¹⁸⁷, T¹⁸⁹ and L¹⁹⁴) and likely enjoy the same protective glycosylation and partial
51 proline-mediated resistance. α NTX resistance in related species of African feliform carnivores remains
52 unexplored, including in the families Eupleridae (Malagasy carnivores) and Viverridae (civet cats), the
53 latter of which contains many species that exhibit predatory and/or aggressive behavior towards venomous
54 snakes (Figure 1, Supplementary Table 3) [22]. While their ecology, biogeography, and relatedness to
55 resistant taxa suggest that snake venom may be an important selective pressure for many species in
56 Herpestidae, Eupleridae, and Viverridae, it is unknown if they are resistant to α NTX, and whether resistance
57 is the result of an ancient adaptation at the base of these three clades or has evolved convergently in response
58 to repeated selection pressure for venom resistance.

59 To examine the evolution of venom resistance across these clades, we leveraged an exhaustive search of
60 museum tissues from all species available from North American museums for Eupleridae, Viverridae, and
61 Herpestidae and sequenced the muscular nAChR. We also used bioinformatic searches to identify muscular
62 nAChR sequences from additional species. Using a comparative phylogenetic approach, we leveraged
63 maximum likelihood tests of selection, as well as ancestral sequence reconstruction, to examine whether
64 the species exhibited resistant nAChR, what mechanisms were present, and whether resistance mutations
65 arose ancestrally or convergently across clades.

67 **Methods**

68 *Tissues and DNA extraction*

69 Thirty-nine tissue samples across 33 different species from Eupleridae, Herpestidae and Viverridae were
70 obtained through specimen loans (Supplementary Table 1). Genomic DNA was extracted as previously
71 described [3] with a skin wash step for recalcitrant samples [23]. Previously designed primers were used to
72 amplify 850 bp of the alpha subunit of the muscular nicotinic acetylcholine receptor gene (*chrna1*) that
73 included the ligand binding (and α NTX) epitope corresponding to residues 122–205 of the protein sequence
74 [3] (See Supplementary Methods). Amplified PCR products were treated with ExoSAP-IT and Sanger
75 sequenced by the University of Minnesota Genomics Center on an ABI 3730XL DNA Analyzer using
76 BigDye Terminator v3.1 chemistry (Applied Biosystems, USA). Resulting DNA sequences were
77 assembled, edited, and aligned using Geneious v8.1 [3, 24].

78

79 *Bioinformatic retrieval of sequence*

80 All mammalian sequences included in the NCBI ortholog database (Accessed May 24, 2022) for the gene
81 containing the muscular nAChR sequence, *chrna1*, were included in this dataset. Additional blastP searches
82 were conducted using Viverrid, Herpestid, and Euplerid sequences generated from this project. Results
83 were filtered for duplicate species and a final dataset of 199 sequences was aligned using MUSCLE [24]
84 and edited in Geneious v8.1. A 90bp fragment (175-198aa) covering the acetylcholine/ α NTX binding
85 epitope was used for analyses, as this was the longest fragment with complete data for most species
86 (Supplementary Table 3, Supplementary Data). Timetree was used to generate a phylogenetic tree, and
87 missing species were subsequently added in Mesquite using existing topologies [25-28].

88

89 *Tests of Selection*

90 We used a suite of likelihood-based codon models which use the ratio of non-silent substitutions to silent
91 substitutions (dN/dS) to detect positive selection [29-35]. Because we were interested in selection
92 specifically on branches of the tree leading to Viverridae, and Herpestidae + Eupleridae (Figure 1), we used
93 a branch-site test for positive selection identifying these lineages and all subtending branches as the
94 foreground. Similarly, site tests were used to identify sites which exhibit signatures of selection [29, 35].
95 Lastly, to discern signals of convergent versus pervasive selection, we employed a ‘drop out’ site test in
96 which we removed all species in Viverridae, Herpestidae, and Eupleridae as well as honey badger
97 (*Mellivora capensis*), pig (*Sus scrofa*), and hedgehog (*Erinaceous europea*) from the topology in Mesquite
98 and re-run site tests [26, 36]. Ancestrally reconstructed sequences were generated from the best-fit site
99 model (M8) in PAML v4.6 (Table 1) and aligned using MUSCLE v3.5 [25,29]. For complete details see
100 supplementary methods.

