

Robust residue-level error detection in cryo-electron microscopy models

Gabriella Reggiano ^{1,2}, Daniel Farrell ³, Frank DiMaio ^{1,2*}

Affiliations:

¹ Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

² Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.

³ Cyrus Biotechnology, Seattle, WA 98121, USA.

* Corresponding author. Email: dimaio@u.washington.edu

1 ABSTRACT

2 Building accurate protein models into moderate resolution (3-5Å) cryo-electron
3 microscopy (cryo-EM) maps is challenging and error-prone. While the majority of solved cryo-
4 EM structures are at these resolutions, there are few model validation metrics that can precisely
5 evaluate the local quality of atomic models built into these maps. We have developed MEDIC
6 (Model Error Detection in Cryo-EM), a robust statistical model to identify residue-level errors in
7 protein structures built into cryo-EM maps. Trained on a set of errors from obsoleted protein
8 structures, our model draws off two major sources of information to predict errors: the local
9 agreement of model and map compared to expected, and how “native-like” the neighborhood
10 around a residue looks, as predicted by a deep learning model. MEDIC is validated on a set of 28
11 structures that were subsequently solved to higher-resolutions, where our model identifies the
12 differences between low- and high-resolution structures with 68% precision and 60% recall. We
13 additionally use this model to rebuild 12 deposited structures, fixing 2 sequence registration
14 errors, 51 areas with improper secondary structure, 51 incorrect loops, and 16 incorrect
15 carbonyls, showing the value of this approach to guide model building.

16 INTRODUCTION

17 While technological advances in cryo-electron microscopy (cryo-EM) have made it
18 possible to resolve protein complexes to resolutions rivaling X-ray crystallography [1], protein
19 heterogeneity has limited the resolution for the majority of complexes, with 78% of cryo-EM
20 maps deposited in the past year reporting a resolution worse than 3Å [2]. As the resolution drops
21 from 3 to 5Å, modeling becomes increasingly difficult; the carbonyls become indistinguishable
22 from the backbone density, side chain details are lost, and eventually, the backbone trace is no
23 longer visible. Hand-built models at these resolutions can contain sequence registration errors,
24 poor secondary structure, improper tracing of the backbone through the density, and incorrectly
25 placed backbone carbonyls. There are several instances of models that have been deposited and
26 published with errors that are found later by the community [3,4]. Methods like AlphaFold and
27 RoseTTAFold [5,6] may help in alleviating these errors, but these methods’ inability to model

28 structures with multiple conformations and their limited accuracy in modeling protein complexes
29 will still lead to model errors.

30 Previous efforts in identification of model errors rely on metrics that primarily fall into
31 one of two categories: model quality metrics that focus on atomic geometry [7,8], and fit-to-
32 density metrics that focus on local fit-to-density [9-13]. Model quality metrics, such as the
33 fraction of Ramachandran outliers, are not precise enough to catch local mistakes at these
34 resolutions. Refinement protocols can easily push a wrong model to have good quality under
35 these metrics. CaBLAM addresses this by defining a dihedral for the carbonyls in relation to the
36 backbone trace and identifies when this angle deviates from expected values; however, due to its
37 high cutoff value, CaBLAM is unsuitable for residue-level accuracy [11]. Density-based metrics
38 have two major weaknesses: many are noisy at the level of individual residues and are better
39 suited to evaluate a model's global quality [12,13], while density-based metrics that robustly
40 evaluate local fit rely heavily on side chain density, making them less reliable at resolutions
41 below 3.5Å [14]. Furthermore, microscopists have a tendency to overfit their models to low-
42 resolution density, so density fit by itself is not always enough to evaluate whether an error has
43 been made [15].

44 Here, we present MEDIC (Model Error Detection in Cryo-EM), a statistical model that
45 weighs the contributions of structural information with local model-map agreement to identify
46 residue-level errors in a cryo-EM structure. The structural features of our model include both
47 energy-guided metrics and a predicted error from a machine learning model trained to
48 discriminate native and decoy structures. The use of a machine learning model to assess model
49 geometry allows evaluation of non-bonded interactions such as hydrophobic burial, making it
50 robust when used with lower-resolution data. We combine these structural features with a
51 measure assessing agreement to density conditioned on data collected at a wide range of
52 resolutions. We show reliable detection of errors on a set of 28 structures which were later
53 solved to higher resolutions. On a smaller set of 12 deposited structures, we correct over 100
54 mistakes marked by our protocol with existing tools. Finally, we demonstrate that MEDIC can
55 guide rebuilding in areas where AlphaFold models cannot.

