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Abstract 
 Mycobacterium avium Complex (MAC) are ubiquitous environmental biofilm-forming 
microbes that can colonize and infect patient lungs. Incidence and prevalence of MAC infections 
are increasing globally, and reinfection is common. Thus, MAC infections present a significant 
public health challenge. MAC infections are notoriously difficult to treat and there is an urgent 
need for MAC-targeted therapeutics. To identify potential drug targets, we quantify the impact of 
MAC biofilms and repeated exposure on infection progression using a computational model of 
MAC infection in lung airways. 
 MAC biofilms aid epithelial cell invasion, cause premature macrophage apoptosis, and 
limit antibiotic efficacy. We develop an agent-based model that incorporates the interactions 
between bacteria, biofilm and immune cells. We perform virtual knockouts to quantify the 
effects of the sources of biofilm (biofilm simultaneously deposited with bacteria vs. formed in 
the airway after initial bacterial deposition), and their effects on macrophages (inducing 
apoptosis and slowing phagocytosis). We also quantify the effects of repeated bacterial exposure 
to assess the impact of reinfection on infection progression.  
 Our results show that chemokines released by biofilm-induced apoptosis bias 
macrophage chemotaxis towards pockets of infected and apoptosed macrophages. This bias 
results in fewer macrophages finding extracellular bacteria, allowing the extracellular planktonic 
bacteria to replicate freely. These spatial macrophage trends are further exacerbated with 
repeated deposition of bacteria.  
 Our model indicates that interventions to either abrogate macrophages’ apoptotic 
responses to bacterial biofilms and/or reduce frequency of patient exposure to bacteria will lower 
bacterial load, and likely overall risk of infection.  
 
1. Introduction  
 

Mycobacterium avium complex (MAC) is an opportunistic infection of the lungs, and the 
most common causative agent of non-tuberculous mycobacterial pulmonary disease (NTM-PD). 
These infections disproportionately affect patients with preexisting lung damage, Cystic Fibrosis, 
Chronic Obstructive Pulmonary Disease (COPD), and post-menopausal women, and incidence 
and prevalence are rising1. NTM-PD significantly lowers quality of life of patients, and requires 
prolonged  multi-drug antibiotic regimens that last at least 1 year after sputum conversion and 
are often difficult to tolerate by patients 2, with a success rate of only 45-65%3. Additionally, 
patients who have reached a clinical cure for these infections remain at increased risk of 
reinfection4. 

MAC infections occur when bacteria are aerosolized, inhaled, and deposited in lung 
airways. Many potential sources of MAC have been identified, ranging from water sources5 to 
soil6. In one study, pathogenic mycobacteria were isolated from water sources within 19 of the 
homes of 20 NTM-PD patients, and bacterial strains matched in seven of the patients7. There is, 
however, a clinical distinction between airway colonization, where bacteria are present in 
sputum, vs. infection, which is characterized by clinical and radiographic evidence of airways 
involvement and nodules in the lungs8. These early events and dynamics in the airways are 
difficult to study experimentally but may play an important role in infection progression. Further, 
bacterial dynamics in the airways are important to understand, since sputum samples 
expectorated from the airways are a clinically important measure of infection and treatment 
efficacy.  
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One hypothesis to explain the difficulty in treatment is the potential for MAC to exist in 
biofilms in vivo in the lungs, as they are known to do in the environment. In vitro, MAC biofilms 
have been shown to decrease bacterial susceptibility to antibiotics9, increase bacterial invasion 
into epithelial cells10, prevent or decrease macrophage phagocytosis of bacteria11, and cause 
premature apoptosis of macrophages11. In this work, we decouple the sources and effects of 
biofilms to quantify how they aid bacteria or hinder immune cells; and we determine the impact 
of single exposure vs. repeated bacterial exposure on infection progression. Thus, we can better 
identify potential interventions or prophylactic approaches to prevent recurrent infection. 

We take a systems biology approach, using an established agent-based model of host 
macrophage-bacterial interactions in the lung airway12. This spatio-temporal model allows us to 
examine interactions between bacteria, their biofilms and macrophages over the initial two 
weeks post-inhalation. First, we investigate the role of biofilm deposited with the initial bacterial 
inoculum compared to biofilm contributed by bacteria within the lung airway after inhalation. 
We probe these differences by performing knock-out experiments on both potential sources of 
biofilm separately. This serves as a marker for the best-case scenario in the use of an antibiofilm 
intervention. Second, we examine the effects of modulating host immune responses to biofilm, 
which will inform host-directed therapy targets to ameliorate the impact of biofilm on the host 
immune response. Third, we examine the impact of repeated inhalation events by introducing 
new bacteria to the lung airway at regular intervals while the host macrophage-bacterial 
interactions are already underway. We evaluate the distribution of bacterial phenotypes as new 
planktonic and sessile bacteria are successively added to the airway environment. 
 