101

102 **Results and Discussion**

103

104 *Evolutionary History of Resistance in Herpestidae, Eupleridae, and Viverridae*

105 To assess α NTX resistance, we used aligned sequence data for the α NTX binding epitope of nAChR (Figure
106 1) and interpreted sequence data using extensive prior literature that has experimentally demonstrated the
107 effects of specific amino acid substitutions on α NTX binding. We found that all newly sequenced nAChRs
108 from species belonging to the family Herpestidae have N¹⁸⁷, T¹⁸⁹ and L¹⁹⁴, H¹⁹⁷ which confer strong
109 glycosylation and proline resistance, respectively (Figure 1) [10-20]. All Malagasy carnivores (Eupleridae)
110 as well as two civets (Viverridae) have substitution R¹⁸⁷ and I/L¹⁸⁹ which confer electrostatic repulsion
111 resistance (Figure 1) [3,13,18-19]. Within civets (Viverridae), we found novel mutations (K¹⁸⁷ and E¹⁸⁹)
112 which arose at the base of the genus *Genetta* (small African carnivores including the genet). Lysine (K) is
113 one of only three positively charged amino acids and may mimic electrostatic repulsion resistance seen with
114 R¹⁸⁷, however, biophysical testing is needed to definitively assess the impact of K¹⁸⁷ on α NTX binding.

115 To examine whether α NTX evolved convergently, we employed a codon model (CODEML) maximum
116 likelihood ancestral reconstruction of sequences implemented in PAML v4.6 [6, 29, 37]. Our ancestral
117 reconstruction supports that electrostatic repulsion resistance via R¹⁸⁷ arose once at the base of Eupleridae
118 + Herpestidae and twice within Viverridae. Subsequent glycosylation resistance (N¹⁸⁷, T¹⁸⁹), as well as
119 Proline resistance (L¹⁹⁴, H¹⁹⁷) appears to have arisen later in Herpestidae (Figure 1). Empirical work has
120 shown that electrostatic repulsion resistance is less effective than either glycosylation or proline resistance
121 [9, 12, 20]. Our data suggest that electrostatic repulsion resistance arose first at the base of Eupleridae +
122 Herpestidae, and subsequent selection for increased resistance in Herpestids likely led to glycosylation and
123 proline resistance. Interestingly, the Malagasy carnivores (Euplerids) are not sympatric with any α NTX
124 producing snake besides sea snakes (for which we do not have any evidence of predation). As the Euplerids
125 are restricted to Madagascar, and the R¹⁸⁷ appears to have preceded the split between Euplerids and
126 Herpestids (Figure 1), the presence of this mutation in these species is most likely a remnant of selection
127 pressure imposed prior to the isolation of this group on Madagascar.

128 Across the clades Herpestidae, Eupleridae, and Viverridae, mutations known to confer resistance have
129 arisen at least four times (five, if we include K¹⁸⁷ in civets). These results strongly suggest that species
130 among all three clades have substantial α NTX-resistant nAChRs and warrant further investigation into their
131 ecological interactions with venomous snakes, as well as their physiological ability to cope with venom.

132

133 *Positive selection identified for substitutions*

134 To test for adaptive evolution in nAChR in the clades we suspected of being venom resistant, we used
135 codon-model based (CODEML) branch-site tests of positive selection in PAML v4.6 and explored
136 additional methods and results in supplementary materials [29]. Convergent foreground branches were
137 specified as Eupleridae + Herpestidae, the base of Viverridae, and singular branches leading to honey
138 badger, hedgehog, and pig [3]. Because the latter three species and the mongoose have previously been
139 shown to be under positive selection and may inflate the overall signal of selection, we performed branch-
140 site tests with and without these species (Figure 1). In both cases, we recovered a strong signal of selection

141 in foreground lineages ($2\Delta L = 30$, $df = 1$, $p < 0.0001$; without honey badger, hedgehog, and pig $2\Delta L = 20$, df
142 = 1, $p < 0.0001$; Table 1). ‘Drop-out’ site tests showed no selection for a tree pruned of all lineages suspected
143 of being under selection, ($2\Delta L = 2.4$, $df = 1$, $p = 0.121$), indicating that the signal of positive selection can
144 be attributed to the foreground lineages [36].