56 RESULTS

57 An overview of training and usage of MEDIC is shown schematically in Figure 1.
58 MEDIC is trained to predict a probability of error for every residue, based on three features
59 (Figure 1A): energy guided metrics for Ramachandran angles and bond deviations from
60 Rosetta's energy function [16], expected fit-to-density for a residue given the local resolution
61 and the amino acid identity, and predicted model error from DeepAccuracyNet [17].
62 DeepAccuracyNet is a deep convolutional neural network trained to distinguish native protein
63 structures from Rosetta-determined decoys. It predicts per-residue local Distance Difference Test
64 (LDDT), a measure of the number of atom pair distances that are maintained between a native
65 structure and a decoy [18]. For our fit-to-density metric, we used masked real-space cross-
66 correlation to measure density fit, and then normalize that value based on statistics for each

67 residue identity at its local resolution, gathered from a set of deposited map-model pairs between
68 the resolutions of 1.5 to 5Å.

69 Given these three features, a combined model was trained using a set of seven obsoleted
70 protein structures which had been edited months after the initial deposition, presumably to
71 correct structure errors. Our combined logistic regression model was trained to predict the
72 residues that changed between the original and most-recent deposition. We validated this initial
73 model on an additional 3 obsoleted structures which had been withheld from training. We
74 compared MEDIC's error probabilities to the residues that changed between these depositions
75 and found that MEDIC had a precision of 76% at a recall of 60% (Supplemental Fig 1). Given
76 the high performance on this initial set, we then used this model to generally evaluate deposited
77 structures (Figure 1B). Throughout our analysis, we divide these probabilities into three
78 categories: definite error, possible error, and non-error (see Methods). Data analysis is performed
79 only with the high probability errors, while each image is colored according to the three
80 categories.

81 Validation on low resolution structures later solved to higher resolutions

82 To validate our approach, we considered EMDB-deposited structures between 3.5 and 5Å
83 resolution, which were subsequently solved to better than 3.5Å (and at least 1Å better than the
84 original deposition). There were 68 cases, of which we manually removed 40 with domain
85 orientation changes between the high-resolution and low-resolution structures. The results on this
86 dataset are summarized in Figure 2A. On this set of 28 structures, our method has a precision of
87 68% at a recall of 60%. This compares favorably with the widely used density-only metric, Q-
88 score [9], which has a precision of only 35% at the same 60% recall.

89 We next examined which features were predictive of the true positives identified by
90 MEDIC. Approximately 81% are predicted by the IDDT alone, while the remaining 19% require
91 at least 2 features to be considered an error. The reliance on IDDT to predict most of the errors
92 could be because of bias in the training set, which primarily contains long segments that were
93 corrected. It might also simply reflect the types of errors microscopists tend to make; hand-built
94 models are much more likely to fit the density well but have poor geometry and structural
95 features.

96 Some of the errors identified by MEDIC in the low-resolution structures are highlighted
97 in Figure 2B, with the corresponding model in its high-resolution density map in Figure 2C. In a
98 structure of a voltage-gated calcium channel (PDB 5GJW), it is difficult to trace the backbone
99 while properly accounting for the large aromatic side chain density (Figure 2B, top panel). The
100 mistake is identified by MEDIC with relatively equal contributions from the IDDT and bond
101 geometry scores. Likewise, the error found in an insulin degradation enzyme (PDB 6B70) is
102 captured by multiple features, this time the density and bond geometry scores (Figure 2B, middle
103 panel). The backbone is hardly visible in the density map, which may explain why the
104 microscopists had difficulty properly fitting the serines into the density. In contrast, the mistake
105 found in a transmembrane channel (PDB 6M66) is dominated by the IDDT score (Figure 2B,

106 bottom panel). It would be difficult to catch this error by visual inspection, as the model seems
107 reasonable given the density.

