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Abstract 
Spatially resolved transcriptomics (SRT) has enabled precise genome-wide mRNA expression 

profiling within tissue sections. The performance of unbiased SRT methods targeting the polyA 

tail of mRNA, relies on the availability of specimens with high RNA quality. Moreover, the high 

cost of currently available SRT assays requires a careful sample screening process to increase the 

chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show 

considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-
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Rescue Spatial Transcriptomics (RRST), an SRT workflow designed to improve mRNA recovery 

from fresh frozen (FF) specimens with moderate to low RNA quality. First, we provide a 

benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA 

quality samples represented by mouse brain and prostate cancer samples. Then, we demonstrate 

the RRST protocol on tissue sections collected from 5 challenging tissue types, including: human 

lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyzed 

52 tissue sections and our results demonstrate that RRST is a versatile, powerful, and reproducible 

protocol for FF specimens of different qualities and origins.  

 
 
Introduction 
Spatially resolved transcriptomics (SRT) is a set of technologies used to chart genome-wide 

mRNA expression within tissue sections, and it has become widely used in genomics research in 

the past decade 1–3 . SRT has opened up new possibilities to explore the spatial architecture of cells 

and their interactions in the tissue context, exemplified by works in neuroscience 4, developmental 

biology 5, and disease 6,7. 

The first report of such an SRT method for high throughput spatial mRNA profiling was published 

in 2016 8. This work paved the way for unbiased capturing of whole transcriptomes from tissue 

sections. The underlying principle of this technology is a dense grid of spatially barcoded oligo(dT) 

probes printed on a microscope glass slide, which can be used to capture the polyA tails of mRNA 

molecules from a tissue section, thus facilitating spatially resolved gene expression profiling. The 

tissue section is also stained and imaged with a microscope, which makes it possible to combine 

gene expression profiling with histology. Currently, the most broadly used SRT platform is Visium 

(10x Genomics) 3, an updated version of the same principles presented by Ståhl et al.,8 currently 

with 5000 barcoded spots, each with a diameter of 55µm (see 10x Genomics webpage 9).  

 

The Visium protocol is optimized for fresh frozen (FF) tissue specimens and recommends a RIN 

(RNA Integrity Number) score higher than or equal to 7. RIN is a critical metric to assess the 

quality and level of RNA degradation before starting an SRT experiment 10,11. FF samples are the 

preferred choice for unbiased polyA-based SRT technologies due their high preservation of 

polyadenylated transcripts. However, a major limitation with polyA-based SRT is its reduced 

ability to process degraded samples. In spite of the widespread use of Visium for FF samples, there 
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is a need for a method that works well on samples with low RNA quality. Recently, 10x Genomics 

introduced a new chemistry for Formalin-Fixed Paraffin-Embedded (FFPE) samples. In FFPE 

samples, it is well documented that RNA molecules are fragmented, where the degradation often 

affects the polyA tails of the RNA 12,13. To overcome the aforementioned issue, the FFPE SRT 

approach relies on a gene-panel to target and capture protein-coding regions of the transcriptome 

instead of targeting the polyA tails.  

Based on this recent development, we propose a strategy for spatial analysis of FF tissue specimens 

with moderate/low RIN scores, that we name RNA-Rescue Spatial Transcriptomics (RRST). This 

protocol makes use of the same targeted gene-panel that was designed for FFPE material with 

additional modifications to work on FF tissues, including a gentle formalin fixation step and a 

baking step to improve tissue adherence to the slide surface. We demonstrate the capabilities of 

our RRST method by profiling the tissue transcriptomes of a variety of biological specimens, and 

comparing the results with data generated by the standard Visium protocol.  

 

Results  

 

RRST implementation in fresh frozen tissue sections 

We attempted to make the Visium SRT technology compatible for analysis of degraded FF 

samples by introducing specific modifications to the commercially available Visium FFPE 

protocol. In the original FFPE protocol, tissue sections are first deparaffinized through a series of 

washes with xylene/ethanol. Then, the tissue sections are stained with hematoxylin-eosin and de-

crosslinked in the Tris-EDTA (TE) buffer at 70 °C for an hour. The sections are then incubated 

with probe sets that hybridize in pairs to each transcript, targeting approximately 19K protein-

coding genes. Upon correct probe hybridization to mRNA transcripts, each pair is ligated to one 

another and captured by oligo(dT) probes attached to the surface of the glass slide, where spatial 

barcodes are introduced through a cDNA synthesis step. The cDNA molecules, which now hold 

information about the target transcript and its spatial location, are released from the slide surface 

for final library preparation and sequencing. 

It should be noted that FFPE specimens are usually heavily crosslinked due to a prolonged formalin 

fixation process, and thus crosslink reversal is a critical step to access the RNA molecules within 

tissue sections. This reversal is done through long incubation at high pH and temperature. In 
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relation to this, fairly harsh treatment of tissue sections and long incubation at high temperature 

during Visium FFPE protocol increase the chance of tissue detachment in initial steps of section 

processing, which may result in low quality/failed data generation (Supplementary Fig. 1, 

Supplementary Video 1). In relation to this, our RRST protocol is designed to account for all of 

these factors which is a key to successful spatial gene expression profiling of FF tissue samples. 

In the RRST protocol, FF tissue sections are fixed with formalin, instead of methanol, for 10 min 

at room temperature, followed by a baking step of 20 minutes at 37°C, which we found necessary 

in order to improve tissue section adhesion to the Visium slides. Since RRST protocol introduces 

short formalin fixation, we speculated that the long decrosslinking incubation step at high pH and 

temperature used in FFPE protocol may potentially lead to RNA degradation in the FF samples. 

Hence, we removed the cross-linking reversal step in our protocol, which in addition shortens the 

duration of protocol by an hour. A detailed workflow of the RRST is depicted in Supplementary 

Fig. 2 and a step-by-step protocol can be found in the Methods section. 

 

Performance of RRST in high quality FF samples 

We first set out a test to evaluate how well the RRST protocol performs on two FF samples with 

high RIN values: a mouse brain sample (RIN 8.8) and a human prostate tumor specimen (RIN 10) 

(Supplementary Table 1). The mouse brain has become the sample of choice to benchmark SRT 

technologies because of its well-defined anatomical structures, which have been characterized in 

detail based on histology and spatial gene expression 14. We performed both RRST and standard 

Visium on these samples and found that RRST can robustly profile the tissue transcriptome with 

approximately 2-fold increase in the number of detected genes per spot compared to the standard 

protocol (Fig. 1b, c). Moreover, in both the mouse brain and prostate tumor samples, we observed 

a high concordance (Pearson R = 0.82, p < 2.2e-16 and R = 0.76, p < 2.2e-16) between the 

aggregated gene counts across the two datasets, excluding genes that were not targeted by the 

RRST panel (Fig. 1d). This indicates that the data obtained with the RRST approach display a 

high similarity with the data obtained with the standard Visium protocol. However, the probe panel 

used for RRST excludes certain transcripts, such as those transcribed from mitochondrial genes, 

ribosomal protein coding genes or ncRNAs (Supplementary Fig. 3). With the exception of these 

three RNA types, the majority of detected transcripts come from protein coding genes and are 

detected with both methods (Supplementary Fig. 3), although at drastically different UMI counts 
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and detection rates (Fig. 1d). For the majority of transcripts, RRST protocol appears to exhibit a 

higher capture efficiency. 

 

 
Fig.1: Comparison of RRST and Visium on mouse brain and prostate tumor samples. a) H&E images 
of a representative tissue section from mouse brain (left) and prostate cancer (right) b) Spatial distribution 
of unique genes in two representative tissue sections for each tissue type, one processed with the RRST 
protocol and one processed with the standard Visium protocol. c) Distributions of unique genes per spot 
visualized as violin plots colored by experimental protocol for mouse brain (n = 8) and prostate cancer (n 
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= 4) data. The median number of unique genes is highlighted for each group (sample type and protocol) 
next to the violin plots. d) gene-gene scatter plots between RRST data (y-axis) and standard Visium data 
(x-axis) of log1p-transformed UMI counts or detection rates using the data shown in b. The red dashed line 
highlights a 1-to-1 relationship. For the log1p-transformed UMI counts scatter plot, only genes targeted by 
the probe panel were included. The detection rate for a gene is defined as the proportion of spots with 
detected UMI counts. 
 