145 Bayes Empirical Bayes (BEB) tests identified four sites to be evolving under positive selection in
146 foreground lineages (Table 2). Of these, three (187, 189, and 197) modulate α NTX binding in empirical
147 studies [12-16, 19-20]. Site 182 was identified as a site under positive selection, though no functional
148 studies exist for this site (Figure 1 denoted in gray).

149

150 *Mutations recovered in other mammals*

151 Within our 199 mammal dataset we found five new instances of independently evolved substitutions known
152 to confer electrostatic repulsion resistance (R^{187}) outside the three clades initially examined. In two of these
153 instances, the Eurasian otter (*Lutra lutra*) and the oryx antelope (*Oryx dammah*), R^{187} is not secondarily
154 accompanied by the substitution I^{189} or L^{189} (Figure 1). Empirical work has shown that nAChR loses affinity
155 for α NTX with the R^{187} mutation alone, and that addition of the I^{189} , or L^{189} by itself does not confer
156 resistance despite its propensity to be paired with R^{187} [19]. However, the presence of the single mutant R^{187}
157 in these data suggests that the accompanying mutation I^{189} is likely not a necessary epistatic mutation and
158 raises the possibility that it may have some function in resistance that is apparent *in vivo* that is not recovered
159 *in vitro* [19]. Both the Eurasian otter and the oryx antelope are sympatric with α NTX producing snakes,
160 though direct ecological links were not found in the literature for either species. The Eurasian otter is known
161 to eat venomous catfish (*Ictalurus nebulosus*) which contain nAChR-targeting toxins [38-41]. Further
162 investigations of species closely related to *Oryx dammah* revealed that all available species in the families
163 Alcelaphinae and Hippotraginae also had an R^{187} mutation (Supplementary Material, Supplementary Figure
164 1).

165 We found that the warthog, *Phacochoerus africanus*, shares the R^{187} and L^{189} mutation with its pig sister
166 taxa (*Sus scrofa*), and that this mutation arose in an ancestor of these two species. Additional African species
167 with charge resistant mutations are the Cape golden mole (*Chrysochloris asiatica*, R^{187}) and the thicket rat
168 (*Grammomys surdaster*; K^{187}) and are likely prey of venomous snakes that produce α NTX [42-44].

169 The only non-African species with R^{187} was the Australian brushtail possum (*Trichosurus vulpecula*). While
170 this species is sympatric with α NTX producing elapids, no specific predator/prey relationship was found in
171 the literature. Brushtail possums are also eucalyptus specialists, and this mutation may be related to coping
172 with the high level of ceramides in Eucalyptus oil, which modulate acetylcholine receptor levels and
173 function [45-46]. Several other species (Wombats, Bush Babies, Aardvarks) showed convergent mutations
174 (K^{187} , Q^{187} , C^{187}) of unknown function, and further biochemical assessment is needed.

175

176 *Conclusions*

177 The evolution of resistance to α NTX in mammals has previously been categorized as a relatively rare
178 adaptation only known in six mammals [3]. This work revealed 27 new species with amino acid changes
179 known to cause resistance (experimentally validated across diverse taxa), and an additional 17 species with
180 substitutions that are suspected to result in α NTX resistance [10-20]. In total, our work shows that
181 convergent α NTX resistance has evolved at least 11 times within mammals. Further investigation of fauna
182 that interact with α NTX producing snakes is needed to determine whether α NTX resistance translates to
183 whole venom resistance, and whether these substitutions are the result of present or past ecological
184 interactions with venomous species. Our analyses, along with other recent work, suggest that snake and
185 other animal venoms are a source of strong selection pressure likely facilitated via complex coevolutionary
186 interactions that may be the rule rather than the exception, particularly for animals which share habitat with
187 many venomous snakes [5,19,47].

