

1 **Teneurin-2 at the Synapse Construction Site is a Signpost for Cargo** 2 **Unloading from Motor Proteins**

3
4 Sotaro Ichinose¹, Yoshihiro Susuki¹, Ryosuke Kaneko^{2,3}, and Hirohide Iwasaki^{1,4*}.

5 1 Department of Anatomy, Gunma University Graduate School of Medicine, Gunma, 371-8511,
6 Japan

7 2 Bioresource Center, Gunma University Graduate School of Medicine, Gunma, 371-8511,
8 Japan

9 3 KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier
10 Biosciences, Osaka University, Osaka, 565-0871, Japan

11 4 Lead contact

12 *Correspondence: h-iwasaki@gunma-u.ac.jp

13

14 **Abstract**

15 In mature neurons, excitatory synapses are formed on the dendritic spine, whereas inhibitory
16 synapses are formed on the dendritic shaft. Thus, it is primarily the accumulation of synaptic
17 proteins that characterizes inhibitory synapses as distinct from non-synaptic regions. Protein
18 accumulation is achieved by a combination of microtubule (MT)-based transport by kinesins and
19 lateral diffusion across the plasma membrane; however, how and when proteins are released
20 from kinesins remains unclear. Using primary cultured hippocampal neurons, we found that
21 Teneurin-2 (TEN2) promotes synaptic protein accumulation by recruiting MTs via the
22 representative MT plus end-tracking protein, EB1. MTs recruitment was enhanced when the
23 extracellular domain of TEN2 successfully chose partners, and the lateral diffusion of TEN2 was
24 inhibited. Conversely, if TEN2 partner choice is not achieved, MTs are not recruited, and thus
25 synaptogenesis is not followed. Our study revealed that cargo release from kinesins through
26 TEN2-MTs interactions supports the continuity from partner choice to synaptogenesis, which is
27 a critical step in synaptic maturation.

28

29 **Introduction**

30 Neurons connect to each other via synapses to generate dense neural circuits, and exchange
31 information via synaptic receptors to properly perform brain activities that underlie various
32 physiological functions. To this end, axons find their way to appropriate target regions (axon
33 guidance), select appropriate synaptic partners within those regions (synaptic specificity), and
34 form functional synapses (synaptogenesis) (Sanes & Zipursky, 2020). There are two types of
35 synapses, excitatory and inhibitory, and their coordination, known as the E/I balance, allows for
36 accurate information transfer; disruption of this balance can lead to disorders such as autism

37 spectrum disorder and schizophrenia. These two types of synapses differ significantly in their
38 cytoskeletons. Excitatory postsynapses form and mature on characteristic structures called
39 spines, which are composed predominantly of actin, and microtubules (MTs) enter almost only
40 in an activity-dependent manner (Gu et al., 2008; Hu et al., 2008; Jaworski et al., 2009; McVicker
41 et al., 2016). In contrast, inhibitory synapses form directly on the dendritic shaft with both actin
42 and MTs in the vicinity. Thus, at present, only the accumulation of inhibitory synapse-specific
43 proteins distinguishes inhibitory postsynaptic membranes from non-synaptic membranes. At
44 inhibitory synapses in the hippocampus, the primary receptors are GABA_A and glycine receptors,
45 which are transported by KIF5 and KIF21, together with the scaffolding protein gephyrin (Labonté
46 et al., 2014; Nakajima et al., 2012; Twelvetrees et al., 2010). After transport along MTs, receptors
47 are exocytosed and move to the postsynaptic region via lateral diffusion (Dahan et al., 2003; Gu
48 et al., 2016). At the postsynapse, receptors bind to actin filaments via gephyrin (Charrier et al.,
49 2006; Giesemann et al., 2003). This prevents the diffusion of receptors and retains them in the
50 post-synaptic region. Unnecessary receptors are endocytosed and transported by dynein
51 (Fuhrmann et al., 2002; Kittler et al., 2000). Thus, the accumulation of receptors during
52 synaptogenesis is a universal feature that identifies inhibitory postsynapses, and is supported
53 by the spatiotemporal diversity of cytoskeleton-associated molecules.

54 In addition, the diversity of adhesion molecules is an important issue in synapses. Many
55 studies have shown that numerous adhesion molecules belonging to diverse families are
56 important for synaptic specificity (Sanes & Zipursky, 2020). However, it is not well understood
57 whether synaptogenesis is continuously regulated by molecules that have achieved synapse
58 specificity, or whether another regulatory mechanism is at work. Teneurin-2 (TEN2) is one of the
59 few molecules that has been suggested to function in a continuity from synaptic specificity to
60 synaptogenesis by the same molecule (Li et al., 2018). Two alternative splicing forms (SS+/SS-)
61 exist in this molecule, with and without a 7 amino acid insertion: SS+ is involved in the formation
62 of inhibitory synapses and SS- in the formation of excitatory synapses. At nascent excitatory
63 synapses, presynaptic SS exhibits specificity by binding to postsynaptic Latrophilin-2/3 (Sando
64 et al., 2019). Latrophilin is a G protein-coupled receptor that provides continuity from synaptic
65 specificity to synaptogenesis by maturing synapses via downstream cAMP signaling (Sando &
66 Südhof, 2021). In contrast, SS+ has been shown to potentially bind to an unknown binding
67 partner other than latrophilin at nascent inhibitory synapses, but the process by which it matures
68 inhibitory synapses is not well understood. An important consideration is that synaptogenesis
69 does not occur spontaneously. The continuity from synaptic specificity to synaptogenesis arises
70 only after immobilization via interaction with the binding partner. Conversely, when specificity is
71 not achieved and the adhesion molecule diffuses laterally, synaptogenesis does not occur.
72 Based on this idea and the spatiotemporal diversity of cytoskeleton-associated molecules at

73 inhibitory synapses, we tested the following hypothesis. Upon successful partner selection,
74 TEN2 was restricted to lateral diffusion by interacting with its binding partners. In parallel, MTs
75 are captured near inhibitory synapses by TEN2, facilitating the release of receptors from motor
76 proteins. This mechanism should contribute significantly to receptor accumulation during early
77 development when the distribution of signaling molecules is inadequate.

78 In this study, we showed that TEN2 promoted receptor accumulation by recruiting MTs. TEN2
79 tends to localize to MTs-rich inhibitory postsynapses and is located at the semi-periphery
80 approximately 85 nm away from the center of the postsynapse. Live imaging showed that MT
81 dynamics were significantly reduced when TEN2 lateral diffusion was inhibited, suggesting that
82 TEN2 binds to its binding partners and traps MTs. Accumulation of gephyrin and GABA_A receptor
83 γ 2 subunits was reduced in TEN2 knockdown neurons, suggesting that TEN2 is essential for the
84 maturation of inhibitory postsynaptic synapses. Furthermore, overexpression of the MT-binding
85 domain of TEN2 suppressed gephyrin clustering via a dominant-negative effect. These results
86 suggest continuity from synaptic specificity to synaptogenesis, in which receptor accumulation
87 is promoted only when TEN2 successfully selects a partner. This continuity is supported by a
88 molecular basis in which TEN2 functions as a relay point for intracellular transport by providing
89 an "end point" for kinesin transport and an "entry point" to the synapse for lateral diffusion.

90

91 **Results**

92 **Cluster analysis of inhibitory postsynapses and correlation with TEN2**

93 Excitatory postsynapses form and mature on characteristic structures called spines, which are
94 composed predominantly of actin, and MTs enter almost only in an activity-dependent manner.
95 In contrast, inhibitory synapses form directly on the dendritic shaft with both actin and MTs in the
96 immediate vicinity. Thus, at present, only the accumulation of inhibitory synapse-specific proteins
97 distinguishes inhibitory postsynaptic membranes from non-synaptic membranes. The
98 accumulation of receptors is supported by the spatiotemporal diversity of cytoskeleton-
99 associated molecules (Charrier et al., 2006; Fuhrmann et al., 2002; Giesemann et al., 2003; Gu
100 et al., 2016; Kittler et al., 2000). However, the extent to which diversity exists is not yet fully
101 understood. Therefore, we decided to observe and classify the cytoskeletal states of the
102 inhibitory postsynapses. In this study, we defined postsynapses as those with
103 immunofluorescence staining of gephyrin intensity above a certain value (Figure 1–figure
104 supplement 1A-D).

105 To visualize the diversity of the cytoskeleton at inhibitory post-synapses, we quantified the
106 intensity of MTs and actin at 20 days in vitro (DIV 20; Figures 1A and B). Dendritic MTs were
107 visualized using MAP2 antibodies. After processing of MAP2 and actin intensity in the
108 postsynaptic area in two dimensions using the uniform manifold approximate projection (UMAP)

109 method, it was found appropriate to divide the data into three clusters by hierarchical clustering
110 (Figure 1–figure supplement 1E and F). Cluster 1 had high MAP2 intensity, and cluster 3 had
111 high actin intensity. Cluster 2 was considered to have low levels of both MAP2 and actin (Figure
112 1C). Applying findings from previous literature regarding the function of cytoskeleton-related
113 molecules, we next inferred that the clustering results reflect the following cellular functions:
114 Cluster 3 belongs to stable postsynapses anchored by gephyrin and actin (Charrier et al., 2006;
115 Giesemann et al., 2003); cluster 1 belongs to dynamic postsynapses where receptors are being
116 brought in and out by an MTs-based transport system (Labonté et al., 2014; Nakajima et al.,
117 2012; Twelvetrees et al., 2010); cluster 2 belongs to intermediates where intense lateral diffusion
118 is occurring (Dahan et al., 2003; Gu et al., 2016). Transitions between clusters are thought to
119 occur in a developmental stage- and activity-dependent manner, similar to that in excitatory
120 synapses. However, the transition between clusters 1 and 2; that is, how receptors are released
121 from kinesins, is currently unknown (Figure 1–figure supplement 2A). Recent studies have
122 introduced the new concept that end-binding proteins (EBs) at the plus end of MTs facilitate
123 cargo release (Guedes-Dias et al. 2019; Pawson et al. 2008; Qu et al. 2019). This concept and
124 the possibility that adhesion molecules determine synaptic partners and synapse locations led
125 us to test a mechanism: Adhesion molecules bind MTs via EBs in the vicinity of inhibitory
126 synapses and facilitate cargo release after achieving synapse specificity. This mechanism
127 should contribute significantly to protein accumulation during early development when the
128 distribution of signaling molecules is inadequate.

129 To narrow down candidate MT recruiters, we performed a motif search for possible binding to
130 EB1. This search was based on a previous proteomics study that explored the proteins present
131 in the synaptic cleft (Loh et al., 2016). Proteins with two motifs proven to bind to EB1, Sx ϕ P, and
132 LxxPTP ϕ in the intracellular domain were searched for in the results of the proteomic study
133 (Figure 1–figure supplement 2B; Honnappa et al., 2009; Kumar et al., 2017). After confirming
134 the location of the motifs, we narrowed the list of seven proteins as candidate molecules (Figure
135 1D; Table S1-S6). Neuroligin-2 (NLGN2), immunoglobulin superfamily member 9 B (IgSF9b),
136 and TEN2 were tested among these candidates because of their functions as adhesion
137 molecules and antibody availability (Poulopoulos et al., 2009; Sando et al., 2019; Woo et al.,
138 2013). Next, we performed four-color immunofluorescence staining of each protein along with
139 gephyrin, MAP2, and actin for cluster analysis at DIV 20 (Figures 1E-G, and Figure 1–figure
140 supplement 2D). The clustering results showed that postsynapses were clustered according to
141 whether they were MAP2-rich or actin-rich, as in preliminary experiments (Figure 1H). The
142 postsynaptic area was slightly higher in cluster 1 but had little effect on clustering. Odds ratios
143 were calculated for each cluster for NLGN2, IgSF9b, and TEN2, and the results showed that
144 NLGN2- or TEN2-positive inhibitory postsynapses were more likely to be classified in cluster 1

145 and not in cluster 3, whereas IgSF9b showed no trend regarding classification (Figures 1I, 1J,
146 and Figure 1-figure supplement 2C). When only MAP2 intensity was compared using classical
147 single-parameter comparison, only NLGN2 and TEN2 showed significant differences between
148 postsynaptic positivity and negativity (Figure 1-figure supplement 2E). These results suggest
149 that NLGN2 and TEN2 tend to be more abundant at MAP2-rich post-synapses and are likely
150 MTs recruiters.

151 To evaluate whether NLGN2 or TEN2 is more suitable as an MT recruiter, we referred to
152 previous electron microscope (EM) studies. EM studies have suggested that few MTs are
153 observed within 100 nm below the inhibitory postsynapse and are located slightly outside the
154 synapse (Gulley & Reese, 1981; Linsalata et al., 2014). Electron tomography data focusing on
155 GABA receptors have also revealed the absence of MTs just below the synapse (Linsalata et al.,
156 2014; Liu et al., 2020). Among these candidates, NLGN2 is observed near the center of the
157 synapse by EM, which is different from the currently suggested MT localization (Takács et al.,
158 2013; Uchigashima et al., 2016). Therefore, we hypothesized that TEN2 plays a more direct
159 causal role, although NLGN2 is closely associated with MAP2-rich synapses. In this study, we
160 focused on TEN2 to elucidate the mechanism by which MTs are recruited to inhibitory post-
161 synapses.

162

163 **Interaction with MTs via EB1 by two motifs in TEN2**

164 The screening results suggest that TEN2 may bind to EB1. EB1 is localized at the MT plus end
165 at the endogenous expression level and is observed as the EB1 comet, but it detaches after the
166 polymerization of MTs is completed (Akhmanova & Steinmetz, 2015). Because the EB1 comet
167 can be seen transiently in living cells and its duration is approximately 10–20 seconds, the EB1
168 comet is not easy to detect in a fixed cell. However, when large amounts of EB1 are expressed,
169 EB1 localizes to the MT lattice (Skube et al., 2010), making it relatively easy to quantitatively
170 evaluate protein-protein interactions using correlation coefficients (Ichinose et al., 2019). Thus,
171 we first expressed large amounts of EB1 in COS-7 cells and measured its correlation coefficient
172 with TEN2.

173 TEN2N-L, a chimeric protein consisting of an intracellular domain with two EB1-binding motifs
174 connected to the transmembrane domain of TEN2, was coexpressed with EB1 (Figure 2A). The
175 results showed that TEN2N-L strongly colocalized with EB1-TagRFP and MTs (Figures 2B and
176 2C). In contrast, TEN2TM, which has only a transmembrane domain, and TEN2N-L2mut, which
177 has an amino acid mutation in the EB1 binding motif, did not colocalize with EB1 (Figures 2B
178 and 2D). Therefore, the intracellular domain of TEN2 is capable of interacting with MTs via EB1.

179 To confirm this interaction, we expressed TEN2N-L and TEN2TM in neurons and observed
180 their colocalization with endogenous EB1 in dendrites. As expected, colocalization of EB1 was

181 observed in a portion of TEN2N-L cells (Figures 2E and 2F). However, uniform colocalization
182 was not observed, as in the experiment with COS-7. This could be attributed to the short EB1
183 comet dwell time. These experiments suggested that the intracellular domain of TEN2 interacts
184 with MTs via EB1.

185

186 Enhanced MT-trapping capability by immobilization of TEN2

187 To investigate whether the interaction between TEN2 and EB1 was related to the recruitment of
188 dynamic MTs, we first observed the arrangement of MTs. The fusion proteins TEN2N-L or
189 TEN2TM, with an HA tag added to the extracellular domain, were expressed in COS-7 cells.
190 Immunofluorescence staining of living cells with anti-HA tag antibodies confirmed that the EB1
191 binding motif was correctly located in the cytoplasm (Figure 3B). Under these conditions, there
192 was no difference in MT arrangement between TEN2N-L and TEN2TM (Figure 3C, lower panel).

193 TEN2 is endogenously bound to its binding partner at the synapse, immobilized, and restricted
194 from lateral diffusion. Therefore, to mimic the dynamics of endogenous TEN2 at synapses, we
195 immobilized TEN2 using anti-HA tag antibodies on coverslips (Figure 3A). The results showed a
196 region where MTs were absent at the periphery of cells expressing TEN2N-L cultured on
197 coverslips coated with an anti-HA tag antibody (Figures 3C and 3D). At the same time, structures
198 resembling actin protrusions were observed. This resembles retraction fibers (RF). The ratio of
199 cells with RF-like structures increased in TEN2N-L on the anti-HA tag compared to the other
200 conditions (Figure 3E). These results suggest that TEN2N-L affects cytoskeletal structure, and
201 immobilization of TEN2 in the extracellular domain enhances its function.

202 Since immobilization affects cell morphology and the cytoskeleton, the interaction between
203 TEN2 and EB1 may also be altered by TEN2 immobilization. To test this, we performed live
204 imaging of dynamic MTs by observing EB1-tagRFP in cells immobilized with TEN2. Since EB1
205 overexpression itself may affect MT dynamics (Skube et al., 2010), we attempted to minimize
206 the expression levels as much as possible. EB1-tagRFP and each TEN2 truncated mutant were
207 co-transfected into COS-7 cells cultured on coverslips coated with poly-D-lysine (PDL) or anti-
208 HA tag antibodies. Observations were made using a TIRF microscope so that EB1 analysis could
209 be restricted just beneath the plasma membrane. As a result of imaging for 100 seconds at 2-
210 second intervals, comet mobility was slower in TEN2N-L-transfected cells, but stable and
211 immobile comets were also observed (Figure 3F; Figure 3–videos 1 and 2).

212 The number of comets in each observation was not significantly different (Figure 3G),
213 suggesting no difference in the frequency of comet formation despite variations in cell size,
214 morphology, and transfection volume. Next, we quantified the comet velocity and found that the
215 velocity was significantly reduced in cells with immobilized TEN2N-L on anti-HA tag antibody
216 coating (Figure 3H). These results suggest that TEN2 traps dynamic MTs by interacting with EB1,

217 and that this function is enhanced by immobilization.

218

219 **TEN2 localization at the semi-periphery region of the inhibitory postsynapse**

220 TEN2 is a transmembrane protein in synapses. However, the precise localization of TEN2-
221 containing molecular adhesion complexes remains controversial. Some reports suggest that the
222 complex resides in the presynaptic membrane, whereas others suggest that it resides in the
223 postsynaptic membrane (Mosca et al., 2012; O'Sullivan et al., 2012; Sando et al., 2019; Silva et
224 al., 2011; Vysokov et al., 2018). To prevent incorrect identification due to differences in antibodies,
225 we first observed TEN2 localization using dissociated hippocampal cultures prepared from TEN2
226 knock-in (KI) mice. Mice with a 3xHA tag inserted immediately before the STOP codon of TEN2
227 in exon 29 were generated using the CRISPR/Cas9 system (Figure 4–figure supplement 1A-D).

228 Primary cultured hippocampal neurons at DIV 14-15 were co-stained with antibodies against
229 the HA tag and gephyrin and observed with a confocal microscope (Figures 4A and 4B). The
230 results showed that TEN2 and gephyrin colocalized, and the rate of colocalization was consistent
231 with the results of immunofluorescence staining with antibodies against the intrinsic intracellular
232 domain (Figure 4–figure supplement 1E). These results suggest that all antibodies and KI mice
233 can withstand proper analysis.

234 Next, we performed antigen-antibody reactions on live neurons before fixation and found that
235 a portion of TEN2 was located on the dendritic shaft (Figure 4–figure supplement 1F and G).
236 These results suggest that TEN2 localizes and functions in the plasma membrane of dendrites.
237 On the other hand, presynaptic TEN2 has been reported to bind to latrophilin in the postsynaptic
238 area and induce differentiation of excitatory postsynapses (Sando et al., 2019; Sando & Südhof,
239 2021). The results of co-staining with actin and PSD-95 indicated that TEN2 was also localized
240 at the excitatory synapse (Figure 4–figure supplement 1H-K). Thus, our results suggest that
241 TEN2 is expressed and functions in the plasma membrane at both excitatory and inhibitory
242 synapses.

243 However, it is impossible to detect whether TEN2 is located at the presynaptic or postsynaptic
244 membrane because of limitations in the resolution of the microscope. Therefore, we next
245 observed precise localization using one of super-resolution microscope (SRM), stochastic
246 optical reconstruction microscope (STORM). First, to determine whether TEN2 is present in the
247 presynapse or postsynapse at inhibitory synapses, we co-stained the cells with an antibody
248 against the intracellular domain of TEN2 (anti-ICD) and bassoon, a marker of presynapse, at
249 DIV 21. The STORM image shows little overlap between TEN2 and the bassoon (Figures 4C
250 and 4E). It should be noted that this result alone does not rule out a presynaptic presence, since
251 the size of the antibody is almost the same (~20 nm) as that of the synaptic cleft. Thus, these
252 results suggest that TEN2 is more abundant at postsynapses than at presynapses of inhibitory

253 synapses. It should also be noted that the combination of available lasers, dyes, and reducing
254 agents limits the reliability of the localization at the super-resolution level to two molecules in our
255 experimental system. TEN2 was labeled with CF568, bassoon with Alexa Fluor (AF) 647, and
256 gephyrin with AF488. AF488 recordings only indicated that these synapses were inhibitory and
257 could not show precise localization. To observe the exact localization of TEN2 and gephyrin,
258 different combinations of dyes were used in the STORM. An overlap between TEN2 and gephyrin
259 was observed, suggesting that TEN2 was present at the inhibitory synapses (Figures
260 4D and 4F). A proximity-ligation assay was performed to confirm this result (Söderberg et al.,
261 2006). In this assay, two antibodies were immunostained, and if they were close (~ 20 nm),
262 oligonucleotides fused to the antibodies were ligated to produce circular DNA. Rolling circle
263 amplification was performed to detect proximity by incorporating dyes into the dNTPs. The
264 results showed that the proximity between TEN2 and gephyrin was significantly greater than that
265 between normal IgG and gephyrin, which was used as the negative control (Figures 4G and 4H).
266 This result supports our STORM data and suggests that the effect of signal misalignment
267 between channels owing to drift and other factors is minimal. Interestingly, the puncta of TEN2
268 and gephyrin were not always perfectly colocalization. Therefore, we measured the distance
269 between the centers of mass of the fluorescence intensities of each punctum and found that they
270 were 85 nm apart (Figures 4F, 4I, and 4J). Because this super-resolution observation was
271 performed in 2D-STORM, the actual distance would be slightly longer. Considering the width of
272 the inhibitory postsynapse (approximately 500 nm), this distance is not as far outward as the
273 perisynapse. These results suggest that TEN2 is more abundant at inhibitory postsynapses and
274 is present in semi-peripheral regions.