108 To better understand any shortcomings of MEDIC, we looked at two structures for which
109 our performance was worse than the aggregate results. In a partial complex of an ATP synthase
110 (PDB 6F36), MEDIC falsely marks an entire stretch of residues as a mistake (Figure 2D)
111 because it does not see the proper structural context for this particular sequence as it is
112 unmodelled in the low-resolution structure (Figure 2E). The other case which MEDIC performed
113 poorly on, a dehydrogenase (PDB 7E5Z), contained many errors fewer than 3 residues in length
114 which MEDIC failed to identify, two of which are shown in Figures 2F-I. We fail to mark an
115 incorrect carbonyl as an error in the low-resolution model (Figure 2F) that is supported by the
116 higher-resolution data (Figure 2G). However, we find zero high-probability errors in a region of
117 the low-resolution model (Figure 2H) which appears to be an error in the high-resolution model
118 (Figure 2I).

119 Given our worse performance on the errors in the dehydrogenase (PDB 7E5Z), we
120 manually examined 30 differences across 4 low-resolution structures that MEDIC failed to
121 identify. Among these, 16 were mistakes in the model built against low-resolution data, while 14
122 were either ambiguous in the high-resolution density or seemingly incorrect in the high-
123 resolution model. Three examples are highlighted in Supplemental Figure 2: one difference
124 where the high-resolution structure has an error (Supplemental Fig. 2A-B), and two more where
125 the high-resolution structure is not supported by the density (Supplemental Fig. 2C-F).

126 Using MEDIC to guide model rebuilding

127 With the understanding that MEDIC is relatively precise when identifying errors, we next
128 wanted to assess the usefulness of the model to aid in a manual structure rebuilding process. To
129 that end, we evaluated MEDIC on a selection of 12 models with diverse topologies and
130 resolutions and attempted to fix – using Rosetta refinement tools and AlphaFold – all the
131 segments marked as errors (see Methods). There were 237 segments predicted to be definite
132 errors (with high error probability), 33 of which were disordered regions with little or no visible
133 density (Supplemental Fig. 3). Of the remaining 204 segments, 133 (65%) were 1-3 residues in
134 length, 38 (19%) between 4-9 residues, and 33 (16%) were greater than 10 residues. We were
135 able to rebuild and fix 120 (59%) of these segments; for an additional 26 segments, we were able
136 to significantly reduce the number of definite errors in that region. The fixable mistakes included
137 2 sequence registration errors, where the sequence is shifted on the backbone relative to the
138 correct placement, 51 incorrect loops, 51 cases of poor secondary structure, and 16 flipped
139 carbonyls (Table 1).

140 A representative subset of errors that our method was able to address are highlighted in
141 Figures 3 and 4. In these cases, we were able to correct 2 significant sequence registration errors
142 (Figure 3). Figure 3A compares the deposited structure of a lipid scramblase (PDB 6E1O) with
143 our new model. Notably, our model has better hydrophobic packing and we explain the large
144 side chain density with a phenylalanine as opposed to a lysine residue (Figure 3B). This

145 sequence registration error was propagated from a previously solved crystal structure (PDB
146 4WIS), in which the density for this region was poorly resolved. In both structures, this helix is
147 preceded and followed by unresolved regions, making proper sequence placement more difficult.
148 Conversely, the sequence registration error found in a hedgehog receptor (PDB 6DMB) occurs
149 because the pitch of the helix is not visible in the density (Figure 3C). The addition of a bulge in
150 the repaired model (Figure 3D), justified by the preceding proline, pushes a phenylalanine into
151 large side chain density which was poorly explained by an alanine in the original model.

152 MEDIC is also capable of finding gross backbone errors, including areas with poor
153 secondary structure and incorrect loops. In Figure 4A, it is clear by eye that the beta strands of
154 this kinesin motor domain (PDB 5MM4) have poor hydrogen bonding. Upon fixing the
155 secondary structure (Figure 4B), our method marks these regions as correct, as MEDIC balances
156 proper structural features with density fit. In addition to identifying poor structural features,
157 MEDIC can recognize if a stretch of residues is assigned the incorrect secondary structure, such
158 as the region from a hedgehog receptor (PDB 6DMB) depicted in Figure 4C. However, our fixed
159 model is supported by more than the IDDT score; it has less unexplained density, which is
160 reflected by large improvements in the density scores (Figure 4D).