188

189 **Figure 1.** The evolutionary tree of mammals showing the relationships between species for which the
190 nAChR A1 subunit epitope was available. The nAChR epitope alignment from sites 175-198 is displayed
191 for each species with dots denoting amino acids which do not differ from the consensus. Designated
192 foreground clades (Herpestidae, Viverridae, and Eupleridae) are marked with black rectangles. Sites
193 highlighted in gray rectangles indicate signatures of positive selection in these clades (Table 2). Mutations
194 known to confer resistance are reconstructed onto their corresponding branches in color based on the
195 mechanism of resistance: Electrostatic repulsion via a positively charged replacement (R or K) at site 187
196 is marked in red, steric hindrance via a glycosylation indicated by an N-T replacement at sites 187/189 are
197 marked in green, and replacement of prolines 194 and/or 197 (proline resistance) is marked in blue. Changes
198 at functional and selected sites are mapped onto branches of the tree using a maximum-likelihood based
199 codon model ancestral state reconstruction [29]. Species known to prey on venomous snakes are denoted
200 with a snake icon (citations and summary of interactions in supplementary table 3).

201

202 Acknowledgements

203 This work was generously funded by the NIH TREM fellowship (K12GM119955), the UMN UROP, and
204 the Minnesota Herpetological Society. Thanks to the Minnesota Supercomputer Institute and the University
205 of Minnesota Genomic Center. Thanks to the American Museum of Natural History (AMNH), California
206 Academy of Sciences (CAS), Denver Museum of Nature & Science (DMNS), Field Museum of Natural
207 History (FMNH), University of Kansas (KU), Museum of Southwestern Biology (MSB), Berkeley's
208 Museum of Vertebrate Zoology (MVZ), and Texas Tech University (TTU) for generously providing
209 samples. A special thanks to Rafale Vianna Furer for their work on this project as an undergraduate at
210 Macalester College. We are grateful for the valuable input by Yaniv Brandvain, Sharon Jansa, Emilie
211 Richards, Kyle Keepers, Cathy Rushworth, and Emma Roback. Finally, the authors would like to thank
212 Georgia Hart, Natalie Coles, and Matt Holding whose conversations provided the fodder, curiosity, and
213 motivation for this work.

214

215 **Table 1.** Results of branch-site tests for positive selection on the CHRNA1 gene.

Model and log-likelihood	site class ¹	proportion of sites	w background	w foreground ²
w ₂ = 1	0	0.746	0.0139	0.0139
lnL = -1395.62	1	0.152	1.0	1.0
	2a	0.085	0.0139	1.0
	2b	0.017	1.0	1.0
w ₂ > 1	site class	proportion of sites	w background	w foreground ²
lnL = -1384.06	0	0.705	0.013	0.013
	1	0.150	1.0	1.0
	2a	0.121	0.013	10.20
	2b	0.026	1.0	10.20

216

217 ¹ Site class 0 and 1 apply to foreground and background lineages and include sites under purifying selection (0 < w < 218 1) and neutral sites (w = 1), respectively. Site class 2 allows a proportion of positively selected sites (w > 1) in the 219 foreground lineages, where 2a includes sites under purifying selection (0 < w < 1) in the background lineages and 2b 220 includes neutral sites (w = 1) in the background lineages. 2Δln = 20, d.f. = 1, p < 0.0001. When *Mellivora capensis*, *Sus* 221 *scrofa*, and *Erinaceous euopus* are included in foreground branches 2Δln = 30, d.f. = 1, p < .00001

222 ² Herpestidae, Eupleridae, and Viverridae were included in the foreground class.

223

224

225 **Table 2.** Sites identified to be evolving under positive selection via different maximum likelihood analyses.

