

1 **Chronic stress exposure alters the gut barrier: sex-specific effects on** 2 **microbiota and jejunum tight junctions**

4 Ellen Doney¹, Laurence Dion-Albert¹, Francois Coulombe-Rozon¹, Natasha Osborne², Renaud
5 Bernatchez³, Sam E.J. Paton¹, Fernanda Neutzling Kaufmann¹, Roseline Olory Agomma³, José
6 L. Solano¹, Raphael Gaumond¹, Katarzyna A. Dudek¹, Joanna Kasia Szyszkowicz⁴, Signature
7 Consortium⁵, Manon Lebel¹, Alain Doyen⁶, Audrey Durand³, Flavie Lavoie-Cardinal¹, Marie-
8 Claude Audet^{2,7}, Caroline Menard^{1§}

10 ¹Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center,
11 Université Laval, Quebec City, Canada

12 ²Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada

13 ³Department of Computer Science and Software Engineering and Department of Electrical and Computer
14 Engineering, Université Laval, Quebec City, Canada

15 ⁴Douglas Mental Health University Institute and McGill University, Montreal, Canada

16 ⁵Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux
17 Est, Montreal, QC, Canada

18 ⁶Department of Food Science, Institute of Nutrition and Functional Foods (INAF), Université Laval,
19 Quebec City, Canada

20 ⁷School of Nutrition Sciences, University of Ottawa, Ottawa, Canada

24 Number of pages: 41

25 Number of figures: 7 (+5 supplementary figures)

26 Number of tables: 3

27 Number of words: 7307 for the main text and 265 for the abstract

31 **§Corresponding author:**

32 **Caroline Menard, PhD**
33 CERVO Brain Research Center
34 Department of Psychiatry and Neuroscience
35 Faculty of Medicine, Université Laval
36 2601 de la Canardiere
37 Quebec City, QC, Canada G2J 2G3
38 (418) 663-5741
39 E-mail: caroline.menard@fmed.ulaval.ca

41 **Running title:** Stress-induced gut barrier alterations

43 **Keywords:** Social stress, variable stress, sex differences, claudins, cytokines

44 **Abstract**

45 Major depressive disorder (MDD) is the leading cause of disability worldwide. However,
46 30-50% of patients are unresponsive to commonly prescribed antidepressants, highlighting
47 untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis, the
48 bidirectional communications between the central nervous system and gastrointestinal tract that
49 are modulated by gut microorganisms, has been implicated in MDD pathogenesis. Exposure to
50 chronic stress disrupts blood-brain barrier integrity, still, little is known about intestinal barrier
51 function in these conditions particularly for the small intestine where most food and drug
52 absorption takes place. Thus, here we investigate how chronic social or variable stress, two mouse
53 models of depression, impact the jejunum (JEJ) intestinal barrier in males and females. Mice were
54 subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-
55 related targets, fecal microbial composition, and blood-based markers. Altered microbial
56 populations as well as changes in gene expression of JEJ tight junctions were observed depending
57 on the type and duration of stress, with sex-specific effects. We took advantage of machine learning
58 to characterize in detail morphological tight junction properties identifying a cluster of ruffled
59 junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated
60 if LPS injection recapitulates stress-induced changes in the JEJ and observed profound sex
61 differences. Finally, LPS-binding protein (LBP), a marker of gut barrier leakiness, was associated
62 with stress vulnerability in mice and translational value was confirmed on blood samples from
63 women with MDD. Our results provide evidence that chronic stress disrupts intestinal barrier
64 homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific
65 manner in mice and possibly, human depression.

66

67 **Introduction**

68 Major depressive disorder (MDD) is currently the most prevalent mood disorder and the
69 leading cause of disability worldwide¹⁻³. Depressive disorders fall along a range of severities from
70 a milder, persistent dysthymia to severe MDD. Core symptoms include low mood, irritability,
71 anhedonia, apathy, difficulty concentrating, disrupted appetite and sleep¹⁻³. Still, this disorder is
72 highly heterogeneous and the experience, expression of symptoms and response to treatment varies
73 highly across individuals^{1,3}. Maladaptive central and peripheral inflammatory responses are
74 associated with mood disorders and have received increasing attention in psychiatry⁴⁻⁶. Indeed,
75 administration of pro-inflammatory cytokines or endotoxins is sufficient to induce behavioral
76 symptoms associated with depression and treatment-resistant individuals with MDD are
77 characterized by elevated levels of circulating cytokines³⁻⁶. Aligning with the neuroimmune
78 hypothesis of depression, MDD has a high comorbidity with inflammatory bowel diseases such as
79 Crohn's disease and ulcerative colitis^{7,8}, suggesting that inflammation-driven gut barrier
80 dysfunction may affect emotion regulation and vice versa¹. In gastrointestinal disorders, elevated
81 pro-inflammatory cytokines promote increased permeability in the intestinal tract by suppressing
82 tight junction mediated barrier function⁹. Shared profiles of upregulated pro-inflammatory
83 cytokines in the blood, such as interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6 and
84 interferon-gamma, occur in gastrointestinal disorders and MDD, which could be related to
85 increased intestinal permeability^{1,7}. Stress has been linked to the deterioration of the intestinal
86 barrier via alterations of gut-brain signaling^{10,11}. We recently showed that it can alter blood-brain
87 barrier (BBB) integrity in a sex-specific manner through loss of the tight junction protein Claudin-
88 5 (Cldn5), leading to the development of anxiety- and depression-like behaviors¹²⁻¹⁵. To our

89 knowledge, the impact of stress exposure on gut barrier integrity and assessment of sex differences
90 has yet to be determined.

91 Women are twice more likely than men to be diagnosed with MDD¹⁶. Symptomatology
92 and treatment responses also differ between sexes¹⁷⁻¹⁹. As chronic stress is the main environmental
93 risk factor for MDD²⁰, it is commonly used in male and female rodents to induce depression-like
94 behaviors and investigate underlying biology. Chronic social defeat stress (CSDS) is a mouse
95 model of depression based on social dominance, which produces two distinct phenotypes of stress
96 response: stress-susceptible (SS) and resilient (RES) mice²¹⁻²³. The SS subgroup display distinct
97 behavioral changes reminiscent of depressive symptoms in humans with increased social
98 avoidance, anxiety, anhedonia, despair, body weight changes, metabolic disturbances, and
99 corticosterone reactivity²¹⁻²³. Furthermore, loss of BBB integrity occurs only in the brain of SS,
100 but not RES, mice^{12,14}. Another leading stress paradigm is the chronic variable stress (CVS) model,
101 during which mice are exposed to a repetitive sequence of three stressors, namely tube restraint,
102 tail suspension, and foot shocks. Each stressor endures about 1 hour daily and lasts from 6 days to
103 several weeks^{24,25}. CVS also induces a pro-inflammatory immune profile like that produced by
104 CSDS²⁶. In this paradigm, females and males develop depression-like behaviors at different time
105 points making it a strong model for investigating sex differences^{4,25}.

106 The gut barrier is formed by the mucus layer, the epithelia, and a connective tissue layer,
107 known as the lamina propria²⁷. The epithelial cell monolayer faces the luminal side, interacting
108 with the environment and regulating absorption and secretion. In the small intestine, macro-
109 structures of the epithelial surface consist of elongated villi that protrude into the lumen and crypts
110 of proliferating and regenerating cells at the base between them²⁷. The epithelium provides a
111 dynamic and semi-permeable barrier with tight junction complexes, linking adjacent cells,
112 mediating the extent of the various functions. Combined, junction complexes and the overlying
113 mucus layer, maintain a healthy functional barrier which allows the passage of nutrients, water,
114 and ions, but limits entry of pathogens and bacterial toxins from the lumen^{27,28}. The intestinal
115 barrier is at the forefront of immune-environment interactions where the specialized cells play a
116 critical role in maintaining health through diverse mechanisms^{1,29}. Permeability of the epithelial
117 layer may increase interaction of antigens with immune cells, propagating a pro-inflammatory
118 response¹. Microbial translocation from the intestinal lumen into the systemic circulation in the
119 absence of acute infection is proposed as a mechanism behind the chronic inflammation in MDD<sup>30-
32</sup>. Indeed, the passage of bacterial products and immune factors as indirect measures of bacterial
120 translocation has been reported in MDD³⁰⁻³².

121 To assess the impact of stress exposure on gut barrier integrity and particularly the small
122 intestine which remains understudied, we used complementary mouse models of MDD and
123 combined behavioral, molecular, morphological, and pharmacological experiments with blood-
124 based assays. Our results provide characterization, in a sex-specific manner, of stress-induced
125 changes in the jejunum (JEJ) following exposure to social or variable stressors. We developed tools
126 and algorithms to analyze in detail tight junction morphological changes and identified circulating
127 LPS-binding protein (LBP) as a gut leakiness potential biomarker that could help better diagnose
128 and inform treatment strategies for mood disorders.

129

130 **Results**

131 **Chronic social stress alters intestinal tight junction expression with sex-specific effects.**

132 10-day CSDS exposure induced expression of SS and RES phenotypes based on the social
133 interaction (SI) test (**Fig.1A**). Among the 29 male mice subjected to social defeat, 16 had SI ratio

135 <1 and were classified as SS (55.2%) and 13 had SI ratios of ≥ 1 and were classified RES (44.8%)
136 (**Fig.1B**, left panel, SI ratio: $p < 0.0001$). Time spent in the corners when the aggressor (AGG) was
137 present is increased for SS mice (**Fig.1B**, middle panel, $p < 0.0004$) while total distance traveled
138 was similar between groups (**Fig.1B**, right panel and **Supp. Fig.1A-B**). 24h after the SI test, tissue
139 was collected and mRNA transcriptional profiling was performed for genes related to intestinal
140 tight junctions (*Cldn3*, *Cldn7*, *Cldn12*), tight junction-associated proteins (*Tjp1*, *Tjp2*, *Tjp3*, *Ocln*,
141 MARVEL domain-containing protein 2 [*Marveld2*]), as well as proteins involved in serotonin
142 metabolism (*Ido1* and *Ahr*) and mucus layer formation, Mucin-2 (*Muc2*) on the jejunum (JEJ) of
143 unstressed controls (CTRL), SS and RES mice. Indeed, serotonin metabolism is altered in
144 inflammatory bowel diseases, which are highly comorbid with MDD⁷, and the mucus layer is
145 essential to maintain gut barrier integrity. Fold changes were positively correlated with SI ratios
146 for *Cldn12* ($p = 0.006$, $r = 0.44$), *Tjp1* ($p = 0.03$, $r = 0.36$), *Tjp2* ($p = 0.004$, $r = 0.46$) and *Ocln* ($p < 0.001$,
147 $r = 0.55$) (**Fig.1C**), suggesting that loss of intestinal barrier integrity may be linked to social
148 avoidance in SS male mice. Intriguingly, *Cldn3*, an important intestinal tight junction, was
149 upregulated after CSDS exposure (**Fig.1D**, $p = 0.0002$).

150 We recently reported that CSDS alters BBB integrity in a sex-specific manner^{12,14}, which
151 may contribute to the sex differences observed in MDD prevalence, symptoms, and treatment
152 response. In female mice, exposure to CSDS (**Fig.1E**) also leads to two subpopulations of SS
153 (36.7%) and RES (63.3%) mice with SS mice displaying social avoidance (**Fig.1F**, SI ratio:
154 $p < 0.0001$; time corners: $p < 0.0001$ and **Supp. Fig.1C-D**) however, a correlation was noted only
155 for *Ocln* jejunum expression with SI ratio ($p = 0.04$, $r = 0.31$) (**Fig.1G**). As for stressed mice, a
156 significant correlation was observed for *Cldn7* ($p = 0.02$, $r = 0.41$) and *Ido1* ($p = 0.04$, $r = 0.24$)
157 (**Fig.1G**), highlighting stress-induced sex-specific patterns despite exposure to the same paradigm.
158 Unlike in males, *Cldn3* was not elevated in female mice after CSDS (**Fig.1H**) leading us to explore
159 further sex differences. In fact, *Cldn3* expression was higher in unstressed female mice when
160 compared to their male counterparts (*Cldn3*: $p < 0.0001$, **Supp. Fig.1E**) indicating baseline sex
161 differences for the JEJ tight junctions. There was a main effect of sex on *Cldn3* ($p = 0.008$) and
162 *Tjp1* ($p = 0.002$) expression in SS and RES male and female mice (**Fig.1I**). Post hoc tests confirmed
163 that stressed female mice had lower *Cldn3* expression than males in both SS and RES groups
164 ($p = 0.0499$). Similarly, SS males had lower *Tjp1* expression than SS females ($p = 0.01$) and an
165 interaction between sex and behavioral phenotype was present for *Tjp2* expression ($p = 0.04$)
166 (**Fig.1I**). Therefore, CSDS modified JEJ tight junction expression in both male and female mice,
167 but these changes were specific to each sex.

168 169 **Changes in jejunum tight junction expression are dependent of stress type and duration.**

170 Males and females are often the same at baseline but when exposure to a stressor occurs,
171 an effect can be observed in only one sex or have a greater effect in one of them. An example of
172 that is subthreshold CVS (SCVS), female mice are more vulnerable to it with exposure to only 6
173 days of stressors being sufficient to induce anxiety- and depression-like behaviors in females but
174 not males²⁵. Considering the sex-specific effects of 10-day exposure to CSDS (**Fig.1**), we
175 compared the impact of stress type and duration on *Cldn3* expression, one of the most abundant
176 tight junction proteins of the JEJ³³. While social stress increased *Cldn3* in males (**Fig.2A**,
177 $p = 0.0002$), it remained unchanged after 6-d SCVS (**Fig.2B**, left) in line with unaltered behaviors²⁴.
178 Conversely, *Cldn3* expression is reduced in the JEJ of female mice (**Fig.2B**, right, $p = 0.008$) which
179 are characterized by stress-induced anxiety- and depression-like behaviors¹⁴. Exposure to 28-d
180 CVS is associated with the development of maladaptive behaviors in both sexes³⁴ nevertheless,

181 *Cldn3* expression was reduced only in males (**Fig.2C**, left, $p=0.03$), suggesting that other
182 alterations might be present. Thus, like for CSDS, transcriptomic profiling was performed for
183 genes related to tight junctions, tight junction-associated proteins, mucus layer formation and
184 serotonin metabolism on the JEJ of unstressed controls vs male and female mice subjected to 6-d
185 or 28-d of variable stress, revealing specific sex, stress type and duration patterns (**Fig.2D**). No
186 difference was observed for the estrus cycle phase (**Supp. Fig.2**). In males, 10-d CSDS increased
187 *Cldn3* only while 28-d CVS decreased expression of several tight junctions and tight junctions
188 associated proteins. No effect was observed for mucus layer formation, serotonin metabolism or
189 after the 6-d SCVS paradigm. In contrast, changes were mostly observed after exposure to variable
190 stress in females (**Fig.2D**). Overall, assessment of *Cldn3* expression across stress paradigms
191 suggested a more profound impact after 28-d CVS in males (top left, $p<0.0001$; bottom left,
192 $p<0.0001$) vs 6-d SCVS (top right, $p=0.0071$; bottom right, $p=0.0118$) in females (**Fig.2E**). Other
193 genes differentially impacted in a sex-specific manner by 28-d CVS included *Cldn7* ($p=0.002$),
194 *Cldn12* ($p=0.035$) and *Ido1* ($p=0.013$) (**Fig.2F**).
195

196 **Detailed morphological assessments of stress-induced changes in JEJ Cldn3 expression.**

197 Next, we aimed to confirm that stress-induced alterations in tight junction gene expression
198 are also reflected at protein level. Female mice were subjected to the 6-d SCVS paradigm then JEJ
199 tissue was collected 24h later (**Fig.3A**). Thin 6- μ m slices were double stained with *Cldn3* (red) and
200 F-actin (green), and morphological analysis performed using the Imaris software (**Fig.3B-F**).
201 Structural and organizational properties of tight junctions play a major role in their function and
202 maintenance of the gut barrier integrity¹. Functional tight junctions are formed when claudins
203 interact with other transmembrane proteins, junction-associated scaffold proteins and the actin
204 cytoskeleton³⁵. Exposure to 6-d SCVS reduced *Cldn3* protein level (**Fig.3C**, $p=0.0357$), in line
205 with the changes observed at gene expression (**Fig.2B**), while no difference was measured for F-
206 actin, a key component of the cytoskeleton (**Fig.3C**). The Imaris software has tools to evaluate
207 colocalization of targets of interest and thus, overlap between *Cldn3* and F-actin was assessed as
208 shown on **Fig.3D**. The Pearson's correlation coefficient revealed a significant relationship between
209 loss in *Cldn3*/F-actin overlap and 6-d SCVS exposure while no change was measured with the
210 Mander's correlation coefficient (**Fig.3E**). Nonetheless, a trend toward lower colocalization
211 volume was observed after stress (**Fig.3F**, $p=0.0714$).