275

276 **Inhibitory postsynapse maturation induced by postsynaptic TEN2**

277 TEN2 overexpression in non-neuronal cells induces maturation of both excitatory and inhibitory
278 synapses (Sando et al., 2019). To investigate whether TEN2 also induces synaptic maturation
279 in neurons, we knocked down TEN2 in primary hippocampal cultures using RNAi. Knockdown
280 was performed using a vector-based shRNA (Figure 5—figure supplement 1A). The vector has
281 an shRNA sequence downstream of the mouse U6 promoter and a TagRFP sequence
282 downstream of the SV40 promoter, allowing TagRFP to be expressed as a volume marker. The
283 half-life of TEN2 from DIV11 in primary cultured rat hippocampal neurons is 1.42 days (Heo et
284 al., 2018). Based on these data, we transfected DIV11 cells with TEN2 knockdown vectors and
285 fixed and immunostained them three days after transfection.

286 TEN2 expression levels in the cell body were quantified by immunofluorescence staining with
287 anti-TEN2 to confirm knockdown (Figure 5—figure supplement 1B and C). In neurons transfected
288 with the TEN2 knockdown vector, the mean signal intensity of TEN2 was significantly reduced

289 to 52% compared to neurons transfected with the control vector (Figure 5—figure supplement
290 1D). Under these conditions, we found that the number of gephyrin puncta was significantly
291 reduced in neurons transfected with the TEN2 knockdown vector (Figures 5A and 5B),
292 suggesting that postsynaptic TEN2 was involved in the maturation of inhibitory postsynapses.

293 Although we used gephyrin as a marker of inhibitory synapses throughout this study, we
294 examined how TEN2 knockdown affects the localization of GABA_A receptors. There are 19
295 GABA_A receptor subunits. Of these, the GABA_A receptor localized at inhibitory synapses forms
296 a hetero-pentamer consisting of two α 1-3 subunits, two β 1-3 subunits, and one γ 2 subunit, in
297 the order γ 2- β - α - β - α , counterclockwise from the extracellular view. In TEN2 knockdown neurons,
298 The GABA_A receptor subunits α 1, α 5, and γ 2 were quantified. We found that only γ 2 expression
299 was significantly reduced by TEN2 knockdown (Figures 5C and 5D). Since γ 2 is present in all
300 synaptic GABA_A receptors, a significant decrease in gephyrin would lead to a decrease in γ 2.
301 However, α 1 is a subunit present only in a specific subset of synaptic GABA_A receptors, so TEN2
302 may not have a significant effect on synaptic maturation in this subset. α 5 is a subunit of
303 extrasynaptic GABA_A receptors and is not integrated into intrasynaptic GABA_A receptors.
304 Therefore, it seems quite natural that TEN2, which functions via adhesion at inhibitory synapses,
305 does not affect the distribution of extracellular GABA_A receptors. These results suggest that
306 TEN2 is involved in postsynaptic maturation at inhibitory synapses and promotes accumulation
307 of gephyrin and GABA_A receptors at these synapses.

308

309 **TEN2-MT interactions lead to maturation of the inhibitory postsynapse**

310 As shown thus far, the interaction between TEN2N-L and MTs is constitutively active. However,
311 TEN2N-L cannot bind to its partners in the synaptic cleft because of the loss of its extracellular
312 domain. Therefore, we assumed that we could inhibit the synaptogenic function of endogenous
313 TEN2 in a dominant-negative (DN) manner by immobilizing TEN2N-L throughout the dendrites.
314 First, we evaluated the effects of non-immobilized TEN2 on primary cultured hippocampal
315 neurons. Gephyrin accumulation was affected even without TEN2 immobilization (Figures 6A
316 and 6B). Furthermore, when MAP2 was considered as MTs, MTs in TEN2N-L-expressing
317 dendrites were sparser than those in TEN2TM and biased toward both ends parallel to the axial
318 direction (Figures 6A and 6C). The ratio of neurons with this MTs distribution significantly
319 increased in TEN2N-L-expressing neurons (Figure 6D).

320 To determine whether TEN2N-L interacts with neuronal MTs, we extracted membrane proteins
321 that did not interact with the cytoskeleton using saponins prior to methanol fixation. EGFP signals
322 were sparsely detected in control neurons, and no colocalization with MAP2 was observed. On
323 the other hand, in TEN2N-L-expressing neurons, dense EGFP signals remained and
324 colocalization with MAP2 was observed, which was biased at both ends parallel to the axial

325 direction (Figure 6E and 6F). These results suggest that TEN2N-L indiscriminately interacts with
326 MTs throughout dendrites, thereby disrupting the endogenous TEN2-MT interaction and synaptic
327 maturation. This suggests that endogenous TEN2-MTs interaction promotes the maturation of
328 inhibitory synapses.

329

330 Discussion

331 We found that inhibitory postsynapses could be categorized into three clusters based on the
332 amount of MAP2 and actin: MAP2-rich postsynapses, actin-rich postsynapses, and
333 postsynapses with low levels of both MAP2 and actin. Because TEN2, which has EB1 binding
334 motif, tends to localize MAP2-rich postsynapses, we analyzed the relationship between TEN2
335 and MTs. We found that TEN2 traps MTs via EB1, and that this function is enhanced by TEN2
336 immobilization. TEN2 was localized to the postsynaptic semi-periphery region, and knockdown
337 of TEN2 suppressed gephyrin clustering. Furthermore, expression of the dominant-negative
338 form also suppressed gephyrin clustering. Considering these results and those of previous
339 studies, we propose the following working model to explain the function of TEN2 in inhibitory
340 synaptic maturation (Figure 7). In wild-type neurons, TEN2 localizes to the postsynaptic semi-
341 periphery region and is anchored by a presynaptic binding partner; the interaction of TEN2 with
342 dynamic MTs provides an unloading zone for motor proteins and allows proper exocytosis of
343 synaptic components. In contrast, in neurons expressing the dominant-negative form, binding to
344 MTs is constitutively activated throughout the submembrane, resulting in universal interaction
345 between MTs and the submembrane. Therefore, motor proteins cannot select their destination
346 and the components do not accumulate. In knockdown neurons, motor proteins cannot select a
347 destination because the interaction between MTs and the submembrane does not occur.

348 We conclude that the interaction of TEN2 with MTs is critical for efficient transport of synaptic
349 components to develop inhibitory synapses.

350

351 Role of TEN2-MT interactions in the inhibitory postsynapse

352 Inhibitory synapses can be categorized into three clusters based on the amount of MAP2 and
353 actin. TEN2, which has an EB1 binding motif, tends to localize to MAP2-rich postsynapses, and
354 we analyzed the relationship between TEN2 and MTs. TEN2 was observed at the semi-periphery
355 of the inhibitory postsynapses; the centers of mass of the fluorescence intensities of TEN2 and
356 gephyrin were 85 nm apart. However, this is based on 2D observations; therefore, the actual
357 distance may be slightly longer, roughly estimated to be ~120 nm. Considering that the width of
358 postsynapses is generally 500 nm to 1 μ m, we determined that they are present in the semi-
359 periphery. This distance would be adequate because if it were located outside the postsynaptic
360 area, it would lose its connection to its presynaptic counterpart, resulting in a reduced MTs

361 trapping function. Indeed, dynein, a retrograde motor protein, has also been observed in this
362 region by EM, which supports our results (Fuhrmann et al., 2002).

363 The dominant negative form of TEN2 induces abnormalities in MTs arrangement in both COS-
364 7 cells and neurons. These results are consistent with previous experiments showing that in
365 mutants of ten-a, an ortholog of Drosophila teneurin, synaptic MTs are not properly positioned in
366 the neuron, resulting in defects in synaptic transmission (Mosca et al., 2012). Immobilization of
367 TEN2 enhanced its function on the cytoskeleton: In experiments with COS-7, RF-like structures
368 were observed, but no lamellipodia, which should form during cell migration, were found on the
369 opposite side. This may be due to the use of antigen-antibody reactions that do not cause
370 adhesion turnover, such as integrins. Alternatively, the formation of RF-like structures could be
371 interpreted as spontaneous repulsion randomly generated by truncated mutants with inadequate
372 intracellular functions. It has only been discovered that TEN2 is involved in cell repulsion, in
373 addition to cell migration and cell adhesion, and the mechanism is not yet fully understood (Del
374 Toro et al., 2020). Our experimental results are only a prelude to the elucidation of this
375 mechanism, but it is certain that the immobilization of TEN2 causes MTs traps.

376 The TEN2-MTs interaction is suggested to be crucial not only for cytoskeletal changes but also
377 for cargo distribution. The major regulatory mechanisms of cargo distribution include
378 phosphorylation of kinesins, post-translational modifications of MTs (MTs code), and changes in
379 kinetics between kinesins and MTs by MAPs (MAPs code; Aiken & Holzbaur, 2021; Monroy et
380 al., 2020). Among these, regulation by phosphorylation is disadvantageous for synaptogenesis.
381 This is because protein kinases and phosphatases each have their own distribution patterns;
382 therefore, how to distribute cargo goes back to the question of how to distribute kinases (Ichinose
383 et al., 2015; Ichinose et al., 2019). In other words, once synaptic specificity is converted to a
384 distribution of kinases, there are additional steps for continuity to synaptogenesis. On the other
385 hand, regulatory mechanisms such as MTs state and kinetic changes by MAPs can be controlled
386 only by the interaction between adhesion molecules and MTs, which would allow smooth
387 continuity from synaptic specificity to synaptogenesis. Thus, cargo distribution by "MTs code"
388 and "MAPs code" is more efficient than the kinase theory. However, there are still many
389 unknowns with "MTs code" and "MAPs code". It has been reported that EB1-kinesin competition
390 reduces the affinity between kinesin and MTs and cargo release is achieved (Guedes-Dias et al.,
391 2019; Qu et al., 2019). This may be favorable for KIF1A, which transports synaptic vesicles in
392 axons, as GTP MTs and EB1 are abundant near the presynapse. However, this model cannot
393 be applied because KIF5, which carries GABA_A and glycine receptors, prefers GTP MTs to GDP
394 MTs (Nakata et al., 2011). However, it seems feasible to apply the competition between motors
395 and EBs to the shedding of KIF5 from MTs. The MTs state and MAPs localization of inhibitory
396 post-synapses are unknown at the nanoscale level, and elucidating this is the next challenge. In

397 addition, the interaction between TEN2 and cargo should also be considered in the future
398 because the function of most of the intracellular domains of TEN2, which contain more than 360
399 amino acids, remains a mystery. Adapter protein HAP1 not only links GABA_ARs to KIF5, but also
400 regulates the motility of KIF5 (Twelvetrees et al., 2019). If TEN2 acts on HAP1, it may reduce
401 KIF5 motility and release the cargo.

402 The TEN2-MTs interaction may also function as a starting point for dynein transport. It has
403 already been reported that dynein transports gephyrin toward the minus end of MTs (Maas et al.,
404 2006). In the present study, we found that the expression of DN-TEN2 in whole dendrites
405 reduced gephyrin accumulation. Because the DN form recruits MTs to form endpoints of
406 anterograde transport throughout the dendrite, receptor transport itself is dominantly activated.
407 At the same time, the origin of retrograde transport is also increased; therefore, our results can
408 be interpreted as an apparent absence of protein accumulation. Thus, one of our future tasks is
409 to elucidate whether adhesion molecules regulate the balance between anterograde and
410 retrograde transport.

411 Although the TEN2-MTs interaction has been confirmed to promote synaptogenesis, other
412 candidate molecules still need to be investigated. It has been suggested that NLGN2 also
413 localizes to the MAP2-rich synapses. We excluded NLGN2 because it is abundant in the center
414 of inhibitory postsynapses, where few MTs have been observed using EM (Gulley & Reese,
415 1981; Linsalata et al., 2014). However, postsynapses do not have a size of 500 nm from an early
416 developmental stage. While postsynapses are small, MTs may also be present immediately
417 below the synapse. We also excluded IgSF9b because no correlation was observed in the
418 cluster analysis. This may be related to developmental stage. Previous studies have analyzed
419 IgSF9b using primary cultured neurons at 10-20 DIV, indicating that a substantial number of
420 post-synapses contain IgSF9b at this stage (Woo et al., 2013). However, in the DIV 20 neurons
421 we observed, colocalization of gephyrin and IgSF9b was reduced, suggesting that IgSF9b may
422 be necessary for postsynaptic development, but may not have a function in mature neurons,
423 such as modulating plasticity (Figure 1—figure supplement 2C and D). In the future, the
424 contribution of MTs to inhibitory synapses should be evaluated according to the developmental
425 stages of synapses.

426

427 Binding patterns of TEN2

428 To investigate the localization of TEN2, a new antibody was generated against its intracellular
429 domain. In addition, HA-tag knock-in mice were generated, and hippocampal neurons from these
430 mice were validated in primary culture; TEN2 was present at both excitatory and inhibitory
431 synapses, and SRM observations showed that TEN2 was abundant at inhibitory postsynapses.
432 Furthermore, gephyrin puncta were reduced in the dendrites of TEN2-knockdown neurons,

433 suggesting that TEN2 plays a role in the inhibitory synapses. These experimental results appear
434 somewhat puzzling, considering previous studies that examined presynaptic and postsynaptic
435 differentiation by expressing TEN2 in non-neuronal cells and co-culturing them with neuronal
436 cultures (Li et al., 2018; Sando et al., 2019). They reported that overexpression of TEN2(SS+)
437 in non-neuronal cells resulted in the detection of GABA_A receptor α 2 and γ 2 subunits in neurons
438 but not vGAT. These results suggested that TEN2 is present in the presynaptic region. However,
439 this method only shows the function of TEN2 binding partners, not TEN2 itself. Thus, our results
440 show that TEN2 functions at inhibitory post-synapses are not incompatible. The simplest
441 hypothesis is that TEN2 binds homophilically at inhibitory synapses but that TEN2 itself does not
442 have a presynaptic differentiation function and requires the help of other molecules.

443 Indeed, homophilic binding of members of the teneurin family, including TEN2, has been
444 reported in other studies (Beckmann et al., 2013; Berns et al., 2018). However, the lack of
445 homophilic binding of TEN2 in cell aggregation assays refutes this hypothesis (Li et al., 2018).
446 In contrast, another study reported successful cell aggregation assays (Rubin et al., 2002). This
447 study mentions the inhibition of aggregation by the intracellular domain of TEN2, and homophilic
448 binding has been observed only in aggregation assays using only the extracellular domain. It is
449 also interesting to note that conflicting functions of heterologous TEN2-FLRT-latrophilin “binding”
450 at the synapse and “repulsion” within the cell body have been reported (Del Toro et al., 2020).
451 Such conflicting functions are not limited to TEN2, and it has become a common paradigm in
452 recent years that adhesion molecules have both adhesion and repulsion functions, and should
453 therefore be called recognition molecules rather than adhesion molecules (Sanes & Zipursky,
454 2020). Aggregation assays are often performed by overexpressing recognition molecules in non-
455 neuronal cells. Since recognition molecules can both adhere and repel, if downstream signaling
456 is not sufficiently manipulated, spontaneous repulsion can occur despite intrinsic adhesion,
457 inhibiting cell aggregation and making it difficult to accurately identify the binding partner. Herein
458 lies the limitations of the aggregation assay. This change in cell morphology due to spontaneous
459 repulsion was also observed in our study using COS-7 cells (Figure 3C).

460 SRM observations revealed that TEN2 localizes both pre- and postsynaptically but in a rather
461 biased postsynaptic proportion (Figure 4G). Given that SRM resolution and antibody size are
462 comparable to the pre-post distance of the synaptic gap (20 nm), SRM cannot be used to assess
463 trans-homophilic binding. Currently, there is insufficient evidence to confirm or deny the trans-
464 homophilic binding. If TEN2 can bind both homophilically and heterophilically, then the bias in
465 the postsynaptic abundance of TEN2 suggests not only trans-homophilic binding, but also a
466 mixture of homophilic and heterophilic binding. It is important for partner choice and
467 synaptogenesis to examine how these two types of binding patterns are functionally used in
468 different ways.

469

470 In conclusion, we propose that TEN2-MTs interactions in the cytoplasm serve as the starting
471 and ending points for MTs MT-dependent transport. This mechanism enhances the development
472 of the inhibitory synapses.

473

474 **Materials and Methods**

475 **Cell culture**

476 COS-7 (RCB Cat# RCB0539, RRID:CVCL_0224) cells were obtained from the RIKEN Cell Bank
477 and maintained in High-Glucose DMEM (Wako) supplemented with 10% fetal bovine serum
478 (BioWest) in T75 flasks (Thermo Fisher Scientific), not to exceed 80% confluence. Hippocampi
479 were dissected from the brains of ICR mice (Charles River; IMSR Cat# CRL:022,
480 RRID:IMSR_CRL:022) or knock-in mice on embryonic day 16 (E16). No gender determination
481 is done and three or more embryos are used. They were digested with 0.25% trypsin (Thermo
482 Fisher Scientific) in HBSS (Wako) for 15 minutes at 37°C. Dissociated hippocampal cells were
483 plated at 2×10^4 cells per well on Lab-Tek II 8-well chamber coverglasses (Thermo Fisher
484 Scientific) coated with polyethylenimine and BioCoat poly-D-lysine (Corning). All primary cells
485 were cultured in MEM (Thermo Fisher Scientific) supplemented with 1 mM pyruvate (Thermo
486 Fisher Scientific), 0.6% glucose, 2 mM GlutaMAX (Thermo Fisher Scientific), 2% B27 Plus
487 (Thermo Fisher Scientific), and 100 U/mL Penicillin-Streptomycin (Thermo Fisher Scientific).
488 These cells were kept at 37°C in a humidified atmosphere of 95% air and 5% CO₂.

489

490 **Immunocytochemistry**

491 Cells were washed in PBS at 37°C and then fixed in 4% paraformaldehyde for 20 minutes.
492 Subsequently, cells were permeabilized with 0.1% Triton X-100 for 3 minutes and then blocked
493 with 5 or 10% bovine serum albumin (BSA, Merck) in PBS for 20 minutes. Antibodies were
494 diluted in Can Get Signal Solution (Toyobo). Proteins were probed with primary antibodies for 1
495 hour at room temperature. Subsequently, they were incubated with secondary antibodies for 1
496 hour at room temperature. Actin visualized with Alexa Fluor 555 Phalloidin (Thermo Fisher
497 Scientific, 1:200) at the same time as probing with secondary antibody.

498 For detection of antigens on the membrane surface of live cells, anti-HA tag antibody was
499 diluted at 1:250 in a culture medium and reacted for 30 minutes in a cell culture incubator. In
500 addition, PFA fixation, detergent permeabilization, blocking treatment, other primary antibody
501 reactions were carried out as usual, and secondary antibody was reacted.

502 Using the following procedure, the molecules that do not interact with the cytoskeleton were
503 removed. First, a sufficient amount of saponin (Kanto Chemical) was dissolved in water to make
504 a saturated solution. Then, the saturated solution of saponin was added to the culture medium
505 to reach a final concentration of 0.1% and permeabilized in the incubator for 3 minutes. After
506 permeabilization, the cells were immediately immersed in methanol at -30°C and fixed on ice.
507 After that, additional permeabilization with Triton X-100 was performed. The rest of the procedure
508 was the same as for normal immunofluorescence staining.

509 Immunofluorescence staining images were mainly acquired with a confocal laser scanning

510 microscope (LSM 880; ZEISS) equipped with a 63x/1.4 Plan APOCHROMAT oil immersion objective.
511 For statistical analysis of COS-7 morphology, cells were observed with an IX71 inverted
512 microscope (Olympus) equipped with DeltaVision (Cytiva), CoolSNAP HQ2 CCD camera
513 (Teledyne Photometrics), and 40x/1.35 UApO/340 oil immersion objective. Tile imaging was
514 performed by randomly selecting a region that contained approximately 100-300 EGFP-
515 expressing cells, and cells with more than 10 protrusion-like structures with branches larger than
516 10 μ m were manually counted for statistical analysis. Detailed observation of the cytoskeleton
517 was performed on an Eclipse Ti2 inverted microscope (Nikon) equipped with a Dragonfly
518 spinning disk (Oxford Instruments), an EMCCD iXon Ultra 897 (Oxford Instruments), and a
519 60x/1.4 Plan Apo oil immersion objective. After image acquisition, super-resolution images were
520 created by SRRF-Stream.

521

522 **Antibodies**

523 An affinity-purified rabbit polyclonal antibody specific for TEN2 was raised against a synthetic
524 peptide of the sequence CSNTSHQIMDTNPDE (Eurofins Genomics). This is a cysteine added
525 to the C-terminus of amino acids 203-216 in the intracellular domain. After crude purification of
526 serum with ammonium sulfate, it was purified by affinity chromatography using SulfoLink
527 Coupling Resin (Thermo Fisher Scientific) coupled with a synthetic peptide of the sequence
528 CQMPLLDSNTSHQIMDTNPDEEFSPNS (GenScript). This is amino acids 196-222 in the
529 intracellular domain. For other antibodies, commercially available antibodies were used as
530 shown in the table (Table S7).

531

532 **Quantification of gephyrin puncta**

533 Gephyrin was visualized using anti-gephyrin. For dendritic tracing, dendrites were visualized by
534 expressing TagRFP in knockdown experiments and by immunofluorescence staining with MAP2
535 in other experiments. TagRFP or MAP2 channels were binarized to clarify dendrites and traced
536 using the NeuronJ plugin. The number of gephyrin puncta was quantified by SynapCountJ plugin
537 using this trace data and gephyrin channels. Since this plugin requires two images, we made
538 another copy of the gephyrin channel and identified the gephyrin puncta by the same threshold.