RRST recovers spatial transcriptomics data from challenging FF samples  

There is a growing number of studies using the standard Visium platform for FF tissues to address 

biological questions 15. The assessment of RNA quality through RIN measurement (RIN ≥ 7) is 

suggested as an important criterion to define the quality of tissues for successful spatial gene 

expression profiling. In our own experience, some tissue types are more challenging to retrieve 

good/high quality Visium data from. There could be several factors contributing to low/moderate 

RNA quality, such as intrinsic biological characteristics of the tissue, rapid RNA degradation upon 

surgical procedure or sensitivity to freezing/thawing during tissue sectioning. Hence, we aimed to 

apply RRST to some challenging tissue types that are known to perform poorly using the standard 

3' capture Visium platform (Supplementary Figs. 4, 5). 

 

Adult human lung tissue 

To date, spatial transcriptome profiling of human lung tissue has rarely been investigated 16. Based 

on our own experience, FF mouse and human lung tissue samples are highly challenging to process 

with the standard Visium protocol. Therefore, we tested the performance of RRST in FF healthy 

adult human lung samples (Fig. 2a, Supplementary Fig. 6a) retrieved from two patients (LNG1, 

RIN 6.8 and LNG2, RIN 7.1, Supplementary Table 1), where the 3' capture protocol performed 

poorly. Our RRST method detected roughly a 2-fold and 10-fold increase in the number of detected 

genes per spot in these two patients respectively, indicating the robustness and power of RRST to 

profile spatial gene expression in challenging tissue types (Fig. 2b, c and Supplementary Fig. 

6b, c). As a quality control step, spots with few unique genes detected are commonly discarded 

based on an empirical cutoff threshold, where thresholds between 500-1000 unique genes are 

common. Here we used a softer cutoff threshold of 300 unique genes to include as many spots as 

possible from both conditions (Fig. 2d, Supplementary Fig. 6d). Even with this soft cutoff 

threshold, ~21%-80% of the spots were discarded for the standard Visium data, while only 1.3%-

2.3% of spots for the RRST data from the same tissue blocks (Supplementary Fig. 7). For 

downstream analysis, we first focused on one of the patients (LNG1). After dimensionality 
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reduction and clustering using the same parameter settings for the two data types, we were able to 

detect 11 clusters in the RRST and 9 clusters in the standard Visium data (Fig. 2e, f). Notably, 

marker detection by Differential Expression Analysis (DEA) highlighted distinct marker genes for 

each of the 11 RRST lung clusters whereas clusters 0, 1 and 2 in the standard Visium lung data 

were difficult to distinguish from each other (Fig. 2g). Moreover, cluster 4 in the standard Visium 

lung data displayed differential expression of mitochondrial transcripts, which is indicative of low 

quality transcriptomic profiles 17. Interestingly, some of the top markers detected for cluster 8 

(airway epithelium) in the standard Visium lung data were ncRNAs (LINC00326, ACBD3-AS1 

and AC023300.2), which RRST does not detect. We characterized the RRST clusters based on the 

top markers detected and the spatial localization (Fig. 2f, g and Supplementary Fig. 8a). Next, 

we inspected the expression of top markers detected in four selected clusters in the RRST data: 

airway epithelium, megakaryocyte-enriched, smooth muscle and glands. We found that the 

expression levels of these markers were consistently higher in the RRST data, in line with the 

higher data quality and complexity (Supplementary Fig. 8b). In addition, we applied the same 

analysis workflow on the second patient sample (LNG2) observing similar trends of higher RRST 

data quality in contrast to standard Visum protocol (Supplementary Fig. 6). Together, these 

results indicate that RRST provides increased power to profile and detect transcripts in lung tissue 

specimens.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

8 

 
Fig.2: RRST and standard Visium applied to human adult lung tissue.  Each subplot shows the RRST 
data on the left side and the standard Visium data on the right side. a) H&E images of two representative 
tissue sections collected from the same tissue block. b) Violin plots showing the distribution of unique 
genes and UMI counts. c) Unique genes per spot mapped on tissue coordinates. d) Spatial visualization 
showing what spots were discarded due to low quality (less than 300 unique genes detected). e) UMAP 
embedding of adult lung data colored by clusters detected by unsupervised graph-based clustering 
(louvain). f) Split view of clusters (same as in e) mapped on tissue coordinates. g) Dot plots of the top 
marker genes for each cluster. Each cluster was annotated based on its spatial localization in the tissue and 
expression of canonical marker genes.  
 
 
Adult human colon tissue 

Next, we investigated if the RRST protocol can be used to obtain spatial gene expression data from 

samples for which the standard Visium failed. For this purpose, we investigated FF adult human 
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colon samples collected for the Gut Cell Atlas consortium. After extensive efforts to generate 

good-quality data from these tissue blocks, we could conclude that the intestinal epithelial tissues 

are particularly susceptible to mRNA degradation and consequently difficult to process with the 

standard Visium protocol. It is of note that the gut is a highly delicate tissue that is filled with 

digestive enzymes and a microbiome of varying quality and quantity, which in turn can lead to a 

rapid degradation of RNA 18. We processed colon tissue sections obtained from two patients (Fig. 

3a) with moderate RNA integrity (RIN of 4.5 and 5.1, Supplementary Table 1). To assess 

whether mRNA degradation differs between tissue types, we manually annotated the data into 

three major regions: mucosa, submucosa and muscularis (Fig. 3a). Notably, in the standard Visium 

data, we observed low numbers of unique genes and UMI counts in the cell dense epithelial layer 

(mucosa) while we could still recover decent numbers of unique genes and UMIs counts in the 

muscularis (Fig. 3b-d). This observation was in line with what has been reported previously in 

literature, where it was shown that mRNA degrades more rapidly in the intestinal epithelium 

compared to the intestinal muscle tissue 18. However, with the RRST protocol, we were able to 

recover good-quality data both from the mucosa and submucosa in tissue sections collected from 

the same OCT block (Fig. 3b-d). The RRST method generated more even data coverage across 

different tissue regions (Fig. 3b), indicating that the method is able to mitigate the effects of tissue-

specific degradation. To demonstrate the effect of tissue-specific degradation, we investigated 

expression in the mucosa of 11 intestinal epithelial markers (Fig. 3e) selected from the Gut Cell 

Atlas 19. These results show that the RRST data provided higher detection rates and more even 

expression values, thus indicating that the method can be used to profile regions with degraded 

mRNA.  
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Fig.3: Comparison of data quality in RRST and standard Visium datasets generated from adult 
human colon tissues. a) Representative H&E images and annotated regions for two patient samples, 
processed by either RRST (n = 4) or standard Visium (n = 2). The spots in each tissue section were labeled 
into three categories: mucosa, submucosa and muscularis. b) Distribution of UMI counts in the tissue 
sections shown in a. The color scale represents log10-transformed counts. c) Distribution of unique genes 
per spot in the three annotated regions (mucosa, submucosa and muscularis) visualized as violin plots, for 
all tissue sections. The y-axis shows log10-transformed counts. d) Distribution of UMI counts per spot in 
the three annotated regions (mucosa, submucosa and muscularis) visualized as violin plots. The y-axis 
shows log10-transformed counts. e) Expression of 11 epithelial markers in the mucosa for the two adult 
colon samples visualized as violin plots. A comparison between the two protocols is shown for each gene 
and the corresponding detection rate is highlighted below each violin plot. The detection rate is defined as 
the percentage of spots (in the mucosa) where the gene is detected.  
 