2. Methods 
 
2.1 Model Overview 

Our agent-based model, developed in Repast Simphony13, describes the interactions 
between MAC bacteria, their biofilms and host macrophages in the lung airway12 (Figure 1a). 
Briefly, a mixture of planktonic and sessile bacteria is deposited in the airway. This deposition 
triggers macrophage chemotaxis and phagocytosis of bacteria. Biofilms can be both deposited 
with sessile bacteria or contributed by sessile bacteria after deposition in the airway. Once 
formed, biofilms can cause macrophages to become overstimulated and undergo apoptosis11.  

The model is executed in six-minute timesteps for a total of 14 simulation days. Model 
outputs include timeseries counts of each cell subtype (Error! Reference source not found.b-
g). Timeseries data are collected as spatially heterogeneous infections emerge (Figure 1i) that 
can, in turn, be probed for other data such as spatial chemokine concentrations. A complete 
description of the model can be found in Weathered et al.12, but mechanisms relevant to this 
work (Figure 1h) are briefly described below. 
 
2.2 Macrophage recruitment 

Macrophages are recruited to the lung airway via grid compartments designated as 
“recruitment areas” spread randomly throughout the airway. In previous model iterations, once a 
chemokine threshold is reached at a given recruitment site, a constant probability (sampled 
within a range) is used to determine if a macrophage would be recruited at that timestep. The 
implementation therefore resembled a step function. This mechanism is updated here to include a 
more biologically relevant continuous function14,15. The model now uses a likelihood function of 
recruitment that increases with chemokine concentration, but recruitment is possible at any  
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Figure 1 Model Diagrams, timeseries outputs, and representative simulation. a. Agent interactions take place in a three-
dimensional grid which represents the lung airway, with toroidal boundaries in the x and y dimensions and epithelial cells at 
the bottom of the z-dimension. b-g. Timeseries counts of each cell subtype are recorded for each simulation. Here we show 
the control timeseries counts for b. planktonic, c. sessile, d. invaded, and e. intracellular bacteria, as well as (healthy) 
macrophages and infected macrophages in each of our 900 control simulations. h. Our mechanisms of interest in this paper 
are the interactions of bacteria with biofilms and biofilms with macrophages. Bacteria contribute biofilms to the environment 
by either being deposited with pre-formed biofilms or producing new biofilm once in the lung airway. These biofilms slow or 
prevent macrophage phagocytosis of bacteria within the biofilms and cause apoptosis. i. When these interactions are 
allowed to unfold in the simulation environment, spatially heterogeneous infections emerge. Image shows 750 by 750 um 
portion of a simulation space 7 days after exposure. 
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concentration. This is implemented as a Hill function (Supplement 2), in which β is the 
maximum probability of recruitment, K is the chemokine concentration where half of the 
maximum recruitment probability is reached, and n represents the sensitivity of recruitment to 
chemokine concentration. A full parameter table is in Supplement 1. 

 
2.3 Biofilms 

In the simulation environment, biofilm can be introduced in two different ways. Biofilm 
can be: a) deposited with the initial bacterial inoculum, representing biofilm that sheared off the 
surface where the bacteria originate, or b) contributed by sessile bacteria after they are 
established in the environment. We represent biofilm as a continuous spatial variable, where 
each grid compartment has some amount of biofilm ranging from zero to 100. The amount of 
biofilm is used to determine the biofilm’s effects on macrophages (discussed below).  

When bacteria are deposited in the airway, each sessile bacterium is deposited with 
A_itlBiofilm biofilm in the same grid compartment. Additionally, each sessile bacterium can also 
contribute biofilm to its grid compartment, at a rate A_bacToBiofilm.  

 
2.4 Macrophage response to biofilms 

Biofilms affect macrophages by inducing apoptosis and slowing or preventing 
phagocytosis of bacteria residing within biofilms.  

At initiation of the model, each macrophage is assigned an individual biofilm tolerance, 
which was calibrated in Weathered et al. to match the rates of apoptosis of macrophages when 
exposed to biofilms in vitro. In each timestep where a macrophage is exposed to biofilm it loses 
some of its tolerance, at a linear dose-dependent rate. When tolerance reaches zero, the 
macrophage undergoes apoptosis. After undergoing apoptosis, dead macrophages remain in the 
environment for a length of time (T_apopDeg), releasing chemokines at the same rate as infected 
macrophages.  

Similarly, macrophage phagocytosis of biofilm-associated bacteria is modeled in a dose-
dependent manner. Each timestep, a macrophage will check its Moore neighborhood for bacteria 
to phagocytose, and preferentially phagocytose a planktonic bacterium not in a biofilm. If there 
are only sessile bacteria, it will select one, then have a probability inversely proportional to the 
amount of biofilm (out of 100) in that grid compartment of phagocytosing it. This effectively 
lowers the rate of phagocytosis of sessile bacteria while not completely preventing their 
phagocytosis.  