Site	Foreground Specified ¹	Foreground Specified ¹	Foreground unspecified	Foreground unspecified	Function	
	PAML	MEME	PAML	MEME		
182	0.96	-	-	-	W, Q	Unknown
187*	1.00	-	0.965	-	R ³ , N ² , K	Sh ² /Er ³
189*	1.00	0.9911	0.776	-	L, I, E, T ³	Sh ³
195	-	-	0.990	0.955	L	
197*	0.95	-	-	-	H	Pr ⁴

226

227 ² Reduced binding via steric hindrance [13,16,18,20]

228 ³ Reduced binding via electrostatic repulsion [18-19]

229 ⁴ Reduced binding via proline binding disruption [11,18]

230 *Site directly associated with aNTX binding [18]

231

232

233

234 **References**

- 235 1. Agrawal, A.A., 2017. Toward a predictive framework for convergent evolution: integrating
236 natural history, genetic mechanisms, and consequences for the diversity of life. *The
237 American Naturalist*, 190(S1), pp.S1-S12.
- 238 2. Stern, D.L., 2013. The genetic causes of convergent evolution. *Nature Reviews
239 Genetics*, 14(11), pp.751-764.
- 240 3. Drabeck, D.H., Dean, A.M. and Jansa, S.A., 2015. Why the honey badger don't care:
241 Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals
242 that survive venomous snake bites. *Toxicon*, 99, pp.68-72.
- 243 4. Drabeck, D.H., 2021. Resistance of Native Species to Reptile Venoms. *Handbook of
244 Venoms and Toxins of Reptiles*, pp.161-174.
- 245 5. Drabeck, D.H., Rucavado, A., Hingst-Zaher, E., Dean, A. and Jansa, S.A., 2022.
246 Ancestrally Reconstructed von Willebrand Factor Reveals Evidence for Trench Warfare
247 Coevolution between Opossums and Pit Vipers. *Molecular Biology and Evolution*, 39(7),
248 p.msac140.
- 249 6. Jansa, S.A. and Voss, R.S., 2011. Adaptive evolution of the venom-targeted vWF
250 protein in opossums that eat pitvipers. *PLoS One*, 6(6), p.e20997.
- 251 7. Holding, M.L., Biardi, J.E. and Gibbs, H.L., 2016. Coevolution of venom function and
252 venom resistance in a rattlesnake predator and its squirrel prey. *Proceedings of the
253 Royal Society B: Biological Sciences*, 283(1829), p.20152841.
- 254 8. Pomento, A.M., Perry, B.W., Denton, R.D., Gibbs, H.L. and Holding, M.L., 2016. No
255 safety in the trees: local and species-level adaptation of an arboreal squirrel to the
256 venom of sympatric rattlesnakes. *Toxicon*, 118, pp.149-155.
- 257 9. van Thiel, J., Khan, M.A., Wouters, R.M., Harris, R.J., Casewell, N.R., Fry, B.G., Kini,
258 R.M., Mackessy, S.P., Vonk, F.J., Wüster, W. and Richardson, M.K., 2022. Convergent
259 evolution of toxin resistance in animals. *Biological Reviews*.
- 260 10. Jones, L., Harris, R.J. and Fry, B.G., 2021. Not goanna get me: Mutations in the
261 savannah monitor lizard (*Varanus exanthematicus*) nicotinic acetylcholine receptor
262 confer reduced susceptibility to sympatric cobra venoms. *Neurotoxicity Research*, 39(4),
263 pp.1116-1122
- 264 11. Kachalsky, S.G., Jensen, B.S., Barchan, D. and Fuchs, S., 1995. Two subsites in the
265 binding domain of the acetylcholine receptor: an aromatic subsite and a proline subsite.
266 *Proceedings of the National Academy of Sciences*, 92(23), pp.10801-10805.
- 267 12. Barchan, D., Ovadia, M., Kochva, E. and Fuchs, S., 1995. The Binding Site of the
268 Nicotinic Acetylcholine Receptor in Animal Species Resistant to. alpha.-Bungarotoxin.
269 *Biochemistry*, 34(28), pp.9172-9176.
- 270 13. Asher, O., Lupu-Meiri, M., Jensen, B.S., Paperna, T., Fuchs, S. and Oron, Y., 1998.
271 Functional characterization of mongoose nicotinic acetylcholine receptor α -subunit:
272 resistance to α -bungarotoxin and high sensitivity to acetylcholine. *FEBS letters*, 431(3),
273 pp.411-414.
- 274 14. Barchan, D., Kachalsky, S., Neumann, D., Vogel, Z., Ovadia, M., Kochva, E. and Fuchs,
275 S., 1992. How the mongoose can fight the snake: the binding site of the mongoose

276 acetylcholine receptor. *Proceedings of the National Academy of Sciences*, 89(16),
277 pp.7717-7721.