Adult human small intestine tissue  

The mRNA quality of FF tissue blocks depends on a number of different factors such as sample 

collection, handling and storage 20. To estimate the overall quality of a specimen, it can be useful 

to measure RIN and/or DV200. However, for certain sample types, we have observed that mRNA 

can degrade rapidly even when they are properly stored in freezers, which in turn means that 

quality measurements become less reliable over time. One such sample, where we could observe 

a rapid degradation, was a FF OCT-embedded tissue specimen from an adult human small intestine 

(Ileum) obtained from the Gut Cell Atlas project. Approximately 1 month after sample collection, 

we processed four tissue sections from the FF OCT block using the standard Visium protocol 

which generated high-quality data from all tissue regions: mucosa, Tertiary Lymphoid Tissue 

(TLS), submucosa, muscularis and serosa (Fig. 4a-b, Supplementary Fig. 9). Surprisingly, when 

we repeated the experiment using the same tissue block six months later (8 tissue sections), we 

observed an almost complete loss of gene expression data in the mucosal/submucosal layers, while 

the data in the muscularis remained stable and comparable to the first experiment (Fig. 4b). These 

results reiterate what we observed in the adult human colon tissue, that mRNA degradation can 

vary in different tissue types and even within the same section, which cannot be assessed by bulk 

RIN quality check prior to the SRT assay. Moreover, it became clearer that the main challenge 

with running Visium on intestinal lower GI tract epithelial tissues is the rapid mRNA degradation. 

To test whether we could use our RRST method to recover high-quality data from the same block, 

we processed two tissue sections from the same OCT block approximately two years after sample 

collection (RIN 7.8, Supplementary Table 1). As indicated by the number of unique genes, we 

were able to detect higher numbers in the mucosa and submucosa compared to the second attempt, 

albeit with lower numbers than the initial experiment conducted two years earlier (Fig. 4b). 
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Notably, the second attempt with the standard Visium method (~ 6 months after sample collection) 

resulted in an average of 159 unique genes per spot in the mucosa, whereas the RRST data (~ 2 

years after sample collection) resulted in an average of 814 unique genes per spot in the mucosa 

(Fig. 4b). Moreover, a large fraction of the expression data obtained with standard Visium comes 

from mitochondrial transcripts, ribosomal protein coding transcripts or lncRNA, which are 

commonly filtered out prior to downstream analysis, whereas RRST only targets protein coding 

genes (Fig. 4c). Next, we looked closer at the mucosa region to determine how the difference in 

quality affects the ability to detect differentially expressed genes. For each time point, we ran 

differential expression analysis between the mucosa and the remaining tissue regions. We found 

that while most of the genes (1272) were only detected in the initial dataset, 466 genes were 

detected both in the initial dataset and the RRST dataset and 228 genes were uniquely detected in 

the RRST dataset (Fig. 4d). On the other hand, only 31 differentially expressed genes could be 

detected in the standard Visium dataset produced 6 months after tissue collection. Next, we took 

five enterocyte markers from the Gut Cell Atlas and visualized their expression across the tissue 

sections in the three datasets. These markers were clearly visible in the mucosa in the first dataset 

and the RRST dataset but not in the second dataset (Fig. 4e). Based on these results, we speculate 

that rapidly gut epithelial tissues contain high amounts of RNAses and therefore repetitive 

freeze/thaw cycles and long-term storage lead to mRNA degradation, hence our RRST approach 

can help overcome these effects. Overall, these results demonstrate that our RRST protocol can be 

used in FF samples with low/moderate RNA integrity and to recover data from FF tissue blocks 

that have been stored for long periods of time. 
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Fig.4: Comparison between RRST and standard Visium on an adult human small intestine sample 
over time. a) H&E image (top) and spots colored by five major tissue regions (bottom): mucosa, TLS, 
submucosa, muscularis and serosa. TLS, Tertiary Lymphoid Tissue. b) Overview of data quality in the five 
annotated tissue regions over time, visualized by violin plots of the number of unique genes per spot. The 
time points represent the approximate storage time after sample collection: ~ 1 month, ~ 6 months and ~ 2 
years. Replicates obtained for each time point are shown on the x axis. The fill color of the violin plots 
indicates the protocol used. For each time point, labels on the left side of the violin plots represent the 
average over all replicates. c) RNA biotype content for the three datasets visualized as a pie chart. 
Proportions represent the UMI counts detected for each biotype. The targeted RRST data include protein 
coding, immunoglobulin and T-cell receptor transcripts. d) Upset plot highlighting the number of 
differentially expressed genes (DEGs) detected in the mucosa in each of the three time points (average 
log2-fold change < 0.25, adjusted p-value < 0.01). Horizontal bars on the bottom left represent the total 
number of DEGs for each time point. Vertical bars on the top represent the intersection sizes for DEGs that 
were detected uniquely or in one time point or in a combination of multiple time points. Intersections are 
highlighted under the vertical bars. e) Spatial visualization of five enterocyte markers. Each row represents 
one selected tissue section from each time point with their corresponding H&E image in the leftmost 
column. Spot colors represent normalized gene expression. 
 
 
RRST revives spatial transcriptome profiles of precious clinical samples 

Spatial gene-expression profiling of clinical samples can enable discoveries required to develop 

new strategies for early diagnosis and individualized therapies at molecular levels 21. Treatment of 

pediatric brain tumors is continually being improved upon; however, there is a great need for new 

treatment options. Due to the limited amount of tissue available for research, there is usually not 

enough material for tissue optimization and RIN measurement to assess whether the sample quality 

is sufficient for the standard 3' capture protocol. In order to investigate how RRST performs in 

such precious clinical samples, we processed two pediatric brain tumor specimens (RIN 7.0 and 

7.1, Supplementary Table 1) from which we had previously failed to generate data using the 

standard 3’ polyA capture protocol. In contrast to previous samples described in this study, the 

pediatric brain tumor samples passed the recommended RNA quality threshold for the standard 

Visium assay. We speculate that the underlying reason for why these experiments failed was due 

to either tissue detachment or inefficient permeabilization of the tissue. By applying RRST 

protocol to these samples, we could reach a 12 to 100-folds increase in the number of detected 

genes per spot (Fig. 5a, b). This suggests that the RRST approach is less sensitive to changes in 

tissue composition compared with the standard Visium protocol.  

Based on the low data quality of the standard Visium data, we were first discouraged to proceed 

with data analysis. However, with the RRST data, we could assess how the difference in quality 

affects characterization of these tumors. For this purpose, we focused on the medulloblastoma 
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sample which was classified as a WNT subtype, characterized by activation of the WNT signaling 

pathway 22. The medulloblastoma tissue sections were annotated by a pathologist, showing that 

most of the tissue sections were composed of tumor cells (Supplementary Fig. 10). To compare 

the data quality of RRST and standard Visium datasets obtained from the pediatric brain tumor 

samples, we examined the expression of WNT-signaling genes, including AXIN2, DKK4, LEF1 

and CTNNB1 and 2 known targets of the WNT pathway SP5, GAD1 23,24. We were able to detect 

these marker genes in the RRST dataset, but not in the standard Visium data (Fig. 5c). Moreover, 

we also tried estimating the WNT-signaling pathway activity by calculating a module score using 

a larger gene set of 42 genes 25, which detected enrichment of the pathway in the RRST data but 

not in the standard Visium data (Fig. 5d). These results highlight the importance of high quality 

data for molecular characterization of clinical samples, which for this particular sample could be 

achieved by RRST.  

 
Fig.5: Comparison between standard Visium and RRST protocols in eight pediatric brain tumor 
tissue sections. a) Violin plots showing the number of unique genes per spot in all eight tissue sections 
(medulloblastoma n=4, NOS n=4). The fill color represents the protocol used to generate the data. The 
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average number of unique genes for each sample and protocol are highlighted by dashed lines. Note that 
the y-axis shows log10-transformed values. b) H&E images (top row) and the number of unique genes per 
spot (bottom row) shown for four representative tissue sections. c) Violin plots showing the normalized 
expression of 6 marker genes related to WNT-signaling across the four medulloblastoma tissue sections. 
The fill color represents the protocol used to generate the data. Rep1, replicate 1; Rep2, replicate 2. Norm. 
Expr., normalized gene expression. d) Spatial visualization of WNT--signaling module scores in the WNT 
medulloblastoma samples. 
 
