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In Brief 202 

The OpenPBTA is a global, collaborative open-science initiative which brought together 203 
researchers and clinicians to genomically characterize 1,074 pediatric brain tumors and 22 204 
patient-derived cell lines. Shapiro, et. al create over 40 open-source, scalable modules to 205 
perform cancer genomics analyses and provide a richly-annotated somatic dataset across 58 206 
brain tumor histologies. The OpenPBTA framework can be used as a model for large-scale data 207 
integration to inform basic research, therapeutic target identification, and clinical translation. 208 

Highlights 209 

OpenPBTA collaborative analyses establish resource for 1,074 pediatric brain tumors  210 

NGS-based WHO-aligned integrated diagnoses generated for 641 of 1,074 tumors  211 

RNA-Seq analysis infers medulloblastoma subtypes, TP53 status, and telomerase activity 212 

OpenPBTA will accelerate therapeutic translation of genomic insights 213 

Summary 214 

Pediatric brain and spinal cancer are the leading disease-related cause of death in children, 215 
thus we urgently need curative therapeutic strategies for these tumors. To accelerate such 216 
discoveries, the Children’s Brain Tumor Network and Pacific Pediatric Neuro-Oncology 217 
Consortium created a systematic process for tumor biobanking, model generation, and 218 
sequencing with immediate access to harmonized data. We leverage these data to create 219 
OpenPBTA, an open collaborative project which establishes over 40 scalable analysis modules 220 
to genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals 221 
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that TP53 loss is a significant marker for poor overall survival in ependymomas and H3 K28-222 
altered diffuse midline gliomas and further identifies universal TP53 dysregulation in mismatch 223 
repair-deficient hypermutant high-grade gliomas. OpenPBTA is a foundational analysis platform 224 
actively being applied to other pediatric cancers and inform molecular tumor board decision-225 
making, making it an invaluable resource to the pediatric oncology community. 226 

Keywords 227 

pediatric cancer, brain tumors, somatic variation, open science, reproducibility, classification, 228 
tumor atlas 229 

Introduction 230 

Pediatric brain and spinal cord tumors are collectively the second most common malignancy in 231 
children after leukemia, and they represent the leading disease-related cause of death in 232 
children1. Five-year survival rates vary widely across different histologic and molecular 233 
classifications of brain tumors. For example, most high-grade gliomas carry a universally fatal 234 
prognosis, while children with pilocytic astrocytoma have an estimated 10-year survival rate of 235 
92%2. Moreover, estimates from 2009 suggest that children and adolescents aged 0-19 with 236 
brain tumors in the United States have lost an average of 47,631 years of potential life3. 237 

The low survival rates for some pediatric tumors are clearly multifactorial, explained partly by 238 
our lack of comprehensive understanding of the ever-evolving array of brain tumor molecular 239 
subtypes, difficulty drugging these tumors, and the shortage of drugs specifically labeled for 240 
pediatric malignancies. Historically, some of the most fatal, inoperable brain tumors, such as 241 
diffuse intrinsic pontine gliomas (DIPGs), were not routinely biopsied due to perceived risks of 242 
biopsy and the paucity of therapeutic options that would require tissue. Limited access to tissue 243 
to develop patient-derived cell lines and mouse models has been a barrier to research. 244 
Furthermore, the incidence of any single brain tumor molecular subtype is relatively low due to 245 
the rarity of pediatric tumors in general. 246 

To address these long-standing barriers, multiple national and international consortia have 247 
come together to uniformly collect clinically-annotated surgical biosamples and associated 248 
germline materials as part of both observational and interventional clinical trials. 249 
Such accessible, centralized resources enable collaborative sharing of specimens and data 250 
across rare cancer subtypes to accelerate breakthroughs and clinical translation. The creation 251 
of the Pediatric Brain Tumor Atlas (PBTA) in 2018, led by the Children’s Brain Tumor Network 252 
(CBTN, cbtn.org) and the Pacific Pediatric Neuro-Oncology Consortium (PNOC, PNOC.us) is 253 
one such effort that builds on nearly 10 years of multi-institutional enrollment, sample collection, 254 
and clinical followup across more than 30 institutions. Just as cooperation is required to share 255 
specimens and data, rigorous cancer genomic analysis requires collaboration among 256 
researchers with distinct expertise, such as computational scientists, bench scientists, clinicians, 257 
and pathologists. 258 

Although there has been significant progress in recent years to elucidate the landscape of 259 
somatic variation responsible for pediatric brain tumor formation and progression, translation of 260 
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therapeutic agents to phase II or III clinical trials and subsequent FDA approvals have not kept 261 
pace. Within the last 20 years, the FDA has approved only five drugs for the treatment of 262 
pediatric brain tumors: mTOR inhibitor everolimus, for subependymal giant cell astrocytoma; 263 
anti-PD-1 immunotherapy pembrolizumab, for microsatellite instability–high or mismatch repair–264 
deficient tumors; NTRK inhibitors larotrectinib and entrectinib, for tumors with an NTRK 1/2/3 265 
gene fusions; and MEK1/2 inhibitor selumetinib, for neurofibromatosis type 1 (NF1) and 266 
symptomatic, inoperable plexiform neurofibromas4. 267 

This is, in part, due to pharmaceutical company priorities and concerns regarding toxicity, 268 
making it challenging for researchers to obtain to new therapeutic agents for pediatric clinical 269 
trials. Critically, as of August 18, 2020, an amendment to the Pediatric Research Equity Act 270 
called the “Research to Accelerate Cures and Equity (RACE) for Children Act” mandates that all 271 
new adult oncology drugs also be tested in children when the molecular targets are relevant to a 272 
particular childhood cancer. The regulatory change introduced by the RACE Act, coupled with 273 
the identification of putative molecular targets in pediatric cancers through genomic 274 
characterization, is poised to accelerate identification of novel and effective therapeutic for 275 
pediatric diseases that have otherwise been overlooked. 276 

To leverage diverse scientific and analytical expertise to analyze the PBTA data, we created an 277 
open science model and incorporated features such as analytical code review5,6 and continuous 278 
integration to test data and code6,7 to improve reproducibility throughout the life cycle of our 279 
project, termed OpenPBTA. 280 

We anticipated that a model of open collaboration would enhance the value of our effort to the 281 
pediatric brain tumor research community and provide a framework for continuous, accelerated 282 
translation of pediatric brain tumor datasets. Openly sharing data and code in real time allows 283 
others to build upon the work more rapidly, and publications that include data and code sharing 284 
are poised for greater impact8,9. Here, we present a comprehensive, collaborative, open 285 
genomic analysis of 1,074 tumors and 22 cell lines, comprised of 58 distinct brain tumor 286 
histologies from 943 patients. The data and containerized infrastructure of OpenPBTA have 287 
been instrumental for discovery and translational research studies10–12, are actively integrated 288 
into PNOC molecular tumor board decision-making, and are a foundational layer for the NCI’s 289 
Childhood Cancer Data Initiative’s (CCDI) pediatric Molecular Targets Platform 290 
(https://moleculartargets.ccdi.cancer.gov/) recently built in support of the RACE Act13. We 291 
anticipate OpenPBTA will be an invaluable resource to the pediatric oncology community. 292 

Results 293 

Crowd-sourced Somatic Analyses to Create an Open Pediatric 294 

Brain Tumor Atlas 295 

We previously performed whole genome sequencing (WGS), whole exome sequencing (WXS), 296 
and RNA sequencing (RNA-Seq) on matched tumor and normal tissues as well as selected cell 297 
lines14 from 943 patients from the Pediatric Brain Tumor Atlas (PBTA), consisting of samples 298 
from the Children’s Brain Tumor Network (CBTN) and the PNOC003 DIPG clinical trial12,15 of the 299 
Pacific Pediatric Neuro-Oncology Consortium (PNOC) (Figure 1A). We then harnessed the 300 
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benchmarking efforts of the Gabriella Miller Kids First Data Resource Center to develop robust 301 
and reproducible data analysis workflows within the CAVATICA platform to perform primary 302 
somatic analyses including calling of single nucleotide variants (SNVs), copy number variants 303 
(CNVs), structural variants (SVs), and gene fusions, often implementing multiple complementary 304 
methods (Figure S1) and STAR Methods). 305 

To facilitate analysis and visualization of this large, diverse cohort, we further categorized tumor 306 
broad histologies (i.e., broad 2016 WHO classifications) into smaller groupings we denote 307 
“cancer groups.” A summarized view of the number of biospecimens per phase of therapy 308 
across different broad histologies and cancer groups is shown in (Figure 1B). We maintained a 309 
data release folder on Amazon S3, downloadable directly from S3 or through the open-access 310 
CAVATICA project, with merged files for each analysis (See Data and code availability 311 
section). As new analytical results (e.g., tumor mutation burden calculations) that we expected 312 
to be used across multiple analyses were produced, or issues with the data were identified, new 313 
data releases were made available in a versioned manner. 314 

A key innovative feature of this project has been its open contribution model used for both 315 
analyses (i.e., analytical code) and scientific manuscript writing. We created a public Github 316 
analysis repository (https://github.com/AlexsLemonade/OpenPBTA-analysis) to hold all code 317 
associated with analyses downstream of the Kids First Data Resource Center workflows and a 318 
GitHub manuscript repository (https://github.com/AlexsLemonade/OpenPBTA-manuscript) with 319 
Manubot16 integration to enable real-time manuscript creation using Markdown within GitHub. 320 
Importantly, all analyses and manuscript writing were conducted openly throughout the research 321 
project, allowing any researcher in the world the opportunity to contribute. 322 

The process for analysis and manuscript contributions is outlined in Figure 1C. First, a potential 323 
contributor would propose an analysis by filing an issue in the GitHub analysis repository. Next, 324 
organizers for the project, or other contributors with expertise, had the opportunity to provide 325 
feedback about the proposed analysis (Figure 1C). The contributor then made a copy (fork) of 326 
the analysis repository and added their proposed analysis code and results to their fork. The 327 
contributor would formally request to include their analytical code and results to the main 328 
OpenPBTA analysis repository by filing a pull request on GitHub. All pull requests to the 329 
analysis repository underwent peer review by organizers and/or other contributors to ensure 330 
scientific accuracy, maintainability, and readability of code and documentation (Figure 1C-D). 331 

The collaborative nature of the project required additional steps beyond peer review of analytical 332 
code to ensure consistent results for all collaborators and over time (Figure 1D). We leveraged 333 
Docker®17 and the Rocker project18 to maintain a consistent software development 334 
environment, creating a monolithic image that contained all dependencies necessary for 335 
analyses. To ensure that new code would execute in the development environment, we used 336 
the continuous integration (CI) service CircleCI® to run analytical code on a small subset of data 337 
for testing before formal code review, allowing us to detect code bugs or sensitivity to changes 338 
in the underlying data. 339 

We followed a similar process in our Manubot-powered16 manuscript repository for additions to 340 
the manuscript (Figure 1C). Contributors forked the manuscript repository, added proposed 341 
content to their branch, and filed pull requests to the main manuscript repository with their 342 
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changes. Similarly, pull requests underwent a peer review process for clarity and correctness, 343 
agreement with interpretation, and spell checking via Manubot. 344 

 345 

Figure 1: Overview of the OpenPBTA Project. A, The Children’s Brain Tumor Network and the 346 
Pacific Pediatric Neuro-Oncology Consortium collected tumor samples from 943 patients. To 347 
date, 22 cell lines were created from tumor tissue, and over 2000 specimens were sequenced 348 
(N = 1035 RNA-Seq, N = 940 WGS, and N = 32 WXS or targeted panel). Data was harmonized 349 
by the Kids First Data Resource Center using an Amazon S3 framework within CAVATICA. B, 350 
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Stacked bar plot summary of the number of biospecimens per phase of therapy. Each panel 351 
denotes a broad histology and each bar denotes a cancer group. (Abbreviations: GNG = 352 
ganglioglioma, Other LGG = other low-grade glioma, PA = pilocytic astrocytoma, PXA = 353 
pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell astrocytoma, DIPG = diffuse 354 
intrinsic pontine glioma, DMG = diffuse midline glioma, Other HGG = other high-grade glioma, 355 
ATRT = atypical teratoid rhabdoid tumor, MB = medulloblastoma, Other ET = other embryonal 356 
tumor, EPN = ependymoma, PNF = plexiform neurofibroma, DNET = dysembryoplastic 357 
neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing sarcoma, CPP = choroid 358 
plexus papilloma). Only samples with available descriptors were included. C, Overview of the 359 
open analysis and manuscript contribution model. In the analysis GitHub repository, a 360 
contributor would propose an analysis that other participants can comment on. Contributors 361 
would then implement the analysis and file a request to add their changes to the analysis 362 
repository (“pull request”). Pull requests underwent review for scientific rigor and correctness of 363 
implementation. Pull requests were additionally checked to ensure that all software 364 
dependencies were included and the code was not sensitive to underlying data changes using 365 
container and continuous integration technologies. Finally, a contributor would file a pull request 366 
documenting their methods and results to the Manubot-powered manuscript repository. Pull 367 
requests in the manuscript repository were also subject to review. D, A potential path for an 368 
analytical pull request. Arrows indicate revisions to a pull request. Prior to review, a pull request 369 
was tested for dependency installation and whether or not the code would execute. Pull 370 
requests also required approval by organizers and/or other contributors, who checked for 371 
scientific correctness. Panel A created with BioRender.com. 372 

Molecular Subtyping of OpenPBTA CNS Tumors 373 

Over the past two decades, experts in neuro-oncology have worked with the World Health 374 
Organization (WHO) to iteratively redefine the classifications of central nervous system (CNS) 375 
tumors19,20. More recently, in 2016 and 202121,22, molecular subtypes have been integrated into 376 
these classifications. In 2011, the Children’s Brain Tumor Tissue Consortium, now known as the 377 
Children’s Brain Tumor Network (CBTN), opened its protocol for brain tumor and matched 378 
normal sample collection. Since the CBTN opened its collection protocol in 2011, before 379 
molecular data were integrated into classifications, the majority of the samples within the 380 
OpenPBTA lacked molecular subtype annotations at the time of tissue collection. Moreover, the 381 
OpenPBTA data does not yet feature methylation arrays which are increasingly used to inform 382 
molecular subtyping. Therefore, we jointly considered key genomic features of tumor entities 383 
described by the WHO in 2016, low-grade glioma (LGG) subtypes described by Ryall and 384 
colleagues23, as well as clinician and pathologist review, to generate research-grade integrated 385 
diagnoses for 60% (641/1074) of tumor samples with high confidence (Table S1).  386 

Importantly, this collaborative molecular subtyping process allowed us to identify potential data 387 
entry errors (e.g., an ETMR incorrectly entered as a medulloblastoma) and histologically mis-388 
identified specimens (e.g., Ewing sarcoma sample labeled as a craniopharyngioma), update 389 
diagnoses using current WHO terms (e.g., tumors formerly ascribed primitive neuro-ectodermal 390 
tumor [PNET] diagnoses), and discover rarer tumor entities within the OpenPBTA (e.g., H3-391 
mutant ependymoma, meningioma with YAP1::FAM118B fusion). Table 1 lists the subtypes we 392 
defined within OpenPBTA, comprising low-grade gliomas (N = 290), high-grade gliomas (N = 393 
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141), embryonal tumors (N = 126), ependymomas (N = 30), tumors of sellar region (N = 27), 394 
mesenchymal non-meningothelial tumors (N = 11), glialneuronal tumors (N = 10), and 395 
chordomas (N = 6).  For detailed methods, see STAR Methods and Figure S1. 396 

Table 1: Molecular subtypes generated through the OpenPBTA project. Listed are broad 397 
tumor histologies, molecular subtypes generated, and number of specimens subtyped within the 398 
OpenPBTA project.  399 