278 15. Khan, M.A., Dashevsky, D., Kerkamp, H., Kordiš, D., de Bakker, M.A., Wouters, R., van
279 Thiel, J., op den Brouw, B., Vonk, F.J., Kini, R.M. and Nazir, J., 2020. Widespread
280 evolution of molecular resistance to snake venom α -neurotoxins in vertebrates. *Toxins*,
281 12(10), p.638.

282 16. Takacs, Z., Wilhelmsen, K.C. and Sorota, S., 2001. Snake α -neurotoxin binding site on
283 the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor is conserved. *Molecular
284 biology and evolution*, 18(9), pp.1800-1809.

285 17. Takacs, Z., Wilhelmsen, K.C. and Sorota, S., 2004. Cobra (Naja spp.) nicotinic
286 acetylcholine receptor exhibits resistance to erabu sea snake (Laticauda semifasciata)
287 short-chain α -neurotoxin. *Journal of molecular evolution*, 58(5), pp.516-526.

288 18. Dellisanti, C.D., Yao, Y., Stroud, J.C., Wang, Z.Z. and Chen, L., 2007. Crystal structure
289 of the extracellular domain of nAChR α 1 bound to α -bungarotoxin at 1.94 Å resolution.
290 *Nature neuroscience*, 10(8), pp.953-962.

291 19. Harris, R.J. and Fry, B.G., 2021. Electrostatic resistance to alpha-neurotoxins conferred
292 by charge reversal mutations in nicotinic acetylcholine receptors. *Proceedings of the
293 Royal Society B*, 288(1942), p.20202703.

294 20. Rahman, M.M., Teng, J., Worrell, B.T., Noviello, C.M., Lee, M., Karlin, A., Stowell, M.H.
295 and Hibbs, R.E., 2020. Structure of the native muscle-type nicotinic receptor and
296 inhibition by snake venom toxins. *Neuron*, 106(6), pp.952-962.

297 21. Barbour, M.A. and Clark, R.W., 2012. Ground squirrel tail-flag displays alter both
298 predatory strike and ambush site selection behaviours of rattlesnakes. *Proceedings of
299 the Royal Society B: Biological Sciences*, 279(1743), pp.3827-3833.

300 22. Voss, R.S. and Jansa, S.A., 2012. Snake-venom resistance as a mammalian trophic
301 adaptation: lessons from didelphid marsupials. *Biological Reviews*, 87(4), pp.822-837.

302 23. Giarla, T.C., Voss, R.S. and Jansa, S.A., 2010. Species limits and phylogenetic
303 relationships in the didelphid marsupial genus *Thylamys* based on mitochondrial DNA
304 sequences and morphology. *Bulletin of the American Museum of Natural History*,
305 2010(346), pp.1-67.

306 24. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
307 throughput. *Nucleic acids research*, 32(5), pp.1792-1797.

308 25. Kumar, S., Stecher, G., Suleski, M. and Hedges, S.B., 2017. TimeTree: a resource for
309 timelines, timetrees, and divergence times. *Molecular biology and evolution*, 34(7),
310 pp.1812-1819.

311 26. Maddison, W. P. and D.R. Maddison. 2021. Mesquite: a modular system for evolutionary
312 analysis. Version 3.70 <http://www.mesquiteproject.org>

313 27. Meredith, R.W., Janečka, J.E., Gatesy, J., Ryder, O.A., Fisher, C.A., Teeling, E.C.,
314 Goodbla, A., Eizirik, E., Simão, T.L., Stadler, T. and Rabosky, D.L., 2011. Impacts of the
315 Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.
316 *science*, 334(6055), pp.521-524.

317 28. Agnarsson, I., Kuntner, M. and May-Collado, L.J., 2010. Dogs, cats, and kin: a
318 molecular species-level phylogeny of Carnivora. *Molecular phylogenetics and evolution*,
319 54(3), pp.726-745

320 29. Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular*
321 *biology and evolution*, 24(8), pp.1586-1591.