161 Furthermore, MEDIC can identify some shorter, subtler backbone errors, such as
162 incorrectly placed carbonyls, by combining multiple features (Figure 4E-H). The deposited
163 model of the bluetongue virus (PDB 3J9E) has a Ramachandran angle that falls just in the
164 “Allowed” region (Figure 4E). MEDIC uses the IDDT and the bond geometry scores to predict
165 this error, and after rebuilding, both Ramachandran angles and density fit improve (Figure 4F).
166 Similarly, the structure for a neurotoxin (PDB 7QFQ) contains Ramachandran angles which
167 Molprobity also classifies as “Allowed” (Figure 4G). We find this error with relatively equal
168 contributions from IDDT, density, and geometry energies. The rebuilt model improves the
169 density fit for the tryptophan and alanine residues while removing the problematic
170 Ramachandran angles (Figure 4H). Of the over 1300 residues identified as errors across these 12
171 models, approximately 66.5% of them were predicted by the IDDT score alone, 1.4% by the
172 density, and 0.4% by the Ramachandran energy, while 32% required at least 2 features.

173 To quantify MEDIC’s performance on this set of structures, we used the differences
174 between the deposited structures and our rebuilt models (see Methods) to determine that MEDIC
175 has a precision of 67% at recall of 60% (Supplemental Fig. 4). The increased performance of
176 MEDIC at high recall values compared to the low- vs. high-resolution validation set could be
177 attributed to a few factors. In the set of validation structures, it is possible that the high-resolution
178 models may contain errors. Moreover, there could still be conformational differences between
179 the high- and low-resolution structures, such as flexible loops or shifts that occur at interfaces
180 contained in only one of the depositions. Both would hurt MEDIC’s perceived performance.

181 Identifying errors in all deposited structures in the EMDB

182 After confirming MEDIC’s high accuracy and utility in model building, we ran MEDIC
183 on all structures in the EMDB between the resolutions of 3 to 5 Å to gauge the reliability of the

184 method on over 1500 depositions. The aggregate statistics from this run are shown in Figure 5.
185 Upon inspection, several models were composed of docked crystal structures with no visible
186 density for one or more domains, so we removed residues with a model-map correlation of less
187 than 0.4. In Figure 5A, we show the fraction of residues marked as errors in every EMDB
188 deposition. There is only a slight trend with resolution, which is unsurprising given that as we
189 move to lower resolutions, microscopists are more likely to dock crystal structures or use
190 homology modeling than hand-build structures. Because cryo-EM maps are rarely homogenous
191 in resolution, we also report the fraction of residues marked as errors after grouping by atomic B-
192 factors (Figure 5B). At very low atomic B-factors (indicating well-resolved density), very few
193 errors are made. As the atomic B-factors increase, more mistakes are made.

194 We manually inspected the outliers in the data: maps with very high error fractions, and
195 errors with low atomic B-factors. Although the fraction of errors is greater than 40% on the 20
196 model-map pairs we examined, the errors do seem real. In some cases, entire domains have little
197 to no secondary structure (Supplemental Fig. 5A-B). All these structures were built pre-
198 AlphaFold, using outdated (then state-of-the-art) structure prediction software or by hand-tracing
199 into low-resolution data. Unsurprisingly, we find that 88% of the errors in this set are predicted
200 by the IDDT alone. In the structures that contain errors with low atomic B-factors, we find that
201 while some errors appear to be real, there also appear to be false positives. There are several
202 causes for the perceived false positives, including residues marked as errors because they are
203 involved with ligand or metal binding, or they correspond to very short disordered segments
204 (Supplemental Fig 5C-E).