Broad histology group OpenPBTA molecular subtype n 
Chordoma CHDM, conventional 2 
Chordoma CHDM, poorly differentiated 4 
Embryonal tumor CNS Embryonal, NOS 13 
Embryonal tumor CNS HGNET-MN1 1 
Embryonal tumor CNS NB-FOXR2 3 
Embryonal tumor ETMR, C19MC-altered 5 
Embryonal tumor ETMR, NOS 1 
Embryonal tumor MB, Group3 14 
Embryonal tumor MB, Group4 49 
Embryonal tumor MB, SHH 30 
Embryonal tumor MB, WNT 10 
Ependymal tumor EPN, H3 K28 1 
Ependymal tumor EPN, ST RELA 28 
Ependymal tumor EPN, ST YAP1 1 
High-grade glioma DMG, H3 K28 24 
High-grade glioma DMG, H3 K28, TP53 activated 13 
High-grade glioma DMG, H3 K28, TP53 loss 40 
High-grade glioma HGG, H3 G35 3 
High-grade glioma HGG, H3 G35, TP53 loss 1 
High-grade glioma HGG, H3 wildtype 31 
High-grade glioma HGG, H3 wildtype, TP53 activated 5 
High-grade glioma HGG, H3 wildtype, TP53 loss 21 
High-grade glioma HGG, IDH, TP53 activated 2 
High-grade glioma HGG, IDH, TP53 loss 1 
Low-grade glioma GNG, BRAF V600E 13 
Low-grade glioma GNG, BRAF V600E, CDKN2A/B 1 
Low-grade glioma GNG, FGFR 1 
Low-grade glioma GNG, H3 1 
Low-grade glioma GNG, IDH 2 
Low-grade glioma GNG, KIAA1549-BRAF 5 
Low-grade glioma GNG, MYB/MYBL1 1 
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Broad histology group OpenPBTA molecular subtype n 
Low-grade glioma GNG, NF1-germline 1 
Low-grade glioma GNG, NF1-somatic, BRAF V600E 1 
Low-grade glioma GNG, other MAPK 4 
Low-grade glioma GNG, other MAPK, IDH 1 
Low-grade glioma GNG, RTK 3 
Low-grade glioma GNG, wildtype 14 
Low-grade glioma LGG, BRAF V600E 27 
Low-grade glioma LGG, BRAF V600E, CDKN2A/B 5 
Low-grade glioma LGG, FGFR 8 
Low-grade glioma LGG, IDH 3 
Low-grade glioma LGG, KIAA1549-BRAF 113 
Low-grade glioma LGG, KIAA1549-BRAF, NF1-germline 1 
Low-grade glioma LGG, KIAA1549-BRAF, other MAPK 1 
Low-grade glioma LGG, MYB/MYBL1 2 
Low-grade glioma LGG, NF1-germline 6 
Low-grade glioma LGG, NF1-germline, CDKN2A/B 1 
Low-grade glioma LGG, NF1-germline, FGFR 2 
Low-grade glioma LGG, NF1-somatic 2 
Low-grade glioma LGG, NF1-somatic, FGFR 1 
Low-grade glioma LGG, NF1-somatic, NF1-germline, CDKN2A/B 1 
Low-grade glioma LGG, other MAPK 12 
Low-grade glioma LGG, RTK 10 
Low-grade glioma LGG, RTK, CDKN2A/B 1 
Low-grade glioma LGG, wildtype 34 
Low-grade glioma SEGA, RTK 1 
Low-grade glioma SEGA, wildtype 11 
Mesenchymal non-meningothelial tumor EWS 11 
Neuronal and mixed neuronal-glial tumor CNC 2 
Neuronal and mixed neuronal-glial tumor EVN 1 
Neuronal and mixed neuronal-glial tumor GNT, BRAF V600E 1 
Neuronal and mixed neuronal-glial tumor GNT, KIAA1549-BRAF 2 
Neuronal and mixed neuronal-glial tumor GNT, other MAPK 1 
Neuronal and mixed neuronal-glial tumor GNT, other MAPK, FGFR 1 
Neuronal and mixed neuronal-glial tumor GNT, RTK 2 
Tumor of sellar region CRANIO, ADAM 27 
 Total 641 
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Somatic Mutational Landscape of Pediatric Brain Tumors 400 

We performed a comprehensive genomic analysis of somatic SNVs, CNVs, SVs, and fusions 401 
across 1,074 tumors (N = 1,019 RNA-Seq, N = 918 WGS, N = 32 WXS/Panel) and 22 cell lines 402 
(N = 16 RNA-Seq, N = 22 WGS), from 943 patients, 833 with paired normal specimens (N = 801 403 
WGS, N = 32 WXS/Panel).  Following SNV consensus calling (Figure S1 and Figure S2A-G), 404 
we observed as expected lower tumor mutation burden (TMB) Figure S2H in pediatric tumors 405 
compared to adult brain tumors from The Cancer Genome Atlas (TCGA), Figure S2I, with 406 
hypermutant (> 10 Mut/Mb) and ultra-hypermutant (> 100 Mut/Mb) tumors24 only found within 407 
HGGs. Figure 2 and Figure S3A depict oncoprints of histology-specific driver genes across 408 
PBTA histologies. 409 

Low-grade gliomas 410 

As expected, the majority (62%, 140/227) of LGGs harbored a somatic alteration in BRAF, with 411 
canonical BRAF::KIAA1549 fusions as the major oncogenic driver25 (Figure 2A).  We observed 412 
additional mutations in FGFR1 (2%), PIK3CA (2%), KRAS (2%), TP53 (1%), and ATRX (1%) 413 
and fusions in NTRK2 (2%), RAF1 (2%), MYB (1%), QKI (1%), ROS1 (1%), and FGFR2 (1%), 414 
concordant with previous studies reporting the near universal upregulation of the RAS/MAPK 415 
pathway in these tumors resulting from activating mutations and/or oncogenic fusions23,25. 416 
Indeed, we observed significant upregulation (ANOVA Bonferroni-corrected p < 0.01) of the 417 
KRAS signaling pathway in LGGs (Figure 5B). 418 

Embryonal tumors 419 

 The majority (N = 95) of embryonal tumor samples were medulloblastomas that spanned the 420 
spectrum of molecular subtypes (WNT, SHH, Group3, and Group 4; see Molecular Subtyping 421 
of CNS Tumors), as identified by subtype-specific canonical mutations (Figure 2B). We 422 
detected canonical SMARCB1/SMARCA4 deletions or inactivating mutations in atypical teratoid 423 
rhabdoid tumors (ATRTs) and C19MC amplification in the embryonal tumors with multilayer 424 
rosettes (ETMRs, displayed as other embryonal tumors)26–29. 425 

High-grade gliomas 426 

Across HGGs, we found that TP53 (57%, 35/61) and H3F3A (52%, 32/61) were both most 427 
mutated and co-occurring genes (Figure 2A and C), followed by frequent mutations in ATRX 428 
(30%, 18/61). We observed recurrent amplifications and fusions in EGFR, MET, PDGFRA, and 429 
KIT, highlighting that these tumors utilize multiple oncogenic mechanisms to activate tyrosine 430 
kinases, as has been previously reported15,30,31. Gene set enrichment analysis showed 431 
upregulation (ANOVA Bonferroni-corrected p < 0.01) of DNA repair, G2M checkpoint, and MYC 432 
pathways as well as downregulation of the TP53 pathway (Figure 5B). The two tumors with 433 
ultra-high TMB (> 100 Mutations/Mb) were from patients with known mismatch repair deficiency 434 
syndrome14. 435 
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Other CNS tumors 436 

We observed that 25% (15/60) of ependymoma tumors were C11orf95::RELA (now, 437 
ZFTA::RELA) fusion-positive ependymomas and that 68% (21/31) of craniopharyngiomas were 438 
driven by mutations in CTNNB1 (Figure 2D). Multiple histologies contained somatic mutations 439 
or fusions in NF2: 41% (7/17) of meningiomas, 5% (3/60) of ependymomas, and 27% (3/11) 440 
schwannomas. Rare fusions in ERBB4, YAP1, KRAS, and MAML2 were observed in 10% 441 
(6/60) of ependymoma tumors. DNETs harbored alterations in MAPK/PI3K pathway genes as 442 
previously reported32, including FGFR1 (21%, 4/19), PDGFRA (10%, 2/19), and BRAF (5%, 443 
1/19). Frequent mutations in additional rare brain tumor histologies are depicted in Figure S3A. 444 

 445 

Figure 2: Mutational landscape of PBTA tumors. Shown are frequencies of canonical somatic 446 
gene mutations, CNVs, fusions, and TMB (top bar plot) for the top 20 genes mutated across 447 
primary tumors within the OpenPBTA dataset. A, Low-grade astrocytic tumors (N = 227): 448 
pilocytic astrocytoma (N = 104), other low-grade glioma (N = 69), ganglioglioma (N = 35), 449 
pleomorphic xanthoastrocytoma (N = 9), subependymal giant cell astrocytoma (N = 10); B, 450 
Embryonal tumors (N = 128): medulloblastomas (N = 95), atypical teratoid rhabdoid tumors (N = 451 
24), other embryonal tumors (N = 9); C, Diffuse astrocytic and oligodendroglial tumors (N = 61): 452 
diffuse midline gliomas (N = 34) and other high-grade gliomas (N = 27); D, Other CNS tumors 453 
(N = 194): ependymomas (N = 60), craniopharyngiomas (N = 31), meningiomas (N = 17), 454 
dysembryoplastic neuroepithelial tumors (N = 19), Ewing sarcomas (N = 7), schwannomas (N = 455 
11), and neurofibroma plexiforms (N = 7). Additional, rare CNS tumors are displayed in Figure 456 
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S3A. Tumor histology (Cancer Group) and patient sex (Germline sex estimate) are 457 
displayed as annotations at the bottom of each plot. Only samples with mutations in the listed 458 
genes are shown. Multiple CNVs are denoted as a complex event. 459 

Mutational co-occurrence, CNV, and signatures highlight key 460 

oncogenic drivers 461 

We analyzed mutational co-occurrence among OpenPBTA tumors, using a single sequencing 462 
sample from each individual with available WGS (N = 666).  The top 50 mutated genes (see 463 
STAR Methods for details) in primary tumors are shown in Figure 3 by tumor type (A, bar 464 
plots), with co-occurrence scores illustrated in the heatmap (B). TP53 was the most frequently 465 
mutated gene across OpenPBTA tumors (8.4%, 56/666), significantly co-occurring with H3F3A 466 
(OR = 32, 95% CI: 15.3 - 66.7, q = 8.46e-17), ATRX (OR = 20, 95% CI: 8.4 - 47.7, q = 4.43e-8), 467 
NF1 (OR = 8.62, 95% CI: 3.7 - 20.2, q = 5.45e-5), and EGFR (OR = 18.2, 95% CI: 5 - 66.5, q = 468 
1.6e-4). Other canonical cancer driver genes that were frequently mutated included BRAF, 469 
H3F3A, CTNNB1, NF1, ATRX, FGFR1, and PIK3CA. 470 

At the broad histology level, mutations in CTNNB1 significantly co-occurred with mutations in 471 
TP53 (OR = 42.9, 95% CI: 7 - 261.4, q = 1.63e-3) and DDX3X (OR = 21.1, 95% CI: 4.6 - 96.3, q 472 
= 4.46e-3) in embryonal tumors. Mutations in FGFR1 and PIK3CA significantly co-occurred in 473 
LGGs (OR = 76.1, 95% CI: 9.85 - 588.1, q = 3.26e-3), consistent with previous findings33,34. Of 474 
HGG tumors with mutations in TP53 or PPM1D, 52/54 (96.3%) had mutations in only one of 475 
these genes (OR = 0.188, 95% CI: 0.04 - 0.94, p = 0.0413, q = 0.0587). This trend recapitulates 476 
previous observations that TP53 and PPM1D mutations tend to be mutually exclusive in 477 
HGGs35. 478 

We summarized broad CNV and SV and observed that HGGs and DMGs, followed by 479 
medulloblastomas, had the most unstable genomes (Figure S3B). By contrast, 480 
craniopharyngiomas and schwannomas generally lacked somatic CNV. Together, these CNV 481 
patterns largely aligned with our estimates of tumor mutational burden (Figure S2H). The 482 
breakpoint density estimated from SV and CNV data was significantly correlated across tumors 483 
(p = 1.08e-37) (Figure 3C) and as expected, the number of chromothripsis regions called 484 
increased as breakpoint density increased (Figure S3B-C). We identified chromothripsis events 485 
in 28% (N = 11/39) of diffuse midline gliomas and in 40% (N = 19/48) of other HGGs (non-486 
midline HGGs) (Figure 3D). We also found evidence of chromothripsis in over 15% of 487 
sarcomas, PXAs, metastatic secondary tumors, chordomas, glial-neuronal tumors, germinomas, 488 
meningiomas, ependymomas, medulloblastomas, ATRTs, and other embryonal tumors, 489 
highlighting the genomic instability and complexity of these pediatric brain tumors. 490 

We next assessed the contributions of eight previously identified adult CNS-specific mutational 491 
signatures from the RefSig database36 across samples (Figure 3E and Figure S4A). Stage 0 492 
and/or 1 tumors characterized by low TMBs (Figure S2H) such as pilocytic astrocytomas, 493 
gangliogliomas, other LGGs, and craniopharyngiomas, were dominated by Signature 1 (Figure 494 
S4A), which results from the normal process of spontaneous deamination of 5-methylcytosine. 495 
Signature N6 is a CNS-specific signature which we observed nearly universally across samples. 496 
Drivers of Signature 18, TP53, APC, NOTCH1 (found at 497 
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https://signal.mutationalsignatures.com/explore/referenceCancerSignature/31/drivers), are also 498 
canonical drivers of medulloblastoma, and indeed, we observed Signature 18 as the signature 499 
with the highest weight in medulloblastoma tumors. Signatures 3, 8, 18, and MMR2 were 500 
prevalent in HGGs, including DMGs. Finally, we found that the Signature 1 weight was higher at 501 
diagnosis (pre-treatment) and was almost always lower in tumors at later phases of therapy 502 
(progression, recurrence, post-mortem, secondary malignancy; Figure S4B). This trend may 503 
have resulted from therapy-induced mutations that produced additional signatures (e.g., 504 
temozolomide treatment has been suggested to drive Signature 1137), subclonal expansion, 505 
and/or acquisition of additional driver mutations during tumor progression, leading to higher 506 
overall TMBs and additional signatures. 507 
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 508 

Figure 3: Mutational co-occurrence and signatures highlight key oncogenic drivers. A, Bar 509 
plot of occurrence and co-occurrence of nonsynonymous mutations for the 50 most commonly 510 
mutated genes across all tumor types, which are denoted as “Other” when there are fewer than 511 
10 samples per grouping; B, Co-occurrence and mutual exclusivity of nonsynonymous 512 
mutations between genes; The co-occurrence score is defined as 𝐼"−𝑙𝑜𝑔!"(𝑃)* where 𝑃 is 513 
defined by Fisher’s exact test and 𝐼 is 1 when mutations co-occur more often than expected and 514 
-1 when exclusivity is more common; C, The number of SV breaks significantly correlate with 515 
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CNV breaks (Adjusted R = 0.436, p = 1.08e-37). D, Chromothripsis frequency across pediatric 516 
brain tumors for all cancer groups with N >= 3 samples. E, Sina plots of RefSig signature 517 
weights for signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and Other across cancer groups. Box plot 518 
lines represent the first quartile, median, and third quartile. 519 