322 30. Kosakovsky Pond, S.L. and Frost, S.D., 2005. Not so different after all: a comparison of
323 methods for detecting amino acid sites under selection. *Molecular biology and evolution*,
324 22(5), pp.1208-1222.

325 31. Kosakovsky Pond, S.L., Poon, A.F., Velazquez, R., Weaver, S., Hepler, N.L., Murrell,
326 B., Shank, S.D., Magalis, B.R., Bouvier, D., Nekrutenko, A. and Wisotsky, S., 2020.
327 HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using
328 phylogenies. *Molecular biology and evolution*, 37(1), pp.295-299.

329 32. Smith, M.D., Wertheim, J.O., Weaver, S., Murrell, B., Scheffler, K. and Kosakovsky
330 Pond, S.L., 2015. Less is more: an adaptive branch-site random effects model for
331 efficient detection of episodic diversifying selection. *Molecular biology and evolution*,
332 32(5), pp.1342-1353.

333 33. Kosakovsky Pond, S.L., Murrell, B., Fourment, M., Frost, S.D., Delpont, W. and Scheffler,
334 K., 2011. A random effects branch-site model for detecting episodic diversifying
335 selection. *Molecular biology and evolution*, 28(11), pp.3033-3043.

336 34. Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., Eren, K.,
337 Pollner, T., Martin, D.P., Smith, D.M. and Scheffler, K., 2015. Gene-wide identification of
338 episodic selection. *Molecular biology and evolution*, 32(5), pp.1365-1371.

339 35. Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K. and Kosakovsky Pond,
340 S.L., 2012. Detecting individual sites subject to episodic diversifying selection. *PLoS*
341 *genetics*, 8(7), p.e1002764.

342 36. Kowalzyk, A., Chikina, M., and Clark N.L. 2021. A cautionary tale on proper use of
343 branch-site models to detect convergent positive selection. bioRxiv doi:
344 <https://doi.org/10.1101/2021.10.26.465984>

345 37. Yang, Z., 2006. *Computational molecular evolution*. OUP Oxford.

346 38. Ruiz-Olmo, J. and Marsol, R., 2002. New information on the predation of fish eating
347 birds by the Eurasian Otter (*Lutra lutra*). *IUCN Otter Spec. Group Bull*, 19(2), pp.103-
348 106.

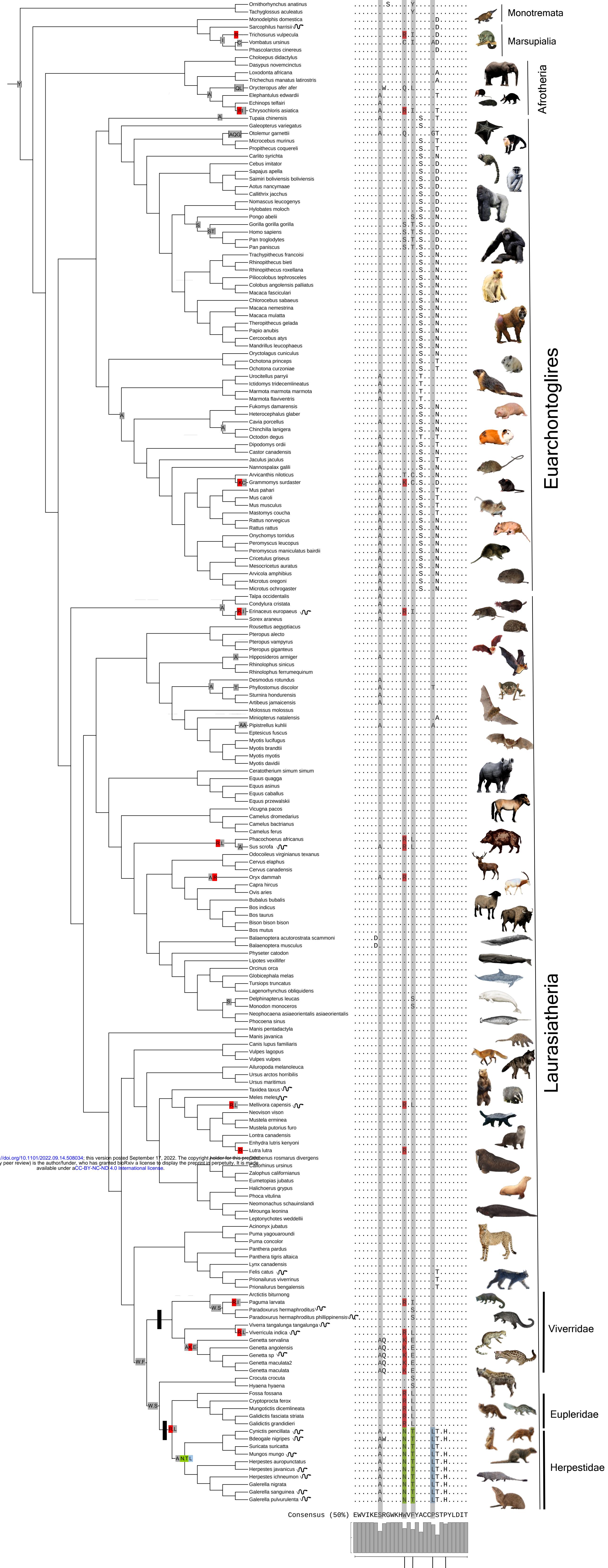
349 39. Narváez, M., Cabezas, S., Blanco-Garrido, F., Baos, R., Clavero, M. and Delibes, M.,
350 2020. Eurasian otter (*Lutra lutra*) diet as an early indicator of recovery in defaunated
351 river communities. *Ecological Indicators*, 117, p.106547.