212 Nano-scale architecture of the BBB tight junctions has been receiving increasing attention
213 since it could help better understand their functions and contribution in disease pathology³⁶. Here,
214 we took advantage of machine learning-based algorithms to characterize further four features of
215 the JEJ tight junctions: ruffles, width, fragmentation, and diffusion. Images of JEJ samples from
216 female mice exposed to 6-d SCVS (**Fig.4A**) and double stained for *Cldn3* (red) and F-actin (green)
217 were acquired (**Fig.4B**) then analyzed using a custom software. A total of 1426 image crops
218 (controls: 452; SCVS: 974) were annotated according to the criteria defined in **Fig.4C** with a value
219 ranging from 0 to 1. Unsupervised k-means clustering allowed to group, in a blind manner, the
220 crops into 7 different clusters (**Fig.4D**) providing an overview and comparison of the *Cldn3* tight
221 junction properties between unstressed controls and mice subjected to 6-d SCVS (**Fig.4E**).
222 Representative images are provided for each cluster (**Fig.4F**) along with their properties for the
223 four feature values (**Fig.4G**). Cluster 7 (pink), which is associated with a high number of ruffles,
224 was of particular interest as it is absent in the control mice but observed in all stressed animals
225 (**Fig.4E**). Indeed, ruffled tight junctions are associated with increased paracellular permeability
226 and thus, a loss of barrier integrity³⁵. To our knowledge, this is the first detailed morphological

227 characterization of the impact of stress on the gut barrier integrity. Furthermore, an increase in
228 ruffled tight junctions suggests that stress-induced JEJ leakiness may contribute to the
229 neuroimmune mechanisms of MDD by allowing gut-related inflammatory mediators to leak into
230 the bloodstream.

231

232 **LPS-induced inflammation promotes loss of JEJ tight junctions in males only**

233 To confirm a causal role of stress-associated inflammation in the alterations observed at the
234 JEJ tight junctions, mice were pharmacologically treated with lipopolysaccharide (LPS). This
235 endotoxin is a product of the outer membrane of gram-negative bacteria commonly used to study
236 inflammation-induced behavioral changes in rodents³⁷. Importantly, it has translational value since
237 LPS is elevated in the plasma of individuals with MDD or anxiety disorders³⁸, although this would
238 need to be replicated in larger cohorts. Male or female mice received an i.p. injection of LPS (0.83
239 mg/kg) and after 24h samples were collected for tight junction analysis in the JEJ (**Fig.5A, D**).
240 Treatment with LPS led to profound changes in the male JEJ gene expression with a loss of tight
241 junctions (*Cldn3*, $p=0.0001$; *Cldn7*, $p<0.0001$; *Cldn12*, $p<0.0001$; *Ochn*, $p<0.0001$; *Marveld2*,
242 $p<0.0001$), tight junction-associated proteins (*Tjp1*, $p<0.0001$; *Tjp2*, $p<0.0001$; *Tjp3*, $p=0.0001$),
243 mucus layer-related *Muc2* ($p=0.0076$) and finally, *Ido1* ($p=0.0052$) and *Ahr* ($p=0.0016$), which
244 are linked to serotonin metabolism (**Fig.5B-C, Supp. Fig.3B**). Conversely, no significant change
245 was observed for female mice except for serotonin related *Ido1* ($p<0.0001$) and *Ahr* ($p=0.0115$)
246 (**Fig.5E-F, Supp. Fig.3C-D**), suggesting that other biological mechanisms underlie stress-induced
247 alterations in JEJ tight junctions in females.

248

249 **Sex-specific effects of stress exposure on fecal microbiota of male and female mice.**

250 Due to the relationship between intestinal microbiota and tight junctions of the intestine³⁹-
251⁴¹, we analyzed bacterial populations in our various stress models, for both sexes, to determine if
252 dysbiosis may be linked to JEJ tight junction's sex-specific changes. Male and female mice were
253 first exposed to 28-d CVS then fecal microbiota was compared (**Fig.6A**). No difference in the
254 alpha-diversity Shannon and Chao1 indices was observed in either sex (**Supp. Fig.4A-C**). In
255 contrast, beta-diversity measures of dissimilarity of whole microbiota communities between
256 groups revealed two distinct clusters for CVS male (**Fig.6B**, $p=0.042$), but not female (**Fig.6C**),
257 mice vs unstressed controls. In line with the major changes reported for males at the JEJ tight
258 junctions after 28-d CVS (**Fig.2**), a loss of Bacteroidetes ($p=0.013$) and a rise of Firmicutes
259 ($p=0.033$), the two most abundant phyla composing our fecal microbiota samples, were noted
260 (**Fig.6D**). In contrast, no difference was noted for females exposed to 28-d CVS (**Fig.6E**), again
261 in line with the limited number of alterations observed for tight junction expression after exposure
262 to this stress paradigm (**Fig.2**). CVS-exposed males also had a decrease of the *S24-7* ($p=0.016$),
263 *Lactobacillaceae* ($p=0.011$), and *Bacteroidaceae* ($p=0.057$, data not shown) families, along with
264 a rise in *Lachnospiraceae* ($p=0.022$) and in *Ruminococcaceae* ($p=0.039$) (**Fig.6F**).

265 After 6-d SCVS (**Fig.6G**), the alpha- and beta-diversity metrics did not differ between
266 groups (**Supp. Fig.4D-H**), but the phylum Proteobacteria was decreased (**Fig.6H**, $p=0.041$) in
267 male mice, a change that was potentially driven by reductions of the Proteobacteria members
268 *Alphaproteobacteria* (unassigned; $p=0.035$) and *Burkholderiales* ($p=0.009$). SCVS-exposed males
269 also had fewer *Clostridiales* (unassigned; $p=0.015$) and *Lactobacillaceae* ($p=0.026$) (**Fig.6J**). As
270 for females, no differences were detected in relative abundances of the various phyla (**Fig.6I**),
271 although a few changes at lower levels were apparent in this group, including an enrichment of the
272 family *Ruminococcaceae* ($p=0.052$, data not shown) and lower levels of the genus *Alistipes*

273 ($p=0.037$) (**Supp. Fig.4I**).

274 The gut microbiota has been implicated in male mice vulnerability to CSDS⁴² but, to our
275 knowledge, it was never explored in females. Thus, female mice were subjected to 10-d CSDS^{14,22}
276 and feces collected after stress exposure (**Supp. Fig.5A**). The Shannon and Chao1 indices and
277 beta-diversity did not differ between groups (**Supp. Fig.5B-C**), but the examination of relative
278 abundances throughout taxonomic ranks highlighted elevations of unassigned members of the
279 *Bacteroidales* order following CSDS in female mice exposed to social stress (**Supp. Fig.5D-E**,
280 $p=0.041$). Post hoc analysis revealed that SS, but not RES, mice had higher unassigned
281 *Bacteroidales* when compared to unstressed controls (**Supp. Fig.5E**, $p=0.026$), suggesting that
282 this subpopulation of *Bacteroidales*, although unassigned at that time, might play a role in social
283 stress vulnerability in females.

284

285 **Blood biomarkers are associated with loss of gut barrier integrity.**

286 We recently identified blood-based vascular biomarkers, associated with inflammation of
287 the BBB, in SS mice and women with MDD¹⁴. Identification of MDD-related biomarkers is greatly
288 needed to help guide clinical diagnosis¹. Stress-induced changes in tight junction expression and
289 microbiota populations may reflect increased gut barrier permeability. Thus, we explored here the
290 potential of gut-related circulating markers as indicators of stress vulnerability vs resilience. Blood
291 was collected prior and after exposure to 10-d CSDS and the serum of male mice was analyzed for
292 LPS-binding protein (LBP), a marker of gut leakiness¹ (**Fig.7A**, **Supp. Fig.6C-E** for behavioral
293 phenotyping). Social stress exposure induced an increase in circulating LBP in the blood serum of
294 SS ($p=0.0033$) but not RES or unstressed control mice (**Fig.7B**, left). Moreover, LBP level was
295 negatively correlated with social interactions ($p<0.0001$) (**Fig.7B**, right). Subtracted pre-CSDS
296 blood LBP level was used to dampen individual differences and confirm causality with stress
297 exposure. Next, we evaluated if this biomarker could be relevant for females as well. Blood LBP
298 was evaluated in the serum of female mice prior vs after exposure to 6-d SCVS paradigm (**Fig.7C**).
299 Indeed, it is in this context that we observed the most significant changes in JEJ *Cldn3* tight
300 junctions (**Fig.2D**). Like in males, stress exposure was associated with elevated circulating LBP
301 when compared to unstressed controls ($p=0.0188$) (**Fig.7D**). Baseline LBP was not different
302 between unstressed control males and females (**Fig.7E**). Finally, we evaluated translational value
303 of LBP as a potential biomarker of mood disorder by measuring it in blood serum samples from
304 individuals with MDD. High circulating LBP was observed for men and women with MDD vs
305 controls, without reaching significance (**Fig.7F**). However, consideration of sex revealed an
306 increase in women ($p=0.0434$), but not men, with MDD (**Fig.7G**). Like in mice, no difference was
307 noted for samples of the men and women in the control group (**Fig.7H**). These findings suggest an
308 increase in gut barrier permeability following stress exposure in mice and possibly, in individuals
309 with MDD.

310

311 **Discussion**

312 A growing body of literature connects aberrant gut-brain axis signaling in MDD,
313 nevertheless, a direct link between gut permeability and BBB leakiness, facilitating passage of
314 circulating inflammatory mediators into the brain in this context is still debated¹. The BBB and gut
315 barrier had not been compared directly until a recent evaluation of female rats facing social
316 isolation stress, which demonstrated shared modifications to *Ocln*, *Tjp1* and *Cldn5* gene expression
317 in the prefrontal cortex and the ileum⁴³. Considering our recent work identifying sex-specific BBB
318 tight junction changes in response to social defeat^{12,14} and variable stress¹⁴, we examined how these

319 models influence gut integrity. Overall, our results demonstrate altered expression of JEJ tight
320 junctions following stress, dependent on the type and duration of exposure. Indeed, alterations had
321 patterned sex-specific changes, consistent with the knowledge that female and male mice are
322 disparate in their behavioral and biological response to various stress models^{25,44}. LPS treatment
323 decreased many tight junction proteins in the intestine of males exclusively, highlighting the
324 potential role of inflammatory pathways on the gut. Measuring serum marker LBP provided
325 indirect evidence of increased intestinal permeability in both sexes. Microbiota sequencing
326 revealed sex-specific altered microbial populations post-stress which may be linked to the
327 manifestations of different changes in intestinal permeability along with depressive-like behaviors.

328 Recurrent alterations in *Cldn3* expression, part of the “tightening” group of tight junction
329 proteins^{33,45}, suggests that chronic stress exposure affected barrier permeability. In rodents, *Cldn3*
330 expression relates to functional measurements of permeability⁴⁶ and *in vitro* overexpression
331 reduced paracellular ion and large-molecule permeability⁴⁷. *Cldn3* alterations are implicated in
332 inflammatory bowel and celiac diseases⁴⁸, though precise functions and roles in pathology are
333 unclear. Our findings that CSDS elevated *Cldn3* expression in males aligns with previous reports
334 that intestinal *Cldn3* promotion is a repair initiative by the host in response to epithelial barrier
335 injury⁴⁹. On the contrary, 28-day CVS caused a *Cldn3* reduction, which implies the reparative
336 strategy is not sufficient to overcome a longer-term stress exposure.

337 Imaging showed *Cldn3* protein decrease in females reflecting mRNA expression changes.
338 Shifts in claudin expression are not simply restricted to protein or RNA quantity, as tight junction
339 structures and functions are highly dynamic. Tight junction borders typically display as linear
340 structures between cells, however, adjustments in junctional assembly and interactions with
341 scaffolding and cytoskeletal proteins alter these morphologies^{35,50}. Briefly, ruffles present as a zig-
342 zag shaped border and may be indicative of enhanced paracellular permeability³⁵. Increased
343 ruffling of tight junction borders following SCVS supports our previous statement that alterations
344 in *Cldn3* expression is likely indicative of disrupted barrier function in these animals.

345 The relationship between inflammatory bowel diseases and MDD has promoted clinical
346 investigations into biomarkers of intestinal dysfunction in the context of depression^{30,31,38,51}.
347 However, limited investigations exist in the context of chronic stress models. Here, elevated serum
348 LBP predominated in SS, and not RES, males following CSDS, highlighting its potential as a sex-
349 specific biomarker for vulnerability to this form of stress. LBP rises provides indirect evidence of
350 microbial translocation, due to its specificity to LPS endotoxin. To our knowledge, this is the first
351 report of this intestinal-related biomarker in chronic stress models. In accordance with previous
352 clinical reports³⁰, the observed serum LBP levels were elevated in MDD patients. However, this
353 effect was specific to women only in our cohort, and we did not find other reports that considered
354 MDD and compared the effect between sexes.

355 As for MDD, women have a higher risk of developing inflammatory bowel diseases¹,
356 therefore, tight junction alterations were expected in females following LPS-induced inflammatory
357 challenge. Surprisingly, tight junction gene expression was unaltered in females, while
358 considerable decrease occurred in male mice. Certainly, many gene markers implicated in
359 gastrointestinal disorders or claudins with still undetermined functions could be changing in a sex-
360 specific manner. Novel roles for peripheral serotonin metabolism are implicated in inflammatory,
361 immune, and metabolic signaling pathways⁵², prompting the inclusion of serotonin pathway
362 molecules *Ido-1* and *Ahr* to the intestinal gene expression analysis. LPS treatment reduced levels
363 of both serotonin-related molecules in females without affecting tight junctions like for males,
364 highlighting a potentially female-specific pathway. Indeed, progesterone modulates the colonic

365 serotonin system and in women with inflammatory bowel diseases, both the serotonin transporter
366 and serotonin levels are diminished⁵³. IDO-1 is highly upregulated in the human gut epithelium
367 during inflammation⁵⁴ and linked to symptoms in MDD^{55,56}. However, the reduction following
368 LPS implies another mechanism at play. AHR responds to microbial metabolites in an attempt by
369 the host to resist colonization by opportunistic pathogens⁵⁷, therefore, these changes may reflect
370 microbiota population changes.

371 LPS can interact with tight junctions directly⁴¹ with implications for both the gut barrier
372 and BBB. Indeed, in mice, the absence of gut microbes is associated with increased permeability
373 of the BBB⁵⁸. Furthermore, traumatic stress models induce shifts in microbiota diversity and
374 intestinal inflammation with downstream effects on hippocampal Cldn5⁵⁹. Throughout the
375 examined stress paradigms, only the CVS-exposed males differed from unstressed controls in
376 terms of beta-diversity. This group also had microbiota shifts at the phylum level similar to those
377 seen in individuals with irritable bowel syndrome⁶⁰, for whom Cldn3 and Ocln reductions have
378 also been reported⁶¹. Compositional changes in CVS males also coincides with chronic
379 unpredictable mild stress exposure in rats, especially those changes within the family
380 *Lachnospiraceae*⁶². Although *Lachnospiraceae*, along with *Lactobacillaceae* and
381 *Ruminococcaceae*, have the ability to produce butyrate and other short-chain fatty acids able to
382 strengthen the intestinal barrier through up-regulation of tight junctions^{63,64}, a number of genera of
383 *Lachnospiraceae* have been implicated in intra- and extra-intestinal diseases⁶³ and thus future
384 studies will be necessary to decipher the mechanisms involved. As for short-term CVS exposure,
385 decreases in taxa with pro- as well as anti-inflammatory properties in the intestinal environment
386 (e.g., decreases in both the pro-inflammatory Proteobacteria and the anti-inflammatory
387 *Lactobacillaceae*) were apparent in male mice. Proteobacteria elevations have been reported in
388 male mice exposed to longer or more severe stress⁴², and thus the reductions in 6-day SCVS males
389 could represent a temporary stress-induced compensatory change. Intriguingly, enteral
390 administration of *Lactobacillus* probiotic species can modulate intestinal Cldn3 expression⁴⁹.

391 Limitations of this study include investigating only the JEJ and feces instead of gut content,
392 which eliminates the potential of region-specific identifications. Reports of stress effects on jejunal
393 permeability are scarce, making comparisons within the literature a challenge. Most focus on the
394 colon due to inflammatory bowel disease pathogenesis, however, the concept of intestinal
395 permeability in MDD has not been associated with a single region of the gastrointestinal tract. The
396 functional roles of the jejunum and the relevancy of small intestinal dysfunctions highlight the
397 value of further investigations^{27,28}. Another potential drawback involves performing the CSDS
398 paradigm, in which physical injuries are a concern for potential stimulation of the immune and
399 inflammatory system. Physical examinations of animals were performed at time of sacrifice to
400 observe the number of wounds to consider this as a potential confounder including for peripheral
401 measurements of LBP. However, previously repeated social disruption stress and restraint stress
402 induced bacterial translocation to the mesenteric lymph nodes independently of wounding
403 condition⁶⁵.