Transcriptomic Landscape of Pediatric Brain Tumors 520 

Prediction of TP53 oncogenicity and telomerase activity 521 

To understand the TP53 phenotype in each tumor, we ran a classifier previously trained on 522 
TCGA38 to calculate a TP53 score and infer TP53 inactivation status. We compared results of 523 
this classifier to “true positive” alterations derived using high-confidence SNVs, CNVs, SVs, and 524 
fusions in TP53. Specifically, we annotated TP53 alterations as “activated” if samples harbored 525 
one of p.R273C or p.R248W gain-of-function mutations39, or “lost” if the given patient either had 526 
a Li Fraumeni Syndrome (LFS) predisposition diagnosis, the tumor harbored a known hotspot 527 
mutation, or the tumor contained two hits (e.g. both SNV and CNV), which would suggest both 528 
alleles had been affected. If the TP53 mutation did not reside within the DNA-binding domain or 529 
we did not detect any alteration in TP53, we annotate the tumor as “other,” reflecting its 530 
unknown TP53 alteration status. The classifier achieved a high accuracy (AUROC = 0.85) for 531 
rRNA-depleted, stranded samples compared to randomly shuffled TP53 scores (Figure 4A). By 532 
contrast, while this classifier has previously shown strong performance on poly-A data from both 533 
adult38 tumors and pediatric patient-derived xenografts40, it did not perform as well on the poly-A 534 
samples in this cohort (AUROC = 0.62; Figure S5A). 535 

While we expected that samples annotated as “lost” would have higher TP53 scores than would 536 
samples annotated as “other,” we observed that samples annotated as “activated” had similar 537 
TP53 scores to those annotated as “lost” (Figure 4B, Wilcoxon p = 0.23). This result suggests 538 
that the classifier actually detects an oncogenic, or altered, TP53 phenotype (scores > 0.5) 539 
rather than solely TP53 inactivation, as interpreted previously38. Moreover, tumors with 540 
“activating” TP53 mutations showed higher TP53 expression compared to those with TP53 541 
“loss” mutations (Wilcoxon p = 3.5e-3, Figure 4C). Tumor types with the highest median TP53 542 
scores were those known to harbor somatic TP53 alterations and included DMGs, 543 
medulloblastomas, HGGs, DNETs, ependymomas, and craniopharyngiomas (Figure 4D), while 544 
gangliogliomas, LGGs, meningiomas, and schwannomas had the lowest median scores. 545 

To further validate the classifier’s accuracy, we assessed TP53 scores for patients with LFS, 546 
hypothesizing that all of these tumors would have high scores. Indeed, we observed higher 547 
scores in LFS tumors (N = 8) for which we detected high-confidence TP53 somatic alterations 548 
(Tables S1 and S3). Although we did not detect canonical somatic TP53 mutations in two 549 
patients whose tumors had low TP53 scores (BS_DEHJF4C7 with a score of 0.09 and 550 
BS_ZD5HN296 with a score of 0.28), we confirmed from pathology reports these patients were 551 
both diagnosed with LFS and had pathogenic germline variants in TP53. In addition, the tumor 552 
purity of these two LFS samples was low (16% and 37%, respectively), suggesting the classifier 553 
may require a certain level of tumor purity to achieve good performance, as we expect TP53 to 554 
be intact in normal cells. 555 
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We next used gene expression data to predict telomerase activity using EXpression-based 556 
Telomerase ENzymatic activity Detection (EXTEND)41 as a surrogate measure of malignant 557 
potential41,42, such that higher EXTEND scores suggest increased malignant potential. As 558 
expected, EXTEND scores significantly correlated with TERC (R = 0.619, p < 0.01) and TERT (R 559 
= 0.491, p < 0.01) expression (Figure S5B-C). We found aggressive tumors such as HGGs 560 
(DMGs and other high-grade gliomas) and MB had high EXTEND scores (Figure 4D), while low-561 
grade lesions such as schwannomas, GNGs, DNETs, and other low-grade gliomas had among 562 
the lowest scores (Table S3). These findings support previous reports of a more aggressive 563 
phenotype in tumors with higher telomerase activity43–46. 564 

Hypermutant tumors share mutational signatures and have dysregulated 565 
TP53 566 

We further investigated the mutational signature profiles of the hypermutant (TMB > 10 Mut/Mb; 567 
N = 3) and ultra-hypermutant (TMB > 100 Mut/Mb; N = 4) tumors and/or derived cell lines from 568 
six patients in the OpenPBTA cohort (Figure 4E). Five of six tumors were diagnosed as HGGs 569 
and one was a brain metastasis of a MYCN non-amplified neuroblastoma tumor. Signature 11, 570 
which is associated with exposure to temozolomide plus MGMT promoter and/or mismatch 571 
repair deficiency47, was indeed present in tumors with previous exposure to the drug (Table 2). 572 
We detected the MMR2 signature in tumors of four patients (PT_0SPKM4S8, PT_3CHB9PK5, 573 
PT_JNEV57VK, and PT_VTM2STE3) diagnosed with either constitutional mismatch repair 574 
deficiency (CMMRD) or Lynch syndrome (Table 2), genetic predisposition syndromes caused 575 
by a variant in a mismatch repair gene such as PMS2, MLH1, MSH2, MSH6, or others48. Three 576 
of these patients harbored pathogenic germline variants in one of the aforementioned genes. 577 
While we did not find a known pathogenic variant in the germline of PT_VTM2STE3, this patient 578 
had a self-reported PMS2 variant noted in their pathology report and we did find 19 intronic 579 
variants of unknown significance (VUS) in PMS2. This is not surprising since an estimated 49% 580 
of germline PMS2 variants in patients with CMMRD and/or Lynch syndrome are VUS48. 581 
Interestingly, while the cell line derived from patient PT_VTM2STE3’s tumor at progression was 582 
not hypermutated (TMB = 5.7 Mut/Mb), it solely showed the MMR2 signature of the eight CNS 583 
signatures examined, suggesting selective pressure to maintain a mismatch repair (MMR) 584 
phenotype in vitro. From patient PT_JNEV57VK, only one of the two cell lines derived from the 585 
progressive tumor was hypermutated (TMB = 35.9 Mut/Mb). This hypermutated cell line was 586 
strongly weighted towards signature 11, while this patient’s non-hypermutated cell line showed 587 
a number of lesser signature weights (1, 11, 18, 19, MMR2; Table S2), highlighting the plasticity 588 
of mutational processes and the need to carefully genomically characterize and select models 589 
for preclinical studies based on research objectives. 590 

We observed that signature 18, which has been associated with high genomic instability and 591 
can lead to a hypermutator phenotype36, was uniformly represented among hypermutant solid 592 
tumors. Additionally, we found that all of the HGG tumors or cell lines had dysfunctional TP53 593 
(Table 2), consistent with a previous report showing TP53 dysregulation is a dependency in 594 
tumors with high genomic instability36. With one exception, hypermutant and ultra-hypermutant 595 
tumors had high TP53 scores (> 0.5) and telomerase activity. Interestingly, none of the 596 
hypermutant samples showed evidence of signature 3 (present in homologous recombination 597 
deficient tumors), signature 8 (arises from double nucleotide substitutions/unknown etiology), or 598 
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signature N6 (a universal CNS tumor signature). The mutual exclusivity of signatures 3 and 599 
MMR2 corroborates a previous report suggesting tumors do not tend to feature both deficient 600 
homologous repair and mismatch repair38. 601 

Table 2: Patients with hypermutant tumors. Listed are patients with at least one hypermutant 602 
or ultra-hypermutant tumor or cell line. Pathogenic (P) or likely pathogenic (LP) germline 603 
variants, coding region TMB, phase of therapy, therapeutic interventions, cancer predisposition 604 
(CMMRD = Constitutional mismatch repair deficiency), and molecular subtypes are included.  605 

Next, we asked whether transcriptomic classification of TP53 dysregulation and/or telomerase 606 
activity recapitulate the known prognostic influence of these oncogenic biomarkers. To this end, 607 
we conducted a multivariate Cox regression on overall survival (Figure 4F; STAR Methods), 608 
controlling for extent of tumor resection and whether a tumor was low-grade (LGG group) or 609 
high-grade (HGG group). We identified several expected trends, including a significant overall 610 
survival benefit if the tumor had been fully resected (HR = 0.35, 95% CI = 0.2 - 0.62, p < 0.001) 611 
or if the tumor belonged to the LGG group (HR = 0.046, 95% CI = 0.0062 - 0.34, p = 0.003) as 612 
well as a significant risk if the tumor belonged to the HGG group (HR = 6.2, 95% CI = 4.0 - 9.5, 613 
p < 0.001). High telomerase scores were associated with poor prognosis across brain tumor 614 
histologies (HR = 20, 95% CI = 6.4 - 62, p < 0.001), demonstrating that EXTEND scores 615 
calculated from RNA-Seq are an effective rapid surrogate measure for telomerase activity. 616 
Although higher TP53 scores, which predict TP53 gene or pathway dysregulation, were not a 617 
significant predictor of risk across the entire OpenPBTA cohort (Table S4), we did find a 618 

Kids First 
Participant ID

Kids First 
Biospecimen ID

CBTN ID Phase of therapy Composition Therapy post-
biopsy

Cancer 
predisposition

Pathogenic 
germline variant

TMB
OpenPBTA 
molecular 
subtype

PT_0SPKM4S8 BS_VW4XN9Y7 7316-2640 Initial CNS Tumor Solid Tissue

Radiation, 

Temozolomide, 

CCNU

None documented

NM_000535.7(PM

S2):c.137G>T 

(p.Ser46Ile) (LP)

187.4

HGG, H3 

wildtype, TP53 

activated

PT_3CHB9PK5 BS_20TBZG09 7316-515 Initial CNS Tumor Solid Tissue

Radiation, 

Temozolomide, 

Irinotecan, 

Bevacizumab

CMMRD

NM_000179.3(MS

H6):c.3439-2A>G 

(LP)

307

HGG, H3 

wildtype, TP53 

loss

PT_3CHB9PK5 BS_8AY2GM4G 7316-2085 Progressive Solid Tissue

Radiation, 

Temozolomide, 

Irinotecan, 

Bevacizumab

CMMRD

NM_000179.3(MS

H6):c.3439-2A>G 

(LP)

321.6

HGG, H3 

wildtype, TP53 

loss

PT_EB0D3BXG BS_F0GNWEJJ 7316-3311 Progressive Solid Tissue
Radiation, 

Nivolumab
None documented None detected 26.3

Metastatic NBL, 

MYCN non-

amplified

PT_JNEV57VK BS_85Q5P8GF 7316-2594 Initial CNS Tumor Solid Tissue
Radiation, 

Temozolomide
Lynch Syndrome

NM_000251.3(MS

H2):c.1906G>C 

(p.Ala636Pro) (P)

4.7
DMG, H3 K28, 

TP53 loss

PT_JNEV57VK BS_HM5GFJN8 7316-3058 Progressive Derived Cell Line

Radiation, 

Temozolomide, 

Nivolumab

Lynch Syndrome

NM_000251.3(MS

H2):c.1906G>C 

(p.Ala636Pro) (P)

35.9
DMG, H3 K28, 

TP53 loss

PT_JNEV57VK BS_QWM9BPDY 7316-3058 Progressive Derived Cell Line

Radiation, 

Temozolomide, 

Nivolumab

Lynch Syndrome

NM_000251.3(MS

H2):c.1906G>C 

(p.Ala636Pro) (P)

7.4
DMG, H3 K28, 

TP53 loss

PT_JNEV57VK BS_P0QJ1QAH 7316-3058 Progressive Solid Tissue

Radiation, 

Temozolomide, 

Nivolumab

Lynch Syndrome

NM_000251.3(MS

H2):c.1906G>C 

(p.Ala636Pro) (P)

6.3
DMG, H3 K28, 

TP53 activated

PT_S0Q27J13 BS_P3PF53V8 7316-2307 Initial CNS Tumor Solid Tissue

Radiation, 

Temozolomide, 

Irinotecan

None documented None detected 15.5

HGG, H3 

wildtype, TP53 

activated

PT_VTM2STE3 BS_ERFMPQN3 7316-2189 Progressive Derived Cell Line Unknown Lynch Syndrome None detected 5.7

HGG, H3 

wildtype, TP53 

loss

PT_VTM2STE3 BS_02YBZSBY 7316-2189 Progressive Solid Tissue Unknown Lynch Syndrome None detected 274.5

HGG, H3 

wildtype, TP53 

activated
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significant survival risk associated with higher TP53 scores within DMGs (HR = 6436, 95% CI = 619 
2.67 - 1.55e7, p = 0.03) and ependymomas (HR = 2003, 95% CI = 9.9 - 4.05e5, p = 0.005). 620 
Since we observed the negative prognostic effect of TP53 scores for HGGs, we assessed the 621 
effect of molecular subtypes within HGG samples on survival risk. We found that DMG H3 K28 622 
tumors with TP53 loss had significantly worse prognosis (HR = 2.8, CI = 1.4-5.6, p = 0.003) than 623 
did DMG H3 K28 tumors with wildtype TP53 (Figure 4G and Figure 4H). This finding was also 624 
recently reported in a restrospective analysis of DIPG tumors from the PNOC003 clinical trial12. 625 

 626 

Figure 4: TP53 and telomerase activity A, Receiver Operating Characteristic for TP53 627 
classifier run on FPKM of stranded RNA-Seq samples. B, Violin and strip plots of TP53 scores 628 
from stranded RNA-Seq samples plotted by TP53 alteration type (Nactivated = 11, Nlost = 100, 629 
Nother = 866). C, Violin and strip plots of TP53 RNA expression from stranded RNA-Seq 630 
samples plotted by TP53 activation status (Nactivated = 11, Nlost = 100, Nother = 866). D, Box 631 
plots of TP53 and telomerase (EXTEND) scores across cancer groups. Mutation status is 632 
highlighted in orange (hypermutant) or red (ultra-hypermutant). E, Heatmap of RefSig 633 
mutational signatures for patients who have least one tumor or cell line with a hypermutant 634 
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phenotype. F, Forest plot depicting the prognostic effects of TP53 and telomerase scores on 635 
overall survival, controlling for extent of tumor resection, LGG group, and HGG group. G, Forest 636 
plot depicting the effect of molecular subtype on overall survival of HGGs. For F and G, hazard 637 
ratios (HR) with 95% confidence intervals and p-values are listed. Significant p-values are 638 
denoted with black diamonds. Reference groups are denoted by grey diamonds. H, Kaplan-639 
Meier curve of HGG tumors by molecular subtype. 640 

Histologic and oncogenic pathway clustering 641 

UMAP visualization of gene expression variation across brain tumors (Figure 5A) showed the 642 
expected clustering of brain tumors by histology. We additionally explored UMAP projections of 643 
gene expression within molecular subtypes for certain cancer groups. We observed that, except 644 
for three outliers, C11orf95::RELA (ZFTA::RELA) fusion-positive ependymomas fell within 645 
distinct clusters (Figure S6A). Medulloblastoma (MB) samples cluster by molecular subtype, 646 
with WNT and SHH in distinct clusters and Groups 3 and 4 showing some overlap (Figure 647 
S6B), as expected. Of note, two MB samples annotated as the SHH subtype did not cluster with 648 
the other MB samples, and one clustered with Group 3 and 4 samples, suggesting potential 649 
subtype misclassification or different underlying biology of these two tumors. BRAF-driven low-650 
grade gliomas (Figure S6C) were present in three separate clusters, suggesting that there 651 
might be additional shared biology within each cluster. Histone H3 G35-mutant high-grade 652 
gliomas generally clustered together and away from K28-mutant tumors (Figure S6D). 653 
Interestingly, although H3 K28-mutant tumors have different biological drivers than do H3 654 
wildtype tumors49, they did not form distinct clusters. This pattern suggests these subtypes may 655 
be driven by common transcriptional programs, have other much stronger biological drivers than 656 
their known distinct epigenetic drivers, or our sample size is too small to detect transcriptional 657 
differences. 658 

