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202 In Brief

203 The OpenPBTA is a global, collaborative open-science initiative which brought together

204  researchers and clinicians to genomically characterize 1,074 pediatric brain tumors and 22

205 patient-derived cell lines. Shapiro, et. al create over 40 open-source, scalable modules to

206  perform cancer genomics analyses and provide a richly-annotated somatic dataset across 58
207  brain tumor histologies. The OpenPBTA framework can be used as a model for large-scale data
208 integration to inform basic research, therapeutic target identification, and clinical translation.

200 Highlights

210  OpenPBTA collaborative analyses establish resource for 1,074 pediatric brain tumors
211 NGS-based WHO-aligned integrated diagnoses generated for 641 of 1,074 tumors
212  RNA-Seq analysis infers medulloblastoma subtypes, TP53 status, and telomerase activity

213  OpenPBTA will accelerate therapeutic translation of genomic insights

214  Summary

215  Pediatric brain and spinal cancer are the leading disease-related cause of death in children,
216  thus we urgently need curative therapeutic strategies for these tumors. To accelerate such

217  discoveries, the Children’s Brain Tumor Network and Pacific Pediatric Neuro-Oncology

218  Consortium created a systematic process for tumor biobanking, model generation, and

219  sequencing with immediate access to harmonized data. We leverage these data to create

220 OpenPBTA, an open collaborative project which establishes over 40 scalable analysis modules
221 to genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals
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that TP53 loss is a significant marker for poor overall survival in ependymomas and H3 K28-
altered diffuse midline gliomas and further identifies universal TP53 dysregulation in mismatch
repair-deficient hypermutant high-grade gliomas. OpenPBTA is a foundational analysis platform
actively being applied to other pediatric cancers and inform molecular tumor board decision-
making, making it an invaluable resource to the pediatric oncology community.

Keywords

pediatric cancer, brain tumors, somatic variation, open science, reproducibility, classification,
tumor atlas

Introduction

Pediatric brain and spinal cord tumors are collectively the second most common malignancy in
children after leukemia, and they represent the leading disease-related cause of death in
children'. Five-year survival rates vary widely across different histologic and molecular
classifications of brain tumors. For example, most high-grade gliomas carry a universally fatal
prognosis, while children with pilocytic astrocytoma have an estimated 10-year survival rate of
92%2. Moreover, estimates from 2009 suggest that children and adolescents aged 0-19 with
brain tumors in the United States have lost an average of 47,631 years of potential life®.

The low survival rates for some pediatric tumors are clearly multifactorial, explained partly by
our lack of comprehensive understanding of the ever-evolving array of brain tumor molecular
subtypes, difficulty drugging these tumors, and the shortage of drugs specifically labeled for
pediatric malignancies. Historically, some of the most fatal, inoperable brain tumors, such as
diffuse intrinsic pontine gliomas (DIPGs), were not routinely biopsied due to perceived risks of
biopsy and the paucity of therapeutic options that would require tissue. Limited access to tissue
to develop patient-derived cell lines and mouse models has been a barrier to research.
Furthermore, the incidence of any single brain tumor molecular subtype is relatively low due to
the rarity of pediatric tumors in general.

To address these long-standing barriers, multiple national and international consortia have
come together to uniformly collect clinically-annotated surgical biosamples and associated
germline materials as part of both observational and interventional clinical trials.

Such accessible, centralized resources enable collaborative sharing of specimens and data
across rare cancer subtypes to accelerate breakthroughs and clinical translation. The creation
of the Pediatric Brain Tumor Atlas (PBTA) in 2018, led by the Children’s Brain Tumor Network
(CBTN, cbtn.org) and the Pacific Pediatric Neuro-Oncology Consortium (PNOC, PNOC.us) is
one such effort that builds on nearly 10 years of multi-institutional enroliment, sample collection,
and clinical followup across more than 30 institutions. Just as cooperation is required to share
specimens and data, rigorous cancer genomic analysis requires collaboration among
researchers with distinct expertise, such as computational scientists, bench scientists, clinicians,
and pathologists.

Although there has been significant progress in recent years to elucidate the landscape of
somatic variation responsible for pediatric brain tumor formation and progression, translation of
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261 therapeutic agents to phase Il or Ill clinical trials and subsequent FDA approvals have not kept
262  pace. Within the last 20 years, the FDA has approved only five drugs for the treatment of

263  pediatric brain tumors: mTOR inhibitor everolimus, for subependymal giant cell astrocytoma;
264  anti-PD-1 immunotherapy pembrolizumab, for microsatellite instability—high or mismatch repair—
265  deficient tumors; NTRK inhibitors larotrectinib and entrectinib, for tumors with an NTRK 1/2/3
266  gene fusions; and MEK1/2 inhibitor selumetinib, for neurofibromatosis type 1 (NF1) and

267  symptomatic, inoperable plexiform neurofibromas?.

268 This is, in part, due to pharmaceutical company priorities and concerns regarding toxicity,

269  making it challenging for researchers to obtain to new therapeutic agents for pediatric clinical
270 trials. Critically, as of August 18, 2020, an amendment to the Pediatric Research Equity Act

271  called the “Research to Accelerate Cures and Equity (RACE) for Children Act” mandates that all
272  new adult oncology drugs also be tested in children when the molecular targets are relevant to a
273  particular childhood cancer. The regulatory change introduced by the RACE Act, coupled with
274  the identification of putative molecular targets in pediatric cancers through genomic

275  characterization, is poised to accelerate identification of novel and effective therapeutic for

276  pediatric diseases that have otherwise been overlooked.

277  To leverage diverse scientific and analytical expertise to analyze the PBTA data, we created an
278  open science model and incorporated features such as analytical code review>? and continuous
279 integration to test data and code®’ to improve reproducibility throughout the life cycle of our
280  project, termed OpenPBTA.

281  We anticipated that a model of open collaboration would enhance the value of our effort to the
282  pediatric brain tumor research community and provide a framework for continuous, accelerated
283 translation of pediatric brain tumor datasets. Openly sharing data and code in real time allows
284  others to build upon the work more rapidly, and publications that include data and code sharing
285  are poised for greater impact®2. Here, we present a comprehensive, collaborative, open

286  genomic analysis of 1,074 tumors and 22 cell lines, comprised of 58 distinct brain tumor

287 histologies from 943 patients. The data and containerized infrastructure of OpenPBTA have
288  Dbeen instrumental for discovery and translational research studies'®2, are actively integrated
289  into PNOC molecular tumor board decision-making, and are a foundational layer for the NCI's
290 Childhood Cancer Data Initiative’s (CCDI) pediatric Molecular Targets Platform

291 (https://moleculartargets.ccdi.cancer.gov/) recently built in support of the RACE Act®. We

292  anticipate OpenPBTA will be an invaluable resource to the pediatric oncology community.

293 Results

294 Crowd-sourced Somatic Analyses to Create an Open Pediatric
295 Brain Tumor Atlas

296  We previously performed whole genome sequencing (WGS), whole exome sequencing (WXS),
297 and RNA sequencing (RNA-Seq) on matched tumor and normal tissues as well as selected cell
298 lines! from 943 patients from the Pediatric Brain Tumor Atlas (PBTA), consisting of samples
299  from the Children’s Brain Tumor Network (CBTN) and the PNOC003 DIPG clinical trial'2*2 of the
300 Pacific Pediatric Neuro-Oncology Consortium (PNOC) (Figure 1A). We then harnessed the
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benchmarking efforts of the Gabriella Miller Kids First Data Resource Center to develop robust
and reproducible data analysis workflows within the CAVATICA platform to perform primary
somatic analyses including calling of single nucleotide variants (SNVs), copy number variants
(CNVs), structural variants (SVs), and gene fusions, often implementing multiple complementary
methods (Figure S1) and STAR Methods).

To facilitate analysis and visualization of this large, diverse cohort, we further categorized tumor
broad histologies (i.e., broad 2016 WHO classifications) into smaller groupings we denote
“cancer groups.” A summarized view of the number of biospecimens per phase of therapy
across different broad histologies and cancer groups is shown in (Figure 1B). We maintained a
data release folder on Amazon S3, downloadable directly from S3 or through the open-access
CAVATICA project, with merged files for each analysis (See Data and code availability
section). As new analytical results (e.g., tumor mutation burden calculations) that we expected
to be used across multiple analyses were produced, or issues with the data were identified, new
data releases were made available in a versioned manner.

A key innovative feature of this project has been its open contribution model used for both
analyses (i.e., analytical code) and scientific manuscript writing. We created a public Github
analysis repository (https://github.com/AlexsLemonade/OpenPBTA-analysis) to hold all code
associated with analyses downstream of the Kids First Data Resource Center workflows and a
GitHub manuscript repository (https://github.com/AlexsLemonade/OpenPBTA-manuscript) with
Manubot!® integration to enable real-time manuscript creation using Markdown within GitHub.
Importantly, all analyses and manuscript writing were conducted openly throughout the research
project, allowing any researcher in the world the opportunity to contribute.

The process for analysis and manuscript contributions is outlined in Figure 1C. First, a potential
contributor would propose an analysis by filing an issue in the GitHub analysis repository. Next,
organizers for the project, or other contributors with expertise, had the opportunity to provide
feedback about the proposed analysis (Figure 1C). The contributor then made a copy (fork) of
the analysis repository and added their proposed analysis code and results to their fork. The
contributor would formally request to include their analytical code and results to the main
OpenPBTA analysis repository by filing a pull request on GitHub. All pull requests to the
analysis repository underwent peer review by organizers and/or other contributors to ensure
scientific accuracy, maintainability, and readability of code and documentation (Figure 1C-D).

The collaborative nature of the project required additional steps beyond peer review of analytical
code to ensure consistent results for all collaborators and over time (Figure 1D). We leveraged
Docker®' and the Rocker project!® to maintain a consistent software development
environment, creating a monolithic image that contained all dependencies necessary for
analyses. To ensure that new code would execute in the development environment, we used
the continuous integration (Cl) service CircleCI® to run analytical code on a small subset of data
for testing before formal code review, allowing us to detect code bugs or sensitivity to changes
in the underlying data.

We followed a similar process in our Manubot-powered!® manuscript repository for additions to
the manuscript (Figure 1C). Contributors forked the manuscript repository, added proposed
content to their branch, and filed pull requests to the main manuscript repository with their
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343  changes. Similarly, pull requests underwent a peer review process for clarity and correctness,
344  agreement with interpretation, and spell checking via Manubot.
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346  Figure 1: Overview of the OpenPBTA Project. A, The Children’s Brain Tumor Network and the
347  Pacific Pediatric Neuro-Oncology Consortium collected tumor samples from 943 patients. To
348 date, 22 cell lines were created from tumor tissue, and over 2000 specimens were sequenced
349 (N =1035 RNA-Seq, N = 940 WGS, and N = 32 WXS or targeted panel). Data was harmonized

350

by the Kids First Data Resource Center using an Amazon S3 framework within CAVATICA. B,
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Stacked bar plot summary of the number of biospecimens per phase of therapy. Each panel
denotes a broad histology and each bar denotes a cancer group. (Abbreviations: GNG =
ganglioglioma, Other LGG = other low-grade glioma, PA = pilocytic astrocytoma, PXA =
pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell astrocytoma, DIPG = diffuse
intrinsic pontine glioma, DMG = diffuse midline glioma, Other HGG = other high-grade glioma,
ATRT = atypical teratoid rhabdoid tumor, MB = medulloblastoma, Other ET = other embryonal
tumor, EPN = ependymoma, PNF = plexiform neurofibroma, DNET = dysembryoplastic
neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing sarcoma, CPP = choroid
plexus papilloma). Only samples with available descriptors were included. C, Overview of the
open analysis and manuscript contribution model. In the analysis GitHub repository, a
contributor would propose an analysis that other participants can comment on. Contributors
would then implement the analysis and file a request to add their changes to the analysis
repository (“pull request’). Pull requests underwent review for scientific rigor and correctness of
implementation. Pull requests were additionally checked to ensure that all software
dependencies were included and the code was not sensitive to underlying data changes using
container and continuous integration technologies. Finally, a contributor would file a pull request
documenting their methods and results to the Manubot-powered manuscript repository. Pull
requests in the manuscript repository were also subject to review. D, A potential path for an
analytical pull request. Arrows indicate revisions to a pull request. Prior to review, a pull request
was tested for dependency installation and whether or not the code would execute. Pull
requests also required approval by organizers and/or other contributors, who checked for
scientific correctness. Panel A created with BioRender.com.

Molecular Subtyping of OpenPBTA CNS Tumors

Over the past two decades, experts in neuro-oncology have worked with the World Health
Organization (WHO) to iteratively redefine the classifications of central nervous system (CNS)
tumors'®2. More recently, in 2016 and 2021222, molecular subtypes have been integrated into
these classifications. In 2011, the Children’s Brain Tumor Tissue Consortium, now known as the
Children’s Brain Tumor Network (CBTN), opened its protocol for brain tumor and matched
normal sample collection. Since the CBTN opened its collection protocol in 2011, before
molecular data were integrated into classifications, the majority of the samples within the
OpenPBTA lacked molecular subtype annotations at the time of tissue collection. Moreover, the
OpenPBTA data does not yet feature methylation arrays which are increasingly used to inform
molecular subtyping. Therefore, we jointly considered key genomic features of tumor entities
described by the WHO in 2016, low-grade glioma (LGG) subtypes described by Ryall and
colleagues?, as well as clinician and pathologist review, to generate research-grade integrated
diagnoses for 60% (641/1074) of tumor samples with high confidence (Table S1).

Importantly, this collaborative molecular subtyping process allowed us to identify potential data
entry errors (e.g., an ETMR incorrectly entered as a medulloblastoma) and histologically mis-
identified specimens (e.g., Ewing sarcoma sample labeled as a craniopharyngioma), update
diagnoses using current WHO terms (e.g., tumors formerly ascribed primitive neuro-ectodermal
tumor [PNET] diagnoses), and discover rarer tumor entities within the OpenPBTA (e.g., H3-
mutant ependymoma, meningioma with YAP1::FAM118B fusion). Table 1 lists the subtypes we
defined within OpenPBTA, comprising low-grade gliomas (N = 290), high-grade gliomas (N =
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394  141), embryonal tumors (N = 126), ependymomas (N = 30), tumors of sellar region (N = 27),
395  mesenchymal non-meningothelial tumors (N = 11), glialneuronal tumors (N = 10), and
396 chordomas (N = 6). For detailed methods, see STAR Methods and Figure S1.

397  Table 1: Molecular subtypes generated through the OpenPBTA project. Listed are broad

398  tumor histologies, molecular subtypes generated, and number of specimens subtyped within the

399  OpenPBTA project.
Broad histology group OpenPBTA molecular subtype n
Chordoma CHDM, conventional 2
Chordoma CHDM, poorly differentiated 4
Embryonal tumor CNS Embryonal, NOS 13
Embryonal tumor CNS HGNET-MN1 1
Embryonal tumor CNS NB-FOXR2 3
Embryonal tumor ETMR, C19MC-altered 5
Embryonal tumor ETMR, NOS 1
Embryonal tumor MB, Group3 14
Embryonal tumor MB, Group4 49
Embryonal tumor MB, SHH 30
Embryonal tumor MB, WNT 10
Ependymal tumor EPN, H3 K28 1
Ependymal tumor EPN, ST RELA 28
Ependymal tumor EPN, ST YAP1 1
High-grade glioma DMG, H3 K28 24
High-grade glioma DMG, H3 K28, TP53 activated 13
High-grade glioma DMG, H3 K28, TP53 loss 40
High-grade glioma HGG, H3 G35 3
High-grade glioma HGG, H3 G35, TP53 loss 1
High-grade glioma HGG, H3 wildtype 31
High-grade glioma HGG, H3 wildtype, TP53 activated 5
High-grade glioma HGG, H3 wildtype, TP53 loss 21
High-grade glioma HGG, IDH, TP53 activated 2
High-grade glioma HGG, IDH, TP53 loss 1
Low-grade glioma GNG, BRAF V600E 13
Low-grade glioma GNG, BRAF V600E, CDKN2A/B 1
Low-grade glioma GNG, FGFR 1
Low-grade glioma GNG, H3 1
Low-grade glioma GNG, IDH 2
Low-grade glioma GNG, KIAA1549-BRAF 5
Low-grade glioma GNG, MYB/MYBL1 1
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Broad histology group OpenPBTA molecular subtype n
Low-grade glioma GNG, NF1-germline 1
Low-grade glioma GNG, NF1-somatic, BRAF V600E 1
Low-grade glioma GNG, other MAPK 4
Low-grade glioma GNG, other MAPK, IDH 1
Low-grade glioma GNG, RTK 3
Low-grade glioma GNG, wildtype 14
Low-grade glioma LGG, BRAF V600E 27
Low-grade glioma LGG, BRAF V600E, CDKN2A/B 5
Low-grade glioma LGG, FGFR 8
Low-grade glioma LGG, IDH 3
Low-grade glioma LGG, KIAA1549-BRAF 113
Low-grade glioma LGG, KIAA1549-BRAF, NF1-germline 1
Low-grade glioma LGG, KIAA1549-BRAF, other MAPK 1
Low-grade glioma LGG, MYB/MYBL1 2
Low-grade glioma LGG, NF1-germline 6
Low-grade glioma LGG, NF1-germline, CDKN2A/B 1
Low-grade glioma LGG, NF1-germline, FGFR 2
Low-grade glioma LGG, NF1-somatic 2
Low-grade glioma LGG, NF1-somatic, FGFR 1
Low-grade glioma LGG, NF1-somatic, NF1-germline, CDKN2A/B 1
Low-grade glioma LGG, other MAPK 12
Low-grade glioma LGG, RTK 10
Low-grade glioma LGG, RTK, CDKN2A/B 1
Low-grade glioma LGG, wildtype 34
Low-grade glioma SEGA, RTK 1
Low-grade glioma SEGA, wildtype 11
Mesenchymal non-meningothelial tumor EWS 11
Neuronal and mixed neuronal-glial tumor CNC 2
Neuronal and mixed neuronal-glial tumor EVN 1
Neuronal and mixed neuronal-glial tumor GNT, BRAF V600E 1
Neuronal and mixed neuronal-glial tumor GNT, KIAA1549-BRAF 2
Neuronal and mixed neuronal-glial tumor GNT, other MAPK 1
Neuronal and mixed neuronal-glial tumor GNT, other MAPK, FGFR 1
Neuronal and mixed neuronal-glial tumor GNT, RTK 2
Tumor of sellar region CRANIO, ADAM 27
Total 641
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400 Somatic Mutational Landscape of Pediatric Brain Tumors

401  We performed a comprehensive genomic analysis of somatic SNVs, CNVs, SVs, and fusions
402 across 1,074 tumors (N = 1,019 RNA-Seq, N = 918 WGS, N = 32 WXS/Panel) and 22 cell lines
403 (N =16 RNA-Seq, N = 22 WGS), from 943 patients, 833 with paired normal specimens (N = 801
404 WGS, N = 32 WXS/Panel). Following SNV consensus calling (Figure S1 and Figure S2A-G),
405 we observed as expected lower tumor mutation burden (TMB) Figure S2H in pediatric tumors
406 compared to adult brain tumors from The Cancer Genome Atlas (TCGA), Figure S2I, with

407  hypermutant (> 10 Mut/Mb) and ultra-hypermutant (> 100 Mut/Mb) tumors* only found within
408 HGGs. Figure 2 and Figure S3A depict oncoprints of histology-specific driver genes across
409 PBTA histologies.

410 Low-grade gliomas

411  As expected, the majority (62%, 140/227) of LGGs harbored a somatic alteration in BRAF, with
412  canonical BRAF::KIAA1549 fusions as the major oncogenic driver?® (Figure 2A). We observed
413  additional mutations in FGFR1 (2%), PIK3CA (2%), KRAS (2%), TP53 (1%), and ATRX (1%)
414  and fusions in NTRK2 (2%), RAF1 (2%), MYB (1%), QKI (1%), ROS1 (1%), and FGFR2 (1%),
415  concordant with previous studies reporting the near universal upregulation of the RAS/MAPK
416  pathway in these tumors resulting from activating mutations and/or oncogenic fusions®2.

417  Indeed, we observed significant upregulation (ANOVA Bonferroni-corrected p < 0.01) of the
418  KRAS signaling pathway in LGGs (Figure 5B).