205 Comparison to AlphaFold

206 Although it is clear that MEDIC can identify errors in hand-built structures, many
207 microscopists will now start model-building from an AlphaFold prediction [19]. We compare
208 MEDIC's performance to AlphaFold models, highlighting loops which we identified as an error
209 in the original deposition (Figure 6A & 6D) and where AlphaFold predictions do not fit the
210 density. The loop predicted by AlphaFold for the motor protein, prestin (PDB 7S9D), would
211 require significant rebuilding (Figure 6B). MEDIC identifies our new model, built with tools in
212 Rosetta, as correct (Figure 6C). The shorter loop predicted by AlphaFold for the bluetongue virus
213 (PDB 3J9E) is not only a poor fit to density (Figure 6E); the carbonyls are placed incorrectly
214 when compared to our final model (Figure 6F). Of the 12 models we rebuilt, 23 regions (from 7
215 different AlphaFold models) would have required rebuilding. AlphaFold was confident
216 (predicted IDDT > 70) in 10 of these regions, which means that modelers would need to
217 manually identify these mistakes, not just remove low confidence regions, and then rebuild,
218 presumably by hand. MEDIC will be useful for this editing process: our method was able to
219 identify that the deposited structure or our rebuilt model was correct in 18 of those 23 regions. In
220 the remaining 5 cases, we were unable to build a structure that satisfied MEDIC.

221 **DISCUSSION**

222 In this report, we develop a method for the identification of local errors in cryo-EM
223 models in the resolution range of 3-5Å. We validate our method on cryo-EM structures that have
224 later been solved to higher resolutions and show that MEDIC has a precision rate 30% better
225 than competing methods. We also highlight the use of MEDIC in the model building process by
226 identifying and correcting over 100 errors in a set of 12 deposited models and demonstrating
227 MEDIC's use in conjunction with AlphaFold. While many of the errors are predicted by IDDT
228 alone, we also find errors that make use of structure and density in tandem. Of the errors we
229 examined, we noticed that MEDIC erroneously marks the following: prolines, termini, residues
230 involved in binding, and regions where there is little to no supporting density (Supplemental Fig.
231 3). We believe prolines have a higher false positive rate because their geometry scores tend to be
232 higher and caution users to be critical of isolated prolines which MEDIC calls errors.

233 As it becomes more commonplace to model large protein complexes into lower
234 resolution density maps [20], validation metrics that can evaluate these structures and help guide
235 rebuilding are necessary. MEDIC's performance on structures with resolutions worse than 5Å
236 has not been tested and given that our statistics for density did not include these resolutions, it is
237 unclear how reliable our method will be in those cases. MEDIC could be extended to lower
238 resolutions by gathering more statistics and by measuring density fit across longer stretches of
239 sequence, making it suitable for use with cryo-electron tomography. A training set could be
240 curated from low resolution structures which are later solved to higher resolutions by removing
241 regions with different domain orientations and regions of ambiguity. Incorporating AlphaFold
242 models into the training set may also be useful, so that MEDIC more explicitly learns to find
243 regions which have good structural features but do not fit the density well.

244 AlphaFold has not only made it possible to model lower-resolution structures, it has
245 drastically changed the model building process for higher resolution structures as well. Now
246 microscopists will edit loops or interaction sites rather than build entire structures. For large
247 complexes, identifying and fixing errors in AlphaFold models can still be error-prone and time
248 consuming, especially if these are flexible regions solved to lower local resolutions. Creating a
249 program to automatically dock these models and fix any remaining errors would reduce the
250 amount of time and expertise necessary to solve structures. MEDIC could be used to guide this
251 rebuilding process; our method's high precision would substantially reduce the sampling space,
252 which makes the problem of automatically fixing local errors much more tractable. Based on the
253 observations described here, we believe that MEDIC will be a powerful validation tool for cryo-
254 EM microscopists.

255 **METHODS**

256 Preparation of input pdbs

257 Preparation of pdbs for training or for error detection is a three-step process. First, we
258 remove all ligands, nucleotides, or noncanonical amino acids. Then we refine the structure into
259 the density map, first with cartesian minimization and then with Rosetta's LocalRelax protocol

260 [21]. Finally, we perform B-factor fitting on the refined model. After this, all the scores for the
261 model features can be calculated.

262 Structural features

263 The energy guided metrics in our model are pulled from Rosetta's realistic energy
264 function [16]. Every pdb is refined in Rosetta as described above, so that the energy scores are
265 meaningful. Then, the energies for Ramachandran angles and bond deviations are evaluated for
266 each residue in the structure and fed directly into the model.