352 40. Lanszki, J. and Sallai, Z., 2006. Comparison of the feeding habits of Eurasian otters on
353 a fast flowing river and its backwater habitats. *Mammalian Biology*, 71(6), pp.336-346.

354 41. Barthó, L., Sándor, Z. and Bencsik, T., 2018. Effects of the venom of the brown bullhead
355 catfish (*Ameiurus nebulosus*) on isolated smooth muscles. *Acta Biologica Hungarica*,
356 69(2), pp.135-143.

357 42. Fielden, L.J., 1989. Selected aspects of the adaptive biology and ecology of the Namib
358 Desert golden mole (*Eremitalpa granti namibensis*) (Doctoral dissertation).

359 43. Bates, M.F. and Wilson, B., 2021. First record of a Cape cobra *Naja nivea* (Reptilia:
360 Squamata) preying on an aardwolf *Proteles cristatus* (Mammalia: Carnivora). *African*
361 *Journal of Ecology*, 59(1), pp.266-268.


362 44. Broadley, D.G. and Baldwin, A.S., 2006. Taxonomy, natural history, and zoogeography
363 of the southern African Shield Cobras, genus *Aspidelaps* (Serpentes: Elapidae).
364 *Herpetological natural history*, 9(2), pp.163-176.

365 45. Ishikawa J, Shimotoyodome Y, Chen S, Ohkubo K, Takagi Y, Fujimura T, Kitahara T,
366 Takema Y. Eucalyptus increases ceramide levels in keratinocytes and improves stratum
367 corneum function. *Int J Cosmet Sci.* 2012 Feb;34(1):17-22.

368 46. Shindo, S., Murota, H., Seki, T., Mori, K., Kaizu, K., Nishizaka, T., Takagi, Y. and
369 Katayama, I., 2022. Effects of a moisturizer containing pseudo-ceramide and a
370 eucalyptus extract on sweating function in adult atopic dermatitis: a double-blind,
371 randomized, controlled left-right comparison clinical trial. *Journal of Cosmetic
372 Dermatology*.

373 47. Schield DR, Perry BW, Adams RH, Holding ML, Nikolakis ZL, Gopalan SS, Smith CF,
374 Parker JM, Meik JM, DeGiorgio M, Mackessy SP. The roles of balancing selection and
375 recombination in the evolution of rattlesnake venom. *Nature Ecology & Evolution.* 2022
376 Jul 18:1-4.

377