419 Embryonal tumors

420 The majority (N = 95) of embryonal tumor samples were medulloblastomas that spanned the
421  spectrum of molecular subtypes (WNT, SHH, Group3, and Group 4; see Molecular Subtyping
422  of CNS Tumors), as identified by subtype-specific canonical mutations (Figure 2B). We

423  detected canonical SMARCB1/SMARCA4 deletions or inactivating mutations in atypical teratoid
424  rhabdoid tumors (ATRTs) and C19MC ampilification in the embryonal tumors with multilayer
425  rosettes (ETMRSs, displayed as other embryonal tumors)222,

426  High-grade gliomas

427  Across HGGs, we found that TP53 (57%, 35/61) and H3F3A (52%, 32/61) were both most

428  mutated and co-occurring genes (Figure 2A and C), followed by frequent mutations in ATRX
429  (30%, 18/61). We observed recurrent amplifications and fusions in EGFR, MET, PDGFRA, and
430  KIT, highlighting that these tumors utilize multiple oncogenic mechanisms to activate tyrosine
431 kinases, as has been previously reported'>3%31 Gene set enrichment analysis showed

432  upregulation (ANOVA Bonferroni-corrected p < 0.01) of DNA repair, G2M checkpoint, and MYC
433 pathways as well as downregulation of the TP53 pathway (Figure 5B). The two tumors with
434  ultra-high TMB (> 100 Mutations/Mb) were from patients with known mismatch repair deficiency
435  syndromelZ,
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436 Other CNS tumors

437  We observed that 25% (15/60) of ependymoma tumors were C710rf95::RELA (now,

438 ZFTA::RELA) fusion-positive ependymomas and that 68% (21/31) of craniopharyngiomas were

439  driven by mutations in CTNNB1 (Figure 2D). Multiple histologies contained somatic mutations

440  or fusions in NF2: 41% (7/17) of meningiomas, 5% (3/60) of ependymomas, and 27% (3/11)

441  schwannomas. Rare fusions in ERBB4, YAP1, KRAS, and MAML2 were observed in 10%

442  (6/60) of ependymoma tumors. DNETs harbored alterations in MAPK/PI3K pathway genes as

443  previously reported, including FGFR1 (21%, 4/19), PDGFRA (10%, 2/19), and BRAF (5%,

444  1/19). Frequent mutations in additional rare brain tumor histologies are depicted in Figure S3A.
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446  Figure 2: Mutational landscape of PBTA tumors. Shown are frequencies of canonical somatic
447  gene mutations, CNVs, fusions, and TMB (top bar plot) for the top 20 genes mutated across
448  primary tumors within the OpenPBTA dataset. A, Low-grade astrocytic tumors (N = 227):

449  pilocytic astrocytoma (N = 104), other low-grade glioma (N = 69), ganglioglioma (N = 35),

450  pleomorphic xanthoastrocytoma (N = 9), subependymal giant cell astrocytoma (N = 10); B,

451  Embryonal tumors (N = 128): medulloblastomas (N = 95), atypical teratoid rhabdoid tumors (N =
452  24), other embryonal tumors (N = 9); C, Diffuse astrocytic and oligodendroglial tumors (N = 61):
453  diffuse midline gliomas (N = 34) and other high-grade gliomas (N = 27); D, Other CNS tumors
454 (N = 194): ependymomas (N = 60), craniopharyngiomas (N = 31), meningiomas (N = 17),

455  dysembryoplastic neuroepithelial tumors (N = 19), Ewing sarcomas (N = 7), schwannomas (N =
456  11), and neurofibroma plexiforms (N = 7). Additional, rare CNS tumors are displayed in Figure
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457  S3A. Tumor histology (Cancer Group) and patient sex (Germline sex estimate) are
458 displayed as annotations at the bottom of each plot. Only samples with mutations in the listed
459  genes are shown. Multiple CNVs are denoted as a complex event.

460 Mutational co-occurrence, CNV, and signatures highlight key
461 oncogenic drivers

462  We analyzed mutational co-occurrence among OpenPBTA tumors, using a single sequencing
463 sample from each individual with available WGS (N = 666). The top 50 mutated genes (see
464  STAR Methods for details) in primary tumors are shown in Figure 3 by tumor type (A, bar

465 plots), with co-occurrence scores illustrated in the heatmap (B). TP53 was the most frequently
466  mutated gene across OpenPBTA tumors (8.4%, 56/666), significantly co-occurring with H3F3A
467 (OR=232,95% Cl: 15.3-66.7, q = 8.46e-17), ATRX (OR =20, 95% CI: 8.4 - 47.7, q = 4.43e-8),
468 NF1(OR =8.62,95% CI: 3.7 - 20.2, q = 5.45e-5), and EGFR (OR =18.2,95% Cl: 5-66.5, q =
469  1.6e-4). Other canonical cancer driver genes that were frequently mutated included BRAF,

470  H3F3A, CTNNB1, NF1, ATRX, FGFR1, and PIK3CA.

471 At the broad histology level, mutations in CTNNB1 significantly co-occurred with mutations in
472 TP53 (OR =42.9,95% CI: 7 - 261.4, q = 1.63e-3) and DDX3X (OR =21.1,95% Cl: 4.6 - 96.3, q
473  =4.46e-3) in embryonal tumors. Mutations in FGFR1 and PIK3CA significantly co-occurred in
474 LGGs (OR =76.1,95% CI: 9.85 - 588.1, q = 3.26e-3), consistent with previous findings®33¢, Of
475  HGG tumors with mutations in TP53 or PPM1D, 52/54 (96.3%) had mutations in only one of
476 these genes (OR =0.188, 95% CI: 0.04 - 0.94, p = 0.0413, g = 0.0587). This trend recapitulates
477  previous observations that TP53 and PPM1D mutations tend to be mutually exclusive in

478 HGGs*®.

479  We summarized broad CNV and SV and observed that HGGs and DMGs, followed by

480 medulloblastomas, had the most unstable genomes (Figure S3B). By contrast,

481 craniopharyngiomas and schwannomas generally lacked somatic CNV. Together, these CNV
482  patterns largely aligned with our estimates of tumor mutational burden (Figure S2H). The

483  breakpoint density estimated from SV and CNV data was significantly correlated across tumors
484 (p = 1.08e-37) (Figure 3C) and as expected, the number of chromothripsis regions called

485 increased as breakpoint density increased (Figure S3B-C). We identified chromothripsis events
486 in 28% (N = 11/39) of diffuse midline gliomas and in 40% (N = 19/48) of other HGGs (non-

487  midline HGGs) (Figure 3D). We also found evidence of chromothripsis in over 15% of

488  sarcomas, PXAs, metastatic secondary tumors, chordomas, glial-neuronal tumors, germinomas,
489  meningiomas, ependymomas, medulloblastomas, ATRTs, and other embryonal tumors,

490 highlighting the genomic instability and complexity of these pediatric brain tumors.

491  We next assessed the contributions of eight previously identified adult CNS-specific mutational
492  signatures from the RefSig database® across samples (Figure 3E and Figure S4A). Stage 0
493  and/or 1 tumors characterized by low TMBs (Figure S2H) such as pilocytic astrocytomas,

494  gangliogliomas, other LGGs, and craniopharyngiomas, were dominated by Signature 1 (Figure
495  S4A), which results from the normal process of spontaneous deamination of 5-methylcytosine.
496  Signature N6 is a CNS-specific signature which we observed nearly universally across samples.
497  Drivers of Signature 18, TP53, APC, NOTCH1 (found at
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498 https://signal.mutationalsignatures.com/explore/referenceCancerSignature/31/drivers), are also
499  canonical drivers of medulloblastoma, and indeed, we observed Signature 18 as the signature
500 with the highest weight in medulloblastoma tumors. Signatures 3, 8, 18, and MMR2 were

501  prevalent in HGGs, including DMGs. Finally, we found that the Signature 1 weight was higher at
502 diagnosis (pre-treatment) and was almost always lower in tumors at later phases of therapy
503  (progression, recurrence, post-mortem, secondary malignancy; Figure S4B). This trend may
504  have resulted from therapy-induced mutations that produced additional signatures (e.g.,

505 temozolomide treatment has been suggested to drive Signature 113), subclonal expansion,
506  and/or acquisition of additional driver mutations during tumor progression, leading to higher

507 overall TMBs and additional signatures.
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508 RefSig signature

509  Figure 3: Mutational co-occurrence and signatures highlight key oncogenic drivers. A, Bar
510  plot of occurrence and co-occurrence of nonsynonymous mutations for the 50 most commonly
511  mutated genes across all tumor types, which are denoted as “Other” when there are fewer than
512 10 samples per grouping; B, Co-occurrence and mutual exclusivity of nonsynonymous

513  mutations between genes; The co-occurrence score is defined as I(—log,o(P)) where P is

514  defined by Fisher’s exact test and I is 1 when mutations co-occur more often than expected and
515 -1 when exclusivity is more common, C, The number of SV breaks significantly correlate with
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CNV breaks (Adjusted R = 0.436, p = 1.08e-37). D, Chromothripsis frequency across pediatric
brain tumors for all cancer groups with N >= 3 samples. E, Sina plots of RefSig signature
weights for signatures 1, 11, 18, 19, 3, 8, N6, MMR?2, and Other across cancer groups. Box plot
lines represent the first quartile, median, and third quartile.

Transcriptomic Landscape of Pediatric Brain Tumors

Prediction of TP53 oncogenicity and telomerase activity

To understand the TP53 phenotype in each tumor, we ran a classifier previously trained on
TCGA2£ to calculate a TP53 score and infer TP53 inactivation status. We compared results of
this classifier to “true positive” alterations derived using high-confidence SNVs, CNVs, SVs, and
fusions in TP53. Specifically, we annotated TP53 alterations as “activated” if samples harbored
one of p.R273C or p.R248W gain-of-function mutations3, or “lost” if the given patient either had
a Li Fraumeni Syndrome (LFS) predisposition diagnosis, the tumor harbored a known hotspot
mutation, or the tumor contained two hits (e.g. both SNV and CNV), which would suggest both
alleles had been affected. If the TP53 mutation did not reside within the DNA-binding domain or
we did not detect any alteration in TP53, we annotate the tumor as “other,” reflecting its
unknown TP53 alteration status. The classifier achieved a high accuracy (AUROC = 0.85) for
rRNA-depleted, stranded samples compared to randomly shuffled TP53 scores (Figure 4A). By
contrast, while this classifier has previously shown strong performance on poly-A data from both
adult®® tumors and pediatric patient-derived xenografts®?, it did not perform as well on the poly-A
samples in this cohort (AUROC = 0.62; Figure S5A).

While we expected that samples annotated as “lost” would have higher TP53 scores than would
samples annotated as “other,” we observed that samples annotated as “activated” had similar
TP53 scores to those annotated as “lost” (Figure 4B, Wilcoxon p = 0.23). This result suggests
that the classifier actually detects an oncogenic, or altered, TP53 phenotype (scores > 0.5)
rather than solely TP53 inactivation, as interpreted previously%2. Moreover, tumors with
“activating” TP53 mutations showed higher TP53 expression compared to those with TP53
“‘loss” mutations (Wilcoxon p = 3.5e-3, Figure 4C). Tumor types with the highest median TP53
scores were those known to harbor somatic TP53 alterations and included DMGs,
medulloblastomas, HGGs, DNETs, ependymomas, and craniopharyngiomas (Figure 4D), while
gangliogliomas, LGGs, meningiomas, and schwannomas had the lowest median scores.

To further validate the classifier's accuracy, we assessed TP53 scores for patients with LFS,
hypothesizing that all of these tumors would have high scores. Indeed, we observed higher
scores in LFS tumors (N = 8) for which we detected high-confidence TP53 somatic alterations
(Tables S1 and S3). Although we did not detect canonical somatic TP53 mutations in two
patients whose tumors had low TP53 scores (BS_DEHJF4C7 with a score of 0.09 and
BS_ZD5HN296 with a score of 0.28), we confirmed from pathology reports these patients were
both diagnosed with LFS and had pathogenic germline variants in TP53. In addition, the tumor
purity of these two LFS samples was low (16% and 37%, respectively), suggesting the classifier
may require a certain level of tumor purity to achieve good performance, as we expect TP53 to
be intact in normal cells.
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We next used gene expression data to predict telomerase activity using EXpression-based
Telomerase ENzymatic activity Detection (EXTEND)*! as a surrogate measure of malignant
potential**42 such that higher EXTEND scores suggest increased malignant potential. As
expected, EXTEND scores significantly correlated with TERC (R = 0.619, p <0.01) and TERT (R
= 0.491, p < 0.01) expression (Figure S5B-C). We found aggressive tumors such as HGGs
(DMGs and other high-grade gliomas) and MB had high EXTEND scores (Figure 4D), while low-
grade lesions such as schwannomas, GNGs, DNETs, and other low-grade gliomas had among
the lowest scores (Table S3). These findings support previous reports of a more aggressive

phenotype in tumors with higher telomerase activity*>¢.

Hypermutant tumors share mutational signatures and have dysregulated
TP53

We further investigated the mutational signature profiles of the hypermutant (TMB > 10 Mut/Mb;
N = 3) and ultra-hypermutant (TMB > 100 Mut/Mb; N = 4) tumors and/or derived cell lines from
six patients in the OpenPBTA cohort (Figure 4E). Five of six tumors were diagnosed as HGGs
and one was a brain metastasis of a MYCN non-amplified neuroblastoma tumor. Signature 11,
which is associated with exposure to temozolomide plus MGMT promoter and/or mismatch
repair deficiency*’, was indeed present in tumors with previous exposure to the drug (Table 2).
We detected the MMR2 signature in tumors of four patients (PT_0SPKM4S8, PT_3CHB9PKS5,
PT_JNEV57VK, and PT_VTM2STE3) diagnosed with either constitutional mismatch repair
deficiency (CMMRD) or Lynch syndrome (Table 2), genetic predisposition syndromes caused
by a variant in a mismatch repair gene such as PMS2, MLH1, MSH2, MSHS, or others*. Three
of these patients harbored pathogenic germline variants in one of the aforementioned genes.
While we did not find a known pathogenic variant in the germline of PT_VTM2STES, this patient
had a self-reported PMS2 variant noted in their pathology report and we did find 19 intronic
variants of unknown significance (VUS) in PMS2. This is not surprising since an estimated 49%
of germline PMS2 variants in patients with CMMRD and/or Lynch syndrome are VUS%,
Interestingly, while the cell line derived from patient PT_VTM2STE3’s tumor at progression was
not hypermutated (TMB = 5.7 Mut/Mb), it solely showed the MMR2 signature of the eight CNS
signatures examined, suggesting selective pressure to maintain a mismatch repair (MMR)
phenotype in vitro. From patient PT_JNEV57VK, only one of the two cell lines derived from the
progressive tumor was hypermutated (TMB = 35.9 Mut/Mb). This hypermutated cell line was
strongly weighted towards signature 11, while this patient’s non-hypermutated cell line showed
a number of lesser signature weights (1, 11, 18, 19, MMR2; Table S2), highlighting the plasticity
of mutational processes and the need to carefully genomically characterize and select models
for preclinical studies based on research objectives.

We observed that signature 18, which has been associated with high genomic instability and
can lead to a hypermutator phenotype®, was uniformly represented among hypermutant solid
tumors. Additionally, we found that all of the HGG tumors or cell lines had dysfunctional TP53
(Table 2), consistent with a previous report showing TP53 dysregulation is a dependency in
tumors with high genomic instability®®. With one exception, hypermutant and ultra-hypermutant
tumors had high TP53 scores (> 0.5) and telomerase activity. Interestingly, none of the
hypermutant samples showed evidence of signature 3 (present in homologous recombination
deficient tumors), signature 8 (arises from double nucleotide substitutions/unknown etiology), or

21


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

599
600
601

602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

signature N6 (a universal CNS tumor signature). The mutual exclusivity of signatures 3 and
MMR2 corroborates a previous report suggesting tumors do not tend to feature both deficient
homologous repair and mismatch repair.

Table 2: Patients with hypermutant tumors. Listed are patients with at least one hypermutant
or ultra-hypermutant tumor or cell line. Pathogenic (P) or likely pathogenic (LP) germline
variants, coding region TMB, phase of therapy, therapeutic interventions, cancer predisposition

(CMMRD = Constitutional mismatch repair deficiency), and molecular subtypes are included.

) . . ) ) OpenPBTA
K'ds, F.|r5t K!ds F'r?t CBTN ID Phase of therapy|Composition T.herapy post- Cancfer . Patho.gemc . TMB molecular
Participant ID Biospecimen ID biopsy predisposition |germline variant

subtype
Radiation, NM_000535.7(PM HGG, H3
PT_O0SPKM4S8 [BS_VW4XN9Y7 |7316-2640 Initial CNS Tumor [Solid Tissue Temozolomide, |None documented|S2):c.137G>T 187.4 wildtype, TP53
CCNU (p.Serd4élle) (LP) activated
?ad'a“"l’" y NM_000179.3(MS HGG, H3
PT_3CHBOPK5 |BS_20TBZG09 (7316-515 Initial CNS Tumor |Solid Tissue | ,emt°Z° omice,  lcMMRD H6):.3439-2A>G |307 wildtype, TP53
rinotecan, (LP) loss
Bevacizumab
_'?ad'a“"ln' » NM_000179.3(MS HGG, H3
PT 3CHBYPK5 |BS 8AY2GM4G [7316-2085 Progressive Solid Tissue lrﬁ]’;‘t‘;i‘;:m' ®  |cMMRD H6):c.3439-2A>G [321.6 wildtype, TP53
! LP loss
Bevacizumab (LP)
Radiati Metastatic NBL,
PT EBOD3BXG |BS FOGNWEJJ [7316-3311 Progressive Solid Tissue adiation, None documented |[None detected ~ [26.3 MYCN non-
Nivolumab h
amplified
- NM_000251.3(MS
PT_INEV57VK |BS_85Q5P8GF  |7316-2504 Initial CNS Tumor|Solid Tissue Radiation, Lynch Syndrome |H2):c.1906G>C  |4.7 DMG, H3 K28,
Temozolomide TP53 loss
(p.Alab36Pro) (P)
Radiation, NM_000251.3(MS DMG, H3 K28,
PT_JNEV57VK  [BS_HM5GFJNS |7316-3058 Progressive Derived Cell Line [Temozolomide, [Lynch Syndrome |H2):c.1906G>C |35.9 ! )
) TP53 loss
Nivolumab (p.Ala636Pro) (P)
Radiation, NM_000251.3(MS DMG. H3 K28
PT_JNEV57VK  |BS_QWMO9BPDY |7316-3058 Progressive Derived Cell Line |Temozolomide, [Lynch Syndrome |H2):c.1906G>C (7.4 ’ !
) TP53 loss
Nivolumab (p.Ala636Pro) (P)
Radiation, NM_000251.3(MS DMG. H3 K28
PT_JNEV57VK  [BS_POQJ1QAH |7316-3058 Progressive Solid Tissue Temozolomide, |Lynch Syndrome [H2):c.1906G>C |[6.3 T ’
. TP53 activated
Nivolumab (p-Ala636Pro) (P)
Radiation, HGG, H3
PT_S0Q27J13 BS_P3PF53v8  [7316-2307 Initial CNS Tumor|Solid Tissue Temozolomide, [None documented |None detected 15.5 wildtype, TP53
Irinotecan activated
HGG, H3
PT_VTM2STE3 |BS_ERFMPQN3 |7316-2189 Progressive Derived Cell Line |Unknown Lynch Syndrome |None detected 57 wildtype, TP53
loss
HGG, H3
PT_VTM2STE3 |[BS_02YBZSBY |7316-2189 Progressive Solid Tissue Unknown Lynch Syndrome [None detected 2745 wildtype, TP53
activated

Next, we asked whether transcriptomic classification of TP53 dysregulation and/or telomerase
activity recapitulate the known prognostic influence of these oncogenic biomarkers. To this end,
we conducted a multivariate Cox regression on overall survival (Figure 4F; STAR Methods),
controlling for extent of tumor resection and whether a tumor was low-grade (LGG group) or
high-grade (HGG group). We identified several expected trends, including a significant overall

survival benefit if the tumor had been fully resected (HR = 0.35, 95% Cl = 0.2 - 0.62, p < 0.001)
or if the tumor belonged to the LGG group (HR = 0.046, 95% CI = 0.0062 - 0.34, p = 0.003) as
well as a significant risk if the tumor belonged to the HGG group (HR = 6.2, 95% CI = 4.0 - 9.5,
p < 0.001). High telomerase scores were associated with poor prognosis across brain tumor
histologies (HR = 20, 95% Cl = 6.4 - 62, p < 0.001), demonstrating that EXTEND scores
calculated from RNA-Seq are an effective rapid surrogate measure for telomerase activity.
Although higher TP53 scores, which predict TP53 gene or pathway dysregulation, were not a
significant predictor of risk across the entire OpenPBTA cohort (Table S4), we did find a
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significant survival risk associated with higher TP53 scores within DMGs (HR = 6436, 95% CI =
2.67 - 1.55e7, p = 0.03) and ependymomas (HR = 2003, 95% CI = 9.9 - 4.05e5, p = 0.005).
Since we observed the negative prognostic effect of TP53 scores for HGGs, we assessed the
effect of molecular subtypes within HGG samples on survival risk. We found that DMG H3 K28
tumors with TP53 loss had significantly worse prognosis (HR = 2.8, Cl = 1.4-5.6, p = 0.003) than
did DMG H3 K28 tumors with wildtype TP53 (Figure 4G and Figure 4H). This finding was also
recently reported in a restrospective analysis of DIPG tumors from the PNOC003 clinical trial'2.
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Figure 4: TP53 and telomerase activity A, Receiver Operating Characteristic for TP53
classifier run on FPKM of stranded RNA-Seq samples. B, Violin and strip plots of TP53 scores
from stranded RNA-Seq samples plotted by TP53 alteration type (Nactivated = 11, Nlost = 100,
Nother = 866). C, Violin and strip plots of TP53 RNA expression from stranded RNA-Seq
samples plotted by TP53 activation status (Nactivated = 11, Nlost = 100, Nother = 866). D, Box
plots of TP53 and telomerase (EXTEND) scores across cancer groups. Mutation status is
highlighted in orange (hypermutant) or red (ultra-hypermutant). E, Heatmap of RefSig
mutational signatures for patients who have least one tumor or cell line with a hypermutant
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phenotype. F, Forest plot depicting the prognostic effects of TP53 and telomerase scores on
overall survival, controlling for extent of tumor resection, LGG group, and HGG group. G, Forest
plot depicting the effect of molecular subtype on overall survival of HGGs. For F and G, hazard
ratios (HR) with 95% confidence intervals and p-values are listed. Significant p-values are
denoted with black diamonds. Reference groups are denoted by grey diamonds. H, Kaplan-
Meier curve of HGG tumors by molecular subtype.