404 To sum up, our study shows that chronic social or variable stress can induce gut barrier
405 alterations in male and female mice. Changes in JEJ tight junctions along with microbiota
406 populations are sex-, type- and duration-dependent, which might be associated to the differences
407 reported in MDD symptomatology. To our knowledge, we provide the first detailed morphological
408 characterization of the JEJ tight junctions following stress exposure by applying novel tools and
409 algorithms that will be freely available and could be applied to various conditions including
410 inflammatory bowel diseases. Finally, by focusing on the small intestine this project brings novel

411 insights into the biology underlying stress responses in mice and inform on potential biomarkers
412 of MDD such as circulating products related to gut barrier leakiness.

413

414 **Methods**

415 **Animals.** Experimental mice were naïve male (~25g) and female (~20g) C57BL/6 mice, 7–
416 9 weeks of age at arrival (Charles River Laboratories, Québec, Canada). Sexually experienced
417 retired male CD-1 breeders (~40 g), 9–12 months of age were used as aggressors (AGG), residents
418 for the social defeat procedures (Charles River Laboratories, Québec, Canada). All mice were
419 group housed in 27 × 21 × 14 cm polypropylene cages upon their arrival and left undisturbed for
420 one week of acclimation at the housing facility of CERVO Brain Research Center prior to any
421 procedures commencing. Mice maintained on a 12-h light–dark cycle (lights on from 0800 to
422 2000 h) with temperature (22 °C) and humidity (63%) kept constant were provided free access to
423 water and food (Teklad Irradiated Laboratory Animal Diet, Madison, USA). All experimental
424 procedures were approved by the animal care and use committee of Université Laval (2018-052)
425 and met the guidelines set out by the Canadian Council on Animal Care.

426

427 **Chronic Social Defeat Stress (CSDS).** As previously described²¹, in the CSDS model, a C57BL/6
428 mouse is repeatedly subordinated by an AGG mouse for daily bouts of social stress. Before the
429 experiment, AGG mice are screened for aggressive behaviours against a C57BL/6 mouse for 3
430 days. Then the AGG is designated a social defeat cage (26.7 cm width × 48.3 cm depth × 15.2 cm
431 height, Allentown Inc.) separated in half with a clear perforated Plexiglas divider (0.6 cm × 45.7
432 cm × 15.2 cm). The experimental C57BL/6 mice are placed in the home cage of an unfamiliar CD-
433 1 male for bouts of physical stress lasting 5 minutes daily over a period of 10 consecutive days.
434 After each physical stress period, the mouse is returned to the other side of the clear plastic divider,
435 leaving the experimental mouse exposed to overnight sensory contact with the AGG mouse.
436 Control animals were housed 2 per social defeat cage, one each side of the Plexiglas divider and
437 kept in the same room as experimental mice. After the last day of social defeat, the experimental
438 mice are single housed for 24 hours before conducting the social interaction (SI) test.

439 In the female CSDS paradigm, the procedure is adjusted as described by Harris *et al.*²².
440 Before each defeat, ~60ul of urine collected from a CD-1 male was applied to the tail base and
441 vaginal region of the female mouse. The odor from the urine induces dominant behaviour from the
442 AGG mouse. For urine collection, CD-1 mice were placed in metabolic cages (Life Science
443 Equipment) during the dark phase of the light/dark cycle. Urine was collected the following
444 morning, filtered, aliquoted in 0.5 mL tubes and stored at -80°C until use.

445

446 **Social Interaction (SI) Test.** Following CSDS, mice are characterized for vulnerability to stress
447 by way of SI test to establish behavioural phenotypes²¹. In this test, the mouse's propensity to
448 socialize is evaluated. In two trials, this test assesses exploratory behavior of mice in an open field,
449 first alone and then in the presence of an unfamiliar CD-1 mouse contained in a small wire cage
450 within the open field (42 cm x 42 cm x 42 cm, Nationwide Plastics). Movements are tracked by
451 an automated system (AnyMaze™ 6.1, Stoelting Co.) during each 2.5-minute trial. The time spent
452 in the interaction zone, the region surrounding the small cage, compared to the rest of the arena is
453 assessed. The SI ratio is the score obtained by dividing the time spent in the interaction zone with
454 AGG present divided by the time when AGG is absent. Equal time spent when in Trial 1 and Trial
455 2, giving an SI ratio of 1, is typically used as the cutoff point, dividing those mice with a ratio
456 below 1.0 to be classified as stress-susceptible (SS), while mice with a ratio above 1.0 are

457 considered resilient (RES)²¹.

458

459 **Chronic Variable Stress (CVS).** As previously described³⁴, mice are exposed to a series of
460 alternating variable stressors (restraint stress, tail suspension, foot shocks) for 1 hour per day
461 unpredictably for 28 days. Stressors were administered as follows: 100 mild foot shocks of 0.45mA
462 at random intervals for 1 h (10 mice/ chamber), a tail suspension stress for 1h and restraint stress,
463 where animals are placed inside a 50ml falcon tube, for 1h within the home cage. After day three
464 the stressors restart with foot shocks and cycles through in this pattern for 28 days.

465

466 **Subchronic Variable Stress (SCVS).** The SCVS paradigm consists of the same procedure as CVS
467 but for a total duration of 6 days only^{14,25}. Male and female C57BL/6 mice were used as
468 experimental mice and stressors were administered as previously described for the CVS paradigm.
469 Stressors were administered daily for 6 days, as follows: 100 mild foot shocks for 1h (days 1 and
470 4), a tail suspension stress for 1h (days 2 and 5) and restraint stress for 1h (days 3 and 6).

471

472 **Tissue collection.** Blood samples were collected 72h before the start of the stress protocol. Blood
473 was collected by the submandibular bleeding method and left at room temperature in nuclease-free
474 microtubes for 1h before processing for serum extraction. Samples were centrifuged for 2 min at
475 10 000 RPM at which point the separated serum was collected and transferred into a new tube.
476 This process is repeated with centrifugation at 10 min at 3000 RPM and supernatant was collected.
477 Serum was stored at -80°C for subsequent determination of protein levels.

478 Blood, feces, and tissues from the same mice were collected 24h (for SCVS or CVS) or
479 48h (for CSDS) after the last stressor. Trunk blood was collected after euthanasia by rapid
480 decapitation. 1-2 fecal pellets were collected from each mouse by voluntary defecation into a
481 sterile microtube (Eppendorf, Germany) and fecal samples were immediately placed on dry ice.
482 Post-sacrifice, the small intestine is removed, placed in a petri dish on ice and cut into 3 sections.
483 The most anterior portion and distal section is discarded, and the mid-section (jejunum) is kept
484 and flushed with 0.1 M phosphate-buffered saline (PBS 1X). Two biopsies were taken with
485 Unicore 2.00mm punch (Harris, 7093508) from intact intestinal segments, placed immediately in
486 nuclease-free microtubes on dry ice and stored at -80 °C for subsequent analysis. The remaining
487 intestinal segment is prepared for subsequent protein analysis following a modified version of the
488 swiss roll protocol⁶⁶. Briefly, intestinal segments were cut open longitudinally along the mesenteric
489 line. Tissue is rolled over a wooden skewer with mucosa facing outwards and then transferred into
490 a tissue mold filled with Tissue-Tek® O.C.T. Compound (Sakura, NC1862249) to embed samples.
491 The tissue is snap frozen in isopentane on dry ice and stored at -80°C.

492

493 **Transcriptional profiling of mouse tissue.** Quantitative polymerase chain reaction (qPCR) using
494 SYBR green chemistry was performed on JEJ tissue samples for evaluation of gene expression
495 changes of targets related to intestinal permeability, such as tight junctions, tight junction
496 associated proteins and inflammatory markers. Total RNA was extracted with TRIzol (Invitrogen,
497 15596026) homogenization and chloroform layer separation. Tissues were processed using
498 PureLink® RNA Mini Kit (Invitrogen, 12183018A) following manufacturer's protocol for
499 Purifying RNA from Animal Tissues. Yields and purity (ratio of absorbance at 260 and 280 nm) of
500 extracted RNA was assessed by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
501 ND-2000). Complementary DNA (cDNA) was synthesized using Maxima™ H Minus cDNA
502 Synthesis Master Mix, with dsDNase (Thermo Fisher Scientific, M1681) from 5µg of RNA. The

503 cDNA was applied as a template for qPCR reaction using PowerUp SYBR Green Master Mix
504 (Applied Biosystems, A25742) containing ROX™ Passive Reference Dye. QPCR was performed
505 with Applied Biosystems QuantStudio 5 Real-Time PCR System (ThermoFisher Scientific, MA,
506 USA). Oligonucleotide primers are listed in **Table S1** and primers that amplify *Actb* and *Gapdh*
507 were used as reference genes. Analysis was done by way of the $\Delta\Delta Ct$ method.
508

509 **Immunohistochemistry of Claudin-3 (Cldn3).** Swiss rolls of JEJ tissue samples from male
510 CSDS mice were sectioned on a cryostat (CryoStar™ NX50 cryostat, Thermo Scientific), cut into
511 7 μ m thick sections at -17°C and mounted on Superfrost Plus slides. Slices were rinsed in PBS
512 1X and incubated for 30 mins in blocking solution, consisting of 10% normal donkey serum in
513 PBS 1X. Slides were incubated overnight at 4°C with primary antibodies (**Table S2**) in solution,
514 1% bovine serum albumin (Life Sciences, SH3057401) and 0.01% Tween 20 (Fisher BioReagents,
515 BP337-100) in PBS 1X. The slices from male mice were double stained with primary antibody
516 CD326 for visualization of epithelial cells and tight junction Cldn3. Sections were washed three
517 times with PBS 1X and incubated with secondary antibodies (see **Table S2**) for 1h at room
518 temperature. Slices were washed three times in PBS 1X and stained with 4',6-diamidino-2-
519 phenylindole (DAPI) for nuclei visualization. Finally, slides were mounted with ProLong Diamond
520 Antifade Mountant (Invitrogen, P36961), and cover slipped. Six 0.5 μ m thick z-stack images were
521 acquired using an Axio Observer.M2 microscope (Carl Zeiss) with a 20X objective. Processing of
522 images was done with Imaris version 9.7.2 (Bitplane, Zurich, Switzerland) for volume
523 quantification and intensity colocalization.

524 Two JEJ tissue swiss roll slices per female mouse were double stained with primary
525 antibodies for Cldn3 and actin filaments (F-actin) with the same protocol as described above. Ten
526 0.250 μ m thick z-stack by six tiles were acquired with a 40X lens. Images were imported into
527 Imaris for 3D reconstruction. With the Surface tool based on the F-actin staining, a reconstruction
528 of the intestinal epithelium was created as a region of interest. A surface was also created based on
529 the Cldn3 channel to detect the surface volume within the region of interest as well as the intensity
530 of Cldn3 expression. Masks were made of the volume renderings and colocalization analysis was
531 performed.

532 **Machine-learning based morphological analysis.** A total of 10 images acquired as described in
533 the Immunohistochemistry of Claudin-3 were analyzed, with 6 from control animals and 4 from
534 SCVS animals. Each of these images were cropped to contain one villus, averaging a field of view
535 of around 50 000 μm^2 . Images were annotated using a custom software
536 (https://github.com/FLClab/junction_annotator). For the annotations, 5.52 x 5.52 μm (64 x 64
537 pixels) image crops (hereafter: crops) were extracted from regions of interest corresponding to the
538 external border of the villi. The border of the villi was identified using an intensity-based
539 foreground mask from which an erosion of 300 pixels was subtracted. Pixels were assigned to the
540 foreground if their value was above 0.75 times the mean intensity of the image. Crops were
541 selected for annotation if at least 10% of their pixels were part of the border. A total of 1426 crops
542 (control: 452 crops, SCVS: 974 crops) were identified by an expert to contain a structure belonging
543 to a tight junction and were used in the analysis.

544 The expert annotated each image crop based on four qualitative features: (1) Ruffles
545 Quantity, (2) Width, (3) Fragmentation and (4) Cldn3 Diffusion (**Fig.4C**). Each of these features
546 were given a continuous value ranging from 0 to 1 by the expert using the homemade annotation
547 program. Ruffles Quantity or Shape (1) refers to the number of ruffles in the crops belonging to

548 the tight junction, where a value of 0 means no ruffles are visible while a value of 1 is the maximal
549 amount of ruffling in the samples. Width or Amplitude (2) refers to the width of the Cldn3 signal
550 where a value of 0 would be associated with a thin (diffraction-limited) line. If ruffles are visible,
551 this value refers to the amplitude of the ruffles. Fragmentation (3) described the presence of
552 discontinuous fragments in the Cldn3 fluorescence signal, where a value of 0 means a perfectly
553 continuous junction. Diffusion or Clarity (4) refers to the apparent diffusion of the Cldn3 molecules
554 at the tight junction, where a value of 0 means that the junction appears very sharp, while a value
555 of 1 means the junction appears diffuse, or blurry.

556 Unsupervised k-means clustering algorithm⁶⁷ was used to group the crops into clusters
557 using the described 4-dimensional feature space, with clusters determined using silhouette score
558 analysis⁶⁸. A 2D projection of the feature space was created using the t-SNE algorithm⁶⁹ for an
559 easier visualization of the clustering. The proportion of crops within each cluster was calculated
560 for control and SCVS samples to reveal potential differences in tight junction populations between
561 both conditions (https://github.com/FLClab/junction_analysis).

562
563 **Microbiota analysis.** Fecal DNA was extracted using a Stool DNA Isolation Kit (Norgen Biotek,
564 27600) following manufacturer's protocols. Extracted DNA yields and purity were assessed using
565 a Qubit Fluorometer (Invitrogen, Q33238). The V3 and V4 hypervariable regions of the 16S
566 ribosomal RNA (16S rRNA) gene were amplified using the primers S-D-Bact-0341-b-S-17 (F: 5'
567 TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC AG)
568 and S-D-Bact-0785-a-A-21 (R: 5' GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA
569 GGA CTA CHV GGG TAT CTA ATC C)⁷⁰. After tagging the resulting amplicons with Illumina
570 nucleotide sequencing adapters and dual-index barcodes, the pooled library was sequenced using
571 a 600-cycle MiSeq Reagent Kit v3 and a MiSeq Illumina system as per manufacturer's
572 instructions (Illumina, San Diego, CA, USA). The resulting data was processed using QIIME 2⁷¹,
573 with a median quality score of Q>30, and further analyzed using DADA2⁷². MicrobiomeAnalyst
574 was used to calculate diversity indices from the pre-processed data using methods as previously
575 described⁷³. The parameters evaluated were the Chao1 and Shannon alpha-diversity indices and
576 the Bray-Curtis dissimilarity beta-diversity index, the latter being followed by a Permutational
577 Multivariate Analysis of Variance (PERMANOVA) and visualized using Principal Coordinate
578 Analysis (PCoA). The relative abundance of bacteria at various taxonomic levels was calculated
579 for each sample after aligning reads to taxa using the Greengenes database⁷⁴.
580

581 **LPS treatment.** Male and female mice received an intraperitoneal (i.p) injection of LPS (LPS
582 from E.coli, O127:B8, Sigma) at 0.83 mg/kg. LPS was dissolved in sterile normal saline solution
583 (0.9 %) and administered in a volume of 10 ml/kg of the body weight of the mice. LPS or saline
584 (vehicle group) was administered at time zero and after 24h samples were collected for tight
585 junction analysis in the jejunum.

586 **Murine ELISA and Multiplex assays of gut leakiness.** The quantitative detection of serum
587 lipopolysaccharide binding protein (LBP) was performed by Mouse LBP Enzyme-Linked
588 Immunosorbent Assay (ELISA) kit (Abcam, ab213876) according to the manufacturer protocol.
589 The serum was diluted 1:100 for LBP detection and the optical density (OD) of the plate was read
590 at 450 nanometers (nm) by an Eon Microplate Spectrophotometer (BioTek Instruments Inc.,
591 Winooski VT). Data was calculated from a serial dilution curve using Gen5 Data Analysis
592 Software and samples with a coefficient of variation above 15% were eliminated from the analysis.

