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Abstract:

Aging is the leading risk factor for cancer. While it's been proposed that the age-related
accumulation of somatic mutations drives this relationship, it is likely not the full story.
Here, we show that both aging and cancer share a common epigenetic replication
signature, which we modeled from DNA methylation data in extensively passaged
immortalized human cells in vitro and tested on clinical tissues. This epigenetic signature
of replication — termed CellDRIFT — increased with age across multiple tissues,
distinguished tumor from normal tissue, and was escalated in normal breast tissue from
cancer patients. Additionally, within-person tissue differences were correlated with both
predicted lifetime tissue-specific stem cell divisions and tissue-specific cancer risk.
Overall, our findings suggest that age-related replication drives epigenetic changes in
cells, pushing them towards a more tumorigenic state.

One sentence summary:

Cellular replication leaves an epigenetic fingerprint that may partially underly the age-
associated increase in cancer risk.
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Introduction:

Aging is a leading carcinogen, with cancer risk increasing over 4,000% between the ages
of 25 and 65 [1]. This staggering increase is not the entire cancer narrative [2], but it is
the exigent characteristic of the disease. While some cancers—like those of the bone,
brain, or nervous system—are diagnosed at higher frequencies in children and
adolescence [3], recent studies suggest only one-third of all cancers are linked to age-
independent factors. This begs the question, to what degree is cancer preventable, as
opposed to a largely unavoidable outcome of time [4, 5]? This premise, argued by
Vogelstein and Tomasetti in 2015, later became known as the bad luck hypothesis [4].
The controversial theory was based on the idea that the cumulative number of divisions
a cell undergoes over time is related to its propensity for tumorigenesis.

Vogelstein and Tomasetti concluded that stochastic mutation accumulation in presumed
stem cells explains a far greater number of cancers than do germline predisposition and
environmental factors. However, one caveat that should be considered is that their data
drew from population-level statistics, rather than the individual-level. Inter-individual
heterogeneity can be obscured only by measuring trends preserved across the population
and tissues. Population-level statistics do measure inter-individual differences, but only
differences that trend across the majority of the population. This does not exclude the
likely possibility of between-person heterogeneity when considering risk of cancer within
a given tissue type. The theory also relies on a presumed tissue specific stem cell as the
originator of cancer, a hypothesis that has been called into question. It is an open question
whether variations in rates of biological aging, interpersonal differences in cumulative cell
divisions in tissues, and their accompanying molecular changes, contribute to differential
risk of cancer across individuals.

Mutations are not the only — or perhaps even the most important — molecular events that
result from cellular proliferation. We and others have shown that DNA methylation
(DNAm) is also substantially altered as a direct function of cell division [6-9]. Further, the
epigenome has been shown to undergo dramatic changes with aging and is implicated in
establishing, driving and maintaining many cancers [10-13]. Coincidently, the DNA
methylation changes observed in aging, cancer, and proliferation share some notable
patterns. In general, they tend to be characterized by gains in methylation at promoters—
especially those marked by polycomb group (PcG) factor targets—and loss of methylation
in intergenic regions and repetitive elements [14]. Thus, one hypothesis is that as cells
replicate in aging tissues they may also take on epigenetic signatures that are more
cancer-like, making the leap to oncogenic transformation progressively more likely with
time [15-17]. Further, the greater the replication rate in a given tissue, the faster this
transformation may occur.

To test this, we quantified a “replication fingerprint” in DNAm data derived from
extensively passaged immortalized human cells. We show this signature accumulates
with aging in tissues, is stronger in tumor relative to normal tissues, appears accelerated
in the normal tissue of cancer patients, and correlates with tissue-specific differences in
life-time cancer risk and total stem-cell divisions.
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Results:
Identification and isolation of replication fingerprints:

hTERT immortalized fetal astrocytes were serially passaged and DNAmM was assessed
longitudinally at each passage (Fig. 1A). We selected immortalized human fetal
astrocytes as our model of choice as we reasoned that fetal cells would exhibit less fitness
selection upon culturing, in comparison to adult primary cells. We also hypothesized that
replication-driven  DNAm changes would be cell-type independent. Additionally,
immortalized astrocytes are commonly used as glial disease models due to their
similarities in signaling to primary astrocytes and dramatically improved proliferation in
culture, providing a physiologically relevant model with extended proliferative potential
[18, 19]. The cellular lifespan of the immortalized astrocytes in our study was extended
by more than 700% compared to non-immortalized astrocytes. After 73+ cumulative PDs
(when we ended data collection), cells showed no sign of growth arrest, genomic
instability, or telomere erosion, allowing us to better isolate the effect of replication-based
epigenetic changes (Fig. 1B, Sup Fig. 1).

As a first step towards identifying a signature of cell division, we conducted consensus
network analysis to identify modules of co-methylated CpGs [20]. In brief, a subset of
20,101 CpGs were initially selected based on their normalized loading scores from elastic
net selected Principal Components (PCs) that tracked with cPD in our in vitro model (Sup
Fig. 2). Clustering of these CpGs was then carried out based on consensus clustering
between our in vitro model and multi-age samples from human liver (N=85, 23-83 years
old). This enabled us to segregate physiologically relevant replication signals from cell
culture artifacts (Fig. 1C).

The association of 14 consensus modules with number of cell divisions (cPDs) in vitro or
aging in vivo were assessed across a diverse spectrum of cells and tissues. Two
modules—termed “yellow” and “tan”— stand out as having signatures that consistently
increased with proliferation and aging (Fig. 1D, Sup Fig. 3, 4). The yellow and tan modules
are the most physiologically relevant replication fingerprints, with strong correlations with
age across a variety of in vivo tissues, including liver (ryeiow=0.70, rtan=0.58, N=85, 23-83
years old), skin (ryeiow=0.66, ran=0.59, N=91, 20-90 years old), developing brain
(ryellow=0.78, ran=0.83, N=173, 0-18 years old), and adult brain (ryeiow=0.57, rtan=0.66,
N=502, 18-97 years old), and blood (ryeliow=0.39, ran=0.14, N=2478, 40-92 years old) (Fig.
1D, Sup Fig. 3C). They also tracked serial passaging of primary cultures of fetal
astrocytes (ryelow=0.93, ran=0.88), primary astrocytes (ryeiow=0.43, rtan=0.34), dermal
fibroblasts (ryeiow=0.93, ran=0.8) and mammary fibroblasts (ryeiow=0.47, rtan=0.79) (Fig.
1D). For these reasons, the CpGs in the yellow and tan modules served as the basis for
all other downstream analyses in the study. Further details on the training and validation
of these CpG modules is found in the computational section of the Methods.