Histologic and oncogenic pathway clustering

UMAP visualization of gene expression variation across brain tumors (Figure 5A) showed the
expected clustering of brain tumors by histology. We additionally explored UMAP projections of
gene expression within molecular subtypes for certain cancer groups. We observed that, except
for three outliers, C110rf95::RELA (ZFTA::RELA) fusion-positive ependymomas fell within
distinct clusters (Figure S6A). Medulloblastoma (MB) samples cluster by molecular subtype,
with WNT and SHH in distinct clusters and Groups 3 and 4 showing some overlap (Figure
S6B), as expected. Of note, two MB samples annotated as the SHH subtype did not cluster with
the other MB samples, and one clustered with Group 3 and 4 samples, suggesting potential
subtype misclassification or different underlying biology of these two tumors. BRAF-driven low-
grade gliomas (Figure S6C) were present in three separate clusters, suggesting that there
might be additional shared biology within each cluster. Histone H3 G35-mutant high-grade
gliomas generally clustered together and away from K28-mutant tumors (Figure S6D).
Interestingly, although H3 K28-mutant tumors have different biological drivers than do H3
wildtype tumors®2, they did not form distinct clusters. This pattern suggests these subtypes may
be driven by common transcriptional programs, have other much stronger biological drivers than
their known distinct epigenetic drivers, or our sample size is too small to detect transcriptional
differences.

We next performed gene set variant analysis (GSVA) for Hallmark cancer gene sets to
demonstrate activation of underlying oncogenic pathways (Figure 5B and quantified immune
cell fractions across OpenPBTA tumors using quanTlseq (Figure 5C and Figure S6E). Through
these analyses, we were able to recapitulate previously-described tumor biology. For example,
HGG, DMG, MB, and ATRT tumors are known to upregulate MYC®® which in turn activates E2F
and S phase®.. Indeed, we detected significant (Bonferroni-corrected p < 0.05) upregulation of
MYC and E2F targets, as well as G2M (cell cycle phase following S phase) in MBs, ATRTSs, and
HGGs compared to several other cancer groups. In contrast, LGGs showed significant
downregulation (Bonferroni-corrected p < 0.05) of these pathways. Schwannomas and
neurofibromas, which have a documented inflammatory immune microenvironment of T and B
lymphocytes as well as tumor-associated macrophages (TAMs), are driven by upregulation of
cytokines such as IFNy, IL-1, and IL-6, and TNFa2. Indeed, we observed significant
upregulation of these cytokines in GSVA hallmark pathways (Bonferroni-corrected p < 0.05)
(Figure 5B) and found immune cell types dominated by monocytes in these tumors (Figure
5C). We also observed significant upregulation of pro-inflammatory cytokines IFNa and IFNy in
LGGs and craniopharyngiomas compared to medulloblastoma and ependymoma tumors
(Bonferroni-corrected p < 0.05), both of which showed significant down-regulation of these
cytokines (Figure 5B). Together, these results supported previous proteogenomic findings of
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677 lower immune infiltration in aggressive medulloblastomas and ependymomas versus higher
678  immune infiltration in BRAF-driven LGG and craniopharyngiomas®,

679  Although CD8+ T-cell infiltration across all cancer groups was quite low (Figure 5C), we

680 observed some signal in specific cancer molecular subtypes (Groups 3 and 4 medulloblastoma)
681  as well as outlier tumors (BRAF-driven LGG, BRAF-driven and wildtype ganglioglioma, and

682  CNS embryonal NOS; Figure S6E) Surprisingly, the classically immunologically-cold HGG and

683  DMG tumors®*2 contained higher overall fractions of immune cells, where monocytes, dendritic
684  cells, and NK cells were the most prevalent (Figure 5C). Thus, we suspect that quanTlseq

685  might actually have captured microglia within these immune cell fractions.

686  While we did not detect notable prognostic effects of immune cell infiltration on overall survival
687 in HGG or DMG tumors, we did find that high levels of macrophage M1 and monocytes were
688  associated with poorer overall survival (monocyte HR = 2.1e18, 95% CI = 3.80e5 - 1.2e31, p =
689  0.005) in medulloblastoma tumors (Figure 5D). We further reproduced previous findings

690 (Figure 5E) that medulloblastomas typically have low expression of CD274 (PD-L1)%. However,
691  we also found that higher expression of CD274 was significantly associated with improved

692  overall prognosis for medulloblastoma samples, although with a marginal effect size (HR =

693 0.0012, 95% Cl = 7.5e-06 - 0.18, p = 0.008) (Figure 5D). This result may be explained by the
694  higher expression of CD274 found in WNT subtype tumors by us and others®’, as this diagnosis
695 carries the best prognosis of all medulloblastoma subgroups (Figure 5E).

696  Finally, we asked whether any molecular subtypes might show an immunologically-hot

697  phenotype, as roughly defined by a greater proportion of CD8+ to CD4+ T cells®¢22, While
698 adamantinomatous craniopharyngiomas and Group 3 and Group 4 medulloblastomas had the
699 highest CD8+ to CD4+ T cell ratios (Figure S6F), very few tumors had ratios greater than 1,
700  highlighting an urgent need to identify novel therapeutics for these immunologically-cold

701 pediatric brain tumors with poor prognosis.
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Figure 5: Transcriptomic and immune landscape of pediatric brain tumors A, First two
dimensions from UMAP of sample transcriptome data. Points are colored by the broad histology
of the samples they represent. B, Heatmap of GSVA scores for Hallmark gene sets with
significant differences, with samples ordered by cancer group. C, Box plots of quanTIseq
estimates of immune cell proportions in select cancer groups with N > 15 samples. Note: Other
HGGs and other LGGs have immune cell proportions similar to DMG and pilocytic astrocytoma,
respectively, and are not shown. D, Forest plot depicting the additive effects of CD274
expression, immune cell proportion, and extent of tumor resection on overall survival of
medulloblastoma patients. Hazard ratios (HR) with 95% confidence intervals and p-values are
listed. Significant p-values are denoted with black diamonds. Reference groups are denoted by

grey diamonds. Of note, the Macrophage M1 HR was 0 (coefficient =

-9.90e+4) with infinite

upper and lower Cls, and thus it was not included in the figure. E, Box plot of CD274 expression
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(log2 FPKM) for medulloblastoma samples grouped by molecular subtype. Bonferroni-corrected
p-values from Wilcoxon tests are shown.

Discussion

We created OpenPBTA to define an open, real-time, reproducible analysis framework to
genomically characterize pediatric brain tumors that brings together basic and translational
researchers, clinicians, and data scientists on behalf of accelerated discovery and clinical
impact. We provide robust reusable code and data resources, paired with cloud-based
availability of source and derived data resources, to the pediatric oncology community,
encouraging interdisciplinary scientists to collaborate on new analyses in order to accelerate
therapeutic translation for children with cancer, goals we are seeing play out in real-time. To our
knowledge, this initiative represents the first large-scale, collaborative, open analysis of genomic
data coupled with open manuscript writing, in which we comprehensively analyzed the largest
cohort of pediatric brain tumors to date, comprising 1,074 tumors across 58 distinct histologies.
We used available WGS, WXS, and RNA-Seq data to generate high-confidence consensus
SNV and CNV calls, prioritize putative oncogenic fusions, and establish over 40 scalable
modules to perform common downstream cancer genomics analyses, all of which have
undergone rigorous scientific and analytical code review. We detected and showed expected
patterns of genomic lesions, mutational signatures, and aberrantly regulated signaling pathways
across multiple pediatric brain tumor histologies.

Assembling large, pan-histology cohorts of fresh frozen samples and associated clinical
phenotypes and outcomes requires a multi-year, multi-institutional framework, like those
provided by CBTN and PNOC. As such, uniform clinical molecular subtyping was largely not
performed for most of this cohort at the time of diagnosis and/or at surgery, and when available
(e.g., sparse medulloblastoma subtypes), it required manual curation from pathology reports
and/or free text clinical data fields. Furthermore, rapid classification to derive molecular
subtypes could not be immediately performed since research-based DNA methylation data for
these samples are not yet available. Thus, to enable biological interrogation of specific tumor
subtypes, we created RNA- and DNA-based subtyping modules aligned with WHO molecularly-
defined diagnoses. We worked closely with pathologists and clinicians to build modules from
which we determined a research-grade integrated diagnosis for 60% of samples while
discovering incorrectly diagnosed or mis-identified samples in the OpenPBTA cohort.

We harnessed RNA expression data for a number of analyses, yielding important biological
insights across multiple brain tumor histologies. For example, we performed subtyping of
medulloblastoma tumors, for which only 35% (43/122) had subtype information from pathology
reports. Among the subtyped tumors, we accurately recapitulated subtypes using MM2S (91%;
39/43) or medulloPackage (95%; 41/43)%%%1. We then applied the consensus of these methods
to subtype all medulloblastoma tumors lacking pathology-based subtypes.

We advanced the integrative analyses and cross-cohort comparison via a number of validated
modules. We used an expression classifier to determine whether tumors have dysfunctional
TP53% and the EXTEND algorithm to determine their degree of telomerase activity using a 13-
gene signature*!. Interestingly, in contrast to adult colorectal cancer and gastric

27


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

756  adenocarcinoma, in which TP53 loss of function is less frequent in hypermutated tumors®283, we

757  found that hypermutant HGG tumors universally displayed dysregulation of TP53. Furthermore,
758  high TP53 scores were a significant prognostic marker for poor overall survival for patients with
759  certain tumor types, such as H3 K28-altered DMGs and ependymomas. We also show that
760 EXTEND scores are a robust surrogate measure for telomerase activity in pediatric brain

761 tumors. By assessing TP53 and telomerase activity prospectively from expression data,

762  information usually only attainable with DNA sequencing and/or qPCR, we can quickly

763  incorporate oncogenic biomarker and prognostic knowledge and expand our biological

764  understanding of these tumors.

765  We identified enrichment of hallmark cancer pathways and characterized the immune cell
766 landscape across pediatric brain tumors, demonstrating tumors in some histologies, such as
767  schwannomas, craniopharyngiomas, and low-grade gliomas, may have a inflammatory tumor
768  microenvironment. Of note, we observed upregulation of IFNy, IL-1, and IL-6, and TNF« in
769  craniopharyngiomas, tumors difficult to resect due to their anatomical location and critical
770  surrounding structures. Neurotoxic side effects have been reported when interferon alpha
771 immunotherapy is administered to reduce cystic craniopharyngioma tumor size and/or delay
772  progression®*®, Thus, additional immune vulnerabilities, such as IL-6 inhibition and immune
773  checkpoint blockade, have recently been proposed as therapies for cystic adamantinomatous
774  craniopharyngiomas® 2 and our results noted above support this approach. Finally, our study
775  reproduced the overall known poor infiltration of CD8+ T cells and general low expression of
776  CD274 (PD-L1) in pediatric brain tumors, further highlighting the urgent need to identify novel
777  therapeutic strategies for these immunologically cold tumors.

778  OpenPBTA has rapidly become a foundational data analysis and processing layer for a number
779  of discovery research and translational projects which will continue to add other genomic

780  modalities and analyses, such as germline, methylation, single cell, epigenomic, mRNA splicing,
781 imaging, and model drug response data. For example, the RNA fusion filtering module created
782  within OpenPBTA set the stage for development of the R package annoFuse™ and an R Shiny
783  application shinyFuse. Using medulloblastoma subtyping and immune deconvolution analyses
784  performed herein, Dang and colleagues showed enrichment of monocyte and microglia-derived
785  macrophages within the SHH subgroup which they suggest may accumulate following radiation
786  therapy'®. Expression and copy number analyses were used to demonstrate that GPC2 is a
787  highly expressed and copy humber gained immunotherapeutic target in ETMRs,

788  medulloblastomas, choroid plexus carcinomas, H3 wildtype high-grade gliomas, as well as

789 DMGs. This led Foster and colleagues to subsequently develop a chimeric antigen receptor
790  (CAR) directed against GPC2, for which they show preclinical efficacy in mouse models™!.

791 Moreover, OpenPBTA has enabled a framework to support real-time integration of clinical trial
792  subjects as each was enrolled on the PNOC008 high-grade glioma clinical trial’2, allowing

793  researchers and clinicians to link tumor biology to translational impact through clinical decision
794  support during tumor board discussions. Finally, as part of the the NCI’s Childhood Cancer Data
795 Initiative (CCDI), the OpenPBTA project was recently expanded into a pan-pediatric cancer
796  effort (https://github.com/PediatricOpenTargets/OpenPedCan-analysis) to build the Molecular
797  Targets Platform (https://moleculartargets.ccdi.cancer.gov/) in support of the RACE Act. An
798  additional, large-scale cohort of >2,500 tumor samples and associated germline DNA is in the
799  process of undergoing sequence data generation as part of CBTN CCDI-Kids First NCI and
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Common Fund project (https://commonfund.nih.gov/kidsfirst/2021X01projects#FY21 Resnick).
Like the original OpenPBTA cohort, data will be processed and released in near real-time via
the Kids First Data Resource and integrated with OpenPBTA. The OpenPBTA project has
paved the way for new modes of collaborative data-driven discovery, open, reproducible, and
scalable analyses that will extend beyond the current research described herein, and we
anticipate this foundational work will continue to have a long-term impact within the pediatric
brain tumor translational research community and beyond, ultimately leading to accelerated
impact and improved outcomes for children with cancer.

All code and processed data are openly available through GitHub, CAVATICA, and
PedcBioPortal (see STAR METHODS).
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Figure Titles and Legends

Figure 1. Overview of the OpenPBTA Project. A, The Children’s Brain Tumor Network and
the Pacific Pediatric Neuro-Oncology Consortium collected tumor samples from 943 patients. To
date, 22 cell lines were created from tumor tissue, and over 2000 specimens were sequenced
(N = 1035 RNA-Seq, N =940 WGS, and N = 32 WXS or targeted panel). Data was harmonized
by the Kids First Data Resource Center using an Amazon S3 framework within CAVATICA. B,
Stacked bar plot summary of the number of biospecimens per phase of therapy per broad
histology (Abbreviations: GNG = ganglioglioma, Other LGG = other low-grade glioma, PA =
pilocytic astrocytoma, PXA = pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell
astrocytoma, DIPG = diffuse intrinsic pontine glioma, DMG = diffuse midline glioma, Other HGG
= other high-grade glioma, ATRT = atypical teratoid rhabdoid tumor, MB = medulloblastoma,
Other ET = other embryonal tumor, EPN = ependymoma, PNF = plexiform neurofibroma, DNET
= dysembryoplastic neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing
sarcoma, CPP = choroid plexus papilloma). Only samples with available descriptors were
included. C, Overview of the open analysis and manuscript contribution model. In the analysis
GitHub repository, a contributor would propose an analysis that other participants can comment
on. Contributors would then implement the analysis and file a request to add their changes to
the analysis repository (“pull request”). Pull requests underwent review for scientific rigor and
correctness of implementation. Pull requests were additionally checked to ensure that all
software dependencies were included and the code was not sensitive to underlying data
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changes using container and continuous integration technologies. Finally, a contributor would
file a pull request documenting their methods and results to the Manubot-powered manuscript
repository. Pull requests in the manuscript repository were also subject to review. D, A potential
path for an analytical pull request. Arrows indicate revisions to a pull request. Prior to review, a
pull request was tested for dependency installation and whether or not the code would execute.
Pull requests also required approval by organizers and/or other contributors, who checked for
scientific correctness. Panel A created with BioRender.com.

Figure 2. Mutational landscape of PBTA tumors. Shown are frequencies of canonical
somatic gene mutations, CNVs, fusions, and TMB (top bar plot) for the top 20 genes mutated
across primary tumors within the OpenPBTA dataset. A, Low-grade astrocytic tumors (N = 227):
pilocytic astrocytoma (N = 104), other low-grade glioma (N = 69), ganglioglioma (N = 35),
pleomorphic xanthoastrocytoma (N = 9), subependymal giant cell astrocytoma (N = 10); B,
Embryonal tumors (N = 128): medulloblastomas (N = 95), atypical teratoid rhabdoid tumors (N =
24), other embryonal tumors (N = 9); C, Diffuse astrocytic and oligodendroglial tumors (N = 61):
diffuse midline gliomas (N = 34) and other high-grade gliomas (N = 27); D, Other CNS tumors
(N = 194): ependymomas (N = 60), craniopharyngiomas (N = 31), meningiomas (N = 17),
dysembryoplastic neuroepithelial tumors (N = 19), Ewing sarcomas (N = 7), schwannomas (N =
11), and neurofibroma plexiforms (N = 7). Additional, rare CNS tumors are displayed in Figure
S3A. Tumor histology (Cancer Group) and patient sex (Germline sex estimate)are
displayed as annotations at the bottom of each plot. Only samples with mutations in the listed
genes are shown. Multiple CNVs are denoted as a complex event.

Figure 3. Mutational co-occurrence and signatures highlight key oncogenic drivers. A,
Bar plot of occurrence and co-occurrence of nonsynonymous mutations for the 50 most
commonly mutated genes across all tumor types (annotated from cancer group if N >= 10 or
other if N < 10); B, Co-occurrence and mutual exclusivity of nonsynonymous mutations
between genes; The co-occurrence score is defined as I(—logm (P)) where P is defined by
Fisher’s exact test and I is 1 when mutations co-occur more often than expected and -1 when
exclusivity is more common; C, The number of SV breaks significantly correlates with the
number of CNV breaks (Adjusted R = 0.438, p = 1.08e-37). D, Chromothripsis frequency across
pediatric brain tumors shown by cancer group with N >= 3. E, Sina plots of RefSig signature
weights for signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and Other across cancer groups. Box plot
lines represent the first quartile, median, and third quartile.

Figure 4. TP53 and telomerase activity A, Receiver Operating Characteristic for TP53
classifier run on FPKM of stranded RNA-Seq samples. B, Violin and box plots of TP53 scores
plotted by TP53 alteration type (Nactivated = 11, Nlost = 100, Nother = 866). C, Violin and box
plots of TP53 RNA expression plotted by TP53 activation status (Nactivated = 11, Nlost = 100,
Nother = 866). D, Box plots of TP53 and telomerase (EXTEND) scores grouped by

cancer_ group. Mutation status is highlighted in orange (hypermutant) or red (ultra-
hypermutant). E, Heatmap of RefSig mutational signatures for patients who have least one
tumor or cell line with a TMB >= 10 Mut/Mb. F, Forest plot depicting the prognostic effects of
TP53 and telomerase scores on overall survival, controlling for extent of tumor resection, LGG
group, and HGG group. G, Forest plot depicting the effect of molecular subtype on overall
survival of HGGs. For F and G, hazard ratios (HR) with 95% confidence intervals and p-values
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are listed. Significant p-values are denoted with black diamonds. Reference groups are denoted
by grey diamonds. H, Kaplan-Meier curve of HGG tumors by molecular subtype.

Figure 5. Transcriptomic and immune landscape of pediatric brain tumors A, First two
dimensions from UMAP of sample transcriptome data. Points are colored by the broad histology
of the samples they represent. B, Heatmap of GSVA scores for Hallmark gene sets with
significant differences, with samples ordered by cancer group. C, Box plots of quanTlseq
estimates of immune cell proportions in select cancer groups with N > 15 samples. Note: Other
HGGs and other LGGs have immune cell proportions similar to DMG and pilocytic astrocytoma,
respectively, and are not shown. D, Forest plot depicting the additive effects of CD274
expression, immune cell proportion, and extent of tumor resection on overall survival of
medulloblastoma patients. Hazard ratios (HR) with 95% confidence intervals and p-values are
listed. Significant p-values are denoted with black diamonds. Reference groups are denoted by
grey diamonds. Of note, the Macrophage M1 HR was 0 (coefficient = -9.90e+4) with infinite
upper and lower Cls, and thus it was not included in the figure. E, Box plot of CD274 expression
(log2 FPKM) for medulloblastoma samples grouped by molecular subtype. Bonferroni-corrected
p-values from Wilcoxon tests are shown.

Table Titles and Legends

Table 1. Molecular subtypes generated through the OpenPBTA project. Listed are broad
tumor histologies, molecular subtypes generated, and number of specimens subtyped within the
OpenPBTA project.

Table 2. Patients with hypermutant tumors. Listed are patients with at least one hypermutant
or ultra-hypermutant tumor or cell line. Pathogenic (P) or likely pathogenic (LP) germline

variants, coding region TMB, phase of therapy, therapeutic interventions, cancer predisposition
(CMMRD = Constitutional mismatch repair deficiency), and molecular subtypes are included.

STAR METHODS
RESOURCE AVAILABILITY

Lead contact

Requests for access to OpenPBTA raw data and/or specimens may be directed to, and will be
fulfilled by Jo Lynne Rokita (rokita@chop.edu).

Materials availability
This study did not create new, unique reagents.
Data and code availability

Raw and harmonized WGS, WXS, and RNA-Seq data derived from human samples are
available within the KidsFirst Portal”® upon access request to the CBTN (https://cbtn.org/) as of
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951  the date of the publication. In addition, merged summary files are openly accessible at

952  https://cavatica.sbgenomics.com/u/cavatica/openpbta or via download script in the

953  https://github.com/AlexsLemonade/OpenPBTA-analysis repository. Summary data are visible
954  within PedcBioPortal at https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta.
955  Associated DOIs are listed in the Key Resources Table.

956  All original code was developed within the following repositories and is publicly available as
957  follows. Primary data analyses can be found at https://github.com/d3b-center/OpenPBTA-
958  workflows. Downstream data analyses can be found at

959  https://github.com/AlexsLemonade/OpenPBTA-analysis. Manuscript code can be found at
960  https://github.com/AlexsLemonade/OpenPBTA-manuscript. Associated DOls are listed in the
961 Key Resources Table. Software versions are documented in Table S5 as an appendix to the
962 Key Resources Table.

963  Any additional information required to reanalyze the data reported in this paper is available from
964 the lead contact upon request.