593 **Human serum sample collection.** All human blood samples were provided by Signature Bank
594 from the Centre de recherche de l’Institut universitaire en santé mentale de Montréal (CR-IUSMM)
595 under approval of the institution’s Ethics Committee. Samples were collected at the emergency
596 room of the Institut universitaire en santé mentale de Montréal of CIUSSS de l’Est-de-Montréal
597 from depressed volunteers and at the CR-IUSMM from healthy volunteers. All subjects were
598 evaluated for depressive behaviors by the Patient Health Questionnaire (PHQ-9), which scores
599 each of the nine Diagnostic and Statistical Manual of Mental Disorders (DSM) IV criteria⁷⁵.
600 Exclusion criteria involved subjects with known history of drug abuse. The demographic
601 characteristics associated with each sample are provided in **Supplementary Table 3**. All
602 experiments were performed under the approval of Université Laval and CERVO Brain Research
603 Center Ethics Committee (#2021-2200).

604

605 **Human serum ELISA of gut leakiness marker.** Human serum levels of LBP were assayed using
606 the Human LBP ELISA kit standard sandwich enzyme-linked immunosorbent technology and
607 following the manufacturer’s protocol (Abcam, ab213805). Briefly, the sample diluent buffer was
608 used to dilute standards and samples (1:1000) before applying to each well and incubating for 90
609 mins. After the plate contents were discarded, anti-Human LBP antibody was added to each well
610 before the second incubation for 60 mins. Three washes were completed with PBS 1X and the
611 complex solution was added for a 30 min incubation. The plate was washed five times and the
612 Horseradish peroxidase (HRP) substrate solution was added prior to the final incubation of 30
613 mins in the dark. All the incubation periods occurred at 37°C. Finally, the Stop Solution was added,
614 and the OD of the plate was read at 450 nm by the Eon Microplate Spectrophotometer. Again, data
615 was calculated from a serial dilution curve using Gen5 Data Analysis Software and samples with
616 a coefficient of variation above 15% were removed.

617

618 **Statistical Analysis.** All data are presented as means ± standard error of the mean (S.E.M.).
619 Comparisons between group was performed using t-test, one-way ANOVAs and two-way
620 ANOVAs with Bonferroni post hoc follow up test when required. Values of $P < .05$ were regarded
621 as statistically significant. Graphs and statistics were generated using GraphPad Prism Software
622 version 8 (GraphPad Software Inc.). Normality was determined Shapiro–Wilk tests and Levene’s
623 test for homogeneity of variances. Data was analyzed using the nonparametric Kruskal-Wallis test
624 when it did not meet the assumption of normality, or the Mann-Whitney U test for pairwise
625 comparisons. Visual representation of average and S.E.M. with heatmaps was created using
626 Matlab-based software. Individual values were used to compute correlation matrices and p-values
627 were determined by Matlab-based software (MathWorks). Comparison of microbiota alpha
628 diversity was performed with Microbiomeanalyst using the phyloseq package⁷⁶ and further
629 comparisons using the Mann-Whitney U test. Beta diversity was performed using Bray–Curtis
630 (dis)similarity matrices using the phyloseq package. The principal coordinate analysis (PCoA) was
631 performed to visualize the distance matrix and the importance of the changes at the community
632 level was assessed using permutational multivariate analyses of variance (PERMANOVA) tests.

633

634 **References**

- 635 1 Doney, E., Cadoret, A., Dion-Albert, L., Lebel, M. & Menard, C. Inflammation-driven
636 brain and gut barrier dysfunction in stress and mood disorders. *Eur J Neurosci* **55**, 2851-
637 2894, doi:10.1111/ejn.15239 (2022).
- 638 2 Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R. & Walters, E. E. Prevalence,

639 severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity
640 Survey Replication. *Arch Gen Psychiatry* **62**, 617-627, doi:10.1001/archpsyc.62.6.617
641 (2005).

642 3 Menard, C., Pfau, M. L., Hodes, G. E. & Russo, S. J. Immune and Neuroendocrine
643 Mechanisms of Stress Vulnerability and Resilience. *Neuropsychopharmacology* **42**, 62-
644 80, doi:10.1038/npp.2016.90 (2017).

645 4 Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms
646 of depression. *Nat Neurosci* **18**, 1386-1393, doi:10.1038/nn.4113 (2015).

647 5 Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary
648 imperative to modern treatment target. *Nat Rev Immunol* **16**, 22-34,
649 doi:10.1038/nri.2015.5 (2016).

650 6 Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From
651 inflammation to sickness and depression: when the immune system subjugates the brain.
652 *Nat Rev Neurosci* **9**, 46-56, doi:10.1038/nrn2297 (2008).

653 7 Abautret-Daly, A. *et al.* Association between psychological measures with inflammatory
654 and disease-related markers of inflammatory bowel disease. *Int J Psychiatry Clin Pract*
655 **21**, 221-230, doi:10.1080/13651501.2017.1306081 (2017).

656 8 Cole, J. A., Rothman, K. J., Cabral, H. J., Zhang, Y. & Farraye, F. A. Migraine,
657 fibromyalgia, and depression among people with IBS: a prevalence study. *BMC
658 Gastroenterol* **6**, 26, doi:10.1186/1471-230X-6-26 (2006).

659 9 Zeissig, S. *et al.* Changes in expression and distribution of claudin 2, 5 and 8 lead to
660 discontinuous tight junctions and barrier dysfunction in active Crohn's disease. *Gut* **56**,
661 61-72, doi:10.1136/gut.2006.094375 (2007).

662 10 Grenham, S., Clarke, G., Cryan, J. F. & Dinan, T. G. Brain-gut-microbe communication
663 in health and disease. *Front Physiol* **2**, 94, doi:10.3389/fphys.2011.00094 (2011).

664 11 Kelly, J. R. *et al.* Breaking down the barriers: the gut microbiome, intestinal permeability
665 and stress-related psychiatric disorders. *Front Cell Neurosci* **9**, 392,
666 doi:10.3389/fncel.2015.00392 (2015).

667 12 Menard, C. *et al.* Social stress induces neurovascular pathology promoting depression.
668 *Nat Neurosci* **20**, 1752-1760, doi:10.1038/s41593-017-0010-3 (2017).

669 13 Dion-Albert, L. *et al.* Vascular and blood-brain barrier-related changes underlie stress
670 responses and resilience in female mice and depression in human tissue. *Nat Commun* **13**,
671 164, doi:10.1038/s41467-021-27604-x (2022).

672 14 Dion-Albert, L. *et al.* Sex differences in the blood-brain barrier: Implications for mental
673 health. *Front Neuroendocrinol* **65**, 100989, doi:10.1016/j.yfrne.2022.100989 (2022).

674 15 Dudek, K. A. *et al.* Molecular adaptations of the blood-brain barrier promote stress
675 resilience vs. depression. *Proc Natl Acad Sci U S A* **117**, 3326-3336,
676 doi:10.1073/pnas.1914655117 (2020).

677 16 Bangasser, D. A. & Valentino, R. J. Sex differences in stress-related psychiatric disorders:
678 neurobiological perspectives. *Front Neuroendocrinol* **35**, 303-319,
679 doi:10.1016/j.yfrne.2014.03.008 (2014).

680 17 Rincon-Cortes, M., Herman, J. P., Lupien, S., Maguire, J. & Shansky, R. M. Stress:
681 Influence of sex, reproductive status and gender. *Neurobiol Stress* **10**, 100155,
682 doi:10.1016/j.ynstr.2019.100155 (2019).

683 18 Kornstein, S. G. *et al.* Gender differences in treatment response to sertraline versus
684 imipramine in chronic depression. *Am J Psychiatry* **157**, 1445-1452,

685 19 doi:10.1176/appi.ajp.157.9.1445 (2000).
686 19 Baca, E., Garcia-Garcia, M. & Porras-Chavarino, A. Gender differences in treatment
687 response to sertraline versus imipramine in patients with nonmelancholic depressive
688 disorders. *Prog Neuropsychopharmacol Biol Psychiatry* **28**, 57-65, doi:10.1016/S0278-
689 5846(03)00177-5 (2004).
690 20 Blackburn-Munro, G. & Blackburn-Munro, R. E. Chronic pain, chronic stress and
691 depression: coincidence or consequence? *J Neuroendocrinol* **13**, 1009-1023,
692 doi:10.1046/j.0007-1331.2001.00727.x (2001).
693 21 Golden, S. A., Covington, H. E., 3rd, Berton, O. & Russo, S. J. A standardized protocol
694 for repeated social defeat stress in mice. *Nat Protoc* **6**, 1183-1191,
695 doi:10.1038/nprot.2011.361 (2011).
696 22 Harris, A. Z. *et al.* A Novel Method for Chronic Social Defeat Stress in Female Mice.
697 *Neuropsychopharmacology* **43**, 1276-1283, doi:10.1038/npp.2017.259 (2018).
698 23 Takahashi, A. *et al.* Establishment of a repeated social defeat stress model in female mice.
699 *Sci Rep* **7**, 12838, doi:10.1038/s41598-017-12811-8 (2017).
700 24 LaPlant, Q. *et al.* Role of nuclear factor kappaB in ovarian hormone-mediated stress
701 hypersensitivity in female mice. *Biol Psychiatry* **65**, 874-880,
702 doi:10.1016/j.biopsych.2009.01.024 (2009).
703 25 Hodes, G. E. *et al.* Sex Differences in Nucleus Accumbens Transcriptome Profiles
704 Associated with Susceptibility versus Resilience to Subchronic Variable Stress. *J
705 Neurosci* **35**, 16362-16376, doi:10.1523/JNEUROSCI.1392-15.2015 (2015).
706 26 Hodes, G. E. *et al.* Individual differences in the peripheral immune system promote
707 resilience versus susceptibility to social stress. *Proc Natl Acad Sci U S A* **111**, 16136-
708 16141, doi:10.1073/pnas.1415191111 (2014).
709 27 Konig, J. *et al.* Human Intestinal Barrier Function in Health and Disease. *Clin Transl
710 Gastroenterol* **7**, e196, doi:10.1038/ctg.2016.54 (2016).
711 28 Schoultz, I. & Keita, A. V. The Intestinal Barrier and Current Techniques for the
712 Assessment of Gut Permeability. *Cells* **9**, doi:10.3390/cells9081909 (2020).
713 29 Daneman, R. & Rescigno, M. The gut immune barrier and the blood-brain barrier: are
714 they so different? *Immunity* **31**, 722-735, doi:10.1016/j.immuni.2009.09.012 (2009).
715 30 Alvarez-Mon, M. A. *et al.* Abnormal Distribution and Function of Circulating Monocytes
716 and Enhanced Bacterial Translocation in Major Depressive Disorder. *Front Psychiatry*
717 **10**, 812, doi:10.3389/fpsyg.2019.00812 (2019).
718 31 Maes, M., Kubera, M. & Leunis, J. C. The gut-brain barrier in major depression:
719 intestinal mucosal dysfunction with an increased translocation of LPS from gram
720 negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of
721 depression. *Neuro Endocrinol Lett* **29**, 117-124 (2008).
722 32 Slyepchenko, A. *et al.* Gut Microbiota, Bacterial Translocation, and Interactions with
723 Diet: Pathophysiological Links between Major Depressive Disorder and Non-
724 Communicable Medical Comorbidities. *Psychother Psychosom* **86**, 31-46,
725 doi:10.1159/000448957 (2017).
726 33 Rahner, C., Mitic, L. L. & Anderson, J. M. Heterogeneity in expression and subcellular
727 localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. *Gastroenterology*
728 **120**, 411-422, doi:10.1053/gast.2001.21736 (2001).
729 34 Labonte, B. *et al.* Sex-specific transcriptional signatures in human depression. *Nat Med*
730 **23**, 1102-1111, doi:10.1038/nm.4386 (2017).

731 35 Lynn, K. S., Peterson, R. J. & Koval, M. Ruffles and spikes: Control of tight junction
732 morphology and permeability by claudins. *Biochim Biophys Acta Biomembr* **1862**,
733 183339, doi:10.1016/j.bbamem.2020.183339 (2020).

734 36 Sasson, E. *et al.* Nano-scale architecture of blood-brain barrier tight-junctions. *Elife* **10**,
735 doi:10.7554/eLife.63253 (2021).

736 37 Biesmans, S. *et al.* Systemic immune activation leads to neuroinflammation and sickness
737 behavior in mice. *Mediators Inflamm* **2013**, 271359, doi:10.1155/2013/271359 (2013).

738 38 Stevens, B. R. *et al.* Increased human intestinal barrier permeability plasma biomarkers
739 zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or
740 depression. *Gut* **67**, 1555-1557, doi:10.1136/gutjnl-2017-314759 (2018).

741 39 Liu, X. *et al.* Microbial products induce claudin-2 to compromise gut epithelial barrier
742 function. *PLoS One* **8**, e68547, doi:10.1371/journal.pone.0068547 (2013).

743 40 Wang, H. B., Wang, P. Y., Wang, X., Wan, Y. L. & Liu, Y. C. Butyrate enhances intestinal
744 epithelial barrier function via up-regulation of tight junction protein Claudin-1
745 transcription. *Dig Dis Sci* **57**, 3126-3135, doi:10.1007/s10620-012-2259-4 (2012).

746 41 Fasano, A. *et al.* *Vibrio cholerae* produces a second enterotoxin, which affects intestinal
747 tight junctions. *Proc Natl Acad Sci U S A* **88**, 5242-5246, doi:10.1073/pnas.88.12.5242
748 (1991).

749 42 Szyszkowicz, J. K., Wong, A., Anisman, H., Merali, Z. & Audet, M. C. Implications of
750 the gut microbiota in vulnerability to the social avoidance effects of chronic social defeat
751 in male mice. *Brain Behav Immun* **66**, 45-55, doi:10.1016/j.bbi.2017.06.009 (2017).

752 43 Karailiev, P., Hlavacova, N., Chmelova, M., Homer, N. Z. M. & Jezova, D. Tight junction
753 proteins in the small intestine and prefrontal cortex of female rats exposed to stress of
754 chronic isolation starting early in life. *Neurogastroenterol Motil* **33**, e14084,
755 doi:10.1111/nmo.14084 (2021).

756 44 Scarpa, J. R. *et al.* Shared Transcriptional Signatures in Major Depressive Disorder and
757 Mouse Chronic Stress Models. *Biol Psychiatry* **88**, 159-168,
758 doi:10.1016/j.biopsych.2019.12.029 (2020).

759 45 Gunzel, D. & Yu, A. S. Claudins and the modulation of tight junction permeability.
760 *Physiol Rev* **93**, 525-569, doi:10.1152/physrev.00019.2012 (2013).

761 46 Markov, A. G., Veshnyakova, A., Fromm, M., Amasheh, M. & Amasheh, S. Segmental
762 expression of claudin proteins correlates with tight junction barrier properties in rat
763 intestine. *J Comp Physiol B* **180**, 591-598, doi:10.1007/s00360-009-0440-7 (2010).

764 47 Milatz, S. *et al.* Claudin-3 acts as a sealing component of the tight junction for ions of
765 either charge and uncharged solutes. *Biochim Biophys Acta* **1798**, 2048-2057,
766 doi:10.1016/j.bbamem.2010.07.014 (2010).

767 48 Barmeyer, C., Fromm, M. & Schulzke, J. D. Active and passive involvement of claudins
768 in the pathophysiology of intestinal inflammatory diseases. *Pflugers Arch* **469**, 15-26,
769 doi:10.1007/s00424-016-1914-6 (2017).

770 49 Patel, R. M. *et al.* Probiotic bacteria induce maturation of intestinal claudin 3 expression
771 and barrier function. *Am J Pathol* **180**, 626-635, doi:10.1016/j.ajpath.2011.10.025 (2012).

772 50 Huang, X. *et al.* Nanotopography Enhances Dynamic Remodeling of Tight Junction
773 Proteins through Cytosolic Liquid Complexes. *ACS Nano* **14**, 13192-13202,
774 doi:10.1021/acsnano.0c04866 (2020).

775 51 Ohlsson, L. *et al.* Leaky gut biomarkers in depression and suicidal behavior. *Acta
776 Psychiatr Scand* **139**, 185-193, doi:10.1111/acps.12978 (2019).

777 52 Maes, M., Leonard, B. E., Myint, A. M., Kubera, M. & Verkerk, R. The new '5-HT'
778 hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-
779 dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of
780 detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of
781 depression. *Prog Neuropsychopharmacol Biol Psychiatry* **35**, 702-721,
782 doi:10.1016/j.pnpbp.2010.12.017 (2011).

783 53 Meleine, M. & Matricon, J. Gender-related differences in irritable bowel syndrome:
784 potential mechanisms of sex hormones. *World J Gastroenterol* **20**, 6725-6743,
785 doi:10.3748/wjg.v20.i22.6725 (2014).

786 54 Alvarado, D. M. *et al.* Epithelial Indoleamine 2,3-Dioxygenase 1 Modulates Aryl
787 Hydrocarbon Receptor and Notch Signaling to Increase Differentiation of Secretory Cells
788 and Alter Mucus-Associated Microbiota. *Gastroenterology* **157**, 1093-1108 e1011,
789 doi:10.1053/j.gastro.2019.07.013 (2019).

