

1 **Multiomic Approach Characterises the Neuroprotective Role of Retromer in**
2 **Regulating Lysosomal Health.**

3

4 James L. Daly^{1,†,‡}, Chris M. Danson^{1,†}, Philip A. Lewis², Sara Riccardo^{3,4}, Lucio Di
5 Filippo^{3,4}, Davide Cacchiarelli^{3,5}, Stephen J. Cross⁶, Kate J. Heesom², Andrea
6 Ballabio^{3,5,7}, James R. Edgar⁸, Peter J. Cullen^{1,‡}.

7 ¹School of Biochemistry, Biomedical Sciences Building, University Walk, University of
8 Bristol, BS8 1TD, U.K.

9 ²Bristol Proteomics Facility, School of Biochemistry, Biomedical Sciences Building,
10 University Walk, University of Bristol, BS8 1TD, U.K.

11 ³Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of
12 Integrative Genomics, Pozzuoli, Italy.

13 ⁴Next Generation Diagnostic srl, Pozzuoli, Italy

14 ⁵Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
15 School for Advanced Studies,

16 ⁶Wolfson Bioimaging Facility, Faculty of Biomedical Sciences, University of Bristol,
17 Bristol, U.K.

18 ⁷Department of Molecular and Human Genetics and Neurological Research Institute,
19 Baylor College of Medicine, Houston, TX, U.S.A.

20 ⁸Department of Pathology, Cambridge University, Tennis Court Road, Cambridge,
21 U.K.

22 [†]Contributed equally to this study

23 [‡]Joint corresponding authors

24 ABSTRACT

25 Retromer controls cellular homeostasis through regulating integral membrane protein
26 sorting and transport and by controlling late-stage maturation of the endo-lysosomal
27 network. Retromer dysfunction, which is linked to neurodegenerative disorders
28 including Parkinson's and Alzheimer's diseases, manifests in complex cellular
29 phenotypes, though the precise nature of this dysfunction, and its relation to
30 neurodegeneration, remain unclear. Here, we perform the first integrated multiomics
31 approach to provide precise insight into the impact of Retromer dysfunction on endo-
32 lysosomal health and homeostasis within a human neuroglioma cell model. We
33 quantify profound changes to the lysosomal proteome, indicative of broad lysosomal
34 dysfunction and inefficient autophagic lysosome reformation, coupled with a
35 reconfigured cell surface proteome and secretome reflective of increased lysosomal
36 exocytosis. Through this global proteomic approach and parallel transcriptomic
37 analysis, we provide an unprecedented integrated view of Retromer function in
38 regulating lysosomal homeostasis and emphasise its role in neuroprotection.

39 INTRODUCTION

40 Due to the vast numbers of integral membrane proteins (and their associated proteins
41 and lipids) that require efficient and timely transport through the endo-lysosomal
42 network, the cellular consequences of network dysfunction are widespread.
43 Commonly linked to neurodegenerative diseases through highly complex phenotypes,
44 network dysfunction includes impaired synaptic transmission, accelerated secretion,
45 and reduced lysosomal catabolism associated with the accumulation of damaged
46 organelles and abnormal intracellular protein aggregates.

47 Retromer is a multiprotein complex that couples with accessory proteins to regulate
48 the sequence-dependent sorting of hundreds of integral membrane proteins through
49 the endo-lysosomal network, protecting them from lysosomal degradation^{1,2}.
50 Moreover, Retromer plays a key role in regulating Rab7 nucleotide cycling³⁻⁵.
51 Retromer deficiency has been observed in Alzheimer's disease patient brain samples,
52 where its depletion or dysfunction can trigger or accelerate amyloid- β (A β) and Tau
53 pathologies⁶⁻¹⁰. Subtle Retromer dysfunction is also associated with disease-causing
54 mutations in Parkinson's disease¹¹⁻¹⁶ and selective deletion of a key Retromer gene
55 in neurons causes an amyotrophic lateral sclerosis-like phenotype in mice¹⁷.

56 It is imperative to understand the global cellular consequences of Retromer depletion
57 and/or dysfunction to fully appreciate and contextualise the increasing interest in
58 Retromer as a potential therapeutic target for these diseases. Here, by employing an
59 integrated proteomic approach, we provide an unprecedented view of the impact of
60 Retromer dysfunction on endolysosomal homeostasis and health.

61

62 RESULTS

63 **Retromer Depletion Induces Severe Morphological Changes to the Endo-** 64 **lysosomal Network**

65 We generated clonal knockout (KO) H4 neuroglioma cell lines targeting the core
66 VPS35 component of Retromer, and rescued these lines through stable re-expression
67 of functional VPS35-GFP (**Extended Data Fig. 1A**)¹⁸. VPS35 depletion in H4 cells
68 induced profound morphological changes to the endo-lysosomal network, far greater
69 than observed in corresponding VPS35 KO HeLa cells (**Figs. 1A-B, Extended Data**
70 **Fig. 1B**). In VPS35 KO H4 cells, transmission electron microscopy (TEM) revealed
71 dramatically enlarged hybrid endo-lysosomal compartments, up to 10 μ m in diameter,
72 loaded with undigested membranous intraluminal material (**Fig. 1C**). These structures
73 are reminiscent of those observed in Alzheimer's, Parkinson's and Lewy Body disease
74 patients¹⁹⁻²¹. BSA-gold uptake assays unambiguously defined the enlarged hybrid
75 compartments as endocytic in nature (**Extended Data Figs. 1C-D**). The pool of small,
76 dense-core lysosomes observed in wild-type cells was depleted in VPS35 KO cells,
77 suggesting that the swollen VPS35 KO compartments arrive from endosome-
78 lysosome fusion events, followed by subsequent failure to clear the luminal content
79 and reform lysosomes from the hybrid compartment. Importantly, VPS35-GFP re-
80 expression facilitated the clearance of this accumulated material to rescue endo-
81 lysosomal morphology and the population of dense-core lysosomes (**Fig. 1C**).
82 Epidermal growth factor (EGF) uptake assays confirmed that aberrant VPS35 KO
83 lysosomes exhibited a limited degradative capacity (**Extended Data Figs. 1E-G**).

84

85 **LysolP Proteomics Reveals a Fingerprint of Lysosomal Dysfunction in VPS35** 86 **KO Cells**

87 To unbiasedly define the altered lysosome morphology in VPS35 KO H4 cells we
88 coupled a lysosome immunoprecipitation (LysolP) methodology with quantitative
89 proteomics (**Fig 2A**)²². We transduced wild-type, VPS35 KO and VPS35-GFP-
90 expressing H4 with transmembrane protein 192 (TMEM192), C-terminally flanked by
91 three tandem HA epitopes (**Extended Data Fig. 2A**). Immunostaining of transduced
92 cells with anti-HA and LAMP1 antibodies confirmed the specificity of TMEM192-x3-HA
93 to label lysosomes (**Fig. 2B**). Immunoblotting of anti-HA LysolPs showed a strong
94 enrichment for the lysosomal marker LAMP1 that appeared highly consistent between
95 wild-type, VPS35 KO and VPS35-GFP rescue-derived lysosomes (**Fig 2C**). From
96 isobaric tandem mass tagging (TMT) and LC-MS/MS quantification we obtained a data
97 set from wild type cells highly enriched for lysosomal proteins (**Extended Data Figs.**
98 **2B-C**), which contained 709 of the 828 proteins previously described as associated
99 with lysosomes in HEK293T cells (**Fig. 2D**)²².

100 We generated proteomic LysolP datasets from wild-type, VPS35 KO and rescue cell
101 lines. VPS35 KO H4 cells exhibited a dramatic increase in protein abundances
102 following LysolP, reflective of the increased lysosomal number and size observed by
103 microscopy, and consistent with the known activation of the master lysosomal
104 biogenesis regulator transcription factor EB (TFEB) upon Retromer dysfunction in
105 various cell types^{3,23} (**Extended Data Fig. 3A, Table 1**). Data were therefore
106 normalised based on total protein count to provide relative changes to the lysosomal
107 proteome (**Fig. 2E, Table 2**). Comparison of LysolP proteomics from VPS35 KO H4
108 cells relative to wild-type and VPS35-GFP rescues, revealed significantly depleted
109 (246 proteins) and enriched (477 proteins) proteins (\log_2 fold change ± 0.26 , $p < 0.05$).
110 Gene ontology analysis revealed an overall loss in lysosomal identity and an increased
111 abundance of various pathways including metabolic reprogramming and small
112 molecule transport (**Figs. 2F-G, Table 3**).

113 A range of protein-protein interaction networks were significantly depleted and
114 enriched in the VPS35 KO LysolP dataset (**Extended Data Figs. 3B-C**). All
115 components of the BORC complex were depleted from VPS35 KO lysosomes and
116 rescued by VPS35-GFP re-expression (**Fig. 3A**). The BORC complex positions
117 lysosomes by coupling to kinesin-mediated microtubule transport via the adaptor
118 protein Arl8, which was also depleted from VPS35 KO lysosomes²⁴. Lysosomal
119 recruitment of BORC is regulated by mTORC1/Ragulator. Indeed, mTOR and

120 associated components including all Ragulator subunits LAMTOR1-5 and RagA/C
121 GTPases were depleted in VPS35 KO lysosomes (**Fig. 3B, Extended Data Fig. 3D**).
122 Rheb, an amino acid-responsive activator of mTORC1²⁵, was the only component of
123 the mTORC1 machinery to be significantly enriched in VPS35 KO lysosomes (**Fig.**
124 **3B**).

125 A wide cohort of luminal proteins, a large proportion of which are hydrolytic enzymes,
126 were significantly depleted in VPS35 KO cells, including proteases, lipases,
127 nucleases, and glycosidases including β -galactosidase (GLB1), which has previously
128 shown to exhibit reduced activity in Retromer-depleted HeLa cells²⁶ (**Fig. 3C**). Notably,
129 the lysosomal acid glucosylceramidase GBA, which is genetically linked to Gaucher's
130 disease and Parkinson's disease, was significantly depleted in VPS35 KO
131 lysosomes²⁷, as were a wider cohort of enzymes associated with lysosomal storage
132 diseases²⁸.

133 Rab GTPases are crucial regulators of membrane identity and transport²⁹. Rab5a and
134 Rab5b were significantly enriched in lysosomes from VPS35 KO H4 cells, reflective of
135 increased mixing between early and late endosomes and defective resolution of these
136 compartments (**Fig. 3D**). Rab7a was also significantly enriched in VPS35 KO cells
137 compared to wild-type controls, as was Rab29, with the strongest enrichment being
138 Rab27b, a late endosomal GTPase that regulates lysosomal exocytosis. Rab
139 GTPases involved in late endosomal fusion with phagosomes and autophagosomes
140 were dysregulated, including Rab20, Rab21 and Rab34³⁰⁻³². Rab39b, which has been
141 reported to regulate alpha-synuclein accumulation and has loss-of-function mutations
142 in X-linked Parkinson's disease, was strongly depleted in VPS35 KO lysosomes^{33,34}
143 (**Fig. 3D**).

144 Within the data we also identified: an enrichment of proteins involved in APP
145 processing and metabolism, including an accumulation of APP in VPS35 KO
146 lysosomes (**Fig. 3E**); depletion of the late endosomal SNARE proteins STX8 and
147 VTI1B (**Fig. 3F**); dysregulation of phosphatidylinositol-4-phosphate (PI(4)P)
148 metabolism, including depletion of PIP4P1 (TMEM55B), a regulator of perinuclear
149 lysosomal transport and v-ATPase assembly^{35,36} (**Fig. 3G**); perturbation of cholesterol
150 influx and egress from lysosomes, which has been linked strongly with late onset,
151 atypical cognitive decline³⁷ (**Fig. 3H**); enrichment of autophagy markers (**Fig. 3I**); and

152 alterations to lysosomal solute channels that regulate transmembrane transport to
153 maintain lysosomal homeostasis, including CLCN7, a key Cl⁻/H⁺ antiporter that
154 balances charge within the lysosomal lumen³⁸, and TMEM175, recently linked to
155 Parkinson's disease³⁹ (**Fig. 3J**). Taken together, these data highlight the scale of
156 lysosomal dysfunction induced by Retromer depletion, many of which are linked to
157 neurodegenerative disease.

158 We focussed on the enrichment of APP, which shuttles between the *trans*-Golgi
159 network (TGN), endosomal network and plasma membrane under steady-state
160 conditions and can undergo multiple proteolytic cleavage steps performed by α-, β-,
161 and γ-secretase enzymes⁴⁰. APP mutations that alter its proteolytic processing are
162 causally linked to Alzheimer's disease through the generation of neurotoxic amyloid
163 aggregates⁴⁰. We noticed that VPS35 KO H4 cells demonstrate an abnormal
164 accumulation of cleaved APP in the whole cell lysate, measured as a low molecular
165 weight C-terminal fragment resulting from α- or β-secretase cleavage events (**Figs.**
166 **3K-L**). A similar accumulation of APP CTFs was recently reported in Vps35-depleted
167 mouse neurons⁴¹. Levels of full-length APP were unaffected (**Fig. S3E**). In wild-type
168 and VPS35-GFP-expressing cells, APP predominantly localises within the perinuclear
169 region, mainly colocalising with TGN46 and displaying minimal overlap with LAMP1
170 (**Extended Data Fig. 3F**). In contrast, VPS35 KO cells demonstrated a striking
171 accumulation of APP on the limiting membrane or within LAMP1-positive
172 compartments (**Fig. 3M** and **Extended Data Fig. 3F**). APP misprocessing and
173 accumulation within the endo-lysosomal network is a crucial hallmark of Alzheimer's
174 disease, and is sufficient to induce lysosomal dysfunction⁴². Interestingly, DisGeneNet
175 categories associated with significantly enriched proteins on VPS35 KO lysosomes
176 included 'Down Syndrome', 'Presenile Dementia', 'Amyloidosis', 'Alzheimer Disease',
177 'Parkinson Disease', amongst others, indicating that the proteomic changes observed
178 in these cells correlate with established phenotypes of neurodegeneration (**Fig. 3N**,
179 **Table 4**).

180

181 **Correlative Proteomic Analyses Reveal a Signature of Lysosomal Exocytosis in**
182 **VPS35 KO Cells**

183 Retromer dysfunction induces a widespread reduction in the cell surface expression
184 of integral membrane proteins as they become sequestered within internal
185 endolysosomal compartments⁴³. By coupling surface restricted biotinylation and
186 LysolP methodologies with quantitative proteomics, we attained a global, unbiased
187 overview of how Retromer depletion triggered shifts in integral membrane protein
188 abundances at the cell surface and lysosome, respectively (**Figs. 4A, Extended Data**
189 **Figs. 4A-B, Table 2**). We observed a cohort of integral membrane proteins that were
190 depleted from the cell surface and became enriched in the lysosome in VPS35 KO
191 cells, including known Retromer cargoes such as GLUT1 (SLC2A1), STEAP3,
192 SEMA4B and SEMA4C, NOTCH1 and NOTCH2, NETO2, KIDINS220, the neutral
193 amino acid transporters SLC1A4 and SLC1A5, and the copper transporters ATP7A
194 and SLC31A1⁴³⁻⁴⁶ (**Fig. 4B**). We validated GLUT1 and ATP7A re-routing from the cell
195 surface into TMEM192-3xHA-positive lysosomes by Western blotting and
196 immunostaining (**Fig. 4C, Extended Data Fig. 4C**) A number of these cargoes, for
197 example SEMA4B/C, NOTCH1/2, NETO2 and KIDINS220, regulate essential
198 neuronal pathways such as axonal guidance^{47,48}, and synaptic transmission⁴⁹⁻⁵¹, and
199 are associated with neuronal disease and disorders^{52,53}. These data underscore the
200 protective role of Retromer in regulating the integrity of the plasma membrane
201 proteome alongside maintaining lysosomal function.

202 Interestingly, a cohort of lysosomal integral membrane proteins became enriched on
203 the cell surface in VPS35 KO H4 cells, including the lysosomal glycocalyx LAMP1 and
204 LAMP2, the cholesterol transporter NPC1, the Juvenile Neuronal Ceroid
205 Lipofuscinosis associated CLN3, CI-MPR (IGF2R), and a cluster of APP processing-
206 related proteins including APP, the β -secretase BACE2, the APP-like protein and β -
207 secretase substrate APLP1⁵⁴, and APP-binding protein ITM2B^{55,56} (**Fig. 4D**).
208 Specifically, the C-terminal fragment of APP was found to enrich at the cell surface in
209 VPS35 KO cells (**Extended Data Figs. 4C-D**). Gene ontology analysis reflected these
210 changes, including depletion of pathways related to cell morphogenesis, adhesion,
211 synapse organisation and transmembrane transport (**Extended Data Fig.4E**), which
212 correlate with enrichment in the lysosome (**Extended Data Fig.4F**), and a concomitant
213 increase in metabolic pathways and lysosomal proteins at the cell surface, amongst
214 others (**Fig. 4E, Table 3**).

215 Enrichment of lysosomal proteins at the cell surface could reflect increased lysosomal
216 exocytosis, a process considered to be compensatory for lysosomal stress that may
217 mediate cell-to-cell transfer of pathogenic aggregates such as α -synuclein and APP
218 fragments^{57–60}. A cell culture ‘secretome’ revealed a dramatic increase in proteins in
219 the growth media of VPS35 KO H4 cells that was rescued by VPS35-GFP re-
220 expression (**Fig. 4F, Table 1**). Gene ontology analysis revealed a significant
221 enrichment of ‘focal adhesion’, ‘extracellular exosome’, ‘lysosome’ and ‘secretory
222 vesicle’ cellular component categories (**Fig. 4G, Table 5**). Moreover, autophagic cargo
223 receptor Sequestome-1 (SQSTM1) was prominently enriched in the secretome of
224 VPS35 KO cells, suggestive of the release of autophagic material (**Table 1**). A wide
225 cohort of luminal lysosomal proteins, which were relatively depleted in the VPS35 KO
226 LysolP dataset (**Fig. 3C**), were significantly enriched in the VPS35 KO secretome (**Fig.**
227 **4H**). Among these, some have been reported to undergo secretion from the
228 biosynthetic pathway upon Retromer depletion^{61–63}. However, we observed that CTSD
229 colocalised completely with LAMP1 and displayed no evidence of accumulation within
230 the biosynthetic pathway (**Extended Data Fig. 4G**). We therefore posit that in addition
231 to biosynthetic pathway ‘leakage’, the delivery of lysosomal enzymes can be
232 maintained in VPS35 KO cells, and their extracellular release may arise from
233 lysosomal exocytosis, with CTSD being predominantly detected in a precursor state
234 due to ineffective pH-dependent proteolytic activation in the endo-lysosomal network.

235 We also noticed an enrichment of APP in the secretome of VPS35 KO cells, alongside
236 related substrates of the β - and γ -secretase enzymes APLP2 and CLSTN2,
237 respectively^{54,64} (**Fig. 4I**). Impaired APP processing and increased extracellular
238 release of APP and A β fragments have been reported upon VPS35 depletion^{9,65}.
239 Moreover, APLP2 was the most significantly enriched protein in the cerebrospinal fluid
240 of Vps35 KO mice¹⁰. APP enrichment within the VPS35 KO secretome may therefore
241 be indicative of altered amyloidogenic processing and release from the cell surface.

242 Taken together, these data indicate an increased release of lysosomal contents from
243 the cell surface in response to the profound lysosomal stress observed in VPS35 KO
244 H4 cells. This emphasises the neuroprotective role of Retromer in safeguarding
245 against lysosomal dysfunction and extracellular release of cytotoxic contents such as
246 APP cleavage products. These findings raise the possibility that the detection of APP,

247 APLP2 or other components of the VPS35 KO secretome could be diagnostic tools for
248 identifying Retromer dysfunction in cellular and model organism systems.

249

250 **RNA Sequencing of VPS35 KO H4 Cells Reveals Transcriptional
251 Reconfigurations**

252 Retromer dysfunction is known to induce TFEB activation^{3,23}. To directly investigate
253 whether changes in the lysosomal proteome in VPS35 KO H4 cells were due to a
254 coordinated transcriptional response through, for example, the co-ordinated lysosomal
255 expression and regulation (CLEAR) network, we performed RNA sequencing (RNA-
256 seq) of wild-type, VPS35 KO and VPS35-GFP H4 cells (**Extended Data Figs. 5A-B, 257 Table 6**). Examination of RNA abundances of the lysosomal CLEAR network genes
258 documented in HeLa cells⁶⁶ revealed significant upregulation of *ACP5*, *ASAHI*, *CTSB*,
259 *CTSD*, *CTSS*, *GAA*, *NPC2*, *PSAP* and *TPP1* (**Extended Data Fig. 5C, Table 7**). Next,
260 we utilised gene set enrichment analysis (GSEA) to characterise up- and
261 downregulated pathways in VPS35 KO cells (**Table 8**). This revealed enrichment of
262 cellular component genes including endo-lysosomal genes, most notably subunits of
263 the v-ATPase, as well as components of the mitochondrial respiratory chain complex;
264 many of which are known TFEB target genes⁶⁷⁻⁷⁰ (**Extended Data Fig. 5D**). Moreover,
265 there was a significant enrichment of genes associated with the KEGG pathways of
266 Parkinson's, Alzheimer's, and Huntington's diseases (**Extended Data Figs. 5E-G**).

267 To refine our RNA-seq experiments, we performed whole-cell TMT proteomics of wild-
268 type, VPS35 KO and VPS35-GFP rescue H4 samples (**Extended Data Fig. 6A, 269 Tables 1-2**). We correlated RNA transcript abundances with protein abundances to
270 identify proteins that were upregulated at the transcriptional and proteomic level (**Fig. 271 5A**). Included within this cohort were *Rab27b*, *SORT1* and *NPC2*, which were also
272 significantly perturbed in the VPS35 KO lysosomal proteome (**Figs. 3D-E**). The
273 endosomal sorting of the lysosomal hydrolase receptor *SORT1* is Retromer
274 dependent^{26,71,72}, and transcriptional upregulation may therefore reflect a
275 compensatory mechanism to supply lysosomes with hydrolases in response to *SORT1*
276 mistrafficking and lysosomal dysfunction. Similarly, *NPC2* upregulation may constitute
277 a mechanism to restore cholesterol metabolism and egress from lysosomes due to
278 perturb localisation of *NPC2* (**Fig. 3H**).