965 METHOD DETAILS

966 Biospecimen Collection

967  The Pediatric Brain Tumor Atlas specimens are comprised of samples from Children’s Brain
968  Tumor Network (CBTN) and the Pediatric Pacific Neuro-Oncology Consortium (PNOC). The
969 CBTN is a collaborative, multi-institutional (26 institutions worldwide) research program

970 dedicated to the study of childhood brain tumors. PNOC is an international consortium

971  dedicated to bringing new therapies to children and young adults with brain tumors. We also
972  include blood and tumor biospecimens from newly-diagnosed diffuse intrinsic pontine glioma
973  (DIPG) patients as part of the PNOC003 clinical trial PNOC003/NCT02274987".

974  The CBTN-generated cell lines were derived from either fresh tumor tissue directly obtained
975  from surgery performed at Children’s Hospital of Philadelphia (CHOP) or from prospectively
976  collected tumor specimens stored in Recover Cell Culture Freezing medium (cat# 12648010,
977  Gibco). We dissociated tumor tissue using enzymatic method with papain as described™.

978  Briefly, we washed tissue with HBSS (cat# 14175095, Gibco), and we minced and incubated the
979 tissue with activated papain solution (cat# LS003124, SciQuest) for up to 45 minutes. We used
980 ovomucoid solution (cat# 542000, SciQuest) to inactivate the papain, briefly treated tissue with
981 DNase (cat# 10104159001, Roche), passed it through the 100um cell strainer (cat# 542000,
982  Greiner Bio-One). We initiated two cell culture conditions based on the number of cells

983 available. For cultures utilizing the fetal bovine serum (FBS), we plated a minimum density of
984  3x105 cells/mL in DMEM/F-12 medium (cat# D8062, Sigma) supplemented with 20% FBS (cat#
985 SH30910.03, Hyclone), 1% GlutaMAX (cat# 35050061, Gibco), Penicillin/Streptomycin-

986  Amphotericin B Mixture (cat# 17-745E, Lonza), and 0.2% Normocin (cat# ant-nr-2, Invivogen).
987  For serum-free media conditions, we plated cells at minimum density of 1x106 cells/mL in

988 DMEM/F12 medium supplemented with 1% GlutaMAX, 1X B-27 supplement minus vitamin A
989  (cat# 12587-010, Gibco), 1x N-2 supplement (cat# 17502001, Gibco), 20 ng/ml epidermal

990  growth factor (cat# PHG0311L, Gibco), 20 ng/mL basic fibroblast growth factor (cat# 100-18B,
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991 PeproTech), 2.5ug/mL heparin (cat# H3149, Sigma), Penicillin/Streptomycin-Amphotericin B
992  Mixture, and 0.2% Normocin.

993 Nucleic acids extraction and library preparation
994 PNOC samples

995 The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed DNA and RNA

996 extractions on tumor biopsies using a DNA/RNA AllPrep Kit (Qiagen, #80204). All RNA used for

997  library prep had a minimum RIN of seven, but no QC thresholds were implemented for the DNA.

998  For library preparation, 500 ng of nucleic acids were used as input for RNA-Seq, WXS, and

999 targeted DNA panel (panel) sequencing. RNA library preparation was performed using the
1000 TruSeq RNA Sample Prep Kit (lllumina, #FC-122-1001) and the exome prep was performed
1001  using KAPA Library Preparation Kit (Roche, #KK8201) using Agilent’s SureSelect Human All
1002  Exon V5 backbone with custom probes. The targeted DNA panel developed by Ashion Analytics
1003  (formerly known as the GEM Cancer panel) consisted of exonic probes against 541 cancer
1004 genes. Both panel and WXS assays contained 44,000 probes across evenly spaced genomic
1005 loci used for genome-wide copy number analysis. For the panel, additional probes tiled across
1006 intronic regions of 22 known tumor suppressor genes and 22 genes involved in common cancer
1007  translocations for structural analysis. All extractions and library preparations were performed
1008 according to manufacturer’s instructions.

1009 CBTN samples

1010  Blood, tissue, and cell line DNA/RNA extractions were performed at the Biorepository Core at
1011 CHOP. Briefly, 10-20 mg frozen tissue, 0.4-1ml of blood, or 2e6 cells pellet was used for

1012  extractions. Tissues were lysed using a Qiagen TissueLyser Il (Qiagen) with 2x30 sec at 18Hz
1013  settings using 5 mm steel beads (cat# 69989, Qiagen). Both tissue and cell pellets processes
1014  included a CHCI3 extraction and were run on the QIACube automated platform (Qiagen) using
1015 the AllPrep DNA/RNA/mMIiRNA Universal kit (cat# 80224, Qiagen). Blood was thawed and treated
1016  with RNase A (cat#, 19101, Qiagen); 0.4-1ml was processed using the Qiagen QIAsymphony
1017  automated platform (Qiagen) using the QlAsymphony DSP DNA Midi Kit (cat# 937255, Qiagen).
1018 DNA and RNA quantity and quality was assessed by PerkinElmer DropletQuant UV-VIS

1019  spectrophotometer (PerkinElmer) and an Agilent 4200 TapeStation (Agilent, USA) for RIN and
1020  DIN (RNA Integrity Number and DNA Integrity Number, respectively). The NantHealth

1021  Sequencing Center, BGI at CHOP, or the Genomic Clinical Core at Sidra Medical and Research
1022  Center performed library preparation and sequencing. BGI at CHOP and Sidra Medical and
1023  Research Center used in house, center-specific workflows for sample preparation. At

1024  NantHealth Sequencing Center, DNA sequencing libraries were prepared for tumor and

1025 matched-normal DNA using the KAPA HyperPrep kit (cat# 08098107702, Roche), and tumor
1026  RNA-Seq libraries were prepared using KAPA Stranded RNA-Seq with RiboErase kit (cat#
1027 07962304001, Roche).

1028 Data generation

1029  NantHealth and Sidra performed 2x150 bp WGS on paired tumor (~60X) and constitutive DNA
1030  (~30X) samples on an lllumina X/400. BGI at CHOP performed 2x100 bp WGS sequenced at

36


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1031 60X depth for both tumor and normal samples. NantHealth performed ribosomal-depleted whole
1032  transcriptome stranded RNA-Seq to an average depth of 200M. BGI at CHOP performed poly-A
1033  or ribosomal-depleted whole transcriptome stranded RNA-Seq to an average depth of 100M.
1034  The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed paired tumor
1035 (~200X) and constitutive whole exome sequencing (WXS) or targeted DNA panel (panel) and
1036  poly-A selected RNA-Seq (~200M reads) for PNOC tumor samples. The panel tumor sample
1037  was sequenced to 470X, and the normal panel sample was sequenced to 308X. PNOC 2x100
1038 bp WXS and RNA-Seq libraries were sequenced on an lllumina HiSeq 2500.

1039 DNA WGS Alignment

1040  We used BwA-MEM™ to align paired-end DNA-seq reads to the version 38 patch release 12 of
1041  the Homo sapiens genome reference, obtained as a FASTA file from UCSC (see Key

1042 Resources Table). Next, we used the Broad Institute’s Best Practices™ to process Binary
1043  Alignment/Map files (BAMs) in preparation for variant discovery. We marked duplicates using
1044  SAMBLASTER’®, and we merged and sorted BAMs using Sambamba’> We used the

1045 BaseRecalibrator submodule of the Broad’s Genome Analysis Tool Kit GATK to process
1046  BAM files. Lastly, for normal/germline input, we used the GATK HaplotypeCaller?®

1047  submodule on the recalibrated BAM to generate a genomic variant call format (GVCF) file. This
1048 file is used as the basis for germline calling, described in the SNV calling for B-allele

1049 Frequency (BAF) generation section.

1050  We obtained references from the Broad Genome References on AWS bucket with a general
1051 description of references at https://s3.amazonaws.com/broad-references/broad-references-
1052  readme.html.

1053  Quality Control of Sequencing Data

1054  To confirm sample matches and remove mis-matched samples from the dataset, we performed
1055 NGSCheckMate?® on matched tumor/normal CRAM files. Briefly, we processed CRAMs using
1056 BCFtools to filter and call 20k common single nucleotide polymorphisms (SNPs) using default
1057  parameters. We used the resulting VCFs to run NGSCheckMate. Per NGSCheckMate author
1058 recommendations, we used <= 0.61 as a correlation coefficient cutoff at sequencing depths >
1059 10 to predict mis-matched samples. We determined RNA-Seq read strandedness by running the
1060 infer experiment.py script from RNA-SeQC?! on the first 200k mapped reads. We removed
1061  any samples whose calculated strandedness did not match strandedness information provided
1062 by the sequencing center. We required that at least 60% of RNA-Seq reads mapped to the

1063  human reference for samples to be included in analysis.

1064 Germline Variant Calling

1065 SNP calling for B-allele Frequency (BAF) generation

1066  We performed germline haplotype calls using the GATK Joint Genotyping Workflow on individual
1067  GVCFs from the normal sample alignment workflow. Using only SNPs, we applied the GATK
1068  generic hard filter suggestions to the VCF, with an additional requirement of 10 reads minimum

37


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1069  depth per SNP. We used the filtered VCF as input to Control-FREEC and CNVkit (below) to
1070 generate B-allele frequency (BAF) files. This single-sample workflow is available in the D3b
1071 GitHub repository. References can be obtained from the Broad Genome References on AWS
1072  bucket, and a general description of references can be found at

1073  https://s3.amazonaws.com/broad-references/broad-references-readme.html.

1074 Assessment of germline variant pathogenicity

1075  For patients with hypermutant samples, we first added population frequency of germline variants
1076  using ANNOVAR® and pathogenicity scoring from ClinVar® using snpsift3. We then filtered
1077  for variants with read depth >= 15, variant allele fraction >= 0.20, and which were observed at <
1078 0.1% allele frequency across each population in the Genome Aggregation Database (see Key
1079 Resources Table). Finally, we retained variants in genes included in the KEGG MMR gene set
1080 (see Key Resources Table), POLE, and/or TP53 which were ClinVar-annotated as pathogenic
1081 (P) or likely pathogenic (LP) with review status of >= 2 stars. All P/LP variants were manually
1082 reviewed by an interdisciplinary team of scientists, clinicians, and genetic counselors. This

1083  workflow is available in the D3b GitHub repository.

1084 Somatic Mutation Calling
1085 SNV and indel calling

1086  For PBTA samples, we used four variant callers to call SNVs and indels from panel, WXS, and
1087 WGS data: Strelka2® Mutect2® Lancet?, and VarDictJava®. varDictJava-only calls
1088  were not retained since ~ 39M calls with low VAF were uniquely called and may be potential
1089 false positives. (~1.2M calls were called by Mutect2, Strelka2, and Lancet and included
1090 consensus CNV calling as described below.) We used only Strelka2, Mutect2 and Lancet
1091  to analyze WXS samples from TCGA. TCGA samples were captured using various WXS target
1092  capture kits and we downloaded the BED files from the GDC portal. The manufacturers

1093  provided the input interval BED files for both panel and WXS data for PBTA samples. We

1094  padded all panel and WXS BED files were by 100 bp on each side for Strelka2, Mutect?2,
1095 and varDictJava runs and by 400 bp for the Lancet run. For WGS calling, we utilized the
1096 non-padded BROAD Institute interval calling list

1097 wgs calling regions.hg38.interval list, comprised of the full genome minus N
1098  bases, unless otherwise noted below. We ran Strelka2® using default parameters for

1099 canonical chromosomes (chr1-22, X,Y,M), as recommended by the authors, and we filtered the
1100 final strelka2 VCF for PASS variants. We ran Mutect?2 from GATK according to Broad best
1101  practices outlined from their Workflow Description Language (WDL), and we filtered the final
1102  Mutect2 VCF for PASS variants. To manage memory issues, we ran VarDictJava® using 20
1103 Kb interval chunks of the input BED, padded by 100 bp on each side, such that if an indel

1104  occurred in between intervals, it would be captured. Parameters and filtering followed BCBIO
1105  standards except that variants with a variant allele frequency (VAF) >= 0.05 (instead of >= 0.10)
1106  were retained. The 0.05 VAF increased the true positive rate for indels and decreased the false
1107  positive rate for SNVs when using varDictJava in consensus calling. We filtered the final
1108 VvarDictJava VCF for PASS variants with TYPE=StronglySomatic. We ran Lancet using
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default parameters, except for those noted below. For input intervals to Lancet WGS, we
created a reference BED from only the UTR, exome, and start/stop codon features of the
GENCODE 31 reference, augmented as recommended with PASS variant calls from Strelka2
and Mutect2. We then padded these intervals by 300 bp on each side during Lancet variant
calling. Per recommendations for WGS samples, we augmented the Lancet input intervals
described above with PASS variant calls from Strelka2 and Mutect? as validation®.

VCF annotation and MAF creation

We normalized INDELs with bcftools norm on all PASS VCFs using the

kfdrc annot vcf sub wf.cwl subworkflow, release v3 (See Table S5). The Ensembl
Variant Effect Predictor (VEP)%, reference release 93, was used to annotate variants and
bcftools was used to add population allele frequency (AF) from gnomAD2. We annotated SNV
and INDEL hotspots from v2 of Memorial Sloan Kettering Cancer Center's (MSKCC) database
(See Key Resources Table) as well as the TERT promoter mutations C228T and C250T%. We
annotated SNVs by matching amino acid position (Protein position column in MAF file)
with SNVs in the MSKCC database, we matched splice sites to HGVSp_ Short values in the
MSKCC database, and we matched INDELs based on amino acid present within the range of
INDEL hotspots values in the MSKCC database. We removed non-hotspot annotated variants
with a normal depth less than or equal to 7 and/or gnomAD allele frequency (AF) greater than
0.001 as potential germline variants. We matched TERT promoter mutations using hg38
coordinates as indicated in ref.22: C228T occurs at 5:1295113 is annotated as existing variant
s1242535815, COSM1716563, or COSM1716558, and is 66 bp away from the TSS; C250T
occurs at Chr5:1295135, is annotated as existing variant COsSM1716559, and is 88 bp away
from the TSS. We retained variants annotated as PASS or Hot SpotAllele=1 in the final set,
and we created MAFs using MSKCC'’s vcf2maf tool.

Gather SNV and INDEL Hotspots

We retained all variant calls from Strelka2, Mutect?2, or Lancet that overlapped with an
SNV or INDEL hotspot in a hotspot-specific MAF file, which we then used for select analyses as
described below.

Consensus SNV Calling

Our SNV calling process led to separate sets of predicted mutations for each caller. We
considered mutations to describe the same change if they were identical for the following MAF
fields: Chromosome, Start Position, Reference Allele,Allele, and

Tumor Sample Barcode. Strelka2 does not call multinucleotide variants (MNV), but
instead calls each component SNV as a separate mutation, so we separated MNV calls from
Mutect2 and Lancet into consecutive SNVs before comparing them to Strelka2 calls. We
examined VAFs produced by each caller and compared their overlap with each other (Figure
S$2). varDictJava calls included many variants that were not identified by other callers
(Figure S2C), while the other callers produced results that were relatively consistent with one
another. Many of these vVarDictJava-specific calls were variants with low allele frequency
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1148  (Figure S2B). We therefore derived consensus mutation calls as those shared among the other
1149  three callers (Strelka2, Mutect2, and Lancet), and we did not further consider

1150 VvarDictJava calls due to concerns it called a large number of false positives. This decision
1151 had minimal impact on results because varDictJava also identified nearly every mutation that
1152  the other three callers identified, in addition to many unique mutations.

1153 Somatic Copy Number Variant Calling (WGS samples only)

1154  We used Control-FREECE# and cNvkit® for copy number variant calls. For both

1165  algorithms, the germline sex estimate (described below) was used as input for sample
1156  sex and germline variant calls (above) were used as input for BAF estimation. Control -FREEC
1157  was run on human genome reference hg38 using the optional parameters of a 0.05 coefficient
1158  of variation, ploidy choice of 2-4, and BAF adjustment for tumor-normal pairs. Theta2% used
1159 varDictJava germline and somatic calls, filtered on PASS and strongly somatic, to infer tumor
1160  purity. Theta?2 purity was added as an optional parameter to CNVki t to adjust copy humber
1161  calls. CNVkit was run on human genome reference hg38 using the optional parameters of
1162  Theta2 purity and BAF adjustment for tumor-normal pairs. We used GISTICY on the CNVkit
1163  and the consensus CNV segmentation files to generate gene-level copy number abundance
1164  (Log R Ratio) as well as chromosomal arm copy number alterations using the parameters

1165  specified in the (run-gistic analysis module in the OpenPBTA Analysis repository).

1166 Consensus CNV Calling

1167  For each caller and sample, we called CNVs based on consensus among Control-FREECZ#,

1168  cNvkit®, and Manta®. We specifically included CNVs called significant by Cont rol1-FREEC
1169  (p-value < 0.01) and Manta calls that passed all filters in consensus calling. We removed

1170  sample and consensus caller files with more than 2,500 CNVs because we expected these to
1171 be noisy and derive poor quality samples based on cutoffs used in GISTICY. For each sample,
1172  we included the regions in the final consensus set: 1) regions with reciprocal overlap of 50% or
1173  more between at least two of the callers; 2) smaller CNV regions in which more than 90% of
1174  regions are covered by another caller. We did not include any copy number alteration called by
1175  asingle algorithm in the consensus file. We defined copy number as NA for any regions that had
1176  a neutral call for the samples included in the consensus file. We merged CNV regions within
1177 10,000 bp of each other with the same direction of gain or loss into single region. We filtered out
1178 any CNVs that overlapped 50% or more with immunoglobulin, telomeric, centromeric, segment
1179  duplicated regions, or that were shorter than 3000 bp.

1180 Somatic Structural Variant Calling (WGS samples only)

1181  We used Manta® for structural variant (SV) calls, and we limited to regions used in Strelka2.
1182  The hg38 reference for SV calling used was limited to canonical chromosome regions. We used
1183  Annotsv® to annotate Manta output. All associated workflows are available in the workflows
1184  GitHub repository.
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Gene Expression
Abundance Estimation

We used sTAR® to align paired-end RNA-seq reads, and we used the associated alignment for
all subsequent RNA analysis. We used Ensembl GENCODE 27 “Comprehensive gene
annotation” (see Key Resources Table) as a reference. We used RSEM'Y for both FPKM and
TPM transcript- and gene-level quantification.

Gene Expression Matrices with Unique HUGO Symbols

To enable downstream analyses, we next identified gene symbols that map to multiple Ensembl
gene identifiers (in GENCODE v27, 212 gene symbols map to 1866 Ensembl gene identifiers),
known as multi-mapped gene symbols, and ensured unique mappings (collapse-rnaseq
analysis module in the OpenPBTA Analysis repository). To this end, we first removed genes
with no expression from the RSEM abundance data by requiring an FPKM > 0 in at least 1
sample across the PBTA cohort. We computed the mean FPKM across all samples per gene.
For each multi-mapped gene symbol, we chose the Ensembl identifier corresponding to the
maximum mean FPKM, using the assumption that the gene identifier with the highest
expression best represented the expression of the gene. After collapsing gene identifiers,
46,400 uniquely-expressed genes remained in the poly-A dataset, and 53,011 uniquely-
expressed genes remained in the stranded dataset.

Gene fusion detection

We set up Arribal® and STAR-Fusionl® fusion detection tools using CWL on CAVATICA.

For both of these tools, we used aligned BAM and chimeric SAM files from STAR as inputs and
GRCh38 gencode v27 GTF for gene annotation. We ran STAR-Fusion with default
parameters and annotated all fusion calls with the

GRCh38 v27 CTAT lib Feb092018.plug-n-play.tar.gz file from the STAR-Fusion
release. For Arriba, we used a blacklist file blacklist hg38 GRCh38 2018-11-
04.tsv.gz from the Arriba release to remove recurrent fusion artifacts and transcripts
present in healthy tissue. We provided Arriba with strandedness information for stranded
samples, or we set it to auto-detection for poly-A samples. We used FusionAnnotator on
Arriba fusion calls to harmonize annotations with those of STAR-Fusion. The RNA
expression and fusion workflows can be found in the D3b GitHub repository. The
FusionAnnotator workflow we used for this analysis can be found in the D3b GitHub

repository.
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1217 QUANTIFICATION AND STATISTICAL ANALYSIS

1218 Recurrently mutated genes and co-occurrence of gene mutations (interaction-
1219 plots analysis module)

1220  Using the consensus SNV calls, we identified genes that were recurrently mutated in the
1221 OpenPBTA cohort, including nonsynonymous mutations with a VAF > 5% among the set of
1222  independent samples. We used VEP annotations, including “High” and “Moderate”

1223  consequence types as defined in the R package Maftools!®, to determine the set of

1224  nonsynonymous mutations. For each gene, we then tallied the number of samples that had at
1225 least one nonsynonymous mutation.

1226  For genes that contained nonsynonymous mutations in multiple samples, we calculated
1227  pairwise mutation co-occurrence scores. This score was defined as I(—loglo(P)) where [ is 1
1228  when the odds ratio is > 1 (indicating co-occurrence), and -1 when the odds ratio is < 1

1229  (indicating mutual exclusivity), with P defined by Fisher's Exact Test.

1230 Focal Copy Number Calling (focal-cn-file-preparation analysis module)

1231  We added the ploidy inferred via Control-FREEC to the consensus CNV segmentation file and
1232  used the ploidy and copy number values to define gain and loss values broadly at the

1233  chromosome level. We used bedtools coveragel® to add cytoband status using the UCSC
1234  cytoband filel® (See Key Resources Table). The output status call fractions, which are values
1235  of the loss, gain, and callable fractions of each cytoband region, were used to define dominant
1236  status at the cytoband-level. We calculated the weighted means of each status call fraction
1237  using band length. We used the weighted means to define the dominant status at the

1238 chromosome arm-level.