RRST sheds light on cartilage and bone biology 

Analysis of RNA profiles of cartilage and bone is a challenging task because cells in these tissues 

are embedded in dense extracellular matrices, which are also often mineralised 26. Extensive 

enzymatic digestion is typically required to isolate cells from these tissues, but the influence of 

such procedure on the transcriptional profiles of these cells is not fully understood, and whether 

sub-populations of cells remain in the undigested tissue is typically not reported 27. SRT offers a 

major advantage to study these tissues since gene expression can be analyzed without the need to 

isolate cells, together with the benefit of added spatial information. 

The long-bones elongate via a process called endochondral ossification, in which streams of 

chondrocytes from the epiphyseal cartilage undergo successive differentiation stages and produce 

a mineralised cartilage matrix, which is subsequently remodeled and used as a scaffold on which 

new bone tissue is deposited 28. One of the later developmental stages in this process is the 

formation of a bony structure called the secondary ossification center (SOC) within the epiphyseal 

cartilage 28. In the proximal tibia of humans, this event occurs around birth 29, whereas in mice it 

is precisely determined to occur between postnatal day 7 and 11 30. Within these few days, the 

SOC contains many different cell-types, including osteoblasts, hematopoietic cells, mesenchymal 

stromal cells and endothelial cells, which are suddenly located within a few cell-diameters of the 

resting-zone chondrocytes, potentially influencing these cells 31. To investigate potential effectors 

that derive from the newly forming SOC, we applied RRST to mouse growth plate specimens 

before SOC formation (postnatal day 4, P4) and immediately after SOC formation (postnatal day 

11, P11) 10.  

First, we aimed to benchmark our RRST protocol with the standard Visium protocol. In line with 

previous results on other tissue types processed in this study, we observed a 3- to 9-fold increase 

in the number of unique genes detected with RRST (Fig. 6a). Importantly, this trend was 

particularly clear in the cartilage and bone tissue, where we observed between 1298 to 1750 unique 

genes and between 2822 to 4000 UMIs on average with RRST, whereas the standard Visium 
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protocol recovered less than 100 unique genes and UMIs on average (Supplementary Fig. 11a,b,e 

and f). The difference in the number of genes and UMIs was also evident in the surrounding 

tissues, and in addition we observed more even distribution of unique genes and UMIs in the RRST 

datasets (Supplementary Fig. 11e and f). Based on these observations, we decided to proceed 

with the higher quality RRST data for downstream analysis of the cartilage and bone tissue. 

Non-negative matrix factorization (NNMF) analysis identified several factors containing 

chondrocytes in the resting and proliferating zones (eg. Col2a1, Col9a1, Fig. 6b and 

Supplementary Fig. 12a) 32, hypertrophic chondrocytes and bone cells within the primary 

spongiosa (eg. Col10a1, Mmp9, Phospho1, Dmp1, Acp5, Fig. 6c and Supplementary Fig. 12b) 
33,34, as well as the cruciate ligament (eg. Scx, Dkk3, Fig. 6d and Supplementary Fig. 12c) 35,36 

and cells at the perichondrium/periosteum (eg. Thbs2, Tnn, Fig. 6e and Supplementary Fig. 12d) 
37, which appeared in the distinct, expected anatomical locations. To explore possible secreted 

factors deriving from the newly forming SOC, we used the histological images to manually assign 

the spots within the cartilage into seven sub-clusters: “resting zone”, “proliferating zone”, “pre-

hypertrophic”, “hypertrophic zone”, “SOC”, “SOC-adjacent resting zone” and those surrounding 

the cartilage that we grouped as “peripheral cells'' (Fig. 7a and Supplementary Fig. 11d). To 

identify novel markers for these sub-clusters, we conducted differential gene expression analysis 

(Fig. 7b). We identified several genes specifically upregulated in the SOC and SOC adjacent zone; 

interestingly, one of these factors, Plxnd1, has previously been found to be expressed in newly 

forming ossification centers 38. Furthermore, we identified several soluble factors that were 

significantly upregulated within the SOC (namely Ccl9, Basp1 and Apln) and SOC-adjacent zone 

(Msmp). Thus, these results show that with RRST approach we open up an exciting possibility to 

gain deeper understanding of bone formation and other processes occuring in the skeleton in spatial 

context. 
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Fig.6: Comparison of standard Visium with RRST on mouse cartilage tissue. a) Average 
numbers of unique genes are highlighted by dashed lines for each protocol next to the violin plots. 
The y-axis represents log10-scaled counts. b) Following NNMF, Factors 12 and 2 associated with 
resting and proliferating chondrocytes. c) Factors 1 and 11 associated with hypertrophic 
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chondrocytes and primary spongiosa. d) Factor 6 associated with the cruciate ligament. e) Factor 
7 associated with Perichondrium and periosteum. Spot colors represent the factor activity, i.e. the 
contribution of each spot to the factor. The spot opacity has been scaled by the factor activity 
scores, making spots with lower scores more transparent. 
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Fig.7: Investigating the potential secreted markers within mouse cartilage at 2 postnatal time 
points. a) Comparing the manually assigned sub-clusters between postnatal day 4 and day 11. b) 
Differentially up-regulated genes listed from highest to lowest fold change within each annotated 
region (avg_log2FC > 0.6 and a maximum of 15 genes per region). 
 

 
 
 
Discussion 
Here we present the RNA Rescue Spatial Transcriptomics (RRST) profiling method, designed 

specifically for genome-wide spatial gene expression analysis of moderate to low quality fresh 

frozen (FF) samples. Recent developments in the field have made it possible to generate SRT data 

from FFPE samples, which is the preferred fixation method for storing biological material in 

biobanks. Formalin-fixation provides better preservation of morphology and makes the material 

compatible with spatial mRNA-protein co-detection assays. While FFPE sample preservation has 

its advantages, overfixation leading to heavily crosslinked RNA is a common issue, which may 

introduce biases in the analysis of both RNA and DNA in those samples 39. Hence, we modified 

the commercially available Visium FFPE spatial gene expression protocol to be applicable on FF 

tissues by introducing three modifications: (1) a short formalin fixation step to make RRST 

compatible with Visium FFPE protocol, (2) a baking step for reinforced tissue section adhesion 

and prevention of detachment and (3) removal of the crosslink-reversal step, which shortens the 

overall protocol time. In addition, we believe that RRST will increase flexibility for researchers 

working with snap-frozen samples, in particular to make SRT compatible with other modalities 

that rely on FF specimens such as single nuclei sequencing or mass spectrometry in order to obtain 

paired data from the same tissue block. 

 

In this work, we analyzed 52 tissue sections across 7 different tissue types to demonstrate the 

versatility of RRST protocol. Although standard Visium protocol, which relies on methanol-

fixation, has been shown to work in high quality FF specimens, our analysis of mouse brain and 

prostate cancer tissue demonstrates that RRST performs equally well in tissues with high RIN 

values and exhibits better performance in low-quality samples as demonstrated by the increased 

number of detected genes and transcripts in several different tissue types. We show that in samples 

collected from the human small intestine and colon, we observed severe RNA degradation in 
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epithelial tissues; however, with the RRST protocol we were able to recover spatial data from these 

tissues when the standard protocol failed. 

Notably, RRST allowed us to identify characteristic WNT-signaling pathway genes in a 

medulloblastoma WNT subtype of pediatric brain tumors, which would have been otherwise 

overlooked in standard Visium-derived data. Moreover, the RRST protocol does not require tissue 

optimization, making it advantageous in situations where little material is available as is often the 

case with precious clinical specimens. In addition, we demonstrate that RRST protocol can 

successfully generate transcriptomic profiles in challenging tissue types such as adult human lung 

or mouse cartilage/bone. For example, by applying RRST to adult human lung tissue we are able 

to provide a more detailed, data-driven characterization of different tissue compartments. The 

additional information that we observe in the RRST data makes the technology more relevant for 

studies of the respiratory system.  