279 Rab27b was the most abundantly enriched protein in the VPS35 KO total cell
280 proteome and was concomitantly enriched at the transcriptional level – this GTPase
281 was also enriched in the lysosomal proteome (**Figs. 3D, 5A**). Rab27b regulates
282 translocation of late endosomes to the cell periphery and their exocytosis⁷³, and was
283 recently shown to be transcriptionally regulated by the cytoprotective transcription
284 factor Nrf2⁷⁴. In Parkinson's disease, higher expression of Rab27b has been reported
285 in patient brain samples⁷⁵, where it may promote the cell-to-cell transmission of
286 pathogenic alpha-synuclein aggregates through a lysosomal exocytosis and re-uptake
287 mechanism^{75,76}. We validated the increase and rescue of Rab27b in VPS35 KO cells
288 by Western blotting of whole cell lysate and lysosome immunoprecipitates (**Figs. 5B-**
289 **E**). Given the enrichment of lysosomal proteins, including APP, in the secretome of
290 VPS35 KO cells, we speculate that the upregulation of Rab27b observed upon
291 Retromer dysfunction may constitute a transcriptional link to stimulate lysosomal
292 exocytosis.

293 Meta-analysis revealed disease signatures: including 'Down Syndrome', 'Presenile
294 Dementia', 'Amyloidosis' and 'Fatty Liver Disease', which were unanimously enriched
295 across all experimental approaches; and 'Parkinsonian Disorders', 'Alzheimer
296 Disease', 'Lewy Body Disease', 'Amyotrophic Lateral Sclerosis' and 'Niemann-Pick
297 Disease', among others, which were significantly enriched in multiple datasets (**Fig.**
298 **5F-H, Table 4**).

299

300 **Retromer Recruitment of Effector Proteins Govern Lysosomal Homeostasis**

301 Finally, we returned to the LysolP proteomics to seek insight into the mechanism(s)
302 behind the swollen lysosomal phenotype. A possible origin for the multivariate
303 phenotype observed in our datasets is the dysregulation of Rab7 due to impaired
304 recruitment of the Retromer effector and Rab7 GAP TBC1D5³⁻⁵. Indeed, we observed
305 a hyper-recruitment of Rab7 to LAMP1-positive membranes in VPS35 KO cells, in
306 agreement with observations in HeLa cells from the Steinberg lab^{3,4} (**Extended Data**
307 **Fig. 7A**). TBC1D5 is recruited to Retromer through binding to VPS29⁷⁷, which is
308 impaired in the VPS29 L152E mutant⁴. We generated VPS29 KO H4 cells, which
309 exhibited a comparable endo-lysosomal swelling and Rab7 hyper-recruitment to
310 VPS35 KO cells, a phenotype rescued by re-expression of VPS29^{WT}-GFP but not

311 VPS29^{L152E}-GFP (**Figs. 6A-C**). VPS35-GFP and VPS29-GFP rescued the
312 accumulation of CI-MPR, CTSD and p62 observed in KO cells, but VPS29^{L152E}-GFP
313 failed to do so (**Fig. 6D-G**). Importantly, VPS35 protein levels were rescued in VPS29
314 KO cells with VPS29^{L152E}-GFP expression, indicating that Retromer assembly was
315 unperturbed, thereby highlighting the importance of TBC1D5 recruitment mediated
316 through VPS29 (**Extended Data Fig. 7B**). The binding of other VPS29 effector
317 proteins, such as the VAMP7-interacting protein VARP, are also affected by the
318 VPS29 L152E mutation⁷⁸. We therefore cannot exclude additional consequences of
319 this mutation, such as perturbed VAMP7-mediated fusion dynamics, contributing to
320 lysosomal dysfunction. Taken together, these data establish a broad endo-lysosomal
321 phenotype in Retromer-depleted H4 cells that arise, in part, from dysregulation of
322 Rab7 nucleotide cycling.

323

324 **VPS35 KO Cells Fail to Efficiently Undergo Lysosomal Reformation Events**

325 While the hyper-recruitment and activation of Rab7 likely promotes the rate of late
326 endosome and autophagosome fusion with lysosome, the decreased lysosomal
327 enrichment of mTORC1, BORC, and PI(4)P metabolising enzymes is diagnostic for a
328 defect in autophagic lysosomal reformation (ALR), a membrane tubulation events that
329 resolve lysosomes back to their original size and density⁷⁹⁻⁸¹. Amino acid starvation of
330 wild-type and VPS35-GFP-expressing H4 cells induced a rapid dissociation of mTOR
331 from lysosomes, which was recovered upon re-feeding in amino acid-replete DMEM
332 (**Extended Data Fig. 8**). In VPS35 KO H4 cells, mTOR was already dissociated from
333 lysosomes prior to amino acid starvation and failed to relocalise to lysosomes upon
334 re-feeding (**Extended Data Fig. 8**), as shown recently in HeLa cells³.

335 Following periods of amino acid starvation extending beyond 60 minutes, we observed
336 examples of ALR, defined by mTOR recruitment onto LAMP1-positive compartments
337 with extended tubular structures (**Fig. 7A**). This phenomenon was observed in wild-
338 type and VPS35-GFP-expressing cells during starvation and after amino acid re-
339 feeding (**Figs. 7B-C**) but was not observed in VPS35 KO cells (**Fig. 7C**). We
340 expressed GFP-RFP-LC3, a dual-colour autophagic flux reporter that loses GFP
341 fluorescence within acidified autolysosomes. Expression of this reporter revealed
342 extensive tubular networks of branches emanating from LAMP1-positive

343 autolysosomes in wild-type cells upon amino acid starvation or re-feeding (**Extended**
344 **Data Fig. 9**). Similar tubular events were far rarer in VPS35 KO cells, indicative of
345 faulty ALR in the absence of mTOR-dependent nutrient sensing.

346 Live cell imaging revealed dynamic auto-lysosomal tubulation and fission events in
347 wild-type cells expressing LAMP1-GFP and mCherry-LC3, which effectively serve to
348 maintain compartment volume (**Fig. 7D, Supplementary Videos 1-6**). In VPS35 KO
349 cells, auto-lysosome membrane tubulation events, defined by tubulation of a LAMP1-
350 GFP- and mCherry-LC3-positive compartment, were occasionally observed in VPS35
351 KO cells, but these were less frequent and less likely to undergo productive scission
352 (**Fig. 7D, Supplementary Videos 7-12**). Taken together, our data therefore reveal a
353 defect in ALR as a major contributing factor in the swollen lysosomal phenotype
354 observed in VPS35 KO cells, which mechanistically stems from the decreased
355 lysosomal association of mTORC1, BORC, and PI(4)P-metabolising enzymes as
356 identified through our integrated proteomics approach.

357

358 **DISCUSSION**

359 **Towards a Global Understanding of the Neuroprotective Role of Retromer**

360 Retromer has been associated with neurodegenerative disease since observation of
361 reduced expression in Alzheimer's disease patients and the identification of familial
362 causative Parkinson's disease mutations within the complex¹¹⁻¹⁶. Our 'omics-based
363 approach has provided an unbiased analysis to highlight the detailed role of Retromer
364 in safeguarding the functionality of the cell surface and maintaining lysosomal health.
365 The deletion of this crucial sorting complex results in widespread dysfunction typified
366 by loss of organelle identity, perturbed integral membrane protein sorting and
367 transport, and inefficient lysosomal catabolism and lysosome resolution. With the
368 emerging concept that small molecule compounds can be used to stabilise Retromer
369 to enhance its neuroprotective function^{82,83}, our comprehensive cellular and molecular
370 phenotyping of VPS34 KO H4 cells establishes a roadmap for future translational work
371 to better understand the pathogenic link between Retromer-dependent regulation of
372 lysosomal homeostasis and individual neurodegenerative diseases, and to inform
373 diagnostic and therapeutic strategies.

374

375 **Dysfunctional Lysosomal Homeostasis in the Absence of Retromer**

376 Lysosomal fusion and reformation dynamics are tightly regulated and essential for
377 timely responsiveness to nutrient availability and catabolism. Following fusion of
378 lysosomes with incoming endosomal or autophagic compartments, the resulting hybrid
379 organelles (termed endo-lysosomes and auto-lysosomes, respectively) undergo a
380 reformation process, whereby intraluminal contents are efficiently degraded,
381 catabolites are exported out of the lysosome, and the resulting excess membrane and
382 associated proteins are recycled through a tubulation process that is dependent on
383 connectivity to the cytoskeleton. Through this mechanism, lysosomal size and number
384 are controlled to facilitate cyclical rounds of fusion and reformation over the lifetime of
385 a cell^{84,85}. Here, we demonstrate that besides its known role in autophagic flux^{4,6,86},
386 Retromer is required for the ALR pathway to reform lysosomes following productive
387 autophagic fusion events, a key step within the complex pathways that together
388 maintain lysosomal homeostasis.

389 Following productive biogenesis of autophagosomes and lysosomal fusion, the
390 delivered contents are efficiently catabolised, resulting in the efflux of nutrients. This
391 is sensed by mTORC1, inducing a reactivation of mTORC1 activity to inhibit further
392 autophagy and stimulate ALR⁷⁹. Loss of mTOR association with lysosomes in VPS35
393 KO cells, and the mTORC1 depletion observed from LysolP proteomics, suggests a
394 perturbation to the lysosomal nutrient sensing system. Depletion of lysosomal solute
395 transporters required for nutrient efflux, such as the L-glutamine transporter SLC38A7,
396 may exacerbate this problem in catabolite transport and nutrient sensing at the
397 lysosome (**Fig. 5J**).

398 mTORC1 signalling is required to recruit the BORG complex, a key regulator of
399 lysosomal positioning and size^{24,87,88}, and BORG is required for the generation of
400 lysosomal tubulation during ALR⁸⁰. Dynamic interconversion between PI(4)P and
401 PI(4,5)P₂ also contributes to the ALR tubulation process^{81,89–91}. Rab7-GTP hydrolysis
402 is crucial for lysosomal reformation, since expression of constitutively active Rab7 or
403 treatment with a non-hydrolysable GTP analogue inhibits ALR⁷⁹. The decrease in
404 PI4K2A, PIP4P1 and PIP4P2, and BORG components from VPS35 KO lysosomes,

405 along with hyper-recruitment of active Rab7, provide the mechanistic insight into the
406 observed decreased induction of ALR.

407 We therefore propose the following working model that underpins the lysosomal
408 swelling phenotype observed in Retromer dysfunctional cells (**Fig. 7E**). Increased
409 autophagic cargo influx and endosomal cargo missorting from the cell surface,
410 combined with dysregulated endosomal maturation leads to inefficient degradation of
411 lysosomal cargoes. Intraluminal contents accumulate within this environment,
412 including APP. The impaired catabolism of these cargoes prevents effective nutrient
413 efflux into the cytosol, which is required to initiate mTORC1- and BORC-dependent
414 lysosome reformation events. Iterative rounds of fusion events and cargo delivery
415 without effective resolution ultimately compound these problems, leading to the
416 striking enlargement of hybrid organelles seen by light and electron microscopy. Endo-
417 and auto-lysosomal exocytosis may constitute a cytoprotective response that releases
418 undegraded contents from the cell, which in turn may facilitate cell-to-cell spreading of
419 toxic contents such as pathogenic protein aggregates, which is emerging as a defining
420 feature of neurodegenerative diseases⁹². Given that this broad lysosomal phenotype
421 is observed in many models of both Retromer-dependent and Retromer-independent
422 neurodegeneration, our data provide new insights into the neuroprotective role of
423 Retromer in safeguarding lysosomal health.

424

425 **Lysosomal Exocytosis as a Compensatory Mechanism in VPS35 KO H4 Cells**

426 The enrichment of soluble and transmembrane lysosomal proteins within the VPS35
427 KO ‘secretome’ is suggestive of lysosomal exocytosis. Retromer suppression has
428 been associated with increased release of A β through exosomes in cell culture
429 models⁹. Mass spectrometry of cerebrospinal fluid also recently revealed increased
430 abundance of Tau in VPS35 KO mice and Alzheimer’s disease patient samples
431 compared to controls¹⁰. In a recent study, Vps35 depleted *Drosophila* demonstrated
432 APP accumulation in presynaptic neurons of the neuromuscular junction, and
433 increased APP levels in extracellular postsynaptic vesicles⁶⁵.

434 Lysosomal exocytosis has been proposed as a compensatory mechanism in response
435 to lysosomal dysfunction⁹². For example, chemical perturbation of lysosomal
436 homeostasis with ammonium chloride or bafilomycin A1 in SH-SY5Y cells leads to

437 increased α -synuclein exocytosis and paracrine transfer to neighbouring cells⁵⁸. This
438 pathway may be particularly beneficial to neurons, whereby extracellular release of
439 undegraded lysosomal contents alleviates lysosomal stress, and the released material
440 can be internalised and degraded by neighbouring microglial cells in the brain. While
441 this mechanism may be neuroprotective in the short-term, continued extracellular
442 release of lysosomal material over the lifetime of an organism may contribute to the
443 propagation and extracellular deposition and spread of pathogenic aggregates in later
444 life as the ability of microglia to degrade this material diminishes. The discovery of
445 Rab27b as one of the most abundantly enriched hits in VPS35 KO H4 cells, both at
446 the transcript and protein level, provides a potential insight into how this process may
447 be upregulated upon Retromer suppression.

448 Overall, our data emphasises the central importance of Retromer in controlling
449 endolysosomal pathway function beyond its classical role in mediating the sequence-
450 dependent retrieval of integral membrane proteins. This role of Retromer at the nexus
451 of endolysosomal biology likely lies at the heart of its neuroprotective role and
452 dysregulation in a number of neurodegenerative diseases. More generally, our
453 integrated multiomic approach illustrates a powerful quantitative methodology through
454 which to explore additional avenues for examining the dysregulation of the endo-
455 lysosomal system observed in neurodegenerative disease.

456

457 **MATERIALS & METHODS**

458 **Antibodies:**

459 Primary antibodies include: β -Actin (Sigma-Aldrich; A1978; clone AC-15; 1:2000
460 Western blot (WB)), APP (Abcam; Y188; ab32136; 1:200 immunofluorescence (IF)),
461 ATP7A (Santa Cruz; D-9, sc-376467; 1:1000 WB), Cathepsin D (Proteintech; Clone,
462 21327-1-AP, 1:1000 WB), Cathepsin D (Merck; 219361; 1:200 IF), CI-MPR (Abcam;
463 ab124767; clone EPR6599, 1:1000 WB, 1:400 immunofluorescence (IF)), EEA1 (Cell
464 Signalling; 610456; clone 14; 1:200 IF), EGFR (Cell Signalling Technologies; 2232S;
465 WB 1:1000), EGFR pY1068 (Cell Signalling Technologies; 3777S; WB1:1000), GFP
466 (Roche; 11814460001; clones 7.1/13.1; 1:1000 WB), GLUT1 (Abcam; EPR3915;
467 ab115730; 1:1000 WB; 1:50 IF), HA (Biolegend; 901502; Clone 16B12; 1:1000 WB,
468 1:200 IF), KEAP1 (Proteintech; 10503-2-AP; 1:1000 WB, 1:200 IF), LAMP1
469 (Developmental Studies Hybridoma Bank; AB_2296838; clone H4A3; 1:400 IF)
470 LAMP1 (Abcam; ab21470; 1:200 IF), LAMP1 (Cell Signalling Technologies; CS4H11;
471 1:1000 WB), p62 (SQSTM1) (BD Transduction Laboratories; 610832; 1:1000 WB,
472 1:200 IF), Pmp70 (Sigma-Aldrich; 70-18; SAB4200181; 1:1000 WB), Rab7 (Abcam;
473 EPR7589; ab137029; 1:200 IF), Rab27b (Proteintech; 13412-1-AP, 1:500 WB),
474 TGN46 (Bio-Rad; AHP500G; 1:400 IF), TfnR (Santa Cruz; H68.4; sc-65883; 1:1000
475 WB), VPS29 (Santa Cruz; D-1; sc-398874; 1:500 WB), VPS35 (Abcam; ab157220;
476 clone EPR11501(B); 1:1000 WB).

477 Secondary antibodies: For Western blotting, 680nm and 800nm anti-mouse and anti-
478 rabbit fluorescent secondary antibodies (Invitrogen - 1:20,000). For
479 immunofluorescence, 488nm, 568nm and 647nm AlexaFluor-labelled anti-mouse,
480 anti-rabbit and anti-sheep secondary antibodies (Invitrogen - 1:400). 0.5 μ g/mL 4', 6-
481 diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich, D8417) was added to
482 secondary antibody mixtures to label DNA.

483

484 **Cell Culture**

485 HeLa and HEK293T cells were sourced from the American Type Culture Collection
486 (ATCC). H4 neuroglioma cells were a gift from Dr Helen Scott and Professor James
487 Uney (University of Bristol). Clonal VPS35 KO HeLa and H4 cell lines were generated

488 with the gRNA sequence 5'-GTGGTGTGCAACATCCCTTG-3' targeting exon 5 of
489 *VPS35*,^{18,93} VPS29 KO cells were generated by transfecting cells with gRNA
490 sequences targeting the sequences 5'-GGACATCAAGTTATTCCAT-3' and 5'-
491 GGCAAACGTGACCGGTG-3' within exons 2 and 3 of *VPS29*, respectively.

492 Cells were grown in Dulbecco's Modified Eagle Medium (DMEM; Sigma-Aldrich),
493 supplemented with 10% (vol/vol) fetal bovine serum (FBS) (Sigma-Aldrich) and
494 penicillin/streptomycin (Gibco). Cells were transduced with HIV-1-based lentiviruses
495 for stable expression (construct of interest in pXLG3/pLVX/pLJC5²² plasmid
496 backbone, and pCMV-dR8.91 packing plasmid) pseudotyped with vesicular stomatitis
497 virus (VSV)-G envelope plasmid (pMDG2). HEK293T cells were transfected with the
498 constituent plasmids using polyethyleneimine (PEI) transfection, then lentiviral
499 particles were harvested after 48 hours. H4 cells were seeded into a plate, then
500 transduced with lentivirus following adherence. For pLVX- and pLJC5-expressing
501 cells, 3 µg/mL puromycin dihydrochloride was used for selection.

502 For amino acid starvation experiments, cells were plated the day before starvation.
503 The culture media (DMEM containing 10% FBS and amino acids) was removed,
504 followed by three PBS washes, and replaced with DMEM lacking amino acids and
505 growth serum for the indicated timepoints. For re-feeding, the starvation media was
506 removed and replaced with DMEM containing amino acids but lacking FBS.

507

508 **LysolP**

509 All equipment was pre chilled and all experimentation was performed at 4°C. Cells
510 were washed twice in ice-cold PBS and harvested by scraping into 5 ml of KBPS
511 (136mM KCl, 10mM KH₂PO₄ – pH to 7.5 using KOH) containing freshly added 5mM
512 TCEP (Thermo #77720). Cells were pelleted by centrifugation at 270 x g for 10 min,
513 re-suspended in 1ml of lysis buffer KPBS + TCEP and protease/phosphatase
514 inhibitors, prior to mechanical lysis by 6 passages through a 23G needle. Cell debris
515 was pelleted by centrifugation at 700 x g for 10 min. An aliquot of the lysate was
516 removed to represent the whole cell lysate (treated with Triton TX-100 to a final
517 concentration of 1% and an additional centrifugation at 18400 x g for 10 min to remove
518 insoluble debris). Lysate volumes were re-adjusted to 1ml using lysis buffer and added
519 to KPBS washed (x3) magnetic anti-HA beads (Thermo #88837) and gently rotated

520 for 15 min. Beads were pelleted using a magnetic rack and three times washed in
521 KPBS+TCEP for 5 mins with gentle rotation. Beads were pelleted on a magnetic rack
522 and all trace of washing buffer removed, prior to re-suspension in RIPA buffer (10mM
523 Triz pH7.5, 150mM NaCl, 1% TX100, 1% Deoxycholate, Protease and Phosphatase
524 inhibitors) and incubation for 15 min with gentle rotation. Beads were pelleted on a
525 magnetic rack and the eluate (solubilised lysosomal material) removed for subsequent
526 analyses.

527

528 **Surface Biotinylation**

529 All buffers were pre-chilled to 4°C. Cells were washed twice in ice-cold PBS prior to
530 immersion in ice-cold PBS (pH7.7) containing 200µg/ml biotin (Thermo Scientific
531 #A39258) for 30 min with gentle agitation at 4°C. To remove excess biotin, cells were
532 washed in 1x PBS followed by 1x in Quench buffer (50mM Tris, 100mM NaCl, final
533 pH7.5) prior to a 10 min incubation in quench buffer with gentle agitation. Cells were
534 lysed by scraping in PBS (2% TX100 and protease inhibitor tablets) prior to pelleting
535 of insoluble debris by centrifugation (14k for 10 min). An aliquot of the subsequent
536 cleared lysate was retained to represent the whole cell fraction and the remainder
537 added to pre-washed (in lysis buffer) streptavidin beads (Streptavidin sepharose –
538 Cytiva #17511301). Precipitation of biotinylated cell surface proteins proceeded for 30
539 min at 4°C, prior to 1x wash in PBS + 1% TX100, 1x wash in PBS + 1% TX100 and
540 1M NaCl and a final wash in PBS. Biotin precipitated beads were pelleted by
541 centrifugation and all traces of wash buffer removed prior to subsequent analyses.

542

543 **Quantitative Western Blotting**

544 Bicinchoninic acid (BCA) assay (Pierce, 23225) or 660 nm assay (Pierce, 22662) was
545 used to determine protein concentration according to the manufacturer's instructions.
546 NuPAGE 4-12% gradient Bis-Tris precast gels (Life Technologies, NPO336) were
547 used for SDS-PAGE, followed by transfer onto methanol-activated polyvinylidene
548 fluoride (PVDF) membrane (Immobilon-FL membrane, pore size 0.45 µm; Millipore,
549 IPFL00010). Membrane was blocked, then sequentially labelled with primary and

550 secondary antibodies. Fluorescence detected by scanning with a LI-COR Odyssey
551 scanner and Image Studio analysis software (LI-COR Biosciences).

552

553 **Immunofluorescence Microscopy and Analysis**

554 HeLa and H4 cells were seeded onto 13 mm coverslips the day before fixation. DMEM
555 was removed, followed by two washes with PBS, then cells were fixed in 4%
556 paraformaldehyde (PFA) (Pierce, 28906) for 20 minutes at room temperature. To
557 visualise lysosomal tubules, cells were fixed in 8% PFA in 2X microtubule stabilization
558 buffer (60 mM PIPES pH 6.8, 10 mM EGTA, 2 mM MgCl₂) added directly to the cell
559 culture media at a 1:1 volume ratio on a 37°C heat block, then returned to the tissue
560 culture incubator for 15 minutes. Cells were permeabilised in 0.1% (w/v) saponin
561 (Sigma-Aldrich, 47036) for 5 minutes followed by blocking with 1% (w/v) BSA, 0.01%
562 saponin in PBS for 15 minutes. Coverslips were stained with primary antibodies for 1
563 hour, followed by secondary antibodies for 30 minutes, then mounted onto glass
564 microscope slides with Fluoromount-G (Invitrogen, 00-4958-02).