Replication fingerprints are enriched in PRC2, pluripotency factors, and cell cycle
regulator domains:
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Overall, the yellow and tan module CpGs were equally distributed across the genome
and were not located in any one region (Sup Fig. 2). They were, however, highly enriched
in PRC2, pluripotency factors and cell cycle regulator domains. Enrichment was assessed
using the Cistrome database, which tests overlap for specific genomic locations of interest
based on biorepository data from ENCODE and includes information on specific histone
marks, transcription factors (TF), and chromatin regulators (Sup Fig. 5). Both modules
were enriched in regions marked by H3K27me3, which included both somatic and stem
cell datasets (Fig. 2A). When testing for overlap with known TF binding sites, we observed
enrichment in the yellow module with TFs that formed an interactive STRING protein
network with PRC2 domains, such as the catalytic subunit EZH2 and interacting co-
factors SUZ12, EP300, JARID2 and TRIM28 (Fig. 2B). PRC2 elements were also some
of the most enriched by absolute score (Sup Fig. 5). This is of particular interest since
PRC2 domains are implicated in development and maintenance of many cancer types
[21]. PRC2 is a trimeric multiprotein complex (EZH2/EED/SUZ12), although it interacts
with many other upstream and downstream co-factors like EP300, JARID2 and TRIM28,
all of which have profound impacts on controlling cellular differentiation, signaling and
genome-wide regulation [22]. Our enrichment data suggests the epigenome may
contribute to replication-driven dysregulation through many PRC2 component
interactions, including both upstream and downstream regulators in addition to the
trimeric core. CpGs in the tan module exhibited enrichment for additional noteworthy TFs,
including KLF4, RAD51 and STAT3 (Fig. 2B). KLF4 is a pluripotency factor and
considered to be a tumor suppressor in many types of cancer, while RAD51 and STAT3
may pre-dispose cells to cancer through faulty DNA repair or signal activation [23-30].
Importantly, the yellow and tan module TF enriched hits were distinct, with the only
overlap being CTCF, suggesting they represent two independent replication signals.

Evaluation of replication fingerprint (CelIDRIFT) in cancer patients, high caner-risk
individuals, and tissues with varying replicative history:

To directly test the associations between these signals and changes in aging and cancer,
we created a composite measure from the 2,322 CpGs in the yellow and tan modules,
termed CellDRIFT (Cellular Division and Replication Induced EingerprinT) (Fig. 2C, Sup
Fig. 6, Data Fig. 1).

Malignant cells outgrow healthy cells via a number of proliferative mechanisms, including
reduced activity of tumor suppressor genes, increased expression of oncogenes,
chromatin dysregulation and altered transcription [14, 31]. Many of these features,
particularly epigenetic remodeling, may be acquired progressively over time, prior to
transformation. Unlike the bad luck and/or two-hit hypotheses, which describe mutations
or a “hit” as the cancer prone tipping point, the gradual and subversive epigenetic
remodeling that likely is occurring as cells “tick” throughout life provides a path for
understanding aging and cancer risk years prior to phenotypic penetrance. While our
measure was not trained on cancer in any way, we hypothesize that CellDRIFT will
capture aspects of premalignant changes as they accumulate and we predict that 1) Cell
DRIFT increases in tumors compared to normal tissues, 2) will be higher in normal tissues
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from individuals who develop cancer versus healthy controls, and 3) will be higher in
tissues with greater proliferative activity and subsequent cancer risk (Fig. 3A).

To test this, we first analyzed CellDRIFT in cancers of the thyroid, breast, lung, pancreas
and colon. We observed a significant increase in CellDRIFT (adjusted for age and tissue
type) among the pooled tumor samples in comparison to corresponding normal tissues
(p=1.4e-0.7) (Fig. 3B). We followed up by analyzing a larger breast cancer cohort with
reported survival data and similarly found that CellDRIFT from tumors is predictive of
overall survival, even after adjusting for age, treatment, race, and tumor grade (p=0.0399)
(Fig. 3C). This suggests that the epigenetic changes modeled by CellDRIFT capture
cancer aggression and fithess and may even be useful for cancer pathologists in the
future as a secondary diagnostics and prognostic endpoint.

The next question, which we proposed would be the most important, but also the most
difficult to detect, was determining if CellDRIFT could predict accelerated drift—or high-
risk patients—in pre-diseased healthy tissues. To accomplish this, we evaluated
CellDRIFT in normal breast tissue from patients with and without diagnosis of breast
cancer (prior to treatment), hypothesizing that individuals who develop cancer in a
particular tissue may do so as a result of more advanced and deleterious epigenetic
modifications in the normal aging tissue prior to tumorigenesis — as captured by
CellDRIFT (Fig. 3D). As hypothesized, we find CellDRIFT is elevated in normal tissue
from breast cancer patients compared to individuals who never had breast cancer
(p=0.0052, Fig. 3D). Based on the results, the conclusion stands that individual
differences may exists that precede a stochastic occurrence of a “bad luck” event that
drives cancer formation.