539

540 **Cluster analysis and statistical analysis**

541 Cluster analysis and statistical analysis were performed using Excel (Microsoft) and R software.
542 Statistical tests, sample sizes, and experiments are shown in the figure legends. In the cluster
543 analysis, the number of clusters was set to 3 after a hierarchical cluster analysis was conducted
544 without pre-determining the number of clusters in the preliminary experiment. In the main
545 experiment, the number of clusters was set to 3 in advance and then analyzed. The cluster

546 analysis did not use statistical methods to determine sample size a priori, but instead targeted
547 all postsynapses within 100 μ m of the cell body of the eight neurons. Postsynapses were
548 detected at a threshold of 32768 with 16 bits of gephyrin fluorescence intensity taken with the
549 same criteria. The ratio of neurons with biased MAP2 localization was preplanned to obtain
550 statistics from three independent experiments. For the other experiments, the number of
551 samples was estimated with the "power.t.test" and "power.anova.test" functions in R so that
552 power = 0.8 from the first experiment ($n = 4 \sim 6$), and observations of the set number of samples
553 were made in three or more independent biological samples. Even when the set number was
554 exceeded, samples were not excluded and all observed samples were used for statistics. The
555 number of samples was not re-set from the final power. Before the significance tests, the
556 Kolmogorov-Smirnov test was used to test for normal distribution. Nonparametric methods were
557 used to analyze samples that were not normally distributed. t-tests were based on the Welch
558 method and did not assume equal variance. The experimenter was not blinded to the
559 experimental conditions during all data acquisition or quantification.

560

561 **Motif search and alignment**

562 The columns containing the Uniprot IDs of proteins from the table of Excitatory and Inhibitory
563 Synaptic Cleft Proteomes (Loh et al., 2016) were converted to comma-separated csv files and
564 then converted to fasta format using NCBI E-utilities. Fuzzpro in the EMBOSS package (Rice et
565 al., 2000) were used for each motif search for the following conditions: pattern Sx[ILV]P,
566 mismatch 0 for Sx ϕ P motif; pattern LRPPTP[ILV], mismatch 2 for LxxPTP ϕ motif. This search
567 was performed in a macOS terminal with Anaconda installed. The obtained sequences were
568 searched with Uniprot and manually checked whether they were extracellular or cytosolic. The
569 alignment of amino acid sequences was performed using Clustal Omega (EMBL-EBI) and
570 MacVector (MacVector).

571

572 **Plasmids**

573 For the full-length EGFP-Teneurin2 clone, partial Teneurin2 from KAZUSA cDNA (NCBI
574 AB032953) and RIKEN cDNA (NCBI AK031198) were amplified by PCR and inserted into
575 pEGFP-C1 (Takara Bio). The missing part was complemented by a custom gene synthesis
576 (Eurofins Genomics K.K.). The protein translated from this plasmid is equivalent to the full-length
577 Homo sapiens Teneurin-2 (NCBI NP_001382389), consisting of 2774 amino acids. Note that
578 there are six mutations in our construction as follows: I418V, M431V, V590L, S659A, T720S and
579 L2384P. They are not located in the intracellular domain. EB1-TagRFP was generated by PCR
580 amplification from KAZUSA cDNA (NCBI AB463888) and inserted into pTagRFP-N (Evrogen).
581 The shRNA target sequence was designed for protein knockdown using the BLOCK-iT RNAi

582 Designer tool (Thermo Fisher Scientific). A cassette containing the pre-shRNA sequence was
583 inserted into pBAsi-mU6 (Takara Bio). The target sequences of each shRNA are as follows:
584 Negative control, GCCTAAGGTTAAGTCGCC; Teneurin2 #1, GCCAGGTTGATTATACC. For
585 volume marker, the SV40 promoter and tagRFP sequences were amplified and inserted into the
586 pBAsi-mU6 vector.

587

588 **Transfection**

589 COS-7 cells were transfected with the plasmid using Lipofectamine 2000 (Thermo Fisher
590 Scientific). Transfection conditions are described in each experiment. According to the
591 manufacturer's protocol, the cultured neurons were transfected using the High-Efficiency Ca^{2+}
592 Phosphate Transfection Kit (Takara Bio). Briefly, the culture medium was replaced with fresh
593 MEM containing pyruvate, glucose, and GlutaMAX. 2 μg of plasmid, 3.1 μl of 2 M CaCl_2 , and 25
594 μl of Hanks equilibrium salt solution were mixed by pipetting and vortexing and incubated at
595 room temperature for 15 minutes. Next, the DNA/ Ca^{2+} phosphate suspension was added to the
596 culture medium and incubated in a 5% CO_2 incubator at 37°C for 1 hour. After the incubation,
597 the DNA/ Ca^{2+} phosphate precipitates were dissolved for 15 minutes with the pre-equilibrated
598 medium in a 10% CO_2 incubator and then replaced with the original medium.

599

600 **Quantitative analysis of correlation coefficient**

601 For the analysis of TEN2-EB1 colocalization, COS-7 cells were plated in a Lab-Tek II 8-well
602 chamber coverglasses at 1-2 $\times 10^5$ /well. 0.5 μg of pEGFP-C1 vector, which inserted the
603 necessary part of TEN2, and 1 μg of EB1-TagRFP, and 0.5 μl Lipofectamin 2000 were diluted
604 in Opti-MEM (Thermo Fisher Scientific) and transfected for 1 well. After 18 hours, cells were
605 fixed with PFA and cells expressing EB1 in MTs pattern were recorded with LSM 880. To exclude
606 regions with no signal and full of noise, EGFP channels were binarized to detect cell morphology,
607 and these were used as regions of interest (ROI). Since the background was sufficiently reduced
608 under these conditions, quantitative analysis was performed using the non-threshold Pearson's
609 R value as the correlation coefficient between TEN2 and EB1.

610 For the analysis of TEN2-MAP2 colocalization, neurons expressing EGFP-TEN2 were
611 immunostained with MAP2. The signal intensities of EGFP and MAP2 perpendicular to the
612 direction of dendrite elongation were quantified using ImageJ's Plot Profile, and the correlation
613 coefficient between the two variables was calculated using Excel's CORREL function for
614 quantitative analysis.

615

616 **Coating of anti-HA tag antibody**

617 Lab-Tek II 8-well chamber coverglasses were coated with poly-D-lysine overnight and washed

618 twice with sterile water. The additional coating was done overnight with HBSS containing rabbit
619 monoclonal anti-HA tag (Cell Signaling Technology, #3724) diluted 1:20. After washing twice with
620 sterile water, the chamber was immediately plated with COS-7 with DMEM with no attempt to
621 dry the chamber. Transfection was performed within 8 hours.

622

623 **TIRF live imaging and analysis of EB1 comet**

624 COS-7 cells were plated in a Lab-Tek II 8-well chamber coverglasses at 1-2 x 10⁵ /well. 0.5 µg
625 of pEGFP-C1 vector, which inserted the necessary part of TEN2, and 0.05 µg of EB1-TagRFP,
626 and 0.5 µL Lipofectamin 2000 were diluted in Opti-MEM and transfected for 1 well. One hour
627 after transfection, the medium was changed to fresh medium, and observations were carried out
628 12-18 hours later. At the time of observation, the medium was replaced with Leibovitz L-15
629 medium (Wako). TIRF observation was performed using an Eclipse Ti inverted microscope
630 (Nikon) equipped with a 488-nm and 568-nm sapphire laser (Coherent), a Plan Apo TIRF 100x
631 Oil Immersion objective, and a house-made thermostatic chamber to maintain temperature at
632 37°C during observation. For time-lapse recording, images were acquired using an EMCCD
633 iXon3 DU897 (Oxford Instruments) with an exposure time of 1.0 second and a gain of 100, taking
634 50 images every 2 seconds for 1 minute 38 seconds. The perfect focus system (PFS) was used
635 to maintain focus during recording.

636 The recorded images were analyzed using Particle Tracker 2D/3D, one of the Mosaic plugins
637 in ImageJ, to detect trajectories under the following conditions: radius = 3, cutoff = 3, per/abs =
638 0.4, link = 1, displacement = 5, dynamics = straight. Each trajectory's velocity was calculated by
639 dividing the distance moved per frame by the interval time of 2 seconds, and the average of the
640 velocities over the number of frames of the trajectory was defined as the velocity of the
641 corresponding EB1 comet.

642

643 **CRISPR/Cas9-mediated knock-in of the 3xHA tag into Tenm2 gene**

644 The Tenm2 3xHA tag knock-in mice were generated by using a CRISPR/Cas9 genome-editing
645 technology onto pronuclear stage embryos (Doudna & Charpentier, 2014). In brief, female
646 C57BL/6J JAX mice (Charles River; IMSR Cat# JAX:000664, RRID:IMSR_JAX:000664) were
647 super-ovulated by intraperitoneal injection of 7.5 units of pregnant mare's serum gonadotropin
648 (PMSG; ASKA Pharmaceutical), followed by 7.5 units of human chorionic gonadotropin (hCG;
649 ASKA Pharmaceutical) 48 hours later. Fifteen hours after the hCG injection, super-ovulated
650 female mice were euthanized via cervical dislocation, and unfertilized oocytes isolated from the
651 female mice were subjected to in vitro fertilization with freshly isolated spermatozoa from
652 euthanized C57BL/6J JAX male mice, as previously described (Kaneko et al., 2018).
653 Introduction of Cas9 protein, guide RNA, and single strand oligodeoxynucleotide (ssODN) into

654 pronuclear stage embryos was carried out using the TAKE method (Kaneko, 2017). Cas9 protein,
655 guide RNA, and ssODN were purchased from IDT (Integrated DNA Technologies). Mixture of
656 crRNA and tracrRNA was used as guide RNA. Guide RNA and ssODN were designed to insert
657 3xHA tag sequences just upstream from the stop codon of the *Tenm2* gene of the C57BL/6
658 mouse (guide RNA: 5'- GACAGAATGAGATGGGAAAG-3', ssODN: 5'-
659 ACAGTAGCAGCAACATCCAGTTCTTAAGACAGAATGAGATGGGAAAGAGATACCCATACGA
660 TGTACCTGACTATGCGGGCTATCCCTATGACGTCCCGGACTATGCAGGATCCTATCCTTATG
661 ACGTTCCAGATTACGCTGTTAACAAAATAACCTGCTGCCACCTCTCTGGGTGGCTCA
662 GCAGGAGCAACT-3', where 3xHA tag sequences are underlined). The CRISPR/Cas9 solution
663 contained 50 ng/μL Cas9 protein, 50 ng/μL crRNA, 50 ng/μL tracrRNA, and 100 ng/μL ssODN
664 in Opti-MEM (Thermo Fisher Scientific). Super electroporator NEPA21 (NEPA GENE) was used
665 to introduce Cas9 protein, guide RNA, and ssODN into embryos. The poring pulse was set to
666 voltage: 225 V, pulse length: 2.0 ms, pulse interval: 50 ms, number of pulses: 4, decay rate: 10%,
667 polarity: +. The transfer pulse was set to a voltage: 20 V, pulse length: 50 ms, pulse interval: 50
668 ms, number of pulse: 5, decay rate: 40%, Polarity: +/--. The CRISPR/Cas9 solution (45 μL) was
669 filled between metal plates of 5 mm gap electrodes on a glass slide (CUY505P5, NEPA GENE).
670 The embryos placed in line between the electrodes were then discharged. The embryos were
671 then cultured in HTF at 37 °C in 5% CO₂/95% air. On the next day, two-cell embryos were
672 transferred into the oviduct ampulla (40–48 embryos per oviduct) of pseudopregnant ICR (Japan
673 SLC; MGI Cat# 5462094, RRID:MGI:5462094) females. All mice generated were genotyped by
674 PCR amplification of genomic DNA isolated from the tip of tail, followed by sequencing.
675 Sequence of the primers used for genotyping were as follows; *Tenm2*ex29+564F;
676 CAAGGAGCAGCAGAAAGCCAG; *Tenm2*ex29+871R; TAAAGCAGCCCGGCCTCAGTG. The
677 resulting PCR product was cut by BamHI, and the expected size was 308 bp for wild-type and
678 254 bp and 147 bp for *Tenm2* 3xHA tag knock-in mice.

679 Mice were backcrossed with wild-type C57BL/6J at least four times, and at least one of them
680 was with a wild-type male to replace the Y chromosome. Mice were kept in an environment free
681 of specific pathogens according to the institutional guidelines of Gunma University. All mice have
682 been genotyped by PCR. These experiments have passed a rigorous ethical review and have
683 been approved by Gunma University for animal experiments (approval number: 20-061) and
684 genetic recombination experiments (approval number: 21-042).

685

686 **Proximity ligation assay**

687 The proximity ligation assay uses DuoLink (Merck) and follows the protocol distributed by the
688 supplier. Primary antibodies were reacted according to the immunocytochemistry protocol
689 described above. PLA Probe Anti-Mouse PLUS (Merck) and PLA Probe Anti-Rabbit MINUS

690 (Merck) diluted 1:10 and reacted at 37°C for 1 hour. After three washes, oligonucleotides labeled
691 with the two secondary antibodies were ligated with ligase, DNA was amplified by rolling circle
692 amplification, and the Duolink in situ detection reagent green (Merck) was incorporated into the
693 newly synthetic DNA. After three washes and a 5-minute post-fix, the neurons were reacted with
694 a secondary antibody against MAP2 for 1 hour. Observations were made after three additional
695 washes.

696

697 **dSTORM**

698 The equipment used in dSTORM was the same setup as the Nikon-Ti microscope used in the
699 TIRF live imaging described above. Immunofluorescence staining for dSTORM was performed
700 using a concentration of both primary and secondary antibodies that was four times higher than
701 that of normal immunofluorescence staining, but other details were the same as for normal
702 immunofluorescence staining. Observations were made in 50 mM Tris-HCl (pH8.0), 10 mM NaCl
703 buffer containing 0.1 M MEA, 0.7 mg/ml glucose oxidase, 10% glucose and 0.034 mg/ml
704 catalase. Observations were taken continuously at 59 Hz for AF647, CF568, and AF488, in that
705 order, and 25000 images each were recorded for the first two dyes; AF488 does not blink under
706 these conditions, so only 500 images were recorded and used only to determine if AF488 was
707 positive or negative. All recordings were drift-corrected and then STORM images were
708 constructed using Nikon's accompanying analysis software, NIS.

709

710 **Author contributions**

711 S.I. and H.I. conceived the study. S.I. and Y.S. performed the cell biological experiments. R.K.
712 generated knock-in mice. S.I. and H.I. analyzed the data and discussed and wrote the paper.
713

714 **Acknowledgements**

715 We thank Drs. Tohru Murakami and Yuki Tajika. We thank Yoshihiro Morimura, Toshie Kakinuma,
716 and Sachiko Sato for technical assistance and care of the mice. This work was supported by a
717 Grant-in-Aid for Scientific Research (C) (18K06499, 22K06805, H.I) and Young Scientist
718 (20K16104, S.I.) from the Ministry of Education, Culture, Sports, Science and Technology of
719 Japan, and Takeda Science Foundation. This work used equipment shared in the MEXT Project
720 for promoting public utilization of advanced research infrastructure (JPMXS0420600119,
721 JPMXS0420600120, JPMXS0420600121).
722

723 **Competing interests**

724 The authors declare no competing interests.
725

726 **Materials Availability**

727 Further information and requests for resources and reagents should be directed to and will be
728 fulfilled by the lead contact, Hirohide Iwasaki (h-iwasaki@gunma-u.ac.jp).
729

730 **References**

731 Aiken, J., & Holzbaur, E. L. F. (2021). Cytoskeletal regulation guides neuronal trafficking to effectively supply the
732 synapse. *Curr Biol*, 31(10), R633-R650. <https://doi.org/10.1016/j.cub.2021.02.024>

733 Akhmanova, A., & Steinmetz, M. O. (2015). Control of microtubule organization and dynamics: two ends in the
734 limelight. *Nat Rev Mol Cell Biol*, 16(12), 711-726. <https://doi.org/10.1038/nrm4084>

735 Beckmann, J., Schubert, R., Chiquet-Ehrismann, R., & Müller, D. J. (2013). Deciphering Teneurin Domains That
736 Facilitate Cellular Recognition, Cell–Cell Adhesion, and Neurite Outgrowth Using Atomic Force Microscopy-
737 Based Single-Cell Force Spectroscopy. *Nano Letters*, 13(6), 2937-2946. <https://doi.org/10.1021/nl4013248>

738 Berns, D. S., Denardo, L. A., Pederick, D. T., & Luo, L. (2018). Teneurin-3 controls topographic circuit assembly in
739 the hippocampus. *Nature*, 554(7692), 328-333. <https://doi.org/10.1038/nature25463>

740 Charrier, C., Ehrensparger, M. V., Dahan, M., Lévi, S., & Triller, A. (2006). Cytoskeleton regulation of glycine receptor
741 number at synapses and diffusion in the plasma membrane. *J Neurosci*, 26(33), 8502-8511.
742 <https://doi.org/10.1523/JNEUROSCI.1758-06.2006>

743 Dahan, M., Lévi, S., Luccardini, C., Rostaing, P., Riveau, B., & Triller, A. (2003). Diffusion dynamics of glycine
744 receptors revealed by single-quantum dot tracking. *Science*, 302(5644), 442-445.
745 <https://doi.org/10.1126/science.1088525>

746 Del Toro, D., Carrasquero-Ordaz, M. A., Chu, A., Ruff, T., Shahin, M., Jackson, V. A., . . . Seiradake, E. (2020).
747 Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. *Cell*,
748 180(2), 323-339.e319. <https://doi.org/10.1016/j.cell.2019.12.014>

749 Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-
750 Cas9. *Science*, 346(6213), 1258096. <https://doi.org/10.1126/science.1258096>

751 Fuhrmann, J. C., Kins, S., Rostaing, P., El Far, O., Kirsch, J., Sheng, M., . . . Kneussel, M. (2002). Gephyrin Interacts
752 with Dynein Light Chains 1 and 2, Components of Motor Protein Complexes. *The Journal of Neuroscience*,
753 22(13), 5393-5402. <https://doi.org/10.1523/jneurosci.22-13-05393.2002>

754 Giesemann, T., Schwarz, G., Nawrotzki, R., Berhörster, K., Rothkegel, M., Schlüter, K., . . . Jockusch, B. M. (2003).
755 Complex Formation between the Postsynaptic Scaffolding Protein Gephyrin, Profilin, and Mena: A Possible
756 Link to the Microfilament System. *The Journal of Neuroscience*, 23(23), 8330-8339.
757 <https://doi.org/10.1523/jneurosci.23-23-08330.2003>

758 Gu, J., Firestein, B. L., & Zheng, J. Q. (2008). Microtubules in dendritic spine development. *J Neurosci*, 28(46),
759 12120-12124. <https://doi.org/10.1523/JNEUROSCI.2509-08.2008>

760 Gu, Y., Chiu, S.-L., Liu, B., Wu, P.-H., Delannoy, M., Lin, D.-T., . . . Huganir, R. L. (2016). Differential vesicular sorting
761 of AMPA and GABA
762 _A
763 receptors. *Proceedings of the National Academy of Sciences*, 113(7), E922-E931.
764 <https://doi.org/10.1073/pnas.1525726113>

765 Guedes-Dias, P., Nirschl, J. J., Abreu, N., Tokito, M. K., Janke, C., Magiera, M. M., & Holzbaur, E. L. F. (2019).

766 Kinesin-3 Responds to Local Microtubule Dynamics to Target Synaptic Cargo Delivery to the Presynapse.
767 *Curr Biol*, 29(2), 268-282.e268. <https://doi.org/10.1016/j.cub.2018.11.065>

768 Gulley, R. L., & Reese, T. S. (1981). Cytoskeletal organization at the postsynaptic complex. *Journal of Cell Biology*,
769 91(1), 298-302. <https://doi.org/10.1083/jcb.91.1.298>

770 Heo, S., Diering, G. H., Na, C. H., Nirujogi, R. S., Bachman, J. L., Pandey, A., & Huganir, R. L. (2018). Identification
771 of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. *Proc Natl Acad Sci
772 U S A*, 115(16), E3827-E3836. <https://doi.org/10.1073/pnas.1720956115>

773 Honnappa, S., Gouveia, S. M., Weisbrich, A., Damberger, F. F., Bhavesh, N. S., Jawhari, H., . . . Steinmetz, M. O.
774 (2009). An EB1-binding motif acts as a microtubule tip localization signal. *Cell*, 138(2), 366-376.
775 <https://doi.org/10.1016/j.cell.2009.04.065>

776 Hu, X., Viesselmann, C., Nam, S., Merriam, E., & Dent, E. W. (2008). Activity-dependent dynamic microtubule
777 invasion of dendritic spines. *J Neurosci*, 28(49), 13094-13105. <https://doi.org/10.1523/JNEUROSCI.3074-08.2008>

779 Ichinose, S., Ogawa, T., & Hirokawa, N. (2015). Mechanism of Activity-Dependent Cargo Loading via the
780 Phosphorylation of KIF3A by PKA and CaMKIIa. *Neuron*, 87(5), 1022-1035.
781 <https://doi.org/10.1016/j.neuron.2015.08.008>

782 Ichinose, S., Ogawa, T., Jiang, X., & Hirokawa, N. (2019). The Spatiotemporal Construction of the Axon Initial
783 Segment via KIF3/KAP3/TRIM46 Transport under MARK2 Signaling. *Cell Rep*, 28(9), 2413-2426.e2417.
784 <https://doi.org/10.1016/j.celrep.2019.07.093>

785 Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., . . . Hoogenraad, C. C. (2009).
786 Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. *Neuron*, 61(1), 85-100.
787 <https://doi.org/10.1016/j.neuron.2008.11.013>

788 Kaneko, R., Kakinuma, T., Sato, S., & Jinno-Oue, A. (2018). Freezing sperm in short straws reduces storage space
789 and allows transport in dry ice. *J Reprod Dev*, 64(6), 541-545. <https://doi.org/10.1262/jrd.2018-100>