1239 A status was considered dominant if more than half of the region was callable and the status
1240 call fraction was greater than 0.9 for that region. We adopted this 0.9 threshold to ensure that
1241 the dominant status fraction call was greater than the remaining status fraction calls in a region.

1242  We aimed to define focal copy number units to avoid calling adjacent genes in the same

1243  cytoband or arm as copy humber losses or gains where it would be more appropriate to call the
1244  broader region a loss or gain. To determine the most focal units, we first considered the

1245  dominant status calls at the chromosome arm-level. If the chromosome arm dominant status
1246  was callable but not clearly defined as a gain or loss, we instead included the cytoband-level
1247  status call. Similarly, if a cytoband dominant status call was callable but not clearly defined as a
1248  gain or loss, we instead included gene-level status call. To obtain the gene-level data, we used
1249  the IRanges package in R to find overlaps between the segments in the consensus CNV file
1250 and the exons in the GENCODE v27 annotation file (See Key Resources Table) . If the copy
1251 number value was 0, we set the status to “deep deletion”. For autosomes only, we set the status
1252  to “amplification” when the copy number value was greater than two times the ploidy value. We
1253  plotted genome-wide gains and losses in (Figure S3B) using the R package

1254  ComplexHeatmap'®.
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Breakpoint Density (WGS samples only; chromosomal-instability analysis
module)

We defined breakpoint density as the number of breaks per genome or exome per sample. For
Manta SV calls, we filtered to retain “PASS” variants and used breakpoints from the algorithm.
For consensus CNV calls, if |log2 ratio| > log2(1), we annotated the segment as a break. We
then calculated breakpoint density as:

breakooint density — N breaks
reaxpoint density = Size in Mb of effectively surveyed genome

Chromothripsis Analysis (WGS samples only; chromothripsis analysis
module)

Considering only chromosomes 1-22 and X, we identified candidate chromothripsis regions in
the set of independent tumor WGS samples with ShatterSeek!®, using Manta SV calls that
passed all filters and consensus CNV calls. We modified the consensus CNV data to fit
ShattersSeek input requirements as follows: we set CNV-neutral or excluded regions as the
respective sample’s ploidy value from Control-FREEC, and we then merged consecutive
segments with the same copy number value. We classified candidate chromothripsis regions as
high- or low-confidence using the statistical criteria described by the ShattersSeek authors.

Immune Profiling and Deconvolution (immune-deconv analysis module)

We used the R package immunedeconvi® with the method quanTIseq™ to deconvolute

various immune cell types across tumors from the PBTA cohort in the stranded and poly-A
collapsed FPKM RNA-seq datasets (immune-deconv_analysis module). The quanTIseq
deconvolution method directly estimates absolute fractions of 10 immune cell types that
represent inferred proportions of the cell types in the mixture. Therefore, we utilized quanTIseq
for inter-sample, intra-sample, and inter-histology score comparisons.

Gene Set Variation Analysis (gene-set-enrichment-analysis analysis module)

We performed Gene Set Variation Analysis (GSVA) on collapsed, log2-transformed RSEM
FPKM data using the GSvA Bioconductor package™2. We specified the parameter

mx .dif f=TRUE to obtain Gaussian-distributed scores for each of the MSigDB hallmark gene
sets™'®. We compared GSVA scores among histology groups using ANOVA and subsequent
Tukey tests; p-values were Bonferroni-corrected for multiple hypothesis testing. We plotted

scores by cancer group using the ComplexHeatmap R package (Figure 5B)'%.
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Transcriptomic Dimension Reduction (transcriptomic-dimension-reduction
analysis module)

We applied Uniform Manifold Approximation and Projection (UMAP) to log2-transformed
FPKM data using the umap R package (See Key Resources Table). We set the number of
neighbors to 15.

Fusion prioritization (fusion_filtering analysis module)

We performed artifact filtering and additional annotation on fusion calls to prioritize putative
oncogenic fusions. Briefly, we considered all in-frame and frameshift fusion calls with at least
one junction read and at least one gene partner expressed (TPM > 1) to be true calls. If a fusion
call had a large number of spanning fragment reads compared to junction reads (spanning
fragment minus junction read greater than ten), we removed these calls as potential false
positives. We prioritized a union of fusion calls as true calls if the fused genes were detected by
both callers, the same fusion was recurrent within a broad histology grouping (> 2 samples), or
the fusion was specific to the given broad histology. If either 5’ or 3’ genes fused to more than
five different genes within a sample, we removed these calls as potential false positives. We
annotated putative driver fusions and prioritized fusions based on partners containing known
kinases, oncogenes, tumor suppressors, curated transcription factors'®, COSMIC genes,
and/or known TCGA fusions from curated references. Based on pediatric cancer literature
review, we added MYBL 1€, SNCAIPH1Z, FOXR2M18, TTYH11'%, and TERT'212 to the oncogene
list, and we added BCOR™M® and QK/I'2* to the tumor suppressor gene list.

Oncoprint figure generation (oncoprint-landscape analysis module)

We used Maftoolsl® to generate oncoprints depicting the frequencies of canonical somatic
gene mutations, CNVs, and fusions for the top 20 genes mutated across primary tumors within
broad histologies of the OpenPBTA dataset. We collated canonical genes from the literature for
low-grade astrocytic tumors2®, embryonal tumors262822125126  giffyse astrocytic and
oligodendroglial tumors?>223231 and other tumors: ependymal tumors, craniopharyngiomas,
neuronal-glial mixed tumors, histiocytic tumors, chordoma, meningioma, and choroid plexus
tumors?2--136,

Mutational Signatures (mutational-signatures analysis module)

We obtained weights (i.e., exposures) for signature sets using the deconstructSigs R
package function whichSignatures () ¥ from consensus SNVs with the
BSgenome.Hsapiens.UCSC.hg38 annotations (see Key Resources Table). Specifically, we
estimated signature weights across samples for eight signatures previously identified in the
Signal reference set of signatures (“RefSig”) as associated with adult central nervous system
(CNS) tumors®®. These eight RefSig signatures are 1, 3, 8, 11, 18, 19, N6, and MMR2. Weights
for signatures fall in the range zero to one inclusive. deconstructSigs estimates the weights
for each signature across samples and allows for a proportion of unassigned weights referred to
as “Other” in the text. These results do not include signatures with small contributions;

deconstructSigs drops signature weights that are less than 6%*3. We plotted mutational
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signatures for patients with hypermutant tumors (Figure 4E) using the R package

ComplexHeatmapﬂ.

Tumor Mutation Burden (snv-caliers analysis module)

We consider tumor mutation burden (TMB) to be the number of consensus SNVs per effectively
surveyed base of the genome. We considered base pairs to be effectively surveyed if they were
in the intersection of the genomic ranges considered by the callers used to generate the
consensus and where appropriate, regions of interest, such as coding sequences. We
calculated TMB as:

_ # of coding sequence SNVs
~ Size in Mb of effectively surveyed genome

TMB

We used the total number coding sequence consensus SNVs for the numerator and the size of
the intersection of the regions considered by Strelka2 and Mutect2 with coding regions
(CDS from GENCODE v27 annotation, see Key Resources Table) as the denominator.

Clinical Data Harmonization
WHO Classification of Disease Types

Table S1 contains a README, along with sample technical, clinical, and additional metadata
used for this study.

Molecular Subtyping

We performed molecular subtyping on tumors in the OpenPBTA to the extent possible. The
molecular subtype field in pbta-histologies. tsv contains molecular subtypes for
tumor types selected from pathology diagnosis and
pathology free text diagnosis fields as described below, following World Health
Organization 2016 classification criteria?.

Medulloblastoma (MB) subtypes SHH, WNT, Group 3, and Group 4 were predicted using the
consensus of two RNA expression classifiers: MedulloClassifier® and MM2s€ on the
RSEM FPKM data (molecular-subtyping-MB analysis module).

High-grade glioma (HGG) subtypes were derived (molecular-subtyping-HGG analysis
module) using the following criteria:

1. If any sample contained an H3F3A p.K28M, HIST1H3B p.K28M, HIST1H3C p.K28M, or
HIST2H3C p.K28M mutation and no BRAF p.V600E mutation, it was subtyped as DMG,
H3 K28.

2. If any sample contained an HIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C
p.K28M mutation and a BRAF p.V600E mutation, it was subtyped as DMG, H3 K28,
BRAF V600E.
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1357 3. If any sample contained an H3F3A p.G35V or p.G35R mutation, it was subtyped asHGG,
1358 H3 G35.

1359 4. If any high-grade glioma sample contained an IDH1 p.R132 mutation, it was subtyped as
1360 HGG, IDH.

1361 5. If a sample was initially classified as HGG, had no defining histone mutations, and a
1362 BRAF p.V600E mutation, it was subtyped as BRAF V600E.

1363 6. All other high-grade glioma samples that did not meet any of these criteria were
1364 subtyped as HGG, H3 wildtype.

1365  Embryonal tumors were included in non-MB and non-ATRT embryonal tumor subtyping
1366 (molecular-subtyping-embryonal analysis module) if they met any of the following
1367  criteria:

1368 1. A TTYH1 (5 partner) fusion was detected.

1369 2. A MNT1 (5 partner) fusion was detected, with the exception of MN1: : PATZ1 since it is an
1370 entity separate of CNS HGNET-MN1 tumors®3,

1371 3. Pathology diagnoses included “Supratentorial or Spinal Cord PNET” or “Embryonal
1372 Tumor with Multilayered Rosettes”.

1373 4. A pathology diagnosis of “Neuroblastoma”, where the tumor was not indicated to be
1374 peripheral or metastatic and was located in the CNS.

1375 5.  Any sample with “embryonal tumor with multilayer rosettes, ros (who grade iv)”,

1376 “‘embryonal tumor, nos, congenital type”, “ependymoblastoma” or “medulloepithelioma”
1377 in pathology free text.

1378  Non-MB and non-ATRT embryonal tumors identified with the above criteria were further
1379  subtyped (molecular-subtyping-embryonal analysis module) using the criteria below3*
1380 142

1381 1. Any RNA-seq biospecimen with LIN28A overexpression, plus a TYH1 fusion (5’ partner)
1382 with a gene adjacent or within the C19MC miRNA cluster and/or copy number

1383 amplification of the C19MC region was subtyped as ETMR, C19MC-altered

1384 (Embryonal tumor with multilayer rosettes, chromosome 19 miRNA cluster altered) 12143,
1385 2. Any RNA-seq biospecimen with LIN28A overexpression, a TTYH1 fusion (5’ partner)
1386 with a gene adjacent or within the C19MC miRNA cluster but no evidence of copy

1387 number amplification of the C19MC region was subtyped as ETMR, NOS (Embryonal
1388 tumor with multilayer rosettes, not otherwise specified) 2143,

1389 3. Any RNA-seq biospecimen with a fusion having a 5° MN1 and 3’ BEND2 or CXXC5
1390 partner were subtyped as CNS HGNET-MN1 [Central nervous system (CNS) high-grade
1391 neuroepithelial tumor with MN1 alteration].

1392 4. Non-MB and non-ATRT embryonal tumors with internal tandem duplication (as defined
1393 in'*4) of BCOR were subtyped as CNS HGNET-BCOR (CNS high-grade neuroepithelial
1394 tumor with BCOR alteration).
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5.  Non-MB and non-ATRT embryonal tumors with over-expression and/or gene fusions in
FOXR2 were subtyped as CNS NB-FOXR2 (CNS neuroblastoma with FOXR2
activation).

6. Non-MB and non-ATRT embryonal tumors with C/IC::NUTM1 or other CIC fusions, were

subtyped as CNS EFT-CIC (CNS Ewing sarcoma family tumor with CIC alteration)"2

7. Non-MB and non-ATRT embryonal tumors that did not fit any of the above categories
were subtyped as CNS Embryonal, NOS (CNS Embryonal tumor, not otherwise
specified).

Neurocytoma subtypes central neurocytoma (CNC) and extraventricular neurocytoma (EVN)
were assigned (molecular-subtyping-neurocytoma analysis module) based on the
primary site of the tumor2. If the tumor’s primary site was “ventricles,” we assigned the subtype

as CNC; otherwise, we assigned the subtype as EVN.

Craniopharyngiomas (CRANIO) were subtyped (molecular-subtyping-CRANIO analysis
module) into adamantinomatous (CRANIO, ADAM), papillary (CRANIO, PAP)or undetermined
(CRANIO, To be classified)based on the following criterial4614Z:

1. Craniopharyngiomas from patients over 40 years old with a BRAF p.V600E mutation
were subtyped as CRANTO, PAP.

2. Craniopharyngiomas from patients younger than 40 years old with mutations in exon 3 of
CTNNB1 were subtyped as CRANIO, ADAM.

3. Craniopharyngiomas that did not fall into the above two categories were subtyped as
CRANIO, To be classified.

A molecular subtype of EWS was assigned to any tumor with a EWSR1 fusion or with a
pathology diagnosis of Ewings Sarcoma (molecular-subtyping-EWS analysis
module).

Low-grade gliomas (LGG) or glialneuronal tumors (GNT) were subtyped (molecular-
subtyping-LGAT analysis module). based on SNV, fusion and CNV status based on?, and as
described below.

1. If a sample contained a NF1 somatic mutation, either nonsense or missense, it was
subtyped as 1.GG, NFl-somatic.

2. If a sample contained NF1 germline mutation, as indicated by a patient having the
neurofibromatosis cancer predisposition, it was subtyped as 1L.GG, NFl-germline.

3. If a sample contained the IDH p.R132 mutation, it was subtyped as .GG, IDH.

4. If a sample contained a histone p.K28M mutation in either H3F3A, H3F3B, HIST1H3B,

HIST1H3C, or HIST2H3C, or if it contained a p.G35R or p.G35V mutation in H3F3A, it
was subtyped as 1.GG, H3.

5. If a sample contained BRAF p.V600E or any other non-canonical BRAF mutations in the
kinase (PK_Tyr_Ser-Thr) domain PF07714 (see Key Resources Table), it was
subtyped as 1.GG, BRAF V600E.
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6. If a sample contained KIAA1549: : BRAF fusion, it was subtyped as LGG,
KIAA1549: : BRAF.

7. If a sample contained SNV or indel in either KRAS, NRAS, HRAS, MAP2K1, MAP2K2,
MAP2K1, ARAF, RAF1, or non-kinase domain of BRAF, or if it contained RAF1 fusion,
or BRAF fusion that was not KIAA1549: : BRAF, it was subtyped as 1.GG, other
MAPK.

8. If a sample contained SNV in either MET, KIT or PDGFRA, or if it contained fusion in
ALK, ROS1, NTRK1, NTRK2, NTRK3 or PDGFRA, it was subtyped as 1.GG, RTK.

9. If a sample contained FGFR1 p.N546K, p.K656E, p.N577, or p. K687 hotspot mutations,
or tyrosine kinase domain tandem duplication (See Key Resources Table), or FGFR1
or FGFR2 fusions, it was subtyped as 1.GG, FGFR.

10. If a sample contained MYB or MYBL1 fusion, it was subtyped as LGG, MYB/MYBL1.

11. If a sample contained focal CDKN2A and/or CDKN2B deletion, it was subtyped as 1.GG,
CDKN2A/B.

For LGG tumors that did not have any of the above molecular alterations, if both RNA and DNA
samples were available, it was subtyped as 1L.GG, wildtype. Otherwise, if either RNA or DNA
sample was unavailable, it was subtyped as 1.GG, To be classified.

If pathology diagnosis was Subependymal Giant Cell Astrocytoma (SEGA),the LGG
portion of molecular subtype was recoded to SEGA.

Lastly, for all LGG- and GNT- subtyped samples, if the tumors were glialneuronal in origin,
based on pathology free text diagnosis entries of desmoplastic
infantile,desmoplastic infantile ganglioglioma, desmoplastic infantile
astrocytoma or glioneuronal, each was recoded as follows: If pathology diagnosis is Low-
grade glioma/astrocytoma (WHO grade I/II) orGanglioglioma,the LGG portion of
the molecular subtype was recoded to GNT.

Ependymomas (EPN) were subtyped (molecular-subtyping-EPN analysis module) into
EPN, ST RELA,EPN, ST YAP1,EPN, PF AandEPN, PF B based on evidence for these
molecular subgroups as described in Paijtler et al.128. Briefly, fusion, CNV and gene expression
data were used to subtype EPN as follows:

1. Any tumor with fusions containing RELA as fusion partner, e.g., C11orf95: : RELA,
LTBP3: :RELA, was subtyped as EPN, ST RELA.

2. Any tumor with fusions containing YAP1 as fusion partner, such as C11orf95: : YAPI,
YAP1::MAMLD]1 and YAP1: : FAM118B, was subtyped as EPN, ST YAPI1.

3. Any tumor with the following molecular characterization would be subtyped as EPN, PF
A:

. CXorf67 expression z-score of over 3

. TKTL1 expression z-score of over 3 and 1q gain

4.  Any tumor with the following molecular characterization would be subtyped as EPN, PF
B:
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. GPBP17 expression z-score of over 3 and loss of 6g or 6p
. IFT46 expression z-score of over 3 and loss of 6q or 6p

Any tumor with the above molecular characteristics would be exclusively subtyped to the
designated group.

For all other remaining EPN tumors without above molecular characteristics, they would be
subtyped to EPN, ST RELA and EPN, ST YAP1 in a non-exclusive way (e.g., a tumor could
have both EPN, ST RELA and EPN, ST YAP1 subtypes) if any of the following alterations
were present.

1. Any tumor with the following alterations was assigned EPN, ST RELA:
. PTEN: : TAS2R1 fusion

*  chromosome 9 arm (9p or 9q) loss

*  RELA expression z-score of over 3

*  L1CAM expression z-score of over 3

2. Any tumor with the following alterations was assigned EPN, ST YAPI:
. Cllorf95: :MAML2 fusion

. chromosome 11 short arm (11p) loss

+  chromosome 11 long arm (11q) gain

*  ARL4D expression z-score of over 3

. CLDN1 expression z-score of over 3

After all relevant tumor samples were subtyped by the above molecular subtyping modules, the
results from these modules, along with other clinical information (such as pathology diagnosis
free text), were compiled in the molecular-subtyping-pathology module and integrated
into the OpenPBTA data in the molecular-subtyping-integrate module.

TP53 Alteration Annotation (tp53_nfl_score analysis module)

We annotated TP53 altered HGG samples as either TP53 lost or TP53 activatedand
integrated this within the molecular subtype. To this end, we applied a TP53 inactivation
classifier originally trained on TCGA pan-cancer data®® to the matched RNA expression data for
each sample. Along with the TP53 classifier scores, we collectively used consensus SNV and
CNV, SV, and reference databases that list TP53 hotspot mutations#814% and functional
domains'® to determine TP53 alteration status for each sample. We adopted the following rules
for calling either TP53 lost or TP53 activated:

1. If a sample had either of the two well-characterized TP53 gain-of-function mutations,
p.R273C or p.R248W=2, we assigned TP53 activated status.

2. Samples were annotated as TP53 lost if they contained i) a TP53 hotspot mutation as
defined by IARC TP53 database or the MSKCC cancer hotspots database'*¢42 (see
also, Key Resources Table), ii) two TP53 alterations, including SNV, CNV or SV,
indicative of probable bi-allelic alterations; iii) one TP53 somatic alteration, including
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SNV, CNV, or SV or a germline TP53 mutation indicated by the diagnosis of Li-Fraumeni
syndrome (LFS)™!, or iv) one germline TP53 mutation indicated by LFS and the TP53
classifier score for matched RNA-Seq was greater than 0.5.

Prediction of participants’ genetic sex

Participant metadata included a reported gender. We used WGS germline data, in concert with
the reported gender, to predict participant genetic sex so that we could identify sexually
dimorphic outcomes. This analysis may also indicate samples that may have been
contaminated. We used the idxstats utility from SAMtools?2 to calculate read lengths, the
number of mapped reads, and the corresponding chromosomal location for reads to the X and Y
chromosomes. We used the fraction of total normalized X and Y chromosome reads that were
attributed to the Y chromosome as a summary statistic. We manually reviewed this statistic in
the context of reported gender and determined that a threshold of less than 0.2 clearly
delineated female samples. We marked fractions greater than 0.4 as predicted males, and we
marked samples with values in the inclusive range 0.2-0.4 as unknown. We performed this
analysis through CWL on CAVATICA. We added resulting calls to the histologies file under the
column header germline sex estimate.

Selection of independent samples (independent-samples analysis module)

Certain analyses required that we select only a single representative specimen for each
individual. In these cases, we identified a single specimen by prioritizing primary tumors and
those with whole-genome sequencing available. If this filtering still resulted in multiple
specimens, we randomly selected a single specimen from the remaining set.

Quantification of Telomerase Activity using Gene Expression Data
(telomerase-activity-prediction analysis module)

We predicted telomerase activity of tumor samples using the recently developed EXTEND
method*. Briefly, EXTEND estimates telomerase activity based on the expression of a 13-gene
signature. We derived this signature by comparing telomerase-positive tumors and tumors with
activated alternative lengthening of telomeres pathway, a group presumably negative of
telomerase activity.

Survival models (survival-analysis analysis module)

We calculated overall survival (OS) as days since initial diagnosis and performed several
survival analyses on the OpenPBTA cohort using the survival R package. We performed

survival analysis for patients by HGG subtype using the Kaplan-Meier estimator’>® and a log-

rank test (Mantel-Cox test)'>* on the different HGG subtypes. Next, we used multivariate Cox

(proportional hazards) regression analysis'®® to model the following: a) tp53 scores +
telomerase scores + extent of tumor resection + LGG group + HGG group,
in which tp53 scores and telomerase scores are numeric, extent of tumor

resection is categorical, and L.GG group and HGG group are binary variables indicating
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whether the sample is in either broad histology grouping, b) tp53 scores + telomerase
scores + extent of tumor resection foreach cancer group with an N>=3
deceased patients (DIPG, DMG, HGG, MB, and EPN), and c) quantiseq cell type
fractions + CD274 expression + extent of tumor resection foreach

cancer group With an N>=3 deceased patients (DIPG, DMG, HGG, MB, and EPN), in which
quantiseqg cell type fractions and CD274 expression are numeric.