790 55 Raison, C. L. *et al.* CSF concentrations of brain tryptophan and kynurenes during
791 immune stimulation with IFN-alpha: relationship to CNS immune responses and
792 depression. *Mol Psychiatry* **15**, 393-403, doi:10.1038/mp.2009.116 (2010).

793 56 Al-Hakeim, H. K., Twayej, A. J., Al-Dujaili, A. H. & Maes, M. Plasma Indoleamine-2,3-
794 Dioxygenase (IDO) is Increased in Drug-Naïve Major Depressed Patients and Treatment
795 with Sertraline and Ketoprofen Normalizes IDO in Association with Pro-Inflammatory
796 and Immune- Regulatory Cytokines. *CNS Neurol Disord Drug Targets* **19**, 44-54,
797 doi:10.2174/1871527319666200102100307 (2020).

798 57 Shi, L. Z. *et al.* The aryl hydrocarbon receptor is required for optimal resistance to
799 Listeria monocytogenes infection in mice. *J Immunol* **179**, 6952-6962,
800 doi:10.4049/jimmunol.179.10.6952 (2007).

801 58 Braniste, V. *et al.* The gut microbiota influences blood-brain barrier permeability in mice.
802 *Sci Transl Med* **6**, 263ra158, doi:10.1126/scitranslmed.3009759 (2014).

803 59 Tanelian, A., Nankova, B., Miari, M., Nahvi, R. J. & Sabban, E. L. Resilience or
804 susceptibility to traumatic stress: Potential influence of the microbiome. *Neurobiol Stress*
805 **19**, 100461, doi:10.1016/j.ynstr.2022.100461 (2022).

806 60 Jeffery, I. B. *et al.* An irritable bowel syndrome subtype defined by species-specific
807 alterations in faecal microbiota. *Gut* **61**, 997-1006, doi:10.1136/gutjnl-2011-301501
808 (2012).

809 61 Bertiau-Vandaele, N. *et al.* The expression and the cellular distribution of the tight
810 junction proteins are altered in irritable bowel syndrome patients with differences
811 according to the disease subtype. *Am J Gastroenterol* **106**, 2165-2173,
812 doi:10.1038/ajg.2011.257 (2011).

813 62 Wei, L. *et al.* Chronic Unpredictable Mild Stress in Rats Induces Colonic Inflammation.
814 *Front Physiol* **10**, 1228, doi:10.3389/fphys.2019.01228 (2019).

815 63 Vacca, M. *et al.* The Controversial Role of Human Gut Lachnospiraceae. *Microorganisms*
816 **8**, doi:10.3390/microorganisms8040573 (2020).

817 64 Peng, L., Li, Z. R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal
818 barrier by facilitating tight junction assembly via activation of AMP-activated protein
819 kinase in Caco-2 cell monolayers. *J Nutr* **139**, 1619-1625, doi:10.3945/jn.109.104638
820 (2009).

821 65 Bailey, M. T., Engler, H. & Sheridan, J. F. Stress induces the translocation of cutaneous
822 and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. *J*

823 66 *Neuroimmunol* **171**, 29-37, doi:10.1016/j.jneuroim.2005.09.008 (2006).

824 66 Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. Improved Swiss-rolling
825 Technique for Intestinal Tissue Preparation for Immunohistochemical and
826 Immunofluorescent Analyses. *J Vis Exp*, doi:10.3791/54161 (2016).

827 67. Cam, L.M.L. & Neyman, J. Proceedings of the Fifth Berkeley Symposium on
828 Mathematical Statistics and Probability: Weather modification. University of California
829 Press (1967).

830 68. Rousseeuw, P.J., Silhouettes: A graphical aid to the interpretation and validation of cluster
831 analysis. *J Comput Appl. Math.* **20**, 53-65 (1987).

832 69. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. *J. Mach. Learn. Res.* **9**,
833 2579-2605 (2008).

834 70. Klindworth, A. *et al.* Evaluation of general 16S ribosomal RNA gene PCR primers for
835 classical and next-generation sequencing-based diversity studies. *Nucleic Acids Res* **41**,
836 e1, doi:10.1093/nar/gks808 (2013).

837 71. Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data
838 science using QIIME 2. *Nat Biotechnol* **37**, 852-857, doi:10.1038/s41587-019-0209-9
839 (2019).

840 72. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
841 data. *Nat Methods* **13**, 581-583, doi:10.1038/nmeth.3869 (2016).

842 73. Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive
843 statistical, functional, and meta-analysis of microbiome data. *Nat Protoc* **15**, 799-821,
844 doi:10.1038/s41596-019-0264-1 (2020).

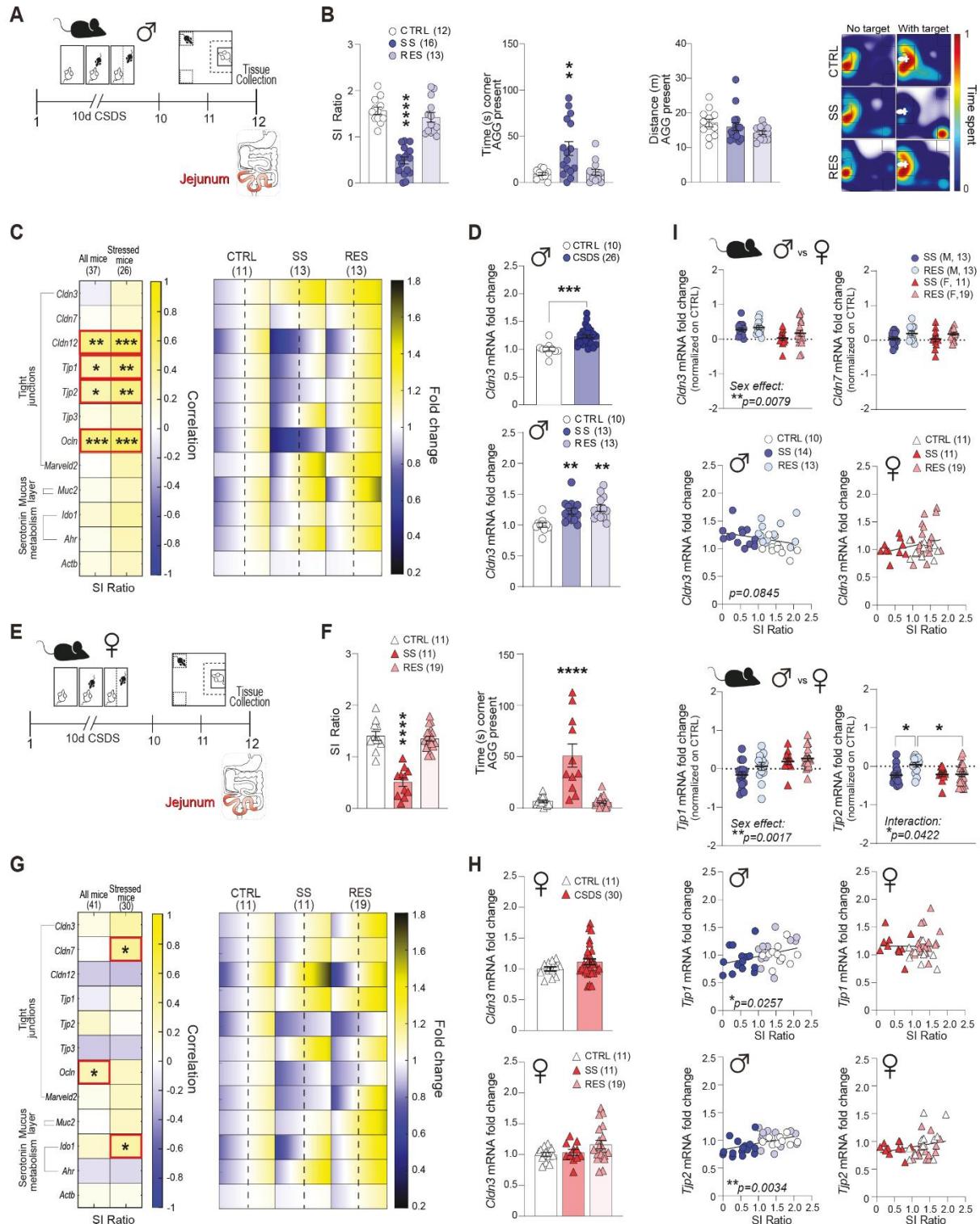
845 74. DeSantis, T. Z. *et al.* Greengenes, a chimera-checked 16S rRNA gene database and
846 workbench compatible with ARB. *Appl Environ Microbiol* **72**, 5069-5072,
847 doi:10.1128/AEM.03006-05 (2006).

848 75. Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression
849 severity measure. *J Gen Intern Med* **16**, 606-613, doi:10.1046/j.1525-
850 1497.2001.016009606.x (2001).

851 76. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive
852 analysis and graphics of microbiome census data. *PLoS One* **8**, e61217,
853 doi:10.1371/journal.pone.0061217 (2013).

854
855 **Acknowledgements:** This work was supported by the New Frontiers in Research Fund
856 (Exploration Grant to C.M. and A.D.), Sentinel North Initiative funded by Canada First Research
857 Excellence Fund (Research Chair on the Neurobiology of Stress and Resilience to C.M., 2020-
858 2024 Major Call for Proposal to F.L.C. and C.M., Postdoctoral fellowship to F.N.K.), Fonds de
859 recherche du Quebec (FRQS) – Health (PhD scholarships to L.D.A. and K.A.D., junior 1 and
860 junior 2 salary awards to C.M.), the Natural Sciences and Engineering Research Council
861 (Discovery Grant to M.C.A.), and the Canadian Institutes for Health Research (PhD scholarship
862 to L.D.A., MSc scholarship to N.O. and S.P., Vanier PhD scholarship to J.K.S., Project Grant to
863 C.M.).

864
865 **Author Contributions**
866 E.D. and C.M. designed research; E.D., L.D.A, F.C.R., S.E.J.P., F.N.K., J.L.S., R.G., K.A.D. and
867 M.L. performed research including behavioural experiments, pharmacological treatments,
868 molecular, biochemical, and morphological analysis; R.B., R.O.A., A.D., F.L.C. developed the


869 detailed morphological analysis algorithms and pipeline; fecal sample collection and microbiota
870 sequencing and analysis were performed by E.D. with N.O., J.K.S. and supervised by M.C.A.; the
871 Signature Consortium contributed the human blood samples and related demographic data; E.D.
872 and C.M. analyzed the data and wrote the manuscript which was edited by all authors.
873

874 **Signature Consortium – list of members**

875 Frederic Aardema⁵, Lahcen Ait Bentaleb⁵, Janique Beauchamp⁵, Hicham Bendahmane⁵, Elise
876 Benoit⁵, Lise Bergeron⁵, Armando Bertone⁵, Natalie Bertrand⁵, Felix-Antoine Berube⁵, Pierre
877 Blanchet⁵, Janick Boissonneault⁵, Christine J. Bolduc⁵, Jean-Pierre Bonin⁵, Francois Borgeat⁵,
878 Richard Boyer⁵, Chantale Breault⁵, Jean-Jacques Breton⁵, Catherine Briand⁵, Jacques Brodeur⁵,
879 Krystele Brule⁵, Lyne Brunet⁵, Sylvie Carriere⁵, Carine Chartrand⁵, Rosemarie Chenard-Soucy⁵,
880 Tommy Chevrette⁵, Emmanuelle Cloutier⁵, Richard Cloutier⁵, Hugues Cormier⁵, Gilles Cote⁵,
881 Joanne Cyr⁵, Pierre David⁵, Luigi De Benedictis⁵, Marie-Claude Delisle⁵, Patricia Deschenes⁵,
882 Cindy D. Desjardins⁵, Gilbert Desmarais⁵, Jean-Luc Dubreucq⁵, Mimi Dumont⁵, Alexandre
883 Dumais⁵, Guylaine Ethier⁵, Carole Feltrin⁵, Amelie Felix⁵, Helen Findlay⁵, Linda Fortier⁵, Denise
884 Fortin⁵, Leo Fortin⁵, Nathe Francois⁵, Valerie Gagne⁵, Marie-Pierre Gagnon⁵, Marie-Claude
885 Gignac-Hens⁵, Charles-Edouard Giguere⁵, Roger Godbout⁵, Christine Grou⁵, Stephane Guay⁵,
886 Francois Guille⁵, Najia Hachimi-Idrissi⁵, Christophe Herry⁵, Sheilah Hodgins⁵, Saffron
887 Homayoun⁵, Boutheina Jemel⁵, Christian Joyal⁵, Edouard Kouassi⁵, Real Labelle⁵, Denis
888 Lafortune⁵, Michel Lahaie⁵, Souad Lahlafi⁵, Pierre Lalonde⁵, Pierre Landry⁵, Veronique Lapaige⁵,
889 Guylaine Larocque⁵, Caroline Larue⁵, Marc Lavoie⁵, Jean-Jacques Leclerc⁵, Tania Lecomte⁵,
890 Cecile Lecours⁵, Louise Leduc⁵, Marie-France Lelan⁵, Andre Lemieux⁵, Alain Lesage⁵, Andree
891 Letarte⁵, Jean Lepage⁵, Alain Levesque⁵, Olivier Lipp⁵, David Luck⁵, Sonia Lupien⁵, Felix-
892 Antoine Lusignan⁵, Richard Lusignan⁵, Andre J. Luyet⁵, Alykhanthi Lynhiavu⁵, Jean-Pierre
893 Melun⁵, Celine Morin⁵, Luc Nicole⁵, Francois Noel⁵, Louise Normandeau⁵, Kieron O'Connor⁵,
894 Christine Ouellette⁵, Veronique Parent⁵, Marie-Helene Parizeau⁵, Jean-Francois Pelletier⁵, Julie
895 Pelletier⁵, Marc Pelletier⁵, Pierrick Plusquellec⁵, Diane Poirier⁵, Stephane Potvin⁵, Guylaine
896 Prevost⁵, Marie-Josee Prevost⁵, Pierre Racicot⁵, Marie-France Racine-Gagne⁵, Patrice Renaud⁵,
897 Nicole Ricard⁵, Sylvie Rivet⁵, Michel Rolland⁵, Marc Sasseville⁵, Gabriel Safadi⁵, Sandra Smith⁵,
898 Nicole Smolla⁵, Emmanuel Stip⁵, Jakob Teitelbaum⁵, Alfred Thibault⁵, Lucie Thibault⁵, Stephanye
899 Thibault⁵, Frederic Thomas⁵, Christo Todorov⁵, Valerie Tourjman⁵, Constantin Tranulis⁵, Sonia
900 Trudeau⁵, Gilles Trudel⁵, Nathalie Vacri⁵, Luc Valiquette⁵, Claude Vanier⁵, Kathe Villeneuve⁵,
901 Marie Villeneuve⁵, Philippe Vincent⁵, Marcel Wolfe⁵, Lan Xiong⁵, Angela Zizzi⁵