790 Kaneko, T. (2017). Genome Editing in Mouse and Rat by Electroporation. *Methods Mol Biol*, 1630, 81-89.
791 https://doi.org/10.1007/978-1-4939-7128-2_7

792 Kittler, J. T., Delmas, P., Jovanovic, J. N., Brown, D. A., Smart, T. G., & Moss, S. J. (2000). Constitutive Endocytosis
793 of GABA_A Receptors by an Association with the Adapton AP2 Complex Modulates Inhibitory
794 Synaptic Currents in Hippocampal Neurons. *The Journal of Neuroscience*, 20(21), 7972-7977.
795 <https://doi.org/10.1523/jneurosci.20-21-07972.2000>

796 Kumar, A., Manatschal, C., Rai, A., Grigoriev, I., Degen, M. S., Jaussi, R., . . . Steinmetz, M. O. (2017). Short Linear
797 Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. *Structure*, 25(6), 924-
798 932.e924. <https://doi.org/10.1016/j.str.2017.04.010>

799 Labonté, D., Thies, E., & Kneussel, M. (2014). The kinesin KIF21B participates in the cell surface delivery of $\gamma 2$
800 subunit-containing GABAA receptors. *Eur J Cell Biol*, 93(8-9), 338-346.
801 <https://doi.org/10.1016/j.ejcb.2014.07.007>

802 Li, J., Shalev-Benami, M., Sando, R., Jiang, X., Kibrom, A., Wang, J., . . . Araç, D. (2018). Structural Basis for
803 Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. *Cell*, 173(3), 735-748.e715.
804 <https://doi.org/10.1016/j.cell.2018.03.036>

805 Linsalata, A. E., Chen, X., Winters, C. A., & Reese, T. S. (2014). Electron tomography on γ -aminobutyric acid-ergic
806 synapses reveals a discontinuous postsynaptic network of filaments. *Journal of Comparative Neurology*,
807 522(4), 921-936. <https://doi.org/10.1002/cne.23453>

808 Liu, Y.-T., Tao, C.-L., Zhang, X., Xia, W., Shi, D.-Q., Qi, L., . . . Bi, G.-Q. (2020). Mesophasic organization of GABA_A
809 receptors in hippocampal inhibitory synapses. *Nature Neuroscience*, 23(12), 1589-1596.
810 <https://doi.org/10.1038/s41593-020-00729-w>

811 Loh, K. H., Stawski, P. S., Draycott, A. S., Udeshi, N. D., Lehrman, E. K., Wilton, D. K., . . . Ting, A. Y. (2016).
812 Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. *Cell*, 166(5), 1295-1307.e1221.
813 <https://doi.org/10.1016/j.cell.2016.07.041>

814 Maas, C., Tagnaouti, N., Loebrich, S., Behrend, B., Lappe-Siefke, C., & Kneussel, M. (2006). Neuronal cotransport
815 of glycine receptor and the scaffold protein gephyrin. *J Cell Biol*, 172(3), 441-451.
816 <https://doi.org/10.1083/jcb.200506066>

817 McVicker, D. P., Awe, A. M., Richters, K. E., Wilson, R. L., Cowdrey, D. A., Hu, X., . . . Dent, E. W. (2016). Transport
818 of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. *Nat Commun*,
819 7, 12741. <https://doi.org/10.1038/ncomms12741>

820 Monroy, B. Y., Tan, T. C., Oclaman, J. M., Han, J. S., Simó, S., Niwa, S., . . . Ori-Mckenney, K. M. (2020). A
821 Combinatorial MAP Code Dictates Polarized Microtubule Transport. *Developmental Cell*, 53(1), 60-72.e64.
822 <https://doi.org/10.1016/j.devcel.2020.01.029>

823 Mosca, T. J., Hong, W., Dani, V. S., Favaloro, V., & Luo, L. (2012). Trans-synaptic Teneurin signalling in
824 neuromuscular synapse organization and target choice. *Nature*, 484(7393), 237-241.
825 <https://doi.org/10.1038/nature10923>

826 Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N., & Hirokawa, N. (2012). Molecular motor KIF5A is essential
827 for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. *Neuron*, 76(5), 945-961.
828 <https://doi.org/10.1016/j.neuron.2012.10.012>

829 Nakata, T., Niwa, S., Okada, Y., Perez, F., & Hirokawa, N. (2011). Preferential binding of a kinesin-1 motor to GTP-
830 tubulin-rich microtubules underlies polarized vesicle transport. *J Cell Biol*, 194(2), 245-255.
831 <https://doi.org/10.1083/jcb.201104034>

832 O'Sullivan, M. L., de Wit, J., Savas, J. N., Comoletti, D., Otto-Hitt, S., Yates, J. R., & Ghosh, A. (2012). FLRT proteins
833 are endogenous latrophilin ligands and regulate excitatory synapse development. *Neuron*, 73(5), 903-910.
834 <https://doi.org/10.1016/j.neuron.2012.01.018>

835 Pawson, C., Eaton, B. A., & Davis, G. W. (2008). Formin-dependent synaptic growth: evidence that Dlar signals via
836 Diaphanous to modulate synaptic actin and dynamic pioneer microtubules. *J Neurosci*, 28(44), 11111-11123.
837 <https://doi.org/10.1523/JNEUROSCI.0833-08.2008>

838 Poulopoulos, A., Aramuni, G., Meyer, G., Soykan, T., Hoon, M., Papadopoulos, T., . . . Varoqueaux, F. (2009).
839 Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and
840 Collybistin. *Neuron*, 63(5), 628-642. <https://doi.org/10.1016/j.neuron.2009.08.023>

841 Qu, X., Kumar, A., Blockus, H., Waites, C., & Bartolini, F. (2019). Activity-Dependent Nucleation of Dynamic
842 Microtubules at Presynaptic Boutons Controls Neurotransmission. *Curr Biol*, 29(24), 4231-4240.e4235.
843 <https://doi.org/10.1016/j.cub.2019.10.049>

844 Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. *Trends
845 Genet*, 16(6), 276-277. [https://doi.org/10.1016/s0168-9525\(00\)02024-2](https://doi.org/10.1016/s0168-9525(00)02024-2)

846 Rubin, B. P., Tucker, R. P., Brown-Luedi, M., Martin, D., & Chiquet-Ehrismann, R. (2002). Teneurin 2 is expressed
847 by the neurons of the thalamofugal visual system *in situ* and promotes homophilic cell-cell adhesion *in vitro*.
848 *Development*, 129(20), 4697-4705.

849 Sando, R., Jiang, X., & Südhof, T. C. (2019). Latrophilin GPCRs direct synapse specificity by coincident binding of
850 FLRTs and teneurins. *Science*, 363(6429). <https://doi.org/10.1126/science.aav7969>

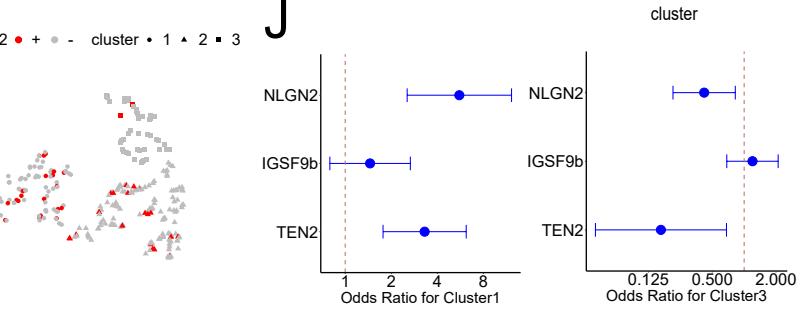
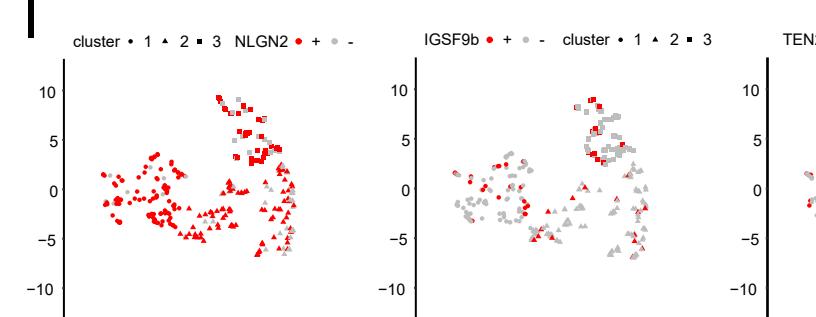
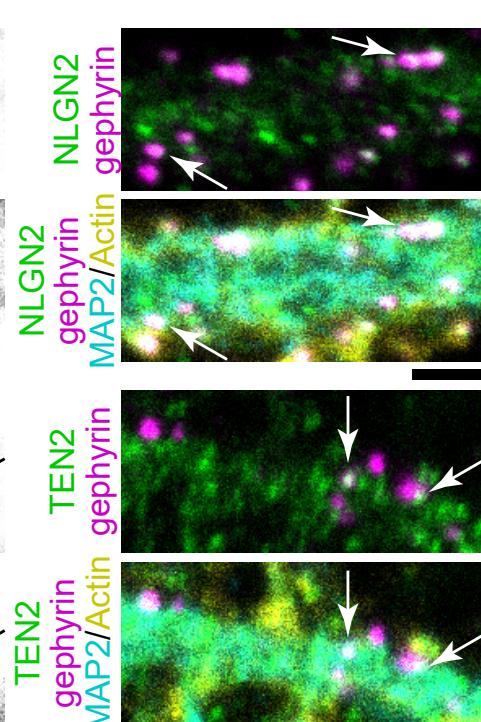
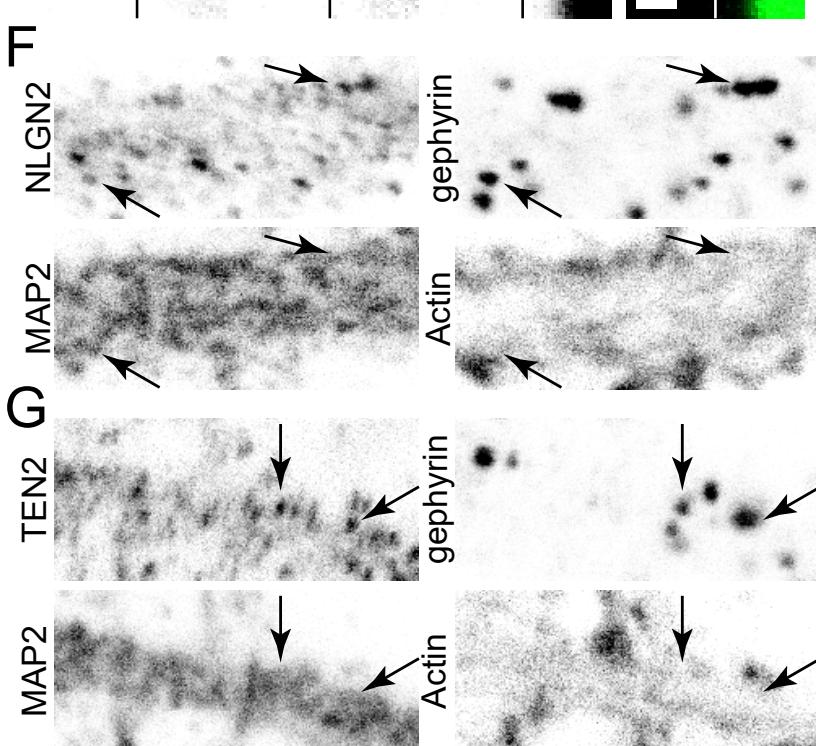
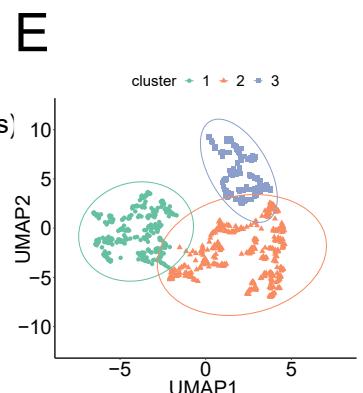
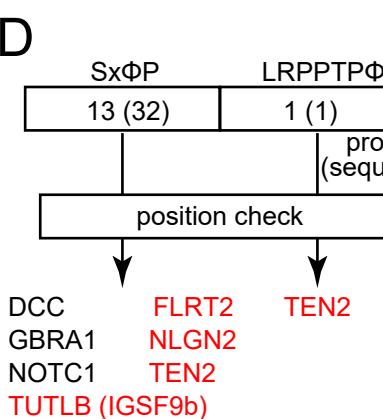
851 Sando, R., & Südhof, T. C. (2021). Latrophilin GPCR signaling mediates synapse formation. *eLife*, 10.
852 <https://doi.org/10.7554/eLife.65717>

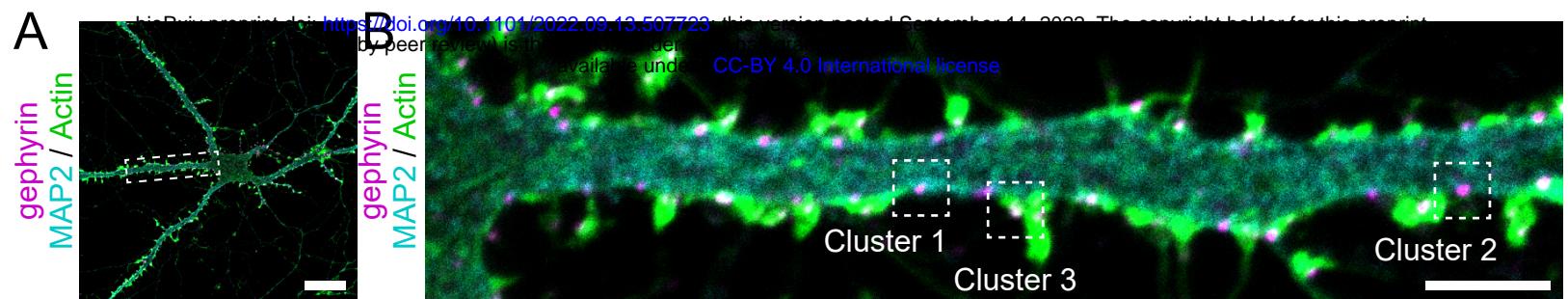
853 Sanes, J. R., & Zipursky, S. L. (2020). Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits.
854 *Cell*, 181(6), 1434-1435. <https://doi.org/10.1016/j.cell.2020.05.046>

855 Silva, J. P., Lelianova, V. G., Ermolyuk, Y. S., Vysokov, N., Hitchen, P. G., Berninghausen, O., . . . Ushkaryov, Y. A.
856 (2011). Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor
857 pair with signaling capabilities. *Proc Natl Acad Sci U S A*, 108(29), 12113-12118.
858 <https://doi.org/10.1073/pnas.1019434108>

859 Skube, S. B., Chaverri, J. M., & Goodson, H. V. (2010). Effect of GFP tags on the localization of EB1 and EB1
860 fragments *in vivo*. *Cytoskeleton (Hoboken)*, 67(1), 1-12. <https://doi.org/10.1002/cm.20409>

861 Söderberg, O., Gullberg, M., Jarvius, M., Ridderstråle, K., Leuchowius, K. J., Jarvius, J., . . . Landegren, U. (2006).
862 Direct observation of individual endogenous protein complexes *in situ* by proximity ligation. *Nat Methods*,
863 3(12), 995-1000. <https://doi.org/10.1038/nmeth947>


864 Takács, V. T., Freund, T. F., & Nyiri, G. (2013). Neuroligin 2 Is Expressed in Synapses Established by Cholinergic
865 Cells in the Mouse Brain. *PLoS ONE*, 8(9), e72450. <https://doi.org/10.1371/journal.pone.0072450>

866 Twelvetrees, A. E., Lesept, F., Holzbaur, E. L. F., & Kittler, J. T. (2019). The adaptor proteins HAP1a and GRIP1
867 collaborate to activate kinesin-1 isoform KIF5C. *Journal of Cell Science*, 132(24), jcs215822.
868 <https://doi.org/10.1242/jcs.215822>

869 Twelvetrees, A. E., Yuen, E. Y., Arancibia-Carcamo, I. L., MacAskill, A. F., Rostaing, P., Lumb, M. J., . . . Kittler, J. T.
870 (2010). Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin.
871 *Neuron*, 65(1), 53-65. <https://doi.org/10.1016/j.neuron.2009.12.007>

872 Uchigashima, M., Ohtsuka, T., Kobayashi, K., & Watanabe, M. (2016). Dopamine synapse is a neuroligin-2-
873 mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures. *Proceedings*

874 *of the National Academy of Sciences*, 113(15), 4206-4211. <https://doi.org/10.1073/pnas.1514074113>
875 Vysokov, N. V., Silva, J. P., Lelianova, V. G., Suckling, J., Cassidy, J., Blackburn, J. K., . . . Ushkaryov, Y. A. (2018).
876 Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on
877 axonal growth cones. *eLife*, 7. <https://doi.org/10.7554/eLife.37935>
878 Woo, J., Kwon, S.-K., Nam, J., Choi, S., Takahashi, H., Krueger, D., . . . Kim, E. (2013). The adhesion protein IgSF9b
879 is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. *Journal of Cell Biology*,
880 201(6), 929-944. <https://doi.org/10.1083/jcb.201209132>
881

Figure 1. Cluster analysis of inhibitory postsynapses and correlation with TEN2

(A) Image of immunofluorescence staining of gephyrin, MAP2, and actin in DIV20 hippocampal cultured neuron. The dashed box is magnified in (B). Scale bar, 20 μ m.

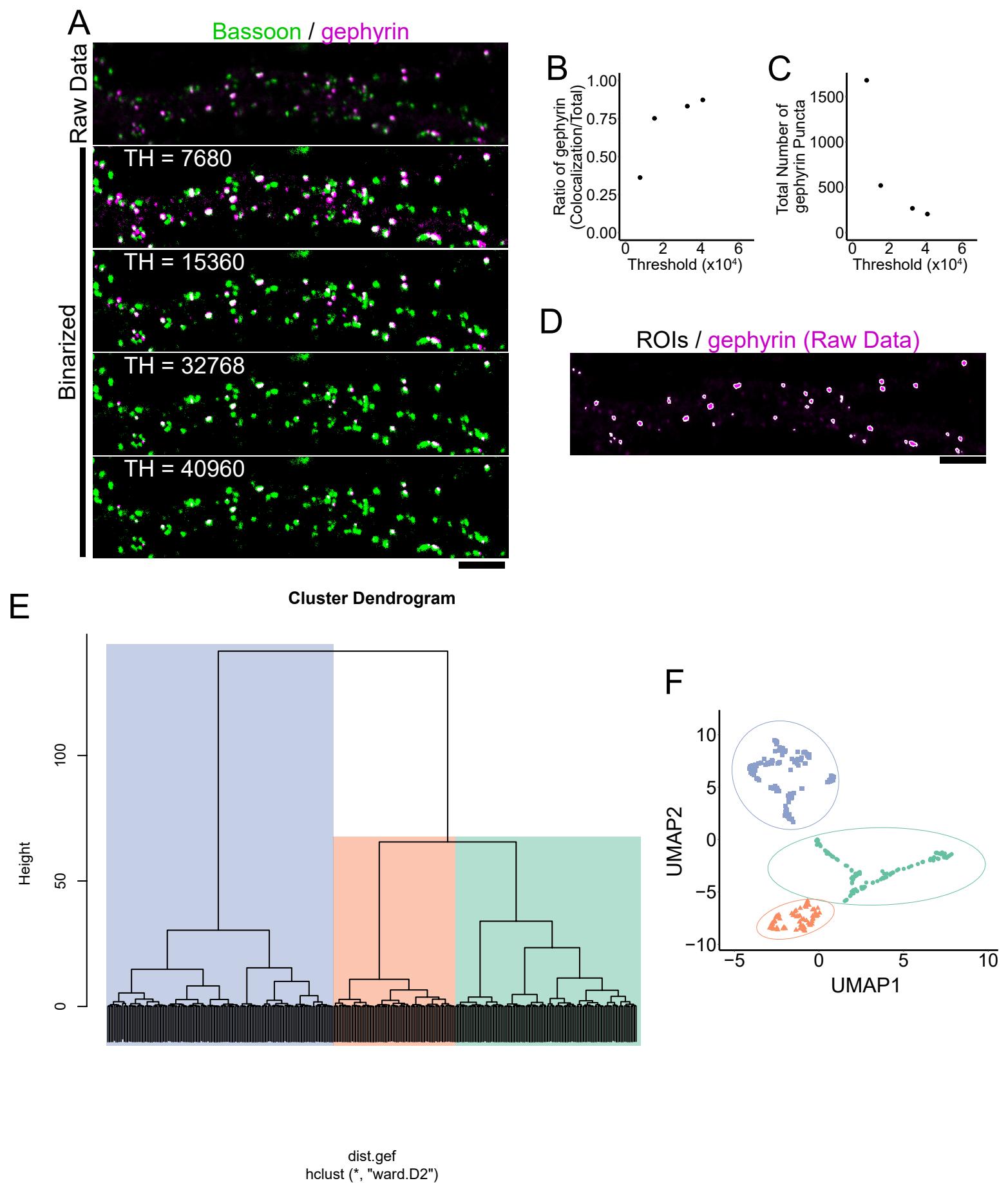
(B) Cytoskeletal diversity of inhibitory postsynapses. Cluster 1 is MAP2-rich synapses, cluster 2 is synapses with low levels of both MAP2 and actin, and cluster 3 is actin-rich synapses. Typical synapses are boxed by dash lines with the cluster number attached to each, and an enlarged view is shown in (C). Scale bar, 5 μ m.

(C) Enlarged view of the synapses belonging to each cluster. Arrows indicate the position of postsynapses. Scale bar, 500 nm.

(D) Results of motif search. Each motif was present in 32 and 1 location in each of 13 and 1 protein types. After checking whether these sequences were intracellular or extracellular, the number of candidate proteins was narrowed down to 7. Of these, those belonging to adhesion molecules are shown in red.