KEY RESOURCES TABLE

REAGENT or SOURCE | IDENTIFIER

RESOURCE

Critical commercial

assays

Recover Cell Culture Gibco 12648010

Freezing media

Hank’s Balanced Salt | Gibco 14175095

Solution (HBSS)

Papain SciQuest | LS003124

Ovomucoid SciQuest | 542000

DNase Roche 10104159001

100um cell strainer Greiner 542000
Bio-One

DMEM/F-12 medium Sigma D8062
Fetal Bovine Serum Hyclone SH30910.03

(FBS)

GlutaMAX Gibco 35050061
Penicillin/Streptomycin | Lonza 17-745E
-Amphotericin B

Normocin Invivogen | ant-nr-2
B-27 supplement Gibco 12587-010
minus vitamin A

N-2 supplement Gibco 17502001
Epidermal growth Gibco PHGO0311L
factor

Basic fibroblast growth | PeproTec | 100-18B
factor h

Heparin Sigma H3149

DNA/RNA AllPrep Kit | Qiagen 80204

TruSeq RNA Sample lllumina FC-122-1001
Prep Kit

KAPA Library Roche KK8201
Preparation Kit
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REAGENT or SOURCE | IDENTIFIER

RESOURCE

AllPrep Qiagen 80224

DNA/RNA/miRNA

Universal kit

RNase A Qiagen 19101

QlAsymphony DSP Qiagen 937255

DNA Midi Kit

KAPA HyperPrep kit Roche 08098107702

RiboErase kit Roche 07962304001

Raw and harmonized KidsFirst | 2

WGS, WXS, Panel, Data

RNA-Seq Resource
Center,
this
project

Merged summary files | this https://cavatica.sbgenomics.com/u/cavatica/openpbta
project

Merged summary files | this https://github.com/AlexsLemonade/OpenPBTA-analysis/

and downstream project

analyses

Processed data this https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta
project

Experimental models:

Cell lines

CBTN pediatric brain 14 See Table S1 for identifiers

tumor-derived cell

lines

Software and
algorithms

Data processing and Multiple See Table S5 for identifiers
analysis software

OpenPBTA workflows | this 156
repository project
OpenPBTA analysis this 157
repository project
OpenPBTA this

manuscript repository | project

Other

TCGA WXS dataset National dbGAP phs000178.v11.p8
Institutes
of Health
The
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REAGENT or SOURCE | IDENTIFIER
RESOURCE
Cancer
Genome
Atlas
(TCGA)
Cancer hotspots MSKCC https://www.cancerhotspots.org/#/download (v2)
Reference genomes Broad https://s3.console.aws.amazon.com/s3/buckets/broad-
references/hg38/v0/

Reference genome uUcscC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
hg38, patch release

12
Human Cytoband file uUcscC http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBand
Ixt.gz
CDS from GENCODE | GENCOD | https://www.gencodegenes.org/human/release_27.html
v27 annotation E
PFAM domains and ucscC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfamDes
locations c.txt.gz; https://pfam.xfam.org/family/PF07714
BSgenome.Hsapiens. | Biocondu | https://bioconductor.org/packages/release/data/annotation/html/BSge
UCSC.hg38 ctor nome.Hsapiens.UCSC.hg38.html
annotations
gnomAD v2.1.1 Genome | hitps://gnomad.broadinstitute.org/downloads#v2-liftover-variants
(exome and genome) | Aggregati
on
Database
KEGG MMR gene set | BROAD https://www.gsea-
v7.5.1 Institute msigdb.org/gsea/msigdb/download_geneset.jsp?geneSetName=KE
GG_MISMATCH_REPAIR
ClinVar Database NCBI https://ftp.ncbi.nim.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/202
(2022-05-07) 2/clinvar_20220507.vcf.gz
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1554

1555  Figure S1: OpenPBTA Project Workflow, Related to Figure 1. Biospecimens and data were
1556  collected by CBTN and PNOC. Genomic sequencing and harmonization (orange boxes) were
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1557  performed by the Kids First Data Resource Center (KFDRC). Analyses in the green boxes were
1558  performed by contributors of the OpenPBTA project. Output files are denoted in blue. Figure
1559  created with BioRender.com.
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1561 Figure S2: Validation of Consensus SNV calls and Tumor Mutation Burden, Related to
1562  Figures 2 and 3. Correlation (A) and violin (B) plots of mutation variant allele frequencies

1563  (VAFs) comparing the variant callers (Lancet, Strelka2, Mutect2, and VarDict) used for PBTA
1564  samples. Upset plot (C) showing overlap of variant calls. Correlation (D) and violin (E) plots of
1565  mutation variant allele frequencies (VAFs) comparing the variant callers (Lancet, Strelka2, and
1566  Mutect2) used for TCGA samples. Upset plot (F) showing overlap of variant calls. Violin plots
1567  (G) showing VAFs for Lancet calls performed on WGS and WXS from the same tumor (N = 52
1568  samples from 13 patients). Cumulative distribution TMB plots for PBTA (H) and TCGA (I) tumors
1569  using consensus SNV calls.
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Figure S3: Genomic instability of pediatric brain tumors, Related to Figures 2 and 3. (A)
Oncoprint of canonical somatic gene mutations, CNVs, fusions, and TMB (top bar plot) for the
top 20 genes mutated across rare CNS tumors: desmoplastic infantile astrocytoma and
ganglioglioma (N = 2), germinoma (N = 4), glial-neuronal NOS (N = 8), metastatic secondary
tumors (N = 2), neurocytoma (N = 2), pineoblastoma (N = 4), Rosai-Dorfman disease (N = 2),
and sarcomas (N = 4). Patient sex (Germline sex estimate) and tumor histology (Cancer
Group) are displayed as annotations at the bottom of each plot. Only primary tumors with
mutations in the listed genes are shown. Multiple CNVs are denoted as a complex event. (B)
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1579  Genome-wide plot of CNV alterations by broad histology. Each row represents one sample. Box
1580  and whisker plots of number of CNV breaks (C) or SV breaks (D) by number of chromothripsis
1581  regions.
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1583  Figure S4: Mutational signatures in pediatric brain tumors, Related to Figure 3. (A)

1584  Sample-specific RefSig signature weights across cancer groups ordered by decreasing

1585  Signature 1 exposure. (B) Proportion of Signature 1 plotted by phase of therapy for each cancer
1586  group.
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1587

1588  Figure S5: Quality control metrics for TP53 and EXTEND scores, Related to Figure 4. (A)
1589  Receiver Operating Characteristic for TP53 classifier run on FPKM of poly-A RNA-Seq samples.
1590  Correlation plots for telomerase scores (EXTEND) with RNA expression of TERT (B) and TERC
1591 (C).
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1593  Figure S6: Subtype-specific clustering and immune cell fractions, Related to Figure 5.
1594  First two dimensions from UMAP of sample transcriptome data with points colored by

1595 molecular subtype for medulloblastoma (A), ependymoma (B), low-grade glioma (C), and
1596  high-grade glioma (D). (E) Box plots of quanTlseq estimates of inmune cell fractions in

1597  histologies with more than one molecular subtype with N >=3. (F) Box plots of the ratio of
1598  immune cell fractions of CD8+ to CD4+ T cells in histologies with more than one molecular
1599  subtype with N >=3.
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Table S1. Related to Figure 1. Table of specimens and associated metadata, clinical data, and
histological data utilized in the OpenPBTA project.

Table S2. Related to Figures 2 and 3. Excel file with three sheets representing tables of TMB,
eight CNS mutational signatures, and chromothripsis events per sample, respectively.

Table S3. Related to Figures 4 and 5. Excel file with three sheets representing tables of TP53
scores, telomerase EXTEND scores, and quanTlseq immune scores, respectively.

Table S4. Related to Figures 4 and 5. Excel file with six sheets representing the survival
analyses performed for this manuscript. See Star Methods for details.

Table S5. Related to Figure 1. Excel file with four sheets representing of all software and their
respective versions used for the OpenPBTA project, including the R packages in the OpenPBTA
Docker image, Python packages i the OpenPBTA Docker image, other command line tools in
the OpenPBTA Docker image, and all software used in the OpenPBTA workflows, respectively.
Note that all software in the OpenPBTA Docker image was utilized within the analysis
repository, but not all software was used for the final manuscript.

Consortia

The past and present members of the Children’s Brain Tumor Network who contributed to the
generation of specimens and data are Adam C. Resnick, Alexa Plisiewicz, Allison M. Morgan,
Allison P. Heath, Alyssa Paul, Amanda Saratsis, Amy Smith, Ana Aguilar, Ana Guerreiro
Stucklin, Anastasia Arynchyna, Andrea Franson, Angela J. Waanders, Angela N. Viaene, Anita
Nirenberg, Anna Maria Buccoliero, Anna Yaffe, Anny Shai, Anthony Bet, Antoinette Price,
Arlene Luther, Ashley Plant, Augustine Eze, Bailey K. Farrow, Baoli Hu, Beth Frenkel, Bo
Zhang, Bobby Moulder, Bonnie Cole, Brian M. Ennis, Brian R. Rood, Brittany Lebert, Carina A.
Leonard, Carl Koschmann, Caroline Caudill, Caroline Drinkwater, Cassie N. Kline, Catherine
Sullivan, Chanel Keoni, Chiara Caporalini, Christine Bobick-Butcher, Christopher Mason,
Chunde Li, Claire Carter, Claudia MaduroCoronado, Clayton Wiley, Cynthia Wong, David E.
Kram, David Haussler, David Kram, David Pisapia, David Ziegler, Denise Morinigo, Derek
Hanson, Donald W. Parsons, Elizabeth Appert, Emily Drake, Emily Golbeck, Ena Agbodza, Eric
H. Raabe, Eric M. Jackson, Erin Alexander, Esteban Uceda, Eugene Hwang, Fausto Rodriquez,
Gabrielle S. Stone, Gary Kohanbash, Gavriella Silverman, George Rafidi, Gerald Grant, Gerri
Trooskin, Gilad Evrony, Graham Keyes, Hagop Boyajian, Holly B. Lindsay, Holly C. Beale, lan
F. Pollack, James Johnston, James Palmer, Jane Minturn, Jared Pisapia, Jason E. Cain, Jason
R. Fangusaro, Javad Nazarian, Jeanette Haugh, Jeff Stevens, Jeffrey P. Greenfield, Jeffrey
Rubens, Jena V. Lilly, Jennifer L. Mason, Jessica B. Foster, Jim Olson, Jo Lynne Rokita,
Joanna J. Phillips, Jonathan Waller, Josh Rubin, Judy E. Palma, Justin McCroskey, Justine
Rizzo, Kaitlin Lehmann, Kamnaa Arya, Karlene Hall, Katherine Pehlivan, Kenneth Seidl,
Kimberly Diamond, Kristen Harnett, Kristina A. Cole, Krutika S. Gaonkar, Lamiya Tauhid, Laura
Prolo, Leah Holloway, Leslie Brosig, Lina Lopez, Lionel Chow, Madhuri Kambhampati, Mahdi
Sarmady, Margaret Nevins, Mari Groves, Mariarita Santi-Vicini, Marilyn M. Li, Marion Mateos,
Mateusz Koptyra, Matija Snuderl, Matthew Miller, Matthew Sklar, Matthew Wood, Meghan
Connors, Melissa Williams, Meredith Egan, Michael Fisher, Michael Koldobskiy, Michelle Monje,
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Migdalia Martinez, Miguel A. Brown, Mike Prados, Miriam Bornhorst, Mirko Scagnet, Mohamed
AbdelBaki, Monique Carrero-Tagle, Nadia Dahmane, Nalin Gupta, Nathan Young, Nicholas A.
Vitanza, Nicholas Tassone, Nicholas Van Kuren, Nicolas Gerber, Nithin D. Adappa, Nitin
Wadhwani, Noel Coleman, Obi Obayashi, Olena M. Vaske, Olivier Elemento, Oren Becher,
Philbert Oliveros, Phillip B. Storm, Pichai Raman, Prajwal Rajappa, Rintaro Hashizume, Rishi R.
Lulla, Robert Keating, Robert M. Lober, Ron Firestein, Sabine Mueller, Sameer Agnihotri,
Samuel G. Winebrake, Samuel Rivero-Hinojosa, Sarah Diane Black, Sarah Leary, Schuyler
Stoller, Shannon Robins, Sharon Gardner, Shelly Wang, Sherri Mayans, Sherry Tutson, Shida
Zhu, Sofie R. Salama, Sonia Partap, Sonika Dahiya, Sriram Venneti, Stacie Stapleton, Stephani
Campion, Stephanie Stefankiewicz, Stewart Goldman, Swetha Thambireddy, Tatiana S. Patton,
Teresa Hidalgo, Theo Nicolaides, Thinh Q. Nguyen, Thomas W. McLean, Tiffany Walker, Toba
Niazi, Tobey MacDonald, Valeria Lopez-Gil, Valerie Baubet, Whitney Rife, Xiao-Nan Li, Ximena
Cuellar, Yiran Guo, Yuankun Zhu, and Zeinab Helil.

The past and present members of the Pacific Pediatric Neuro-Oncology Consortium who
contributed to the generation of specimens and data are Adam C. Resnick, Alicia Lenzen,
Alyssa Reddy, Amar Gajjar, Ana Guerreiro Stucklin, Anat Epstein, Andrea Franson, Angela
Waanders, Anne Bendel, Anu Banerjee, Ashley Margol, Ashley Plant, Brian Rood, Carl
Koschmann, Carol Bruggers, Caroline Hastings, Cassie N. Kline, Christina Coleman Abadi,
Christopher Tinkle, Corey Raffel, Dan Runco, Daniel Landi, Daphne Adele Haas-Kogan, David
Ashley, David Ziegler, Derek Hanson, Dong Anh Khuong Quang, Duane Mitchell, Elias Sayour,
Eric Jackson, Eric Raabe, Eugene Hwang, Fatema Malbari, Geoffrey McCowage, Girish Dhall,
Gregory Friedman, Hideho Okada, Ibrahim Qaddoumi, Iris Fried, Jae Cho, Jane Minturn, Jason
Blatt, Javad Nazarian, Jeffrey Rubens, Jena V. Lilly, Jennifer Elster, Jennifer L. Mason, Jessica
Schulte, Jonathan Schoenfeld, Josh Rubin, Karen Gauvain, Karen Wright, Katharine Offer,
Katie Metrock, Kellie Haworth, Ken Cohen, Kristina A. Cole, Lance Governale, Linda Stork,
Lindsay Kilburn, Lissa Baird, Maggie Skrypek, Marcia Leonard, Margaret Shatara, Margot
Lazow, Mariella Filbin, Maryam Fouladi, Matthew Miller, Megan Paul, Michael Fisher, Michael
Koldobskiy, Michael Prados, Michal Yalon Oren, Mimi Bandopadhayay, Miriam Bornhorst,
Mohamed AbdelBaki, Nalin Gupta, Nathan Robison, Nicholas Whipple, Nick Gottardo, Nicholas
A. Vitanza, Nicolas Gerber, Patricia Robertson, Payal Jain, Peter Sun, Priya Chan, Richard S
Lemons, Robert Wechsler-Reya, Roger Packer, Russ Geyer, Ryan Velasco, Sabine Mueller,
Sahaja Acharya, Sam Cheshier, Sarah Leary, Scott Coven, Sebastian M. Waszak, Sharon
Gardner, Sri Gururangan, Stewart Goldman, Susan Chi, Tab Cooney, Tatiana S. Patton,
Theodore Nicolaides, and Tom Belle Davidson.

References

1. Ostrom, Q.T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., and Barnholtz-
Sloan, J.S. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous
System Tumors Diagnosed in the United States in 2012—-2016. Neuro-Oncology 27, v1—-v100.
10.1093/neuonc/noz150.

2. Ostrom, Q.T., Gittleman, H., Xu, J., Kromer, C., Wolinsky, Y., Kruchko, C., and
Barnholtz-Sloan, J.S. (2016). CBTRUS Statistical Report: Primary Brain and Other Central

61


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1681
1682

1683
1684
1685
1686

1687
1688

1689
1690
1691

1692
1693

1694
1695
1696

1697
1698

1699
1700
1701

1702
1703
1704
1705

1706
1707
1708
1709

1710
1711
1712
1713

1714
1715

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro-Oncology 18,
v1—v75. 10.1093/neuonc/now207.

3. Blank, P.M., Ostrom, Q.T., Rouse, C., Wolinsky, Y., Kruchko, C., Salcido, J., and
Barnholtz-Sloan, J.S. (2015). Years of life lived with disease and years of potential life lost in
children who die of cancer in the United States, 2009. Cancer Med 4, 608-619.
10.1002/cam4.410.

4. Oncology Center of Excellence, U.S. Food and Drug Administration (2022). Pediatric
Oncology Drug Approvals.

5. Vable, A.M., Diehl, S.F., and Glymour, M.M. (2021). Code Review as a Simple Trick to
Enhance Reproducibility, Accelerate Learning, and Improve the Quality of Your Team’s
Research. American Journal of Epidemiology 190, 2172—-2177. 10.1093/aje/kwab092.

6. Parker, H. (2017). Opinionated analysis development. PeerJ Preprints, €3210v1.
10.7287/peerj.preprints.3210v1.

7. Beaulieu-Jones, B.K., and Greene, C.S. (2017). Reproducibility of computational
workflows is automated using continuous analysis. Nat Biotechnol 35, 342—-346.
10.1038/nbt.3780.

8. Piwowar, H.A., Day, R.S., and Fridsma, D.B. (2007). Sharing Detailed Research Data Is
Associated with Increased Citation Rate. PLoS ONE 2, e308. 10.1371/journal.pone.0000308.

9. Cadwallader, L., Papin, J.A., Mac Gabhann, F., and Kirk, R. (2021). Collaborating with
our community to increase code sharing. PLoS Comput Biol 17, e1008867.
10.1371/journal.pcbi.1008867.

10. Dang, M.T., Gonzalez, M.V., Gaonkar, K.S., Rathi, K.S., Young, P., Arif, S., Zhai, L.,
Alam, Z., Devalaraja, S., To, T.K.J., et al. (2021). Macrophages in SHH subgroup
medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell
Reports 34, 108917. 10.1016/j.celrep.2021.108917.

11. Foster, J.B., Griffin, C., Rokita, J.L., Stern, A., Brimley, C., Rathi, K., Lane, M.V.,
Buongervino, S.N., Smith, T., Madsen, P.J., et al. (2021). Development of GPC2-directed
chimeric antigen receptors using mRNA for pediatric brain tumors. bioRxiv, 2021.07.06.451385.
10.1101/2021.07.06.451385.

12. Kline, C., Jain, P., Kilburn, L., Bonner, E.R., Gupta, N., Crawford, J.R., Banerjee, A.,
Packer, R.J., Villanueva-Meyer, J., Luks, T., et al. (2022). Upfront Biology-Guided Therapy in
Diffuse Intrinsic Pontine Glioma: Therapeutic, Molecular, and Biomarker Outcomes from
PNOCO003. Clinical Cancer Research, OF1-OF14. 10.1158/1078-0432.ccr-22-0803.

13. RACE Act Poised to Advance Pediatric Cancer Research (2020). Cancer Discovery 10,
1434-1434. 10.1158/2159-8290.cd-nb2020-081.

62


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1716
1717
1718
1719

1720
1721
1722
1723

1724
1725
1726

1727
1728

1729
1730

1731
1732
1733

1734
1735
1736

1737
1738
1739
1740

1741
1742
1743
1744

1745
1746
1747
1748

1749
1750
1751

available under aCC-BY 4.0 International license.

14. ljaz, H., Koptyra, M., Gaonkar, K.S., Rokita, J.L., Baubet, V.P., Tauhid, L., Zhu, Y.,
Brown, M., Lopez, G., Zhang, B., et al. (2019). Pediatric high-grade glioma resources from the
Children’s Brain Tumor Tissue Consortium. Neuro-Oncology 22, 163—165.
10.1093/neuonc/noz192.

15. Mueller, S., Jain, P., Liang, W.S., Kilburn, L., Kline, C., Gupta, N., Panditharatna, E.,
Magge, S.N., Zhang, B., Zhu, Y., et al. (2019). A pilot precision medicine trial for children with
diffuse intrinsic pontine glioma—PNOCO003: A report from the Pacific Pediatric Neuro-Oncology
Consortium. Int. J. Cancer. 10.1002/ijc.32258.

16. Himmelstein, D.S., Rubinetti, V., Slochower, D.R., Hu, D., Malladi, V.S., Greene, C.S.,
and Gitter, A. (2019). Open collaborative writing with Manubot. PLoS Comput Biol 75,
€1007128. 10.1371/journal.pcbi.1007128.

17. Merkel, D. (2014). Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal 20714, 2:2.

18. Boettiger, C., and Eddelbuettel, D. (2017). An Introduction to Rocker: Docker Containers
for R. arXiv:1710.03675 [cs].

19. Kleihues, P., Louis, D.N., Scheithauer, B.W., Rorke, L.B., Reifenberger, G., Burger,
P.C., and Cavenee, W.K. (2002). The WHO classification of tumors of the nervous system. J
Neuropathol Exp Neurol 61, 215-25; discussion 226-9. 10.1093/jnen/61.3.215.

20. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A.,
Scheithauer, B.W., and Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the
Central Nervous System. Acta Neuropathol 774, 97—-109. 10.1007/s00401-007-0243-4.

21. Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D.,
Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W. (2016). The 2016
World Health Organization Classification of Tumors of the Central Nervous System: a summary.
Acta Neuropathol 7317, 803-820. 10.1007/s00401-016-1545-1.

22. Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, |.A., Figarella-Branger, D.,
Hawkins, C., Ng, H.K., Pfister, S.M., Reifenberger, G., et al. (2021). The 2021 WHO
Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology 23,
1231-1251. 10.1093/neuonc/noab106.

23. Ryall, S., Zapotocky, M., Fukuoka, K., Nobre, L., Guerreiro Stucklin, A., Bennett, J.,
Siddaway, R., Li, C., Pajovic, S., Arnoldo, A., et al. (2020). Integrated Molecular and Clinical
Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell 37, 569-583.e5.
10.1016/j.ccell.2020.03.011.

24. Campbell, B.B., Light, N., Fabrizio, D., Zatzman, M., Fuligni, F., de Borja, R., Davidson,
S., Edwards, M., Elvin, J.A., Hodel, K.P., et al. (2017). Comprehensive Analysis of
Hypermutation in Human Cancer. Cell 171, 1042-1056.e10. 10.1016/j.cell.2017.09.048.

63


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1752  25. Ryall, S., Tabori, U., and Hawkins, C. (2020). Pediatric low-grade glioma in the era of
1753  molecular diagnostics. acta neuropathol commun 8. 10.1186/s40478-020-00902-z.

1754  26. Lambo, S., von Hoff, K., Korshunov, A., Pfister, S.M., and Kool, M. (2020). ETMR: a
1755  tumor entity in its infancy. Acta Neuropathol 740, 249-266. 10.1007/s00401-020-02182-2.

1756  27. Richardson, S., Hill, R.M., Kui, C., Lindsey, J.C., Grabovksa, Y., Keeling, C., Pease, L.,
1757  Bashton, M., Crosier, S., Vinci, M., et al. (2021). Emergence and maintenance of actionable
1758  genetic drivers at medulloblastoma relapse. Neuro-Oncology 24, 153-165.

1759  10.1093/neuonc/noab178.

1760  28. tastowska, M., Trubicka, J., Sobocinska, A., Wojtas, B., Niemira, M., Szatkowska, A.,
1761 Kretowski, A., Karkucinska-Wieckowska, A., Kaleta, M., Ejmont, M., et al. (2020). Molecular
1762 identification of CNS NB-FOXR2, CNS EFT-CIC, CNS HGNET-MN1 and CNS HGNET-BCOR
1763  pediatric brain tumors using tumor-specific signature genes. acta neuropathol commun 8.
1764  10.1186/s40478-020-00984-9.

1765  29. Northcott, P.A., Buchhalter, I., Morrissy, A.S., Hovestadt, V., Weischenfeldt, J.,

1766  Ehrenberger, T., Grébner, S., Segura-Wang, M., Zichner, T., Rudneva, V.A., et al. (2017). The
1767  whole-genome landscape of medulloblastoma subtypes. Nature 547, 311-317.

1768  10.1038/nature22973.

1769  30. Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J., Taylor, K.R.,
1770  Bjerke, L., Clarke, M., Vinci, M., Nandhabalan, M., et al. (2017). Integrated Molecular Meta-
1771 Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 32,
1772  520-537.e5. 10.1016/j.ccell.2017.08.017.

1773  31. Pratt, D., Quezado, M., Abdullaev, Z., Hawes, D., Yang, F., Garton, H.J.L., Judkins,
1774  A.R., Mody, R., Chinnaiyan, A., Aldape, K., et al. (2020). Diffuse intrinsic pontine glioma-like
1775  tumor with EZHIP expression and molecular features of PFA ependymoma. acta neuropathol
1776  commun 8. 10.1186/s40478-020-00905-w.

1777  32. Surrey, L.F., Jain, P., Zhang, B., Straka, J., Zhao, X., Harding, B.N., Resnick, A.C.,
1778  Storm, P.B., Buccoliero, A.M., Genitori, L., et al. (2019). Genomic Analysis of Dysembryoplastic
1779  Neuroepithelial Tumor Spectrum Reveals a Diversity of Molecular Alterations Dysregulating the
1780 MAPK and PI3K/mTOR Pathways. Journal of Neuropathology &amp; Experimental Neurology
1781 78, 1100-1111. 10.1093/inen/niz101.

1782  33. Pfaff, E., Remke, M., Sturm, D., Benner, A., Witt, H., Milde, T., von Bueren, A.O.,
1783  Wittmann, A., Schéttler, A., Jorch, N., et al. (2010). TP53 Mutation Is Frequently Associated
1784  With CTNNB1 Mutation or MYCN Amplification and Is Compatible With Long-Term Survival in
1785  Medulloblastoma. JCO 28, 5188-5196. 10.1200/jc0.2010.31.1670.

1786  34. Lucas, C.-H.G., Gupta, R., Doo, P., Lee, J.C., Cadwell, C.R., Ramani, B., Hofmann,
1787 J.W., Sloan, E.A., Kleinschmidt-DeMasters, B.K., Lee, H.S., et al. (2020). Comprehensive
1788  analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct

64


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1789
1790

1791
1792
1793

1794
1795
1796
1797

1798
1799
1800
1801
1802

1803
1804
1805
1806

1807
1808

1809
1810
1811
1812

1813
1814
1815
1816

1817
1818

1819
1820
1821
1822

1823
1824
1825

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

molecular signature of rosette-forming glioneuronal tumor. acta neuropathol commun 8.
10.1186/s40478-020-01027-z.

35. Wu, G., Diaz, A.K., Paugh, B.S., Rankin, S.L., Ju, B., Li, Y., Zhu, X., Qu, C., Chen, X,
Zhang, J., et al. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric
non-brainstem high-grade glioma. Nature Genetics 46, 444-450. 10.1038/ng.2938.

36. Degasperi, A., Amarante, T.D., Czarnecki, J., Shooter, S., Zou, X., Glodzik, D.,
Morganella, S., Nanda, A.S., Badja, C., Koh, G., et al. (2020). A practical framework and online
tool for mutational signature analyses show intertissue variation and driver dependencies. Nat
Cancer 1, 249-263. 10.1038/s43018-020-0027-5.

37. Wojciechowicz, K., Cantelli, E., Van Gerwen, B., Plug, M., Van Der Wal, A., Delzenne-
Goette, E., Song, J.-Y., De Vries, S., Dekker, M., and Riele, H.T. (2014). Temozolomide
Increases the Number of Mismatch Repair-Deficient Intestinal Crypts and Accelerates
Tumorigenesis in a Mouse Model of Lynch Syndrome. Gastroenterology 747, 1064—1072.e5.
10.1053/j.gastro.2014.07.052.

38. Knijnenburg, T.A., Wang, L., Zimmermann, M.T., Chambwe, N., Gao, G.F., Cherniack,
A.D., Fan, H., Shen, H., Way, G.P., Greene, C.S., et al. (2018). Genomic and Molecular
Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports
23, 239-254.e6. 10.1016/j.celrep.2018.03.076.

39. Dittmer, D., Pati, S., Zambetti, G., Chu, S., Teresky, A.K., Moore, M., Finlay, C., and
Levine, A.J. (1993). Gain of function mutations in p53. Nat Genet 4, 42—46. 10.1038/ng0593-42.

40. Rokita, J.L., Rathi, K.S., Cardenas, M.F., Upton, K.A., Jayaseelan, J., Cross, K.L., Pfeil,
J., Egolf, L.E., Way, G.P., Farrel, A., et al. (2019). Genomic Profiling of Childhood Tumor
Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports 29,
1675-1689.€9. 10.1016/j.celrep.2019.09.071.

41. Noureen, N., Wu, S., Lv, Y., Yang, J., Alfred Yung, W.K., Gelfond, J., Wang, X., Koul, D.,
Ludlow, A., and Zheng, S. (2021). Integrated analysis of telomerase enzymatic activity unravels
an association with cancer stemness and proliferation. Nat Commun 72. 10.1038/s41467-020-
20474-9.

42. Artandi, S.E., and DePinho, R.A. (2009). Telomeres and telomerase in cancer.
Carcinogenesis 31, 9-18. 10.1093/carcin/bgp268.

43. Ceja-Rangel, H.A., Sanchez-Suarez, P., Castellanos-Juarez, E., Pefiaroja-Flores, R.,
Arenas-Aranda, D.J., Gariglio, P., and Benitez-Bribiesca, L. (2016). Shorter telomeres and high
telomerase activity correlate with a highly aggressive phenotype in breast cancer cell lines.
Tumor Biol. 37, 11917-11926. 10.1007/s13277-016-5045-7.

44, Oh, B.-K., Kim, H., Park, Y.N., Yoo, J.E., Choi, J., Kim, K.-S., Lee, J.J., and Park, C.
(2007). High telomerase activity and long telomeres in advanced hepatocellular carcinomas with
poor prognosis. Lab Invest 88, 144-152. 10.1038/labinvest.3700710.

65


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1826
1827
1828

1829
1830
1831

1832
1833
1834

1835
1836
1837
1838

1839
1840
1841
1842

1843
1844

1845
1846
1847

1848
1849
1850

1851
1852
1853
1854

1855
1856
1857

1858
1859
1860

1861
1862

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

45. Kuli¢, A., Plaveti¢, N.D., Gamulin, S., Jaki¢-Razumovi¢, J., Vrbanec, D., and Sirotkovic-
Skerlev, M. (2016). Telomerase activity in breast cancer patients: association with poor
prognosis and more aggressive phenotype. Med Oncol 33. 10.1007/s12032-016-0736-x.

46. Wong, V.C.H., Morrison, A., Tabori, U., and Hawkins, C.E. (2010). Telomerase Inhibition
as a Novel Therapy for Pediatric Ependymoma. Brain Pathology 20, 780-786. 10.1111/j.1750-
3639.2010.00372.x.

47. Pich, O., Muifios, F., Lolkema, M.P., Steeghs, N., Gonzalez-Perez, A., and Lopez-Bigas,
N. (2019). The mutational footprints of cancer therapies. Nat Genet 51, 1732-1740.
10.1038/s41588-019-0525-5.

48. Aronson, M., Colas, C., Shuen, A., Hampel, H., Foulkes, W.D., Baris Feldman, H.,
Goldberg, Y., Muleris, M., Wolfe Schneider, K., McGee, R.B., et al. (2021). Diagnostic criteria
for constitutional mismatch repair deficiency (CMMRD): recommendations from the international
consensus working group. J Med Genet 59, 318-327. 10.1136/jmedgenet-2020-107627.

49, Lewis, P.W., Muller, M.M., Koletsky, M.S., Cordero, F., Lin, S., Banaszynski, L.A.,
Garcia, B.A., Muir, T.W., Becher, O.J., and Allis, C.D. (2013). Inhibition of PRC2 Activity by a
Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science 340, 857-861.
10.1126/science.1232245.

50. Hutter, S., Bolin, S., Weishaupt, H., and Swartling, F. (2017). Modeling and Targeting
MYC Genes in Childhood Brain Tumors. Genes 8, 107. 10.3390/genes8040107.

51. Leone, G., Sears, R., Huang, E., Rempel, R., Nuckolls, F., Park, C.H., Giangrande, P.,
Wu, L., Saavedra, H.I., Field, S.J., et al. (2001). Myc requires distinct E2F activities to induce S
phase and apoptosis. Mol Cell 8, 105-13. 10.1016/s1097-2765(01)00275-1.

52. Hannan, C.J., Lewis, D., O’Leary, C., Donofrio, C.A., Evans, D.G., Roncaroli, F., Brough,
D., King, A.T., Coope, D., and Pathmanaban, O.N. (2020). The inflammatory microenvironment
in vestibular schwannoma. Neuro-Oncology Advances 2. 10.1093/noajnl/vdaa023.

53. Petralia, F., Tignor, N., Reva, B., Koptyra, M., Chowdhury, S., Rykunov, D., Krek, A.,
Ma, W., Zhu, Y., Ji, J., et al. (2020). Integrated Proteogenomic Characterization across Major
Histological Types of Pediatric Brain Cancer. Cell 183, 1962—-1985.e31.
10.1016/j.cell.2020.10.044.

54. Lin, G.L., Nagaraja, S., Filbin, M.G., Suva, M.L., Vogel, H., and Monje, M. (2018). Non-
inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. acta neuropathol
commun 6. 10.1186/s40478-018-0553-x.

55. Ross, J.L., Velazquez Vega, J., Plant, A., MacDonald, T.J., Becher, O.J., and
Hambardzumyan, D. (2021). Tumour immune landscape of paediatric high-grade gliomas. Brain
144, 2594-2609. 10.1093/brain/awab155.

56. Martin, A.M., Nirschl, C.J., Polanczyk, M.J., Bell, W.R., Nirschl, T.R., Harris-Bookman,
S., Phallen, J., Hicks, J., Martinez, D., Ogurtsova, A, et al. (2018). PD-L1 expression in

66


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1863  medulloblastoma: an evaluation by subgroup. Oncotarget 9, 19177-19191.
1864  10.18632/oncotarget.24951.

1865 57. Bockmayr, M., Mohme, M., Klauschen, F., Winkler, B., Budczies, J., Rutkowski, S., and
1866  Schdller, U. (2018). Subgroup-specific immune and stromal microenvironment in
1867  medulloblastoma. Oncolmmunology 7, €1462430. 10.1080/2162402x.2018.1462430.

1868  58. Duchemann, B., Naigeon, M., Auclin, E., Ferrara, R., Cassard, L., Jouniaux, J.-M.,
1869  Boselli, L., Grivel, J., Desnoyer, A., Danlos, F.-X., et al. (2022). CD8+ PD-1+ to CD4+PD-1+
1870 ratio (PERLS) is associated with prognosis of patients with advanced NSCLC treated with PD-
1871 (L)1 blockers. J Immunother Cancer 70, e004012. 10.1136/jitc-2021-004012.

1872  59. Shindo, G., Endo, T., Onda, M., Goto, S., Miyamoto, Y., and Kaneko, T. (2013). Is the
1873  CD4/CD8 Ratio an Effective Indicator for Clinical Estimation of Adoptive Immunotherapy for
1874  Cancer Treatment? JCT 04, 1382-1390. 10.4236/jct.2013.48164.

1875  60. Gendoo, D.M.A., and Haibe-Kains, B. (2016). MM2S: personalized diagnosis of
1876  medulloblastoma patients and model systems. Source Code Biol Med 771. 10.1186/s13029-016-
1877  0053-y.

1878  61. Rathi, K.S., Arif, S., Koptyra, M., Naqvi, A.S., Taylor, D.M., Storm, P.B., Resnick, A.C.,
1879  Rokita, J.L., and Raman, P. (2020). A transcriptome-based classifier to determine molecular
1880  subtypes in medulloblastoma. PLoS Comput Biol 76, e1008263. 10.1371/journal.pcbi.1008263.

1881  62. Yuza, K., Nagahashi, M., Watanabe, S., Takabe, K., and Wakai, T. (2017).
1882  Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 8, 112103—
1883  112115. 10.18632/oncotarget.22783.

1884  63. Bass, A.J., Thorsson, V., Shmulevich, |., Reynolds, S.M., Miller, M., Bernard, B., Hinoue,
1885 T, Laird, P.W., Curtis, C., Shen, H., et al. (2014). Comprehensive molecular characterization of
1886  gastric adenocarcinoma. Nature 573, 202—209. 10.1038/nature13480.

1887 64. Sharma, J., Bonfield, C.M., Singhal, A., Hukin, J., and Steinbok, P. (2015). Intracystic
1888 interferon-a treatment leads to neurotoxicity in craniopharyngioma: case report. PED 16, 301—
1889  304. 10.3171/2015.2.peds14656.

1890 65. Mohammed, K.E.A., Mike, K.R.A., and Parkes, J. (2013). Unexpected brain atrophy
1891  following administration of intratumoral interferon alpha-2b for cystic craniopharyngioma: A case
1892  report. IJCRI 4, 719. 10.5348/ijcri-2013-12-419-cr-13.

1893 66. Coy, S., Rashid, R, Lin, J.-R., Du, Z., Donson, A.M., Hankinson, T.C., Foreman, N.K.,
1894  Manley, P.E., Kieran, M.W., Reardon, D.A,, et al. (2018). Multiplexed immunofluorescence
1895 reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro-Oncology
1896 20, 1101-1112. 10.1093/neuonc/noy035.

1897 67. Yuan, F., Cai, X., Zhu, J., Yuan, L., Wang, Y., Tang, C., Cong, Z., and Ma, C. (2021). A
1898  Novel Immune Classification for Predicting Immunotherapy Responsiveness in Patients With
1899  Adamantinomatous Craniopharyngioma. Front Neurol 712, 704130. 10.3389/fneur.2021.704130.

67


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1900
1901
1902

1903
1904
1905
1906
1907

1908
1909
1910

1911
1912
1913
1914

1915
1916
1917

1918
1919

1920
1921

1922
1923
1924
1925

1926
1927

1928
1929
1930

1931
1932
1933
1934

1935
1936

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

68. Whelan, R., Prince, E., Gilani, A., and Hankinson, T. (2020). The Inflammatory Milieu of
Adamantinomatous Craniopharyngioma and Its Implications for Treatment. J Clin Med 9.
10.3390/jcm9020519.

69. Apps, J.R., Carreno, G., Gonzalez-Meljem, J.M., Haston, S., Guiho, R., Cooper, J.E.,
Manshaei, S., Jani, N., Holsken, A., Pettorini, B., et al. (2018). Tumour compartment
transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in
human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a
novel therapeutic target. Acta Neuropathol 135, 757—777. 10.1007/s00401-018-1830-2.

70. Grob, S., Mirsky, D.M., Donson, A.M., Dahl, N., Foreman, N.K., Hoffman, L.M.,
Hankinson, T.C., and Mulcahy Levy, J.M. (2019). Targeting IL-6 Is a Potential Treatment for
Primary Cystic Craniopharyngioma. Front. Oncol. 9. 10.3389/fonc.2019.00791.

71. Gaonkar, K.S., Marini, F., Rathi, K.S., Jain, P., Zhu, Y., Chimicles, N.A., Brown, M.A.,
Naqvi, A.S., Zhang, B., Storm, P.B., et al. (2020). annoFuse: an R Package to annotate,
prioritize, and interactively explore putative oncogenic RNA fusions. BMC Bioinformatics 27.
10.1186/s12859-020-03922-7.

72. University of California, San Francisco (2022). A Pilot Trial Testing the Clinical Benefit of
Using Molecular Profiling to Determine an Individualized Treatment Plan in Children and Young
Adults With High Grade Glioma (Excluding Diffuse Intrinsic Pontine Glioma) (clinicaltrials.gov).

73. Open Pediatric Brain Tumor Atlas, C.B.T.N., Pediatric Neuro Oncology Consortium
(2022). Open Pediatric Brain Tumor Atlas. 10.24370/openpbta.

74. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv:1303.3997 [g-bio].

75. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C.,
Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43, 491-498.
10.1038/ng.806.

76. Faust, G.G., and Hall, .M. (2014). SAMBLASTER: fast duplicate marking and structural
variant read extraction. Bioinformatics 30, 2503—2505. 10.1093/bioinformatics/btu314.

77. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, |.J., and Prins, P. (2015). Sambamba: fast
processing of NGS alignment formats. Bioinformatics 37, 2032—-2034.
10.1093/biocinformatics/btv098.

78. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: A
MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20,
1297-1303. 10.1101/gr.107524.110.

79. Poplin, R., Ruano-Rubio, V., DePristo, M.A., Fennell, T.J., Carneiro, M.O., Auwera,
G.A.V. der, Kling, D.E., Gauthier, L.D., Levy-Moonshine, A., Roazen, D., et al. (2018). Scaling

68


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1937
1938

1939
1940
1941

1942
1943
1944

1945
1946
1947

1948
1949
1950

1951
1952
1953

1954
1955
1956

1957
1958

1959
1960
1961

1962
1963
1964
1965

1966
1967
1968

1969
1970
1971

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178.
10.1101/201178.

80. Lee, S, Lee, S., Ouellette, S., Park, W.-Y., Lee, E.A., and Park, P.J. (2017).
NGSCheckMate: software for validating sample identity in next-generation sequencing studies
within and across data types. Nucleic Acids Research 45, e103—-e103. 10.1093/nar/gkx193.

81. DelLuca, D.S,, Levin, J.Z., Sivachenko, A., Fennell, T., Nazaire, M.-D., Williams, C.,
Reich, M., Winckler, W., and Getz, G. (2012). RNA-SeQC: RNA-seq metrics for quality control
and process optimization. Bioinformatics 28, 1530-1532. 10.1093/bioinformatics/bts196.

82. Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Research 38, e164—e164.
10.1093/nar/gkg603.

83. Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M., and
Maglott, D.R. (2013). ClinVar: public archive of relationships among sequence variation and
human phenotype. Nucl. Acids Res. 42, D980-D985. 10.1093/nar/gkt1113.

84. Cingolani, P., Patel, V.M., Coon, M., Nguyen, T., Land, S.J., Ruden, D.M., and Lu, X.
(2012). Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies
with a New Program, SnpSift. Front. Gene. 3. 10.3389/fgene.2012.00035.

85. Kim, S., Scheffler, K., Halpern, A.L., Bekritsky, M.A., Noh, E., Kéllberg, M., Chen, X,
Kim, Y., Beyter, D., Krusche, P., et al. (2018). Strelka2: fast and accurate calling of germline
and somatic variants. Nat Methods 75, 591-594. 10.1038/s41592-018-0051-x.

86. Benjamin, D., Sato, T., Cibulskis, K., Getz, G., Stewart, C., and Lichtenstein, L. (2019).
Calling Somatic SNVs and Indels with Mutect2. bioRxiv, 861054. 10.1101/861054.