267 The final structural feature, predicted lddt, comes from DeepAccuracyNet [17]. Because
268 DeepAccuracyNet was trained on smaller structures, <300 residues in length, we run the model
269 on portions of the structure at a time: a sequence of 20 residues and the context within 20Å of
270 that query sequence. The predicted IDDT values are saved for only the query sequence and then
271 passed to the model.

272 Density feature

273 To calculate expected fit-to-density for amino acids, we collected statistics on a set of 24
274 deposited map-model pairs, using atomic B-factors as a substitute for local resolution. Each
275 model and was prepared as described above. The masked real-space density cross-correlation
276 was calculated for every residue and each was placed into a bin according to its amino acid
277 identity and the average B-factor of the residues within an 8Å neighborhood. A mean of the
278 cross-correlation scores was computed for each amino acid/B-factor bin and a standard deviation
279 was calculated across each B-factor bin.

280 Now that we have collected statistics, we can apply them during error prediction. The
281 means and standard deviations are used to transform the cross-correlation of each residue in a
282 protein model into a z-score. A very negative density z-score is indicative of a residue which fits
283 the density worse than expected, given its amino acid identity and the average B-factor. The
284 density z-score is then passed to the model. This process of collecting statistics and
285 transformation of raw scores is carried out for the cross-correlation of the residue by itself and
286 the cross correlation of a three-residue window centered on the residue of interest.

287 Training on obsoleted pdbs

288 We probed the RCSB for pdbs which had been edited after deposition, pulling all cryo-
289 EM structures between 2.5 and 4Å resolution that had coordinates replaced [22]. Upon manual
290 inspection, 10 models of the 46 were chosen, eliminating cases where changes were made to
291 ligands, nucleotides or only rotamers, or where the obsoleted model didn't resemble a globular
292 protein. 3 of the 10 models were withheld from training and used for validation.

293 We now have a set of pdbs that contain mistakes made by microscopists and need to
294 generate labels for training, marking each residue in a model as an "error" or "non-error." We
295 compare the obsoleted pdb with the newer version, removing any domains or regions that exist in
296 only one of the models. Each residue in which the backbone atoms have an RMSD greater than

297 or equal to 1Å between the two models is marked as an error. To capture sequence registration
298 errors, any residue that appears in the obsoleted model but not the new version is marked as an
299 error. This process resulted in approximately 800 errors out of a total of 21000 residues. We then
300 trained a logistic regression classifier, with balanced class weights, to predict the errors using the
301 structural and density features.

302 Evaluation of error vs non-error

303 To determine the threshold at which a residue is an error, we chose a threshold value
304 from the precision-recall curve which balances the two statistical measures. We use both the
305 precision-recall from the 12 rebuilt models and the high-resolution low-resolution validation set
306 to choose thresholds. We consider every residue with a probability above 0.78 to be a definite
307 error. At threshold 0.78, MEDIC has a precision of 70% and recall of 80% on the set of 12
308 rebuilt structures and a precision of 78% and recall of 49% on the validation set. All statistics
309 and data analysis are done only with this more stringent threshold value. We consider every
310 residue with a probability between 0.78 and 0.6 to be a possible error. At a threshold of 0.60,
311 MEDIC has a precision of 52% and recall of 95% on the 12 rebuilt structures and a precision of
312 68% and recall of 61% on the validation set. Every residue with a probability less than 0.6 is a
313 non-error.

314 Calculation of error contributions

315 To determine whether a single feature is predictive of an error, we take the probability
316 equation that we have learned from the final training dataset (Eq. 1), where l is the IDDT score,
317 sd the single residue density score, ld the 3-residue density score, r the Ramachandran energy,
318 and b is bond energy:

$$319 \quad f(x) = 5.15 - 10.41l - 0.38sd - 0.17ld + 0.59r - 0.41b \quad (1)$$

320 We replace all features, except the ones of interest, with the mean score, derived from the
321 scores of the EMDB depositions (over 1500 cases). For example, we replace IDDT,
322 Ramachandran and bond energies with the corresponding mean values to calculate how
323 predictive the density scores are. We then take the result from Eq. 1 and plug it into Eq. 2 to get
324 the final probability. If the final probability is above our threshold for definite errors, then that
325 residue is predicted by a single feature.

$$326 \quad P = \frac{I}{I - e^{-f(x)}} \quad (2)$$

327 Error identification on deposited structures and retraining

328 We identified cryo-EM structures with less than 2000 residues and a resolution between 3
329 and 5Å. We then chose 12 structures with diverse topologies and resolutions to run through our
330 error detection, using the statistical model obtained from training on the obsoleted pdbs. We used
331 a probability threshold of 0.62, derived from the precision-recall curve for the small set of 3

332 withheld obsoleted structures. We chose a slightly lower threshold, sacrificing precision (60%)
333 for recall (85%) to ensure that we would find most of the errors.