To the best of our knowledge, we have generated the first spatially resolved transcriptomics dataset 

from cartilage and bone tissue, which opens up new possibilities to study the composition and 

communication of cells in the skeletal system for example to better understand cellular micro-

environments within the bone marrow 40, the crucial gradient of cell identities at attachment sites 

between muscle and bone 34, as well as to study diseases such as osteoarthritis  whose step-wise 

progressive degeneration involves complex interplay between various tissues, including cartilage 

and bone 41,42. We demonstrate that by applying RRST to mouse cartilage/bone tissue, we could 

identify four soluble factors expressed within the SOC or the SOC-adjacent zone, which have the 

potential to influence the chondrocytes, based on their close proximity. Since Apln has been shown 

to be involved in endothelial cell activation during angiogenesis 43, and Ccl9 in the maturation of 

osteoclasts 44, their expression may reflect the ongoing growth and remodeling of the SOC. 

However, further research is required to reveal the precise roles of the four soluble factors in the 

SOC and their possible influence on bone growth.  

In summary, we show that our RRST protocol recovers higher amounts of mRNA than the standard 

Visium protocol from degraded or otherwise challenging FF tissue blocks. Taken together, our 

results indicate that RRST is a powerful and versatile method, which can be used to accelerate 

discoveries in developmental biology, disease pathology, and clinical translational research. 
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Methods  
Ethics declaration 
The study was performed according to the Declaration of Helsinki, Basel Declaration and Good 

Clinical Practice. All human subjects were provided with full and adequate verbal and written 

information about the study before their participation. Written informed consent was obtained from 

all participating subjects before enrolment in the study.  

Use of prostate cancer samples was approved by the Regional Ethical Review Board (REPN) 

Uppsala, Sweden before study initiation (Dnr 2011/066/2, Landstinget Västmanland, Sari Stenius). 

Lung samples were obtained from deceased donors by the Cambridge Biorepository for 

Translational Medicine (CBTM) with informed consent from the donor families and approval from 

the NRES Committee of East of England – Cambridge South (15/EE/0152), the project has 

received funding from the European Union's Horizon 2020 research and innovation programme 

under a grant agreement (no. 874656, discovAIR). 

GI tract specimens were approved by the medical ethics committee of University Hospitals Leuven 

(approval no. S62935).  

Use of pediatric brain tumor samples was approved by the Regional Ethical Review Board (EPN), 

Stockholm, Sweden (DNR 2018/3-31, Monica Nister).  

Mouse bone samples were collected according to DNR 16673/2020, approved by Stockholm's 

animal experiment ethics committee (Stockholms djurförsöksetiska nämnd). 

Mouse brain sample was purchased from Adlego Biomedical company, that operates under ethical 

permission nr. 17114-2020. 

 
Samples information  

Mouse brain 

A mouse brain sample was selected from a batch of commercially purchased specimens from 

Adlego Biomedical.  

Prostate cancer sample 

Prostate cancer sample was obtained from a surgically removed prostate at Västerås Hospital in 

Sweden. 

Lung specimens  
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Postmortem samples from lung tissue were collected at the department of Molecular Biosciences, 

Science for Life Laboratory, Stockholm, Sweden. Autopsy samples were selected from two 

healthy donors.  

GI specimens 

Samples were collected from patients undergoing colorectal surgery. Collection of small intestine 

and colon samples biopsies was performed at the department of Chronic Disease and Metabolism, 

Katholieke Universiteit Leuven, Belgium.  

Pediatric brain tumor samples  

Samples were obtained from The Swedish Childhood Tumor Biobank.  

Mouse cartilage/bone 

Tissues were collected from postnatal mice at four and eleven days of age. Briefly, hind-limbs 

were dissected, the skin and surrounding soft tissues were quickly trimmed. Femora and tibiae 

were dissected through the diaphysis and the tissue including the knee joint, proximal tibia and 

distal femur (with remaining soft tissues) was embedded into OCT in a cryomold. The samples 

were rapidly frozen using a hexane bath. 

 
RNA quality evaluation 

RNA was extracted from tissue sections using the RNeasy Mini kit (Qiagen). RINs were measured 

using the Agilent Bioanalyzer. 
 

Standard Visium Spatial Gene Expression library preparation 

Fresh-frozen samples were cryo-sectioned at 10 µm thickness, placed onto Visium glass slides and 

stored in -80°C before processing. Spatial gene expression libraries were generated following 10X 

Genomic Visium Spatial Gene Expression protocol (User Guide, CG000239 Rev F). Libraries 

were sequenced on Nextseq2000 (Illumina). Length of read 1 was 28 bp and read 2 150 bp. 

 

RRST Gene Expression library preparation 

The fresh-frozen samples were cryo-sectioned at 10 µm thickness, placed onto Visium glass slides 

and stored in -80°C before processing. Visium slides were taken out of the -80°C freezer and 

placed on a thermocycler pre-heated at 37°C for 1 minute, followed by immediate fixation in 4% 

methanol-free formaldehyde (thermofisher, Catalog number: 28906) solution for 10 minutes at 
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room temperature. After fixation, Visium slides were washed twice in 1xPBS, then heated up to 

37°C for 20 minutes using a thermocycler, cooled down to room temperature and followed by 

Hematoxylin-Eosin staining optimized for each tissue type and imaging. Directly after imaging, 

slides were washed with MQ water, air-dried and placed inside the plastic Visium cassette. 

Sections were treated with 0.1N HCl for 1 minute at room temperature, and washed in 1xPBS. The 

Visium Spatial Gene Expression for FFPE reagent kit (10x Genomics, Pleasanton, CA, USA) was 

used for the downstream steps. Decrosslinking step was skipped, immediately proceeding with 

probe Pre-hybridization step for 15 minutes at room temperature, followed by Probe Hybridization 

overnight according to 10X Visium Spatial Gene Expression Reagent Kits for FFPE protocol and 

the rest of the library preparation (User Guide, CG000407 Rev C). Finished libraries were 

sequenced on Nextseq2000 (Illumina). Length of read 1 and read 2 were 28 base pairs and 50 base 

pairs, respectively. 

 

Data processing 

Sequenced libraries were processed using Space Ranger software (version 1.2.1 for standard 

Visium data and version 1.3.1 for RRST data, 10X Genomics). Reads were aligned to the pre-built 

human or mouse reference genome provided by 10x Genomics (GRCh38 for human data or mm10 

for mouse data, version 32, ensembl 98), which includes a GTF file, a fasta file and a STAR index. 

 

Data filtering and pre-processing 

Processing and analysis of spatial transcriptomics data obtained with either RRST or standard 

Visium was performed using R (v4.1.3) and the single-cell genomics toolkit Seurat and the spatial 

transcriptomics toolkit STUtility. Adult human colon and small intestine data was manually 

annotated into major tissue compartments based on tissue morphology (H&E image) using the 

interactive shiny app provided with the ManualAnnotation function in STUtility. Adult human 

colon data was categorized into three groups: “mucosa”, “submucosa” and “muscularis” whereas 

small intestine data was categorized into 5 groups: “mucosa”, “TLS”, “submucosa”, “muscularis” 

and “serosa”. Table 1 provides a summary of the filtering settings used for each dataset. Detailed 

instructions for each sample type are provided in the section below. 
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Table 1: Overview of spatially resolved transcriptomics samples and filtering settings used in pre-
processing steps. 
 

dataset # RRST 
samples 

# standard 
Visium 
samples 

# biological 
replicates 

filter 

mouse brain 4 4 1 no filter 

human prostate 
cancer 

2 2 1 no filter 

adult human lung 2 4 2 keep spots with > 300 unique 
genes 

adult human colon 4 2 2 keep spots annotated as 
“mucosa”, “submucosa” or 
“muscularis” 

adult human small 
intestine 

2 12 1 keep spots annotated as 
“mucosa”, “TLS”, 
“submucosa”, “muscularis” or 
“serosa” and spots with > 100 
unique genes 

mouse bone 2 4 2 keep spots with > 500 unique 
genes 

pediatric brain 
tumor 

4 4 2 no filter 

 