We next performed gene set variant analysis (GSVA) for Hallmark cancer gene sets to 659 
demonstrate activation of underlying oncogenic pathways (Figure 5B and quantified immune 660 
cell fractions across OpenPBTA tumors using quanTIseq (Figure 5C and Figure S6E). Through 661 
these analyses, we were able to recapitulate previously-described tumor biology. For example, 662 
HGG, DMG, MB, and ATRT tumors are known to upregulate MYC50 which in turn activates E2F 663 
and S phase51. Indeed, we detected significant (Bonferroni-corrected p < 0.05) upregulation of 664 
MYC and E2F targets, as well as G2M (cell cycle phase following S phase) in MBs, ATRTs, and 665 
HGGs compared to several other cancer groups. In contrast, LGGs showed significant 666 
downregulation (Bonferroni-corrected p < 0.05) of these pathways. Schwannomas and 667 
neurofibromas, which have a documented inflammatory immune microenvironment of T and B 668 
lymphocytes as well as tumor-associated macrophages (TAMs), are driven by upregulation of 669 
cytokines such as IFN𝛾, IL-1, and IL-6, and TNF𝛼52. Indeed, we observed significant 670 
upregulation of these cytokines in GSVA hallmark pathways (Bonferroni-corrected p < 0.05) 671 
(Figure 5B) and found immune cell types dominated by monocytes in these tumors (Figure 672 
5C). We also observed significant upregulation of pro-inflammatory cytokines IFN𝛼 and IFN𝛾 in 673 
LGGs and craniopharyngiomas compared to medulloblastoma and ependymoma tumors 674 
(Bonferroni-corrected p < 0.05), both of which showed significant down-regulation of these 675 
cytokines (Figure 5B). Together, these results supported previous proteogenomic findings of 676 
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lower immune infiltration in aggressive medulloblastomas and ependymomas versus higher 677 
immune infiltration in BRAF-driven LGG and craniopharyngiomas53. 678 

Although CD8+ T-cell infiltration across all cancer groups was quite low (Figure 5C), we 679 
observed some signal in specific cancer molecular subtypes (Groups 3 and 4 medulloblastoma) 680 
as well as outlier tumors (BRAF-driven LGG, BRAF-driven and wildtype ganglioglioma, and 681 
CNS embryonal NOS; Figure S6E) Surprisingly, the classically immunologically-cold HGG and 682 
DMG tumors54,55 contained higher overall fractions of immune cells, where monocytes, dendritic 683 
cells, and NK cells were the most prevalent (Figure 5C). Thus, we suspect that quanTIseq 684 
might actually have captured microglia within these immune cell fractions. 685 

While we did not detect notable prognostic effects of immune cell infiltration on overall survival 686 
in HGG or DMG tumors, we did find that high levels of macrophage M1 and monocytes were 687 
associated with poorer overall survival (monocyte HR = 2.1e18, 95% CI = 3.80e5 - 1.2e31, p = 688 
0.005) in medulloblastoma tumors (Figure 5D). We further reproduced previous findings 689 
(Figure 5E) that medulloblastomas typically have low expression of CD274 (PD-L1)56. However, 690 
we also found that higher expression of CD274 was significantly associated with improved 691 
overall prognosis for medulloblastoma samples, although with a marginal effect size (HR = 692 
0.0012, 95% CI = 7.5e−06 - 0.18, p = 0.008) (Figure 5D). This result may be explained by the 693 
higher expression of CD274 found in WNT subtype tumors by us and others57, as this diagnosis 694 
carries the best prognosis of all medulloblastoma subgroups (Figure 5E). 695 

Finally, we asked whether any molecular subtypes might show an immunologically-hot 696 
phenotype, as roughly defined by a greater proportion of CD8+ to CD4+ T cells58,59. While 697 
adamantinomatous craniopharyngiomas and Group 3 and Group 4 medulloblastomas had the 698 
highest CD8+ to CD4+ T cell ratios (Figure S6F), very few tumors had ratios greater than 1, 699 
highlighting an urgent need to identify novel therapeutics for these immunologically-cold 700 
pediatric brain tumors with poor prognosis. 701 
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 702 

Figure 5: Transcriptomic and immune landscape of pediatric brain tumors A, First two 703 
dimensions from UMAP of sample transcriptome data. Points are colored by the broad histology 704 
of the samples they represent. B, Heatmap of GSVA scores for Hallmark gene sets with 705 
significant differences, with samples ordered by cancer group. C, Box plots of quanTIseq 706 
estimates of immune cell proportions in select cancer groups with N > 15 samples. Note: Other 707 
HGGs and other LGGs have immune cell proportions similar to DMG and pilocytic astrocytoma, 708 
respectively, and are not shown. D, Forest plot depicting the additive effects of CD274 709 
expression, immune cell proportion, and extent of tumor resection on overall survival of 710 
medulloblastoma patients. Hazard ratios (HR) with 95% confidence intervals and p-values are 711 
listed. Significant p-values are denoted with black diamonds. Reference groups are denoted by 712 
grey diamonds. Of note, the Macrophage M1 HR was 0 (coefficient = -9.90e+4) with infinite 713 
upper and lower CIs, and thus it was not included in the figure. E, Box plot of CD274 expression 714 
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(log2 FPKM) for medulloblastoma samples grouped by molecular subtype. Bonferroni-corrected 715 
p-values from Wilcoxon tests are shown. 716 

Discussion 717 

We created OpenPBTA to define an open, real-time, reproducible analysis framework to 718 
genomically characterize pediatric brain tumors that brings together basic and translational 719 
researchers, clinicians, and data scientists on behalf of accelerated discovery and clinical 720 
impact. We provide robust reusable code and data resources, paired with cloud-based 721 
availability of source and derived data resources, to the pediatric oncology community, 722 
encouraging interdisciplinary scientists to collaborate on new analyses in order to accelerate 723 
therapeutic translation for children with cancer, goals we are seeing play out in real-time. To our 724 
knowledge, this initiative represents the first large-scale, collaborative, open analysis of genomic 725 
data coupled with open manuscript writing, in which we comprehensively analyzed the largest 726 
cohort of pediatric brain tumors to date, comprising 1,074 tumors across 58 distinct histologies. 727 
We used available WGS, WXS, and RNA-Seq data to generate high-confidence consensus 728 
SNV and CNV calls, prioritize putative oncogenic fusions, and establish over 40 scalable 729 
modules to perform common downstream cancer genomics analyses, all of which have 730 
undergone rigorous scientific and analytical code review. We detected and showed expected 731 
patterns of genomic lesions, mutational signatures, and aberrantly regulated signaling pathways 732 
across multiple pediatric brain tumor histologies. 733 

Assembling large, pan-histology cohorts of fresh frozen samples and associated clinical 734 
phenotypes and outcomes requires a multi-year, multi-institutional framework, like those 735 
provided by CBTN and PNOC. As such, uniform clinical molecular subtyping was largely not 736 
performed for most of this cohort at the time of diagnosis and/or at surgery, and when available 737 
(e.g., sparse medulloblastoma subtypes), it required manual curation from pathology reports 738 
and/or free text clinical data fields. Furthermore, rapid classification to derive molecular 739 
subtypes could not be immediately performed since research-based DNA methylation data for 740 
these samples are not yet available. Thus, to enable biological interrogation of specific tumor 741 
subtypes, we created RNA- and DNA-based subtyping modules aligned with WHO molecularly-742 
defined diagnoses. We worked closely with pathologists and clinicians to build modules from 743 
which we determined a research-grade integrated diagnosis for 60% of samples while 744 
discovering incorrectly diagnosed or mis-identified samples in the OpenPBTA cohort.  745 

We harnessed RNA expression data for a number of analyses, yielding important biological 746 
insights across multiple brain tumor histologies. For example, we performed subtyping of 747 
medulloblastoma tumors, for which only 35% (43/122) had subtype information from pathology 748 
reports.  Among the subtyped tumors, we accurately recapitulated subtypes using MM2S (91%; 749 
39/43) or medulloPackage (95%; 41/43)60,61.  We then applied the consensus of these methods 750 
to subtype all medulloblastoma tumors lacking pathology-based subtypes. 751 

We advanced the integrative analyses and cross-cohort comparison via a number of validated 752 
modules. We used an expression classifier to determine whether tumors have dysfunctional 753 
TP5338 and the EXTEND algorithm to determine their degree of telomerase activity using a 13-754 
gene signature41. Interestingly, in contrast to adult colorectal cancer and gastric 755 
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adenocarcinoma, in which TP53 loss of function is less frequent in hypermutated tumors62,63, we 756 
found that hypermutant HGG tumors universally displayed dysregulation of TP53. Furthermore, 757 
high TP53 scores were a significant prognostic marker for poor overall survival for patients with 758 
certain tumor types, such as H3 K28-altered DMGs and ependymomas. We also show that 759 
EXTEND scores are a robust surrogate measure for telomerase activity in pediatric brain 760 
tumors. By assessing TP53 and telomerase activity prospectively from expression data, 761 
information usually only attainable with DNA sequencing and/or qPCR, we can quickly 762 
incorporate oncogenic biomarker and prognostic knowledge and expand our biological 763 
understanding of these tumors. 764 

We identified enrichment of hallmark cancer pathways and characterized the immune cell 765 
landscape across pediatric brain tumors, demonstrating tumors in some histologies, such as 766 
schwannomas, craniopharyngiomas, and low-grade gliomas, may have a inflammatory tumor 767 
microenvironment. Of note, we observed upregulation of IFN𝛾, IL-1, and IL-6, and TNF𝛼 in 768 
craniopharyngiomas, tumors difficult to resect due to their anatomical location and critical 769 
surrounding structures. Neurotoxic side effects have been reported when interferon alpha 770 
immunotherapy is administered to reduce cystic craniopharyngioma tumor size and/or delay 771 
progression64,65. Thus, additional immune vulnerabilities, such as IL-6 inhibition and immune 772 
checkpoint blockade, have recently been proposed as therapies for cystic adamantinomatous 773 
craniopharyngiomas66–70 and our results noted above support this approach. Finally, our study 774 
reproduced the overall known poor infiltration of CD8+ T cells and general low expression of 775 
CD274 (PD-L1) in pediatric brain tumors, further highlighting the urgent need to identify novel 776 
therapeutic strategies for these immunologically cold tumors. 777 

OpenPBTA has rapidly become a foundational data analysis and processing layer for a number 778 
of discovery research and translational projects which will continue to add other genomic 779 
modalities and analyses, such as germline, methylation, single cell, epigenomic, mRNA splicing, 780 
imaging, and model drug response data. For example, the RNA fusion filtering module created 781 
within OpenPBTA set the stage for development of the R package annoFuse71 and an R Shiny 782 
application shinyFuse. Using medulloblastoma subtyping and immune deconvolution analyses 783 
performed herein, Dang and colleagues showed enrichment of monocyte and microglia-derived 784 
macrophages within the SHH subgroup which they suggest may accumulate following radiation 785 
therapy10. Expression and copy number analyses were used to demonstrate that GPC2 is a 786 
highly expressed and copy number gained immunotherapeutic target in ETMRs, 787 
medulloblastomas, choroid plexus carcinomas, H3 wildtype high-grade gliomas, as well as 788 
DMGs. This led Foster and colleagues to subsequently develop a chimeric antigen receptor 789 
(CAR) directed against GPC2, for which they show preclinical efficacy in mouse models11. 790 
Moreover, OpenPBTA has enabled a framework to support real-time integration of clinical trial 791 
subjects as each was enrolled on the PNOC008 high-grade glioma clinical trial72, allowing 792 
researchers and clinicians to link tumor biology to translational impact through clinical decision 793 
support during tumor board discussions. Finally, as part of the the NCI’s Childhood Cancer Data 794 
Initiative (CCDI), the OpenPBTA project was recently expanded into a pan-pediatric cancer 795 
effort (https://github.com/PediatricOpenTargets/OpenPedCan-analysis) to build the Molecular 796 
Targets Platform (https://moleculartargets.ccdi.cancer.gov/) in support of the RACE Act. An 797 
additional, large-scale cohort of >2,500 tumor samples and associated germline DNA is in the 798 
process of undergoing sequence data generation as part of CBTN CCDI-Kids First NCI and 799 
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Common Fund project (https://commonfund.nih.gov/kidsfirst/2021X01projects#FY21_Resnick). 800 
Like the original OpenPBTA cohort, data will be processed and released in near real-time via 801 
the Kids First Data Resource and integrated with OpenPBTA. The OpenPBTA project has 802 
paved the way for new modes of collaborative data-driven discovery, open, reproducible, and 803 
scalable analyses that will extend beyond the current research described herein, and we 804 
anticipate this foundational work will continue to have a long-term impact within the pediatric 805 
brain tumor translational research community and beyond, ultimately leading to accelerated 806 
impact and improved outcomes for children with cancer. 807 

All code and processed data are openly available through GitHub, CAVATICA, and 808 
PedcBioPortal (see STAR METHODS). 809 
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Except for the first and last four authors, authorship order was determined as follows: Authors 843 
who contributed to the OpenPBTA code base are listed based on number of modules included 844 
in the manuscript to which that individual contributed and, in the case of ties, a random order is 845 
used. All remaining authors are then listed in a random order. 846 

Code for determining authorship order can be found in the count-contributions module of 847 
the OpenPBTA analysis repository. 848 
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boards for Alexion and DayOne Biopharmaceuticals. 853 

Figure Titles and Legends 854 

Figure 1. Overview of the OpenPBTA Project. A, The Children’s Brain Tumor Network and 855 
the Pacific Pediatric Neuro-Oncology Consortium collected tumor samples from 943 patients. To 856 
date, 22 cell lines were created from tumor tissue, and over 2000 specimens were sequenced 857 
(N = 1035 RNA-Seq, N = 940 WGS, and N = 32 WXS or targeted panel). Data was harmonized 858 
by the Kids First Data Resource Center using an Amazon S3 framework within CAVATICA. B, 859 
Stacked bar plot summary of the number of biospecimens per phase of therapy per broad 860 
histology (Abbreviations: GNG = ganglioglioma, Other LGG = other low-grade glioma, PA = 861 
pilocytic astrocytoma, PXA = pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell 862 
astrocytoma, DIPG = diffuse intrinsic pontine glioma, DMG = diffuse midline glioma, Other HGG 863 
= other high-grade glioma, ATRT = atypical teratoid rhabdoid tumor, MB = medulloblastoma, 864 
Other ET = other embryonal tumor, EPN = ependymoma, PNF = plexiform neurofibroma, DNET 865 
= dysembryoplastic neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing 866 
sarcoma, CPP = choroid plexus papilloma). Only samples with available descriptors were 867 
included. C, Overview of the open analysis and manuscript contribution model. In the analysis 868 
GitHub repository, a contributor would propose an analysis that other participants can comment 869 
on. Contributors would then implement the analysis and file a request to add their changes to 870 
the analysis repository (“pull request”). Pull requests underwent review for scientific rigor and 871 
correctness of implementation. Pull requests were additionally checked to ensure that all 872 
software dependencies were included and the code was not sensitive to underlying data 873 
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changes using container and continuous integration technologies. Finally, a contributor would 874 
file a pull request documenting their methods and results to the Manubot-powered manuscript 875 
repository. Pull requests in the manuscript repository were also subject to review. D, A potential 876 
path for an analytical pull request. Arrows indicate revisions to a pull request. Prior to review, a 877 
pull request was tested for dependency installation and whether or not the code would execute. 878 
Pull requests also required approval by organizers and/or other contributors, who checked for 879 
scientific correctness. Panel A created with BioRender.com. 880 