565 Confocal microscope images were taken on a Leica SP5-II confocal laser scanning
566 microscope attached to a Leica DMI 6000 inverted epifluorescence microscope or a
567 Leica SP8 confocal laser scanning microscope attached to a Leica DM I8 inverted
568 epifluorescence microscope (Leica Microsystems), with a 63x UV oil immersion lens,
569 numerical aperture 1.4 (Leica Microsystems, 506192). For the Leica SP8 microscope,
570 'lightning' adaptive image restoration was used to generate deconvolved
571 representative images.

572 Colocalisation and fluorescence intensity analysis was performed using Volocity 6.3
573 software (PerkinElmer) with automatic Costes background thresholding ⁹⁴.
574 Immunofluorescence images were prepared in Volocity 6.3. Lysosomal positioning
575 quantification was performed in ImageJ as described in ⁹⁵. Electron microscopy figures
576 were prepared in ImageJ.

577 **Live cell imaging**

578 Live-cell imaging was performed at 37°C with cells incubated in starvation media
579 (formulated according to the Gibco recipe for high-glucose DMEM, omitting amino
580 acids / FCS prior to filtration through a 0.22μm filter) or DMEM supplemented with

581 10% FCS in a CO₂ buffered chamber. Fluorescent cells were imaged live on a
582 Olympus Ixprobe - SoRa spinning disk confocal system attached to a Olympus IX83
583 inverted epifluorescence microscope and a Hamamatsu sCMOS camera. Rapid
584 switching between excitation/emission wavelengths facilitated a capture rate of ~2
585 frames per second.

586 **Electron Microscopy**

587 H4 cells were seeded onto 13 mm Thermanox Coverslips (Thermo Scientific) the day
588 before fixation. 10nm BSA-gold (VWR) was ultracentrifuged at 100,000 x g for 1 hour
589 at 4°C, the supernatant discarded, then the pellet was resuspended in 5 mL of
590 complete DMEM media. The cell culture media was replaced with 10nm BSA-gold-
591 containing media and cells were incubated at 37°C for 4 hours. Cells were fixed in a
592 2% paraformaldehyde, 2.5% glutaraldehyde and 0.1M sodium cacodylate solution for
593 30 minutes. Cells were then stained using 1% osmium tetroxide, 1.5% potassium
594 ferrocyanide for 1 hour before staining was enhanced by incubation with 1% tannic
595 acid in 0.1M cacodylate buffer for 45 minutes. Cells were washed, dehydrated through
596 an ethanol series, and infiltrated with Epoxy propane (CY212 Epoxy resin:propylene
597 oxide) before being infiltrated with full CY212 Epoxy resin and subsequently
598 embedded atop pre-baked Epoxy resin stubs. Epoxy was polymerised at 65 °C
599 overnight before Thermanox coverslips were removed using a heat-block. 70nm
600 sections were cut using a Diatome diamond knife mounted to an ultramicrotome and
601 sections collected to Pioloform-coated copper slot grids. Ultrathin sections were
602 stained with lead citrate. An FEI Tecnai transmission electron microscope at an
603 operating voltage of 80kV was used to visualise samples, mounted with a Gatan digital
604 camera.

605

606 **Proteomics**

607 *Experimental Design*

608 All proteomic experiments were performed with isobaric tandem mass tagging
609 followed by LC-MS/MS quantitative mass spectrometry. For Lyso IP, 7 independent
610 wild-type cells, 3 independent VPS35 KO Clone 15 and Clone 15 VPS35-GFP rescue
611 and 4 independent VPS35 KO Clone 16 and Clone 16 VPS35-GFP rescue samples

612 were quantified, producing 7 independent repeats of the wild-type vs VPS35 KO vs
613 VPS35-GFP. For surface biotinylation, 6 independent wild-type cells, 3 independent
614 VPS35 KO Clone 15 and Clone 15 VPS35-GFP rescue and 3 independent VPS35 KO
615 Clone 16 and Clone 16 VPS35-GFP rescue samples were quantified, producing 6
616 independent repeats of the wild-type vs VPS35 KO vs VPS35-GFP. For the whole cell
617 and 'secretome' proteomics, 3 independent wild-type samples, 1 VPS35 KO Clone 9
618 and Clone 9 VPS35-GFP, 1 VPS35 KO Clone 15 and Clone 15 VPS35-GFP and 1
619 VPS35 KO Clone 16 and Clone 16 VPS35-GFP samples were quantified, producing
620 3 independent repeats of the wild-type vs VPS35 KO vs VPS35-GFP experimental
621 approach.

622 Samples for whole cell lysate analysis of H4 cells, cells were grown to confluence in a
623 10 cm plate, then lysed with 1% TX-100 lysis buffer and quantified with a BCA assay.
624 The concentrations and volumes were normalised to a 200 μ L volume of 2 mg/mL
625 protein for each sample. To prepare samples for growth media 'secretome' analysis,
626 H4 cells were grown in a 6-well plate in DMEM media without FBS for 16 hours. The
627 medium was removed and centrifuged at 300 \times g for 10 minutes at 4°C, then the
628 supernatant was transferred to a fresh microcentrifuge tube and centrifuged at 2,000
629 \times g for a further 10 minutes 4°C. The corresponding cells in the 6-well plate were lysed
630 and quantified with a BCA assay to normalise media volumes.

631 *TMT Labelling and High pH reversed-phase chromatography*

632 For the cell surface proteome analysis, samples on beads were reduced (10mM
633 TCEP, 55°C for 1h), alkylated (18.75mM iodoacetamide, room temperature for 30min.)
634 and then digested from the beads with trypsin (2.5 μ g trypsin; 37°C, overnight).
635 Alternatively, 50ug of each sample (whole cell lysate analysis), Bead eluates (LysolP
636 analysis), or media samples following concentration to 100ul using Amicon Ultra 3kDa
637 cut-off centrifugal filters (Merck Millipore Ltd.) (secretome analysis) were reduced,
638 alkylated and digested with trypsin, as described above. Following tryptic digestion,
639 the resulting peptides were labelled with Tandem Mass Tag (TMT) ten plex reagents
640 according to the manufacturer's protocol (Thermo Fisher Scientific, Loughborough,
641 LE11 5RG, UK) and the labelled samples pooled.

642 The pooled sample was evaporated to dryness, resuspended in 5% formic acid and
643 then desalted using a SepPak cartridge according to the manufacturer's instructions

644 (Waters, Milford, Massachusetts, USA). Eluate from the SepPak cartridge was again
645 evaporated to dryness and resuspended in buffer A (20 mM ammonium hydroxide, pH
646 10) prior to fractionation by high pH reversed-phase chromatography using an Ultimate
647 3000 liquid chromatography system (Thermo Scientific). In brief, the sample was
648 loaded onto an XBridge BEH C18 Column (130Å, 3.5 µm, 2.1 mm X 150 mm, Waters,
649 UK) in buffer A and peptides eluted with an increasing gradient of buffer B (20 mM
650 Ammonium Hydroxide in acetonitrile, pH 10) from 0-95% over 60 minutes. The
651 resulting fractions (15 for the whole cell lysate analysis, or 5 for the secretome, LysoIP
652 or cell surface proteome analyses) were evaporated to dryness and resuspended in
653 1% formic acid prior to analysis by nano-LC MSMS using an Orbitrap Fusion Tribrid
654 mass spectrometer (Thermo Scientific).

655 *Nano-LC Mass Spectrometry*

656 High pH RP fractions were further fractionated using an Ultimate 3000 nano-LC
657 system in line with an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific).
658 In brief, peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap
659 C18 nano-trap column (Thermo Scientific). After washing with 0.5% (vol/vol)
660 acetonitrile 0.1% (vol/vol) formic acid peptides were resolved on a 250 mm × 75 µm
661 Acclaim PepMap C18 reverse phase analytical column (Thermo Scientific) over a 150
662 min organic gradient, using 7 gradient segments (1-6% solvent B over 1min., 6-15%
663 B over 58min., 15-32%B over 58min., 32-40%B over 5min., 40-90%B over 1min., held
664 at 90%B for 6min and then reduced to 1%B over 1min.) with a flow rate of 300 nl min⁻¹.
665 Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1%
666 formic acid. Peptides were ionized by nano-electrospray ionization at 2.0kV using a
667 stainless-steel emitter with an internal diameter of 30 µm (Thermo Scientific) and a
668 capillary temperature of 275°C.

669

670 All spectra were acquired using an Orbitrap Fusion Tribrid mass spectrometer
671 controlled by Xcalibur 2.1 software (Thermo Scientific) and operated in data-
672 dependent acquisition mode using an SPS-MS3 workflow. FTMS1 spectra were
673 collected at a resolution of 120 000, with an automatic gain control (AGC) target of
674 200 000 and a max injection time of 50ms. Precursors were filtered with an intensity
675 threshold of 5000, according to charge state (to include charge states 2-7) and with
676 monoisotopic peak determination set to peptide. Previously interrogated precursors

677 were excluded using a dynamic window (60s +/-10ppm). The MS2 precursors were
678 isolated with a quadrupole isolation window of 1.2m/z. ITMS2 spectra were collected
679 with an AGC target of 10 000, max injection time of 70ms and CID collision energy of
680 35%.

681 For FTMS3 analysis, the Orbitrap was operated at 50 000 resolution with an AGC
682 target of 50 000 and a max injection time of 105ms. Precursors were fragmented by
683 high energy collision dissociation (HCD) at a normalised collision energy of 60% to
684 ensure maximal TMT reporter ion yield. Synchronous Precursor Selection (SPS) was
685 enabled to include up to 10 MS2 fragment ions in the FTMS3 scan.

686

687 *Data Analysis*

688 The raw data files were processed and quantified using Proteome Discoverer software
689 v2.1 (Thermo Scientific) and searched against the UniProt Human database
690 (downloaded January 2022; 178486 sequences) using the SEQUEST HT algorithm.
691 Peptide precursor mass tolerance was set at 10ppm, and MS/MS tolerance was set
692 at 0.6Da. Search criteria included oxidation of methionine (+15.995Da), acetylation of
693 the protein N-terminus (+42.011Da) and Methionine loss plus acetylation of the protein
694 N-terminus (-89.03Da) as variable modifications and carbamidomethylation of
695 cysteine (+57.021Da) and the addition of the TMT mass tag (+229.163Da) to peptide
696 N-termini and lysine as fixed modifications. Searches were performed with full tryptic
697 digestion and a maximum of 2 missed cleavages were allowed. The reverse database
698 search option was enabled and all data was filtered to satisfy false discovery rate
699 (FDR) of 5%.

700 **RNA-Seq**

701 6 independent wild-type samples, 2 VPS35 KO Clone 9 and Clone 9 VPS35-GFP, 2
702 VPS35 KO Clone 15 and Clone 15 VPS35-GFP and 2 VPS35 KO Clone 16 and Clone
703 16 VPS35-GFP samples were quantified, producing 6 independent repeats of the wild-
704 type vs VPS35 KO vs VPS35-GFP experimental approach. H4 cells were grown to
705 confluence in a 6-well plate. Media was removed and cells were washed twice with ice
706 cold PBS. Cells were lysed and RNA was purified using the RNeasy kit (Qiagen)
707 according to the manufacturer's instructions. RNA concentration was measured using

708 a NanoDrop 1000 machine (Thermo Fisher). Concentrations of all samples were
709 normalised to 50 ng/µL.

710 Total RNA was quantified using the Qubit 2.0 fluorimetric Assay (Thermo Fisher
711 Scientific). Libraries were prepared from 125 ng of total RNA using the NEGEDIA
712 Digital mRNASeq research grade sequencing service (Next Generation Diagnostics
713 srl)⁹⁶ which included library preparation, quality assessment and sequencing on a
714 NovaSeq 6000 sequencing system using a single-end, 100 cycle strategy (Illumina
715 Inc.).

716 The raw data were analyzed by Next Generation Diagnostics srl proprietary 3'DGE
717 mRNA-seq pipeline (v1.0) which involves a cleaning step by quality filtering and
718 trimming, alignment to the reference genome and counting by gene
719 (<https://sourceforge.net/projects/bbmap/>)^{97,98}. We filtered out all genes having < 1
720 cpm in less than n_min samples. Differential expression analysis was performed using
721 edgeR⁹⁹.

722 Gene set enrichment analysis (GSEA) of RNA-Seq data was performed using the
723 GSEA software (UC San Diego and Broad Institute) and MSigDB database of gene
724 sets. Specifically, the cellular compartment gene ontology gene sets
725 (c5.go.cc.v7.2.symbols.gmt) and Kyoto Encyclopaedia of Genes and Genomes
726 (KEGG) pathway gene sets (c2.cp.kegg.v7.2.symbols.gmt) were used for analysis
727^{100,101}. Gene set networks from GSEA were visualised using Cytoscape 3.3 software
728 with the Enrichment Map plug-in¹⁰².

729

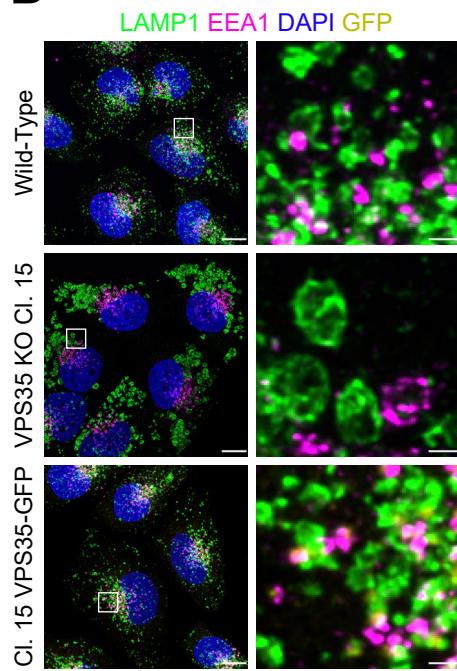
730 **Statistics and Bioinformatic Analysis**

731 Raw files from mass spectrometry were quantified using Proteome Discoverer
732 software v2.1 (Thermo Fisher). Peptides were searched against the UniProt human
733 proteome database using the SEQUEST algorithm. For normalisation of mass
734 spectrometry data, protein abundances were normalised based on total peptide
735 amount for each experiment. Where proteins were identified and quantified by an
736 identical group of peptides as the master protein of their protein group, these are
737 designated 'candidate master proteins'. We then used the annotation metrics for
738 candidate master proteins retrieved from Uniprot to select the best annotated protein
739 which was then designated as master protein. This enables us to infer biological trends

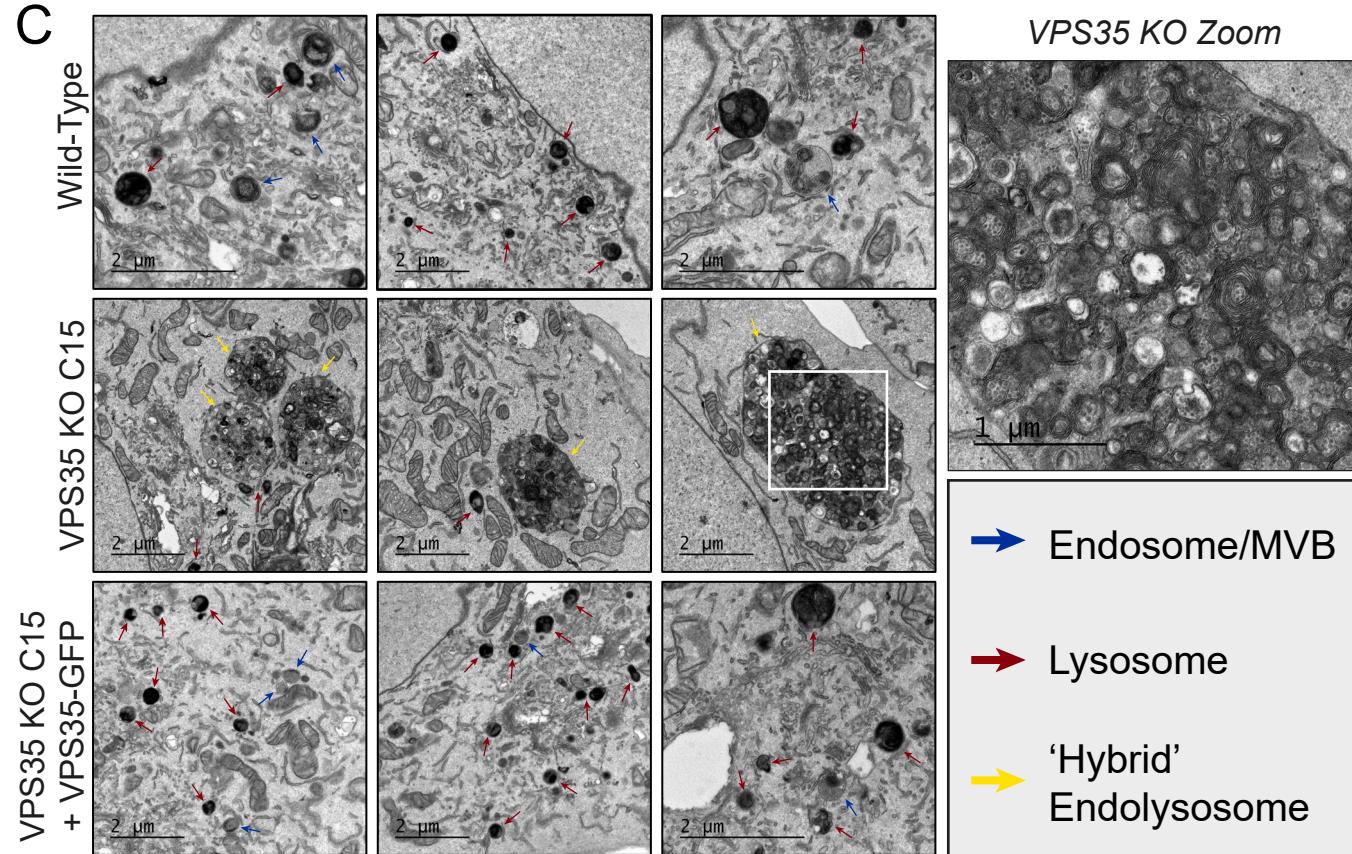
740 more effectively in the dataset without any loss in the quality of identification or
741 quantification. The mass spectrometry data were searched against the human Uniprot
742 database retrieved on 2021-01-14, and updated with additional annotation information
743 on 2021-11-15. To assemble the integrated datasets presented in Supplementary
744 Tables 1 and 2, proteins were compared between datasets firstly using master protein
745 accessions, and secondly using candidate master proteins, to ensure the best possible
746 comparison. RNA data was integrated into the proteomics data using the biomaRt
747 package in R ¹⁰³.

748 For statistical analysis of differential protein abundance between conditions, standard
749 t-tests were used. Volcano plots were plotted either the VolcaNoseR webapp ¹⁰⁴.
750 Typically, thresholds of \log_2 fold change of ± 0.26 (corresponding to a 1.2-fold
751 enrichment or depletion), and a $-\log_{10}$ p-value of 1.3 (corresponding to 0.05) were set,
752 although these thresholds were adjusted based on assessment of data distributions
753 for various experiments. Scatter plots were constructed in GraphPad Prism (LaJolla,
754 CA) software.

755 Gene ontology analysis was performed using Metascape ¹⁰⁵ to represent pathway
756 enrichment, DisGeneNET category enrichment, and protein-protein interaction (PPI)
757 networks, and the PANTHER classification system ¹⁰⁶ was used to represent cellular
758 component enrichment. Raw gene ontology output data is provided in **Table 3**. The
759 dotted line overlaid on pathway enrichment graph represents a $p = 0.05$ statistical cut-
760 off. PPI networks were visualised using Cytoscape 3.3 software with the Enrichment
761 Map plug-in ¹⁰².

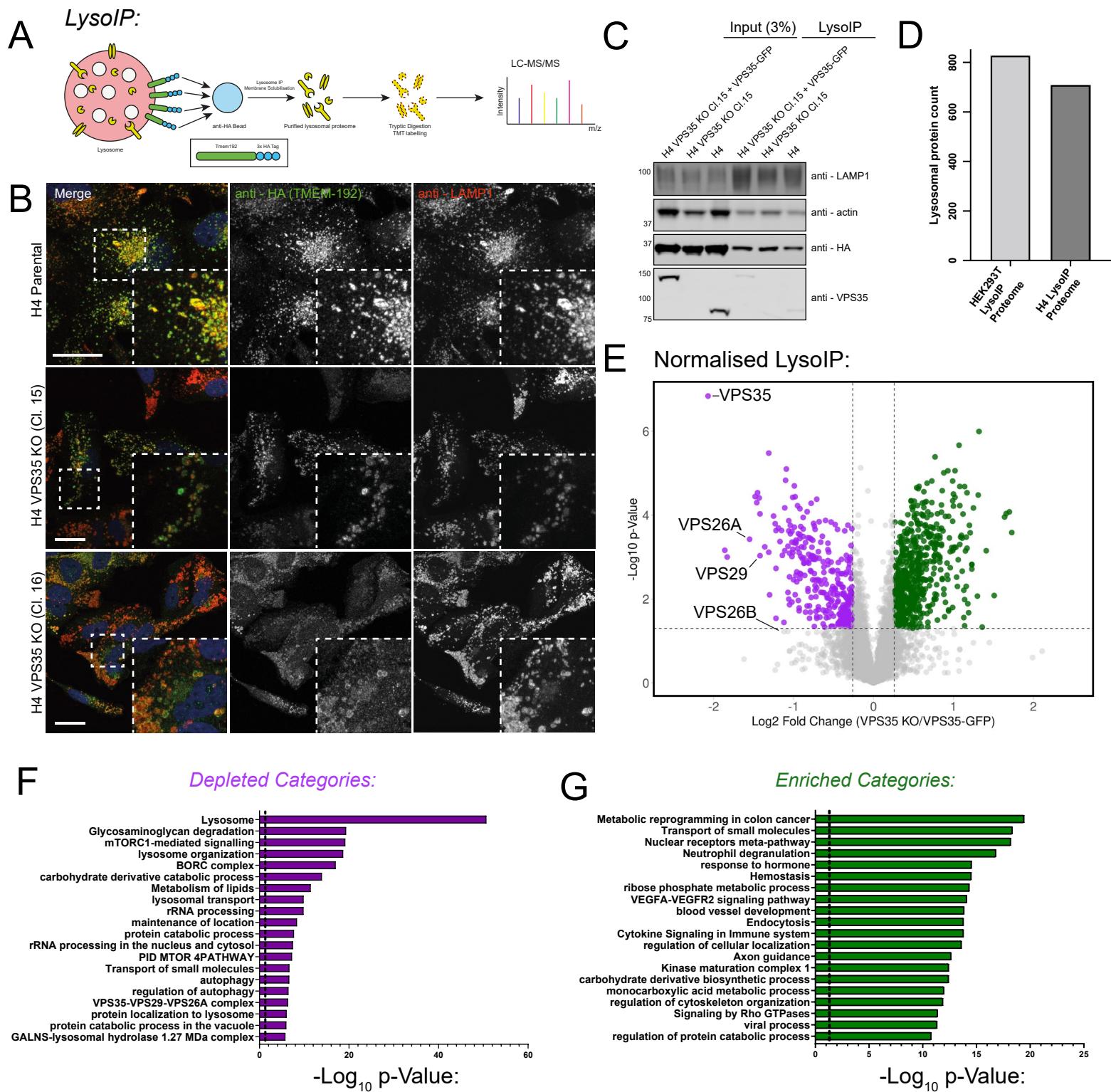

762 All statistical analysis was performed on data from a minimum of 3 independent
763 experimental repeats. GraphPad Prism 9 (La Jolla, CA) software was used for
764 statistical analysis of Western blot and confocal microscopy data.