902

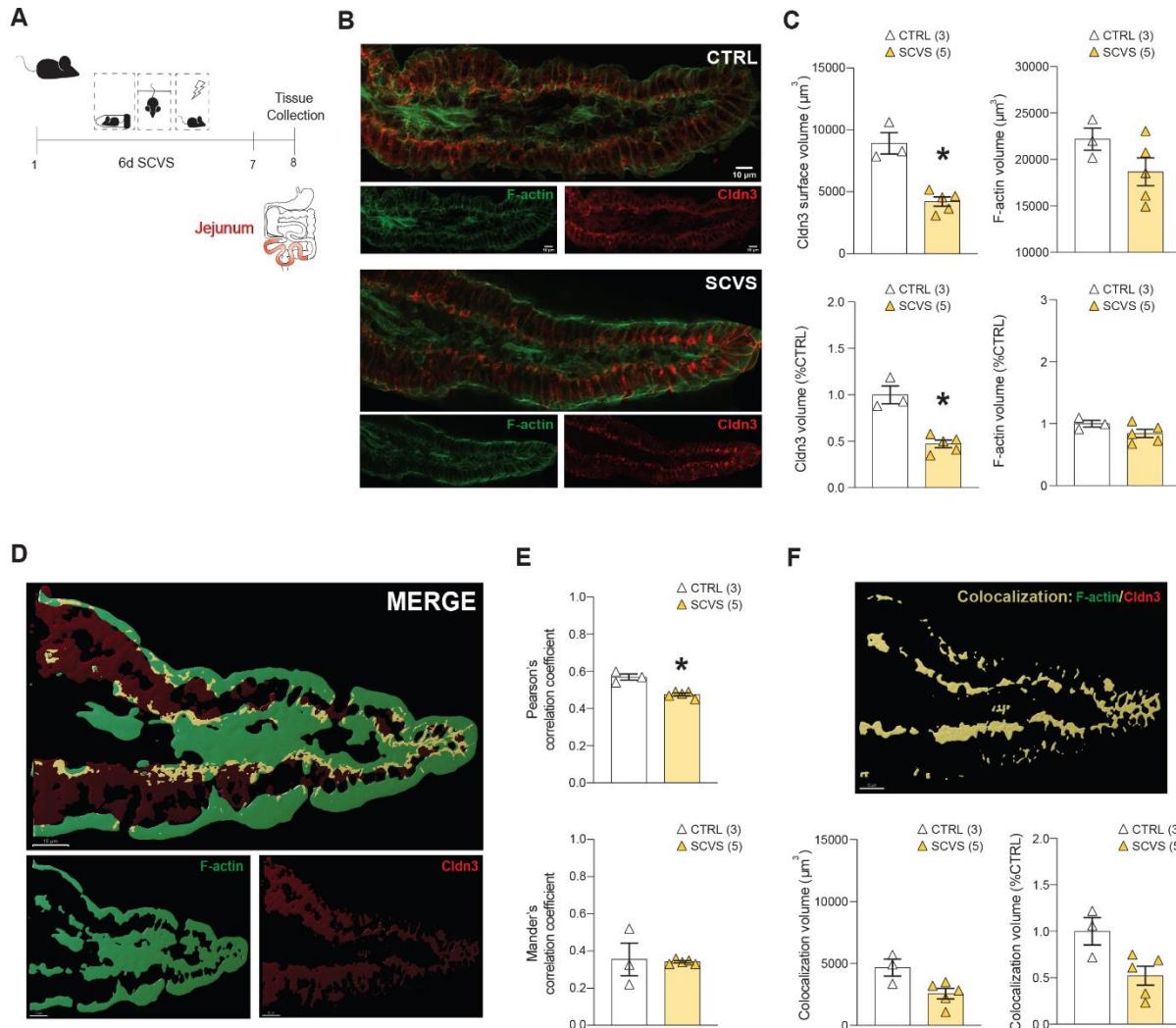
903

904

905 **Figure 1. Chronic social stress alters jejunum (JEJ) tight junction expression with sex-**
 906 **specific effects. A)** Timeline of the male chronic social defeat (CSDS) paradigm. **B)** Ratio of time
 907 spent interacting with novel social target decreased in stress-susceptible (SS) vs unstressed control
 908 (CTRL) and resilient (RES) male mice. Cumulative time (in seconds [s]) spent in corners with

909 social target present was increased in SS males. Cumulative distance traveled (meters [m]) in arena
910 with social target present was unchanged between groups. Representative heatmaps of normalized
911 time spent in the arena during social interaction test in males. **C)** Effects of social stress on the
912 mRNA expression of tight junction proteins in the jejunum of male mice as a function of group
913 condition (left). Red boxes highlight genes with significant correlation with social avoidance.
914 Quantitative PCR revealed significant changes in jejunum of SS and RES mice compared to
915 controls for gene expression of targets related to tight junctions (right). The range of color indicates
916 individual differences within a group; S.E.M. from the average represented by the dashed line. **D)**
917 Significant increase in *Cldn3* for male mice was independent of phenotype group. **E)** Timeline of
918 the female CSDS paradigm. **F)** Ratio of time spent interacting with novel social target is decreased
919 in SS female mice. Cumulative time (in seconds [s]) spent in corners with social target present was
920 increased in SS females. **G)** *Ocln*, *Cldn7* and *Ido1* expression correlated with social avoidance
921 behaviours (left). Red boxes highlight genes with significant correlation with social avoidance.
922 Tight junction changes as a function of phenotype in female mice (right). **H)** *Cldn3* expression is
923 unchanged in female mice following social stress. **I)** There is an effect of Sex as a factor on *Cldn3*
924 and *Tjp1* gene expression, and an interaction occurs between the factor Sex and behavioural
925 phenotype on *Tjp2* expression. Data are assessed by T-tests and one-way ANOVA followed by
926 Bonferroni's multiple comparison test for changes between groups; two-way ANOVA followed by
927 Bonferroni's multiple comparison test for comparison between sexes; correlations were evaluated
928 with Pearson's correlation coefficient; * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

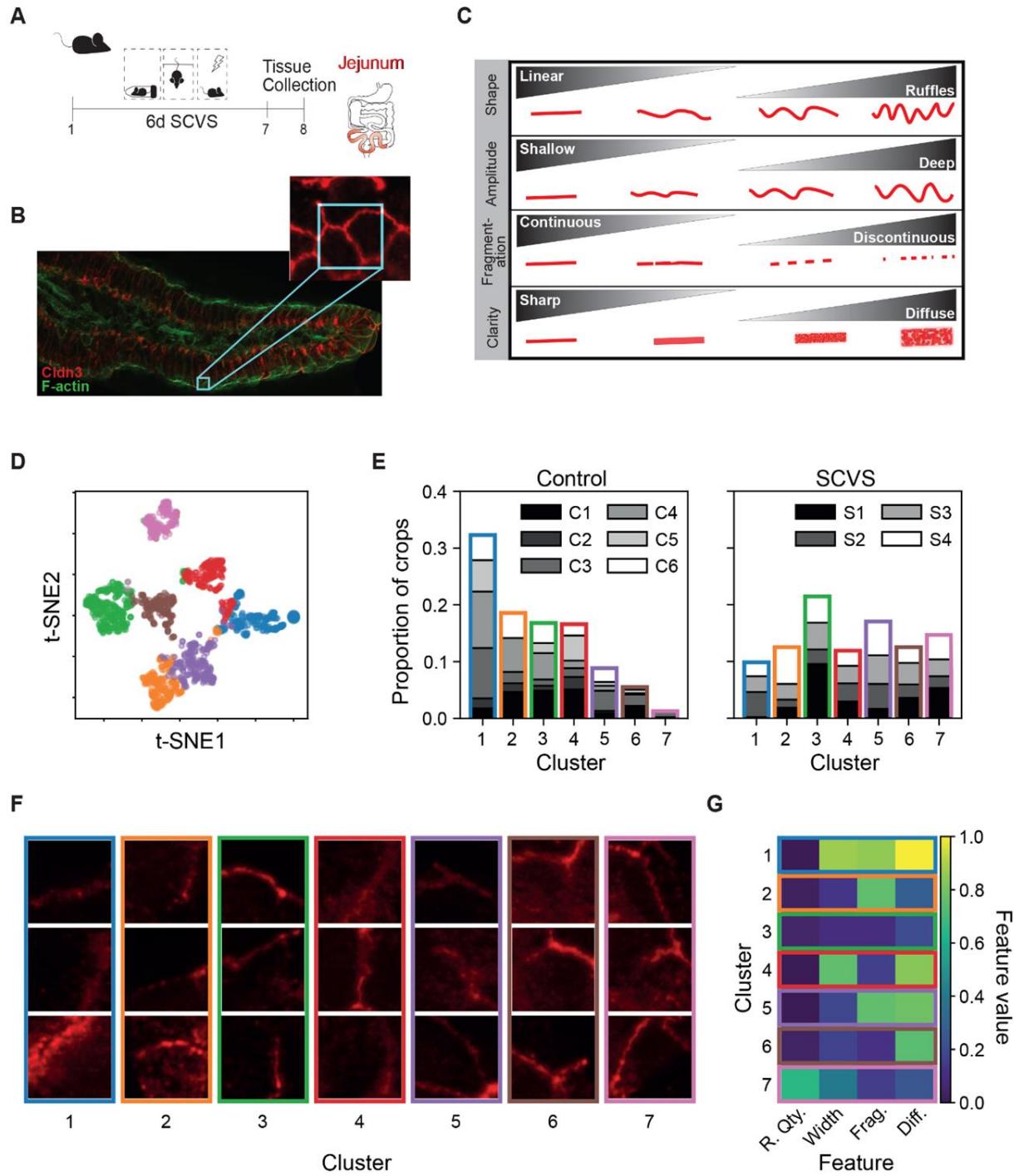
929



930

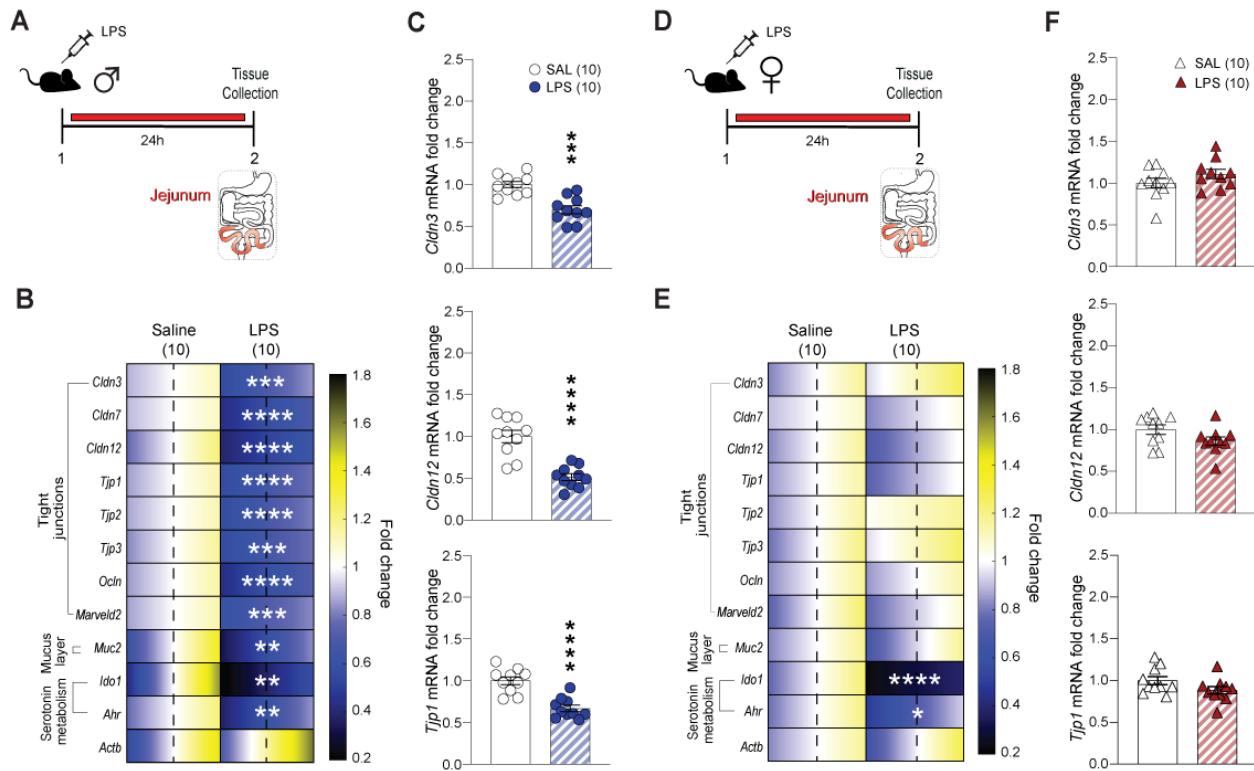
931 **Figure 2. Changes in jejunum (JEJ) tight junction expression are dependent on stress type**
932 **and duration. A)** Experimental timeline of the chronic social defeat stress (CSDS) paradigm with
933 graphs of *Cldn3* gene expression comparing control and stressed groups of male and female mice.
934 **B)** Subchronic variable stress (SCVS) experimental timeline with comparison of *Cldn3* gene
935 expression results below of male and female mice. **C)** Experimental timeline of chronic variable

936 stress (CVS) with *Cldn3* gene expression results between control and stressed groups of male and
937 female mice from this paradigm. **D)** Representation of gene expression changes in the JEJ of
938 stressed mice across stress models in both males and females. Circle diameter represents the
939 statistical significance of the gene expression change. Circle color represents directionality of
940 change vs unstressed controls with green as a downregulated gene and yellow, an upregulated
941 gene. **E)** Direct comparison of *Cldn3* gene expression changes in male and female stressed mice
942 exposed to different stress types; CSDS, SCVS and CVS [top], with CSDS phenotypes separated
943 to SS, RES [bottom]. **F)** Direct sex comparison of *Cldn7*, *Cldn12* and *Ido1* gene expression
944 changes in mice exposed to 28-d CVS. T-tests and one-way ANOVA followed by Bonferroni's
945 multiple comparison test for changes between groups. * $p<0.05$, ** $p<0.01$, *** $p<0.001$,
946 **** $p<0.0001$.


947

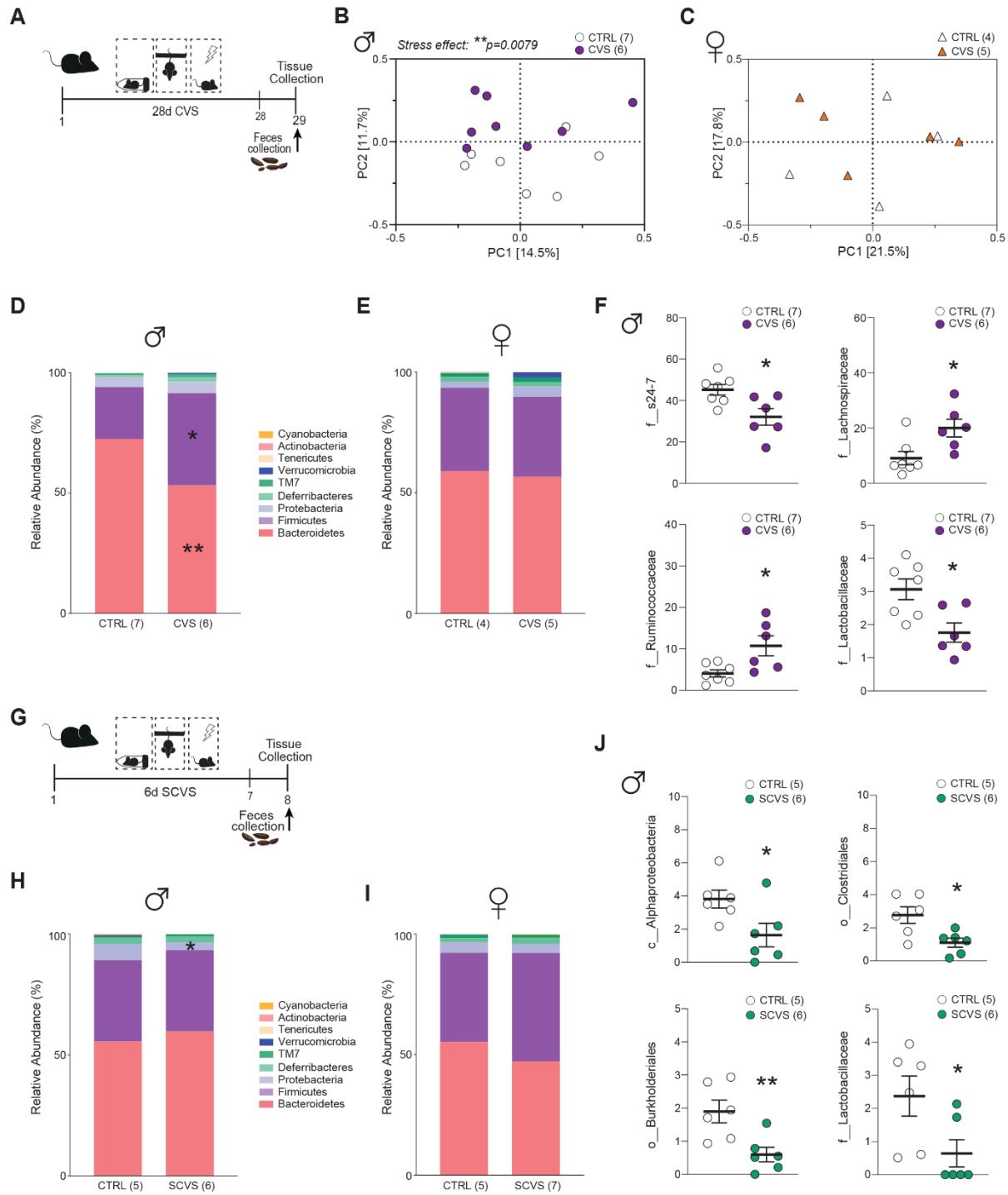
948

949 **Figure 3. Morphological assessments of stress-induced changes in jejunum (JEJ) Cldn3**
950 **expression.** A) Experimental timeline of female SCVS paradigm and tissue collection. B) Cldn3
951 protein level was lower in SCVS exposed mice while no difference was measured for F-actin (C).
952 D) Representative image of Imaris volume rendering for surface volume determination. E)
953 Pearson's correlation coefficient revealed decreased colocalization of F-actin and Cldn3 signal
954 intensities. However, no significant differences in co-occurrence of F-actin and Cldn3 was detected
955 with Mander's colocalization coefficient. F) Surface volume of colocalized regions of F-actin and
956 Cldn3 extracted from the image in (D) were lower in SCVS mice without reaching significance
957 ($p=0.0714$).