87. Narzisi, G., Corvelo, A., Arora, K., Bergmann, E.A., Shah, M., Musunuri, R., Emde, A.-
K., Robine, N., Vacic, V., and Zody, M.C. (2018). Genome-wide somatic variant calling using
localized colored de Bruijn graphs. Commun Biol 7. 10.1038/s42003-018-0023-9.

88. Lai, Z., Markovets, A., Ahdesmaki, M., Chapman, B., Hofmann, O., McEwen, R.,
Johnson, J., Dougherty, B., Barrett, J.C., and Dry, J.R. (2016). VarDict: a novel and versatile
variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 44, e108—
e108. 10.1093/nar/gkw227.

89. Arora, K., Shah, M., Johnson, M., Sanghvi, R., Shelton, J., Nagulapalli, K., Oschwald,
D.M., Zody, M.C., Germer, S., Jobanputra, V., et al. (2019). Deep whole-genome sequencing of
3 cancer cell lines on 2 sequencing platforms. Sci Rep 9. 10.1038/s41598-019-55636-3.

90. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flicek, P.,
and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biol 17.
10.1186/s13059-016-0974-4.

69


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

1972
1973
1974
1975

1976
1977
1978
1979

1980
1981
1982
1983

1984
1985
1986

1987
1988
1989

1990
1991
1992

1993
1994
1995

1996
1997
1998
1999

2000
2001
2002

2003
2004
2005

2006
2007

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

91. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alféldi, J., Wang, Q., Collins,
R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint
spectrum quantified from variation in 141,456 humans. Nature 587, 434—443. 10.1038/s41586-
020-2308-7.

92. Zvereva, M., Pisarev, E., Hosen, I., Kisil, O., Matskeplishvili, S., Kubareva, E., Kamalov,
D., Tivtikyan, A., Manel, A., Vian, E., et al. (2020). Activating Telomerase TERT Promoter
Mutations and Their Application for the Detection of Bladder Cancer. [JMS 217, 6034.
10.3390/ijms21176034.

93. Boeva, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G.,
Janoueix-Lerosey, |., Delattre, O., and Barillot, E. (2011). Control-FREEC: a tool for assessing
copy number and allelic content using next-generation sequencing data. Bioinformatics 28,
423-425. 10.1093/bioinformatics/btr670.

94. Boeva, V., Zinovyev, A., Bleakley, K., Vert, J.-P., Janoueix-Lerosey, I., Delattre, O., and
Barillot, E. (2010). Control-free calling of copy number alterations in deep-sequencing data
using GC-content normalization. Bioinformatics 27, 268-269. 10.1093/bioinformatics/btg635.

95. Talevich, E., Shain, A.H., Botton, T., and Bastian, B.C. (2016). CNVkit: Genome-Wide
Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol
12, €1004873. 10.1371/journal.pcbi.1004873.

96. Oesper, L., Satas, G., and Raphael, B.J. (2014). Quantifying tumor heterogeneity in
whole-genome and whole-exome sequencing data. Bioinformatics 30, 3532—-3540.
10.1093/biocinformatics/btu651.

97. Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., and Getz, G.
(2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic
copy-number alteration in human cancers. Genome Biol 72. 10.1186/gb-2011-12-4-r41.

98. Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Kallberg, M., Cox,
AJ., Kruglyak, S., and Saunders, C.T. (2015). Manta: rapid detection of structural variants and
indels for germline and cancer sequencing applications. Bioinformatics 32, 1220-1222.
10.1093/bioinformatics/btv710.

99. Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H., and Muller, J.
(2018). AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 34,
3572-3574. 10.1093/bioinformatics/bty304.

100. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T.R. (2012). STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15-21. 10.1093/biocinformatics/bts635.

101. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics 12. 10.1186/1471-2105-12-323.

70


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

2008
2009
2010

2011
2012
2013

2014
2015
2016

2017
2018

2019
2020
2021
2022

2023
2024
2025

2026
2027
2028

2029
2030
2031
2032

2033
2034
2035
2036

2037
2038
2039
2040

2041
2042

available under aCC-BY 4.0 International license.

102. Uhrig, S., Ellermann, J., Walther, T., Burkhardt, P., Fréhlich, M., Hutter, B., Toprak, U.H.,
Neumann, O., Stenzinger, A., Scholl, C., et al. (2021). Accurate and efficient detection of gene
fusions from RNA sequencing data. Genome Res. 31, 448-460. 10.1101/gr.257246.119.

103. Haas, B.J., Dobin, A., Stransky, N., Li, B., Yang, X., Tickle, T., Bankapur, A., Ganote, C.,
Doak, T.G., Pochet, N., et al. (2017). STAR-Fusion: Fast and Accurate Fusion Transcript
Detection from RNA-Seq. bioRxiv, 120295. 10.1101/120295.

104. Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H.P. (2018). Maftools:
efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747—
1756. 10.1101/gr.239244.118.

105. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842. 10.1093/bioinformatics/btq033.

106. Meyer, L.R., Zweig, A.S., Hinrichs, A.S., Karolchik, D., Kuhn, R.M., Wong, M., Sloan,
C.A., Rosenbloom, K.R., Roe, G., Rhead, B., et al. (2012). The UCSC Genome Browser
database: extensions and updates 2013. Nucleic Acids Research 41, D64—-D69.
10.1093/nar/gks1048.

107. Lawrence, M., Huber, W., Pagés, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan,
M.T., and Carey, V.J. (2013). Software for Computing and Annotating Genomic Ranges. PLoS
Comput Biol 9, e1003118. 10.1371/journal.pcbi.1003118.

108. Gu, Z, Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and
correlations in multidimensional genomic data. Bioinformatics 32, 2847—2849.
10.1093/bioinformatics/btw313.

109. Cortés-Ciriano, I., Lee, J.J.-K,, Xi, R., Jain, D., Jung, Y.L., Yang, L., Gordenin, D.,
Klimczak, L.J., Zhang, C.-Z., Pellman, D.S., et al. (2020). Comprehensive analysis of
chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet 52, 331-
341. 10.1038/s41588-019-0576-7.

110. Sturm, G, Finotello, F., Petitprez, F., Zhang, J.D., Baumbach, J., Fridman, W.H., List,
M., and Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based cell-type
quantification methods for immuno-oncology. Bioinformatics 35, i436—i445.
10.1093/biocinformatics/btz363.

111.  Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., Krogsdam, A,
Loncova, Z., Posch, W., Wilflingseder, D., et al. (2019). Molecular and pharmacological
modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data.
Genome Med 77. 10.1186/s13073-019-0638-6.

112. Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis
for microarray and RNA-Seq data. BMC Bioinformatics 74. 10.1186/1471-2105-14-7.

71


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

2043
2044
2045

2046
2047

2048
2049
2050

2051
2052
2053
2054
2055

2056
2057
2058
2059

2060
2061
2062
2063

2064
2065
2066
2067

2068
2069
2070
2071

2072
2073
2074
2075

2076
2077
2078
2079

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

113. Liberzon, A., Birger, C., Thorvaldsdéttir, H., Ghandi, M., Mesirov, Jill P., and Tamayo, P.
(2015). The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems 1,
417-425. 10.1016/j.cels.2015.12.004.

114. Mclnnes, L., Healy, J., and Melville, J. (2020). UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat].

115. Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale,
J., Hughes, T.R., and Weirauch, M.T. (2018). The Human Transcription Factors. Cell 172, 650—
665. 10.1016/j.cell.2018.01.029.

116. Ramkissoon, L.A., Horowitz, P.M., Craig, J.M., Ramkissoon, S.H., Rich, B.E.,
Schumacher, S.E., McKenna, A., Lawrence, M.S., Bergthold, G., Brastianos, P.K., et al. (2013).
Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic
truncating rearrangements in the transcription factor MYBL1. Proc. Natl. Acad. Sci. U.S.A. 110,
8188-8193. 10.1073/pnas.1300252110.

117.  Northcott, P.A., Shih, D.J.H., Peacock, J., Garzia, L., Sorana Morrissy, A., Zichner, T.,
Stutz, A.M., Korshunov, A., Reimand, J., Schumacher, S.E., et al. (2012). Subgroup-specific
structural variation across 1,000 medulloblastoma genomes. Nature 488, 49-56.
10.1038/nature11327.

118. Sturm, D., Orr, Brent A., Toprak, Umut H., Hovestadt, V., Jones, David T.W., Capper, D.,
Sill, M., Buchhalter, I., Northcott, Paul A., Leis, I., et al. (2016). New Brain Tumor Entities
Emerge from Molecular Classification of CNS-PNETs. Cell 164, 1060-1072.
10.1016/j.cell.2016.01.015.

119. Kleinman, C.L., Gerges, N., Papillon-Cavanagh, S., Sin-Chan, P., Pramatarova, A.,
Quang, D.-A.K., Adoue, V., Busche, S., Caron, M., Djambazian, H., et al. (2013). Fusion of
TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B
isoform in the embryonal brain tumor ETMR. Nat Genet 46, 39-44. 10.1038/ng.2849.

120. Valentijn, L.J., Koster, J., Zwijnenburg, D.A., Hasselt, N.E., van Sluis, P., Volckmann, R.,
van Noesel, M.M., George, R.E., Tytgat, G.A.M., Molenaar, J.J., et al. (2015). TERT
rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47,
1411-1414. 10.1038/ng.3438.

121.  Cobrinik, D., Ostrovnaya, |., Hassimi, M., Tickoo, S.K., Cheung, 1.Y., and Cheung, N.-
K.V. (2013). Recurrent pre-existing and acquired DNA copy number alterations, including focal
TERT gains, in neuroblastoma central nervous system metastases. Genes Chromosomes
Cancer 52, 1150-1166. 10.1002/gcc.22110.

122. Karlsson, J., Lilliebjorn, H., Holmquist Mengelbier, L., Valind, A., Rissler, M., @ra, I.,
Fioretos, T., and Gisselsson, D. (2015). Activation of human telomerase reverse transcriptase
through gene fusion in clear cell sarcoma of the kidney. Cancer Letters 357, 498-501.
10.1016/j.canlet.2014.11.057.

72


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2080 123. Karsy, M., Guan, J., Cohen, A.L., Jensen, R.L., and Colman, H. (2017). New Molecular
2081  Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 17.
2082  10.1007/s11910-017-0722-5.

2083 124. Bandopadhayay, P., Ramkissoon, L.A., Jain, P., Bergthold, G., Wala, J., Zeid, R.,
2084  Schumacher, S.E., Urbanski, L., O'Rourke, R., Gibson, W.J., et al. (2016). MYB-QKI

2085 rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat
2086  Genet 48, 273-282. 10.1038/ng.3500.

2087 125. Johann, P.D., Erkek, S., Zapatka, M., Kerl, K., Buchhalter, I., Hovestadt, V., Jones,
2088 D.T.W., Sturm, D., Hermann, C., Segura Wang, M., et al. (2016). Atypical Teratoid/Rhabdoid
2089  Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes.
2090 Cancer Cell 29, 379-393. 10.1016/j.ccell.2016.02.001.

2091 126. Mong, E.F., Yang, Y., Akat, K.M., Canfield, J., VanWye, J., Lockhart, J., Tsibris, J.C.M.,
2092  Schatz, F., Lockwood, C.J., Tuschl, T., et al. (2020). Chromosome 19 microRNA cluster

2093 enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 70.
2094  10.1038/s41598-020-59812-8.

2095 127. Ryall, S., Guzman, M., Elbabaa, S.K., Luu, B., Mack, S.C., Zapotocky, M., Taylor, M.D.,
2096 Hawkins, C., and Ramaswamy, V. (2017). H3 K27M mutations are extremely rare in posterior
2097  fossa group A ependymoma. Childs Nerv Syst 33, 1047-1051. 10.1007/s00381-017-3481-3.

2098 128. Pajtler, Kristian W., Witt, H., Sill, M., Jones, David T.W., Hovestadt, V., Kratochwil, F.,
2099 Wani, K., Tatevossian, R., Punchihewa, C., Johann, P., et al. (2015). Molecular Classification of
2100  Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.
2101  Cancer Cell 27, 728-743. 10.1016/j.ccell.2015.04.002.

2102 129. Parker, M., Mohankumar, K.M., Punchihewa, C., Weinlich, R., Dalton, J.D., Li, Y., Lee,
2103 R, Tatevossian, R.G., Phoenix, T.N., Thiruvenkatam, R., et al. (2014). C110rf95-RELA fusions
2104  drive oncogenic NF-kB signalling in ependymoma. Nature 506, 451-455. 10.1038/nature13109.

2105 130. Bi, W.L., Greenwald, N.F., Abedalthagafi, M., Wala, J., Gibson, W.J., Agarwalla, P.K.,
2106  Horowitz, P., Schumacher, S.E., Esaulova, E., Mei, Y., et al. (2017). Genomic landscape of
2107  high-grade meningiomas. npj Genomic Med 2. 10.1038/s41525-017-0014-7.

2108 131.  Youngblood, M.W., Duran, D., Montejo, J.D., Li, C., Omay, S.B., Ozduman, K., Sheth,
2109 A.H,, Zhao, A.Y., Tyrtova, E., Miyagishima, D.F., et al. (2020). Correlations between genomic
2110  subgroup and clinical features in a cohort of more than 3000 meningiomas. Journal of

2111 Neurosurgery 133, 1345-1354. 10.3171/2019.8.jns191266.

2112  132. Qaddoumi, I., Orisme, W., Wen, J., Santiago, T., Gupta, K., Dalton, J.D., Tang, B.,
2113  Haupfear, K., Punchihewa, C., Easton, J., et al. (2016). Genetic alterations in uncommon low-
2114  grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and
2115  align with morphology. Acta Neuropathol 7371, 833-845. 10.1007/s00401-016-1539-z.

2116  133. Thomas, C., Soschinski, P., Zwaig, M., Oikonomopoulos, S., Okonechnikov, K., Pajtler,
2117 KW, Sill, M., Schweizer, L., Koch, A., Neumann, J., et al. (2020). The genetic landscape of

73


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

2118
2119

2120
2121
2122

2123
2124
2125

2126
2127
2128
2129

2130
2131
2132

2133
2134
2135
2136
2137
2138

2139
2140
2141

2142
2143
2144
2145

2146
2147
2148

2149
2150
2151
2152

2153
2154

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

choroid plexus tumors in children and adults. Neuro-Oncology 23, 650—660.
10.1093/neuonc/noaa267.

134. Sekine, S., Shibata, T., Kokubu, A., Morishita, Y., Noguchi, M., Nakanishi, Y., Sakamoto,
M., and Hirohashi, S. (2002). Craniopharyngiomas of adamantinomatous type harbor beta-
catenin gene mutations. Am J Pathol 167, 1997—2001. 10.1016/s0002-9440(10)64477-x.

135. Krooks, J., Minkov, M., and Weatherall, A.G. (2018). Langerhans cell histiocytosis in
children. Journal of the American Academy of Dermatology 78, 1035-1044.
10.1016/j.jaad.2017.05.059.

136. Antin, C., Tauziéde-Espariat, A., Debily, M.-A., Castel, D., Grill, J., Pagées, M., Ayrault,
O., Chrétien, F., Gareton, A., Andreiuolo, F., et al. (2020). EZHIP is a specific diagnostic
biomarker for posterior fossa ependymomas, group PFA and diffuse midline gliomas H3-WT
with EZHIP overexpression. acta neuropathol commun 8. 10.1186/s40478-020-01056-8.

137. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B.S., and Swanton, C. (2016).
deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair
deficiencies and patterns of carcinoma evolution. Genome Biol 77. 10.1186/s13059-016-0893-4.

138. Burel-Vandenbos, F., Pierron, G., Thomas, C., Reynaud, S., Gregoire, V., Duhil de
Benaze, G., Croze, S., Chivoret, N., Honavar, M., Figarella-Branger, D., et al. (2020). A
polyphenotypic malignant paediatric brain tumour presenting a MN1-PATZ1 fusion, no
epigenetic similarities with CNS High-Grade Neuroepithelial Tumour with MN1 Alteration (CNS
HGNET-MN1) and related to PATZ1-fused sarcomas. Neuropathol Appl Neurobiol 46, 506—-509.
10.1111/nan.12626.

139. Kram, D.E., Henderson, J.J., Baig, M., Chakraborty, D., Gardner, M.A., Biswas, S., and
Khatua, S. (2018). Embryonal Tumors of the Central Nervous System in Children: The Era of
Targeted Therapeutics. Bioengineering (Basel) 5. 10.3390/bioengineering5040078.

140. Rao, S., Rajeswarie, R.T., Chickabasaviah Yasha, T., Nandeesh, B.N., Arivazhagan, A.,
and Santosh, V. (2017). LIN28A, a sensitive immunohistochemical marker for Embryonal Tumor
with Multilayered Rosettes (ETMR), is also positive in a subset of Atypical Teratoid/Rhabdoid
Tumor (AT/RT). Childs Nerv Syst 33, 1953-1959. 10.1007/s00381-017-3551-6.

141. PDQ® Pediatric Treatment Editorial Board Childhood Medulloblastoma and Other
Central Nervous System Embryonal Tumors Treatment (PDQ®): Health Professional Version. In
PDQ Cancer Information Summaries (National Cancer Institute).

142. Miele, E., De Vito, R., Ciolfi, A., Pedace, L., Russo, |., De Pasquale, M.D., Di Giannatale,
A., Crocoli, A., Angelis, B.D., Tartaglia, M., et al. (2020). DNA Methylation Profiling for
Diagnosing Undifferentiated Sarcoma with Capicua Transcriptional Receptor (CIC) Alterations.
IJMS 217, 1818. 10.3390/ijms21051818.

143. Korshunov, A., Ryzhova, M., Jones, D.T.W., Northcott, P.A., van Sluis, P., Volckmann,
R., Koster, J., Versteeg, R., Cowdrey, C., Perry, A,, et al. (2012). LIN28A immunoreactivity is a

74


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint

2155
2156

2157
2158
2159

2160
2161
2162

2163
2164
2165

2166
2167
2168

2169
2170
2171
2172

2173
2174
2175
2176

2177
2178

2179
2180

2181
2182
2183

2184
2185

2186
2187

2188
2189

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta
Neuropathol 724, 875-881. 10.1007/s00401-012-1068-3.

144. Rustagi, N., Hampton, O.A,, Li, J., Xi, L., Gibbs, R.A., Plon, S.E., Kimmel, M., and
Wheeler, D.A. (2016). ITD assembler: an algorithm for internal tandem duplication discovery
from short-read sequencing data. BMC Bioinformatics 77. 10.1186/s12859-016-1031-8.

145. Mohila, C.A., Rauch, R.A., and Adesina, A.M. (2016). Central Neurocytoma and
Extraventricular Neurocytoma. In Atlas of Pediatric Brain Tumors (Springer International
Publishing), pp. 195-199. 10.1007/978-3-319-33432-5_20.

146. Crotty, T.B., Scheithauer, B.W., Young, W.F., Davis, D.H., Shaw, E.G., Miller, G.M., and
Burger, P.C. (1995). Papillary craniopharyngioma: a clinicopathological study of 48 cases.
Journal of Neurosurgery 83, 206-214. 10.3171/jns.1995.83.2.0206.

147. Bunin, G.R., Surawicz, T.S., Witman, P.A., Preston-Martin, S., Davis, F., and Bruner,
J.M. (1998). The descriptive epidemiology of craniopharyngioma. Journal of Neurosurgery 89,
547-551. 10.3171/jns.1998.89.4.0547.

148. Chang, M.T., Bhattarai, T.S., Schram, A.M., Bielski, C.M., Donoghue, M.T.A., Jonsson,
P., Chakravarty, D., Phillips, S., Kandoth, C., Penson, A., et al. (2018). Accelerating Discovery
of Functional Mutant Alleles in Cancer. Cancer Discovery 8, 174-183. 10.1158/2159-8290.cd-
17-0321.

149. Chang, M.T., Asthana, S., Gao, S.P., Lee, B.H., Chapman, J.S., Kandoth, C., Gao, J.,
Socci, N.D., Solit, D.B., Olshen, A.B., et al. (2015). Identifying recurrent mutations in cancer
reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34, 155-163.
10.1038/nbt.3391.

150. Harms, K.L., and Chen, X. (2006). The functional domains in p53 family proteins exhibit
both common and distinct properties. Cell Death Differ 13, 890-897. 10.1038/sj.cdd.4401904.

151.  Guha, T., and Malkin, D. (2017). Inherited TP53 Mutations and the Li—-Fraumeni
Syndrome. Cold Spring Harb Perspect Med 7, a026187. 10.1101/cshperspect.a026187.

152. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078-9. 10.1093/biocinformatics/btp352.

153. Kaplan, E.L., and Meier, P. (1958). Nonparametric Estimation from Incomplete
Observations. Journal of the American Statistical Association 53, 457—481. 10.2307/2281868.

154. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in
its consideration. Cancer Chemother Rep 50, 163-70.

155. Cox, D.R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical
Society: Series B (Methodological) 34, 187-202. 10.1111/j.2517-6161.1972.tb00899.x.

75


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507832; this version posted September 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2190 156. Rokita, J.L., and Brown, M. (2022). d3b-center/OpenPBTA-workflows: Release v1.0.4
2191  (Zenodo) 10.5281/zen0do.6968175.

2192 157. Taroni, J., Savonen, C., Krutika Gaonkar, Stephanie, Chante Bethell, Rokita, J.L.,
2193  Shapiro, J., Greene, C., Yuankun Zhu, Komal Rathi, et al. (2022). AlexsLemonade/OpenPBTA-
2194  analysis: Initial Submission (Zenodo) 10.5281/zenodo.7044567.

76


https://doi.org/10.1101/2022.09.13.507832
http://creativecommons.org/licenses/by/4.0/