Finally, in accordance with the findings from Vogelstein and Tomasetti, we reasoned that
not all tissues would display the same replicative DNAm signatures, and that cancer
susceptibility (lifetime tissue-specific cancer risk) and tissue-specific stem cell division
rates (replicative activity) would correlate with the degree of epigenetic changes captured
by CellDRIFT in various tissues. To test this, we estimated CellDRIFT in samples from
ENTEX, which profiled 29 tissues from 4 patient donors [32]. For our primary analysis, we
restricted tissues to those with reported lifetime cancer risk (according to the NCls
Surveillance, Epidemiology, and End Results (SEER) program). Our results showed that
CellDRIFT was positively correlated with both tissue-specific cancer risk (cor=0.31,
p=0.034) (Fig. 3E) and lifetime stem-cell divisions (cor=0.5, p=0.0016) (Fig. 3F). Overall,
this suggests that more proliferative tissues may have greater CellDRIFT and this may
explain the higher propensity for cancer over the lifetime of that tissue. It is also
noteworthy that the stem-cell division prediction traversed nearly 6 orders of magnitude
(i.e ovary vs. transverse colon), demonstrating the tight link between replicative activity
and epigenetic regulation. Additionally, even when near zero cancer risk tissues, like the
ascending aorta and gastrocnemius medialis, were included as a sensitivity analysis, the
association holds (cor=0.3, p=0.0031) (Sup Fig. 7), suggesting low-cancer risk tissues
exhibit less epigenetic drift potentially because of their low replicative activity. In short,
CellDRIFT provides a tool for future studies of replication-associated epigenetic
mechanisms that may underly Vogelstein and Tomasetti’s initial observation.
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Transient re-setting of replication fingerprints occurs with OSKM re-programming:

Our final question was to determine if cellular re-programming [30] can re-set or modulate
CellDRIFT. We analyzed time-course data from human fibroblasts reprogrammed to
iPSCs and tracked CellDRIFT throughout the three phases of Yamanaka factor
reprogramming: initiation, maturation, and stabilization. No change was seen during the
early initiation phase of reprogramming. However, we observed a dramatic decrease in
the CellDRIFT signal during the maturation phase, which coincides with dedifferentiation
or transition to pluripotency (cor=-0.9, p=0.00039) (Fig. 4A). Upon passaging in the
stabilization phase, we observed a slight “uptick” in CellDRIFT, though it did not reach
statistical significance, potentially due to a lack of statistical power (cor=0.58, p=0.10)
(Fig. 4A). For this reason, we analyzed an additional iPSC and ESC dataset that reported
extended passaging (Fig. 4B). In both the dermal fibroblast derived iPSC and ESC cell
lines, passaging strongly induced further CellDRIFT (cor=0.74, p=5.4e-5; cor=0.77,
p=0.00012, respectively), suggesting pluripotent cells, despite possessing long-term
passaging abilities [33, 34], are not immune to replication related epigenetic drift (Fig.
4B).

Interpretations:

Our study defines a signature of epigenetic remodeling observed in vitro as a “pure”
function of DNA replication. We show that this signature increases as a function of age in
vivo, and provides evidence to suggest it may underly an age-related transition of tissues
from a (youthful) state of normal tissue and cell functioning towards an (aged) tipping-
point of tumorigenic transformation. The epigenetic changes captured in our model are
consistent with prior characterizations in aging and cancer, implicating EZH2 binding sites
[35] and chromatin accessibility hotspots [36]. The key takeaway is that by using a
signature of molecular changes arising via replication (presented here as CellDRIFT), it
is possible to quantify and track the inevitable entropic disorder that occurs with aging.
While tissue-specific stem cell division rates may set a baseline risk of cancer
development in various tissues, individual differences in cancer risk may not be entirely
luck based and instead might in-part reflect differential epigenetic aging rates. As such,
there is a need for research into interventions to slow or reverse the accumulation of
epigenetic changes with age. While applications like epigenetic reprogramming
demonstrate modulation is possible, issues surrounding dedifferentiation of cells, as well
as feasibility and targeted efficiency mean such techniques are long from practical
applications. This begs the question of whether positive lifestyle factors may modulate
our luck beyond chance.
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Figure 1: Replication-driven epigenetic fingerprints trained from longitudinal
hTERT trajectory in vitro captures multi-tissue epigenetic aging. (A) Schematic
displaying goal of cataloging epigenetic aging trajectories and signals using a
longitudinal hTERT passaging model in vitro. (B) Growth curve of human astrocytes
under normoxia showing growth arrest occurs after 10 passages in the absence of
hTERT immortalization. (C) Cluster dendrogram showing the construction of the
modules fingerprints via estimating the adjacencies of the input CpGs, which were the
highest contributing 20,101 CpGs contributing to replication, determined from pulling the
top PC loading CpGs from the hTERT trained PC measure, DNAmImmort. Briefly,
adjacencies were converted to topological overlap matrices (TOMs) and then clustered
based on a minimum dissimilarity score between hTERT cPD and liver aging (years)
input data. hTERT_cPD and Liver_Age plot labels display the BirCor correlations (cPD
or Age in years) for all 20,101 CpGs used in the clustering analysis. The goal of the
clustering analysis was to produce the most physiologically relevant replication-driven
aging signals. (D) Summary table displaying Pearson age correlation of all PC clock
module measures with multi-tissue and in vitro validation datasets from Sup Fig. 3.
Note, the correlation from the hTERT dataset used during training was excluded from
the hTERT validation samples. Additionally, liver, developing brain, adult brain, blood
and skin were assessed as age-correlations, fetal astrocyte and primary astrocytes
were assessed as cumulative population doublings (cPD) correlations, and dermal and
mammary cell lines were assessed as passage correlations due to limited cPD data
information. For a complete breakdown of the age distributions for each in vivo dataset
refer to Sup Fig. 3C. * = the modules (yellow/tan) that were considered the most
physiologically relevant and thus were used in subsequent analysis.
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Figure 3: CelIDRIFT predicts accelerated epigenetic risk in cancer tissue and
healthy tissue of breast cancer patients, and is correlated with cancer risk and
life-time stem cell divisions in whole-body tissue analysis. (A) Schematic
displaying process of investigating the hypothesis that cancer patients or individuals
with accelerated epigenetic aging may possess DNAm signals that may put these
individuals at an increased risk for diseases like cancer. (B) Pooled cancer and normal
tissue from breast, colon, lung, pancreas and thyroid cancer patients and controls,
evaluated via CellDRIFT for DNAm acceleration in cancer tissue (GSE53051).
Teal=Thyroid, Pink=Breast, White=Lung, Purple=Pancreas and Blue=Colon. DNAmAge
scores were residualized by age, sex and tissue type. (C) COX survival analysis of
breast cancer patients from GSE37754, demonstrating CellDRIFT is predictive of
patient survival. Note, the hazard ratio for Age and CellDRIFT was calculated as a risk
increase per 10 years of life. (D) Differences in CellDRIFT epigenetic risk in healthy
breast tissue of known breast cancer patients and participants with no history of prior
breast cancer (Rozenblit et. al 2022) [37]. DNAmAge scores were residualized by age
prior to analysis. (E) Whole-body DNAmAge analysis from CellDRIFT in relation to
propensity for cancer (SEER incidence per 100,000 people) of 14 different tissues from
4 individuals (ENTEX study). (F) Plot showing correlation between lifetime stem cell
divisions and DNAmAge from CellDRIFT in non-zero cancer risk tissues from C. Note,
only tissues with reported lifetimes stem cell division from Volegstein et. al 2015 were
analyzed. See Supplemental Figure 7 for a complete analysis of all 29 tissues, inclusive
of zero risk cancer tissues. DNAmMAge scores were residualized by age prior to analysis.
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A Cellular reprogramming in human fibroblasts B Passaging pluripotent stem cells
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Figure 4: CellDRIFT is turned-back upon reprogramming in human fibroblasts,
but is not stabilized with additional passages. (A) Scatterplot showing re-
programming trajectory in CelDRIFT from OSKM re-programmed human dermal
fibroblasts from GSE54848, analyzed separately for initiation, maturation and
stabilization phases. (B) Scatterplot demonstrating passaging increases CellDRIFT in
pooled iPSC cells re-programmed from human dermal fibroblast’s via OSKM and
embryonic stem cells (ESCs). Note, 11 different iPSC cells lines were included, which
were generated from 11 clones and 15 ESCs cell lines were included (GSE31848).
Correlation and statistical significance were determined via Pearson correlations in each
phase and in the extended passaging plot.
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Supplemental Figure 1: Astrocyte model development and passaging. (A)
Schematic displaying method of creating the 4 mortal-fetal astrocyte cell lines (-
hTERT1-4). 2 donors were used (Donor 1 = -hTERT1-3 and Donor 2 = -hTERT4). All
replicates were then exhaustively passaged until senescence was achieved. (B) Plot
displaying growth rate of mortal astrocytes, where growth arrest and senescence was
achieved after 10x passages. (C-D) Representative confocal microscopy images of
mortal-fetal astrocytes at P3, P6 and P10, displaying increase in senescence ([3-gal)
and enlarged cellular morphology (F-actin), counterstained against DAPI. (E) Image-J
quantified (3-gal activity of confocal microscopy images. (F) Schematic displaying
method for creating the 3 immortalized-fetal astrocyte cell lines (+hTERT1-3). Note, 1
donor was used and following successful immortalization, the cells were split into 3
different cell lines (+hTERT1-3), which were then extensively passaged. Note, at the
time of stopping the experiment the cells were P27, with no signs of growth arrest or
senescence. Longitudinal DNAm from P13-P27 were used in subsequent PC clock
creation of DNAmImmort, module clock creation and CellDRIFT. +hTERT1-2 were used
in training and +hTERT3 was used as validation. (G) Absolute telomere length
assessment of mortal (-hTERT) and immortalized (+hTERT) astrocytes demonstrating
telomere erosion occurs in the absence of hTERT immortalization.
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Supplemental Figure 2: Extracting cellular replication CpG drivers (A) Elastic net
lambda minimum selection of PCs for inclusion in final model, DNAmImmort. (B) hTERT
PC clock — DNAmImmort — trained from hTERT1 and hTERTZ replicates and using cPD
as input variable. (C) DNAmImmort validation data using hTERTS3 replicate not used in
model training and (D) assessment of DNAmImmort measure in mortal (-hTERT1-3)
astrocytes, displaying reduced DNAm rate upon senescence induction. (E) Schematic
displaying workflow of breaking the DNAmImmort measure into module drivers by
conducting consensus clustering on the 20,101 CpG drivers, as determined by
normalizing the PC loading scores. Note, hTERT1-2 replicates and liver aging samples
were used in the clustering analysis to produce the 14 modules, then using the new
module CpGs module clocks were trained using the same hTERT1-2 replicates and
cPD as the input variable. (F) Summary table of all module components in PC clock,
DNAmImmort, with extracted driver CpGs (20,101) selected by pulling CpGs with a
normalized (absolute value of elastic net coefficient) PC loading score of >0.0025. In the
selection analysis each PC was analyzed independently. (G) Genomic distribution plot
displaying CpG locations/regions of driver and background CpGs, showing enrichment
in intronic and intergenic regions of the DNAmImmort driver CpGs. (H) Chromosome
distribution plot generated by LolaWeb displaying 20,101 driver CpGs vs. random
20,101 background CpGs from the original 440k sex-excluded CpGs of the original
training dataset. (I) Genomic partition distribution across all module CpGs presented in
Fig. 1C, plotted using LolaWeb. Dotted lines represent the genomic partition frequency
of the 20,101 driver CpGs and randomly sampled 440k background CpGs. (J)
Chromosome distribution plot generated by LolaWeb displaying yellow module CpGs.
(K) Chromosome distribution plot generated by LolaWeb displaying tan module CpGs.
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Supplemental Figure 3: Clustering input and validation data for determining
modaule drivers. (A) Schematic displaying method of extracting the primary cell lines
used in the validation analysis of this study. Note, primary dermal and mammary
fibroblasts were extracted by the authors of E-MTAB-8327. (B) Plot displaying the
cumulative population doublings of primary astrocytes exhaustively passaged 10x,
which was also when growth arrest was achieved. (C) Summary schematic of all multi-
tissue clinical data and in vitro data used in the training and validation of module clock
measures and CellDRIFT. Note, population distribution of all clinical datasets are
displayed with violin plots.