765 Graphs were prepared in GraphPad Prism 9 or VolcanoseR. Individual datapoints
766 represent independent experimental repeats. Graphs are plotted representing the
767 mean value \pm the standard error of the mean (SEM) for each experimental condition.
768 n represents the number of independent experimental repeats. In all graphs, * = $p <$
769 0.05 , ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.


A

B

C

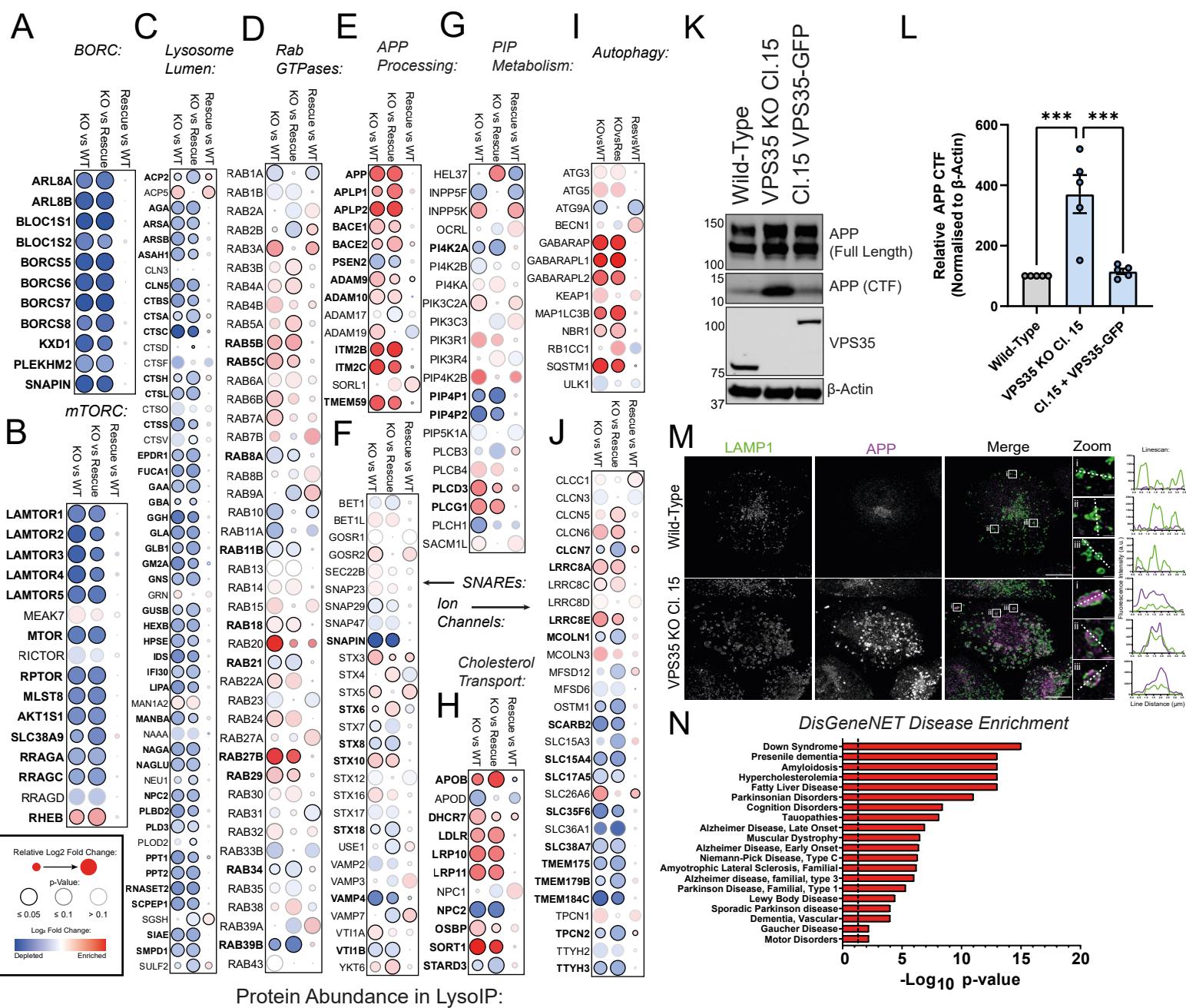

770 **Figure 1. Retromer Depletion Imposes Severe Morphological Changes on the**
771 **Endolysosomal Network in H4 Neuroglioma Cells**

772 **(A)** The severity of endolysosomal swelling is enhanced in H4 VPS35 KO relative to
773 HeLa cells. H4 and HeLa were transfected with CRISPR-Cas9 plasmids targeting
774 VPS35, prior to clonal KO lines being fixed and immuno-stained for VPS35, EEA1,
775 LAMP1 and DAPI. Scale bars: 20 μ m and 5 μ m in zoomed panels. **(B)** Morphological
776 changes to the endolysosomal network in VPS35 KO are rescued by re-expression of
777 VPS35-GFP. Wild-type, VPS35 KO Cl.15 and Cl.15 + VPS35-GFP H4 cells were fixed
778 and immuno-stained for LAMP1, EEA1 and DAPI. Scale bars: 20 μ m and 2 μ m in
779 zoomed panels. **(C)** VPS35 KO H4 exhibit enlarged hybrid endolysosomal
780 compartments in which undigested materials accumulate. Transmission electron
781 micrographs of endolysosomal compartments in cell lines, blue arrows denote
782 endosomes/multivesicular bodies (MVBs), red = lysosomes and yellow = hybrid endo-
783 lysosomes. Magnified panel depicts enlarged hybrid compartment in VPS35 KO.
784 Scale bars: 2 μ m and 1 μ m in zoomed panel.

785

786

Figure 2

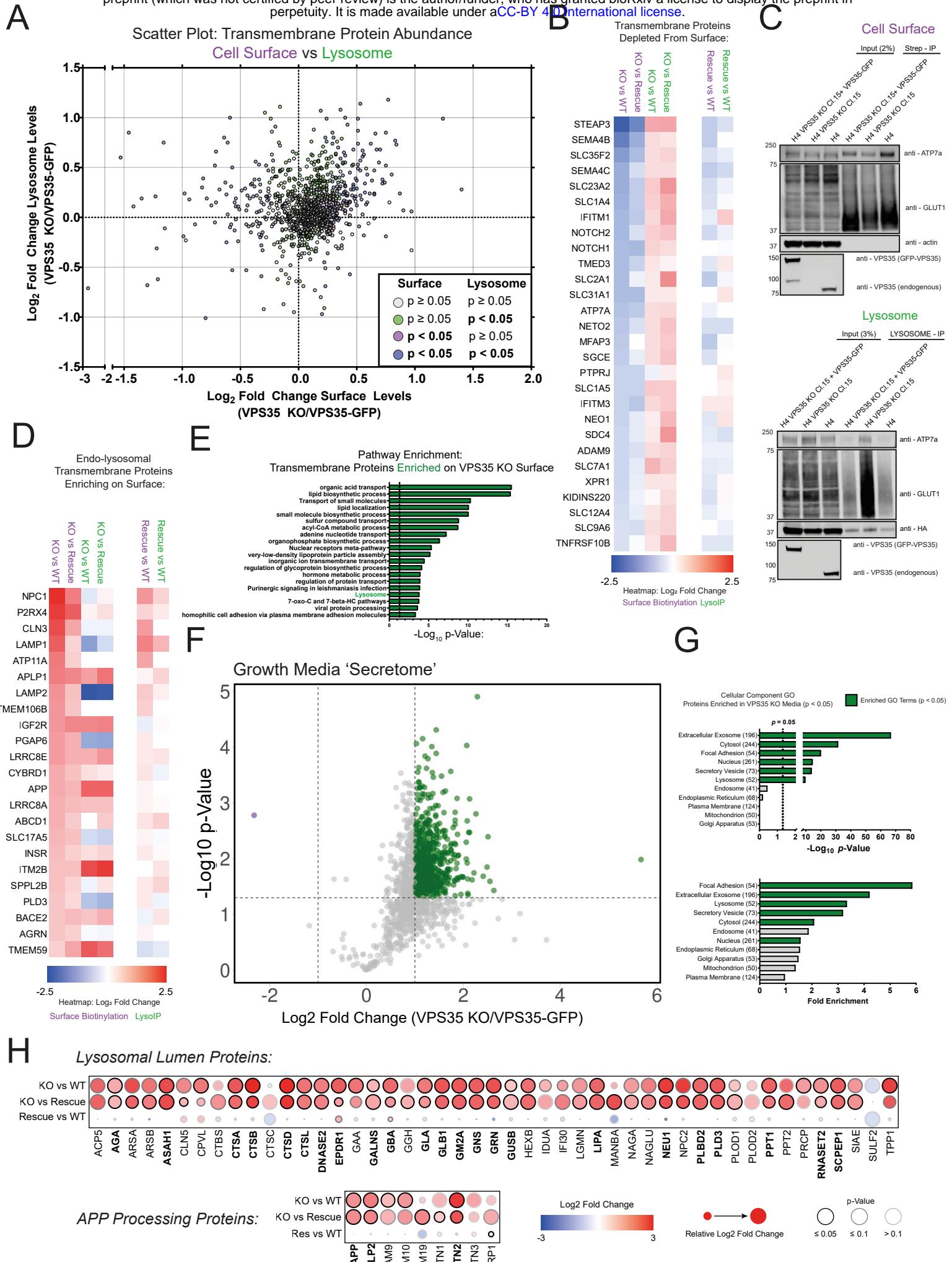


787 **Figure 2. Development of organelle restricted proteomics to characterise VPS35**
788 **KO lysosomes**

789 **(A)** Schematic depicting LysolP methodology coupled to TMT-based quantitative
790 proteomics. **(B)** TMEM192–x3HA labels lysosomes with a high degree of specificity.
791 Representative confocal images of H4 cell lines transduced to express TMEM192-x3
792 HA prior to fixation and immuno-staining for HA, LAMP1 and DAPI. Scale bars: 20 μ m.
793 **(C)** LysolP efficiently precipitates lysosomes from wild-type, VPS35 KO and VPS35-
794 GFP rescue cell lines. LysolP was performed on indicated cell lines prior to immuno-
795 blotting with anti-LAMP1 (to assess lysosome enrichment), β -actin, HA and VPS35.
796 **(D)** The lysosomal proteome of H4 exhibits a high degree of overlap with the published
797 proteome of HEK293T-derived lysosomes. **(E)** A cohort of proteins are significantly
798 relatively enriched (477 proteins) or depleted (246 proteins) from VPS35 KO
799 lysosomes compared to both wild-type and rescue cells. The VPS35 KO/VPS35-GFP
800 abundance ratio is displayed as a volcano plot. Data were normalised relative to total
801 protein count and used to generate a volcano plot from n=7 independent experiments
802 (clone 15 (n=3) and clone16 (n=4)), presented as ratio of \log_2 VPS35 KO / KO +
803 VPS35 GFP vs -Log10 p-value (thresholds set at p=0.05 and fold \log_2 change +/-
804 0.26). **(F, G)** Cohorts of depleted (F) or enriched (G) proteins in VPS35 KO lysosomes
805 converge into functional groupings. Gene ontology analyses of significantly enriched
806 or depleted proteins (\log_2 fold change \pm 0.26, p <0.05), describing depleted and
807 enriched functional categories plotted against significance.

808

809

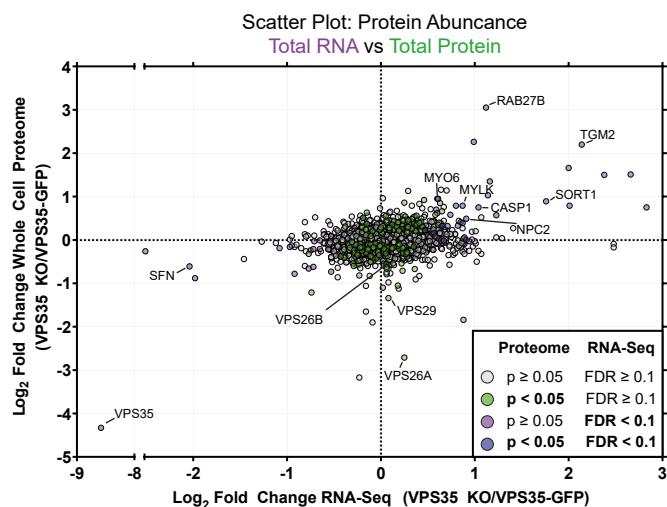

810 **Figure 3. LysolP Proteomics Reveals a Fingerprint of Lysosomal Dysfunction in**
811 **VPS35 KO Cells**

812 **(A-J)** A range of functional networks and protein families were relatively depleted or
813 enriched in lysosomes derived from VPS35 KO H4 cells relative to wild-type and
814 VPS35-GFP-expressing rescue cells. Dot-plots representing \log_2 fold change and p-
815 value in quantified abundances of: (A) BORC; (B) mTORC1 complexes; (C) lysosomal
816 lumen proteins; (D) Rab GTPases; (E) APP processing proteins; (F) vesicle SNAREs;
817 (G) PIP metabolism; (H) cholesterol transport; (I) autophagy; and (J) lysosomal solute
818 channels. **(K)** Proteolytic processing of APP is enhanced in VPS35 KO H4 cells. Cell
819 lysates from the indicated cell lines were immuno-blotted using anti-APP (full length
820 and CTF), VPS35 and β -actin antibodies. APP-CTF levels in VPS35 KO clone were
821 rescued upon re-introduction of VPS35-GFP. **(L)** Quantification of APP-CTF signal
822 intensity (n=5 independent experiments), means \pm SEM, ordinary one-way ANOVA
823 with Tukey's multiple comparisons tests, wild-type vs VPS35 KO p = 0.0006, VPS35
824 KO vs VPS35-GFP p = 0.0009, wild-type vs VPS35-GFP p = 0.9540. **(M)** APP
825 accumulates in LAMP1-positive compartments in VPS35 KO cells. Wild-type and
826 VPS35 KO H4 were fixed and immuno-stained for LAMP1 and APP and linescan
827 analysis was used to demonstrate colocalisation. Scale bar = 20 μ m and 1 μ m in
828 zoomed panels. **(N)** Proteins enriched in the VPS35 KO LysolP dataset are associated
829 with neurodegenerative disease. Enrichment of selected DisGeneNET disease
830 categories represented by significantly enriched proteins in the VPS35 KO LysolP
831 dataset (\log_2 fold change \pm 0.26, p <0.05) relative to both wild-type and VPS35-GFP-
832 expressing control conditions.

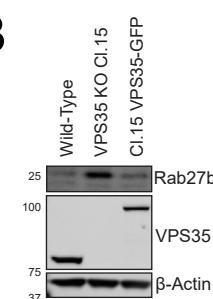
833

834

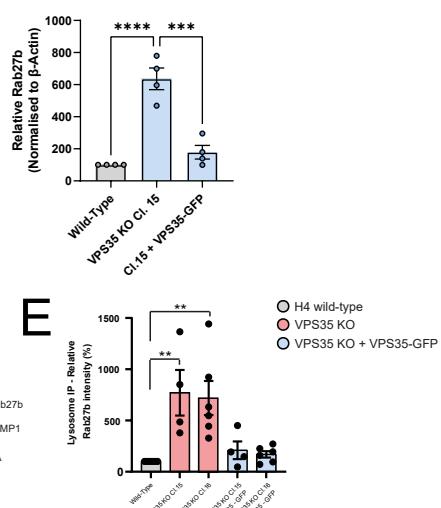
bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.13.507260>; this version posted September 15, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

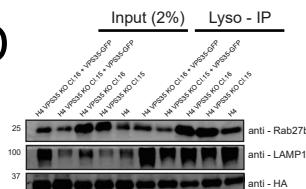

835 **Figure 4. The cell surface proteome is re-modelled in VPS35 KO H4 cells**

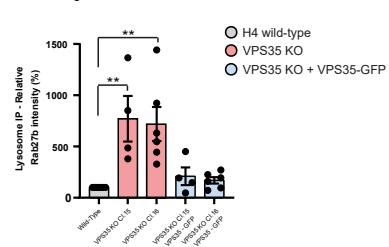
836 **(A)** Correlative analysis between cell surface and lysosomal proteome reveals bi-
837 directional re-routing of transmembrane proteins. Scatter plot of VPS35 KO/VPS35-
838 GFP transmembrane protein abundances in the cell surface proteome (x-axis) versus
839 the LysolP proteome (y-axis). Datapoints are coloured based on p-value scores in
840 each experiment as denoted in the key. **(B)** Transmembrane proteins depleted from
841 the cell surface are enriched in lysosomes of VPS35 KO cells. Heatmap depicting the
842 loss of transmembrane proteins from the cell surface proteome (purple columns) with
843 concomitant enrichment in the LysolP proteome (green columns) in VPS35 KO cells
844 relative to wild-type and VPS35-GFP rescue controls. **(C)** Perturbed endosome to
845 plasma membrane recycling correlates with increased abundance of cell surface
846 receptors in lysosomes. Cell surface and lysosomal proteomes were subjected to
847 immuno-blotting with antibodies recognising defined Retromer cargoes (ATP7a and
848 GLUT1). **(D)** Transmembrane lysosomal proteins enriched at cell surface VPS35 KO
849 cells. Heatmap depicting the enrichment of transmembrane proteins in the cell surface
850 proteome (purple columns) and corresponding abundance in the LysolP proteome
851 (green columns) in VPS35 KO cells relative to wild-type and VPS35-GFP rescue
852 controls. **(E)** Analysis of significantly enriched pathways in the VPS35 KO
853 transmembrane cell surface proteome relative to wild-type and VPS35-GFP rescue
854 controls. **(F)** Volcano plot of VPS35 KO/VPS35-GFP protein abundances in the growth
855 media ‘secretome’. 325 proteins were significantly enriched in the growth media of
856 VPS35 KO cells compared to both wild-type and rescue sample (Log_2 fold change $>$
857 1, $p < 0.05$). **(G)** Gene ontology analysis of cellular components enriched in the VPS35
858 KO ‘secretome’. Statistically significant categories ($p < 0.05$) are displayed in green.
859 **(H)** Dot-plot predicting lysosomal luminal protein and APP processing protein
860 abundances in the VPS35 KO ‘secretome’ relative to wild-type and VPS35-GFP
861 rescue control samples. Log_2 fold change, relative change and p-value score are
862 depicted by dot colour, size and outline respectively, as depicted in the legend.