Mouse brain and human prostate cancer: A total of 8 mouse brain tissue sections (4xRRST and 

4xstandard) and 4 prostate cancer tissue sections (2xRRST and 2xstandard) were used for the 

analysis. Spatial visualization of unique genes were created using the ST.FeaturePlot function 

(STUtility) and violin plots with the ggplot2 R package. The median number of unique genes were 

calculated for each protocol and sample and visualized next to the violin plots. Gene-gene scatter 

plots comparing log-transformed UMI counts were created as follows: (1) raw expression matrices 

were extracted for each data type (RRST or standard Visium) followed by aggregating the 

expression values for each gene, (2) aggregated expression values were log-transformed with a 

pseudocount of 1 (log1p). Pearson R scores and p-values were calculated using the stat_cor 

function from the ggpubr R package. Gene-gene scatter plots comparing detection rates were 

created as follows: (1) raw expression matrices were extracted for each data type (RRST or 
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standard Visium) and the detection rates were estimated for each gene as the proportion of spots 

with detected UMI counts.  

Adult human lung: A total of 6 adult human lung tissue sections (2xRRST and 4xstandard), 

collected from two samples were used for the analysis. After filtering out spots with fewer than 

301 unique genes detected, the data was normalized and subjected to a basic analysis workflow 

using functions from the Seurat R package. The filtered data was split by sample (LNG1 and 

LNG1), which were analyzed separately. Normalization and scaling of the data was conducted 

using the NormalizeData and ScaleData functions. The top 2000 most variable genes were detected 

using the vst method (FindVariableFeatures) followed by dimensionality reduction by PCA 

(RunPCA). A shared nearest neighbor (SNN) graph was constructed based on the first 20 principal 

components (FindNeighbors) followed by graph-based clustering with the resolution parameter 

set to 0.8 (FindClusters). Finally, a Uniform Manifold Approximation and Projection (UMAP) 

embedding was computed based on the first 20 principal components (RunUMAP, min.dist = 0.3, 

n.epochs = 1000). Marker detection was conducted by calculating differential expression for each 

cluster against the background (remaining clusters) with a log fold change threshold of 0.25 and 

an adjusted p-value threshold of 0.01 using the FindAllMarkers function. Cluster annotations were 

assigned based on the expression of canonical markers (obtained from a scRNA-seq atlas of the 

human lung 45) and spatial co-localization with histological landmarks. 

Adult human colon: A total of 6 adult human colon Visium datasets (4xRRST and 2xstandard), 

obtained from 2 samples were used for the analysis. Spots in these datasets were manually labeled 

using the ManualAnnotation function from STUtility into three major regions based on histology: 

“mucosa”, “submucosa” and “muscularis”. Unlabeled spots were removed prior to downstream 

analysis using the SubsetSTData function from STUtility. Datasets 2, 3, 4 and 6 were used for the 

spatial plots in Fig. 3a, b (see Table 1). Violin plots showing the distribution of unique genes in 

the three major regions were created for all 6 datasets using the ggplot2 R package. Prior to 

normalization, the data was filtered to only keep genes expressed in both RRST and standard data. 

The dataset was then normalized using the NormalizeData function from Seurat. 11 intestinal 

epithelial marker genes were selected based on two criteria: (1) high spatial variability in the 

spatially resolved transcriptomics data (the data presented here), and (2) high differential 

expression in epithelial cells identified in the Gut Cell Atlas 19. The normalized expression of these 
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11 intestinal epithelial marker genes were then visualized as violin plots for spots annotated as 

“mucosa”. 

Human small intestine: A total of 14 adult human small intestine Visium datasets (2xRRST and 

12xstandard), obtained from a single specimen collected over a time span of ~2 years, were used 

for the analysis. Spots in these datasets were manually labeled using the ManualAnnotation 

function from STUtility into five major regions based on histology: “mucosa”, “TLS”, 

“submucosa”, “muscularis” and “serosa”. Unlabeled spots were removed prior to downstream 

analysis using the SubsetSTData function from STUtility. Violin plots showing the distribution of 

unique genes in the five major regions were created for all 14 datasets using the ggplot2 R package, 

with the average number of unique genes highlighted for each time point. The biotype content was 

calculated for 10 biotypes: IG(C|J|V), TR(C|J|V), lincRNA, protein coding, mitochondrial protein 

coding and ribosomal protein coding genes. All other transcripts were labeled as “other”. For each 

biotype and within each time point, a percentage was calculated by dividing the UMIs for the 

biotype with the total number of UMIs. The gene annotations were obtained from the GTF file 

used for mapping with spaceranger. Note that the RRST protocol only targets protein coding 

transcripts, immunoglobulin transcripts and T-cell receptor transcripts. Next, we split the dataset 

by time points, filtered out spots with less than or equal to 100 unique genes, and normalized each 

subset with the NormalizeData function. For differential expression analysis of the mucosa, we 

used the FindMarkers function to identify marker genes with a log fold change threshold of 0.25 

and an adjusted p-value lower than 0.01 (max.cells.per.ident = 1000, ident.1 = ”mucosa”, only.pos 

= TRUE). After filtering the differentially expressed genes (DEGs) based on log fold change and 

adjusted p-values, the results were summarized in an “upset” plot highlighting genes that were 

differentially expressed at single or multiple time points. 6 intestinal epithelial marker genes were 

selected based on two criteria: (1) high spatial variability in the spatially resolved transcriptomics 

data (the data presented here), and (2) high differential expression in epithelial cells identified in 

the Gut Cell Atlas 19. The normalized expression of these 6 intestinal epithelial marker genes were 

then visualized as spatial maps with ST.FeaturePlot (STUtility) in 3 selected tissue sections, 1 from 

each time point. 

Pediatric brain tumor: A total of 8 pediatric brain tumor tissue sections (4xRRST and 

4xstandard), collected from two tissue blocks (medulloblastoma and NOS subtypes), were used 

for the analysis. The distribution of unique genes for all 8 tissue sections were visualized as violin 
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plots colored by protocol, and with the average number of unique genes highlighted next to the 

violin plots. 1 representative tissue section was selected from each combination of protocol and 

sample to show the distribution of unique genes together with the corresponding H&E image. 

Next, we downloaded cancer hallmark gene sets from MsigDB 46,47 for WNT β-catenin-signaling 

and TGFβ-signaling. These gene sets were then used to compute enrichment scores from the 

normalized medulloblastoma data with the AddModuleScore function from Seurat. These module 

scores were then visualized as spatial maps on 1 representative tissue section from each protocol 

(RRST or standard). Next, we selected 6 known WNT-signaling marker genes and visualized their 

normalized expression distributions as violin plots in the medulloblastoma data.  

Mouse bone: A total of 6 tissue sections (4xRRST and 2xstandard), collected from two tissue 

blocks (P4 and P11), were used for the comparison shown in Figure 6a and Supplementary Fig. 

11. The spots were manually annotated into two regions: “cartilage/bone” and “surrounding” 

tissue. Distributions of unique genes and UMIs at the two post-natal stages and in manually 

annotated regions (split by protocol) were visualized with violin plots using the ggplot2 R package 

and spatial maps were created with the FeatureOverlay function from STUtility. Only the RRST 

samples were used for subsequent data analysis. First, the “cartilage/bone” region was manually 

annotated into seven sub regions: “resting zone”, “proliferative zone”, “pre-Hypertrophic zone”, 

“hypertrophic zone”, “SOC”, “SOC-adjacent resting zone” and “articular cartilage” (shown in Fig. 