19


https://doi.org/10.1101/2022.09.14.507975
http://creativecommons.org/licenses/by-nc-nd/4.0/

anduj ejeq uoiepije,
JaIsn|o <+ jeqg uonepljea

Cluster Dendrogram

available under aCC-BY-NC-ND 4.0 International license.

O Ao oo QO o 9 9o o
_ _ | _ _ | = 35 < %5 &5 § g <2
- 2 e B B | |
: : : : : : I A
0L 60 80 L0 90 GO0 T A
< g g & 3
5 E A4
< JybieH ° §

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.507975; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

_Age

Adult_Brain_A

Blood_Age

1
»

Skin_Age

|
-1
CpG DNAm
Age Cor (BiCor)

20


https://doi.org/10.1101/2022.09.14.507975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.507975; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B . .
Age correlation of eigengene modules
turquoise 0221 10372 — +1.000
blue -0.126 -0.245
— +0.900
brown +0.258 -0.117
yellow +0.346 — +0.800
o
green -0.172 +0.298 8
— +0.700 E
red +0.117 +0.404 N—
S
black +0.246 +0.395 - +0.600 ‘FB'
I3
=~
pink -0.149 -0.360 -0.031 +0.043 -0.700 +0.391 +0.289 -0.891 A
~ +0.500 O
o
[
magenta -0.304 -0.355 -0.104 +0.072 -0.765 - +0.432 -0923 o)
©
—— - 40400 =
pu rple -0.678 -0.249 -0.487 -0.639 -0.515 -0.836 -0.325 -0.756 +0.129 o
Q
greenyellow +0.145 -0.112 +0.087 -0.19% +0.198 -0.455 - +0.300
tan +0.146 +0.427 +0.396 -0.550
— — +0.200
salmon 0.90 +0.433 +0.152 -0.188
cyan +0.492 -0.534 -0.124 -0.204 -0.574 0.433 -0.899 -0.258 -0.646 +0.425 L — —-1.000
[ T T T T I I I I I
£ o] 3 g £ £ K o I >
i 2 § 5 £ §$ & § ¢ =8
= @ a a - < G £
< 2 E - a E
=] S < <
£ < E
o

Supplemental Figure 4: Multi-tissue and in vitro assessments of module
relevance. (A) Cluster dendrogram with all input (hnTERT + liver aging) and validation in
vitro and in vivo samples. Plot labels display the BirCor correlations (cPD, Age in years
or Passage) for all 20,101 CpGs used in the clustering analysis. (B) Eigengene age
correlation of module CpGs in multi-tissue and in vitro validation datasets. PC1
validation of module CpGs analyzed in relation to hTERT validation directionality.
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Supplemental Figure 5: Cistrome analysis of CpGs from each module. (A-P)
Cistrome genome enrichment plots displaying known chromatin regulators and
transcription factor sites that interact with each module. All CpGs from each module
were included in the analysis. (Q) Summary plot of top 5 enriched genes for each
module. Note, the summary module enrichment analysis used the top 100 CpGs from
each module, determine from the KME score. Enriched genes were normalized by
selecting 100 background CpGs from the original 440k training dataset and correcting
for each GSM_IDs Giggle score. Enrichment analysis is displaying the average Giggle
score across all GSM_IDs, with the top 5 for each module plotted. Giggle score is a
rank of genome significance between genomic locations of query file and thousands of
genome files from databases like ENCODE.

24


https://doi.org/10.1101/2022.09.14.507975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.14.507975; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Training B Validation
cor=0.99, p=3.2e-26 cor=0.99, p=1.4e-11

CellDRIFT

30 40 50 60 70
CellDRIFT

35 45 55 65

30 40 50 60 70 30 40 50 60

cPD cPD
C Fetal Astrocytes D Primary Astrocytes E Dermal Fibroblasts F Mammary Fibroblasts
cor=0.92, p=8.4e-16 cor=0.45, p=0.024 cor=0.86, p=3.9e-05 cor=0.39, p=0.0056
y © | (@) o 8 1 g
@ rel SQ -
& | ® 8% 8- OO(%Q
£ s /o £ 31 g k£ Q
o c N @ o o [T ¢
Q< Q Q [=} o 8 d
=3 = = =
8 S 1 o @ 9 S .10 Sgp Y060
ﬁ ’ ? T 8 @ O 7 o 8
(@) © ® Q
T T |l T T (2] T T T T T T T T T T T T
02 46 8 12 2 4 6 8 10 10 14 18 10 14 18
cPD cPD Passage Passage
G Liver H Developing Brain | Adult Brain J Skin
cor=0.65, p=1.7e-11 cor=0.81, p=1.7e-41 cor=0.66, p=3.2e-64 cor=0.73, p=1.6e-13
3 e
2 81
8 + -
L s e k L g
[ [Tl o [
Qg =) [=} [S
3 3 o 3 T 5]
(S (S o o
™ 8 g i
o
S}
0 5 10 15 20 40 60 80 100 20
Age (Years) Age (Years) Age (Years) Age (Years)
Blood
K cor=0.25, p=1.3e-36
2o
e
- ©
w
T o
o I
S

40 60 80
Age (Years)