Figure 2. Mutational landscape of PBTA tumors. Shown are frequencies of canonical 881 
somatic gene mutations, CNVs, fusions, and TMB (top bar plot) for the top 20 genes mutated 882 
across primary tumors within the OpenPBTA dataset. A, Low-grade astrocytic tumors (N = 227): 883 
pilocytic astrocytoma (N = 104), other low-grade glioma (N = 69), ganglioglioma (N = 35), 884 
pleomorphic xanthoastrocytoma (N = 9), subependymal giant cell astrocytoma (N = 10); B, 885 
Embryonal tumors (N = 128): medulloblastomas (N = 95), atypical teratoid rhabdoid tumors (N = 886 
24), other embryonal tumors (N = 9); C, Diffuse astrocytic and oligodendroglial tumors (N = 61): 887 
diffuse midline gliomas (N = 34) and other high-grade gliomas (N = 27); D, Other CNS tumors 888 
(N = 194): ependymomas (N = 60), craniopharyngiomas (N = 31), meningiomas (N = 17), 889 
dysembryoplastic neuroepithelial tumors (N = 19), Ewing sarcomas (N = 7), schwannomas (N = 890 
11), and neurofibroma plexiforms (N = 7). Additional, rare CNS tumors are displayed in Figure 891 
S3A. Tumor histology (Cancer Group) and patient sex (Germline sex estimate) are 892 
displayed as annotations at the bottom of each plot. Only samples with mutations in the listed 893 
genes are shown. Multiple CNVs are denoted as a complex event. 894 

Figure 3. Mutational co-occurrence and signatures highlight key oncogenic drivers. A, 895 
Bar plot of occurrence and co-occurrence of nonsynonymous mutations for the 50 most 896 
commonly mutated genes across all tumor types (annotated from cancer_group if N >= 10 or 897 
Other if N < 10); B, Co-occurrence and mutual exclusivity of nonsynonymous mutations 898 
between genes; The co-occurrence score is defined as 𝐼"−log!"(𝑃)* where 𝑃 is defined by 899 
Fisher’s exact test and 𝐼 is 1 when mutations co-occur more often than expected and -1 when 900 
exclusivity is more common; C, The number of SV breaks significantly correlates with the 901 
number of CNV breaks (Adjusted R = 0.438, p = 1.08e-37). D, Chromothripsis frequency across 902 
pediatric brain tumors shown by cancer_group with N >= 3. E, Sina plots of RefSig signature 903 
weights for signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and Other across cancer groups. Box plot 904 
lines represent the first quartile, median, and third quartile. 905 

Figure 4. TP53 and telomerase activity A, Receiver Operating Characteristic for TP53 906 
classifier run on FPKM of stranded RNA-Seq samples. B, Violin and box plots of TP53 scores 907 
plotted by TP53 alteration type (Nactivated = 11, Nlost = 100, Nother = 866). C, Violin and box 908 
plots of TP53 RNA expression plotted by TP53 activation status (Nactivated = 11, Nlost = 100, 909 
Nother = 866). D, Box plots of TP53 and telomerase (EXTEND) scores grouped by 910 
cancer_group. Mutation status is highlighted in orange (hypermutant) or red (ultra-911 
hypermutant). E, Heatmap of RefSig mutational signatures for patients who have least one 912 
tumor or cell line with a TMB >= 10 Mut/Mb. F, Forest plot depicting the prognostic effects of 913 
TP53 and telomerase scores on overall survival, controlling for extent of tumor resection, LGG 914 
group, and HGG group. G, Forest plot depicting the effect of molecular subtype on overall 915 
survival of HGGs. For F and G, hazard ratios (HR) with 95% confidence intervals and p-values 916 
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are listed. Significant p-values are denoted with black diamonds. Reference groups are denoted 917 
by grey diamonds. H, Kaplan-Meier curve of HGG tumors by molecular subtype. 918 

Figure 5. Transcriptomic and immune landscape of pediatric brain tumors A, First two 919 
dimensions from UMAP of sample transcriptome data. Points are colored by the broad histology 920 
of the samples they represent. B, Heatmap of GSVA scores for Hallmark gene sets with 921 
significant differences, with samples ordered by cancer group. C, Box plots of quanTIseq 922 
estimates of immune cell proportions in select cancer groups with N > 15 samples. Note: Other 923 
HGGs and other LGGs have immune cell proportions similar to DMG and pilocytic astrocytoma, 924 
respectively, and are not shown. D, Forest plot depicting the additive effects of CD274 925 
expression, immune cell proportion, and extent of tumor resection on overall survival of 926 
medulloblastoma patients. Hazard ratios (HR) with 95% confidence intervals and p-values are 927 
listed. Significant p-values are denoted with black diamonds. Reference groups are denoted by 928 
grey diamonds. Of note, the Macrophage M1 HR was 0 (coefficient = -9.90e+4) with infinite 929 
upper and lower CIs, and thus it was not included in the figure. E, Box plot of CD274 expression 930 
(log2 FPKM) for medulloblastoma samples grouped by molecular subtype. Bonferroni-corrected 931 
p-values from Wilcoxon tests are shown. 932 

Table Titles and Legends 933 

Table 1. Molecular subtypes generated through the OpenPBTA project. Listed are broad 934 
tumor histologies, molecular subtypes generated, and number of specimens subtyped within the 935 
OpenPBTA project. 936 

Table 2. Patients with hypermutant tumors. Listed are patients with at least one hypermutant 937 
or ultra-hypermutant tumor or cell line. Pathogenic (P) or likely pathogenic (LP) germline 938 
variants, coding region TMB, phase of therapy, therapeutic interventions, cancer predisposition 939 
(CMMRD = Constitutional mismatch repair deficiency), and molecular subtypes are included. 940 

STAR METHODS 941 

RESOURCE AVAILABILITY 942 

Lead contact 943 

Requests for access to OpenPBTA raw data and/or specimens may be directed to, and will be 944 
fulfilled by Jo Lynne Rokita (rokita@chop.edu). 945 

Materials availability 946 

This study did not create new, unique reagents. 947 

Data and code availability 948 

Raw and harmonized WGS, WXS, and RNA-Seq data derived from human samples are 949 
available within the KidsFirst Portal73 upon access request to the CBTN (https://cbtn.org/) as of 950 
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the date of the publication. In addition, merged summary files are openly accessible at 951 
https://cavatica.sbgenomics.com/u/cavatica/openpbta or via download script in the 952 
https://github.com/AlexsLemonade/OpenPBTA-analysis repository. Summary data are visible 953 
within PedcBioPortal at https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta. 954 
Associated DOIs are listed in the Key Resources Table.  955 

All original code was developed within the following repositories and is publicly available as 956 
follows. Primary data analyses can be found at https://github.com/d3b-center/OpenPBTA-957 
workflows. Downstream data analyses can be found at 958 
https://github.com/AlexsLemonade/OpenPBTA-analysis. Manuscript code can be found at 959 
https://github.com/AlexsLemonade/OpenPBTA-manuscript. Associated DOIs are listed in the 960 
Key Resources Table. Software versions are documented in Table S5 as an appendix to the 961 
Key Resources Table.  962 

Any additional information required to reanalyze the data reported in this paper is available from 963 
the lead contact upon request. 964 

METHOD DETAILS 965 

Biospecimen Collection 966 

The Pediatric Brain Tumor Atlas specimens are comprised of samples from Children’s Brain 967 
Tumor Network (CBTN) and the Pediatric Pacific Neuro-Oncology Consortium (PNOC). The 968 
CBTN is a collaborative, multi-institutional (26 institutions worldwide) research program 969 
dedicated to the study of childhood brain tumors. PNOC is an international consortium 970 
dedicated to bringing new therapies to children and young adults with brain tumors. We also 971 
include blood and tumor biospecimens from newly-diagnosed diffuse intrinsic pontine glioma 972 
(DIPG) patients as part of the PNOC003 clinical trial PNOC003/NCT0227498715. 973 

The CBTN-generated cell lines were derived from either fresh tumor tissue directly obtained 974 
from surgery performed at Children’s Hospital of Philadelphia (CHOP) or from prospectively 975 
collected tumor specimens stored in Recover Cell Culture Freezing medium (cat# 12648010, 976 
Gibco). We dissociated tumor tissue using enzymatic method with papain as described14. 977 
Briefly, we washed tissue with HBSS (cat# 14175095, Gibco), and we minced and incubated the 978 
tissue with activated papain solution (cat# LS003124, SciQuest) for up to 45 minutes. We used 979 
ovomucoid solution (cat# 542000, SciQuest) to inactivate the papain, briefly treated tissue with 980 
DNase (cat# 10104159001, Roche), passed it through the 100μm cell strainer (cat# 542000, 981 
Greiner Bio-One). We initiated two cell culture conditions based on the number of cells 982 
available. For cultures utilizing the fetal bovine serum (FBS), we plated a minimum density of 983 
3×105 cells/mL in DMEM/F-12 medium (cat# D8062, Sigma) supplemented with 20% FBS (cat# 984 
SH30910.03, Hyclone), 1% GlutaMAX (cat# 35050061, Gibco), Penicillin/Streptomycin-985 
Amphotericin B Mixture (cat# 17-745E, Lonza), and 0.2% Normocin (cat# ant-nr-2, Invivogen). 986 
For serum-free media conditions, we plated cells at minimum density of 1×106 cells/mL in 987 
DMEM/F12 medium supplemented with 1% GlutaMAX, 1X B-27 supplement minus vitamin A 988 
(cat# 12587-010, Gibco), 1x N-2 supplement (cat# 17502001, Gibco), 20 ng/ml epidermal 989 
growth factor (cat# PHG0311L, Gibco), 20 ng/mL basic fibroblast growth factor (cat# 100-18B, 990 
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PeproTech), 2.5μg/mL heparin (cat# H3149, Sigma), Penicillin/Streptomycin-Amphotericin B 991 
Mixture, and 0.2% Normocin. 992 

Nucleic acids extraction and library preparation 993 

PNOC samples 994 

The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed DNA and RNA 995 
extractions on tumor biopsies using a DNA/RNA AllPrep Kit (Qiagen, #80204). All RNA used for 996 
library prep had a minimum RIN of seven, but no QC thresholds were implemented for the DNA. 997 
For library preparation, 500 ng of nucleic acids were used as input for RNA-Seq, WXS, and 998 
targeted DNA panel (panel) sequencing. RNA library preparation was performed using the 999 
TruSeq RNA Sample Prep Kit (Illumina, #FC-122-1001) and the exome prep was performed 1000 
using KAPA Library Preparation Kit (Roche, #KK8201) using Agilent’s SureSelect Human All 1001 
Exon V5 backbone with custom probes. The targeted DNA panel developed by Ashion Analytics 1002 
(formerly known as the GEM Cancer panel) consisted of exonic probes against 541 cancer 1003 
genes. Both panel and WXS assays contained 44,000 probes across evenly spaced genomic 1004 
loci used for genome-wide copy number analysis. For the panel, additional probes tiled across 1005 
intronic regions of 22 known tumor suppressor genes and 22 genes involved in common cancer 1006 
translocations for structural analysis. All extractions and library preparations were performed 1007 
according to manufacturer’s instructions. 1008 

CBTN samples 1009 

Blood, tissue, and cell line DNA/RNA extractions were performed at the Biorepository Core at 1010 
CHOP. Briefly, 10-20 mg frozen tissue, 0.4-1ml of blood, or 2e6 cells pellet was used for 1011 
extractions. Tissues were lysed using a Qiagen TissueLyser II (Qiagen) with 2×30 sec at 18Hz 1012 
settings using 5 mm steel beads (cat# 69989, Qiagen). Both tissue and cell pellets processes 1013 
included a CHCl3 extraction and were run on the QIACube automated platform (Qiagen) using 1014 
the AllPrep DNA/RNA/miRNA Universal kit (cat# 80224, Qiagen). Blood was thawed and treated 1015 
with RNase A (cat#, 19101, Qiagen); 0.4-1ml was processed using the Qiagen QIAsymphony 1016 
automated platform (Qiagen) using the QIAsymphony DSP DNA Midi Kit (cat# 937255, Qiagen). 1017 
DNA and RNA quantity and quality was assessed by PerkinElmer DropletQuant UV-VIS 1018 
spectrophotometer (PerkinElmer) and an Agilent 4200 TapeStation (Agilent, USA) for RIN and 1019 
DIN (RNA Integrity Number and DNA Integrity Number, respectively). The NantHealth 1020 
Sequencing Center, BGI at CHOP, or the Genomic Clinical Core at Sidra Medical and Research 1021 
Center performed library preparation and sequencing. BGI at CHOP and Sidra Medical and 1022 
Research Center used in house, center-specific workflows for sample preparation. At 1023 
NantHealth Sequencing Center, DNA sequencing libraries were prepared for tumor and 1024 
matched-normal DNA using the KAPA HyperPrep kit (cat# 08098107702, Roche), and tumor 1025 
RNA-Seq libraries were prepared using KAPA Stranded RNA-Seq with RiboErase kit (cat# 1026 
07962304001, Roche). 1027 

Data generation 1028 

NantHealth and Sidra performed 2x150 bp WGS on paired tumor (~60X) and constitutive DNA 1029 
(~30X) samples on an Illumina X/400. BGI at CHOP performed 2x100 bp WGS sequenced at 1030 
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60X depth for both tumor and normal samples. NantHealth performed ribosomal-depleted whole 1031 
transcriptome stranded RNA-Seq to an average depth of 200M. BGI at CHOP performed poly-A 1032 
or ribosomal-depleted whole transcriptome stranded RNA-Seq to an average depth of 100M. 1033 
The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed paired tumor 1034 
(~200X) and constitutive whole exome sequencing (WXS) or targeted DNA panel (panel) and 1035 
poly-A selected RNA-Seq (~200M reads) for PNOC tumor samples. The panel tumor sample 1036 
was sequenced to 470X, and the normal panel sample was sequenced to 308X. PNOC 2x100 1037 
bp WXS and RNA-Seq libraries were sequenced on an Illumina HiSeq 2500. 1038 

DNA WGS Alignment 1039 

We used BWA-MEM74 to align paired-end DNA-seq reads to the version 38 patch release 12 of 1040 
the Homo sapiens genome reference, obtained as a FASTA file from UCSC (see Key 1041 
Resources Table). Next, we used the Broad Institute’s Best Practices75 to process Binary 1042 
Alignment/Map files (BAMs) in preparation for variant discovery. We marked duplicates using 1043 
SAMBLASTER76, and we merged and sorted BAMs using Sambamba77 We used the 1044 
BaseRecalibrator submodule of the Broad’s Genome Analysis Tool Kit GATK78 to process 1045 
BAM files. Lastly, for normal/germline input, we used the GATK HaplotypeCaller79 1046 
submodule on the recalibrated BAM to generate a genomic variant call format (GVCF) file. This 1047 
file is used as the basis for germline calling, described in the SNV calling for B-allele 1048 
Frequency (BAF) generation section. 1049 

We obtained references from the Broad Genome References on AWS bucket with a general 1050 
description of references at https://s3.amazonaws.com/broad-references/broad-references-1051 
readme.html. 1052 

Quality Control of Sequencing Data 1053 

To confirm sample matches and remove mis-matched samples from the dataset, we performed 1054 
NGSCheckMate80 on matched tumor/normal CRAM files. Briefly, we processed CRAMs using 1055 
BCFtools to filter and call 20k common single nucleotide polymorphisms (SNPs) using default 1056 
parameters. We used the resulting VCFs to run NGSCheckMate. Per NGSCheckMate author 1057 
recommendations, we used <= 0.61 as a correlation coefficient cutoff at sequencing depths > 1058 
10 to predict mis-matched samples. We determined RNA-Seq read strandedness by running the 1059 
infer_experiment.py script from RNA-SeQC81 on the first 200k mapped reads. We removed 1060 
any samples whose calculated strandedness did not match strandedness information provided 1061 
by the sequencing center. We required that at least 60% of RNA-Seq reads mapped to the 1062 
human reference for samples to be included in analysis. 1063 