(E) Plots showing the results of cluster analysis. Inhibitory postsynapses were evaluated by 3-dimensional parameters of synaptic area, MAP2 intensity, and actin intensity. After being reduced to 2 dimensions by UMAP, cluster analysis was performed with the number of clusters pre-specified as 3. The number of synapses belonging to each cluster was 315, 413, and 212 observed by three independent experiments.

(F) Images of immunofluorescence staining of Neuroligin-2 (NLGN2), gephyrin, MAP2, and actinin DIV20 hippocampal cultured neuron. Arrows indicate representative NLGN2-positive synapses belonging to cluster 1. Scale bar, 2 μ m.


(G) Images of immunofluorescence staining of Teneurin-2 (TEN2), gephyrin, MAP2, and actin in DIV20 hippocampal cultured neuron. Arrows indicate representative TEN2-positive synapses belonging to cluster 1. Scale bar, 2 μ m.

(H) Comparison between clusters for each parameter. Synaptic area: One-way ANOVA showed a significant difference ($p = 0.0019$), Tukey multiple comparison showed significant difference between cluster 1 and 2 ($p = 0.0016$). MAP2 intensity: One-way ANOVA showed a significant difference ($p < 2e^{-16}$), Tukey multiple comparison showed significant differences between cluster 1 and 2 ($p < 1e^{-07}$) and between cluster 1 and 3 ($p < 1e^{-07}$). Actin intensity: One-way ANOVA showed a significant difference ($p < 2e^{-16}$), Tukey multiple comparison showed significant differences between cluster 1 and 2 ($p < 1e^{-07}$), between cluster 2 and 3 ($p < 1e^{-07}$) and between cluster 1 and 3 ($p < 1e^{-07}$). Sample size is the same as (E). ** $p < 0.01$, *** $p < 0.001$.

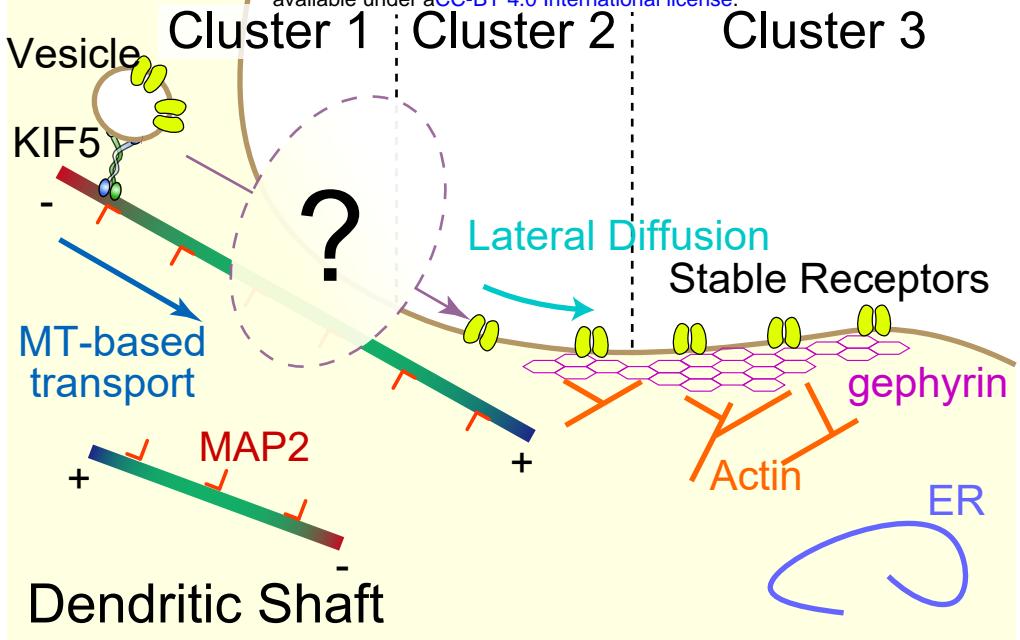
(I) Cluster analysis and the relationship between the positivity and negativity of each adhesion molecule. The calculation results by UMAP are the same as in (E). The number of NLGN2 positive and negative synapses are 228 and 65. The number of IgSF9b positive and negative synapses are 53 and 283. The number of TEN2 positive and negative synapses are 49 and 262.

TEN2 positive had very little classification to cluster 3, only 2 synapses.

(J) Odds ratio and 95% confidence interval for each adhesion molecule for cluster 1 and 3. For cluster 1: NLGN2, 5.57 (2.54-12.2); IgSF9b, 1.45 (0.80-2.66); TEN2, 3.30 (1.77-6.17). For cluster 3: NLGN2, 0.42 (0.21-0.82); IgSF9b, 1.20 (0.69-2.09); TEN2, 0.16 (0.04-0.68).

Figure 1–figure supplement 1. Cluster analysis of inhibitory postsynapses and correlation with TEN2

(A) Image of immunofluorescence staining of bassoon and gephyrin in DIV20 hippocampal cultured neuron. Bassoon is binarized with a threshold value of 32768. Varying the threshold for gephyrin binarization changes the ratio of colocalization. Scale bar, 5 μ m.

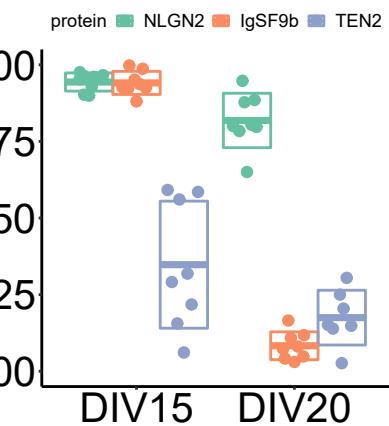

(B) Plots showing the threshold for gephyrin binarization and the colocalization ratio with bassoon. Lowering the threshold lowers the colocalization ratio because more gephyrin is detected. When the threshold is high, more than 80% of gephyrin colocalizes with bassoon.

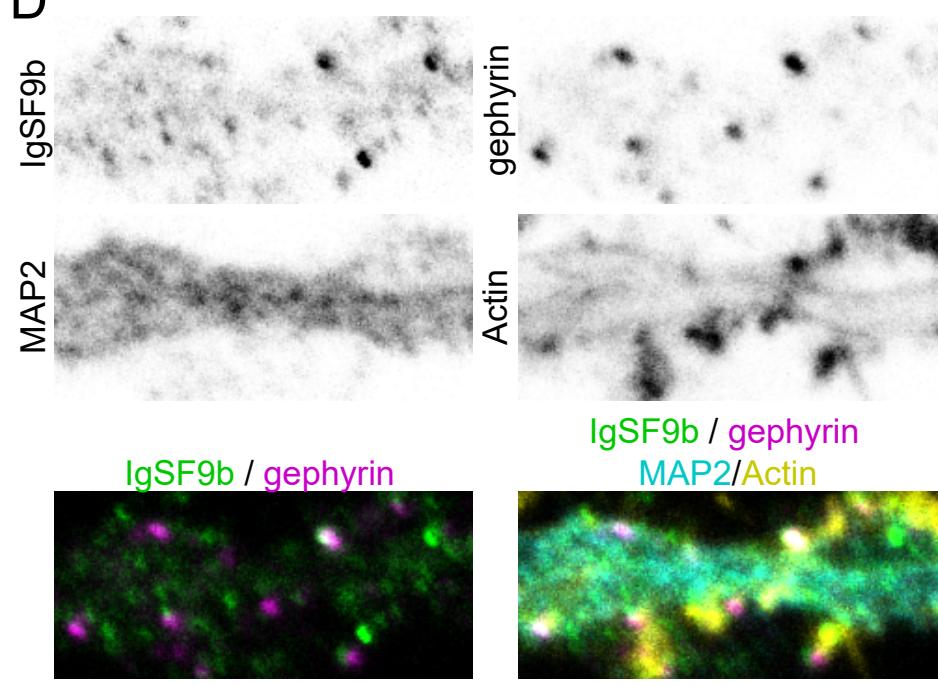
(C) Plot of gephyrin binarization threshold and number of gephyrin punctures detected. At lower thresholds, more gephyrins are detected. Increasing the threshold decreases the number of gephyrins detected, but the slope of the decrease is slower.

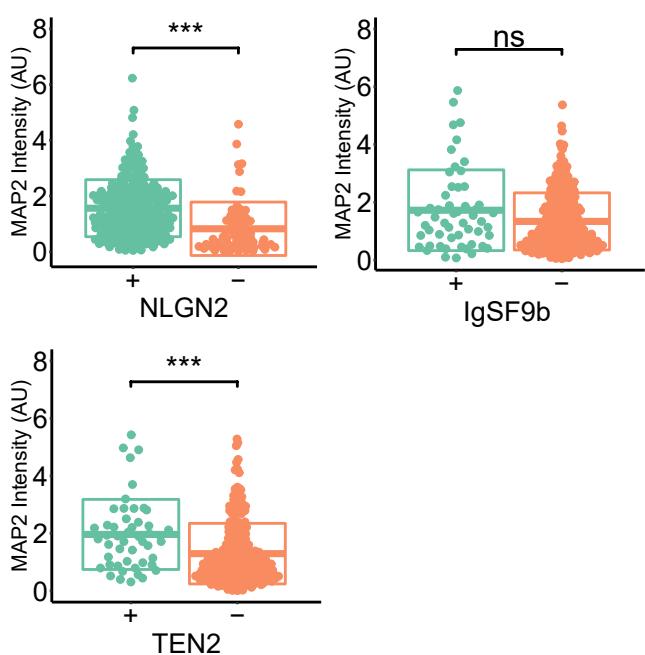
(D) ROIs (= postsynaptic regions) obtained by binarization with gephyrin threshold set to 32768 and superimposition of raw data. Human-recognizable postsynapses are detected almost as intuitively.

(E) Preliminary experiments for setting the number of clusters. Three parameters, synaptic area, MAP2 intensity, and actin intensity, were reduced to two dimensions by UMAP and then analyzed hierarchically by Ward's method. Based on the results, it was determined that it was appropriate to divide the data into three clusters.

(F) Results of cluster analysis in preliminary experiments. The number of synapses belonging to each cluster was 111, 138 and 74, observed by three independent experiments.


B synaptic cleft proteins

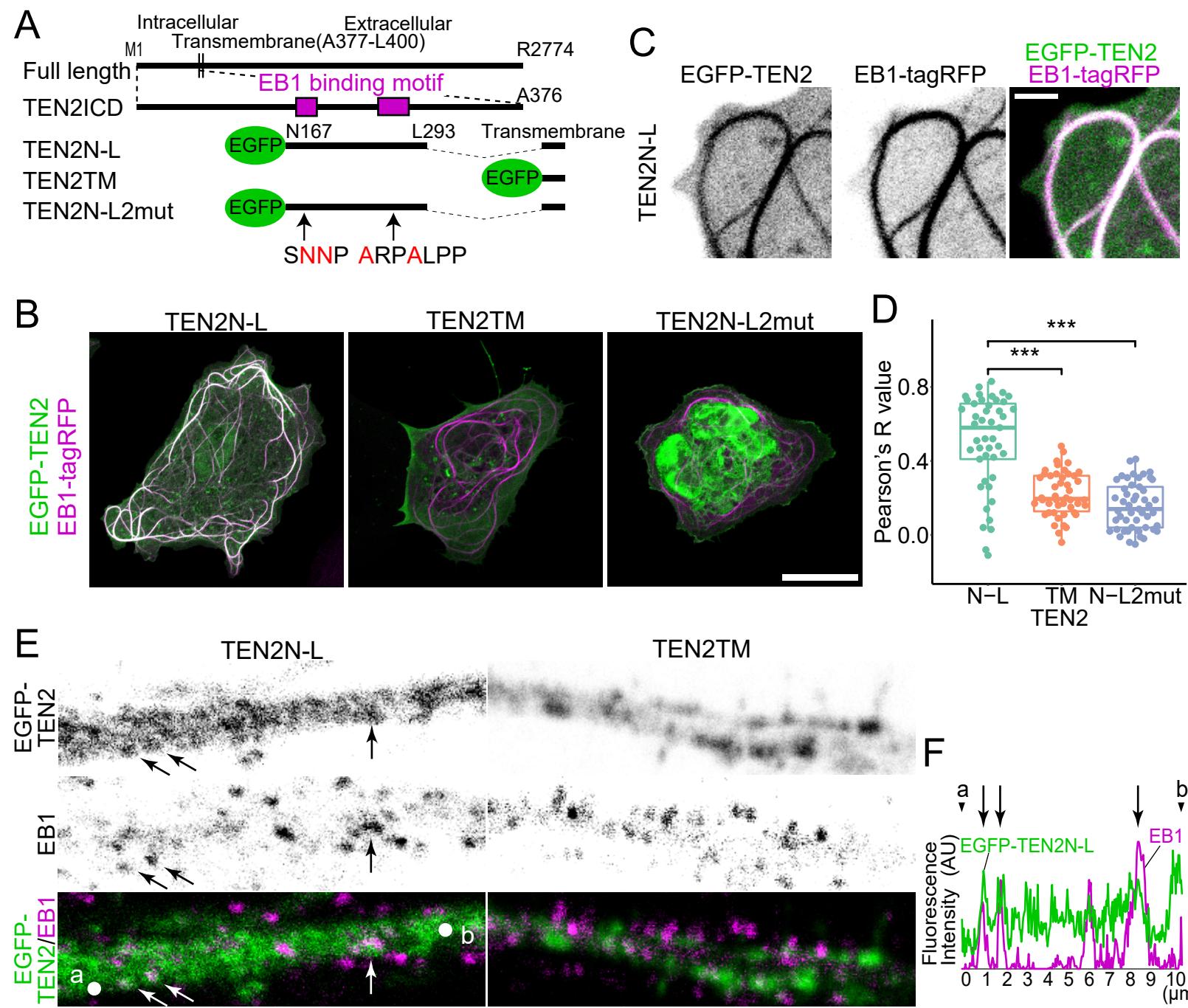

EB binding motifs:
SxΦP,
mismatch = 0
LRPPTPΦ
mismatches = 0 ~ 2


C

D

E

Figure 1–figure supplement 2. Cluster analysis of inhibitory postsynapses and correlation with TEN2


(A) Assumptions of the situation reflected by clustering. Cluster 3 belongs to a stable postsynapse anchored by gephyrin and actin. Cluster 1 belongs to a dynamic postsynapse with receptors being moved in and out by an MTs-based transport system. Cluster 2 belongs to an intermediate in which intense lateral diffusion is taking place. How the transition between clusters 1 and 2 occurs has been unclear to date.

(B) Schematic diagram of motif search. Two types of EB1 binding motifs were searched from the list of molecules obtained from the proteome analysis. Whether the searched motifs were extracellular or cytoplasmic was manually checked.

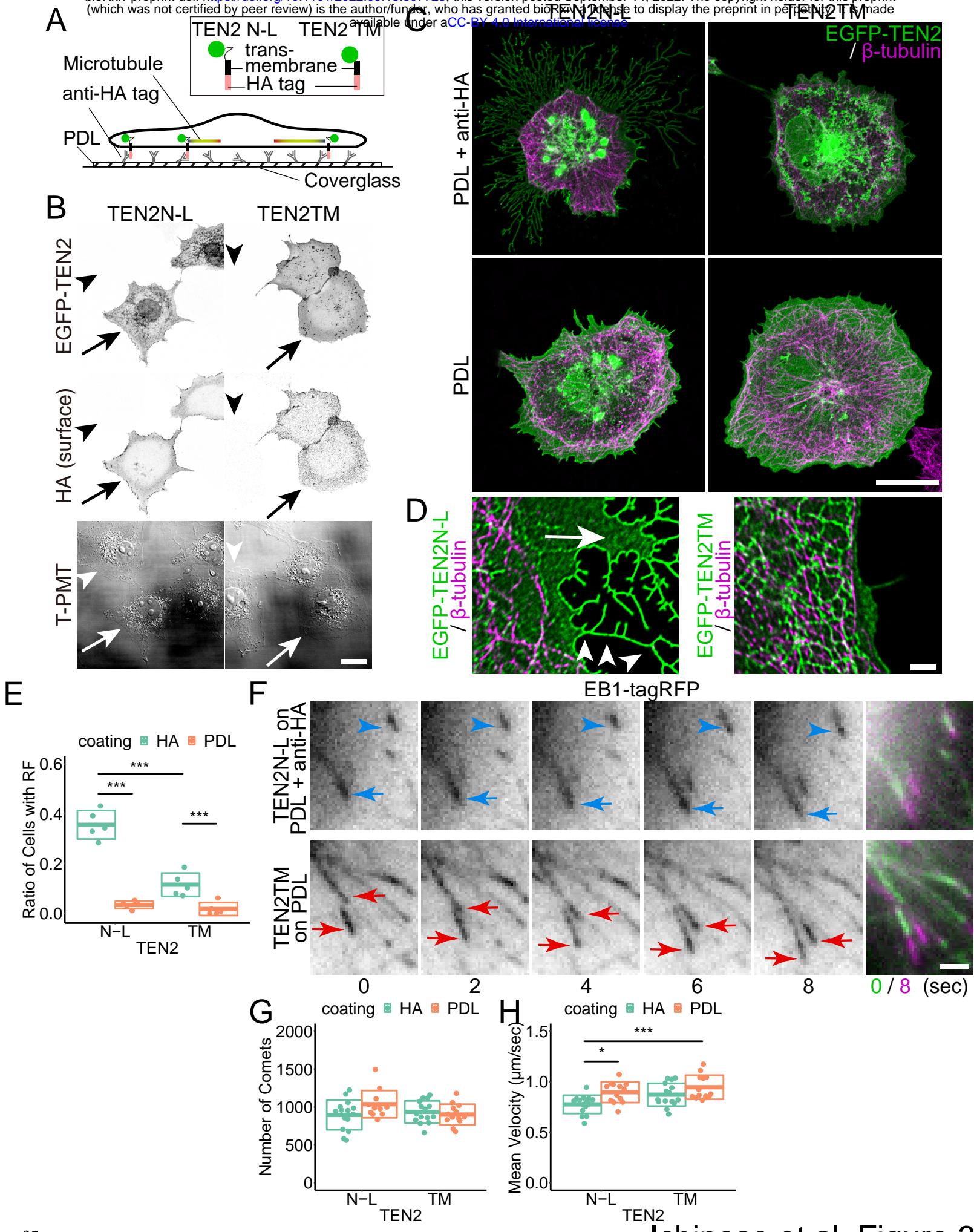
(C) Ratio of gephyrin puncta positive for each adhesion molecule. The ratio of positive for each molecule decreased in DIV20 compared to DIV15, but the decrease was particularly prominent for IgSF9b. mean \pm SD at DIV15: NLGN2, 0.94 ± 0.03 ; IgSF9b, 0.94 ± 0.04 ; TEN2, 0.34 ± 0.21 . mean \pm SD at DIV20: NLGN2, 0.82 ± 0.09 ; IgSF9b, 0.08 ± 0.05 ; TEN2, 0.17 ± 0.09 . The number of observations was 8, 8, 8, 8, 8 and 7 neurons, respectively.

(D) Images of immunofluorescence staining of IgSF9b, gephyrin, MAP2, and actin in DIV20 hippocampal cultured neuron. Scale bar, 2 μ m.

(E) Classical comparative quantification of MAP2 intensity without reflecting cluster analysis. Welch's t-test results showed a significant difference between positive and negative synapses for NLGN2 ($p = 4.08e^{-07}$) and TEN2 ($p = 6.48e^{-04}$), but not for IgSF9b ($p = 0.059$). The number of NLGN2 positive and negative synapses are 228 and 65. The number of IgSF9b positive and negative synapses are 53 and 283. The number of TEN2 positive and negative synapses are 49 and 262. *** $p < 0.001$. ns, not significant.

Figure 2. Interaction of two TEN2 motifs with MTs via EB1

(A) Overview of the truncated mutant. TEN2N-L was designed to contain the two EB1 binding motifs detected by motif search. TEN2N-L2mut has amino acid mutations in two EB1 binding motifs. All proteins have transmembrane domains with additional topogenic sequences.


(B) Co-expression of each truncated mutant with EB1 in COS-7 cells. Cells with MTs patterns of over-expression of EB1 were observed. TEN2N-L colocalized well with EB1 compared to other mutants, suggesting that TEN2 interacts with EB1. Scale bar indicates 20 μ m.

(C) Highly magnified image of COS-7 cells expressing TEN2N-L. Scale bar indicates 2 μ m.

(D) Individual plots and box plots showing the quantitative analysis results of the colocalization index between each TEN2 and EB1, based on correlation coefficients. The median Pearson's correlation coefficient between TEN2N-L and EB1 was 0.58, which was significantly different from that of TEN2TM (0.195; $p = 1.3e^{-7}$), and TEN2N-L 2mut (0.14; $p = 2.9e^{-9}$) by Pairwise comparisons using Wilcoxon rank sum test after Kruskal-Wallis rank sum test ($p = 5.0e^{-11}$). The total number of cells observed was 46, 46 and 49, respectively. *** $p < 0.001$.

(E) Neurons expressing EGFP-TEN2 fixed in methanol after detergent treatment and immunostained with EB1 and MAP2. Some colocalization of TEN2N-L and EB1 is observed in neurons expressing TEN2N-L (arrows). Note that the EB1 signal in the absence of MAP2 signal suggests that it is EB1 in the axon. Scale bar indicates 2 μ m.

(F) Line graph showing the signal intensity of EGFP-TEN2 and endogenous EB1. The horizontal axis shows the length, and the vertical axis shows the fluorescence intensity. Points indicated by letters and arrowheads represent positions of a and b in (E). The arrows also correspond to the positions indicated in (E), suggesting some colocalization of TEN2N-L and EB1.