Supplemental Figure 6: Training and validation of CelIDRIFT. (A) Training and (B)
Validation of PC measure CellDRIFT, trained from yellow and tan module CpGs (2,322
total) and hTERT immortalized replication data. More training information is available in
the Methods. In vitro validation (C-F) and in vivo multi-tissue validation (G-K). Note,
blood was residualized by cellular composition (b-cells, granulocytes, CD8T cells and
monocytes). Age correlations and statistical significance was determined via Pearson
correlations.
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Supplemental Figure 7: Complete whole-body tissue dataset inclusive of near
zero risk cancer tissues. DNAmAge analysis of (A) CellDRIFT, (B) PCHorvath1 and
(C) PCPhenoAGE in relation to SEER incidence of 29 tissues from 4 healthy donors. All
DNAmAge scores were residualized by age.
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Supplemental Figure 8: Cancer detection using classically trained ex vivo clocks.
Plots displaying cancer findings of PCHorvath1 and PCPhenoAGE measures. (A,D)
Pooled cancer detection of breast, colon, lung, thyroid and pancreas cancer samples
from GSES53051. Pink=Breast, Teal=Thyroid, White=Lung, Blue=Colon,
Purple=Pancreas. DNAmMAge scores were residualized by age, sex and tissue type.
(B,E) COX survival analysis of breast cancer patients from GSE37754. Note, the hazard
ratio for Age and PCclocks was calculated as a risk increase per 10 years of life. (C,F)
Differences in DNAmAge in healthy breast tissue of known breast cancer patients and
participants with no history of prior breast cancer (Rozenblit et. al 2022) [37]. DNAmAge
scores were residualized by age prior to analysis.
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Methods:

Experimental:

Fetal astrocyte extraction:

4 fetal-mortal astrocyte cell lines were derived from the cerebral cortex of two different
donors (ScienCell #1800). Donor 1, which was splitinto -hTERT1, -hTERT2 and -hTERT3
cell lines and was used in training experiments and Donor2 which was split into -hTERT4.
Tissue was received by ScienCell Research Laboratories from non-profit tissue providers,
obtained with informed consent of donor's family aged over eighteen, and under
established protocols in compliance with an institutional review board and local, state,
and federal laws. No payment, commercial rights or financial rights were provided to the
donor family. Further details can be obtained from ScienCell Research Laboratories.

Primary astrocyte extraction:

3 primary human astrocyte cell lines were derived from the cerebral cortex of one 21-
year-old male donor (Creative Biolabs, #NCL-2103-P104). The 21M donor was split into
Astro1, Astro2 and Astro3 cell lines, which were then subsequently exhaustively
passaged. All tissue collection procedures used by Creative Biolabs, and its partners,
was performed in compliance with institutional review boards and local, state, and federal
laws. Further details can be obtained from Creative Biolabs.

Immortalized (hTERT) astrocyte preparation:

hTERT immortalized fetal astrocyte cell lines were supplied by Applied biological
materials (Abm) (#T0281). The immortalized cells were supplied at passage 12, with
passage reporting starting after nTERT immortalization. Upon receiving, we subsequently
split the immortalized fetal donor into 3 hTERT cell lines, +hTERT1, +hTERT2 and
+hTERTS3, which were then passaged to p27. Further details about plasmids used in
transfection and details about donor sourcing can be obtained from Abm.

Astrocyte replicative passaging and cellular culturing:

Fetal cells were exhaustively passaged and split a total of 10 times (9-15 cumulative
population doublings, depending on replicate), where B-gal activity (C12FDG) was
measured using flow cytometry or confocal microscopy at each passage to confirm
exhaustive replication was achieved. Primary astrocytes were also exhaustively
passaged and split a total of 10 times (8-9 cumulative population doublings, depending
on replicate). hTERT immortalized astrocytes were passaged a total of 27 times (73-75
cumulative population doublings, depending on replicate).

All cell lines were seeded at 8,000 cells/cm? (0.5%10° cell/p100) with appropriate growth

media and supplements (complete astrocyte medium containing amino acids, vitamins,
hormones, trace minerals, 2% fetal bovine serum and 1% PEN/STREP in HEPES pH 7.4
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bicarbonate buffer, ScienCell #1801) to promote cell adhesion and growth. Of note, Poly-
L-Lysine was not required for adequate cell adhesion. All cells were grown under
normoxic conditions (20% 02, 5% CO2) at 37°C. Cells were split (0.05% Trypsin-EDTA
(Gibco, #25300-54)) when they reached approximately 90% confluence or when static
growth was achieved. Cells were counted using the Invitrogen countess and cell counting
chamber slide with trypan blue. Cumulative population doubling was calculated using the
initial and final cell density, as determined by the countess (2*=FD/ID, where x=population
doubling, FD=final cell density and ID=initial cell density).

DNA preparation:

Longitudinal samples were collected at every passage and DNA was extracted using the
Qiagen DNAeasy Blood and Tissue Kit (#69504). Note, samples were treated with
proteinase K and RNAse A and eluted with 200 pl elution buffer. Following final elution,
DNA was verified using nanodrop (Thermo Scientific) and Qubit fluorometer (Invitrogen).
Spin concentration was used as necessary with low DNA content samples. Prior to library
preparation we used a Qubit fluorometer (Invitrogen) to quantify the extracted genomic
DNA.

Beta-galactosidase confocal microscopy:

To assess senescence status, we employed a beta-galactosidase imaging method. In
brief, cells were split into 12-well dishes (0.125x10° cells/well) with a glass cover slide at
the bottom of each well and allowed to settle for 24 hours. Cells were first pre-treated with
Bafilomycin A1 (Selleckchem: S1413, 622.83 g/mol, 100 uM stock). Existing media was
aspirated, then cells were washed with PBS and replaced with treated Bafilomycin A1
media for 30 min at a final concentration of 100 nM. Following Bafilomycin A1 pre-
treatment to normalize lysosome activity, C12FDG (Invitrogen, #D2893, 853.92 g/mol,
10 mM stock) was added directly to the existing media for 90 min at a final concentration
of 10 uM. Note, due to light sensitivity, exchange was conducted in a dark environment.
Following Bafilomycin A1 and C12FDG treatment, media was aspirated, and cells were
washed with PBS 3x, fixed with 4% PFA/PBS (10 min), followed by 2x PBS washes and
then counter stained with DAPI (Invitrogen, #P36935) and mounted onto coverslips. Fixed
cells were immediately imaged using a ZOE fluorescent cell imager (Bio Rad). Percent
cell positively was calculated using ImagedJ with a background/negative threshold value.
Any cells above this threshold were considered positive. All cells in each image frame
were counted.