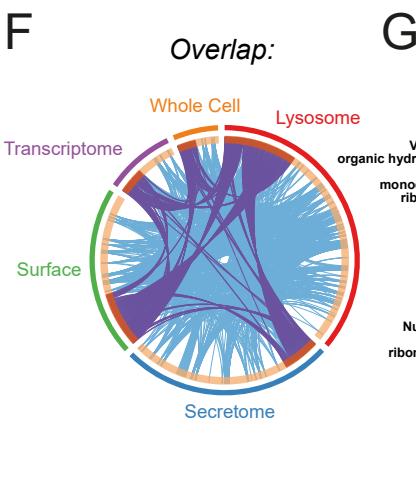

863

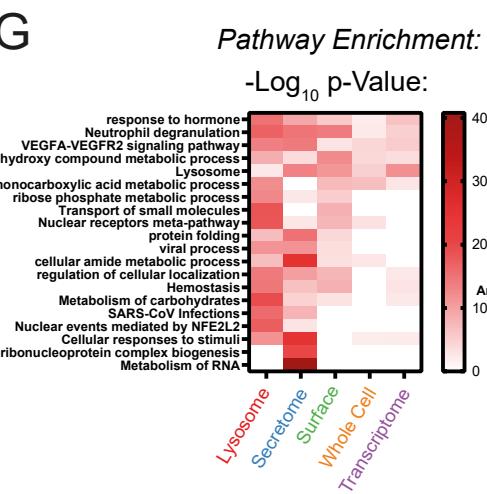
864

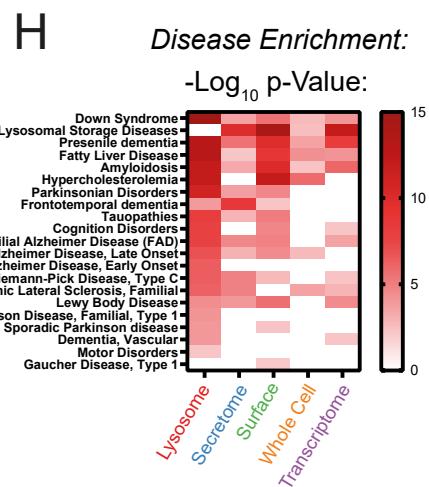

A


B


C

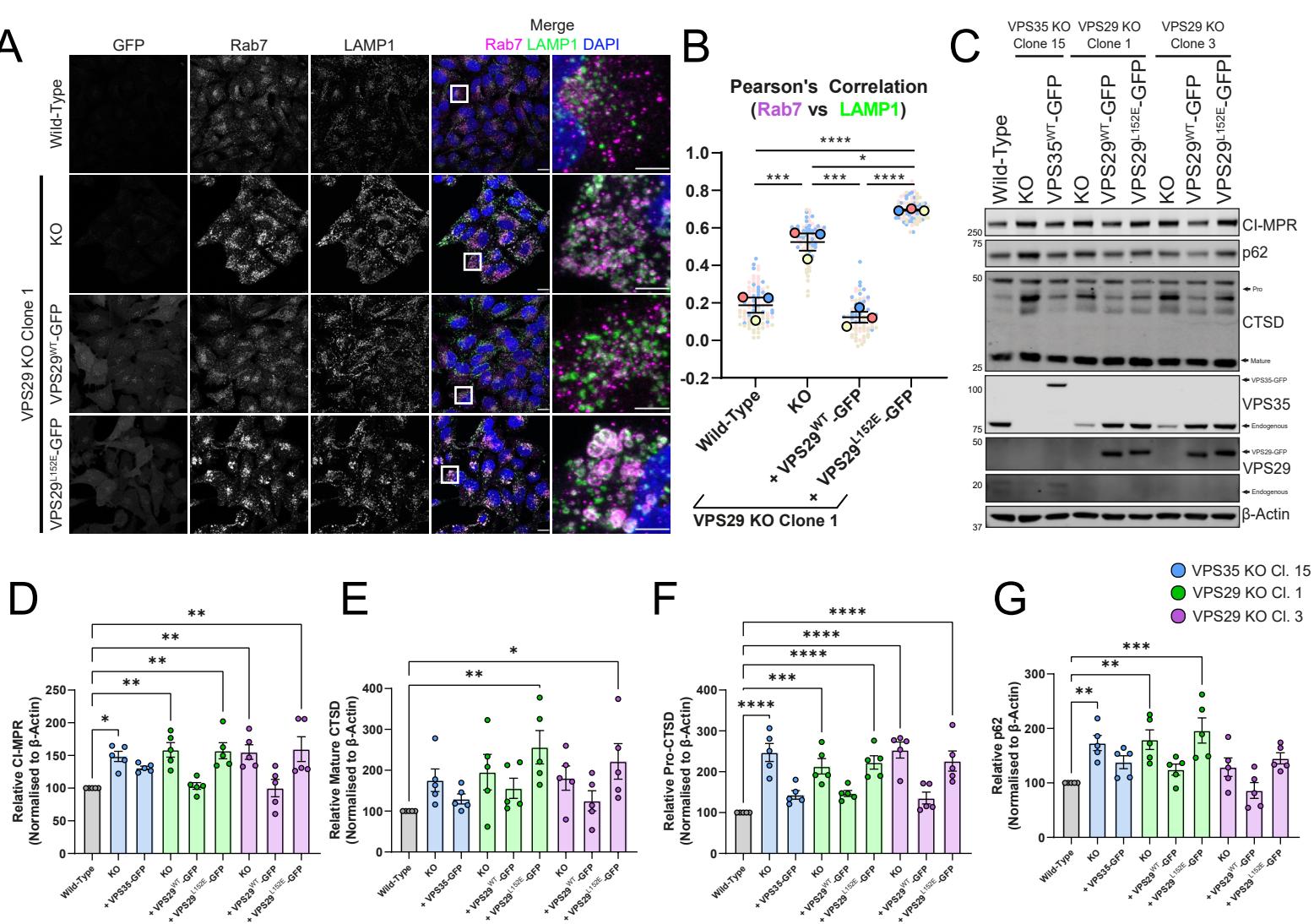

D


E


F

All Enriched Proteins:

H

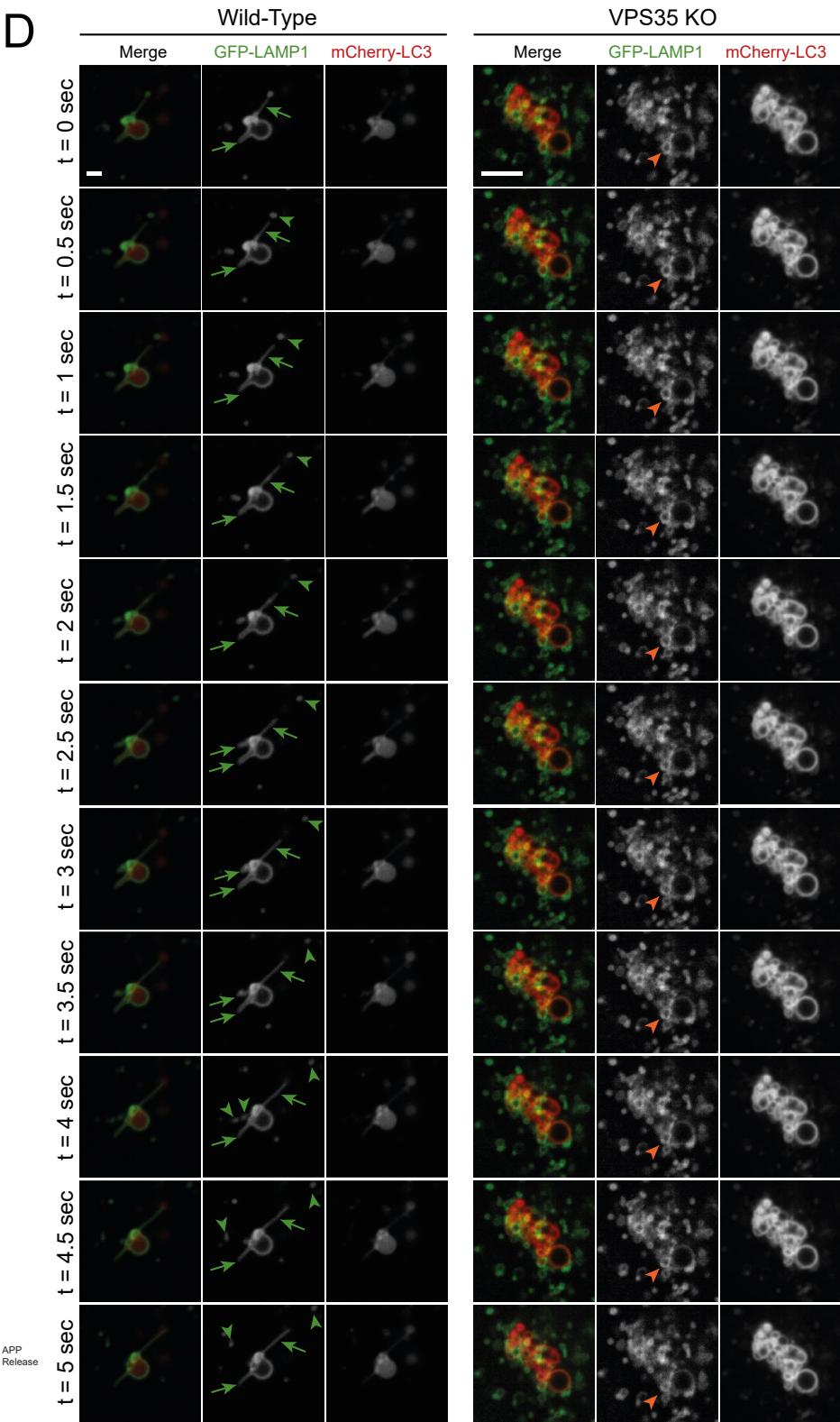
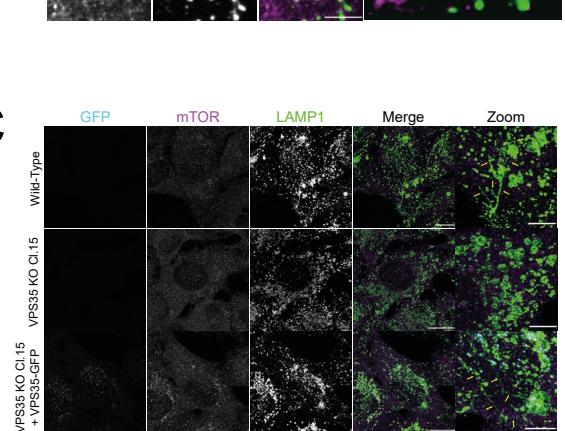
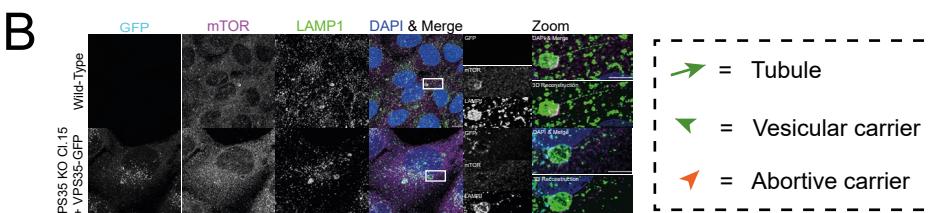
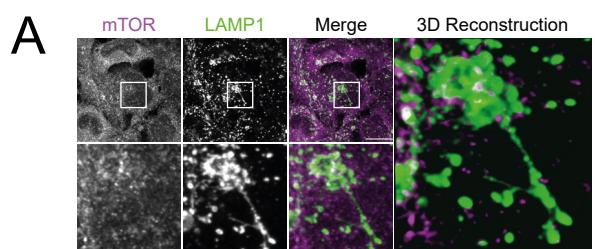

865 **Figure 5. Correlative mapping of ‘omic’ datasets reveals transcriptional**
866 **upregulation of Rab27b and enriched diseases**

867 **(A)** Correlative analysis between RNA-Seq and the whole cell proteome reveals
868 upregulation of a specific cohort of proteins. Scatter plot of VPS35 KO/VPS35-GFP
869 RNA-Seq transcript abundances (x-axis) versus the protein abundances in the whole
870 cell proteome (y-axis). Datapoints are coloured based on p-value scores in each
871 experiment as denoted in the key. **(B-E)** Western blot and quantification of Rab27b
872 protein levels in the whole cell lysates (B, C) and lysosomes (D, E) of wild-type, VPS35
873 KO, or VPS35-GFP rescue expression lines. For figure (C), $n = 4$ independent
874 experiments, means \pm SEM, ordinary one-way ANOVA comparison with Tukey’s
875 multiple comparisons tests, wild-type vs VPS35 KO $p = < 0.0001$, VPS35 KO vs
876 VPS35-GFP $p = 0.0002$, wild-type vs VPS35-GFP $p = 0.4762$. For (E), $n = 5$
877 independent experiments, means \pm SEM, ordinary one-way ANOVA comparison with
878 Dunnett’s multiple comparisons tests, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p <$
879 0.0001. **(F)** Circos plot of overlap of significantly enriched proteins in VPS35 KO
880 samples compared to both wild-type and VPS35-GFP-expressing rescue cells across
881 all datasets. **(G-H)** Pathway enrichment meta-analysis of significantly enriched
882 categories (G) and associated DisGeneNET categories (H) in VPS35 KO cells
883 compared to both wild-type and VPS35-GFP-expressing rescue cells across all
884 datasets.

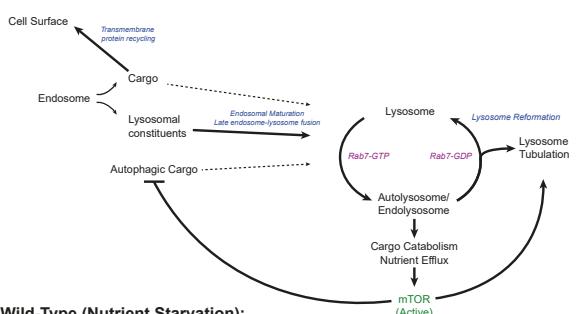
885

886

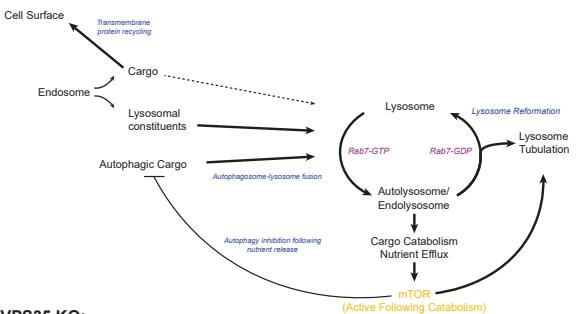
Figure 6

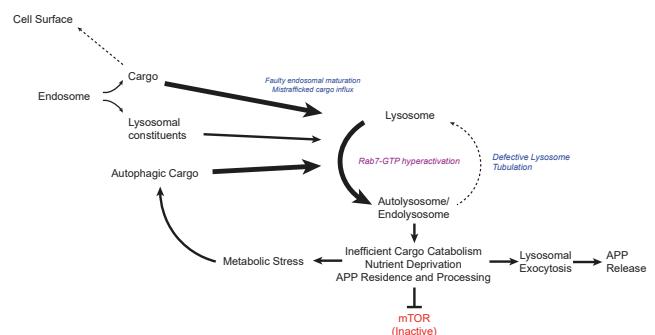




887 **Figure 6. VPS29 KO H4 cells display a hyper-lysosomal recruitment of Rab7**

888 **(A)** Deletion of VPS29 induces hyper-recruitment of Rab7 to lysosomes, which is
889 rescued by re-expression VPS29^{WT}-GFP but not VPS29^{L152E}-GFP. Cell lines were
890 fixed and immuno-stained for Rab7, LAMP1 and DAPI. Scale Bars: 20 μ m and 5 μ m
891 in zoomed panels. **(B)** Rab7 labelling of lysosomes was quantified by measuring the
892 Pearson's correlation co-efficient between respective fluorescent signals over an n of
893 3 independent experiments. Means +/- SEM, one-way ANOVA with Tukey's multiple
894 comparisons tests. Wild-type vs VPS29 KO p = 0.0005, wild-type vs VPS29^{WT}-GFP p
895 = 0.5651, wild-type vs VPS29^{L152E}-GFP p < 0.0001, VPS29 KO vs VPS29^{WT}-GFP p =
896 0.0001, VPS29 KO vs VPS29^{L152E}-GFP p = 0.308, VPS29^{WT}-GFP vs VPS29^{L152E}-GFP
897 p < 0.0001. **(C-G)** Destabilisation of the Retromer trimer by VPS35 or VPS29 KO
898 causes an increase in whole cell protein levels of CI-MPR, p62 and pro-CTSD. **(C)**
899 Representative immuno-blot of endogenous protein levels derived from indicated cell
900 lines. **(D-G)** Endogenous levels of indicated proteins were quantified relative to β -actin
901 over n=5 independent experiments. Means +/- SEM, one-way ANOVA comparison
902 with Dunnett's multiple comparisons tests, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p
903 < 0.0001.


904

905

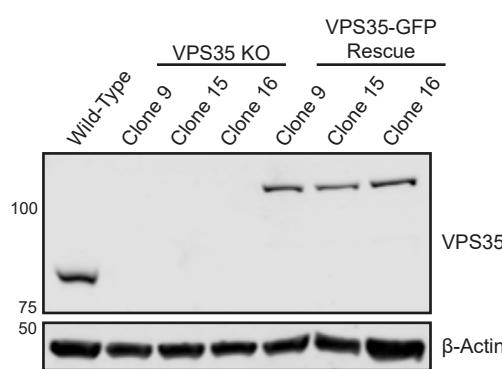

Figure 7: VPS35 KO Phenotype is Caused by Defects in Lysosomal Reformation


Wild-Type (Nutrient Replete):

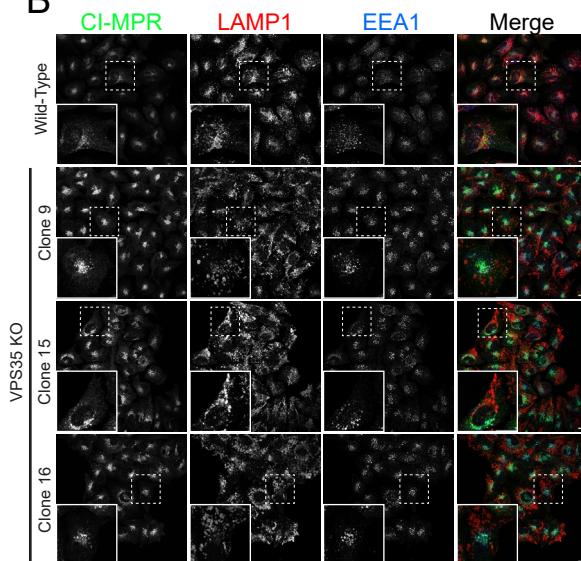
Wild-Type (Nutrient Starvation):

VPS35 KO:

906 **Figure 7. Perturbed autolysosome reformation induces defects to endo-**
907 **lysosomal morphology in VPS35 KO**

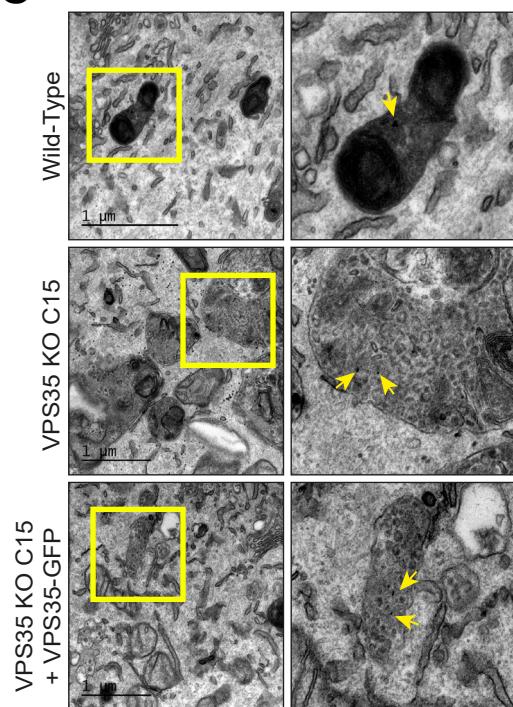

908 **(A)** Tubular resolution of H4 autolysosomes in response to amino acid starvation. H4
909 cells were depleted of amino acids for 2h prior to fixation and immuno-staining for
910 mTOR and LAMP1. Magnified and 3D reconstructed panels depict mTOR and LAMP1
911 positive tubules emanating from autolysosomes. Scale Bars: 20 μ m and 5 μ m in
912 zoomed panels. **(B)** Starvation induced autolysosome reformation in H4 is
913 recapitulated in VPS35-GFP cells. H4 and VPS35-GFP cells were depleted of amino
914 acids for 2h prior to fixation and immuno-staining for DAPI, mTOR and LAMP1.
915 Magnified panels depict mTOR and LAMP1 decorated tubules emanating from
916 autolysosomes co-labelled for VPS35-GFP. Scale Bars: 20 μ m and 5 μ m in zoomed
917 panels. **(C)** Defective autolysosome resolution in VPS35 KO H4 cells. Cells were
918 depleted of amino acids for 2 hours and refed in full media for 15 min prior to fixation
919 and immuno-staining for mTOR and LAMP1. Zoomed panels show mTOR and LAMP1
920 tubules in H4 and VPS35 GFP compared to the LAMP1 positive, mTOR negative
921 vesicular structures observed in VPS35 KO. Scale Bars: 20 μ m and 5 μ m in zoomed
922 panels. **(D)** Representative time courses from live cell imaging of LAMP1 positive
923 tubule formation and scission comparing events observed in wild-type and VPS35 KO
924 cells. **(E)** Schematic depicting Rab7/mTOR-dependent activation of lysosome
925 reformation under nutrient replete and starved conditions in wild-type cells. In VPS35
926 KO, reduced cargo recycling to the cell surface and increased flux into lysosomes,
927 Rab7 hyperactivation, mTOR inactivation and perturbed lysosome tubulation illicit
928 perturbed morphology and function of the endolysosomal network.