Figure 3. Enhanced MT-trapping capability by immobilization of TEN2

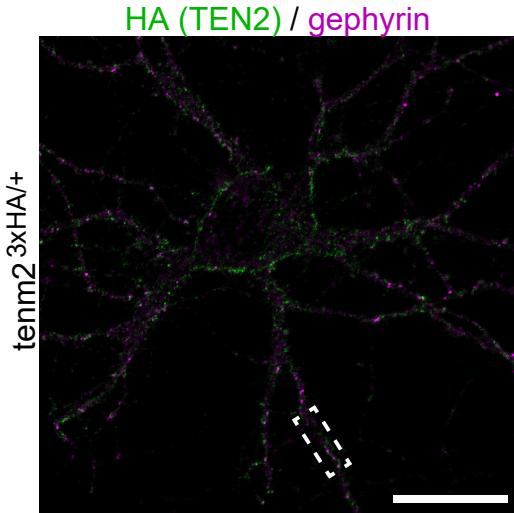
(A) All cover slips were first coated with poly-D-lysine (PDL). Coverslips coated with anti-HA tag antibody and coverslips not coated with antibody were then prepared. Each TEN2 was designed with an additional HA tag in the extracellular domain. The coated antibodies capture these HA tags, and each TEN2 is immobilized.

(B) Surface expression of the HA tag was confirmed by expressing TEN2N-L and TEN2TM in COS-7 on a cover slip coated only with PDL. EGFP-TEN2 is also observed on the nuclear membrane and intracellular vesicles, but HA tag does not stain these structures, confirming its presence on the cell membrane (arrows). In non-transfected cells (arrowheads), no EGFP and HA signals were observed, suggesting successful orientation, as outlined in (A). T-PMT shows the signal obtained by the photomultiplier for transmitted light (T-PMT) when the 488-nm laser is illuminated. Scale bar, 20 μ m.

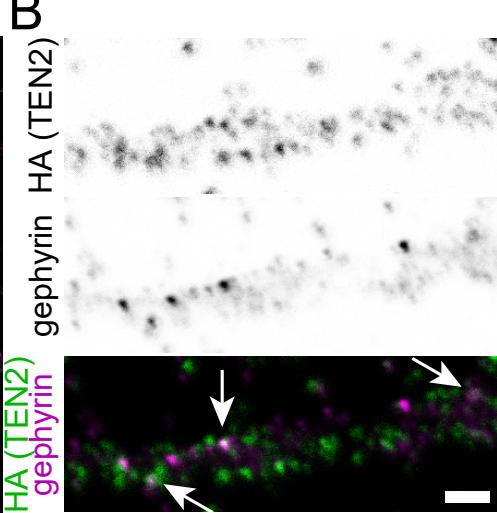
(C) Confocal microscopic image showing morphological changes of COS-7 cells expressing TEN2N-L, particularly at the cell periphery, when cultured on Anti-HA tag. Scale bar, 20 μ m.

(D) Super-resolution microscopic images (SRRF-Stream) of cell morphology changes induced by immobilized TEN2N-L. Detailed observation shows MTs-free regions at the cell periphery (arrow) and branching protrusion or retraction fiber -like structures (arrowheads). Scale bar, 20 μ m.

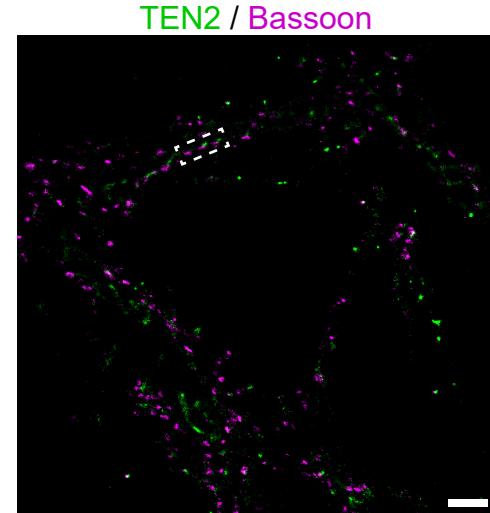
(E) Plots and crossbars (mean \pm SD) showing the results of quantitative analysis of the ratio of COS-7 showing morphological changes in each condition. Each mean \pm SD is as follows: TEN2N-L on antibody, 0.36 ± 0.057 ; TEN2N-L without antibody, 0.034 ± 0.019 ; TEN2TM on antibody, 0.11 ± 0.047 ; TEN2TM without antibody, 0.018 ± 0.026 . A two-way ANOVA showed a significant difference between TEN2 types ($p = 2.10e^{-6}$) and coating types ($p = 2.71e^{-9}$). Since there was also a significant difference in the interaction ($p = 1.07e^{-5}$), a post-hoc test using the Tukey multiple comparison was performed. $n = 5$ observations from three independent experiments. The total number of cells observed was 756, 597, 796, and 995, respectively. ** $p < 0.01$, *** $p < 0.001$.

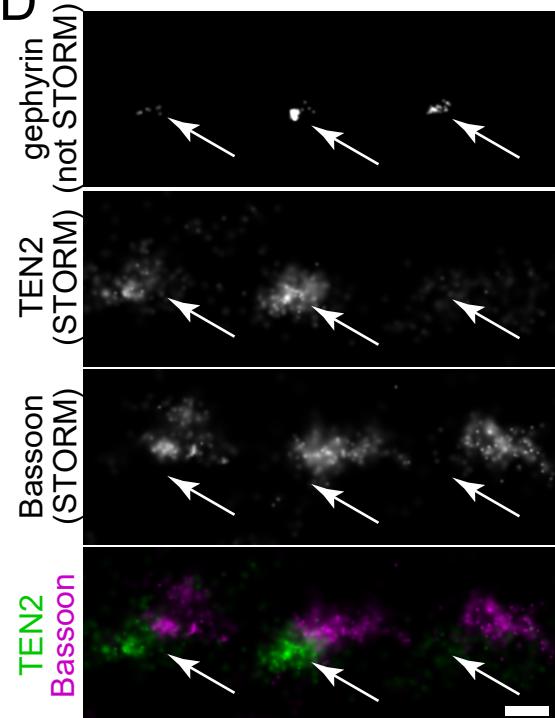

(F) Time-lapse images of EB1 comet. Cells expressing TEN2N-L immobilized by antibodies show slower (blue arrows) or almost immobile (blue arrowheads) EB1 comets, compared to those (red arrows) in cells expressing TEN2TM without immobilization. Scale bar, 2 μ m.

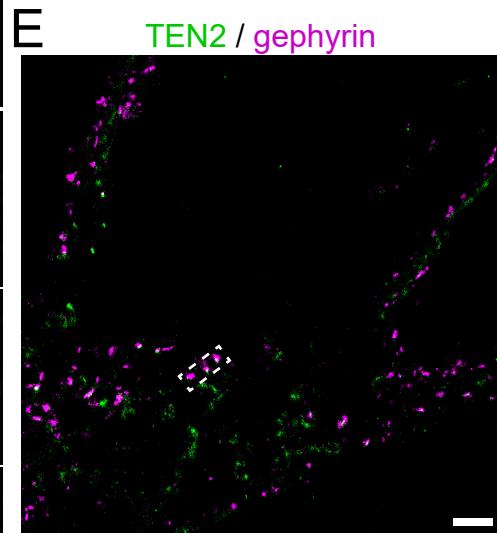
(G) The number of comets for each observation ranged from 583–1495. mean \pm SD was 895 ± 196 , 1028 ± 175 , 900 ± 137 and 935 ± 137 , respectively. There was no significant difference between TEN2 types ($p = 0.40$) and coating types ($p = 0.28$) by two-way ANOVA. $n = 14, 12, 12$ and 14 observations, respectively, from three independent experiments. n.s., not significant.

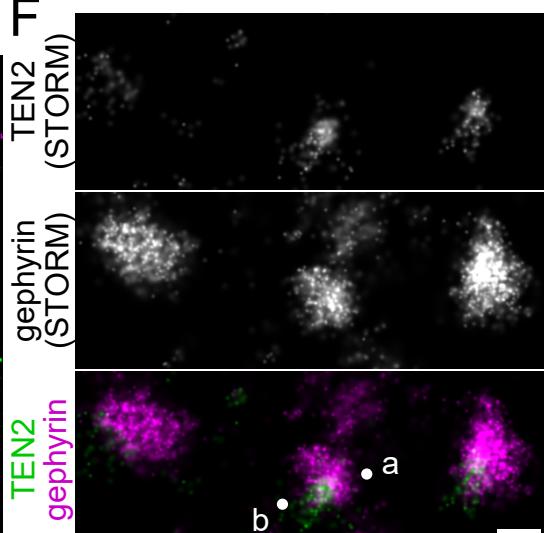

(H) The mean velocities of the detected comets. mean \pm SD was 0.78 ± 0.09 , 0.90 ± 0.10 , 0.94 ± 0.19 and 0.87 ± 0.11 (μ m/sec), respectively. A two-way ANOVA showed a significant difference

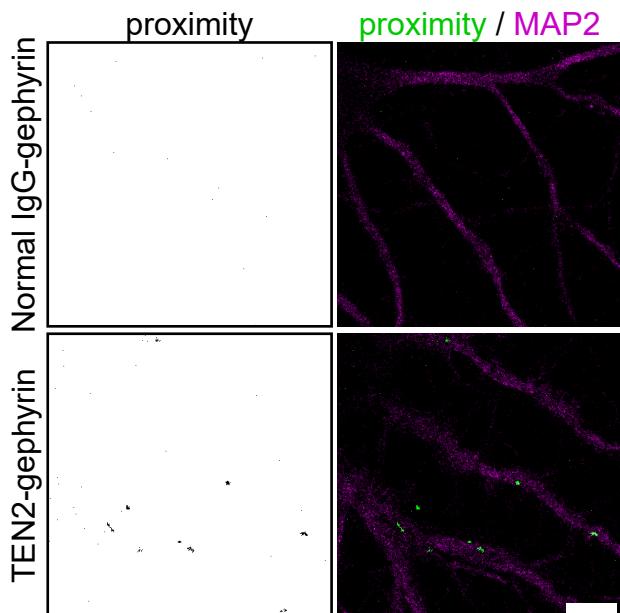
between TEN2 types ($p = 0.011$) and coating types ($p = 0.0012$). Since there was also a significant difference in the interaction ($p = 0.011$), a post-hoc test using the Tukey multiple comparison was performed ($p = 0.022$ between TEN2N-L on HA antibody and TEN2N-L on PDL; $p = 5.8 \times 10^{-5}$ between TEN2N-L on HA antibody and TEN2TM on PDL). Observation number is same as (G). * $p < 0.05$, *** $p < 0.001$.

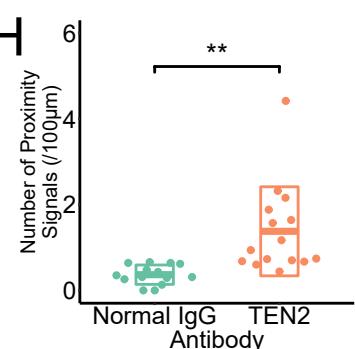

A

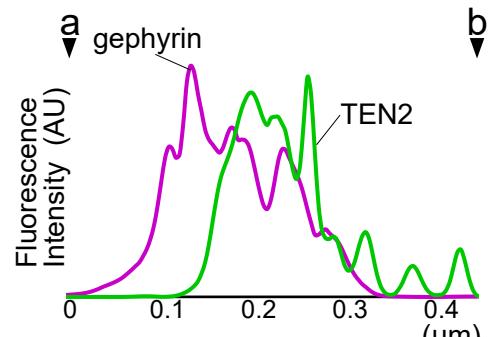

B


C


D


E


F


G

H

I

J

Figure 4. TEN2 localization at the semi-periphery region of the inhibitory postsynapse

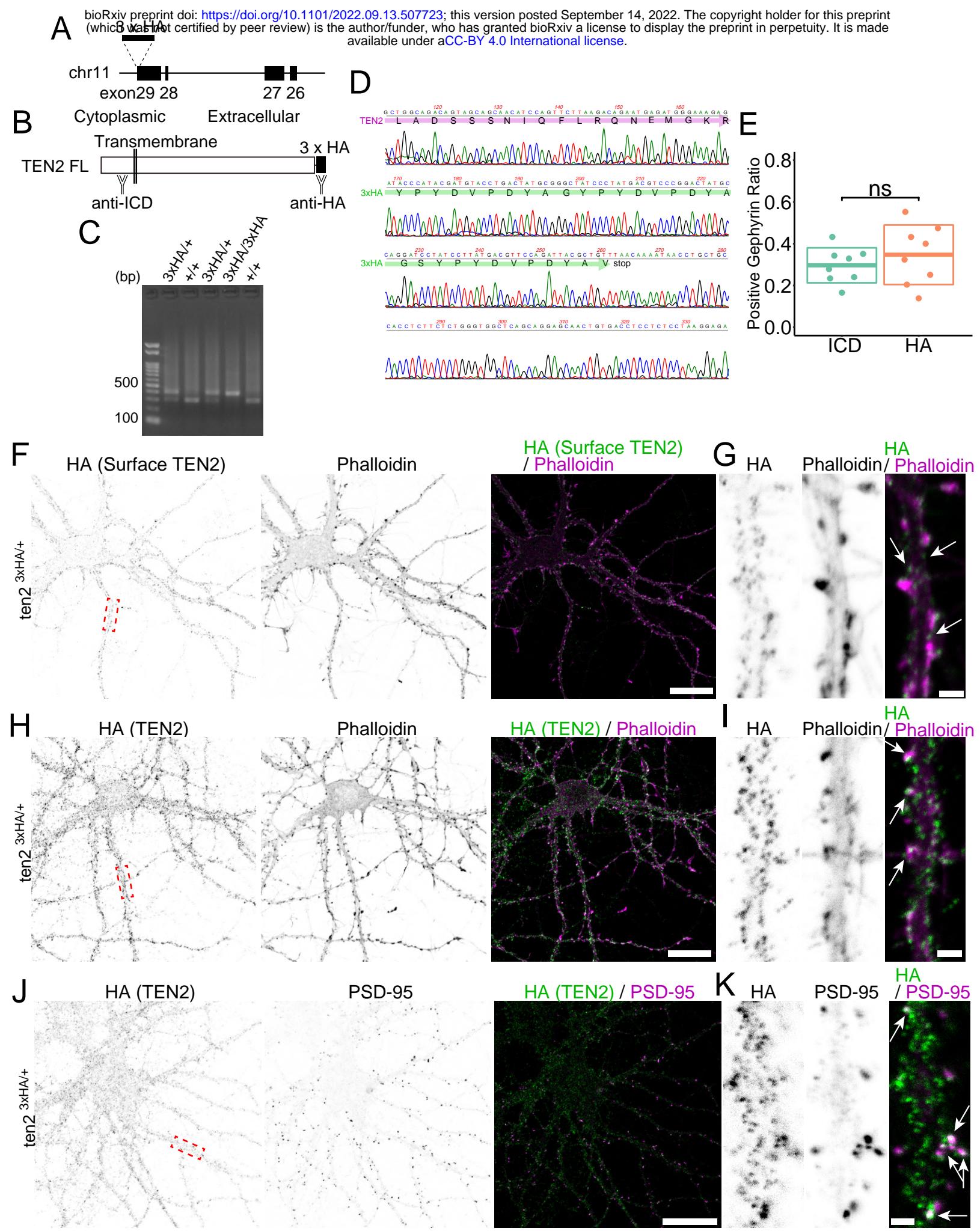
(A) Image of immunofluorescence staining of HA tag and gephyrin in knock-in neuron. The dashed box is magnified in (B). Scale bar, 50 μ m.

(B) Colocalization of gephyrin and HA tag signals was observed, suggesting that TEN2 is also localized at inhibitory synapses. Arrows represent colocalization. Scale bars indicate 2 μ m.

(C) dSTORM Images of TEN2 immunostained with anti-ICD antibody and bassoon. The dashed box is magnified in (D). Scale bar, 2 μ m.

(D) Magnified images. Colocalization of TEN2 and bassoon signals was not obvious, suggesting that TEN2 is more localized at postsynapse than presynapse. Gephyrin is labeled with AF488, but STORM images cannot be constructed under the conditions. Thus, arrows just represent that these synapses are inhibitory, not actual gephyrin position. Scale bar, 200 nm.

(E) dSTORM Images of TEN2 and gephyrin. The dashed box is magnified in (F). Scale bar, 2 μ m.


(F) Colocalization of TEN2 and gephyrin. The majority of TEN2 overlaps with gephyrin, but their centers of mass do not necessarily coincide. Scale bar, 200 nm.

(G) Images showing the results of the proximity ligation assay. When the proximity ligation assay was performed using antibodies against TEN2 and gephyrin, a signal indicating proximity of less than 20 nm could be detected. On the other hand, no signal was obtained in the negative control. Scale bar, 10 μ m.

(H) The number of proximity signals per 100 μ m. mean \pm SD was 0.37 ± 0.23 and 1.38 ± 1.04 , respectively. Welch's t-test showed a significant difference between negative control and TEN2 with respect to proximity to gephyrin ($p = 0.0021$). The number of observed neurons is 14 and 15, respectively, from three independent experiments. ** $p < 0.01$.

(I) Line graph showing the signal intensity of TEN2 and gephyrin. The horizontal axis shows the length, and the vertical axis shows the fluorescence intensity. Points indicated by letters and arrowheads represent positions of a and b in (F).

(J) Distance between the centers of mass of TEN2 and gephyrin when observed in dSTORM. The mean \pm SD was 83.3 ± 35.3 . The number of synapses observed was 33, from three independent experiments.

Figure 4—figure supplement 1. TEN2 localization at the semi-periphery region of the inhibitory postsynapse

(A) Overview of knock-in mice. TEN2 is encoded on the minus strand of chromosome 11. Knock-in mice were generated by inserting a 3xHA sequence before the stop codon in Exon29.

(B) Overview of the teneurin-2 full-length protein and antibody recognition sites. Teneurin is a type II transmembrane protein that is intracellular at its N-terminus and extracellular at its C-terminus. 3xHA, inserted just before the stop codon, is extracellular when translated.

(C) Typical genotyping results. A 300 bp band is seen in wild-type mice, while a +100 bp band is seen in knock-in mice; if both bands are seen, the mouse is heterozygous with only one allele being knock-in.

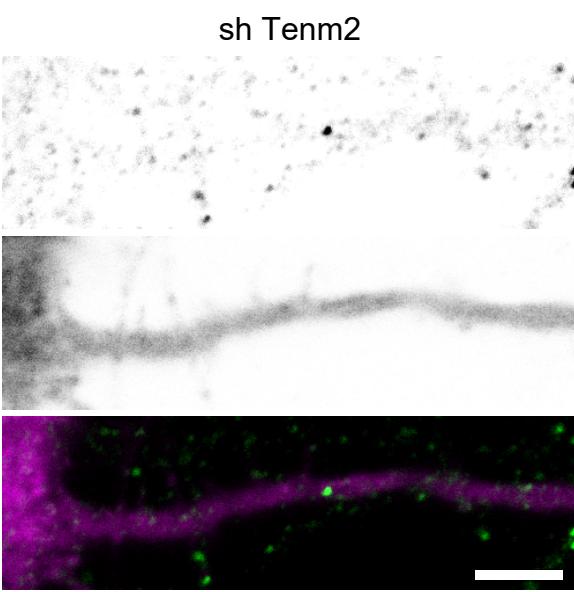
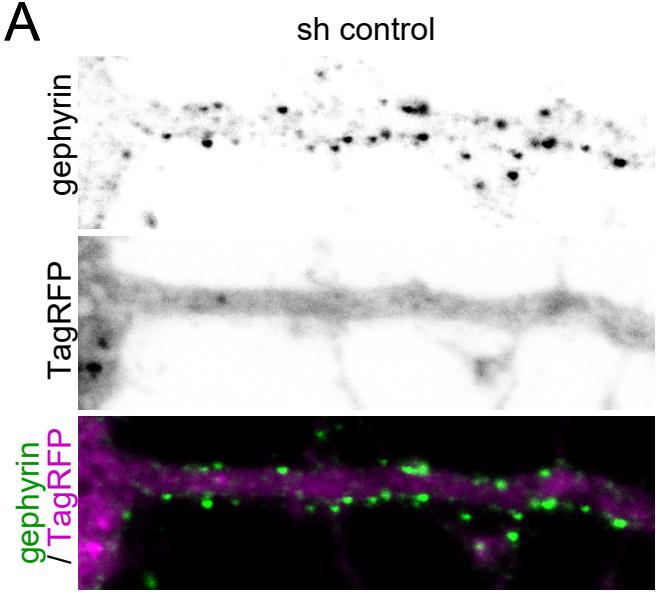
(D) Sequence confirmation by Sanger sequencing. Bands amplified by genotyping were purified and Sanger sequenced to confirm the knock-in sequence.

(E) No effect of HA knock-in on localization to inhibitory synapses. ICR-delivered wild-type neurons at DIV15 were co-stained with ICD and gephyrin antibodies, and HA knock-in neurons at DIV15 were co-stained with HA and gephyrin antibodies. mean \pm SD were 0.30 ± 0.01 and 0.34 ± 0.02 , respectively. Since there was no significant difference in the ratio of colocalization ($p = 0.40$), we concluded that HA knock-in had no effect on localization to inhibitory synapses.

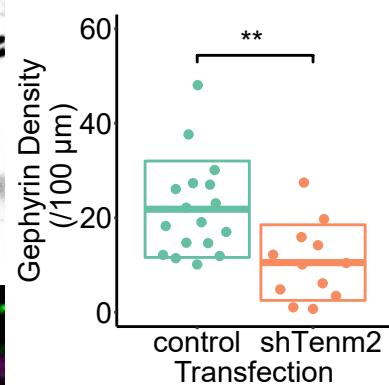
(F) Images of immunofluorescence staining of HA tag and actin exposed on the cell membrane surface in the knock-in neuron. The red dashed box is magnified in (G).

(G) Confirmation that HA tag is exposed at the plasma membrane surface, suggesting that TEN2 functions at the plasma membrane surface.