 
2.5 Macrophage chemotaxis 

Macrophages undergo chemotaxis in response to the total chemoattractant in their Moore 
neighborhoods, including their current position.  This total attractant layer is the sum of the 
diffusible chemoattractants released by bacteria and macrophages. The concentration of 
chemoattractant in each grid compartment of the Moore neighborhood is used to probabilistically 
weight the macrophage in the direction of the higher concentration. If the total concentration is 
under A_chemotaxThresh the macrophage chooses a new grid compartment randomly. 
 
2.6 Virtual Knockouts 

To assess the impact of biofilm sources, we compare four groups of simulations: 1) 
control simulations that include both deposited and contributed biofilms, 2) contributed-biofilm 
knockout simulations, 3) deposited-biofilm knockout simulations, and 4) simulations where both 
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deposited and contributed biofilm is knocked out. Each group consists of 900 simulations: 300 
parameter combinations randomly selected from the parameter ranges in Supplement 1, each run 
in triplicate to account for stochasticity in the model.  

We use the same experimental design to knock out macrophage-based mechanisms, 
eliminating 1) the biofilm’s ability to prevent macrophage phagocytose bacteria in biofilms and 
2) macrophage apoptosis in response to biofilms (while maintaining their ability to undergo 
apoptosis in response to internal bacteria).  

Finally, in our chemotactic knock-out simulations, we alter all macrophage movement to 
be a random walk, as it is when the chemokine concentration is below the macrophage limit of 
detection. 

For statistical analysis, we use a one-way analysis of variance (ANOVA, α=0.01) to 
compare differences among groups. If the null is rejected, indicating that there is a difference in 
the mean value of the measure between groups, we follow with a Tukey-Kramer post-hoc test. In 
testing for statistical equivalence, we use Two One-Sided Test16,17 (TOST). 

 
2.7 Repeat Deposition 

MAC can be deposited into the airway via inhalation of aerosolized bacteria, from local 
sources including waterways and showerheads. The high reinfection rate of NTM4 indicates that 
re-exposure is common, and the ubiquity of the environmental sources indicates that inhalation is 
likely not a one-time event. Instead, it is likely that repeated doses of bacteria contribute to a 
population already colonizing the airway.  

To quantify the impact of repeated exposure, we use centered Latin Hypercube Sampling 
to select 100 parameter combinations from the parameter ranges in Supplement 1, with three 
replicates each. For each of these 300 simulations, we vary the deposition frequency, keeping the 
bacterial load for each deposition the same. We evaluate deposition frequencies of every one, 
two, three-and-a-half, or seven days, and compare infection progression to control simulations of 
single-deposition.  
 
3. Results 
3.1 Biofilms are not necessary to form an infection but do worsen bacterial load and 

macrophage infiltration through increased chemokine signaling and excess macrophage 
recruitment. 

In knocking out biofilm that is contributed by inhaled bacteria, biofilm deposited in the 
airway upon inhalation, or both (the "double knockout"), only the deposited biofilm or double 
knockouts have a significant impact. Our results show a significant reduction in total bacterial 
load, bacterial invasion, macrophage recruitment, and macrophage apoptosis (Figure 2a,b,d,e) for 
the deposition knockout and the double knock-out at the end of the 14-day simulation. The 
deposition and double knock-outs are statistically equivalent to each other (TOST, p=0.493). The 
importance of deposited biofilm is consistent with previous work12, where we showed that the 
biofilm contributed within the first two weeks post-inhalation by MAC is too slow to have a 
significant impact on total biofilm. However, the mechanism(s) by which deposited biofilm 
exacerbate infection progression is not clear from these data. 

There is a significant decrease in macrophage recruitment for the deposition knockout, 
which may be considered beneficial since it reduces infiltrates into the airway. Because there is a 
corresponding decrease in bacterial load, we can assume that these recruited macrophages are in 
excess and may actually contribute to inflammation. This reduction in recruitment in the 
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deposition knockout is due to a corresponding decrease in apoptosis (Figure 2e), leading to lower 
chemokine levels which recruit macrophages. There is a significant increase in infected 
macrophage counts (those with persistent intracellular bacteria) (Figure 2g) in the deposition 
knockout. This increase in infected macrophages indicates that the decreased recruitment is not 
reducing macrophages’ ability to effectively contain the extracellular bacterial population 
(Figure 2h). Instead, the reduced recruitment only lowers the number of healthy macrophages 
that are not directly involved in phagocytosing and killing bacteria but could contribute to overall 
inflammation and infiltrates in the airway.  