7a). Spots with at least 500 unique genes were kept prior to normalization using variance 

stabilizing transformation (vst) implemented in the SCTransform function from Seurat. The Non-

Negative Matrix Factorization (NNMF) was computed on the filtered and normalized data using 

the RunNMF function from STUtility, with the number of factors set to 30. Based on visual 

inspection we identified 8 factors colocalized with various structures of the cartilage/bone tissue 

region: factor_12, factor_2, factor_1, factor_11, factor_6 and factor_7 (shown in Fig. 6b, c, d, e 

and Supplementary Fig. 12). Next, we created a subset of the data including only the seven sub 

regions defined within the cartilage/bone, with the goal of extracting marker genes from each sub 

region by differential expression analysis (DEA). Prior to running the DEA, we first renormalized 

the raw UMI counts with the NormalizeData and ScaleData functions. The DEA was conducted 

using FindAllMarkers from Seurat, while filtering out genes with adjusted p-values lower than 

0.01 and average log fold change values higher than 0.25. Marker genes visualized in Fig. 7 were 
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selected by keeping those with average log fold change values higher than 0.6 and maximum 15 

genes per sub region.  

 

Data and code availability 

All data required to replicate the analyses, including spaceranger output files, H&E images and 

additional files will be available at Mendeley Data. Sequence data for all samples presented in this 

study will be available upon publication. 

 

 

References  

1. Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to 

genomics. Nat. Methods 18, 15–18 (2021). 

2. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial 

transcriptomics. Nature 596, 211–220 (2021). 

3. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022). 

4. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. 

Science 364, 89–93 (2019). 

5. Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing 

Human Heart. Cell 179, 1647–1660.e19 (2019). 

6. Ji, A. L. et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous 

Cell Carcinoma. Cell 182, 497–514.e22 (2020). 

7. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-

associated cell type interactions. Nat. Commun. 12, 6012 (2021). 

8. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial 

transcriptomics. Science 353, 78–82 (2016). 

9. Home Page. 10x Genomics https://www.10xgenomics.com/. 

10. Liu, X. et al. Clinical challenges of tissue preparation for spatial transcriptome. Clin. Transl. Med. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

30 

12, e669 (2022). 

11. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-

patterned arrays. Cell 185, 1777–1792.e21 (2022). 

12. Lin, X. et al. A comparative analysis of RNA sequencing methods with ribosome RNA depletion for 

degraded and low-input total RNA from formalin-fixed and paraffin-embedded samples. BMC 

Genomics 20, 831 (2019). 

13. Lenze, D., Müller, H.-H. & Hummel, M. Considerations for the use of formalin-fixed and paraffin-

embedded tissue specimens for clonality analysis. J. Hematop. 5, 27–34 (2012). 

14. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci Adv 6, eabb3446 (2020). 

15. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial 

transcriptomics for biomedical research. Genome Med. 14, 68 (2022). 

16. Madissoon, E. et al. A spatial multi-omics atlas of the human lung reveals a novel immune cell 

survival niche. bioRxiv 2021.11.26.470108 (2021) doi:10.1101/2021.11.26.470108. 

17. Osorio, D. & Cai, J. J. Systematic determination of the mitochondrial proportion in human and mice 

tissues for single-cell RNA-sequencing data quality control. Bioinformatics 37, 963–967 (2021). 

18. Heumüller-Klug, S. et al. Degradation of intestinal mRNA: a matter of treatment. World J. 

Gastroenterol. 21, 3499–3508 (2015). 

19. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 

250–255 (2021). 

20. Botling, J. et al. Impact of thawing on RNA integrity and gene expression analysis in fresh frozen 

tissue. Diagn. Mol. Pathol. 18, 44–52 (2009). 

21. Zhang, L. et al. Clinical and translational values of spatial transcriptomics. Signal Transduct Target 

Ther 7, 111 (2022). 

22. Sursal, T. et al. Molecular Stratification of Medulloblastoma: Clinical Outcomes and Therapeutic 

Interventions. Anticancer Res. 42, 2225–2239 (2022). 

23. Manoranjan, B. et al. Wnt activation as a therapeutic strategy in medulloblastoma. Nat. Commun. 11, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

31 

4323 (2020). 

24. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic 

profiles, pathway signatures and clinicopathological features. PLoS One 3, e3088 (2008). 

25. Morabito, M. et al. An autocrine ActivinB mechanism drives TGFβ/Activin signaling in Group 3 

medulloblastoma. EMBO Mol. Med. 11, e9830 (2019). 

26. Greenblatt, M. B., Ono, N., Ayturk, U. M., Debnath, S. & Lalani, S. The Unmixing Problem: A 

Guide to Applying Single-Cell RNA Sequencing to Bone. J. Bone Miner. Res. 34, 1207–1219 

(2019). 

27. Jonason, J. H., Hoak, D. & O’Keefe, R. J. Primary Murine Growth Plate and Articular Chondrocyte 

Isolation and Cell Culture. in Osteoporosis and Osteoarthritis (eds. Westendorf, J. J. & van Wijnen, 

A. J.) 11–18 (Springer New York, 2015). 

28. Chagin, A. S. & Newton, P. T. Postnatal skeletal growth is driven by the epiphyseal stem cell niche: 

potential implications to pediatrics. Pediatr. Res. 87, 986–990 (2020). 

29. White, T. D., Black, M. T. & Folkens, P. A. Human Osteology. (Academic Press, 2011). 

30. Jiang, Z. et al. Delayed development of ossification centers in the tibia of prenatal and early 

postnatal MPS VII mice. Mol. Genet. Metab. 124, 135–142 (2018). 

31. Newton, P. T. et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth 

plate. Nature 567, 234–238 (2019). 

32. Chau, M. et al. Gene expression profiling reveals similarities between the spatial architectures of 

postnatal articular and growth plate cartilage. PLoS One 9, e103061 (2014). 

33. Houston, B. et al. Identification and cloning of a novel phosphatase expressed at high levels in 

differentiating growth plate chondrocytes1The nucleotide sequence has been deposited in the EMBL 

database under accession number AJ006529.1. Biochimica et Biophysica Acta (BBA) - Molecular 

Cell Research 1448, 500–506 (1999). 

34. Hall, B. K. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. (Academic 

Press, 2014). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

32 

35. Decker, R. S. et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, 

morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017). 

36. Yoshimoto, Y. et al. Scleraxis is required for maturation of tissue domains for proper integration of 

the musculoskeletal system. Sci. Rep. 7, 45010 (2017). 

37. Späth, S.-S., Andrade, A. C., Chau, M., Baroncelli, M. & Nilsson, O. Evidence That Rat 

Chondrocytes Can Differentiate Into Perichondrial Cells. JBMR Plus 2, 351–361 (2018). 

38. Zhang, Y. et al. Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and 

skeletal defects. Dev. Biol. 325, 82–93 (2009). 

39. Gao, X. H. et al. Comparison of Fresh Frozen Tissue With Formalin-Fixed Paraffin-Embedded 

Tissue for Mutation Analysis Using a Multi-Gene Panel in Patients With Colorectal Cancer. Front. 

Oncol. 10, 310 (2020). 

40. Baryawno, N. et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and 

Leukemia. Cell 177, 1915–1932.e16 (2019). 

41. Martel-Pelletier, J. et al. Osteoarthritis. Nat Rev Dis Primers 2, 16072 (2016). 

42. CORDIS. https://cordis.europa.eu/project/id/101031112. 

43. Helker, C. S. et al. Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. 

Elife 9, (2020). 

44. Yang, M. et al. Chemokine and chemokine receptor expression during colony stimulating factor-1-

induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-

1gamma) in osteoclastogenesis in vivo and in vitro. Blood 107, 2262–2270 (2006). 

45. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. 

Nature 587, 619–625 (2020). 

46. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell 

Syst 1, 417–425 (2015). 

47. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 

genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

33 

 
Acknowledgment 
  
This project has received funding from the European Research Council (ERC) under the European 

Union’s Horizon 2020 research and innovation programme (Discovair, grant agreement No. 782 

101021019). The study was also supported by The Swedish Cancer Society, Swedish Foundation 

for Strategic Research, The Leona M. and Harry B. Helmsley Charitable Trust, Swedish Childhood 

Cancer Fund and Science for Life Laboratory. We would like to thank Krishnaa Mahbubani for 

collecting human lung samples and the National Genomics Infrastructure (NGI), Sweden for 

providing infrastructure support. We thank Drs. Annelie Mollbrink, Alma Andersson and Marco 

Vicari for helpful assistance, discussions and reading the manuscript. 