F-actin (Phalloidin-CruzFluor 532) confocal microscopy:

Passage 3, 6 and 10 fetal astrocytes (-hTERT1-3) were concurrently passaged to
dynamically visualize changes in cellular morphology. In brief, cells were split into 12-well
dishes (0.125x10° cells/well) with a glass cover slide at the bottom of each well. Cells
were allowed to grow for 5 days before assessment. Following growth, cells were fixed
using 4% formaldehyde in PBS for 30 minutes. In summary, loose cells and media were
aspirated, then washed 2x with PBS, then fixed with 4% formaldehyde for 30 minutes.
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After fixation, cells were washed 2x with PBS, then Phalloidin-CruzFluor 532 (1x) (Santa
Cruz, #363793) conjugate was added for 90 minutes. Following conjugation, cells were
gently rinsed 2x with PBS, then 2x with H20. Finally, cells were counter stained with DAPI
(Invitrogen, #P36935), mounted onto coverslips and imaged with a ZOE fluorescent cell
imager (Bio Rad).

Absolute telomere length qPCR quantification:

Telomere attrition was calculated as a percent change from baseline using absolute
telomere length assessed using a qPCR kit from ScienCell (#8918). -hTERT1 and
hTERT1 cell lines were used in the assessment. More specifically, -hnTERT cells
passaged 2, 4, 6, 8 and 10x and hTERT1 cells passaged 13, 15, 17, 19, 21, 23, 25, 27x
were used in the final telomere attrition reporting and comparisons.

Computational:

Data processing:

All samples were assigned a single-blinded code and randomized for library preparation
and sequencing to control for any batch errors. DNAm data was generated using the
Infinium HumanMethylation850 BeadChip and preprocessed using minfi45 [38] and
normalized using the noob method56 [39]. Prior to analysis all sex chromosome CpGs
were excluded, and for training and validation purposes we aligned the CpGs to the 450k
array, giving a final matrix of 442,242 CpGs.

Training and validation of DNAmImmort, Module clocks, CelIDRIFT and PC clocks:

R was the primary platform used throughout the study (Version 4.1.1). Prism (Version 9)
was also used for certain statistical analysis and plotting. DNAmImmort was constructed
using only passaged hTERT cells. In brief, 3 hTERT cell lines were used in the training
and validation process, all from the same donor and immortalization pair. +hTERT1 and
+hTERT2 (n=31, p13-p27) was used in training, hereafter referred to as hTERT training,
and +hTERT3 (n=14, p13-p27) was used in validation, hereafter referred to as hTERT
validation. In summary, PCA was conducted on the hTERT training samples, then we
used elastic net regression modeling to select the final 16 PCs used in the measure based
on using cPD as the training variable for calibration. The 16 PCs were comprised of
PCloading scores for all 442,242 CpGs, with elastic net coefficients based on lambda
penalty values representing the lowest mean-squared error, selected via 10-fold cross
validation.

From modules identified according to WGCNA in the following section, we trained a
number of smaller clocks. These were trained using the same hTERT training and
validation samples, except PCA was conducted on the module CpGs, resulting in a
measure with significantly reduced CpGs (Turquoise=4,008 CpGs, Blue=3,859 CpGs,
Brown=2,641 CpGs, Yellow=2,025 CpGs, Green=1,525 CpGs, Red=1,252 CpGs,
Black=912 CpGs, Pink=882 CpGs, Magenta=880 CpGs, Purple=756 CpGs,
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Greenyellow=721 CpGs, Tan=297 CpGs, Salmon=234 CpGs, Cyan=108 CpGs). See
more details below on the process of isolating the most physiologically relevant module
CpGs.

To determine the cell and tissue age correlations we first conducted PCA in each module
CpG cohort (eigengene) in our in vitro replication data and then calculated the resulting
variance (PC1) within each validation dataset (Sup Fig. 4B). Next, we trained elastic net
selected PC clocks (DNAmModuleColor) as replication predictors in our in vitro model
and then calculated DNAmAge Pearson correlations within each module clock and
validation dataset (Fig. 1D). In both eigengene (PC1) and module clock analysis, the
yellow and tan modules CpGs were the most physiologically relevant replication
fingerprints, with strong correlations across both in vivo tissues - liver, skin, developing
and adult brain, and blood — and in vitro cell lines — fetal astrocytes, primary astrocytes,
primary dermal fibroblasts and primary mammary fibroblasts (Fig. 1D). In moving forward,
the CpGs in these two modules served as the input CpGs for the final composite measure,
CellDRIFT.

The final cellular replication measure - CellDRIFT (Cellular Division and Replication
Induced FingerprinT) - was trained from the combined CpGs from the yellow (2,025) and
tan (297) modules, which were selected from extensive in vitro and in vivo validation
analysis to determine multi-tissue and physiological relevance (Fig. 1D). Instead of re-
calculating PCs for the new 2,322 CpG cohort, we combined the independent PCs (62
total, 31 from each module) and conducted elastic net to select for the final PCs for
inclusion in the final measure. This way, each signal had equal weight and possibility for
contributing to the final measure and CpG occupancy wasn’t a biasing factor. The
following PCs were selected from each module: Yellow [PC1, PC2, PC3, PC10, PC17]
and Tan [PC1, PC2, PC3, PC4, PC5, PC7, PC10, PC11]. Further details on PC-trained
measures can be found in our previous reports [5,11]. A package is under construction
for easy calculation of CellDRIFT from external datasets. See attached Data Supplement
1 for a list of the CpG sites in each module.

Calculating Cellular Division and Replication Induced FingerprinT (CellDRIFT)

[ 2990

-
I . g
- 2 s
- —> g —> W”\(l;')sz'“zm)
[ 0 | j=1 j=1
.
[ [ [ [ | Age/cPD/Passage
Apply elasti t
Input data Reduce to 2,322 Calculate 62 principal regirjgs}./sii)zsrr;ggz to
(450k Array CpGs) CellDRIFT CpGs com;)ongn ts (PCs) for PCs to calculate final
eiastic net input CellDRIFT score

Data Figure 1: CelIDRIFT calculation pipeline. Data schematic showing process of
selecting 2,322 CellDRIFT CpGs, calculating the 62 PCs, then feeding them into the
elastic net regression resulting in the final CellDRIFT score.
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Validation of all measures was done first by assessing the DNAmAge of the hTERT
validation data (n=14), followed by various multi-tissue and additional in vitro datasets
(Sup Fig. 3). Pearson correlations were used to determine associations between all
measures and validation data presented in Fig. 1D. Note, liver, developing brain, adult
brain, blood and skin were assessed as age-correlations, hTERT, fetal astrocytes and
primary astrocytes were assessed as cumulative population doublings (cPD) correlations,
and dermal and mammary cell lines were assessed as passage correlations due to limited
cPD data information.