929

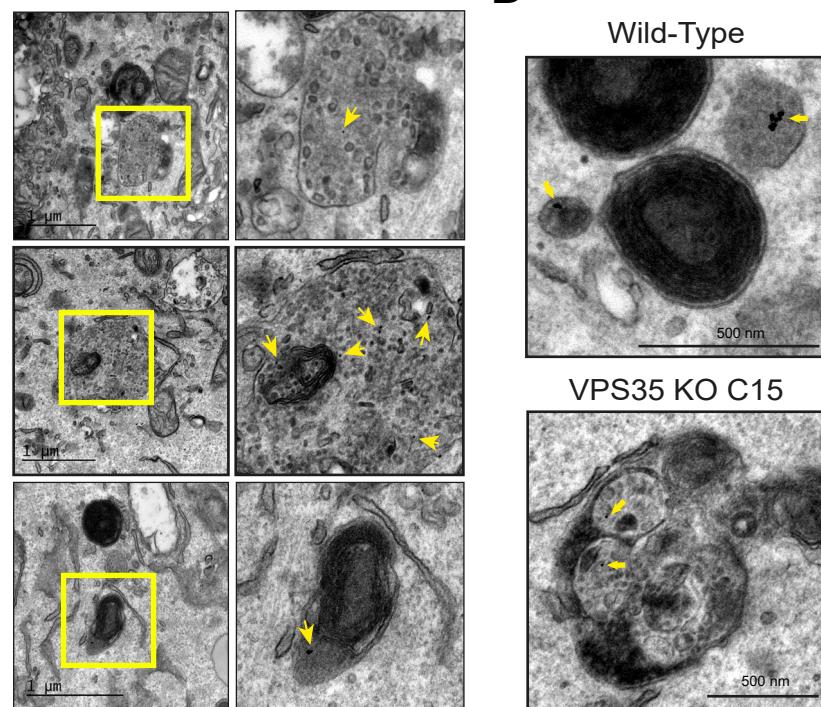

930

931

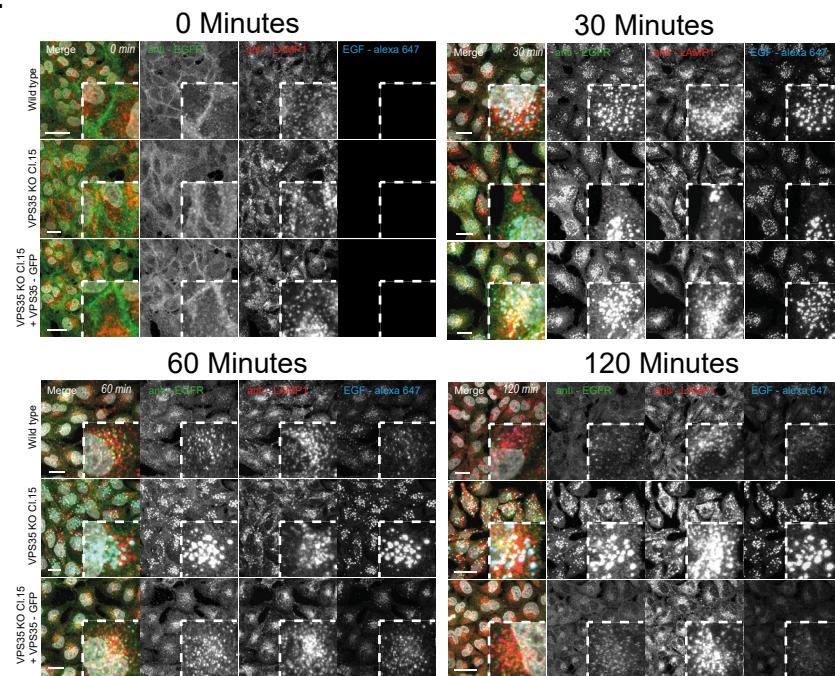
A

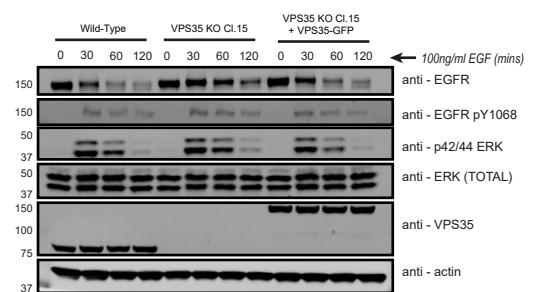


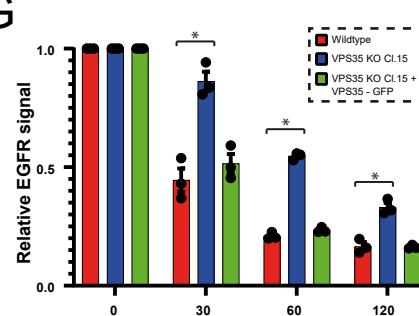
B



C

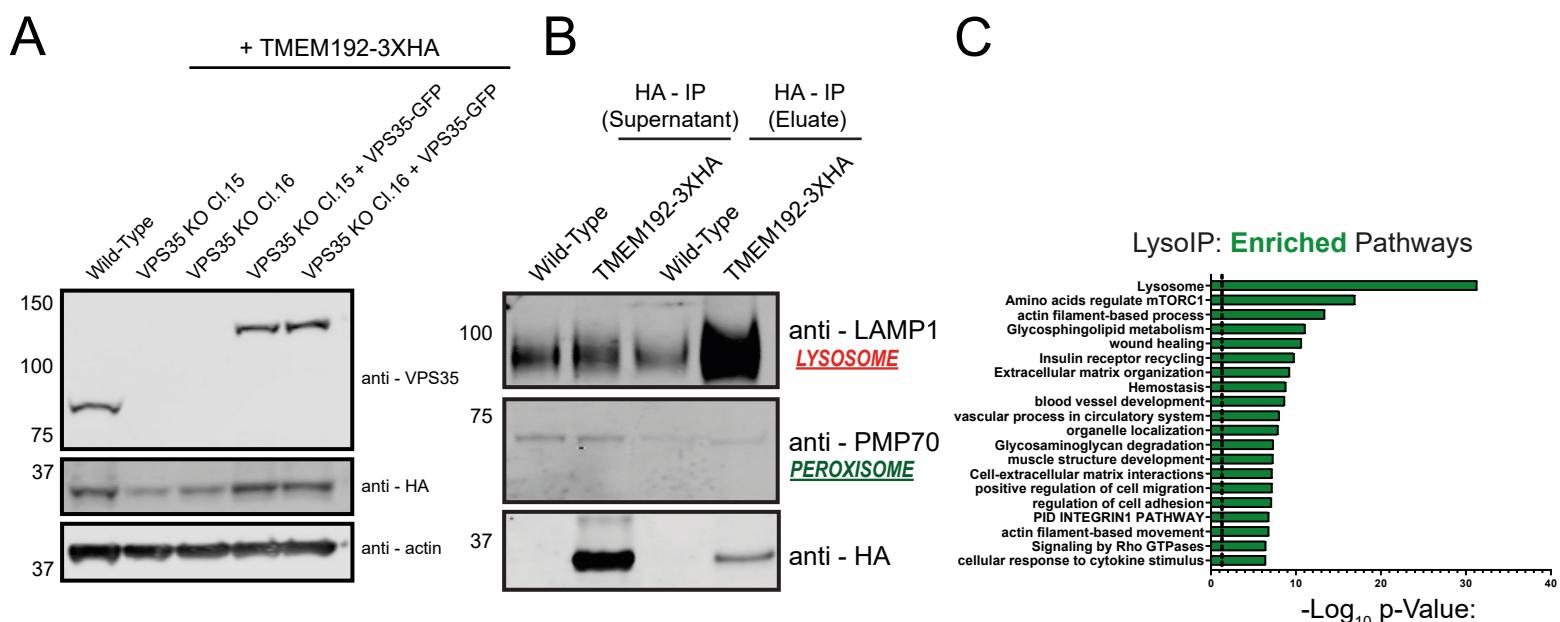

BSA-10nm Gold Endocytosis:


D


E

F

G

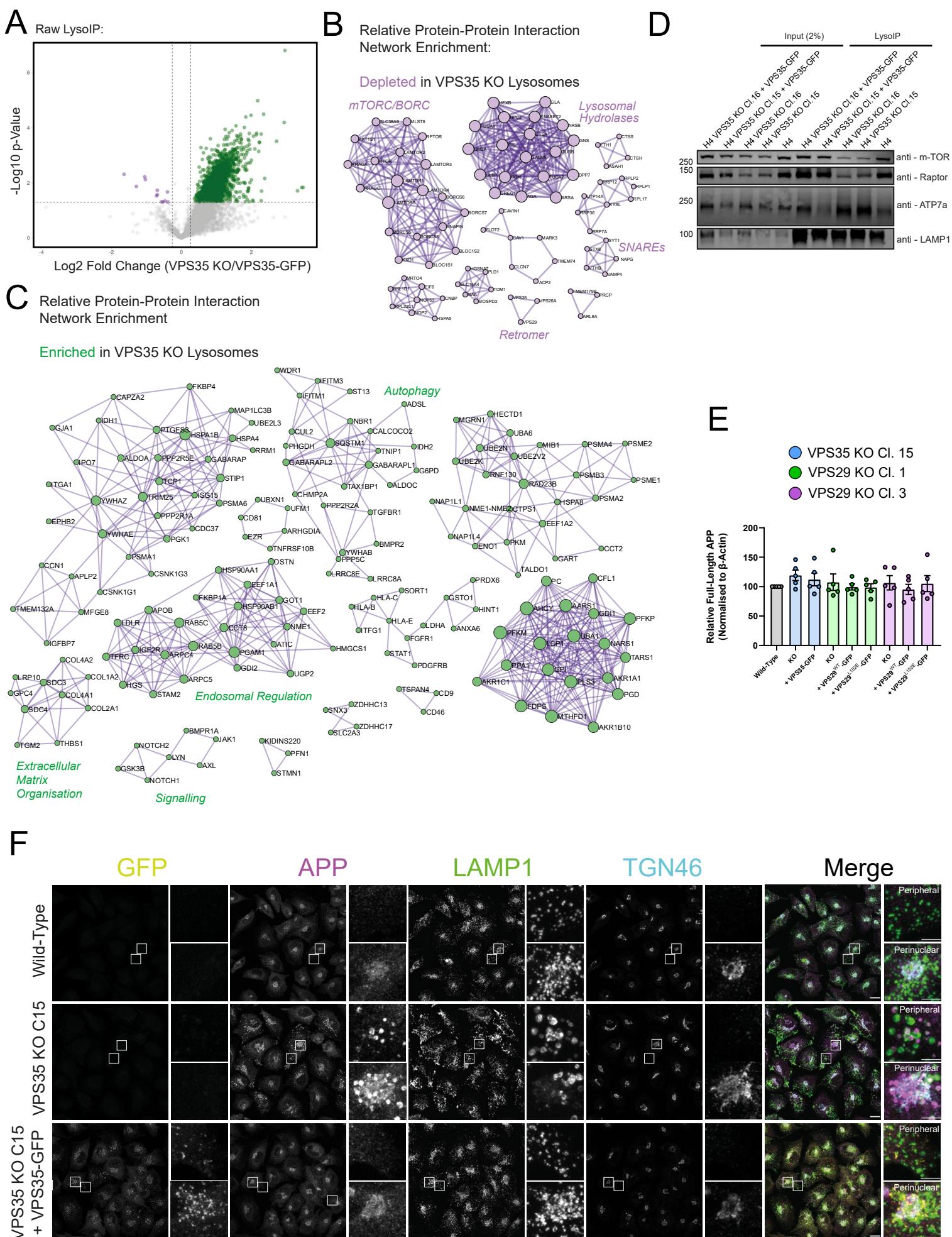

932 **Extended Data Figure 1. Validation of VPS35 KO Clones and Lysosomal**
933 **Morphology Defects**

934 **(A)** Western blot validation of VPS35-GFP expression in VPS35 KO H4 cells. The
935 presence of the VPS35-GFP construct is indicated by increased molecular weight of
936 VPS35, corresponding to GFP. **(B)** Immunofluorescence staining of three independent
937 VPS35 KO clones with altered CI-MPR, LAMP1 and EEA1 compartment morphology.
938 Scale bar = 20 μ m, zoom scale bar = 5 μ m. **(C-D)** Wild-type, VPS35 KO and VPS35-
939 GFP-expressing rescue cells were incubated for 4 hours with 10nm BSA-gold prior to
940 fixation and processing for electron microscopy. Transmission electron micrographs
941 of internalized gold particles. Scale bars: 1 μ m (C) and 500 nm (D). **(E)** EGFR is sorted
942 to lysosomes but inefficiently degraded in VPS35 KO. Cells were serum starved to
943 distribute EGFR at the plasma membrane prior to receptor activation via addition of
944 EGF-Alexa-Fluor 647 (100 ng/ml) for the denoted time points and subsequent fixation
945 and immuno-staining for EGFR and LAMP1. Scale bars: 20 μ m. **(F)** The kinetics of
946 EGFR degradation are perturbed in VPS35 KO relative to control and rescue cell lines.
947 Cells were starved as above prior to stimulation with EGF (100 ng/ml) for the indicated
948 time periods and immuno-blotting with anti-EGFR, EGFR pY1068, total ERK, phospho
949 ERK (p42/44), VPS35 and β -actin. **(G)** Quantification of EGFR degradation time
950 course over n=3 independent experiments. Means +/- SEM, one-way ANOVA with
951 Tukey's multiple comparisons tests. At 30 and 60 min EGF stimulation: wild-type vs
952 VPS35 KO p = <0.0001 and VPS35-GFP vs VPS35 KO p = <0.0001, at 120 min: wild-
953 type vs VPS35 KO p = 0.0037 and VPS35-GFP vs VPS35 KO p = 0.0002.

954

955

Extended Data Figures 2

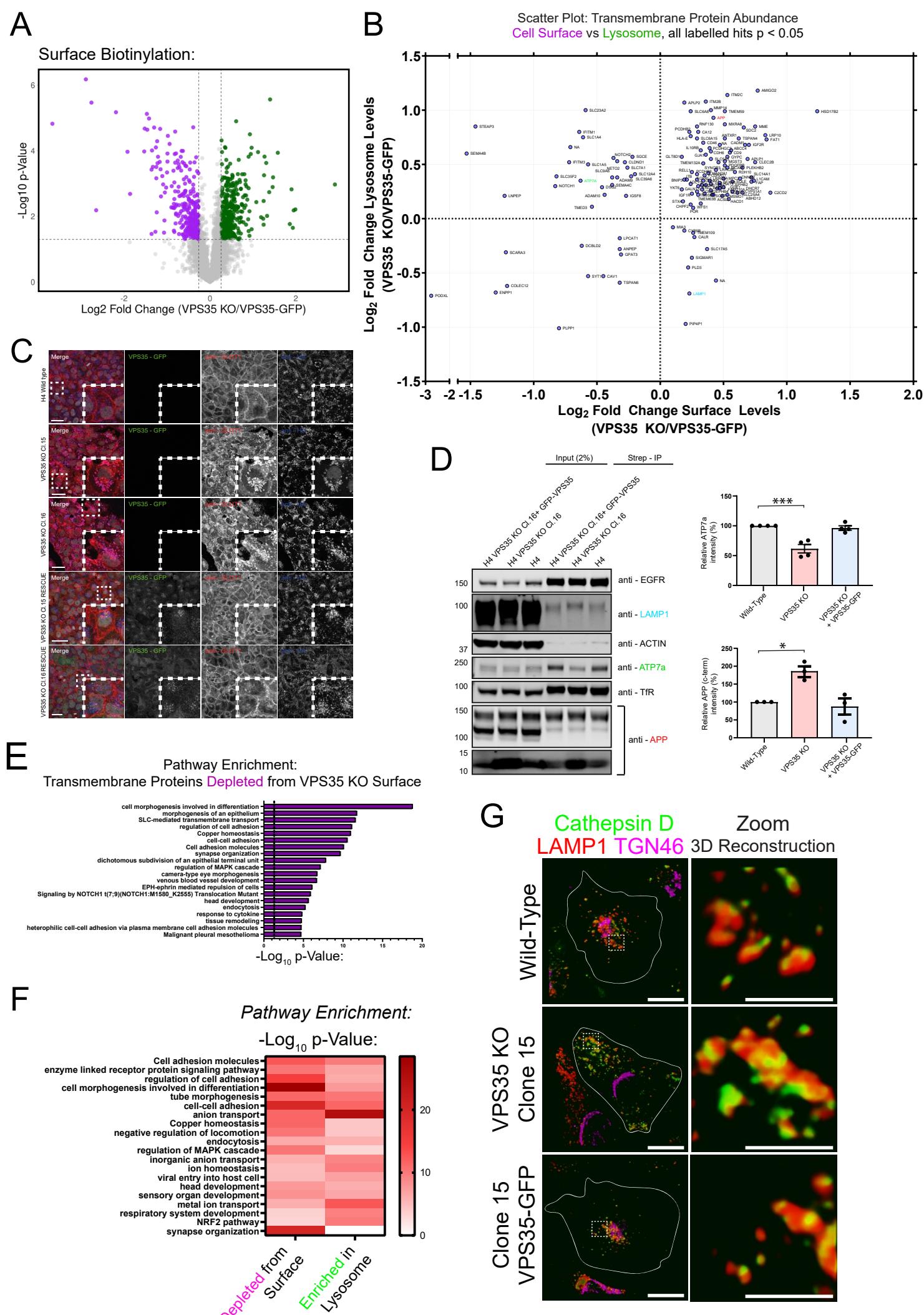

956 **Extended Data Figure 2. Development of LysolP methodology.**

957 **(A)** Representative western blot depicting TMEM192-3xHA expression in cell lines.
958 **(B)** LysolP specifically enriches for lysosomal markers. Western blot probing for
959 lysosomal and peroxisomal compartment markers in LysolP samples derived from
960 wild-type and TMEM192-3xHA expressing H4. **(C)** Pathway analysis of significantly
961 enriched pathways in TMEM192-3xHA-expressing cells subjected to LysolP relative
962 to wild-type control H4 cells.

963

964

Extended Data Figure 3



965 **Extended Data Figure 3 Additional LysolP Proteomic Analysis**

966 **(A)** Bulk lysosomal content is enriched in VPS35 KO cells. Volcano plot of raw VPS35
967 KO/VPS35-GFP protein abundances. 1024 and 6 proteins were significantly enriched
968 and depleted, respectively, in VPS35 KO LysolP compared to both wild-type and
969 rescue samples (Log2 fold change \pm 0.26, $p < 0.05$). **(B-C)** Protein-protein interaction
970 networks of significantly depleted (B) and enriched (C) proteins in the normalised
971 VPS35 KO LysolP relative to wild-type and VPS35-GFP samples. **(D)** mTORC1
972 components dissociate from VPS35 KO lysosomes. Wild-type, VPS35 KO Clones 15
973 and 16 and corresponding VPS35-GFP rescues expressing TMEM192-3xHA were
974 subjected to LysolP followed by Western blotting. mTOR and Raptor levels decrease
975 in VPS35 KO cells, whereas the retromer cell surface cargo ATP7a enriches in VPS35
976 KO lysosomes. **(E)** Quantification of full-length APP levels in wild-type, VPS35 KO and
977 VPS29 KO cells with corresponding rescue construct expression, displayed in Figure
978 4K. $n = 4$ independent repeats. **(F)** APP accumulates within lysosomes in VPS35 KO
979 cells. Immunofluorescence staining of wild-type, VPS35 KO Clone 15 and Clone 15
980 VPS35-GFP rescue cells stained with anti-APP -LAMP1 and -TGN46 antibodies.
981 Insets depict examples of perinuclear APP (centred on the *trans*-Golgi network (TGN))
982 and peripheral APP. Scale bar = 20 μ m, zoom scale = 5 μ m.

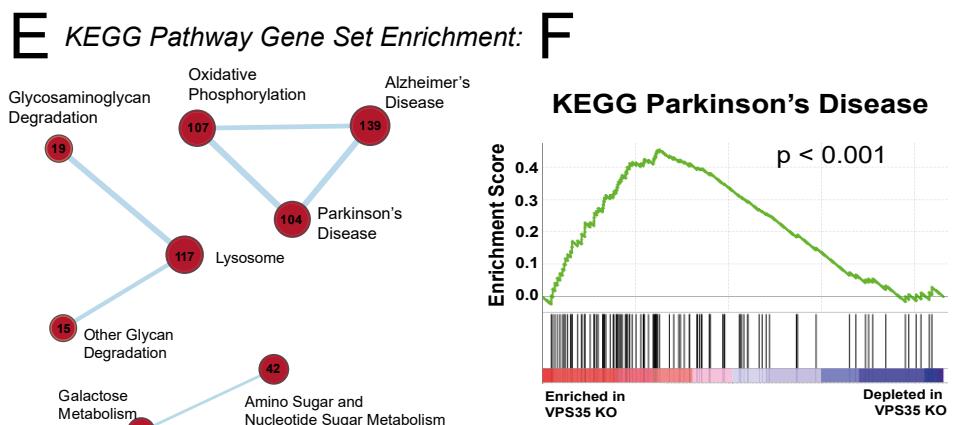
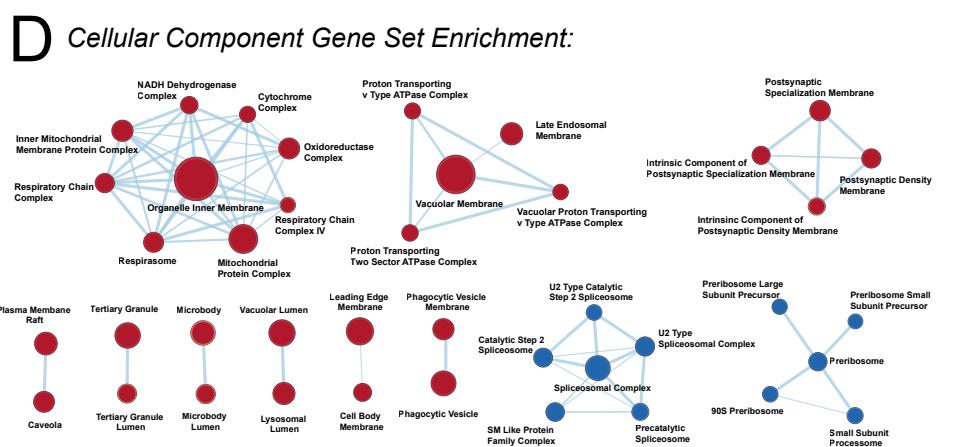
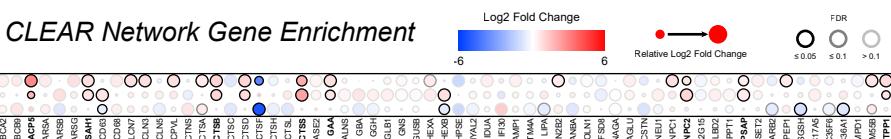
983

984

985 **Extended Data Figure 4. Proteomic Profiling of the VPS35 KO Cell Surface and**
986 **Lysosomal Proteomes**

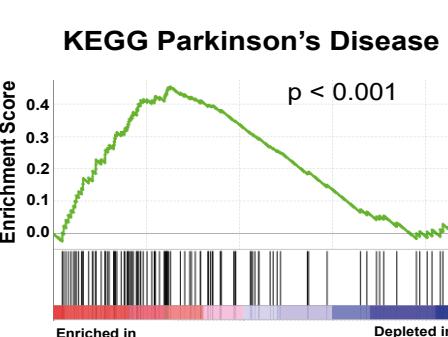
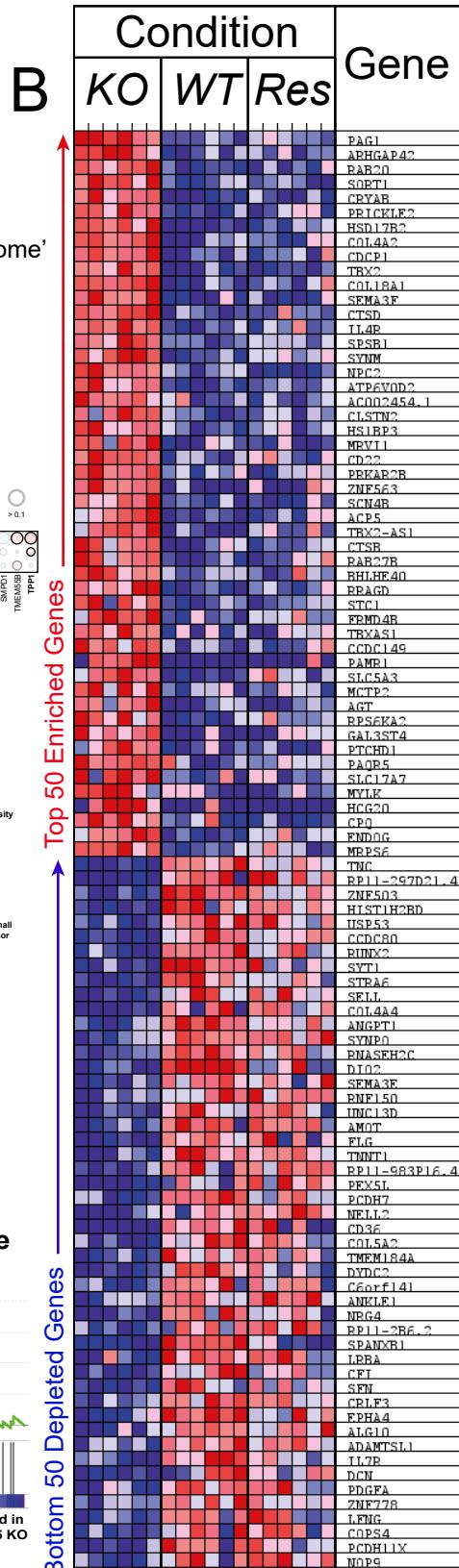
987 **(A)** Volcano plot of VPS35 KO/VPS35-GFP protein abundances in the cell surface
988 proteome. 270 and 199 proteins were significantly enriched and depleted, respectively
989 (Log₂ fold change \pm 0.26, p < 0.05). **(B)** Scatter plot of VPS35 KO/VPS35-GFP protein
990 abundances in the cell surface proteome (x-axis) versus the LysolP proteome (y-axis).
991 Only significantly proteins in both experiments are displayed and labelled (Log₂ fold
992 change \pm 0.26, p < 0.05). **(C)** Imaging of endogenous GLUT1 steady-state distribution
993 establishing that re-expression of VPS35-GFP rescues the missorting to lysosomes
994 observed in VPS35 KO H4 cells. **(D)** Cell surface abundance of APP-CTF is elevated
995 in VPS35 KO H4 cells. Cell surface precipitates from indicated cell lines were immuno-
996 blotted using anti – APP (full length and CTF), EGFR, TfR and LAMP1 (confirmation
997 of enrichment of surface proteome), β -actin and ATP7a. Quantification of APP-CTF
998 (n=3) and ATP7a (n=4) cell surface abundances (means +/- SEM, one-way ANOVA
999 with Dunnett's multiple comparisons tests, comparisons with wildtype, p = * p < 0.02,
1000 *** p < 0.0005). **(E)** Pathway analysis of significantly depleted pathways in the VPS35
1001 transmembrane cell surface proteome relative to wild-type and VPS35-GFP
1002 rescue controls. **(F)** Pathway enrichment analysis of significantly depleted pathways
1003 represented by transmembrane proteins significantly depleted from the VPS35 KO cell
1004 surface proteome, and transmembrane proteins significantly enriched in the VPS35
1005 KO LysolP proteome relative to wild-type and VPS35-GFP rescues. **(G)** Cathepsin D
1006 localises to LAMP1-positive compartments in VPS35 KO H4 cells.
1007 Immunofluorescence microscopy of wild-type, VPS35 KO and VPS35-GFP rescue H4
1008 cells stained with anti-CTSD, -LAMP1 and -TGN46 antibodies. Scale bar = 20 μ m,
1009 zoom 3D reconstruction scale bar = 5 μ m.