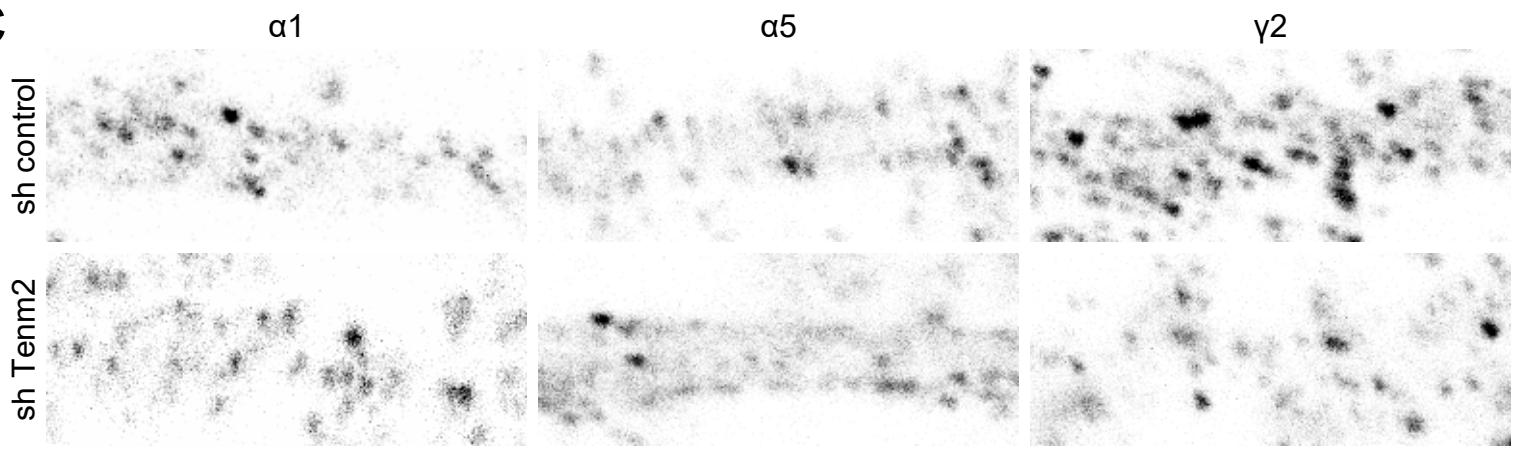
(H) Images of immunofluorescence staining of HA tag and actin in the knock-in neuron. The red dashed box is magnified in (I).

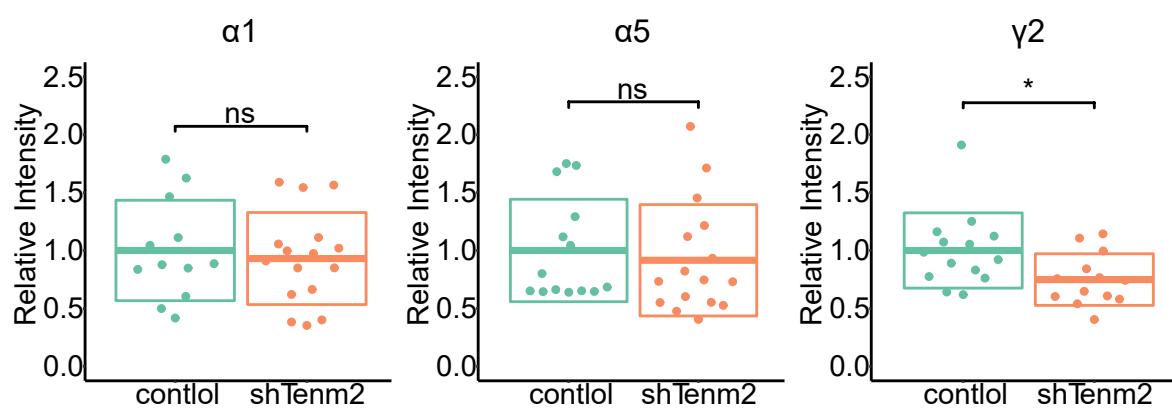


(I) HA tag signals are also present in the dendritic shaft but are particularly strong near spine-like structures, suggesting that the molecule is more abundant at excitatory synapses. Arrows, representative colocalization.

(J) Images of immunofluorescence staining of HA tag and PSD-95 in the knock-in neuron. The red dashed box is magnified in (K).


(K) The strong signal of HA tag at the site where PSD-95 is localized suggests that the molecule is abundant at excitatory synapses. Arrows, representative colocalization.

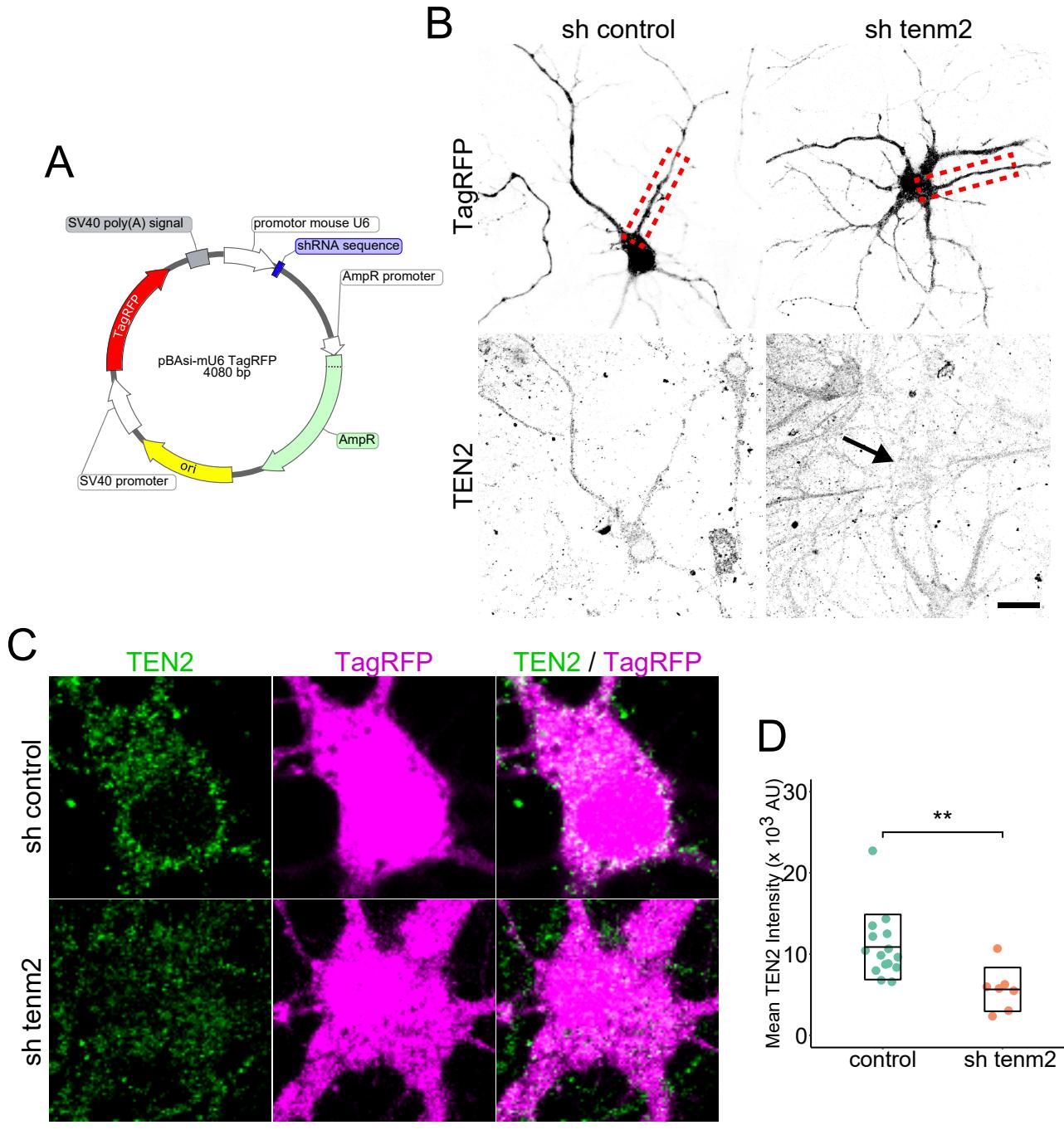
Scale bars indicate 50 μ m in (F), (H), and (J) and 2 μ m in (G), (I), and (K).


A


B

C

D


Figure 5. Inhibitory postsynapse maturation induced by postsynaptic TEN2

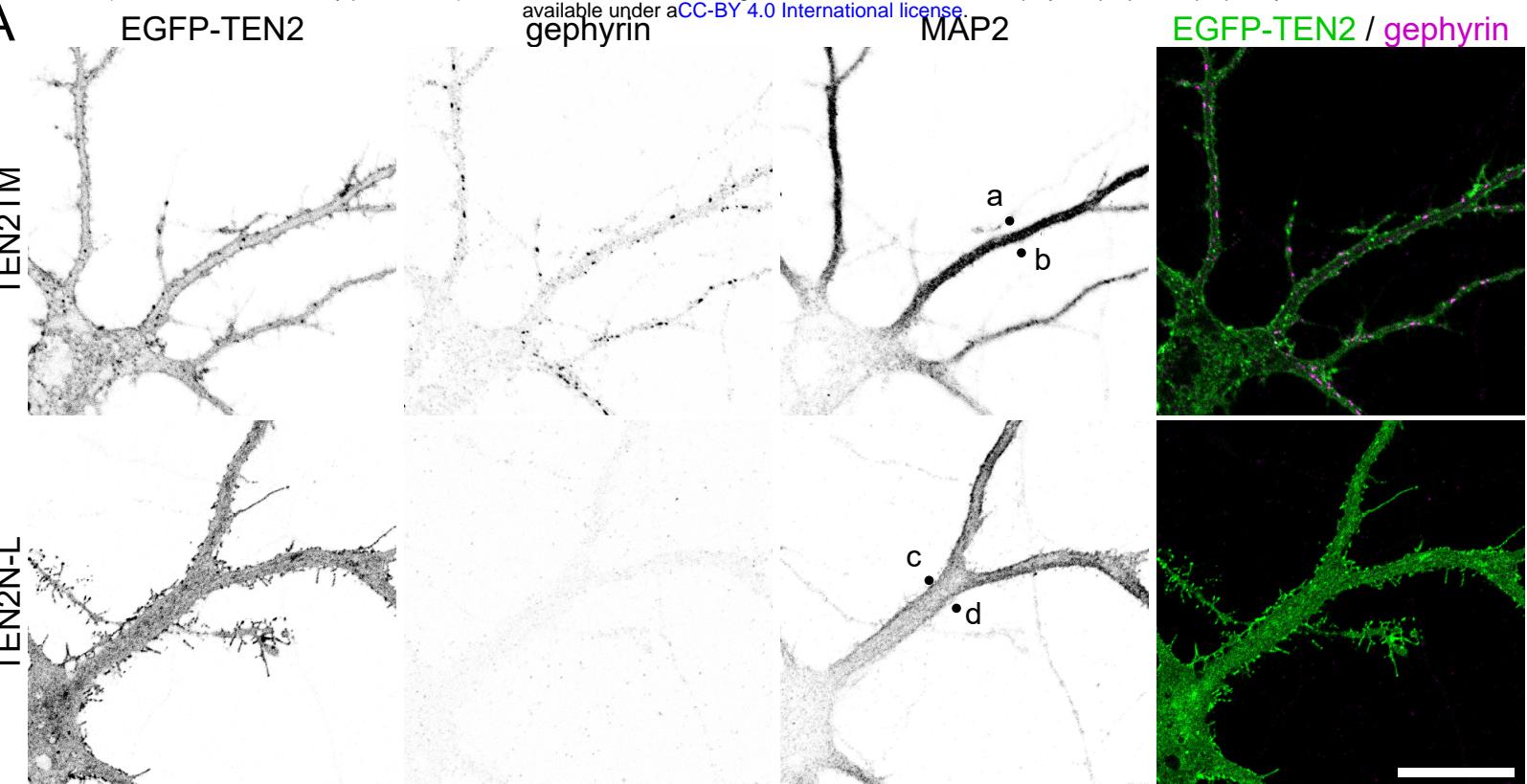
(A) Magnified images of knockdown neurons and immunofluorescence staining of gephyrin. Gephyrin accumulation was reduced in TEN2 knockdown neurons. The scale bar is 5 μ m.

(B) Plots and crossbars (mean \pm SD) quantifying the density of gephyrin puncta per 100 μ m. It was 21.8 ± 10.2 in the neurons transfected with the control vector, and 10.5 ± 8.0 in neurons transfected with TEN2 knockdown vector ($p = 0.0025$). $n = 16$ control neurons and 12 knockdown neurons, from four independent experiments. ** $p < 0.01$.

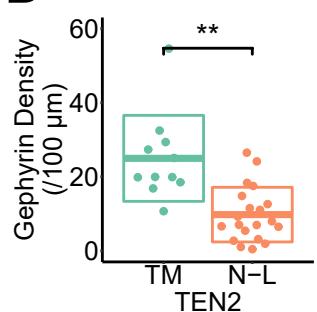
(C) Magnified images of knockdown neurons and immunofluorescence staining of GABA_A receptors subunit $\alpha 1$, $\alpha 5$ and $\gamma 2$. Of these subunits, only the $\gamma 2$ receptor is downregulated in TEN2 knockdown neurons. The scale bar is 2 μ m.

(D) Plots and cross bars (mean \pm SD) quantifying relative fluorescence intensity of GABA_A receptor subunits. The fluorescence intensities of receptors present in dendrites within 100 μ m from the cell body were quantified comparatively. mean \pm SD were 1 ± 0.43 and 0.93 ± 0.40 for $\alpha 1$, 1 ± 0.40 and 0.92 ± 0.48 for $\alpha 5$, and 1 ± 0.32 and 0.75 ± 0.22 for $\gamma 2$. Results of Welch's t-test showed that $\alpha 1$ ($p = 0.67$) and $\alpha 5$ ($p = 0.62$) were not significantly different between control and TEN2 knockdown cells, but $\gamma 2$ ($p = 0.027$) was predominantly reduced in TEN2 knockdown cells. The number of cells observed were 12, 16, 14, 16, 14, and 13, respectively from three independent experiments. * $p < 0.05$.

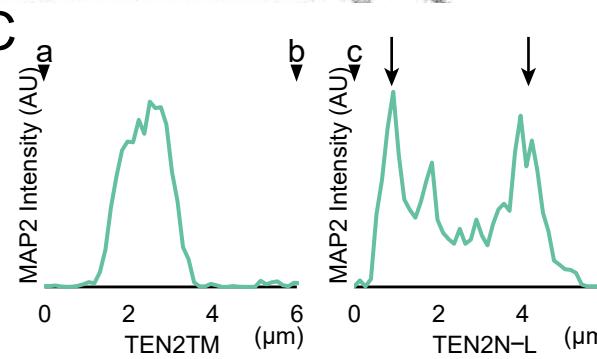
Figure 5-figure supplement 1. Inhibitory postsynapse maturation induced by postsynaptic TEN2

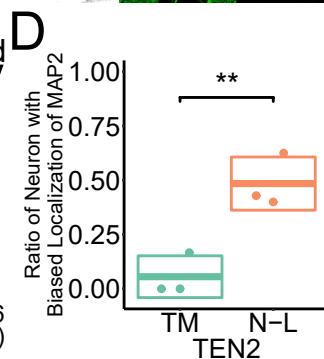

(A) Overview of the knockdown vector. The shRNA sequence and TagRFP expression gene are located downstream of the mouse U6 promoter and SV40 promoter, respectively.

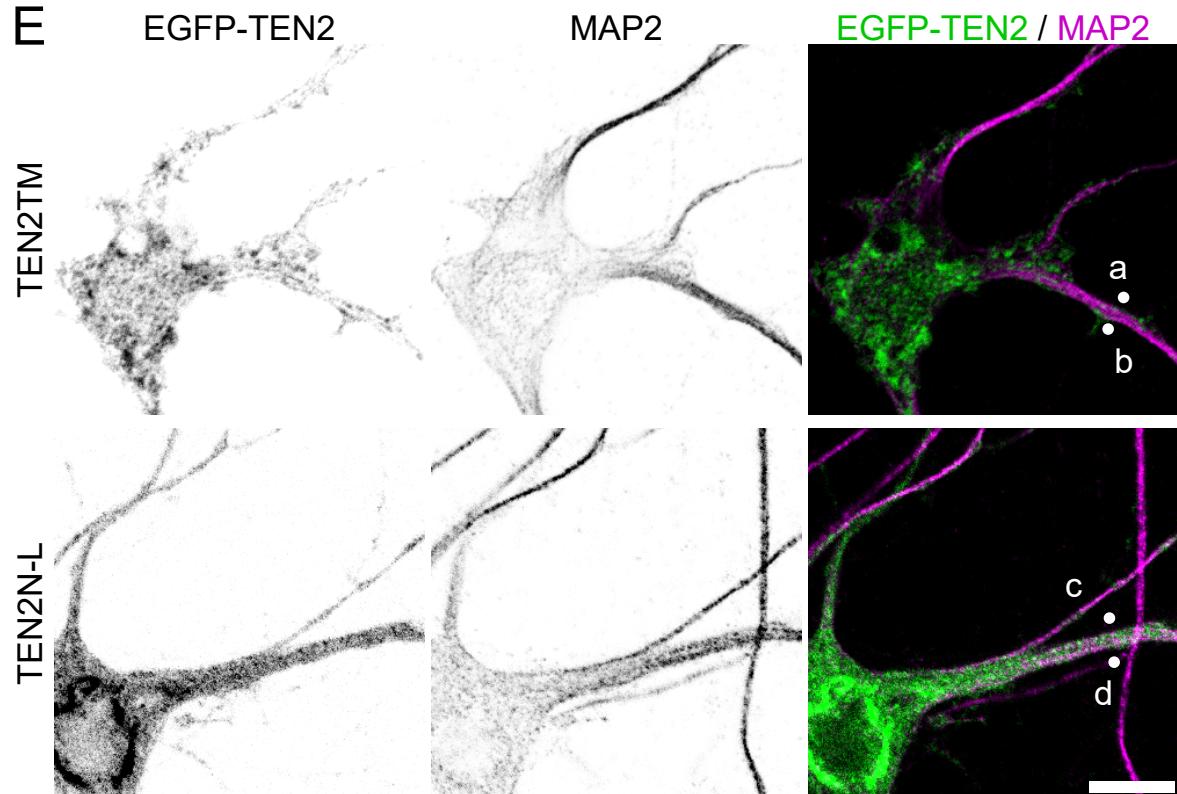
(B) Low-magnification images of knocked-down neurons and confirmation of TEN2 knockdown. The knockdown vector-transfected neurons were stained for endogenous TEN2 and gephyrin. The TEN2 signal was reduced in the TEN2 knockdown neurons compared to the surrounding or control neurons (arrows). Red dashed boxes are shown in Figure. 5A. The scale bar indicates 20 μ m.

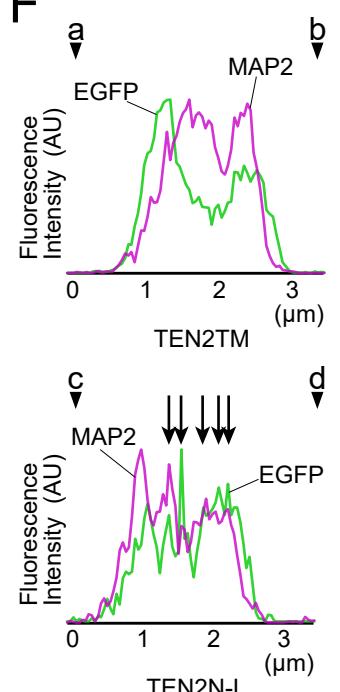

(C) High magnification images of knocked-down neurons. Neurons transfected with knockdown vector were stained with endogenous TEN2. A reduction of TEN2 signal is observed in knockdown neurons. Scale bar indicates 10 μ m.

(D) Plots and crossbars (mean \pm SD) showing quantification of TEN2 signal intensity in cells transfected with knockdown vectors. The mean signal intensity of TEN2 was $10.9 \pm 4.00 \times 10^3$ arbitrary units (AU) in neurons transfected with the control vector, and $5.65 \pm 2.70 \times 10^3$ AU in neurons transfected with TEN2 knockdown vector ($p = 0.0022$). $n = 15$ control neurons and 7 knockdown neurons, from three independent experiments. ** $p < 0.01$.