As controls, we evaluated the traditionally trained ex vivo clocks PCHorvath1 and
PCPhenoAGE and found CellDRIFT outperformed the multi-tissue measure PCHorvath1,
and performed similarly to PCPhenoAGE, which is remarkable considering PhenoAGE
was trained as a health span predictor and is highly associated with mortality, while
CellDRIFT is only trained from in vitro cell divisions (Sup Fig. 8). We associated the
improved cancer detection power of PCPhenoAGE over PCHorvath1 to its tighter
association with all-cause mortality. PC clock calculations for PCHorvath1 and
PCPhenoAge were conducted using the data analysis pipeline from Higgins-Chen et. al
2022 [13].

WGCNA module construction and hierarchical clustering:

We conducted consensus WGCNA [20] and hierarchical clustering to produce distinct
DNAmAge signals, as we previously reported [7]. In brief, we used 2 input datasets
(hTERT training and liver aging), with the remaining datasets (hnTERT validation, blood,
brain, skin, primary astrocyte, fetal astrocyte, dermal and mammary fibroblasts) excluded
for validation purposes. In total, we used 20,101 CpGs in the consensus analysis. The
CpGs included were the top driver CpGs of DNAmImmort, which were selected from
normalizing PC loading scores and selecting the top values (Sup Fig. 2F). In brief,
adjacencies were estimated for each dataset, which is based on biweight midcorrelations.
These adjacencies were then converted to Topological Overlap Matrices (TOMs) where
a minimum dissimilarity score was calculated for each CpG pair across the two TOMs.
Hierarchical clustering was then conducted with the following parameters, deepSplit= 1,
cutHeight = 0.95, minClusterSize = 50, and distance = 1-consensus TOM, method =
average. The resulting network produced 14 modules. No further module cutting was
preformed, with all CpGs in the input analysis being assigned a module. Following module
construction, we estimated PC1 for each module using the hTERT training data (Sup Fig.
4B) and then applied this score to all validation data to serve as a validation metric of
module connectivity and similarity. Module clocks were then trained from the module
CpGs and taken forward to determine differences in DNAmMAge between modules. For
further information on module development refer to Minteer et. al 2022 [7].

Cistrome genome enrichment analysis:
In order to better determine the functionality of the CpGs selected from each module we

used the Cistrome gene analysis tool kit (http://dbtoolkit.cistrome.org/) to determine
enriched genes and histone marks in each CpG dataset. In brief, we plotted all
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transcription factors and chromatin regulators with significant overlap with the CpG
modules and then plotted a heatmap of the top 5 genes (average Giggle score across all
GSM_ID hits) from each module together, in order to compare module to module
enrichment (Sup Fig. 5). Note, the summary module enrichment analysis used the top
100 CpGs from each module, determined from the KME score. Enriched genes were
normalized by selecting 100 background CpGs from the original 440k training dataset
and correcting for each GSM_IDs Giggle score. Enrichment analysis is displaying the
average Giggle score across all GSM_IDs, with the top 5 for each module plotted in Sup
Fig. 5Q and then the top 20 were fed into String analysis in Fig. 2B. Note, histone mark
analysis was conducted on the top 100 kME CpGs and corrected for background hits with
the final heatmap displaying the top 5 marks by average Giggle score (Fig. 2A). Giggle
score is a rank of genome significance between genomic locations of query file and
thousands of genome files from databases like ENCODE. For further information on
normalization and plotting Giggle scores refer to Minteer et. al 2022 [7].

Additional analysis pipelines:

Genomic partitioning and CpG locations were determined using LolaWeb
(http://lolaweb.databio.org/). STRING protein-protein network analysis was conducted
using the STRING database (https://string-db.org/). Medium confidence (0.4) was set as
the minimum interaction score threshold.

Statistical analysis and R packages:

Plotting and module development were conducted using the WGCNA package. Additional
plotting was done using the ggplot2 package. Elastic net modeling was conducted using
the glmnet package. Survival analysis and COX hazard ratio analysis was conducted
using the survival, survminer and dplyr packages. Hazard ratios were calculated in
reference to survival data from a cohort of breast cancer patients (GSE37754) with the
interaction variable being the CellDRIFT or PCclock scores. Additional packages of
interest used in this study were: BiocManager, lattice, viridis, RColorBrewer, reshape, and
GEOquery. Pearson correlations were used to assess age and passage associations, the
Kruskal-Wallis ONE-way ANOVA test were used for multi-group comparisons, Two-tailed
t tests were used to compare group-group significance and biweight midcorrelations were
used for determining adjacencies in module construction analysis.

Data accessibility and usage:

All data used in this study is summarized below: Training: hTERT training data (this study,
n=31 samples), Validation: hTERT validation data (this study, n=14), Liver aging
(GSE48325), Brain aging (GSE74193), Blood aging (GSE40279), Skin aging
(GSE52980), Primary Astrocytes (this study, n=25), Fetal Astrocytes (this
study/GSE202554), Primary Dermal Fibroblast and Primary Mammary Fibroblasts (E-
MTAB-8327), Cancer: Pooled cancer samples (GSE53051), Breast cancer survival data
(GSE37754), Healthy breast tissue - Rozenblit et. al 2022 [37], Whole-body tissue
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(ENTEx study), Reprogramming: Yamanaka fibroblast re-programming and passaging
data (GSE54848) and iPSC/ESC passaging data (GSE31848).
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