1010




1011

Extended Data Figure 5

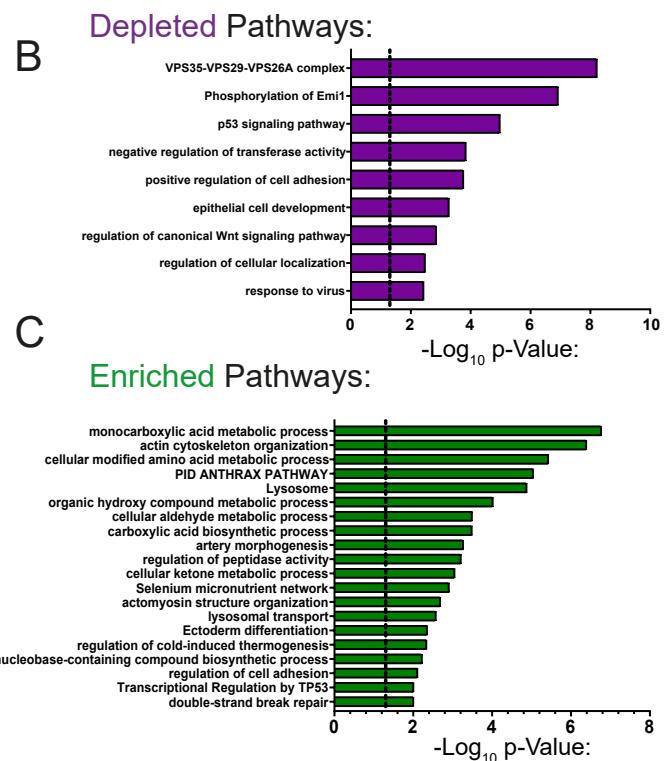
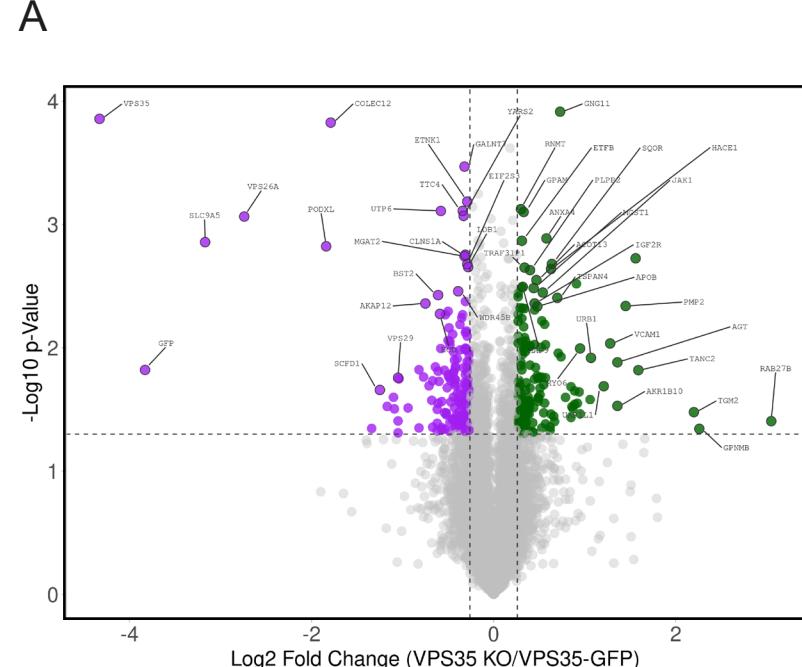
A

C

G

VPS35 KO Enrichment Rank	Gene Set	Size	Net Enrichment Score	Nominal p-Value	FDR q-Value
1	KEGG_OXIDATIVE_PHOSPHORYLATION	107	2.39	<0.001	<0.001
2	KEGG_LYSOSOME	117	2.38	<0.001	<0.001
7	KEGG_PARKINSONS_DISEASE	104	1.96	<0.001	0.005
19	KEGG_ALZHEIMERS_DISEASE	139	1.66	0.002	0.057
37	KEGG_AUTOIMMUNE_THYROID_DISEASE	25	1.36	0.093	0.228
38	KEGG_HUNTINGTONS_DISEASE	158	1.35	0.023	0.226

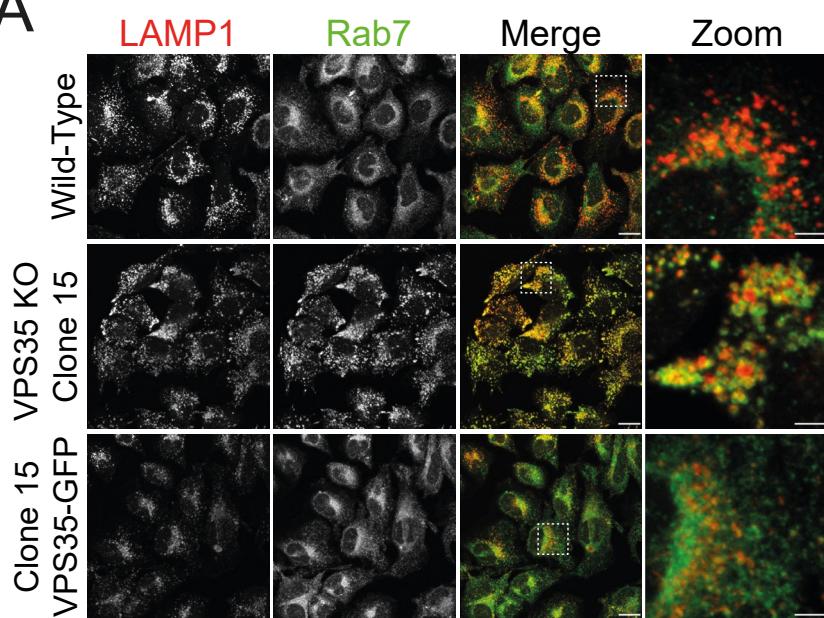
1012 **Extended Data Figure 5. Transcriptional Profiling of VPS35 KO Cells**

1013 **(A)** Schematic of the RNA-seq experimental design. 6 wild-type samples, 6 VPS35
1014 KO samples (2 each of VPS35 KO clones 9, 15 and 16) and 6 VPS35-GFP rescue
1015 samples (2 each of VPS35-GFP rescue clones 9, 15 and 16) were analysed. **(B)**
1016 Heatmap depicting the top 50 up- and down-regulated genes in VPS35 KO samples
1017 relative to both wild-type and rescue cells. **(C)** Dot-plot depicting the relative fold
1018 changes of CLEAR network gene transcripts in VPS35 KO cells relative to wild-type
1019 and VPS35-GFP rescue cells. Heatmap scale and FDR scores are indicated by colour
1020 of dots and rings, respectively. **(D)** Network analysis of significantly enriched cellular
1021 component gene sets. Red circles denote enriched categories, and blue circles denote
1022 depleted categories in VPS35 KO H4 cells. Circle size represents the number of
1023 enriched/depleted genes belonging to each gene set within the dataset. **(E)** Network
1024 analysis of significantly enriched KEGG pathway gene sets, presented as in (D).
1025 Circles are annotated with the number of enriched genes within each gene set. **(F)**
1026 Representative enrichment score plot genes enriched in the 'Parkinson's Disease'
1027 KEGG pathway. **(G)** Table of selected significantly enriched KEGG pathway gene
1028 sets, depicting their rank, net enrichment score, size, and statistics. The full list of gene
1029 set enrichment is depicted in **Table 8**.

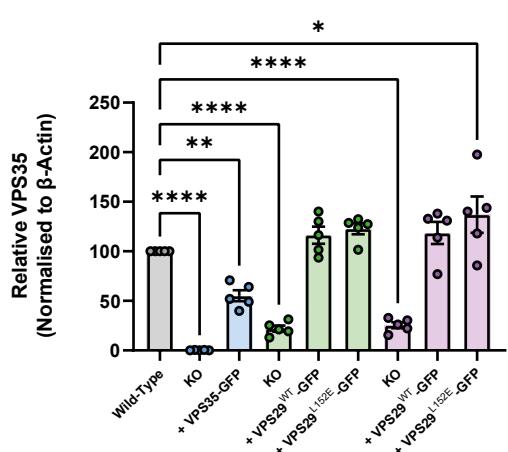
1030

1031

1032 **Extended Data Figure 6. Supplementary Whole Cell Proteome and Meta-Analysis**


1033 **(A)** Volcano plot of VPS35 KO/VPS35-GFP protein abundances in the whole cell
1034 proteome. 71 and 59 proteins were significantly enriched and depleted, respectively
1035 (Log2 fold change ± 0.26 , $p < 0.05$). **(B-C)** Pathway analysis of significantly depleted
1036 (B) or enriched (C) pathways in the VPS35 KO whole cell proteome.

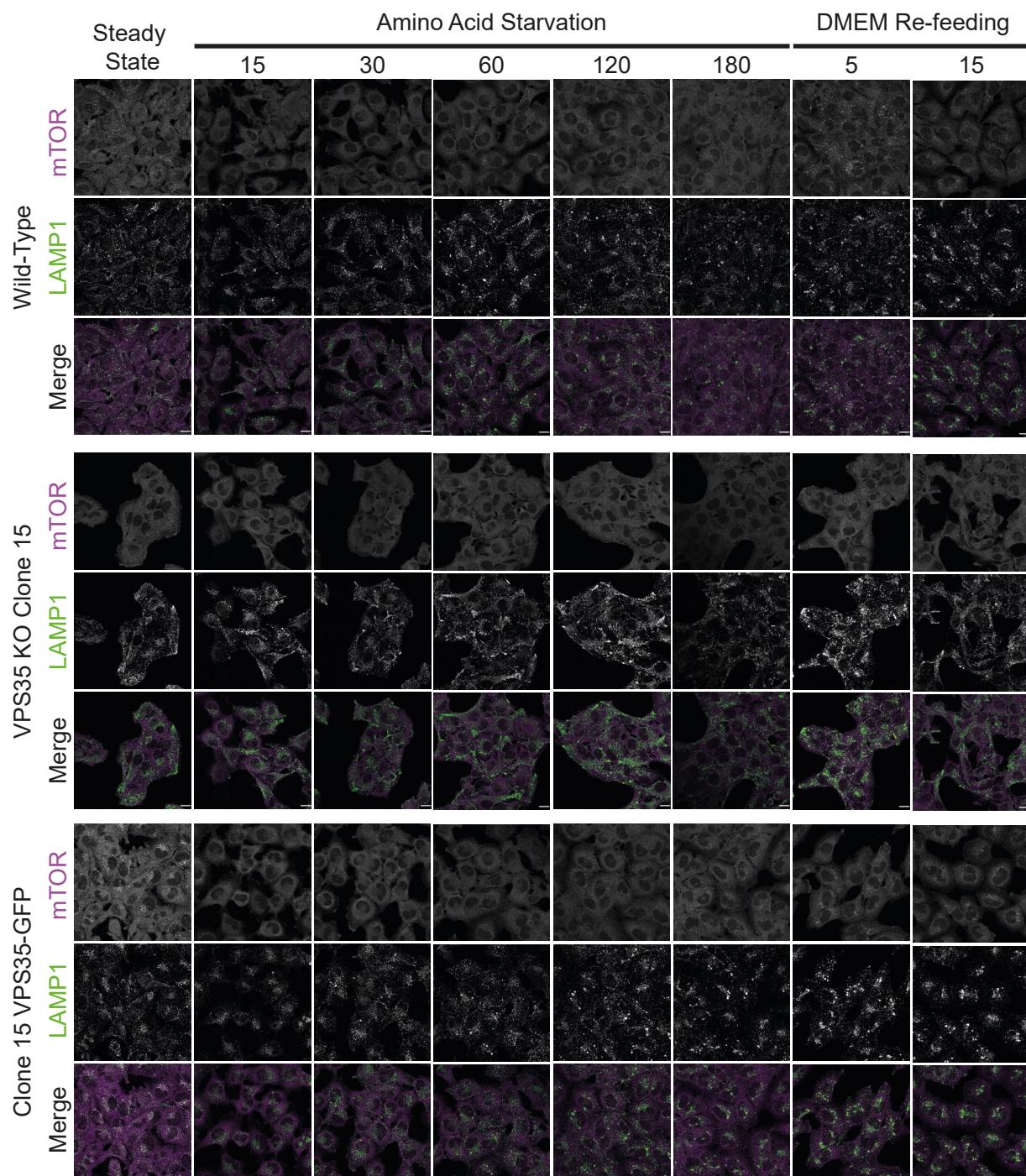
1037


1038

Extended Data Figure 7

A

B

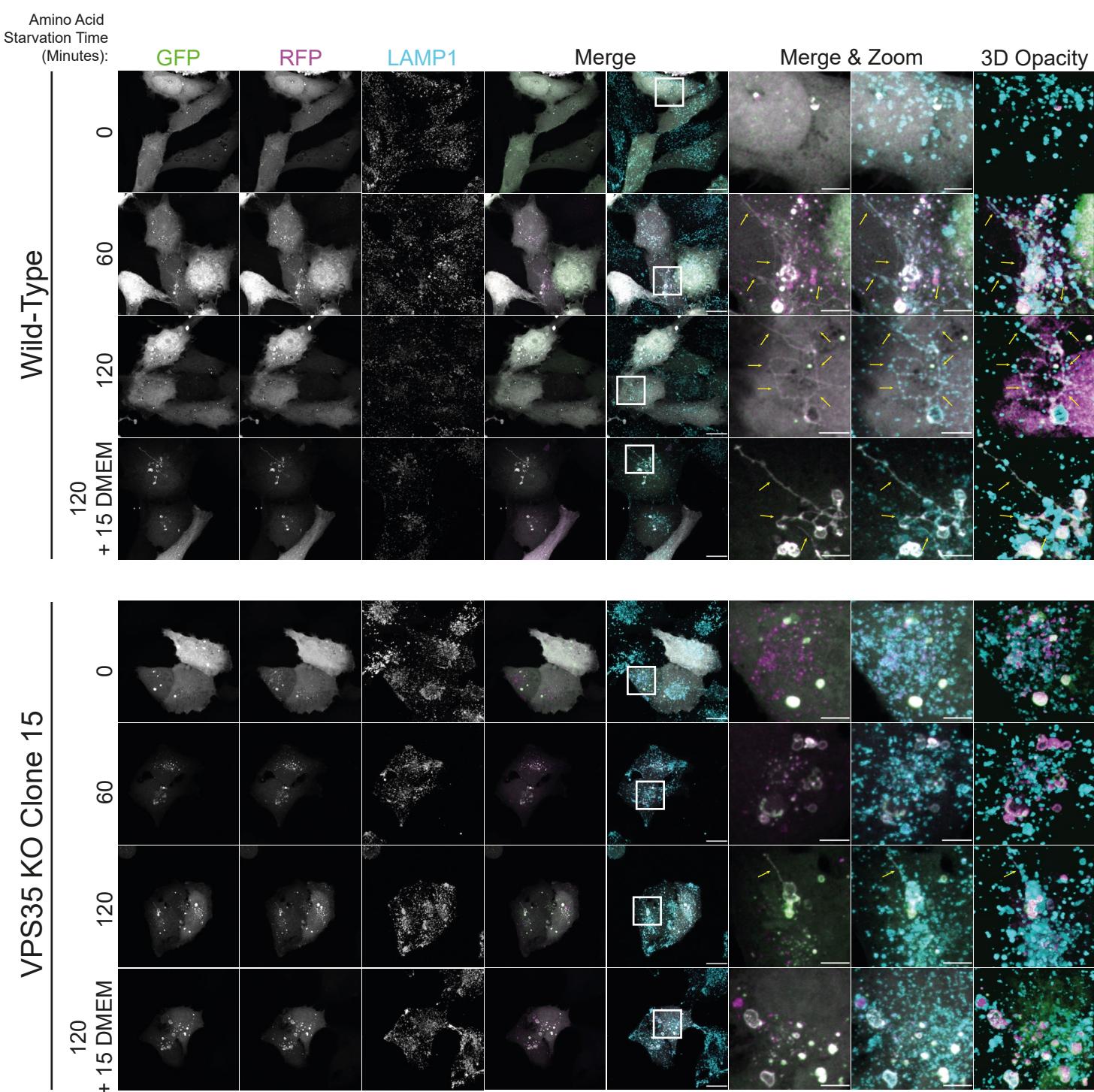

1039 **Extended Data Figure 7. VPS35 KO H4 cells display hyper-recruitment of Rab7**
1040 **to LAMP1-positive lysosomes**

1041 **(A)** VPS35 KO cells exhibit Rab7 hyper-recruitment to LAMP1-positive compartments.
1042 Immunofluorescence staining of wild-type, VPS35 KO Clone 15, and Clone15 VPS35-
1043 GFP-expressing cell stained with anti-Rab7 and -LAMP1 antibodies. Scale bar = 20
1044 μ m, zoom scale = 5 μ m. **(B)** Quantification of VPS35 levels of indicated proteins were
1045 quantified relative to β -actin over n=5 independent experiments, displayed in Figure
1046 2F. Means +/- SEM, one-way ANOVA comparison with Dunnett's multiple
1047 comparisons tests, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

1048

1049

Extended Data Figure 8


1050 **Extended Data Figure 8. Impaired mTOR Recruitment in VPS35 KO H4 Cells**

1051 Lysosomal association of mTOR is unresponsive to amino acid starvation and re-
1052 feeding in VPS35 KO. Cells were amino acid starved prior to re-feeding in DMEM for
1053 the indicated time periods, then fixed and immuno-stained for mTOR and LAMP1.
1054 Scale bars = 20 μ m.

1055

1056

Figure S9

1057 **Extended Data Figure 9. Defective Tubulation of Autophagic Lysosomes in**
1058 **VPS35 KO Cells**

1059 LC3-positive autophagic lysosomes display abundant tubulation in following starvation
1060 or re-feeding in wild-type cells, whereas these events are less common in VPS35 KO
1061 H4 cells. Cells were transfected with a GFP-RFP-LC3 dual reporter construct and
1062 starved prior to re-feeding in DMEM for the indicated time periods, then fixed and
1063 immuno-stained for LAMP1. Scale bars = 20 μ m, zoom scale = 5 μ m.

1064

1065

1066

1067

1068 **Table Legends:**

1069 **Table 1:** Integrated Raw Proteomics and RNA-Seq Data from Wild-Type, VPS35 KO
1070 and VPS35-GFP-expressing H4 Neuroglioma Cells. Data were not normalised. Output
1071 data is displayed for each protein across all independent experiments, including gene
1072 ontology classifications, peptide counts, protein coverage, Log₂ fold change, t-test p-
1073 values and false discovery rate (FDR). This dataset was used for analysis of raw
1074 abundances in LysolP and growth media 'secretome' datasets.

1075

1076 **Table 2:** Integrated Normalised Proteomics and RNA-Seq Data from Wild-Type,
1077 VPS35 KO and VPS35-GFP-expressing H4 Neuroglioma Cells. Data were normalised
1078 based on total peptide amount for each experiment. Output data is displayed for each
1079 protein across all independent experiments, including gene ontology classifications,
1080 peptide counts, protein coverage, Log₂ fold change, t-test p-values and false discovery
1081 rate FDR. This dataset was used for analysis of relative abundances in LysolP, surface
1082 biotinylation, total cell proteome and RNA-Seq datasets.

1083

1084 **Table 3:** Metascape Pathway Enrichment Outputs from Proteomics Data. The top 20
1085 enriched pathways for significantly enriched or depleted proteins across the datasets
1086 are provided, alongside p-value scores and the list of proteins within each category.

1087

1088 **Table 4:** Metascape DisGeneNET Enrichment Outputs from Proteomics Data.
1089 Outputs from 3 comparisons are displayed: proteins significantly enriched in VPS35
1090 KO LysolP proteomics dataset; significantly enriched proteins across all datasets; and
1091 significantly depleted proteins across all datasets. In all cases, the raw output with all
1092 diseases is displayed, and the selected outputs displayed on graphs in the manuscript
1093 are shown in a separate tab.

1094

1095 **Table 5:** Cellular Component Gene Ontology Analysis of the VPS35 KO 'Secretome'.
1096 Significantly enriched proteins from VPS35 KO samples (Log₂ fold change > 1, p <
1097 0.05), were analysed using PANTHER gene ontology software. All cellular component

1098 gene ontology categories are shown, with their respective fold enrichments and p-
1099 value scores.