Taken together, we show that while deposited biofilms do increase bacterial loads and 
macrophage infiltration, they are not necessary to establish an infection. The simulations with all 
biofilm sources knocked out also had high numbers of simulations where bacteria were not 
cleared and with invasion into epithelial cells. Overall, we observe that knocking out biofilm that 
is deposited with sessile bacteria leads to lower bacterial loads and decreased invasion into the 
epithelium. We also see decreased apoptosis and decreased recruitment of superfluous 
macrophages due to increased chemokine release. These data show that targeting biofilm can 
reduce the number of macrophages being recruited, without compromising the ability of 
macrophages to contain the bacteria. However, the specific mechanism by which the biofilm 
knockout results in decreased bacteria remains unclear. Knowing the importance of the effects of 
biofilms on macrophages, we next examine the ability of biofilm to prevent macrophage 
phagocytosis of bacteria (protective to bacteria) or cause macrophage apoptosis (offensive 
against macrophages). 
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Figure 2. Comparison of control simulations (no knock-outs) to knock-outs of biofilm contributed by bacteria after deposition in 
the lung airway, biofilms deposited with bacteria in the lung airway, and both biofilm sources. Significance bars indicate p<0.01 
in Tukey-Kramer post-hoc test. Each metric is at the end of the simulation, either 14 days or when all bacteria have been cleared.  
a) Bacterial load is a sum of all planktonic, sessile, and intracellular bacteria. b) Invaded bacteria are those that have moved 
into epithelial cells, and are no longer counted in the bacterial load. c) Fraction of bacteria that are intracellular is the ratio of 
intracellular vs. bacterial load, and indicates macrophages’ control of extracellular bacteira through phagocytosis. d) Recruited 
macrophages are those brought into the lung airway through recruitment areas via macrophage signaling, detailed in section 
2.2. e) Apoptosed macrophage counts are those macrophages that have undergone apoptosis, either via biofilm exposure 
mechanisms or from high intracellular bacteria counts. f) Healthy macrophage counts are those macrophages in the 
environvment that do not have intracellular bacteria and have not undergone apoptosis. g) Infected macrophages contain 
intracellular bacteria. h) Extracellular bacteria counts is the sum of planktonic and sessile bacteria in the lung airway.  
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3.2 Despite recruitment maintaining 
macrophage counts, apoptosis results in an increase 
in bacterial load. 

To simulate pharmacologically targeting 
macrophage pathways rather than bacterial biofilm 
pathways, we focus on two mechanisms via which 
biofilms affect macrophages: inducing apoptosis 
and preventing phagocytosis of bacteria within 
biofilms. Our simulations show a significant 
reduction in bacterial load (Figure 3a, p=0.006) 
when the macrophages’ apoptotic response to 
biofilm is knocked out. Notably, the reduction in 
bacterial load is statistically equivalent between the 
macrophage apoptosis knock-out and the deposited 
biofilm knock-out (TOST, p=0.571), indicating that 
either intervention may be similarly effective. 

Across all metrics, there is no significant 
effect for knocking out the phagocytosis prevention 
mechanism. With more mature, fully formed 
biofilms this mechanism may play a larger role, but 
in our simulations phagocytosis rates themselves are 
rarely the limiting factor in macrophages’ response 
to bacteria.  

There is also reduction in mean healthy 
macrophage counts (Figure 3c) and recruitment 
(Figure 3d), and a corresponding increase in 
infected macrophage counts (Figure 3e) in the 
macrophage apoptosis or combined knock-out 
simulations. Though the decrease in healthy 
macrophages may indicate a problem, the 
significant increase in fraction of bacteria that are 
intracellular (Figure 3b, p<0.0001) indicates that the 
macrophages overall control the extracellular 
bacteria more efficiently with the reduced apoptosis.  

Knowing that macrophage apoptosis 
prevents macrophages from controlling extracellular 
bacteria efficiently, and not just because it reduces 
macrophage numbers through killing, we next 
examine the spatial role of apoptotic chemokine 
signaling.  

 
3.3 Spatial heterogeneity demonstrates the 

importance of macrophage chemotaxis in finding extracellular bacteria. 
Bacteria remain in the extracellular space, despite large numbers of healthy macrophages in 

the airway. Further, prevention of phagocytosis by biofilm is not playing a significant role in 
either bacterial load or fraction of bacteria that are intracellular. These findings suggest that it is 

Figure 3 Comparison between control 
simulations (no knock-outs) to mechanistic knock-outs of 
macrophage apoptosis in response to biofilms, macrophage 
phagocytosis being prevented by biofilms, and both.  
Significance bars indicate p<0.01 in Tukey-Kramer post-
hoc test. Metrics are the same as described in Figure 2 
caption a, c, f, and g.  
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neither macrophage numbers nor rate of phagocytosis that is the limiting factor in controlling 
extracellular bacteria. We hypothesize that the limiting factor in macrophages’ ability to 
internalize bacteria is largely finding them. Macrophages must collocate with the bacteria to 
phagocytose them. To understand how macrophages find both extracellular bacteria and infected 
or apoptosed macrophages, we examine the chemotactic gradients that drive macrophage 
movement.  