958

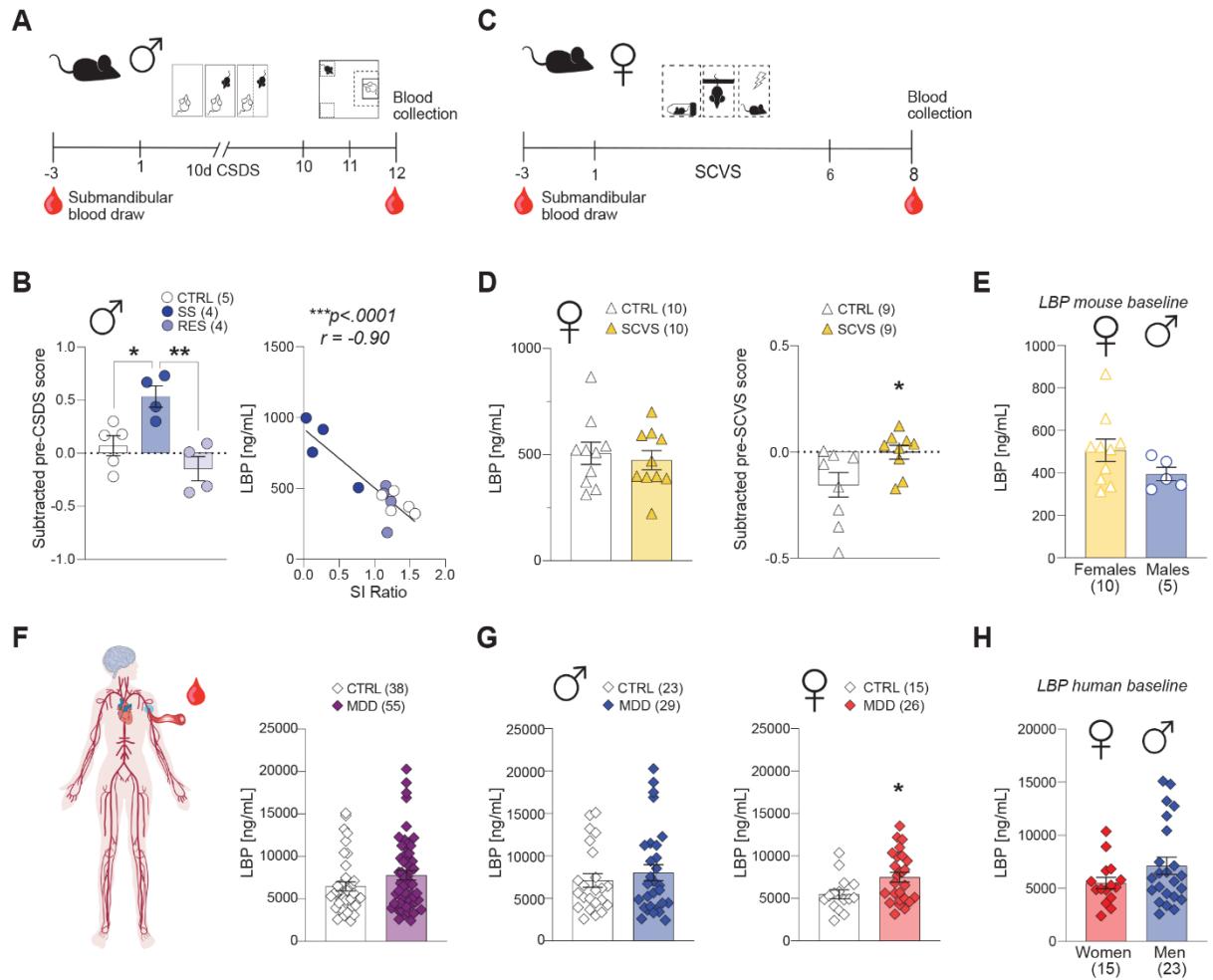
959

960 **Figure 4. Detailed morphological assessments and k-means clustering analysis of stress-**
 961 **induced changes in jejunum (JEJ) Cldn3 protein expression. A)** Experimental timeline of
 962 female SCVS paradigm. **B)** Representative immunofluorescent image of Cldn3 and F-actin. **C)**
 963 Table describing the JEJ tight junction features and parameters analyzed. **D)** t-SNE visualization
 964 of the k-means clustering. The four features (ruffle quantity, width, fragmentation, and diffusion)
 965 are projected in two dimensions using the t-SNE algorithm. Each color corresponds to a different
 966 cluster identified with k-means. Tight junction crops ($5.52 \times 5.52 \mu\text{m}$) with similar feature values


967 are clustered together and are closer together in the t-SNE projection. **E)** Proportion of tight-
968 junction crops from each image in each cluster for control and stressed animals. The different
969 shades of gray correspond to different images to show that the distribution was not skewed by the
970 overwhelming presence of a cluster in a single image. In the control condition, cluster 1 contains
971 over half of the tight junction crops, while very few are in cluster 7. For the chronic-stress
972 condition, there is an increase in crops belonging to clusters 5, 6 and 7. **F)** Examples of Claudin-3
973 tight junction crops associated with each cluster. These were selected from the 20 crops with
974 features closest to the median point of each cluster using cosine distance. **G)** Feature “barcode” of
975 the clusters identified with k-means clustering. Each entry corresponds to the median value of a
976 feature in the given cluster.

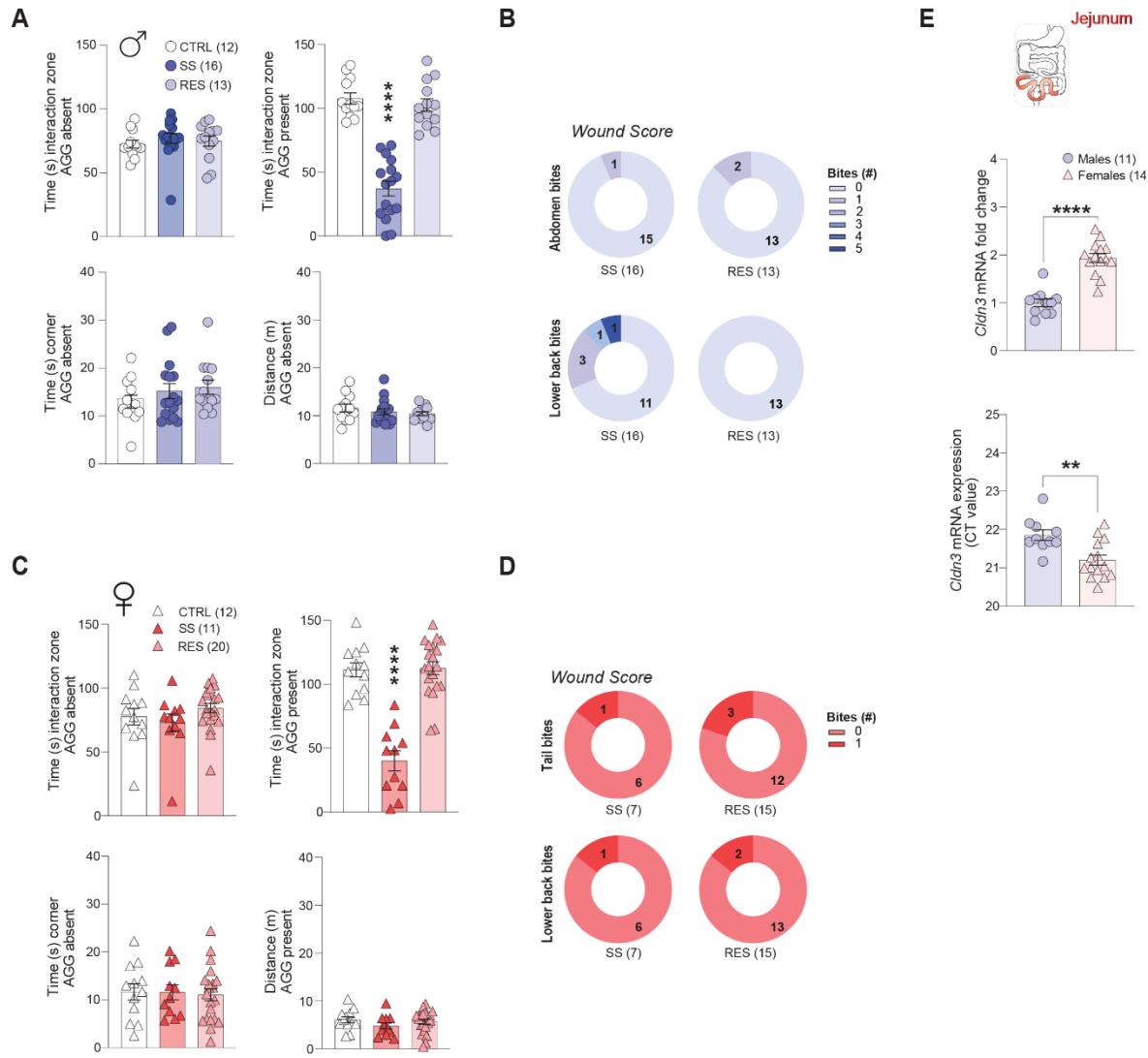
977

978 **Figure 5. LPS-induced inflammation promotes loss of jejunum (JEJ) tight junction**
979 **expression in males only.** A) Experimental timeline of lipopolysaccharide (LPS) injection and
980 tissue collection in males. B) Quantitative PCR revealed significant changes in JEJ of LPS-treated
981 mice compared to controls (saline) for gene expression of targets related to tight junctions, the
982 mucus layer or serotonin metabolism. The range of color indicates individual differences within a
983 group; S.E.M. from the average represented by the dashed line. *Cldn3*, *Cldn7*, *Cldn12*, *Tjp1*, *Tjp2*,
984 *Tjp3*, *Ocln*, *Marveld2*, *Muc2*, *Ido1* and *Ahr* expression was reduced in males after LPS and graphs
985 are provided for *Cldn3*, *Cldn12* and *Tjp1* (C). D) Experimental timeline of LPS injection and tissue
986 collection in females. E) Quantitative PCR revealed no significant changes in jejunum of LPS
987 treated female mice compared to controls (saline injection) for gene expression of targets related
988 to tight junctions including *Cldn3*, *Cldn12* and *Tjp1* (F). Data assessed with Mann-Whitney U test.
989 ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.


990

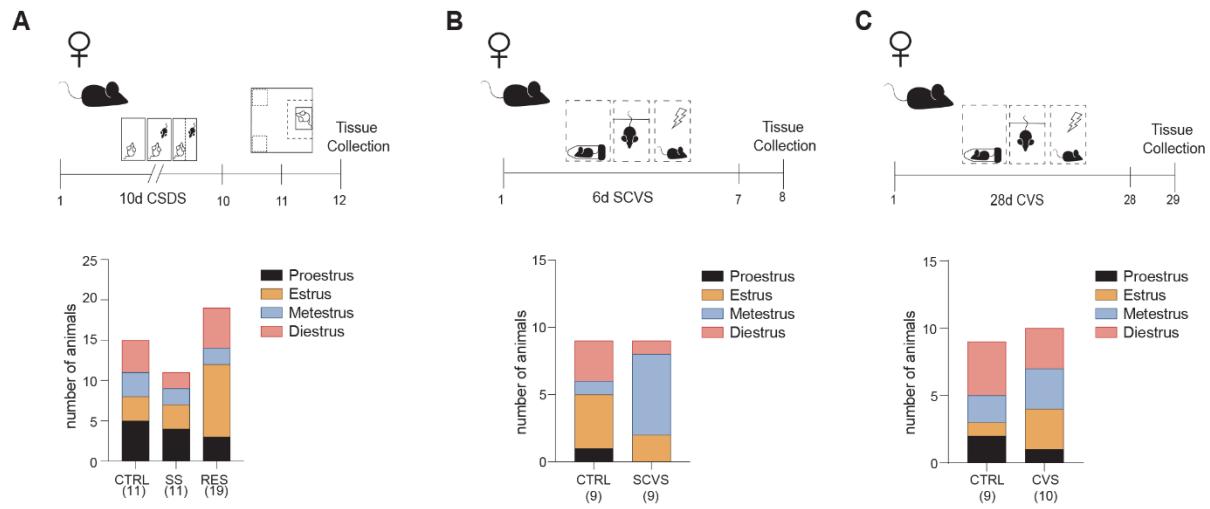
991

992 **Figure 6. Sex-specific effects of stress exposure on fecal microbiota of male and female mice.**
993 **A)** Experimental timeline of 28-day chronic variable stress (CVS) exposure and feces collection.
994 **B)** Analysis of beta-diversity revealed that CVS males significantly differed from unstressed
995 controls while no difference was noted for females **(C)**. **D)** Relative abundance of phylum
996 communities showed decreased Bacteroidetes and increased Firmicutes following CVS in males
997 with again no change for females **(E)**. **F)** At the family level, CVS-exposed males had significant


998 changes in the *s24-7*, *Lachospiraceae*, *Ruminococcaceae* and *Lactobacillaceae* families. **G**
999 Experimental timeline of 6-day subchronic variable stress (SCVS) exposure and feces collection.
1000 **H**) A reduction in the Proteobacteria phylum was observed in males after 6-d SCVS compared to
1001 unstressed controls. **I**) No significant change was noted for females despite exposure to the same
1002 stress paradigm. **J**) *Alphaproteobacteria* (unassigned), *Clostridiales* (unassigned),
1003 *Burkholderiales* and *Lactobacillaceae* abundances were all decreased in 6-d SCVS males.
1004 Unpaired t-tests were used for two-group comparisons. * $p<0.05$, ** $p<0.01$.

1005

1006 **Figure 7. Blood biomarkers are associated with loss of gut barrier integrity in stressed mice**
1007 **and individuals with major depressive disorder (MDD). A)** Experimental timeline of 10-day
1008 chronic social defeat stress (CSDS) and blood collection prior and after stress exposure. **B)** LPS-
1009 binding protein (LBP) is increased in stress-susceptible (SS), but not resilient (RES) male mice
1010 when compared to unstressed controls (CTRL) after CSDS and negatively correlated with social
1011 interaction (SI) ratio. **C)** Experimental timeline of 6-d subchronic variable stress (SCVS) and blood
1012 collection prior and after stress exposure. **D)** Circulating LBP appears similar between unstressed
1013 and stressed groups of female mice but is in fact increased after 6-d SCVS when LBP level is
1014 compared after vs prior stress. **E)** Baseline blood LBP is higher in unstressed control female mice
1015 when compared to males of the same group without reaching significance. **F)** Circulating LBP is
1016 upregulated in individuals with MDD, an effect driven by women (**G**). **H)** Baseline blood LBP in
1017 healthy control women and men is similar. T-tests and one-way ANOVA followed by Bonferroni's
1018 multiple comparison test for changes between groups. Human data were assessed with two-tailed
1019 Mann-Whitney U test. *p<0.05, **p<0.01, ***p<0.001.