A


B


C

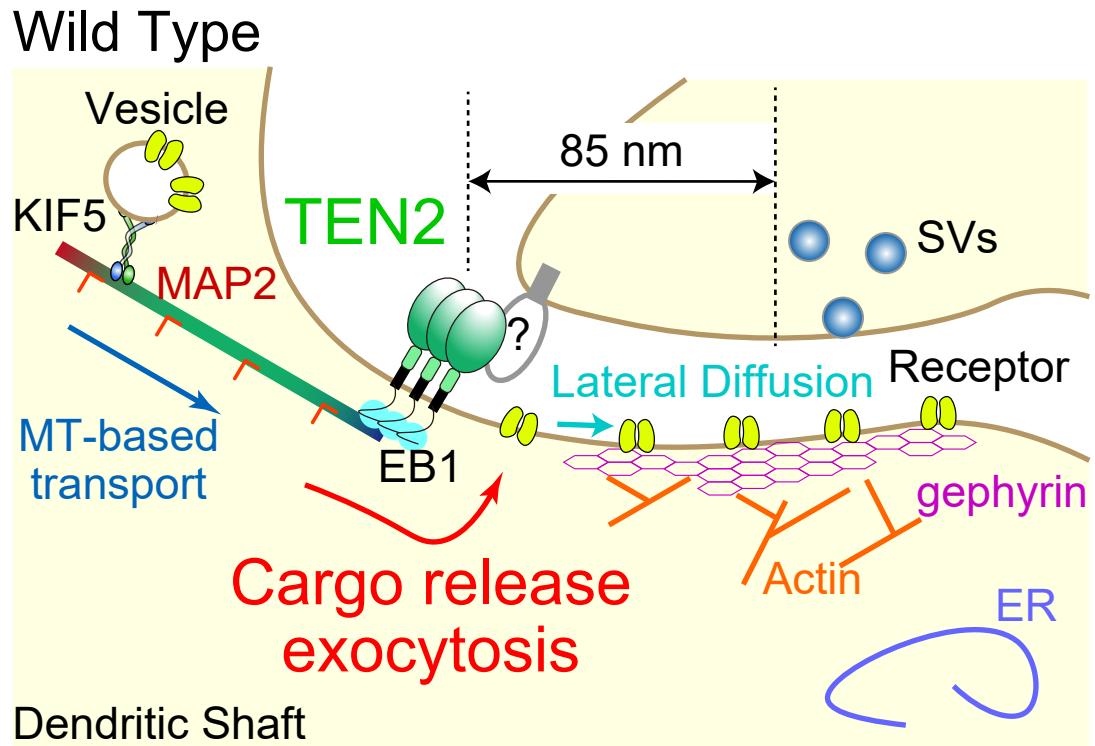

D

E

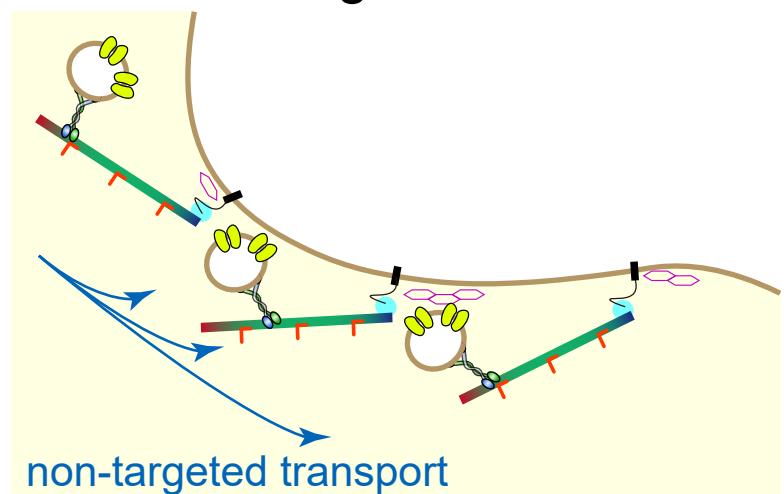
F

Figure 6. TEN2-MT interactions lead to maturation of the inhibitory synapse

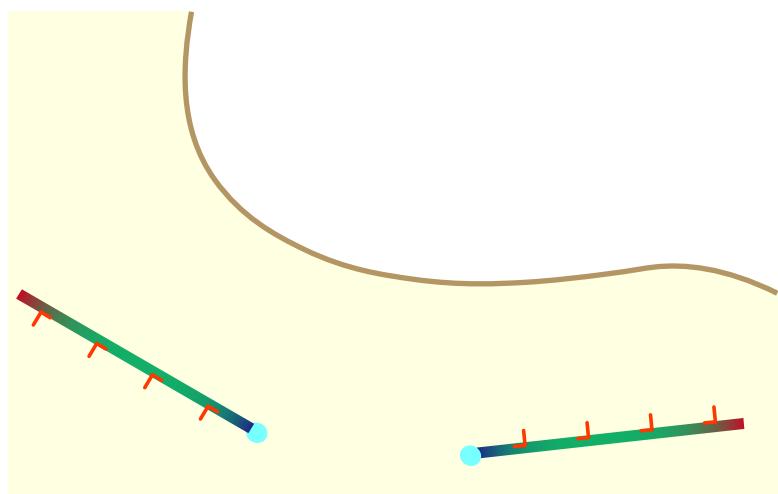
(A) Confocal imaging of gephyrin accumulation and MAP2 in neurons expressing each TEN2. Higher gephyrin accumulation was observed in control (TEN2TM) neurons, whereas it was reduced in dominant-negative TEN2N-L. In addition, biased MAP2 were observed in the TEN2N-L. Scale bar, 20 μ m.


(B) Plots and crossbars (mean \pm SD) showing densities of gephyrin puncta per 100 μ m. It was 26.2 ± 15.5 in neurons with TEN2TM and 13.3 ± 8.29 in TEN2N-L ($p = 0.0014$). $n = 11$ control neurons and 20 DN from three independent experiments. ** $p < 0.01$.

(C) Line graph showing the signal intensity of MAP2. The horizontal axis shows the length, and the vertical axis shows the fluorescence intensity. Points indicated by letters and arrowheads represent positions of a-d in (A). In control neurons, the MAP2 signal is strongly observed around the dendrite axis, suggesting that MTs are strongly bundled. In DN, on the other hand, the MAP2 peak is biased to be located just below the membrane in the direction parallel to the axis and is sparse near the axis. This suggests that DN on the membrane recruits MTs.


(D) Ratio of neurons with membrane-biased MTs. mean \pm SD were 0.056 ± 0.096 and 0.48 ± 0.12 , which were significantly different ($p = 0.01$) by Welch's t-test. Observations were based on three independent trials. ** $p < 0.01$.

(E) TEN2N-L interacting with the cytoskeleton. Living neurons were treated with detergent to remove proteins that do not interact with the cytoskeleton partially and then quickly fixed with ice-cold methanol. TEN2TM was partially eluted by detergent treatment. In comparison, TEN2N-L was eluted less and mainly colocalized with MAP2 as a dendritic MTs marker. Scale bar, 10 μ m.


(F) Line graph showing the signal intensity of EGFP-TEN2 and MAP2. The horizontal axis shows the length, and the vertical axis shows the fluorescence intensity. Points indicated by letters and arrowheads represent positions of a-d in (E). In the control neurons, MAP2 signal is inside the EGFP signal suggesting that these proteins do not colocalize. Meanwhile, in DN, the positions of the peaks of TEN2N-L and MAP2 overlap (arrows), suggesting that these proteins colocalize.

Dominant Negative

Knock Down

Figure 7. Teneurin-2 at the synapse construction site is a signpost for cargo unloading from motor proteins

Working model derived from this study. Wild-type: interaction of TEN2 with dynamic MTs provides an unloading zone for motor proteins, allowing proper transport of synapse components in the semi-peripheral region of the inhibitory postsynapse. Dominant-negative: TEN2 binding to MTs is constitutively activated throughout the dendrite; therefore, the motor protein cannot select a destination. Knockdown neurons: there is no interaction between MTs and the submembrane; hence, the motor protein cannot select a destination.

Video Legends

Figure 3–video 1. TEN2TM does not capture dynamic MTs

Time-lapse observation of EB1 comet in COS-7 cells expressing TEN2TM without immobilization as control.

Figure 3–video 2. Immobilized TEN2 captures dynamic MTs

Time-lapse observation of EB1 comet in COS-7 cells expressing TEN2N-L immobilized by antibodies. Slower or almost immobile EB1 comets are shown with arrows.

Source Data Legends

Figure 1–source data 1

4 Excel sheets containing the numerical data used to generate the figures 1E, H, I and J.

Figure 1–figure supplement 1–source data 1

2 Excel sheets containing the numerical data used to generate the figures 1–figure supplement 1B, C and F. The data used for B and C are combined in one file.

Figure 1–figure supplement 2–source data 1

2 Excel sheets containing the numerical data used to generate the figures 1–figure supplement 2C and E.

Figure 2–source data 1

2 Excel sheets containing the numerical data used to generate the figures 2D and F.

Figure 3–source data 1

3 Excel sheets containing the numerical data used to generate the figures 3E, G and H.

Figure 4–source data 1

3 Excel sheets containing the numerical data used to generate the figures 4H, I and J.

Figure 4–figure supplement 1–source data 1

Unprocessed full-size gel photograph showing genotyping of TEN2 knock-in mice and photograph showing the region used in figures 4–figure supplement 1C with dashed lines.

Figure 4–figure supplement 1–source data 2

An Excel sheet containing the numerical data used to generate the figure 4–figure supplement 1E.

Figure 5–source data 1

2 Excel sheets containing the numerical data used to generate the figures 5B and D.

Figure 5–figure supplement 1–source data 1

An Excel sheet containing the numerical data used to generate the figure 5–figure supplement 1D.

Figure 6–source data 1

4 Excel sheets containing the numerical data used to generate the figures 6B, C, D and F.

Table S1 The excitatory synaptic cleft proteins with Sx φ P motif related to Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
ACM3_RAT	518	521	4 +		pattern:Sx[ILV]P	.	E
AGRL3_RAT	556	559	4 +		pattern:Sx[ILV]P	.	E
AGRL3_RAT	1272	1275	4 +		pattern:Sx[ILV]P	.	C
ATRN_RAT	604	607	4 +		pattern:Sx[ILV]P	.	E
BRNP2_RAT	768	771	4 +		pattern:Sx[ILV]P	.	E
BRNP3_RAT	99	102	4 +		pattern:Sx[ILV]P	.	E
CADH6_RAT	470	473	4 +		pattern:Sx[ILV]P	.	E
CADH8_RAT	478	481	4 +		pattern:Sx[ILV]P	.	E
CADH8_RAT	534	537	4 +		pattern:Sx[ILV]P	.	E
CADM3_RAT	5	8	4 +		pattern:Sx[ILV]P	.	E
CADM3_RAT	318	321	4 +		pattern:Sx[ILV]P	.	E
CELR3_RAT	1920	1923	4 +		pattern:Sx[ILV]P	.	E
CELR3_RAT	2064	2067	4 +		pattern:Sx[ILV]P	.	E
CELR3_RAT	3120	3123	4 +		pattern:Sx[ILV]P	.	C
CELR3_RAT	3155	3158	4 +		pattern:Sx[ILV]P	.	C
CELR3_RAT	3304	3307	4 +		pattern:Sx[ILV]P	.	C
CNTN3_RAT	767	770	4 +		pattern:Sx[ILV]P	.	E
CNTN4_RAT	646	649	4 +		pattern:Sx[ILV]P	.	E
CNTP1_RAT	1259	1262	4 +		pattern:Sx[ILV]P	.	E
CSPG5_RAT	168	171	4 +		pattern:Sx[ILV]P	.	E
CTP5A_RAT	253	256	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	426	429	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	619	622	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	642	645	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	723	726	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	1249	1252	4 +		pattern:Sx[ILV]P	.	C
EPHB1_RAT	97	100	4 +		pattern:Sx[ILV]P	.	E
EPHB1_RAT	435	438	4 +		pattern:Sx[ILV]P	.	E
EPHB6_RAT	481	484	4 +		pattern:Sx[ILV]P	.	E
EPHB6_RAT	579	582	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	172	175	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	403	406	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	650	653	4 +		pattern:Sx[ILV]P	.	C
FLRT3_RAT	125	128	4 +		pattern:Sx[ILV]P	.	E
FLRT3_RAT	167	170	4 +		pattern:Sx[ILV]P	.	E
FLRT3_RAT	284	287	4 +		pattern:Sx[ILV]P	.	E
FLRT3_RAT	639	642	4 +		pattern:Sx[ILV]P	.	C
GABR1_RAT	752	755	4 +		pattern:Sx[ILV]P	.	E
GP158_RAT	832	835	4 +		pattern:Sx[ILV]P	.	C
GP158_RAT	1195	1198	4 +		pattern:Sx[ILV]P	.	C
GRID1_RAT	949	952	4 +		pattern:Sx[ILV]P	.	C
GRM2_RAT	483	486	4 +		pattern:Sx[ILV]P	.	E
GRM7_RAT	63	66	4 +		pattern:Sx[ILV]P	.	E
ITB1_RAT	387	390	4 +		pattern:Sx[ILV]P	.	E
LRC8A_RAT	363	366	4 +		pattern:Sx[ILV]P	.	C
LRC8A_RAT	436	439	4 +		pattern:Sx[ILV]P	.	C
LRC8A_RAT	556	559	4 +		pattern:Sx[ILV]P	.	C
LRC8A_RAT	792	795	4 +		pattern:Sx[ILV]P	.	C
LRFN2_RAT	709	712	4 +		pattern:Sx[ILV]P	.	C

LRFN4_RAT	498	501	4 +	pattern:Sx[ILV]P	.	E
bioRxiv preprint doi: https://doi.org/10.1101/2022.09.13.507723 ; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.						
LRRC4_RAT	278	281	4 +	pattern:Sx[ILV]P	.	E
MDGA1_RAT	422	425	4 +	pattern:Sx[ILV]P	.	E
NCAM1_RAT	143	146	4 +	pattern:Sx[ILV]P	.	E
NEGR1_RAT	24	27	4 +	pattern:Sx[ILV]P	.	E
NMDE2_RAT	63	66	4 +	pattern:Sx[ILV]P	.	E
NMDE2_RAT	312	315	4 +	pattern:Sx[ILV]P	.	E
NMDE2_RAT	1353	1356	4 +	pattern:Sx[ILV]P	.	C
NOTC2_RAT	1323	1326	4 +	pattern:Sx[ILV]P	.	E
NPTXR_RAT	71	74	4 +	pattern:Sx[ILV]P	.	E
NPTXR_RAT	158	161	4 +	pattern:Sx[ILV]P	.	E
NRX2A_RAT	875	878	4 +	pattern:Sx[ILV]P	.	E
NRX2A_RAT	1053	1056	4 +	pattern:Sx[ILV]P	.	E
NRX2A_RAT	1506	1509	4 +	pattern:Sx[ILV]P	.	E
OPCM_RAT	247	250	4 +	pattern:Sx[ILV]P	.	E
PCD16_RAT	773	776	4 +	pattern:Sx[ILV]P	.	E
PCD16_RAT	2577	2580	4 +	pattern:Sx[ILV]P	.	E
PCDH8_RAT	399	402	4 +	pattern:Sx[ILV]P	.	E
PCDH8_RAT	716	719	4 +	pattern:Sx[ILV]P	.	E
PTPRS_RAT	235	238	4 +	pattern:Sx[ILV]P	.	E
PTPRS_RAT	1189	1192	4 +	pattern:Sx[ILV]P	.	E
Q2IBC7_RAT	1368	1371	4 +	pattern:Sx[ILV]P	.	C
Q68HB6_RAT	1000	1003	4 +	pattern:Sx[ILV]P	.	C
R4RL2_RAT	52	55	4 +	pattern:Sx[ILV]P	.	E
R4RL2_RAT	144	147	4 +	pattern:Sx[ILV]P	.	E
RTN4R_RAT	70	73	4 +	pattern:Sx[ILV]P	.	E
RTN4R_RAT	239	242	4 +	pattern:Sx[ILV]P	.	E
RTN4R_RAT	283	286	4 +	pattern:Sx[ILV]P	.	E
TEN2_RAT	178	181	4 +	pattern:Sx[ILV]P	.	C
TEN2_RAT	309	312	4 +	pattern:Sx[ILV]P	.	C
TEN2_RAT	1090	1093	4 +	pattern:Sx[ILV]P	.	E
TPBG_RAT	36	39	4 +	pattern:Sx[ILV]P	.	E
VLDLR_RAT	204	207	4 +	pattern:Sx[ILV]P	.	E

Table S2 The inhibitory synaptic cleft proteins with Sx φ P motif related to Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
CNTP1_RAT	1259	1262	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	426	429	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	619	622	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	642	645	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	723	726	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	1249	1252	4 +		pattern:Sx[ILV]P	.	C
EPHB6_RAT	481	484	4 +		pattern:Sx[ILV]P	.	E
EPHB6_RAT	579	582	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	172	175	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	403	406	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	650	653	4 +		pattern:Sx[ILV]P	.	C
GABR1_RAT	752	755	4 +		pattern:Sx[ILV]P	.	E
GBRA1_RAT	347	350	4 +		pattern:Sx[ILV]P	.	C
GBRB1_RAT	100	103	4 +		pattern:Sx[ILV]P	.	E
MDGA2_RAT	438	441	4 +		pattern:Sx[ILV]P	.	E
NLGN2_RAT	721	724	4 +		pattern:Sx[ILV]P	.	C
NOTC1_RAT	1642	1645	4 +		pattern:Sx[ILV]P	.	E
NOTC1_RAT	2222	2225	4 +		pattern:Sx[ILV]P	.	C
NOTC1_RAT	2264	2267	4 +		pattern:Sx[ILV]P	.	C
NOTC1_RAT	2424	2427	4 +		pattern:Sx[ILV]P	.	C
NOTC1_RAT	2446	2449	4 +		pattern:Sx[ILV]P	.	C
NRX2A_RAT	875	878	4 +		pattern:Sx[ILV]P	.	E
NRX2A_RAT	1053	1056	4 +		pattern:Sx[ILV]P	.	E
NRX2A_RAT	1506	1509	4 +		pattern:Sx[ILV]P	.	E
NRX3A_RAT	829	832	4 +		pattern:Sx[ILV]P	.	E
NRX3A_RAT	1007	1010	4 +		pattern:Sx[ILV]P	.	E
TEN2_RAT	178	181	4 +		pattern:Sx[ILV]P	.	C
TEN2_RAT	309	312	4 +		pattern:Sx[ILV]P	.	C
TEN2_RAT	1090	1093	4 +		pattern:Sx[ILV]P	.	E
TUTLB_RAT	633	636	4 +		pattern:Sx[ILV]P	.	E
TUTLB_RAT	921	924	4 +		pattern:Sx[ILV]P	.	C
TUTLB_RAT	1023	1026	4 +		pattern:Sx[ILV]P	.	C

Table S3 The excitatory and inhibitory common synaptic cleft proteins with Sx ϕ P motif

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
CNTP1_RAT	1259	1262	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	426	429	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	619	622	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	642	645	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	723	726	4 +		pattern:Sx[ILV]P	.	E
DCC_RAT	1249	1252	4 +		pattern:Sx[ILV]P	.	C
EPHB6_RAT	481	484	4 +		pattern:Sx[ILV]P	.	E
EPHB6_RAT	579	582	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	172	175	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	403	406	4 +		pattern:Sx[ILV]P	.	E
FLRT2_RAT	650	653	4 +		pattern:Sx[ILV]P	.	C
GABR1_RAT	752	755	4 +		pattern:Sx[ILV]P	.	E
NRX2A_RAT	875	878	4 +		pattern:Sx[ILV]P	.	E
NRX2A_RAT	1053	1056	4 +		pattern:Sx[ILV]P	.	E
NRX2A_RAT	1506	1509	4 +		pattern:Sx[ILV]P	.	E
TEN2_RAT	178	181	4 +		pattern:Sx[ILV]P	.	C
TEN2_RAT	309	312	4 +		pattern:Sx[ILV]P	.	C
TEN2_RAT	1090	1093	4 +		pattern:Sx[ILV]P	.	E

Table S4 The excitatory synaptic cleft proteins with LxxPTP ϕ motif related to Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
CNTN3_RAT	208	214	5 +		pattern:LRPPTP[ILV]		2 E
CNTN4_RAT	206	212	6 +		pattern:LRPPTP[ILV]		1 E
CNTN5_RAT	281	287	6 +		pattern:LRPPTP[ILV]		1 E
CNTN6_RAT	208	214	5 +		pattern:LRPPTP[ILV]		2 E
MDGA1_RAT	581	587	5 +		pattern:LRPPTP[ILV]		2 E
NOE1_RAT	161	167	5 +		pattern:LRPPTP[ILV]		2 E
NRCAM_RAT	265	271	5 +		pattern:LRPPTP[ILV]		2 E
TEN2_RAT	248	254	5 +		pattern:LRPPTP[ILV]		2 C

Table S5 The inhibitory synaptic cleft proteins with LxxPTP ϕ motif related to Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
TEN2_RAT	248	254	5 +		pattern:LRPPTP[ILV]		2 C

Table S6 The excitatory and inhibitory common synaptic cleft proteins with

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SeqName	Start	End	Score	Strand	Pattern	Mismatch	Position (E: Extracellular, C: Cytoplasmic)
TEN2_RAT	248	254	5 +		pattern:LRPPTP[ILV]	2	C

Table S7 Antibody List Related to Materials and Methods

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507723>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Antibody	Source	Identifier
anti-TEN2 Cytoplasmic	This study	N/A
anti-EB1 (5/EB1)	BD Biosciences	Cat# 610534, RRID:AB_397891
GABRA1 antibody	Proteintech	Cat# 12410-1-AP, RRID:AB_2108692
Anti-GABA-A receptor alpha5	Synaptic Systems	Cat# 224 503, RRID:AB_2619944
Anti-GABA-A receptor gamma2	Synaptic Systems	Cat# 224 003, RRID:AB_2263066
anti- gephyrin (mAb7a)	Synaptic Systems	Cat# 147011, RRID:AB_887717
Anti-Bassoon	Synaptic Systems	Cat# 141 016, RRID:AB_2661779
Anti-Neuroligin 2	Synaptic Systems	Cat# 129 203, RRID:AB_993014
anti-PSD95 (7E3)	Cell Signaling Technology	Cat# 36233, RRID:AB_2721262
anti-HA-tag (C29F4)	Cell Signaling Technology	Cat# 3724, RRID:AB_1549585
Anti-IGSF9B	Merck	Cat# HPA010802, RRID:AB_1079194
anti- α tubulin (DM1A)	Merck	Cat# T9026, RRID:AB_477593
anti- β tubulin (TUJ1)	Covance	Cat# MMS-435P, RRID:AB_2313773
anti-MAP2	Novus	Cat# NB300-213, RRID:AB_2138178
Donkey Anti-Mouse IgG (H+L), Alexa Fluor 488	Jackson ImmunoResearch Labs	Cat# 715-546-151, RRID:AB_2340850
Donkey Anti-Mouse IgG (H+L), Rhodamine Red-X	Jackson ImmunoResearch Labs	Cat# 715-296-151, RRID:AB_2340835
Donkey Anti-Rabbit IgG (H+L), DyLight 405	Jackson ImmunoResearch Labs	Cat# 711-475-152, RRID:AB_2340616
Donkey Anti-Rabbit IgG (H+L), Alexa Fluor 488	Jackson ImmunoResearch Labs	Cat# 711-546-152, RRID:AB_2340619
Donkey Anti-Rabbit IgG (H+L), CF568	Biotium	Cat# 20098-1, RRID:AB_10853318
Donkey Anti-Chicken IgY (IgG) (H+L), Alexa Fluor 647	Jackson ImmunoResearch Labs	Cat# 703-605-155, RRID:AB_2340379