 

 

Author contributions 
R.M, Z.A., L.L., initiated the project; R.M, Z.A., L.A.G. and X.M.A. planned and performed the 
experiments; L.L. analyzed all the data and generated the figures. L.K. helped analyze the pediatric 
brain tumor samples; P.T.N and M.A. provided mouse bone samples, led the bone/cartilage 
biology part and wrote the relevant sections; A.S. undertook histopathological analysis; G.B., 
A.D.S. and N.S. provided adult human colon and small intestine samples; N. Schultz. provided the 
prostate sample. M.N. provided pediatric brain tumor samples; C.S. and A.F. provided lung 
samples. A.J. provided advice; R.M, Z.A., L.L., drafted the manuscript; all authors read and 
approved the final manuscript. J.L. provided project guidance and supervision. L.A.G. and X.M.A. 
contributed equally to this work. 
 
 
 
Conflict of interest 
R.M., Z.A., L.L., L.A.G., X.A., L.K., and J.L. are scientific consultants for 10x Genomics, which 
holds IP rights to the ST technology. The remaining authors declare no competing interests. 
 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

Supplementary  

 
Supplementary Table 1: Samples used in this study with their corresponding ID, RNA Integrity 
Number (RIN) and DV200. 
 

Sample Type Sample ID RIN DV200 (%) 

Mouse brain MB 8.8 93 

Prostate cancer PC 10 100 

Human lung LNG1 7.1 90 

Human lung LNG2 6.8 89 

Human colon CLN1 5.1 77 

Human colon CLN2 4.5 77 

Human small intestine SI 7.8 86 

Pediatric brain tumor WNT medulloblastoma (PBT1) 7.1 90 

Pediatric brain tumor NOS (PBT2) 7 88 

Mouse bone P4 6.2 87 

Mouse bone P11 5.6 82 

 
 

 
Supplementary Figure 1: Tissue detachment. Tissue section detachment from a spatial gene 
expression array indicated by an arrow right after staining steps. (plus Supplementary Video 1). 
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Supplementary Figure 2: Schematic overview of the RRST protocol workflow.  
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Supplementary Figure 3: Biotype of transcripts present in Visium and RRST mouse brain 
and prostate cancer datasets. a, b) Transcripts detected (a) and UMI counts (b) for each biotype 
in the mouse brain data (RRST n=4, standard n=4). The fill color of the bars corresponds to the 
protocol used. The y-axis has been cut to display bio types with fewer detected transcripts or UMI 
counts. c) Pie charts below each bar in b display the proportions of transcripts that are detected 
with both methods, RRST only or standard Visium only. For example, lncRNA, mitochondrial 
transcripts and ribosomal protein coding gene transcripts are only detected with the standard 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

37 

Visium protocol. d, e) Transcripts detected (d) and UMI counts (e) for each biotype in the prostate 
cancer data (RRST n=2, standard n=2). The fill color of the bars corresponds to the protocol used. 
The y-axis has been cut to display bio types with fewer detected transcripts or UMI counts. f) Pie 
charts below each bar in e display the proportions of transcripts that are detected with both 
methods, RRST only or standard Visium only. 
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Supplementary Figure 4: Distribution of unique genes per spot for all SRT datasets included 
in this study visualized as violin plots. The fill color of the violin plots indicates the protocol 
used to generate the data. Columns are sorted by sample origin and rows are sorted by sample ID. 
MB, mouse brain; PC, prostate cancer; LNG, adult human lung; CLN, adult human colon; SI, adult 
human small intestine; PBT, pediatric brain tumor; BN, mouse bone. 
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Supplementary Fig.5: Distribution of UMIs per spot for all SRT datasets included in this 
study visualized as violin plots. The fill color of the violin plots indicates the protocol used to 
generate the data. Columns are sorted by sample origin and rows are sorted by sample ID. MB, 
mouse brain; PC, prostate cancer; LNG, adult human lung; CLN, adult human colon; SI, adult 
human small intestine; PBT, pediatric brain tumor; BN, mouse bone. 
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Supplementary Figure 6: Comparison of RRST and standard Visium in human adult lung 
tissue (LNG2). Each subplot shows the RRST data on the left side and the standard Visium data 
on the right side. a) H&E images of two representative tissue sections from the same tissue block. 
b) Violin plots showing the distribution of unique genes and UMI counts for the adult lung data. 
c) Unique genes per spot mapped on tissue coordinates. d) Spatial visualization showing what 
spots were discarded due to low quality (less than 300 unique genes detected). e) UMAP 
embedding of adult lung data colored by clusters detected by unsupervised graph-based clustering 
(louvain). f) Split view of clusters (same as in e) mapped on tissue coordinates. g) Dot plots of the 
top marker genes for each cluster.  
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Supplementary Figure 7: Histograms showing the distribution of unique genes per spot in 
lung tissue data obtained with RRST and standard Visium. A cutoff threshold of 300 was used 
as a filtering threshold to remove low quality spots. Blue bars represent spots that passed the cutoff 
threshold whereas red bars represent spots that were discarded. ~1.3% - 2.3% of spots were 
discarded from the two RRST datasets and ~21%-81% of spots were discarded for the standard 
Visium dataset. 
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Supplementary Figure 8: Visualization of marker genes detected in an adult human lung 
(LNG1) RRST dataset. a) Top marker genes for clusters detected in LNG1 RRST data. Dot colors 
correspond to averaged log-normalized and scaled gene expression (Avg. Expr.), and dot sizes 
correspond to the percentage of spots where the gene is detected (Pct. Expr.). b) Visualization of 
selected marker genes derived from data-driven clustering and differential expression analysis of 
LNG1 data. The left panel represents data obtained with RRST and the right panel represents data 
obtained with the standard Visium protocol. Five markers for each of four different tissue types 
are highlighted: airway epithelium, megakaryocyte-enriched, smooth muscle and glands.  
 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507728
http://creativecommons.org/licenses/by-nd/4.0/


 

44 

 
 
Supplementary Figure 9: Manual annotation of small intestine data. Each of the 14 spatial 
transcriptomics datasets were divided into 5 regions: mucosa (intestinal epithelium), submucosa, 
Tertiary Lymphoid Tissue (TLS), muscularis and serosa.  
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Supplementary Figure 10: Annotations made by a pathologist of a medulloblastoma tissue 
section.  
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Supplementary Figure 11: Comparison between mouse bone data obtained with standard 
Visium and RRST. a) Distribution of unique genes per spot for all tissue sections visualized as 
violin plots. The plots are split by age (P4T or P11T) in columns and by tissue region 
(cartilage/bone or surrounding tissues) in rows. The median number of unique genes is highlighted 
on the left side of the violin plots for each tissue section, tissue region and protocol. b) Distribution 
of UMI counts per spot for all tissue sections visualized as violin plots with the y-axis converted 
into log10-scale. The plots are split by age (P4T or P11T) in columns and by tissue region 
(cartilage/bone or surrounding tissues) in rows. The median number of UMI counts is highlighted 
on the left side of the violin plots for each tissue section, tissue region and protocol. c) H&E images 
for 4 representative tissue sections, one for each age group and protocol. d) Spots colored by tissue 
region: cartilage/bone or surrounding tissue. e) Distribution of unique genes overlaid on H&E 
images. e) Distribution of UMI counts overlaid on H&E images. The colorbar represents log10-
scaled UMI counts. 
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Supplementary Figure 12: NNMF analysis identified functions containing markers of resting 
and proliferating chondrocytes. (a), hypertrophic chondrocytes and cells within the primary 
spongiosa (b), cruciate ligament (c) and cells at the perichondrium/periosteum (d), which appeared 
in the expected, discrete anatomical locations (which are shown in Fig. 6). 
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