We have previously shown that most phagocytosis events occur early in the simulation 
before new healthy macrophages are recruited12. Macrophages’ ability to find sites of infection 
depends on chemotactic responses to chemokine gradients. To quantify how effective 
chemotaxis is in finding the sites of infection in the airways, we knock out macrophages’ ability 
to undergo chemotaxis, instead forcing all macrophages to move in a random walk. At 24 hours 
post-deposition, our results show an increase in bacterial load (Figure 4a) and smaller fraction of 
intracellular bacteria in the chemotaxis knock-out (p<0.0001) (Figure 4b). This indicates that 
chemotaxis does play an important role in macrophages collocating to bacteria early in the 
simulation. However, by the end of the simulation there is no significant difference between the 
control and the chemotaxis knock-out in either bacterial load or fraction of intracellular bacteria 
(Figure 4c-d). This indicates that the efficacy of chemotaxis in leading macrophages to 
extracellular bacteria diminishes over time. We hypothesize that this diminished impact of 
chemotaxis over time is due to excess chemokine signaling of infected or apoptosed 
macrophages, which may preferentially lead macrophages towards these macrophages and away 
from extracellular bacteria. Because much of this excess chemotactic signaling is due to biofilm-
induced-macrophage apoptosis, we next examine how eliminating the biofilm’s effects on the 
host immune cells (rather than eliminating the biofilm itself) might impact colonization and 
infection. 

 
3.4 Reducing chemokine signaling due to apoptosis aids in collocation of macrophages to 

bacteria and increased phagocytosis. 
In both the biofilm deposition knockout and apoptotic response knockout, we saw not only a 

reduction in bacterial load (Figure 2a and Figure 3a, respectively), but a significant shift on 
average to a more intracellular phenotype (p<0.0001 for both in comparison to control) (Figure 
2c and Figure 3b). After the initial bout of macrophage chemotaxis and phagocytosis following 
bacterial deposition, many macrophages are either infected or have undergone apoptosis. These 
infected or apoptosed macrophages are continuously releasing chemokines. Though bacteria are 
also continuously releasing chemotactic molecules, the host-derived chemokine release creates a 
much further-reaching chemotactic gradient in our model than that produced by the bacteria. 
This gradient causes most macrophages, either those already in the environment or those 
recruited by the host-derived chemokines, to move towards the infected and apoptosed 
macrophages, rather than locating and phagocytosing remaining extracellular bacteria. This bias 
in chemotaxis can also lead to a positive feedback loop, with more recruited macrophages being 
exposed to biofilm, undergoing apoptosis, and contributing more chemokine signals.  

These spatial influences can be seen in representative simulations (Figure 4c-h), where the 
sum of the chemoattractant layers is represented by a heatmap, overlaid on the spatial map of 
agents. We can see a wider sphere of chemoattractant around apoptosed macrophages than 
extracellular bacteria, especially in early timepoints, where their signal is completely lost in the 
noise of other gradients. It is not until the colony has grown to include several extracellular 
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bacteria that they have their own sphere of chemotactic influence, which may eventually lead 
more macrophages to them.  

In the biofilm deposition knockout, chemokine signaling is reduced because macrophages are 
less likely to undergo apoptosis, and a higher fraction of the chemoattractant is from extracellular 
bacteria. We can see this effect in the Deposition KO (Figure 4h), which has fewer apoptotic 
macrophages (due to the reduction of biofilm) and shows only one high area of chemoattractant, 
which contains several extracellular bacteria.  

These trends show both the influence of spatial factors and excess inflammation. Excess 
chemokine signaling from either apoptosed macrophages or large groups of infected 
macrophages can draw all airway macrophages to them, preventing random patrolling and 
allowing extracellular bacterial colonies to grow unnoticed by macrophages. This problem is 
compounded when macrophages are recruited because, in our model, the likelihood of 
recruitment is due to the macrophage chemokine concentration, meaning that the recruited 
macrophage will most likely already be in a steep chemotactic gradient and most likely to move 
towards infected or apoptosed macrophages when recruited.  

 
3.5 Macrophages being drawn to areas of high chemokine signaling also leads to higher relative 

bacterial loads for repeated deposition scenarios. 
So far, we have also been assuming a single deposition of bacteria that then persists over the 

course of two weeks. Common sources of MAC include soil and showerheads, suggesting that 
patients are likely exposed repeatedly over the course of our two-week simulations. We 
hypothesize that the problem of macrophages not finding extracellular bacteria may be further 
exacerbated when bacteria are added to an already-infected airway. If macrophages are already 
drawn to a region of higher chemokine signaling and are no longer patrolling the airway, newly, 
randomly deposited extracellular bacteria may have more time to grow unchecked.  

As expected, with repeated deposition of bacteria we observe a significant increase in 
bacterial load by the end of the simulations (Figure 5a), not only in net bacterial load, but also 
normalized to the number of bacteria added over the course of the simulation (Figure 5b). 
Interestingly, there increase in bacterial load is only seen at frequencies of 7x/week (daily) and 
3.5x/week (every other day). Every tested frequency lower than that has no significant difference 
in bacterial load, indicating that there is a threshold at which further reduction does not further 
decrease bacterial loads. 