Germline Variant Calling 1064 

SNP calling for B-allele Frequency (BAF) generation 1065 

We performed germline haplotype calls using the GATK Joint Genotyping Workflow on individual 1066 
GVCFs from the normal sample alignment workflow. Using only SNPs, we applied the GATK 1067 
generic hard filter suggestions to the VCF, with an additional requirement of 10 reads minimum 1068 
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depth per SNP. We used the filtered VCF as input to Control-FREEC and CNVkit (below) to 1069 
generate B-allele frequency (BAF) files. This single-sample workflow is available in the D3b 1070 
GitHub repository. References can be obtained from the Broad Genome References on AWS 1071 
bucket, and a general description of references can be found at 1072 
https://s3.amazonaws.com/broad-references/broad-references-readme.html. 1073 

Assessment of germline variant pathogenicity 1074 

For patients with hypermutant samples, we first added population frequency of germline variants 1075 
using ANNOVAR82 and pathogenicity scoring from ClinVar83 using SnpSift84. We then filtered 1076 
for variants with read depth >= 15, variant allele fraction >= 0.20, and which were observed at < 1077 
0.1% allele frequency across each population in the Genome Aggregation Database (see Key 1078 
Resources Table). Finally, we retained variants in genes included in the KEGG MMR gene set 1079 
(see Key Resources Table), POLE, and/or TP53 which were ClinVar-annotated as pathogenic 1080 
(P) or likely pathogenic (LP) with review status of >= 2 stars. All P/LP variants were manually 1081 
reviewed by an interdisciplinary team of scientists, clinicians, and genetic counselors. This 1082 
workflow is available in the D3b GitHub repository. 1083 

Somatic Mutation Calling 1084 

SNV and indel calling 1085 

For PBTA samples, we used four variant callers to call SNVs and indels from panel, WXS, and 1086 
WGS data: Strelka285, Mutect286, Lancet87, and VarDictJava88. VarDictJava-only calls 1087 
were not retained since ~ 39M calls with low VAF were uniquely called and may be potential 1088 
false positives. (~1.2M calls were called by Mutect2, Strelka2, and Lancet and included 1089 
consensus CNV calling as described below.) We used only Strelka2, Mutect2 and Lancet 1090 
to analyze WXS samples from TCGA. TCGA samples were captured using various WXS target 1091 
capture kits and we downloaded the BED files from the GDC portal. The manufacturers 1092 
provided the input interval BED files for both panel and WXS data for PBTA samples. We 1093 
padded all panel and WXS BED files were by 100 bp on each side for Strelka2, Mutect2, 1094 
and VarDictJava runs and by 400 bp for the Lancet run. For WGS calling, we utilized the 1095 
non-padded BROAD Institute interval calling list 1096 
wgs_calling_regions.hg38.interval_list, comprised of the full genome minus N 1097 
bases, unless otherwise noted below. We ran Strelka285 using default parameters for 1098 
canonical chromosomes (chr1-22, X,Y,M), as recommended by the authors, and we filtered the 1099 
final Strelka2 VCF for PASS variants. We ran Mutect2 from GATK according to Broad best 1100 
practices outlined from their Workflow Description Language (WDL), and we filtered the final 1101 
Mutect2 VCF for PASS variants. To manage memory issues, we ran VarDictJava88 using 20 1102 
Kb interval chunks of the input BED, padded by 100 bp on each side, such that if an indel 1103 
occurred in between intervals, it would be captured. Parameters and filtering followed BCBIO 1104 
standards except that variants with a variant allele frequency (VAF) >= 0.05 (instead of >= 0.10) 1105 
were retained. The 0.05 VAF increased the true positive rate for indels and decreased the false 1106 
positive rate for SNVs when using VarDictJava in consensus calling. We filtered the final 1107 
VarDictJava VCF for PASS variants with TYPE=StronglySomatic. We ran Lancet using 1108 
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default parameters, except for those noted below. For input intervals to Lancet WGS, we 1109 
created a reference BED from only the UTR, exome, and start/stop codon features of the 1110 
GENCODE 31 reference, augmented as recommended with PASS variant calls from Strelka2 1111 
and Mutect2. We then padded these intervals by 300 bp on each side during Lancet variant 1112 
calling. Per recommendations for WGS samples, we augmented the Lancet input intervals 1113 
described above with PASS variant calls from Strelka2 and Mutect2 as validation89. 1114 

VCF annotation and MAF creation 1115 

We normalized INDELs with bcftools norm on all PASS VCFs using the 1116 
kfdrc_annot_vcf_sub_wf.cwl subworkflow, release v3 (See Table S5). The Ensembl 1117 
Variant Effect Predictor (VEP)90, reference release 93, was used to annotate variants and 1118 
bcftools was used to add population allele frequency (AF) from gnomAD91. We annotated SNV 1119 
and INDEL hotspots from v2 of Memorial Sloan Kettering Cancer Center’s (MSKCC) database 1120 
(See Key Resources Table) as well as the TERT promoter mutations C228T and C250T92. We 1121 
annotated SNVs by matching amino acid position (Protein_position column in MAF file) 1122 
with SNVs in the MSKCC database, we matched splice sites to HGVSp_Short values in the 1123 
MSKCC database, and we matched INDELs based on amino acid present within the range of 1124 
INDEL hotspots values in the MSKCC database. We removed non-hotspot annotated variants 1125 
with a normal depth less than or equal to 7 and/or gnomAD allele frequency (AF) greater than 1126 
0.001 as potential germline variants. We matched TERT promoter mutations using hg38 1127 
coordinates as indicated in ref.92: C228T occurs at 5:1295113 is annotated as existing variant 1128 
s1242535815, COSM1716563, or COSM1716558, and is 66 bp away from the TSS; C250T 1129 
occurs at Chr5:1295135, is annotated as existing variant COSM1716559, and is 88 bp away 1130 
from the TSS. We retained variants annotated as PASS or HotSpotAllele=1 in the final set, 1131 
and we created MAFs using MSKCC’s vcf2maf tool. 1132 

Gather SNV and INDEL Hotspots 1133 

We retained all variant calls from Strelka2, Mutect2, or Lancet that overlapped with an 1134 
SNV or INDEL hotspot in a hotspot-specific MAF file, which we then used for select analyses as 1135 
described below. 1136 

Consensus SNV Calling 1137 

Our SNV calling process led to separate sets of predicted mutations for each caller. We 1138 
considered mutations to describe the same change if they were identical for the following MAF 1139 
fields: Chromosome, Start_Position, Reference_Allele, Allele, and 1140 
Tumor_Sample_Barcode. Strelka2 does not call multinucleotide variants (MNV), but 1141 
instead calls each component SNV as a separate mutation, so we separated MNV calls from 1142 
Mutect2 and Lancet into consecutive SNVs before comparing them to Strelka2 calls. We 1143 
examined VAFs produced by each caller and compared their overlap with each other (Figure 1144 
S2). VarDictJava calls included many variants that were not identified by other callers 1145 
(Figure S2C), while the other callers produced results that were relatively consistent with one 1146 
another. Many of these VarDictJava-specific calls were variants with low allele frequency 1147 
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(Figure S2B). We therefore derived consensus mutation calls as those shared among the other 1148 
three callers (Strelka2, Mutect2, and Lancet), and we did not further consider 1149 
VarDictJava calls due to concerns it called a large number of false positives. This decision 1150 
had minimal impact on results because VarDictJava also identified nearly every mutation that 1151 
the other three callers identified, in addition to many unique mutations. 1152 

Somatic Copy Number Variant Calling (WGS samples only) 1153 

We used Control-FREEC93,94 and CNVkit95 for copy number variant calls. For both 1154 
algorithms, the germline_sex_estimate (described below) was used as input for sample 1155 
sex and germline variant calls (above) were used as input for BAF estimation. Control-FREEC 1156 
was run on human genome reference hg38 using the optional parameters of a 0.05 coefficient 1157 
of variation, ploidy choice of 2-4, and BAF adjustment for tumor-normal pairs. Theta296 used 1158 
VarDictJava germline and somatic calls, filtered on PASS and strongly somatic, to infer tumor 1159 
purity. Theta2 purity was added as an optional parameter to CNVkit to adjust copy number 1160 
calls. CNVkit was run on human genome reference hg38 using the optional parameters of 1161 
Theta2 purity and BAF adjustment for tumor-normal pairs. We used GISTIC97 on the CNVkit 1162 
and the consensus CNV segmentation files to generate gene-level copy number abundance 1163 
(Log R Ratio) as well as chromosomal arm copy number alterations using the parameters 1164 
specified in the (run-gistic analysis module in the OpenPBTA Analysis repository). 1165 

Consensus CNV Calling 1166 

For each caller and sample, we called CNVs based on consensus among Control-FREEC93,94, 1167 
CNVkit95, and Manta98. We specifically included CNVs called significant by Control-FREEC 1168 
(p-value < 0.01) and Manta calls that passed all filters in consensus calling. We removed 1169 
sample and consensus caller files with more than 2,500 CNVs because we expected these to 1170 
be noisy and derive poor quality samples based on cutoffs used in GISTIC97. For each sample, 1171 
we included the regions in the final consensus set: 1) regions with reciprocal overlap of 50% or 1172 
more between at least two of the callers; 2) smaller CNV regions in which more than 90% of 1173 
regions are covered by another caller. We did not include any copy number alteration called by 1174 
a single algorithm in the consensus file. We defined copy number as NA for any regions that had 1175 
a neutral call for the samples included in the consensus file. We merged CNV regions within 1176 
10,000 bp of each other with the same direction of gain or loss into single region. We filtered out 1177 
any CNVs that overlapped 50% or more with immunoglobulin, telomeric, centromeric, segment 1178 
duplicated regions, or that were shorter than 3000 bp. 1179 

Somatic Structural Variant Calling (WGS samples only) 1180 

We used Manta98 for structural variant (SV) calls, and we limited to regions used in Strelka2. 1181 
The hg38 reference for SV calling used was limited to canonical chromosome regions. We used 1182 
AnnotSV99 to annotate Manta output. All associated workflows are available in the workflows 1183 
GitHub repository. 1184 
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Gene Expression 1185 

Abundance Estimation 1186 

We used STAR100 to align paired-end RNA-seq reads, and we used the associated alignment for 1187 
all subsequent RNA analysis. We used Ensembl GENCODE 27 “Comprehensive gene 1188 
annotation” (see Key Resources Table) as a reference. We used RSEM101 for both FPKM and 1189 
TPM transcript- and gene-level quantification. 1190 

Gene Expression Matrices with Unique HUGO Symbols 1191 

To enable downstream analyses, we next identified gene symbols that map to multiple Ensembl 1192 
gene identifiers (in GENCODE v27, 212 gene symbols map to 1866 Ensembl gene identifiers), 1193 
known as multi-mapped gene symbols, and ensured unique mappings (collapse-rnaseq 1194 
analysis module in the OpenPBTA Analysis repository). To this end, we first removed genes 1195 
with no expression from the RSEM abundance data by requiring an FPKM > 0 in at least 1 1196 
sample across the PBTA cohort. We computed the mean FPKM across all samples per gene. 1197 
For each multi-mapped gene symbol, we chose the Ensembl identifier corresponding to the 1198 
maximum mean FPKM, using the assumption that the gene identifier with the highest 1199 
expression best represented the expression of the gene. After collapsing gene identifiers, 1200 
46,400 uniquely-expressed genes remained in the poly-A dataset, and 53,011 uniquely-1201 
expressed genes remained in the stranded dataset. 1202 

Gene fusion detection 1203 

We set up Arriba102 and STAR-Fusion103 fusion detection tools using CWL on CAVATICA. 1204 
For both of these tools, we used aligned BAM and chimeric SAM files from STAR as inputs and 1205 
GRCh38_gencode_v27 GTF for gene annotation. We ran STAR-Fusion with default 1206 
parameters and annotated all fusion calls with the 1207 
GRCh38_v27_CTAT_lib_Feb092018.plug-n-play.tar.gz file from the STAR-Fusion 1208 
release. For Arriba, we used a blacklist file blacklist_hg38_GRCh38_2018-11-1209 
04.tsv.gz from the Arriba release to remove recurrent fusion artifacts and transcripts 1210 
present in healthy tissue. We provided Arriba with strandedness information for stranded 1211 
samples, or we set it to auto-detection for poly-A samples. We used FusionAnnotator on 1212 
Arriba fusion calls to harmonize annotations with those of STAR-Fusion. The RNA 1213 
expression and fusion workflows can be found in the D3b GitHub repository. The 1214 
FusionAnnotator workflow we used for this analysis can be found in the D3b GitHub 1215 
repository. 1216 
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QUANTIFICATION AND STATISTICAL ANALYSIS 1217 

Recurrently mutated genes and co-occurrence of gene mutations (interaction-1218 
plots analysis module) 1219 

Using the consensus SNV calls, we identified genes that were recurrently mutated in the 1220 
OpenPBTA cohort, including nonsynonymous mutations with a VAF > 5% among the set of 1221 
independent samples. We used VEP90 annotations, including “High” and “Moderate” 1222 
consequence types as defined in the R package Maftools104, to determine the set of 1223 
nonsynonymous mutations. For each gene, we then tallied the number of samples that had at 1224 
least one nonsynonymous mutation. 1225 

For genes that contained nonsynonymous mutations in multiple samples, we calculated 1226 
pairwise mutation co-occurrence scores. This score was defined as 𝐼"−log!"(𝑃)* where 𝐼 is 1 1227 
when the odds ratio is > 1 (indicating co-occurrence), and -1 when the odds ratio is < 1 1228 
(indicating mutual exclusivity), with 𝑃 defined by Fisher’s Exact Test. 1229 

Focal Copy Number Calling (focal-cn-file-preparation analysis module) 1230 

We added the ploidy inferred via Control-FREEC to the consensus CNV segmentation file and 1231 
used the ploidy and copy number values to define gain and loss values broadly at the 1232 
chromosome level. We used bedtools coverage105 to add cytoband status using the UCSC 1233 
cytoband file106 (See Key Resources Table). The output status call fractions, which are values 1234 
of the loss, gain, and callable fractions of each cytoband region, were used to define dominant 1235 
status at the cytoband-level. We calculated the weighted means of each status call fraction 1236 
using band length. We used the weighted means to define the dominant status at the 1237 
chromosome arm-level. 1238 

A status was considered dominant if more than half of the region was callable and the status 1239 
call fraction was greater than 0.9 for that region. We adopted this 0.9 threshold to ensure that 1240 
the dominant status fraction call was greater than the remaining status fraction calls in a region. 1241 

We aimed to define focal copy number units to avoid calling adjacent genes in the same 1242 
cytoband or arm as copy number losses or gains where it would be more appropriate to call the 1243 
broader region a loss or gain. To determine the most focal units, we first considered the 1244 
dominant status calls at the chromosome arm-level. If the chromosome arm dominant status 1245 
was callable but not clearly defined as a gain or loss, we instead included the cytoband-level 1246 
status call. Similarly, if a cytoband dominant status call was callable but not clearly defined as a 1247 
gain or loss, we instead included gene-level status call. To obtain the gene-level data, we used 1248 
the IRanges package in R107 to find overlaps between the segments in the consensus CNV file 1249 
and the exons in the GENCODE v27 annotation file (See Key Resources Table) . If the copy 1250 
number value was 0, we set the status to “deep deletion”. For autosomes only, we set the status 1251 
to “amplification” when the copy number value was greater than two times the ploidy value. We 1252 
plotted genome-wide gains and losses in (Figure S3B) using the R package 1253 
ComplexHeatmap108. 1254 
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Breakpoint Density (WGS samples only; chromosomal-instability analysis 1255 
module) 1256 

We defined breakpoint density as the number of breaks per genome or exome per sample. For 1257 
Manta SV calls, we filtered to retain “PASS” variants and used breakpoints from the algorithm. 1258 
For consensus CNV calls, if |log2 ratio| > log2(1), we annotated the segment as a break. We 1259 
then calculated breakpoint density as: 1260 

breakpoint density =
N breaks

Size in Mb of effectively surveyed genome 1261 

Chromothripsis Analysis (WGS samples only; chromothripsis analysis 1262 
module) 1263 