1100

1101 **Table 6:** RNA-Seq Quantification of Global Transcript Abundances. RNA transcripts
1102 are displayed along with their abundances in wild-type, VPS35 KO or VPS35-GFP-
1103 expressing H4 cells. Log₂ fold changes and FDR values are displayed.

1104

1105 **Table 7:** RNA-Seq Quantification of CLEAR Network Genes. CLEAR network genes
1106 are displayed alongside their corresponding RNA-Seq Log₂ fold changes and FDR
1107 values.

1108

1109 **Table 8:** Gene Set Enrichment Analysis (GSEA) of RNA-Seq Data. Cellular
1110 component and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway gene
1111 sets significantly enriched in VPS35 KO RNA-Seq datasets are displayed with
1112 enrichment scores and statistics.

1113

1114 **Supplementary Video Legends:**

1115 **Supplementary Videos 1-6 Autolysosome Tubulation in Wild-Type H4 Cells**

1116 Spinning disk live fluorescence microscopy of a wild-type H4 cell co-transfected with
1117 LAMP1-GFP and mCherry-LC3 (Supplementary Movies 1-3) and a corresponding
1118 zoom region of an autolysosome tubulation events (Supplementary Movies 4-6).
1119 Supplementary Videos 1 and 4 show merged GFP and mCherry channels,
1120 Supplementary Videos 2 and 5 display GFP only, and Supplementary Videos 3 and 6
1121 display mCherry only.

1122 **Supplementary Videos 7-12 Perturbed Autolysosome Dynamics in VPS35 KO
1123 Cells**

1124 Spinning disk live fluorescence microscopy of a VPS35 KO H4 cell co-transfected with
1125 LAMP1-GFP and mCherry-LC3 (Supplementary Movies 7-9) and a corresponding
1126 zoom region of a cluster of autolysosome compartments (Supplementary Movies 10-
1127 12). Supplementary Videos 7 and 10 show merged GFP and mCherry channels,
1128 Supplementary Videos 8 and 11 display GFP only, and Supplementary Videos 9 and
1129 12 display mCherry only.

1130

1131

1132 **Acknowledgements**

1133 We thank the Wolfson Bioimaging Facility and Bristol Proteomics Facility for their
1134 support. px458 plasmids targeting exons 2 and 3 of *VPS29* were cloned by Dr Kerrie
1135 McNally. P.J.C. was supported by the Wellcome Trust (104568/Z/14/Z and
1136 220260/Z/20/Z), the Medical Research Council (MRC) (MR/L007363/1 and
1137 MR/P018807/1), the Lister Institute of Preventive Medicine, and the award of a Royal
1138 Society Noreen Murray Research Professorship (RSRP/R1/211004). J.L.D was
1139 supported by a Wellcome Trust Dynamic Molecular Cell Biology PhD Studentship
1140 (203959/Z/16/Z). J.R.E is supported by a Sir Henry Dale Fellowship jointly funded by
1141 the Wellcome Trust and the Royal Society (216370/Z/19/Z). This work was supported
1142 by Italian Telethon Foundation (TIGEM institutional grant), European Research
1143 Council H2020 AdG (LYSOSOMICS 694282 to A.B.) and Associazione Italiana per la
1144 Ricerca sul Cancro A.I.R.C. (IG-22103 to A.B.).

1145

1146 **Disclosure of Potential Conflict of Interest**

1147 A.B. is cofounder of CASMA Therapeutics and Advisory board member of Avilar
1148 Therapeutics and Coave Therapeutics. D.C and A.B are founders, shareholders, and
1149 consultants of Next Generation Diagnostic srl. S.R and L.D.F are employees of Next
1150 Generation Diagnostic srl.

1151 **Contributions**

1152 J.L.D, C.M.D and P.J.C conceived the study. J.L.D, C.M.D, S.R, L.D.F, D.C, J.R.E and
1153 K.J.H performed experiments. J.L.D, C.M.D, P.A.L, S.R, L.D.F, D.C, S.J.C, and K.J.H
1154 analysed data. A.B, J.R.E and P.J.C acquired funding. P.J.C supervised work. J.L.D,
1155 C.M.D, and P.J.C wrote the initial manuscript with all authors editing and approving
1156 the final text.

1157

1158

1159

1160 References

- 1161 1. Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. *Nat. Rev. Mol. Cell Biol.* **19**, 679–696 (2018).
- 1162 2. Seaman, M. N. J., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. *J. Cell Biol.* **142**, 665–681 (1998).
- 1163 3. Kvainickas, A. *et al.* Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid–induced mTORC1 signaling. *J. Cell Biol.* **218**, 3019–3038 (2019).
- 1164 4. Jimenez-Orgaz, A. *et al.* Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. *EMBO J.* e201797128 (2017) doi:10.15252/embj.201797128.
- 1165 5. Seaman, M. N. J. J., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. *J. Cell Sci.* **122**, 2371–2382 (2009).
- 1166 6. Carosi, J. M. *et al.* Retromer regulates the lysosomal clearance of MAPT/tau. *Autophagy* **00**, 1–21 (2020).
- 1167 7. Bi, F., Li, F., Huang, C. & Zhou, H. Pathogenic mutation in VPS35 impairs its protection against MPP(+) cytotoxicity. *Int. J. Biol. Sci.* **9**, 149–55 (2013).
- 1168 8. Tang, F. L. *et al.* VPS35 in dopamine neurons is required for endosome-to- golgi retrieval of Lamp2a, a receptor of chaperone- mediated autophagy that is critical for α -synuclein degradation and prevention of pathogenesis of Parkinson's disease. *J. Neurosci.* **35**, 10613–10628 (2015).
- 1169 9. Sullivan, C. P. *et al.* Retromer disruption promotes amyloidogenic APP processing. *Neurobiol. Dis.* **43**, 338–345 (2011).
- 1170 10. Simoes, S. *et al.* Tau and other proteins found in Alzheimer's disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans. *Sci. Transl. Med.* **12**, (2020).
- 1171 11. Small, S. A. *et al.* Model-guided microarray implicates the retromer complex in Alzheimer's disease. *Ann. Neurol.* **58**, 909–919 (2005).
- 1172 12. Zimprich, A. *et al.* A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. *Am. J. Hum. Genet.* **89**, 168–175 (2011).
- 1173 13. Muhammad, A. *et al.* Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 7327–32 (2008).
- 1174 14. Wen, L. *et al.* VPS35 haploinsufficiency increases Alzheimer's disease neuropathology. *J. Cell Biol.* **195**, 765–779 (2011).
- 1175 15. Vilariño-Güell, C. *et al.* VPS35 mutations in parkinson disease. *Am. J. Hum. Genet.* **89**, 162–167 (2011).
- 1176 16. Rovelet-Lecrux, A. *et al.* De novo deleterious genetic variations target a biological network centered on A β peptide in early-onset Alzheimer disease. *Mol. Psychiatry* **2015 209** **20**, 1046–1056 (2015).
- 1177 17. Sargent, D. *et al.* Neuronal VPS35 deletion induces spinal cord motor neuron degeneration and early post-natal lethality. *Brain Commun.* **3**, (2021).
- 1178 18. Evans, A. J., Daly, J. L., Anuar, A. N. K., Simonetti, B. & Cullen, P. J. Acute inactivation of retromer and ESCPE-1 leads to time-resolved defects in endosomal cargo sorting. *J. Cell Sci.* **133**, (2020).
- 1179 19. Cataldo, A. M. *et al.* Endocytic pathway abnormalities precede amyloid β deposition in sporadic alzheimer's disease and down syndrome: Differential effects of APOE genotype and presenilin mutations. *Am. J. Pathol.* **157**, 277–286

1199 (2000).

1200 20. Crews, L. *et al.* Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in
1201 Models of α -Synucleinopathy. *PLoS One* **5**, e9313 (2010).

1202 21. Shahmoradian, S. H. *et al.* Lewy pathology in Parkinson's disease consists of crowded organelles and lipid
1203 membranes. *Nat. Neurosci.* 2019 **22**, 1099–1109 (2019).

1204 22. Abu-Remaileh, M. *et al.* Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid
1205 efflux from lysosomes. *Science (80-.)* **358**, 807–813 (2017).

1206 23. Curnock, R., Calcagni, A., Ballabio, A. & Cullen, P. J. TFEB controls retromer expression in response to nutrient
1207 availability. *J. Cell Biol.* **218**, 3954–3966 (2019).

1208 24. Pu, J. *et al.* BORC, a Multisubunit Complex that Regulates Lysosome Positioning. *Dev. Cell* **33**, 176–188 (2015).

1209 25. Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. *Trends Cell Biol.* **24**, 400–406 (2014).

1210 26. Cui, Y. *et al.* Retromer has a selective function in cargo sorting via endosome transport carriers. *J. Cell Biol.* **218**, 615–
1211 631 (2019).

1212 27. Gegg, M. E. & Schapira, A. H. V. The role of glucocerebrosidase in Parkinson disease pathogenesis. *FEBS J.* **285**,
1213 3591–3603 (2018).

1214 28. Gieselmann, V. Lysosomal storage diseases. *Biochim. Biophys. Acta - Mol. Basis Dis.* **1270**, 103–136 (1995).

1215 29. Zerial, M. & McBride, H. Rab proteins as membrane organizers. *Nat. Rev. Mol. Cell Biol.* **2**, 107–117 (2001).

1216 30. Egami, Y. & Araki, N. Rab20 regulates phagosome maturation in RAW264 macrophages during Fc gamma receptor-
1217 mediated phagocytosis. *PLoS One* **7**, (2012).

1218 31. Jean, S., Cox, S., Nassari, S. & Kiger, A. A. Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to
1219 promote autophagosome–lysosome fusion. *EMBO Rep.* **16**, 297 (2015).

1220 32. Kasmalpour, B., Gronow, A., Bleck, C. K. E., Hong, W. & Gutierrez, M. G. Size-dependent mechanism of cargo sorting
1221 during lysosome-phagosome fusion is controlled by Rab34. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 20485–20490 (2012).

1222 33. Wilson, G. R. *et al.* Mutations in RAB39B Cause X-Linked Intellectual Disability and Early-Onset Parkinson Disease
1223 with α -Synuclein Pathology. *Am. J. Hum. Genet.* **95**, 729–735 (2014).

1224 34. Gonçalves, S. A. *et al.* shRNA-Based Screen Identifies Endocytic Recycling Pathway Components That Act as
1225 Genetic Modifiers of Alpha-Synuclein Aggregation, Secretion and Toxicity. *PLOS Genet.* **12**, e1005995 (2016).

1226 35. Hashimoto, Y., Shirane, M. & Nakayama, K. I. TMEM55B contributes to lysosomal homeostasis and amino acid–
1227 induced mTORC1 activation. *Genes to Cells* **23**, 418–434 (2018).

1228 36. Willett, R. *et al.* TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to
1229 lysosomes. *Nat. Commun.* 2017 **8**, 1–17 (2017).

1230 37. Dai, L. *et al.* Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic
1231 Targets. *Mol. Neurobiol.* 2021 **585** **58**, 2183–2201 (2021).

1232 38. Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl⁻/H⁺ antiporter CIC-7 is the primary chloride
1233 permeation pathway in lysosomes. *Nat. 2008* **4537196** **453**, 788–792 (2008).

1234 39. Hu, M. *et al.* Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. *Cell* **185**,
1235 2292–2308.e20 (2022).

1236 40. O'Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer's disease. *Annu. Rev. Neurosci.* **34**,

1237 185–204 (2011).

1238 41. Qureshi, Y. H. *et al.* The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's
1239 disease. *Cell Rep.* **38**, 110262 (2022).

1240 42. Nixon, R. A. Amyloid precursor protein and endosomal–lysosomal dysfunction in Alzheimer's disease: inseparable
1241 partners in a multifactorial disease. *FASEB J.* **31**, 2729 (2017).

1242 43. Steinberg, F. *et al.* A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose
1243 and metal ion transport. *Nat. Cell Biol.* **15**, 461–71 (2013).

1244 44. Li, B. *et al.* The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating notch
1245 receptor trafficking. *Elife* **7**, (2018).

1246 45. Curnock, R. & Cullen, P. J. Mammalian copper homeostasis requires retromer-dependent recycling of the high-affinity
1247 copper transporter 1. *J. Cell Sci.* **133**, (2020).

1248 46. Kvainickas, A. *et al.* Retromer- and WASH-dependent sorting of nutrient transporters requires a multivalent interaction
1249 network with ANKRD50. *J. Cell Sci.* **130**, 382–395 (2017).

1250 47. Nakamura, F., Kalb, R. G. & Strittmatter, S. M. Molecular Basis of Semaphorin-Mediated Axon Guidance. *J Neurobiol*
1251 **44**, 219–229 (2000).

1252 48. Giniger, E. Notch signaling and neural connectivity. *Curr. Opin. Genet. Dev.* **22**, 339 (2012).

1253 49. Ivakine, E. A. *et al.* Neto2 is a KCC2 interacting protein required for neuronal Cl⁻ regulation in hippocampal neurons.
1254 *Proc. Natl. Acad. Sci. U. S. A.* **110**, 3561–3566 (2013).

1255 50. Vernon, C. G. & Swanson, G. T. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and
1256 Modulates Neurite Outgrowth in Adult Sensory Neurons. *J. Neurosci.* **37**, 3352 (2017).

1257 51. Mahadevan, V. *et al.* Neto2-null mice have impaired GABAergic inhibition and are susceptible to seizures. *Front. Cell.*
1258 *Neurosci.* **9**, 368 (2015).

1259 52. del Puerto, A. *et al.* Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation.
1260 *Mol. Psychiatry* **2021** *26*, 6411–6426 (2021).

1261 53. Sebastián-Serrano, Á. *et al.* Differential regulation of Kidins220 isoforms in Huntington's disease. *Brain Pathol.* **30**,
1262 120–136 (2020).

1263 54. Li, Q. & Südhof, T. C. Cleavage of Amyloid-β Precursor Protein and Amyloid-β Precursor-like Protein by BACE 1. *J.*
1264 *Biol. Chem.* **279**, 10542–10550 (2004).

1265 55. Fotinopoulou, A. *et al.* BRI2 Interacts with Amyloid Precursor Protein (APP) and Regulates Amyloid β (Aβ) Production.
1266 *J. Biol. Chem.* **280**, 30768–30772 (2005).

1267 56. Matsuda, S. *et al.* The Familial Dementia BRI2 Gene Binds the Alzheimer Gene Amyloid-β Precursor Protein and
1268 Inhibits Amyloid-β Production. *J. Biol. Chem.* **280**, 28912–28916 (2005).

1269 57. Medina, D. L. *et al.* Transcriptional activation of lysosomal exocytosis promotes cellular clearance. *Dev. Cell* **21**, 421–
1270 30 (2011).

1271 58. Alvarez-Erviti, L. *et al.* Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission.
1272 *Neurobiol. Dis.* **42**, 360–367 (2011).

1273 59. Miranda, A. M. *et al.* Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and
1274 unique lipid signatures. *Nat. Commun.* **9**, 1–16 (2018).

1275 60. Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. *Nat. Rev. Mol.*

1276 *Cell Biol.* **21**, 101–118 (2020).

1277 61. Follett, J. *et al.* The Vps35 D620N Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of
1278 Retromer. *Traffic* **15**, 230–244 (2014).

1279 62. Bugarcic, A. *et al.* Vps26A and Vps26B Subunits Define Distinct Retromer Complexes. *Traffic* **12**, 1759–1773 (2011).

1280 63. Rojas, R. *et al.* Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. *J. Cell Biol.*
1281 **183**, 513–26 (2008).

1282 64. Hata, S. *et al.* Alcadein cleavages by amyloid β -precursor protein (APP) α - and γ -secretases generate small peptides,
1283 p3-Alcs, indicating Alzheimer disease-related γ -secretase dysfunction. *J. Biol. Chem.* **284**, 36024–36033 (2009).

1284 65. Walsh, R. B. *et al.* Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals.
1285 *J. Cell Biol.* **220**, (2021).

1286 66. Sardiello, M. *et al.* A gene network regulating lysosomal biogenesis and function. *Science* **325**, 473–7 (2009).

1287 67. Settembre, C. *et al.* A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and
1288 TFEB. *EMBO J.* **31**, 1095–108 (2012).

1289 68. Palmieri, M. *et al.* Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways.
1290 *Hum. Mol. Genet.* **20**, 3852–66 (2011).

1291 69. Peña-Llopis, S. *et al.* Regulation of TFEB and V-ATPases by mTORC1. *EMBO J.* **30**, 3242–3258 (2011).

1292 70. Mansueto, G. *et al.* Transcription Factor EB Controls Metabolic Flexibility during Exercise. *Cell Metab.* **25**, 182–196
1293 (2017).

1294 71. Seaman, M. N. J. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN
1295 retrieval. *J. Cell Sci.* **120**, 2378–2389 (2007).

1296 72. Lucas, M. *et al.* Structural Mechanism for Cargo Recognition by the Retromer Complex. *Cell* **167**, 1623–1635.e14
1297 (2016).

1298 73. Ostrowski, M. *et al.* Rab27a and Rab27b control different steps of the exosome secretion pathway. *Nat. Cell Biol.* **12**,
1299 19–30 (2010).

1300 74. Joshi, C. S., Mora, A., Felder, P. A. & Mysorekar, I. U. NRF2 promotes urothelial cell response to bacterial infection by
1301 regulating reactive oxygen species and RAB27B expression. *Cell Rep.* **37**, (2021).

1302 75. Underwood, R. *et al.* The GTPase Rab27b regulates the release, autophagic clearance, and toxicity of alpha-
1303 synuclein. *J. Biol. Chem.* **295**, 8005–8016 (2020).

1304 76. Underwood, R., Wang, B., Pathak, A., Volpicelli-Daley, L. & Yacoubian, T. A. Rab27 GTPases regulate alpha-
1305 synuclein uptake, cell-to-cell transmission, and toxicity. *bioRxiv* 2020.11.17.387449 (2020)
1306 doi:10.1101/2020.11.17.387449.

1307 77. Jia, D. *et al.* Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. *Nat. Commun.* **7**, 1–
1308 11 (2016).

1309 78. Hesketh, G. *et al.* VARP is recruited on to endosomes by direct interaction with retromer, where together they function
1310 in export to the cell surface. *Dev. Cell* **29**, 591–606 (2014).

1311 79. Yu, L. *et al.* Termination of autophagy and reformation of lysosomes regulated by mTOR. *Nature* **465**, 942–946
1312 (2010).

1313 80. Wu, K. *et al.* BLOC1S1/GCN5L1/BORCS1 is a critical mediator for the initiation of autolysosomal tubulation.
1314 *Autophagy* **17**, 3707–3724 (2021).

1315 81. McGrath, M. J. *et al.* Defective lysosome reformation during autophagy causes skeletal muscle disease. *J. Clin. Invest.*
1316 131, (2021).

1317 82. Mecozzi, V. J. *et al.* Pharmacological chaperones stabilize retromer to limit APP processing. *Nat. Chem. Biol.* **10**, 443–
1318 9 (2014).

1319 83. Muzio, L. *et al.* Retromer stabilization results in neuroprotection in a model of Amyotrophic Lateral Sclerosis. *Nat.*
1320 *Commun.* **11**, 1–17 (2020).

1321 84. Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: Fusion and function. *Nat. Rev. Mol. Cell Biol.* **8**, 622–632 (2007).

1322 85. Chen, Y. & Yu, L. Recent progress in autophagic lysosome reformation. *Traffic* **18**, 358–361 (2017).

1323 86. Zavodszky, E. *et al.* Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and
1324 inhibits autophagy. *Nat. Commun.* **5**, 3828 (2014).

1325 87. Pu, J., Keren-Kaplan, T. & Bonifacino, J. S. A Ragulator-BORC interaction controls lysosome positioning in response
1326 to amino acid availability. *J. Cell Biol.* **216**, 4183–4197 (2017).

1327 88. Yordanov, T. E. *et al.* Biogenesis of lysosome-related organelles complex-1 (BORC) regulates late
1328 endosomal/lysosomal size through PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate. *Traffic* **20**, 674–696
1329 (2019).

1330 89. Rong, Y. *et al.* Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. *Nat. Cell*
1331 *Biol.* **14**, 924–934 (2012).

1332 90. Du, W. *et al.* Kinesin 1 Drives Autolysosome Tubulation. *Dev. Cell* **37**, 326–336 (2016).

1333 91. Dai, A., Yu, L. & Wang, H. W. WHAMM initiates autolysosome tubulation by promoting actin polymerization on
1334 autolysosomes. *Nat. Commun.* **10**, (2019).

1335 92. Bécot, A., Volgers, C. & van Niel, G. Transmissible endosomal intoxication: A balance between exosomes and
1336 lysosomes at the basis of intercellular amyloid propagation. *Biomedicines* **8**, (2020).

1337 93. Simonetti, B., Danson, C. M., Heesom, K. J. & Cullen, P. J. Sequence-dependent cargo recognition by SNX-BARs
1338 mediates retromer-independent transport of CI-MPR. *J. Cell Biol.* **216**, 3695–3712 (2017).

1339 94. Costes, S. V. *et al.* Automatic and quantitative measurement of protein-protein colocalization in live cells. *Biophys. J.*
1340 **86**, 3993–4003 (2004).

1341 95. Starling, G. P. *et al.* Folliculin directs the formation of a Rab34–RILP complex to control the nutrient-dependent
1342 dynamic distribution of lysosomes. *EMBO Rep.* **17**, 823–841 (2016).

1343 96. Xiong, Y. *et al.* A Comparison of mRNA Sequencing with Random Primed and 3'-Directed Libraries. *Sci. Reports* **2017**
1344 717, 1–12 (2017).

1345 97. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

1346 98. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data.
1347 *Bioinformatics* **31**, 166–169 (2015).

1348 99. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis
1349 of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).

1350 100. Mootha, V. K. *et al.* PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated
1351 in human diabetes. *Nat. Genet.* **34**, 267–273 (2003).

1352 101. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide
1353 expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–15550 (2005).

1354 102. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: A network-based method for gene-set
1355 enrichment visualization and interpretation. *PLoS One* **5**, (2010).

1356 103. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with
1357 the R/Bioconductor package biomaRt. *Nat. Protoc.* **2009** *48* **4**, 1184–1191 (2009).

1358 104. Goedhart, J. & Luijsterburg, M. S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots.
1359 *Sci. Rep.* **10**, 1–5 (2020).

1360 105. Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat.*
1361 *Commun.* **2019** *101* **10**, 1–10 (2019).

1362 106. Mi, H. *et al.* Protocol Update for large-scale genome and gene function analysis with the PANTHER classification
1363 system (v.14.0). *Nat. Protoc.* **14**, 703–721 (2019).

1364

1365