For each increase in frequency, we see a corresponding increase in infected macrophage 
counts (Figure 5e), but no significant increase in healthy macrophage counts (Figure 5d). 
Further, we note a shift to higher proportions of extracellular phenotypes of bacteria (Figure 5c 
and Supplement 3). This trend is caused by a combination of more extracellular bacteria being 
added to the airway environment and failure to find and phagocytose these bacteria.  

In PRCC analysis, we observe that the initial number of bacteria deposited, which is used 
for each subsequent deposition, also continues to have a significant impact on total bacterial load 
(Supplement 4). Because both the frequency of deposition and bacterial load deposited each time 
are significantly and positively correlated with higher bacterial loads, reducing patient exposure 
through either frequency or exposure load may reduce overall chance of developing an infection.  
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Figure 4. Chemotactic gradient effects. a-b) Beeswarm plots of the total bacterial load and their intracellular fractions 

at 24 hours between the control and a mechanistic knock-out of macrophage chemotaxis. In the knock-out, macrophages undergo 
a completely random walk rather than following gradients. c-h) Representative samples between corresponding control and 
deposited biofilm knockouts at 2 hours, 24 hours and 7 days post initiation. In d-e, we can see significantly more areas of high 
levels of chemokine gradients, which pull more macrophages to that area. In contrast, h shows that the highest area of 
chemokine concentration is around an extracellular colony of bacteria, which will eventually guide more macrophages to that 
area.  
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Figure 5. Comparison across  frequency of bacterial deposition. In each group, the same initial number of bacteria were 
deposited either 7x per week (daily), 3.5x per week (every other day), 2x per week (every 3.5 days), 1x week (2x per simulation) 
or 0.5x per week (our control). Significance bars indicate p<0.01 in Tukey-Kramer post-hoc test..  a) The total bacterial load is 
understandably higher with more frequent depositions. b) Here the total bacterial load at the end of the simulation is normalized 
to the total number of bacteria that were deposited over the course of the simulation. We can still see a signfiicant increase in 
bacteria over the course of the simulation, indicating that increased bacteria deposition is not solely responsible for differences 
in simulations. c-d) Boxplot overlays on the beeswamrms show corresponding increases in fraction of bacteria that are 
intracellular and fraction of bacteria that are extracellular as frequency of deposition decreases. e) Infected macrophage counts 
are signfiicantly higher with more frequent deposition, but f) healthy macrophage counts do not show a significant difference 
across deposition frequencies.  
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4. Discussion 

In this work we show the role that excess macrophage chemokine signaling plays in allowing 
a MAC infection to form, and what roles biofilm could play in fueling this inflammation. We 
perform in silico knockouts of both biofilm and macrophage responses to biofilms. With these 
simulations, we show a significant reduction in bacterial load by knocking out either biofilm that 
is deposited with sessile bacteria upon inhalation (the primary source of bacterial biofilms in the 
lung airways in the first 14 days post-exposure), or by knocking out macrophage’s apoptotic 
response to these biofilms. We demonstrate that the pro-inflammatory response to biofilms cause 
macrophages to undergo chemotaxis towards other distressed macrophages, rather than 
extracellular bacteria, and that this problem is exacerbated if more bacteria are regularly 
deposited in the lung airways.  

  
4.1 Preventing or reducing MAC infections through pharmacological interventions.  

Biofilms are a difficult pharmacological or environmental target. Mycobacterium biofilms 
specifically have plagued waterways and hospital systems5,18,19. However, MAC and other 
pathogenic mycobacterial biofilm seem to be mainly composed by cellulose in the airways, 
which could be a potential therapeutic target20. However, here we show that eliminating 
macrophage apoptotic responses to biofilm is just as effective in aiding host response to bacteria 
as eliminating the biofilms themselves. We believe that in the future, this may be accomplished 
either pharmacologically, as a prophylactic intervention for patients most at risk (e.g. those with 
prior infections), or via vaccines, or trained immunity via pattern-recognition receptors21. Some 
vaccines, such as the bacille Calmette-Guérin (BCG) tuberculosis vaccine, are hypothesized to 
initiate trained immunity22, and there is interest in further pursuing these targets in the field of 
tuberculosis and other infectious diseases. However, further study of the mechanisms behind this 
premature apoptosis in response to MAC biofilm is needed to identify specific molecular targets.  