Considering only chromosomes 1-22 and X, we identified candidate chromothripsis regions in 1264 
the set of independent tumor WGS samples with ShatterSeek109, using Manta SV calls that 1265 
passed all filters and consensus CNV calls. We modified the consensus CNV data to fit 1266 
ShatterSeek input requirements as follows: we set CNV-neutral or excluded regions as the 1267 
respective sample’s ploidy value from Control-FREEC, and we then merged consecutive 1268 
segments with the same copy number value. We classified candidate chromothripsis regions as 1269 
high- or low-confidence using the statistical criteria described by the ShatterSeek authors. 1270 

Immune Profiling and Deconvolution (immune-deconv analysis module) 1271 

We used the R package immunedeconv110 with the method quanTIseq111 to deconvolute 1272 
various immune cell types across tumors from the PBTA cohort in the stranded and poly-A 1273 
collapsed FPKM RNA-seq datasets (immune-deconv analysis module). The quanTIseq 1274 
deconvolution method directly estimates absolute fractions of 10 immune cell types that 1275 
represent inferred proportions of the cell types in the mixture. Therefore, we utilized quanTIseq 1276 
for inter-sample, intra-sample, and inter-histology score comparisons. 1277 

Gene Set Variation Analysis (gene-set-enrichment-analysis analysis module) 1278 

We performed Gene Set Variation Analysis (GSVA) on collapsed, log2-transformed RSEM 1279 
FPKM data using the GSVA Bioconductor package112. We specified the parameter 1280 
mx.diff=TRUE to obtain Gaussian-distributed scores for each of the MSigDB hallmark gene 1281 
sets113. We compared GSVA scores among histology groups using ANOVA and subsequent 1282 
Tukey tests; p-values were Bonferroni-corrected for multiple hypothesis testing. We plotted 1283 
scores by cancer group using the ComplexHeatmap R package (Figure 5B)108. 1284 
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Transcriptomic Dimension Reduction (transcriptomic-dimension-reduction 1285 
analysis module) 1286 

We applied Uniform Manifold Approximation and Projection (UMAP)114 to log2-transformed 1287 
FPKM data using the umap R package (See Key Resources Table). We set the number of 1288 
neighbors to 15. 1289 

Fusion prioritization (fusion_filtering analysis module) 1290 

We performed artifact filtering and additional annotation on fusion calls to prioritize putative 1291 
oncogenic fusions. Briefly, we considered all in-frame and frameshift fusion calls with at least 1292 
one junction read and at least one gene partner expressed (TPM > 1) to be true calls. If a fusion 1293 
call had a large number of spanning fragment reads compared to junction reads (spanning 1294 
fragment minus junction read greater than ten), we removed these calls as potential false 1295 
positives. We prioritized a union of fusion calls as true calls if the fused genes were detected by 1296 
both callers, the same fusion was recurrent within a broad histology grouping (> 2 samples), or 1297 
the fusion was specific to the given broad histology. If either 5’ or 3’ genes fused to more than 1298 
five different genes within a sample, we removed these calls as potential false positives. We 1299 
annotated putative driver fusions and prioritized fusions based on partners containing known 1300 
kinases, oncogenes, tumor suppressors, curated transcription factors115, COSMIC genes, 1301 
and/or known TCGA fusions from curated references. Based on pediatric cancer literature 1302 
review, we added MYBL1116, SNCAIP117, FOXR2118, TTYH1119, and TERT120–123 to the oncogene 1303 
list, and we added BCOR118 and QKI124 to the tumor suppressor gene list. 1304 

Oncoprint figure generation (oncoprint-landscape analysis module) 1305 

We used Maftools104 to generate oncoprints depicting the frequencies of canonical somatic 1306 
gene mutations, CNVs, and fusions for the top 20 genes mutated across primary tumors within 1307 
broad histologies of the OpenPBTA dataset. We collated canonical genes from the literature for 1308 
low-grade astrocytic tumors25, embryonal tumors26,28,29,125,126, diffuse astrocytic and 1309 
oligodendroglial tumors15,22,30,31, and other tumors: ependymal tumors, craniopharyngiomas, 1310 
neuronal-glial mixed tumors, histiocytic tumors, chordoma, meningioma, and choroid plexus 1311 
tumors127–136. 1312 

Mutational Signatures (mutational-signatures analysis module) 1313 

We obtained weights (i.e., exposures) for signature sets using the deconstructSigs R 1314 
package function whichSignatures()137 from consensus SNVs with the 1315 
BSgenome.Hsapiens.UCSC.hg38 annotations (see Key Resources Table). Specifically, we 1316 
estimated signature weights across samples for eight signatures previously identified in the 1317 
Signal reference set of signatures (“RefSig”) as associated with adult central nervous system 1318 
(CNS) tumors36. These eight RefSig signatures are 1, 3, 8, 11, 18, 19, N6, and MMR2. Weights 1319 
for signatures fall in the range zero to one inclusive. deconstructSigs estimates the weights 1320 
for each signature across samples and allows for a proportion of unassigned weights referred to 1321 
as “Other” in the text. These results do not include signatures with small contributions; 1322 
deconstructSigs drops signature weights that are less than 6%137. We plotted mutational 1323 
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signatures for patients with hypermutant tumors (Figure 4E) using the R package 1324 
ComplexHeatmap108. 1325 

Tumor Mutation Burden (snv-callers analysis module) 1326 

We consider tumor mutation burden (TMB) to be the number of consensus SNVs per effectively 1327 
surveyed base of the genome. We considered base pairs to be effectively surveyed if they were 1328 
in the intersection of the genomic ranges considered by the callers used to generate the 1329 
consensus and where appropriate, regions of interest, such as coding sequences. We 1330 
calculated TMB as: 1331 

TMB =
# of coding sequence SNVs

Size in Mb of effectively surveyed genome 1332 

We used the total number coding sequence consensus SNVs for the numerator and the size of 1333 
the intersection of the regions considered by Strelka2 and Mutect2 with coding regions 1334 
(CDS from GENCODE v27 annotation, see Key Resources Table) as the denominator. 1335 

Clinical Data Harmonization 1336 

WHO Classification of Disease Types 1337 

Table S1 contains a README, along with sample technical, clinical, and additional metadata 1338 
used for this study. 1339 

Molecular Subtyping 1340 

We performed molecular subtyping on tumors in the OpenPBTA to the extent possible. The 1341 
molecular_subtype field in pbta-histologies.tsv contains molecular subtypes for 1342 
tumor types selected from pathology_diagnosis and 1343 
pathology_free_text_diagnosis fields as described below, following World Health 1344 
Organization 2016 classification criteria21. 1345 

Medulloblastoma (MB) subtypes SHH, WNT, Group 3, and Group 4 were predicted using the 1346 
consensus of two RNA expression classifiers: MedulloClassifier61 and MM2S60 on the 1347 
RSEM FPKM data (molecular-subtyping-MB analysis module). 1348 

High-grade glioma (HGG) subtypes were derived (molecular-subtyping-HGG analysis 1349 
module) using the following criteria: 1350 

1. If any sample contained an H3F3A p.K28M, HIST1H3B p.K28M, HIST1H3C p.K28M, or 1351 
HIST2H3C p.K28M mutation and no BRAF p.V600E mutation, it was subtyped as DMG, 1352 
H3 K28. 1353 

2. If any sample contained an HIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C 1354 
p.K28M mutation and a BRAF p.V600E mutation, it was subtyped as DMG, H3 K28, 1355 
BRAF V600E. 1356 
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3. If any sample contained an H3F3A p.G35V or p.G35R mutation, it was subtyped asHGG, 1357 
H3 G35. 1358 

4. If any high-grade glioma sample contained an IDH1 p.R132 mutation, it was subtyped as 1359 
HGG, IDH. 1360 

5. If a sample was initially classified as HGG, had no defining histone mutations, and a 1361 
BRAF p.V600E mutation, it was subtyped as BRAF V600E. 1362 

6. All other high-grade glioma samples that did not meet any of these criteria were 1363 
subtyped as HGG, H3 wildtype. 1364 

Embryonal tumors were included in non-MB and non-ATRT embryonal tumor subtyping 1365 
(molecular-subtyping-embryonal analysis module) if they met any of the following 1366 
criteria: 1367 

1. A TTYH1 (5’ partner) fusion was detected. 1368 
2. A MN1 (5’ partner) fusion was detected, with the exception of MN1::PATZ1 since it is an 1369 

entity separate of CNS HGNET-MN1 tumors138. 1370 
3. Pathology diagnoses included “Supratentorial or Spinal Cord PNET” or “Embryonal 1371 

Tumor with Multilayered Rosettes”. 1372 
4. A pathology diagnosis of “Neuroblastoma”, where the tumor was not indicated to be 1373 

peripheral or metastatic and was located in the CNS. 1374 
5. Any sample with “embryonal tumor with multilayer rosettes, ros (who grade iv)”, 1375 

“embryonal tumor, nos, congenital type”, “ependymoblastoma” or “medulloepithelioma” 1376 
in pathology free text. 1377 

Non-MB and non-ATRT embryonal tumors identified with the above criteria were further 1378 
subtyped (molecular-subtyping-embryonal analysis module) using the criteria below139–1379 
142. 1380 

1. Any RNA-seq biospecimen with LIN28A overexpression, plus a TYH1 fusion (5’ partner) 1381 
with a gene adjacent or within the C19MC miRNA cluster and/or copy number 1382 
amplification of the C19MC region was subtyped as ETMR, C19MC-altered 1383 
(Embryonal tumor with multilayer rosettes, chromosome 19 miRNA cluster altered)119,143. 1384 

2. Any RNA-seq biospecimen with LIN28A overexpression, a TTYH1 fusion (5’ partner) 1385 
with a gene adjacent or within the C19MC miRNA cluster but no evidence of copy 1386 
number amplification of the C19MC region was subtyped as ETMR, NOS (Embryonal 1387 
tumor with multilayer rosettes, not otherwise specified)119,143. 1388 

3. Any RNA-seq biospecimen with a fusion having a 5’ MN1 and 3’ BEND2 or CXXC5 1389 
partner were subtyped as CNS HGNET-MN1 [Central nervous system (CNS) high-grade 1390 
neuroepithelial tumor with MN1 alteration]. 1391 

4. Non-MB and non-ATRT embryonal tumors with internal tandem duplication (as defined 1392 
in144) of BCOR were subtyped as CNS HGNET-BCOR (CNS high-grade neuroepithelial 1393 
tumor with BCOR alteration). 1394 
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5. Non-MB and non-ATRT embryonal tumors with over-expression and/or gene fusions in 1395 
FOXR2 were subtyped as CNS NB-FOXR2 (CNS neuroblastoma with FOXR2 1396 
activation). 1397 

6. Non-MB and non-ATRT embryonal tumors with CIC::NUTM1 or other CIC fusions, were 1398 
subtyped as CNS EFT-CIC (CNS Ewing sarcoma family tumor with CIC alteration)118 1399 

7. Non-MB and non-ATRT embryonal tumors that did not fit any of the above categories 1400 
were subtyped as CNS Embryonal, NOS (CNS Embryonal tumor, not otherwise 1401 
specified). 1402 

Neurocytoma subtypes central neurocytoma (CNC) and extraventricular neurocytoma (EVN) 1403 
were assigned (molecular-subtyping-neurocytoma analysis module) based on the 1404 
primary site of the tumor145. If the tumor’s primary site was “ventricles,” we assigned the subtype 1405 
as CNC; otherwise, we assigned the subtype as EVN. 1406 

Craniopharyngiomas (CRANIO) were subtyped (molecular-subtyping-CRANIO analysis 1407 
module) into adamantinomatous (CRANIO, ADAM), papillary (CRANIO, PAP) or undetermined 1408 
(CRANIO, To be classified) based on the following criteria146,147: 1409 

1. Craniopharyngiomas from patients over 40 years old with a BRAF p.V600E mutation 1410 
were subtyped as CRANIO, PAP. 1411 

2. Craniopharyngiomas from patients younger than 40 years old with mutations in exon 3 of 1412 
CTNNB1 were subtyped as CRANIO, ADAM. 1413 

3. Craniopharyngiomas that did not fall into the above two categories were subtyped as 1414 
CRANIO, To be classified. 1415 

A molecular subtype of EWS was assigned to any tumor with a EWSR1 fusion or with a 1416 
pathology_diagnosis of Ewings Sarcoma (molecular-subtyping-EWS analysis 1417 
module). 1418 

Low-grade gliomas (LGG) or glialneuronal tumors (GNT) were subtyped (molecular-1419 
subtyping-LGAT analysis module). based on SNV, fusion and CNV status based on23, and as 1420 
described below. 1421 

1. If a sample contained a NF1 somatic mutation, either nonsense or missense, it was 1422 
subtyped as LGG, NF1-somatic. 1423 

2. If a sample contained NF1 germline mutation, as indicated by a patient having the 1424 
neurofibromatosis cancer predisposition, it was subtyped as LGG, NF1-germline. 1425 

3. If a sample contained the IDH p.R132 mutation, it was subtyped as LGG, IDH. 1426 
4. If a sample contained a histone p.K28M mutation in either H3F3A, H3F3B, HIST1H3B, 1427 

HIST1H3C, or HIST2H3C, or if it contained a p.G35R or p.G35V mutation in H3F3A, it 1428 
was subtyped as LGG, H3. 1429 

5. If a sample contained BRAF p.V600E or any other non-canonical BRAF mutations in the 1430 
kinase (PK_Tyr_Ser-Thr) domain PF07714 (see Key Resources Table), it was 1431 
subtyped as LGG, BRAF V600E. 1432 
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6. If a sample contained KIAA1549::BRAF fusion, it was subtyped as LGG, 1433 
KIAA1549::BRAF. 1434 

7. If a sample contained SNV or indel in either KRAS, NRAS, HRAS, MAP2K1, MAP2K2, 1435 
MAP2K1, ARAF, RAF1, or non-kinase domain of BRAF, or if it contained RAF1 fusion, 1436 
or BRAF fusion that was not KIAA1549::BRAF, it was subtyped as LGG, other 1437 
MAPK. 1438 

8. If a sample contained SNV in either MET, KIT or PDGFRA, or if it contained fusion in 1439 
ALK, ROS1, NTRK1, NTRK2, NTRK3 or PDGFRA, it was subtyped as LGG, RTK. 1440 

9. If a sample contained FGFR1 p.N546K, p.K656E, p.N577, or p. K687 hotspot mutations, 1441 
or tyrosine kinase domain tandem duplication (See Key Resources Table), or FGFR1 1442 
or FGFR2 fusions, it was subtyped as LGG, FGFR. 1443 

10. If a sample contained MYB or MYBL1 fusion, it was subtyped as LGG, MYB/MYBL1. 1444 
11. If a sample contained focal CDKN2A and/or CDKN2B deletion, it was subtyped as LGG, 1445 

CDKN2A/B. 1446 

For LGG tumors that did not have any of the above molecular alterations, if both RNA and DNA 1447 
samples were available, it was subtyped as LGG, wildtype. Otherwise, if either RNA or DNA 1448 
sample was unavailable, it was subtyped as LGG, To be classified. 1449 

If pathology diagnosis was Subependymal Giant Cell Astrocytoma (SEGA), the LGG 1450 
portion of molecular subtype was recoded to SEGA. 1451 

Lastly, for all LGG- and GNT- subtyped samples, if the tumors were glialneuronal in origin, 1452 
based on pathology_free_text_diagnosis entries of desmoplastic 1453 
infantile,desmoplastic infantile ganglioglioma, desmoplastic infantile 1454 
astrocytoma or glioneuronal, each was recoded as follows: If pathology diagnosis is Low-1455 
grade glioma/astrocytoma (WHO grade I/II) or Ganglioglioma, the LGG portion of 1456 
the molecular subtype was recoded to GNT. 1457 