1020

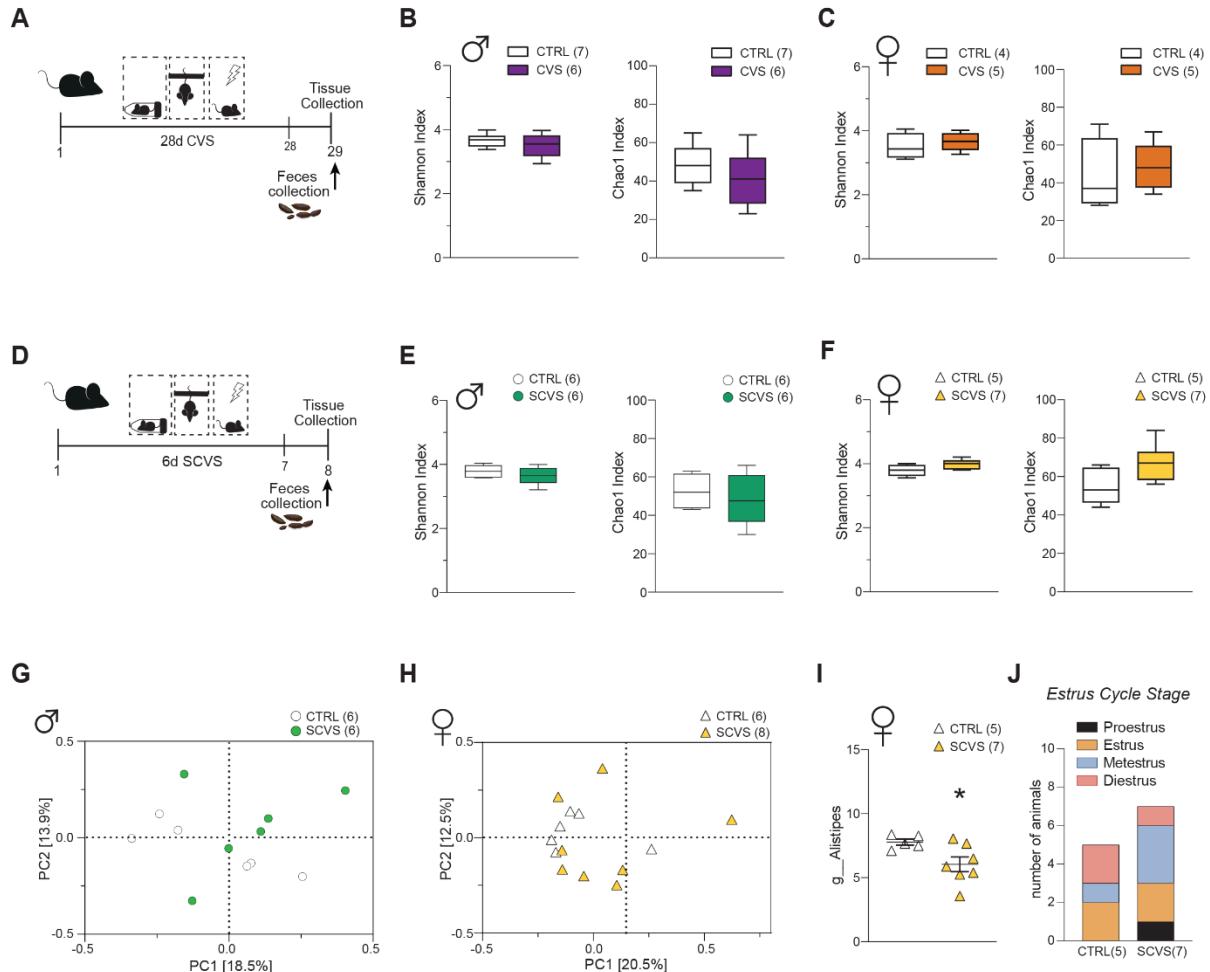
1021

1022 **Supplementary Figure 1. Behavioral phenotyping of quantitative PCR experiments and**
 1023 **jejenum *Cldn3* expression is higher in female at baseline. A)** Stress-susceptible (SS) male mice
 1024 spent less time in the interaction zone when the social target (aggressor, AGG) was present when
 1025 compared to unstressed controls (CTRL) and resilient (RES) animals. No significant difference
 1026 was measured for time spent in the interaction zone or in the corners when the social target is
 1027 absent. No difference was observed for locomotion. **B)** Wounding was comparable between
 1028 stressed males. **C)** SS female mice spent less time in the interaction zone when the AGG was
 1029 present when compared to CTRL and RES animals. No significant difference was measured for
 1030 locomotion, time spent in the interaction zone or in the corners when the social target is absent. **D)**
 1031 Wounding was comparable between stressed females. **E)** *Cldn3* mRNA level in the jejunum is
 1032 higher in control females if compared to males from the same group. Data are assessed by two-
 1033 tailed T-tests and one-way ANOVA followed by Bonferroni's multiple comparison test for changes
 1034 between groups; ** $p < 0.01$, *** $p < 0.0001$.

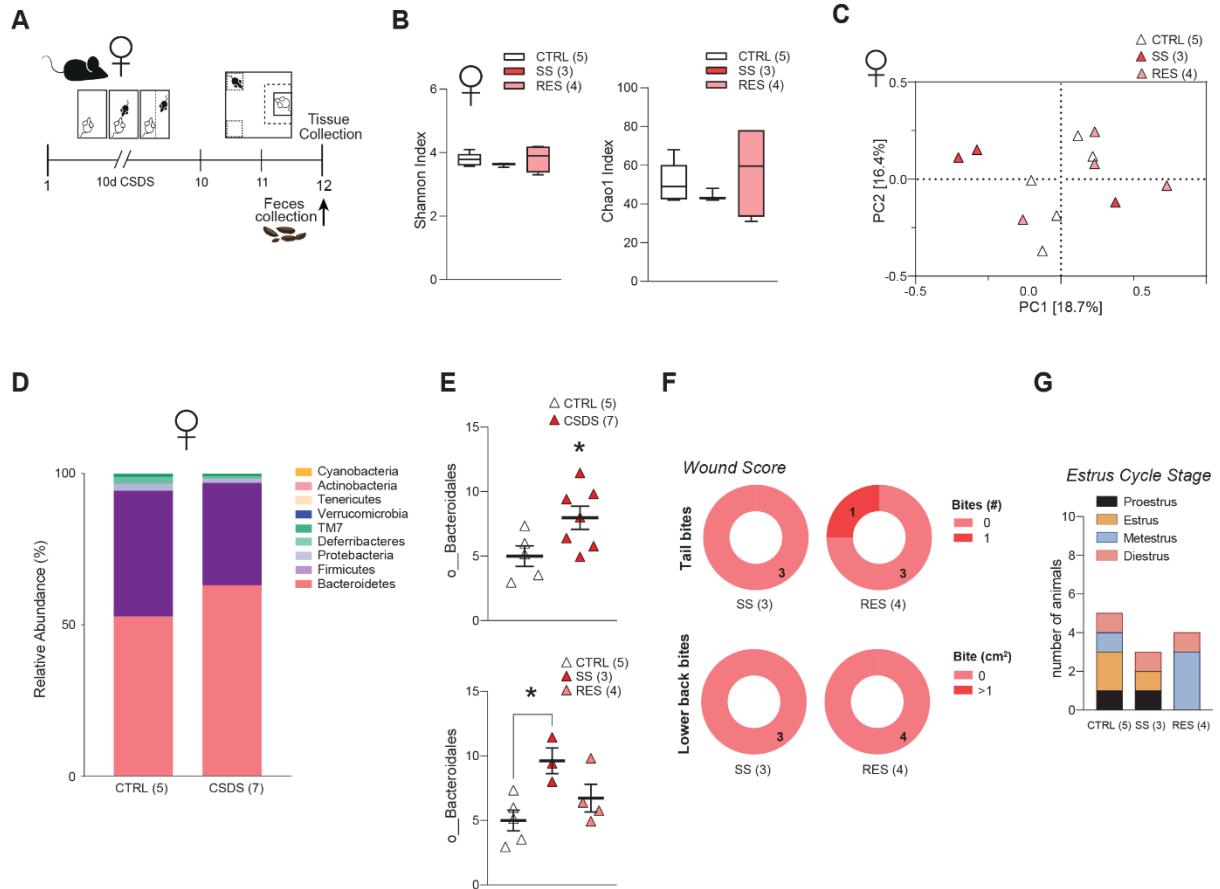

1035

1036

1037 **Supplementary Figure 2. Phenotype vs phase of the estrus cycle of female mice.** No significant
1038 difference was observed for the estrus cycle of female mice exposed to 10-d chronic social defeat
1039 stress (A, CSDS), 6-d subchronic variable stress (B, SCVS) or 28-d chronic variable stress (C,
1040 CVS).


1041

1042


1043 **Supplementary Figure 3. Additional jejunum tight junction gene expression data following**
1044 **LPS injection in male and female mice. A)** Experimental timeline for pharmacological treatment
1045 with LPS and tissue collection. **B)** Gut tight junction-related Claudin-7 (*Cldn7*), Tight junction
1046 protein 2 (*Tjp2*) and Occludin (*Ocln*) are decreased in the jejunum (JEJ) of male mice following
1047 LPS injection. **C)** Conversely, no change was observed for JEJ *Cldn7*, *Tjp2* or *Tjp3* expression for
1048 females despite exposure to the same treatment. **D)** Estrus cycle phase was similar between groups
1049 for female injected or not with LPS. Two-tailed t-test was performed to evaluate changes between
1050 groups; ***p<0.0001.

1051

1052

1053 **Supplementary Figure 4. Additional microbiota-related data following chronic and**
 1054 **subchronic variable stress paradigms in male and female mice. A)** Experimental timeline of
 1055 feces collection after 28-d chronic variable stress (CVS). No significant difference was noted for
 1056 the Shannon or Chao1 alpha-diversity indices for males (B) or females (C) after CVS exposure.
 1057 **D)** Experimental timeline of feces collection after 6-d subchronic variable stress (SCVS). **E)**
 1058 Again, no significant effect was observed for males (E, G) or female (F, H) Shannon or Chao1
 1059 alpha-diversity indices or beta-diversity. **I)** As for females, only *Alistipes* was reduced ($p=0.0370$)
 1060 despite exposure to the same stressor. **J)** Estrus cycle did not have an impact. Unpaired t-tests were
 1061 performed for two-group comparisons; $*p<0.05$, $**p<0.01$.

1062

1063 **Supplementary Figure 5. Additional microbiota-related data and phenotyping for female**
 1064 **chronic social defeat stress.** **A)** Experimental timeline of feces collection after 10-d chronic social

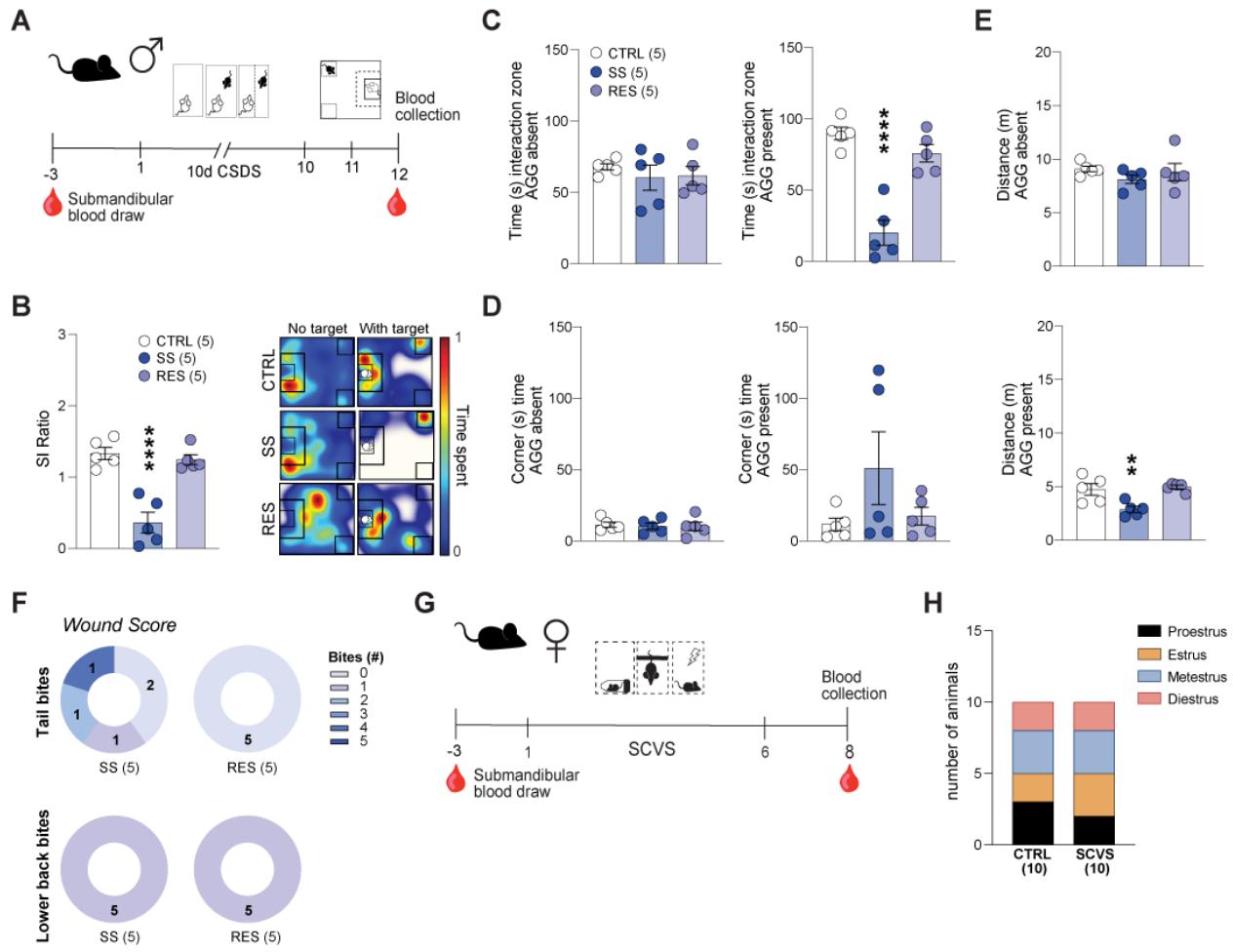
1065 defeat stress (CSDS) exposure. **B)** No difference was noted between unstressed controls (CTRL),

1066 stress-susceptible (SS) or resilient (RES) female mice for the alpha-diversity Shannon or Chao1

1067 indices or beta-diversity (C). **D)** Microbiota phyla relative abundance did not reveal significant

1068 differences between unstressed controls or mice subjected to CSDS. **E)** However, an increase in

1069 unassigned members of *Bacteroidales* was apparent in the stressed vs CTRL group ($p=0.0411$) and


1070 this effect was driven by the SS females ($p=0.0270$). **F)** Wound scores were comparable between

1071 stressed female mice as assessed by the number of tail bites and lower back bites. **G)** Estrus cycle

1072 phase was also similar. One-way ANOVA or unpaired t-test was performed for three- or two-group

1073 comparisons, respectively; * $p<0.05$.

1074

1075

1076

1077 **Supplementary Figure 6. Behavioral phenotyping for blood-based analysis of gut-related**
1078 **biomarkers.** **A)** Experimental timeline of 10-d chronic social defeat stress (CSDS) and blood
1079 collection prior and after stress exposure. Stress-susceptible (SS) mice had lower social interaction
1080 (B) since they spent less time in the interaction zone when the social target (aggressor,
1081 AGG) was present (C). No difference was observed for time spent in the corners (D) or for
1082 locomotion when the AGG is absent (E). F) Wound scores were comparable between stressed male
1083 mice as assessed by the number of tail bites and lower back bites. G) Experimental timeline of 6-
1084 d subchronic variable stress (SCVS) and blood collection prior and after stress exposure. H) No
1085 significant difference was noted for estrus cycle phase of female mice subjected or not to 6-d
1086 SCVS. One-way ANOVA followed by Bonferroni's multiple comparison test for changes between
1087 groups; ** p <0.01, *** p <0.0001.

1088

1089 **Supplementary Table 1. Quantitative PCR primers.**

Gene	Assay ID
Cldn3	Mm.PT.58.43310459.g
Cldn7	Mm.PT.58.16298059
Cldn12	Mm.PT.58.41535303
Tjp1	Mm.PT.58.29459730
Tjp2	Mm.PT.58.16834535
Tjp3	Mm.PT.58.43961106
Ocln	Mm.PT.58.42749240
Marveld2	Mm.PT.58.7719303
Muc2	Mm.PT.58.29496069.g
Ido1	Mm.PT.58.29540170
Ahr	Mm.PT.58.11116644
Actb	Mm.PT.39a.22214843.g

1090

1091

1092 **Supplementary Table 2. Primary and secondary antibodies.**

Marker	Type	Host	Dilution	Company, Catalog #
Cldn3	Primary	Rabbit	1:250	Life Technologies, 341700
CD326	Primary	Rat	1:300	Invitrogen, 953624
Cy2 (anti-rat)	Secondary	Donkey	1:300	Jackson Immunoresearch, 712-225-153
Cy2 (anti-rabbit)	Secondary	Donkey	1:300	Jackson Immunoresearch, 712-225-152
Alexa 594 (anti-rabbit)	Secondary	Donkey	1:400	Jackson Immunoresearch, 711-585-152
Phalloidin (F-actin)	Primary/Secondary	N/A	1:200	Abberior (Sigma), 30972
DAPI	N/A	N/A	1:1000	Invitrogen, D1306

1093

1094

1095 **Supplementary Table 3. Complete demographic data for human serum cohort.**

1096 Age of the participants (years): 18-30

Gender	Depressive Symptoms	Current suicidal thoughts
F	No	No
F	Yes	Yes
F	Yes	No

F	Yes	No
F	Yes	Yes
F	Yes	No
F	Yes	Yes
F	Yes	No
F	Yes	Yes
M	No	No
M	No	Yes
M	No	No
M	Yes	No
M	Yes	Yes
M	Yes	No
M	Yes	Yes
M	Yes	Yes
M	Yes	Yes
M	Yes	No
M	Yes	No
M	Yes	Yes
M	Yes	No
M	Yes	No
M	Yes	No

M	Yes	No
M	Yes	No
M	Yes	Yes
M	Yes	Yes
M	Yes	Yes
M	Yes	No
M	Yes	Yes
M	Yes	No
M	Yes	Yes
M	Yes	No
M	Yes	No
M	Yes	No
M	Yes	Yes

1097

1098

1099