In Rose and Bermudez (2014), a reduction in apoptosis was accomplished in vitro by adding 
anti-TNF-R1 and anti-TNF-α11. However, in those experiments, the reduction in apoptosis also 
led to a significant increase in colony forming units (CFU), contrasting our result of reduction in 
bacterial load. We attribute these differences to different conditions of macrophage-bacterial 
interactions. In the lung airway, under our parameter ranges, we see a much higher macrophage 
to bacteria ratio and significantly less total biofilm mass, putting patrolling macrophages under 
significantly less apoptotic stress. Additionally, in our simulation and in vivo, infected 
macrophages can recruit additional macrophages from the vasculature, replenishing their 
numbers. Finally, Rose and Bermudez show high levels of apoptosis even with the anti-TNF-R1 
or anti-TNF-α, indicating other pathways responsible, while we knocked out all apoptosis in 
response to biofilms. In vitro, it has been shown that TNF is associated with macrophages’ 
ability to kill MAC23. In our model, we mechanistically isolate the apoptotic response to biofilms 
from macrophages’ ability to kill bacteria, which is important, especially given the high 
proportions of intracellular bacteria that we observe at the end of our simulations. The 
mechanisms differentiating these two pathways need to be better understood to target apoptosis 
as a potential treatment, without compromising macrophages’ ability to kill MAC. 
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4.2 Reducing either frequency of bacterial exposure or bacterial load a patient is exposed to may 
have benefits.  
We show here that both bacterial load and bacterial deposition frequency can affect bacterial 

population counts and macrophage recruitment. Reducing either inoculum size or exposure 
frequency through environmental or patient lifestyle interventions may reduce likelihood of 
infection in at-risk patients. However, there does seem to be a threshold of frequency, around 
2x/week, at which further reduction does not further decrease bacterial loads. Patient 
recommendations to reduce environmental exposure to MAC have included draining and 
refilling the household water heater every two weeks to reduce bacterial growth, cleaning 
showerheads frequently, and using filters on showers and tap water sources24, but none to this 
point have quantified frequency of exposure.  Though we do not make a clinical 
recommendation based on this number, this indicates that further study or patient-centered 
exposure management or modifications may be of interest to clinicians.   
 
4.3 Model Limitations 

As in all models, we make simplifying assumptions due to parameter uncertainty and to limit 
model complexity. More detail can be added as biological mechanisms are identified and 
quantified, especially dose-response effects in macrophage-biofilm interactions. In fact, recent 
data suggest that patients with MAC-PD can have a dysregulated adaptive and possibly innate 
immunity, with exaggerated anti-inflammatory signals such as IL-10, to bacterial exposure25. 
Our current model does not distinguish between macrophage apoptosis and necrosis. 
Distinguishing between different types of cell death resulting from biofilm, bacterial or cytotoxic 
cell exposure would add further complexity to the system. Future studies on patient airway 
dynamics, such as quantitative cell counts of macrophages and chemokines profiles in 
bronchoalveolar lavage will serve as further validation data.  

Further, our model focuses on dynamics within the lung airway, with limited movement in 
the z-dimension, and spatially dispersed bacteria. These dynamics may differ in a more confined 
environment such as lung lesions and nodules. Finally, we examine only the first two weeks of 
dynamics, and therefore assume no involvement of the adaptive immune system. Future model 
iterations over longer time periods will include the adaptive immune response and dynamics of 
nodules deeper in the lungs.  
 
5. Study Highlights 
What is the current knowledge on the topic? 
Though the incidence and prevalence of NTM infections, including MAC is growing, little is 
known about the role of their biofilms in overall infection. In vitro studies have shown that 
biofilms aid bacteria in providing protection from macrophage phagocytosis and antibiotics, 
while also causing premature macrophage apoptosis, but these dynamics have not been studied in 
vivo.  
What question did this study address? 
What is the impact of MAC biofilms, host responses such as signaling, chemotaxis, apoptosis, 
and phagocytosis, and repeated bacterial exposure on tissue-level metrics such as bacterial load 
and phenotype distribution?  
What does this study add to our knowledge? 
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Biofilm indirectly allows for an increase in extracellular bacterial populations in the lungs by 
causing macrophage apoptosis, which in turn attracts more macrophages rather than allowing 
them to patrol the lung airway.  
How might this change drug discovery, development, and/or therapeutics? 
This study explores the effects of specific targets in MAC infection while demonstrating the 
importance of spatiotemporal considerations in targeting host immune cells. 
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9. Supplement 1 – Parameter Table 
Parameter Name Description Range Unit Source 

N_itlBac Initial number of bacteria deposited 1 – 50 Scalar e 

F_itlPlank Fraction of initial bacteria that are planktonic 0.2 - 0.8 Fraction e 

A_itlBiofilm Amount of biofilm per initial sessile bacterium 1 – 100 Scalar e 

N_itlMac Initial number of macrophages 60 – 130 Scalar 26 

N_recAreas Number of potential recruitment areas 450-909 Scalar 27 

T_apopDeg Time for dead macrophages to be removed/degrade 0.5 – 72 Hours e 

C_bacDeg Fraction of total bacterial chemoattractant that degrades each 
tick 

0.0001 – 
0.1 

%/timestep (6 
min) e 

D_bacC Bacterial chemoattractant diffusion coefficient 1E-9 – 
7E-9 cm2/s e 

P_bacSurvApop Probability of an individual IC bacterium surviving in 
apoptosis 20 – 70  % e 