Ependymomas (EPN) were subtyped (molecular-subtyping-EPN analysis module) into 1458 
EPN, ST RELA, EPN, ST YAP1, EPN, PF A and EPN, PF B based on evidence for these 1459 
molecular subgroups as described in Pajtler et al.128. Briefly, fusion, CNV and gene expression 1460 
data were used to subtype EPN as follows: 1461 

1. Any tumor with fusions containing RELA as fusion partner, e.g., C11orf95::RELA, 1462 
LTBP3::RELA, was subtyped as EPN, ST RELA. 1463 

2. Any tumor with fusions containing YAP1 as fusion partner, such as C11orf95::YAP1, 1464 
YAP1::MAMLD1 and YAP1::FAM118B, was subtyped as EPN, ST YAP1. 1465 

3. Any tumor with the following molecular characterization would be subtyped as EPN, PF 1466 
A: 1467 

• CXorf67 expression z-score of over 3 1468 
• TKTL1 expression z-score of over 3 and 1q gain 1469 
4. Any tumor with the following molecular characterization would be subtyped as EPN, PF 1470 

B: 1471 
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• GPBP17 expression z-score of over 3 and loss of 6q or 6p 1472 
• IFT46 expression z-score of over 3 and loss of 6q or 6p 1473 

Any tumor with the above molecular characteristics would be exclusively subtyped to the 1474 
designated group. 1475 

For all other remaining EPN tumors without above molecular characteristics, they would be 1476 
subtyped to EPN, ST RELA and EPN, ST YAP1 in a non-exclusive way (e.g., a tumor could 1477 
have both EPN, ST RELA and EPN, ST YAP1 subtypes) if any of the following alterations 1478 
were present. 1479 

1. Any tumor with the following alterations was assigned EPN, ST RELA: 1480 
• PTEN::TAS2R1 fusion 1481 
• chromosome 9 arm (9p or 9q) loss 1482 
• RELA expression z-score of over 3 1483 
• L1CAM expression z-score of over 3 1484 
2. Any tumor with the following alterations was assigned EPN, ST YAP1: 1485 
• C11orf95::MAML2 fusion 1486 
• chromosome 11 short arm (11p) loss 1487 
• chromosome 11 long arm (11q) gain 1488 
• ARL4D expression z-score of over 3 1489 
• CLDN1 expression z-score of over 3 1490 

After all relevant tumor samples were subtyped by the above molecular subtyping modules, the 1491 
results from these modules, along with other clinical information (such as pathology diagnosis 1492 
free text), were compiled in the molecular-subtyping-pathology module and integrated 1493 
into the OpenPBTA data in the molecular-subtyping-integrate module. 1494 

TP53 Alteration Annotation (tp53_nf1_score analysis module) 1495 

We annotated TP53 altered HGG samples as either TP53 lost or TP53 activated and 1496 
integrated this within the molecular subtype. To this end, we applied a TP53 inactivation 1497 
classifier originally trained on TCGA pan-cancer data38 to the matched RNA expression data for 1498 
each sample. Along with the TP53 classifier scores, we collectively used consensus SNV and 1499 
CNV, SV, and reference databases that list TP53 hotspot mutations148,149 and functional 1500 
domains150 to determine TP53 alteration status for each sample. We adopted the following rules 1501 
for calling either TP53 lost or TP53 activated: 1502 

1. If a sample had either of the two well-characterized TP53 gain-of-function mutations, 1503 
p.R273C or p.R248W39, we assigned TP53 activated status. 1504 

2. Samples were annotated as TP53 lost if they contained i) a TP53 hotspot mutation as 1505 
defined by IARC TP53 database or the MSKCC cancer hotspots database148,149 (see 1506 
also, Key Resources Table), ii) two TP53 alterations, including SNV, CNV or SV, 1507 
indicative of probable bi-allelic alterations; iii) one TP53 somatic alteration, including 1508 
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SNV, CNV, or SV or a germline TP53 mutation indicated by the diagnosis of Li-Fraumeni 1509 
syndrome (LFS)151, or iv) one germline TP53 mutation indicated by LFS and the TP53 1510 
classifier score for matched RNA-Seq was greater than 0.5. 1511 

Prediction of participants’ genetic sex 1512 

Participant metadata included a reported gender. We used WGS germline data, in concert with 1513 
the reported gender, to predict participant genetic sex so that we could identify sexually 1514 
dimorphic outcomes. This analysis may also indicate samples that may have been 1515 
contaminated. We used the idxstats utility from SAMtools152 to calculate read lengths, the 1516 
number of mapped reads, and the corresponding chromosomal location for reads to the X and Y 1517 
chromosomes. We used the fraction of total normalized X and Y chromosome reads that were 1518 
attributed to the Y chromosome as a summary statistic. We manually reviewed this statistic in 1519 
the context of reported gender and determined that a threshold of less than 0.2 clearly 1520 
delineated female samples. We marked fractions greater than 0.4 as predicted males, and we 1521 
marked samples with values in the inclusive range 0.2-0.4 as unknown. We performed this 1522 
analysis through CWL on CAVATICA. We added resulting calls to the histologies file under the 1523 
column header germline_sex_estimate. 1524 

Selection of independent samples (independent-samples analysis module) 1525 

Certain analyses required that we select only a single representative specimen for each 1526 
individual. In these cases, we identified a single specimen by prioritizing primary tumors and 1527 
those with whole-genome sequencing available. If this filtering still resulted in multiple 1528 
specimens, we randomly selected a single specimen from the remaining set. 1529 

Quantification of Telomerase Activity using Gene Expression Data 1530 
(telomerase-activity-prediction analysis module) 1531 

We predicted telomerase activity of tumor samples using the recently developed EXTEND 1532 
method41. Briefly, EXTEND estimates telomerase activity based on the expression of a 13-gene 1533 
signature. We derived this signature by comparing telomerase-positive tumors and tumors with 1534 
activated alternative lengthening of telomeres pathway, a group presumably negative of 1535 
telomerase activity. 1536 

Survival models (survival-analysis analysis module) 1537 

We calculated overall survival (OS) as days since initial diagnosis and performed several 1538 
survival analyses on the OpenPBTA cohort using the survival R package. We performed 1539 
survival analysis for patients by HGG subtype using the Kaplan-Meier estimator153 and a log-1540 
rank test (Mantel-Cox test)154 on the different HGG subtypes. Next, we used multivariate Cox 1541 
(proportional hazards) regression analysis155 to model the following: a) tp53 scores + 1542 
telomerase scores + extent of tumor resection + LGG group + HGG group, 1543 
in which tp53 scores and telomerase scores are numeric, extent of tumor 1544 
resection is categorical, and LGG group and HGG group are binary variables indicating 1545 
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whether the sample is in either broad histology grouping, b) tp53 scores + telomerase 1546 
scores + extent of tumor resection for each cancer_group with an N>=3 1547 
deceased patients (DIPG, DMG, HGG, MB, and EPN), and c) quantiseq cell type 1548 
fractions + CD274 expression + extent of tumor resection for each 1549 
cancer_group with an N>=3 deceased patients (DIPG, DMG, HGG, MB, and EPN), in which 1550 
quantiseq cell type fractions and CD274 expression are numeric. 1551 

KEY RESOURCES TABLE 1552 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Critical commercial 
assays 

  

Recover Cell Culture 
Freezing media 

Gibco 12648010 

Hank’s Balanced Salt 
Solution (HBSS) 

Gibco 14175095 

Papain SciQuest LS003124 
Ovomucoid SciQuest 542000 
DNase Roche 10104159001 
100μm cell strainer Greiner 

Bio-One 
542000 

DMEM/F-12 medium Sigma D8062 
Fetal Bovine Serum 
(FBS) 

Hyclone SH30910.03 

GlutaMAX Gibco 35050061 
Penicillin/Streptomycin
-Amphotericin B 

Lonza 17-745E 

Normocin Invivogen ant-nr-2 
B-27 supplement 
minus vitamin A 

Gibco 12587-010 

N-2 supplement Gibco 17502001 
Epidermal growth 
factor 

Gibco PHG0311L 

Basic fibroblast growth 
factor 

PeproTec
h 

100-18B 

Heparin Sigma H3149 
DNA/RNA AllPrep Kit Qiagen 80204 
TruSeq RNA Sample 
Prep Kit 

Illumina FC-122-1001 

KAPA Library 
Preparation Kit 

Roche KK8201 
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REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

AllPrep 
DNA/RNA/miRNA 
Universal kit 

Qiagen 80224 

RNase A Qiagen 19101 
QIAsymphony DSP 
DNA Midi Kit 

Qiagen 937255 

KAPA HyperPrep kit Roche 08098107702 
RiboErase kit Roche 07962304001 
Raw and harmonized 
WGS, WXS, Panel, 
RNA-Seq 

KidsFirst 
Data 
Resource 
Center, 
this 
project 

73 

Merged summary files this 
project 

https://cavatica.sbgenomics.com/u/cavatica/openpbta 

Merged summary files 
and downstream 
analyses 

this 
project 

https://github.com/AlexsLemonade/OpenPBTA-analysis/ 

Processed data this 
project 

https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta 

Experimental models: 
Cell lines 

  

CBTN pediatric brain 
tumor-derived cell 
lines 

14 See Table S1 for identifiers 

Software and 
algorithms 

  

Data processing and 
analysis software 

Multiple See Table S5 for identifiers 

OpenPBTA workflows 
repository 

this 
project 

156 

OpenPBTA analysis 
repository 

this 
project 

157 

OpenPBTA 
manuscript repository 

this 
project 

 

   
Other   
TCGA WXS dataset National 

Institutes 
of Health 
The 

dbGAP phs000178.v11.p8 
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REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Cancer 
Genome 
Atlas 
(TCGA) 

Cancer hotspots MSKCC https://www.cancerhotspots.org/#/download (v2) 
Reference genomes Broad https://s3.console.aws.amazon.com/s3/buckets/broad-

references/hg38/v0/ 
Reference genome 
hg38, patch release 
12 

UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/ 

Human Cytoband file UCSC http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBand
.txt.gz 

CDS from GENCODE 
v27 annotation 

GENCOD
E 

https://www.gencodegenes.org/human/release_27.html 

PFAM domains and 
locations 

UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfamDes
c.txt.gz; https://pfam.xfam.org/family/PF07714 

BSgenome.Hsapiens.
UCSC.hg38 
annotations 

Biocondu
ctor 

https://bioconductor.org/packages/release/data/annotation/html/BSge
nome.Hsapiens.UCSC.hg38.html 

gnomAD v2.1.1 
(exome and genome) 

Genome 
Aggregati
on 
Database 

https://gnomad.broadinstitute.org/downloads#v2-liftover-variants 

KEGG MMR gene set 
v7.5.1 

BROAD 
Institute 

https://www.gsea-
msigdb.org/gsea/msigdb/download_geneset.jsp?geneSetName=KE
GG_MISMATCH_REPAIR 

ClinVar Database 
(2022-05-07) 

NCBI https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/202
2/clinvar_20220507.vcf.gz 
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Supplemental Information Titles and Legends 1553 

 1554 

Figure S1: OpenPBTA Project Workflow, Related to Figure 1. Biospecimens and data were 1555 
collected by CBTN and PNOC. Genomic sequencing and harmonization (orange boxes) were 1556 
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performed by the Kids First Data Resource Center (KFDRC). Analyses in the green boxes were 1557 
performed by contributors of the OpenPBTA project. Output files are denoted in blue. Figure 1558 
created with BioRender.com. 1559 

 1560 

Figure S2: Validation of Consensus SNV calls and Tumor Mutation Burden, Related to 1561 
Figures 2 and 3. Correlation (A) and violin (B) plots of mutation variant allele frequencies 1562 
(VAFs) comparing the variant callers (Lancet, Strelka2, Mutect2, and VarDict) used for PBTA 1563 
samples. Upset plot (C) showing overlap of variant calls. Correlation (D) and violin (E) plots of 1564 
mutation variant allele frequencies (VAFs) comparing the variant callers (Lancet, Strelka2, and 1565 
Mutect2) used for TCGA samples. Upset plot (F) showing overlap of variant calls. Violin plots 1566 
(G) showing VAFs for Lancet calls performed on WGS and WXS from the same tumor (N = 52 1567 
samples from 13 patients). Cumulative distribution TMB plots for PBTA (H) and TCGA (I) tumors 1568 
using consensus SNV calls. 1569 
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 1570 

Figure S3: Genomic instability of pediatric brain tumors, Related to Figures 2 and 3. (A) 1571 
Oncoprint of canonical somatic gene mutations, CNVs, fusions, and TMB (top bar plot) for the 1572 
top 20 genes mutated across rare CNS tumors: desmoplastic infantile astrocytoma and 1573 
ganglioglioma (N = 2), germinoma (N = 4), glial-neuronal NOS (N = 8), metastatic secondary 1574 
tumors (N = 2), neurocytoma (N = 2), pineoblastoma (N = 4), Rosai-Dorfman disease (N = 2), 1575 
and sarcomas (N = 4). Patient sex (Germline sex estimate) and tumor histology (Cancer 1576 
Group) are displayed as annotations at the bottom of each plot. Only primary tumors with 1577 
mutations in the listed genes are shown. Multiple CNVs are denoted as a complex event. (B) 1578 
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Genome-wide plot of CNV alterations by broad histology. Each row represents one sample. Box 1579 
and whisker plots of number of CNV breaks (C) or SV breaks (D) by number of chromothripsis 1580 
regions. 1581 
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Figure S4: Mutational signatures in pediatric brain tumors, Related to Figure 3. (A) 1583 
Sample-specific RefSig signature weights across cancer groups ordered by decreasing 1584 
Signature 1 exposure. (B) Proportion of Signature 1 plotted by phase of therapy for each cancer 1585 
group. 1586 

 1587 

Figure S5: Quality control metrics for TP53 and EXTEND scores, Related to Figure 4. (A) 1588 
Receiver Operating Characteristic for TP53 classifier run on FPKM of poly-A RNA-Seq samples. 1589 
Correlation plots for telomerase scores (EXTEND) with RNA expression of TERT (B) and TERC 1590 
(C). 1591 

 1592 

Figure S6: Subtype-specific clustering and immune cell fractions, Related to Figure 5. 1593 
First two dimensions from UMAP of sample transcriptome data with points colored by 1594 
molecular_subtype for medulloblastoma (A), ependymoma (B), low-grade glioma (C), and 1595 
high-grade glioma (D). (E) Box plots of quanTIseq estimates of immune cell fractions in 1596 
histologies with more than one molecular subtype with N >=3. (F) Box plots of the ratio of 1597 
immune cell fractions of CD8+ to CD4+ T cells in histologies with more than one molecular 1598 
subtype with N >=3. 1599 
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Table S1. Related to Figure 1. Table of specimens and associated metadata, clinical data, and 1600 
histological data utilized in the OpenPBTA project. 1601 

Table S2. Related to Figures 2 and 3. Excel file with three sheets representing tables of TMB, 1602 
eight CNS mutational signatures, and chromothripsis events per sample, respectively. 1603 

Table S3. Related to Figures 4 and 5. Excel file with three sheets representing tables of TP53 1604 
scores, telomerase EXTEND scores, and quanTIseq immune scores, respectively. 1605 

Table S4. Related to Figures 4 and 5. Excel file with six sheets representing the survival 1606 
analyses performed for this manuscript. See Star Methods for details. 1607 

Table S5. Related to Figure 1. Excel file with four sheets representing of all software and their 1608 
respective versions used for the OpenPBTA project, including the R packages in the OpenPBTA 1609 
Docker image, Python packages i the OpenPBTA Docker image, other command line tools in 1610 
the OpenPBTA Docker image, and all software used in the OpenPBTA workflows, respectively. 1611 
Note that all software in the OpenPBTA Docker image was utilized within the analysis 1612 
repository, but not all software was used for the final manuscript. 1613 
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