P_bacInvPheno Probability of an individual bacterium having an invasive 
phenotype 6 – 15 % 10 

K_bacPerGridsquare Bacterial carrying capacity per gridsquare 20 – 300 Scalar e 

T_ICBacDouble Doubling time for IC bacteria 100 – 140 Hours 28 

A_bacToC Individual bacterium's contribution to bacterial 
chemoattractant per tick 5 – 30 scalar e 

M_bacZOffset Maximum distance a child bacterium is offset from parent 
bacteria in z-dimension in extracellular replication 0.001 cm e 

M_bacXYRadius Maxiumum distance child bacteria is offset from parent 
bacteria in xy-dimension in extracellular replication 

0.0006 – 
0.0016 cm e 

T_plankBacDouble Doubling time for planktonic bacteria 20 – 39  Hours 29 
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P_phenoSwitch 
Probability of an extracellular bacterium switching 

phenotypes given a bacterium of the opposite phenotype is in 
the same gridsquare, per tick 

0.01 – 0.1 % e 

T_sessBacDouble Doubling time for sessile bacteria 40 – 80 Hours 29 

P_sessInv Probability of a sessile bacterium in biofilm invading the 
epithelium 

0.001 – 
0.1 % 10 

S_bacDiv Variance in bacterial division 10 % e 

S_bacGrowth Variance in bacterial growth rates 10 % e 

A_bacToBiofilm individual sessile bacterium's contribution to biofilm per tick 1E-6 – 
1E-3 Scalar 11 

A_chemotaxThresh threshold concentration of chemoattractant to bias 
macrophage phagocytosis 1 Scalar e 

P_infMPhag probability of an infected macrophage phagocytosing a 
bacterium, per tick 10 – 50 % e 

N_threshBurst number of IC bacteria necessary to cause an infected 
macrophage to burst 10 – 60 Scalar 28 

C_macDeg Fraction of total macrophage chemoattractant that degrades 
each tick 

0.0001 – 
0.1 %/6 min e 

D_macC macrophage chemoattractant diffusion coefficient 1E-9 – 
7E-9 cm2/s e 

A_infMToC individual infected macrophage's contribution to macrophage 
chemoattractant per tick 30 – 100 Scalar e 

P_macKillsICBac probability of infected macrophage killing an intracellular 
bacterium, per tick 0.01 – 0.1 % e 

P_mPhag probability of healthy macrophage phagocytosing a 
bacterium, per tick 50 – 100 % e 

P_maxRec maximum probability for recruitment of macrophages (β of 
Hill function for recruitment) 0.01-1 % e 
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P_halfMaxRec half-max macrophage chemoattractant for recruitment of 
macrophages (K of Hill function for recruitment) 20-1000 Scalar e 

C_Nrec Hill coefficient for variable recruitment rate 2 Scalar e 

areaDim number of gridsquares in the x or y direction 100 Scalar   

zDim number of gridsquares in the z direction 3 Scalar   

 

Table 1. Parameters were taken from literature when possible. Parameter sources marked “e” indicates that the parameter was 
estimated, and given a large range due to uncertainty. Finally, diffusion coefficients were independently varied, but were 
calculated based on the diffusion rate of interleukin 6 (IL-6) in water30 divided by a value between 38 and 270 to account for the 
increased viscosity of mucus in diseases such as  COPD and Cystic Fibrosis .  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.13.507811doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507811
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Supplement 2 – Hill Function for Recruitment  

 
Supplement Figure 1. Graphical explanation of hill function parameters for recruitment. Probability of macrophage 

recruitment at each timestep is a function of chemoattractant concentration at that recruitment area, given by a hill function curve. 
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11. Supplement 3 
 
  

Supplement Figure 2. Bacterial phenotype distributions across deposition frequencies. We examine the relative 
bacterial proportions across all 900 simulations for each deposition frequency. The relative proportion of the bacterial 
phenotypes are plotted in color combinations of red, blue, and green, representing planktonic, sessile, and intracellular 
bacteria, respectively, as shown in the color wheel. Each horizontal line shows the distribution for one simulation. A black 
line shows simulations that ended after all bacteria were killed.  
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12. Supplement 4 
 

 
Supplement Figure 3. Partial Rank Correlation Coefficient (PRCC) for each parameter vs. final bacterial load across deposition 
frequencies. PRCC was calculated independently for all varied parameters in each deposition frequency. Significant correlation 
coefficients are shown in dark blue, while insignificant coefficients are in light blue. A red box is shown around N_itlBac, as it is 
consistently a driving parameter in bacterial load. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.13.507811doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507811
http://creativecommons.org/licenses/by-nc-nd/4.0/