334 After error identification, we attempted to rebuild every region that was predicted to be
335 an error, following the protocol described below. We then added these 12 models to our training
336 data. We generated error labels by looking first for residues with RMSDs greater than 1.5 after
337 rebuilding, for which the probability was greater than 0.5 and had dropped by 0.2 after fixing.
338 We also labeled residues with RMSDs between 0.5 and 1.5 with probabilities greater than 0.6
339 and that dropped by 0.2. Any 1-residue errors from this set were removed if they were not within
340 2 residues of other errors. These labels and scores were passed into the logistic regression with
341 the obsoleted pdbs, adding an additional 1200 errors to the dataset.

342 Model rebuilding

343 For each rebuild, we ran AlphaFold on the sequence [5], docking the model or separately
344 docking its domains into the density using UCSF Chimera [23]. Then, we removed all regions in
345 the deposited model that were identified as errors plus/minus 2-3 residues on either side of the
346 segment. We passed the AlphaFold models and the trimmed deposited model as templates to
347 RosettaCM [24]. We ran at least 2 rounds of iterative RosettaCM, passing the top 5 models out
348 of the total 50 to the next round. Additional rounds were run if model convergence for the top 5
349 was poor or if additional errors were detected by MEDIC and Molprobity. Any remaining
350 regions which AlphaFold or RosettaCM were not able to fix were built with RosettaES [25].
351 Success in rebuilding was determined by how well regions matched the density by eye,
352 Molprobity scores, and MEDIC predictions. All images of these structures were made in
353 ChimeraX [26].

354 High- and low-resolution structure validation

355 We pulled all cryo-EM structures between 3.5Å and 10Å for which there was another
356 deposition with the same UniProt ID and at least 1Å higher resolution, with a maximum of 3.5Å.
357 If the query structure had a model-map FSC greater than 10Å, the pair was thrown out. From this
358 initial pool of 68 structures, 40 pairs were tossed because there were significant conformational
359 changes caused by image processing, ligand binding, or physiological conditions.

360 For the remaining 28 pairs of structures, the high-resolution structure was docked and
361 refined into the low-resolution map, and the low-resolution structure was refined into its own
362 density [21]. The backbone RMSD between the two structures was calculated for every residue
363 and all residues with at least 1Å RMSD were labeled as errors. Residues that only existed in one
364 model of the pair were tossed and not used in validation. Error detection was then run on the
365 low-resolution structure using the statistical model from the larger dataset and precision-recall
366 curves were calculated with the described labels.

367 Comparison to Q-scores

368 To obtain a precision-recall curve for Q-scores, we first generated Q-scores for each
369 residue in the structure. We then subtracted the Q-score for the residue from the expected Q-
370 score based on the global resolution for that map. This procedure mimics the usage of Q-score,
371 where modelers are advised to examine residues which drop below the expected value. The
372 difference between expected and actual Q-score is then used to calculate the precision-recall
373 curve.

374 **Identifying errors in all deposited structures in the EMDB**

375 We pulled every deposited cryo-EM structure with resolutions between 3 and 5Å,
376 removing approximately 300 structures for which the model-map FSC at 0.5 was worse than
377 10Å. Then we prepared each pdb as described above and ran the statistical model from the
378 combined dataset to detect errors. Of the 2037 structures that met our criteria, MEDIC
379 successfully ran on 1713 (87.4%). To remove regions of disorder, we toss out all residues for
380 which the density cross correlation is less than 0.4 in all subsequent analyses.

381 **CODE AVAILABILITY**

382 MEDIC will be made available for download at:
383 <https://github.com/gabriellareggiano/MEDIC>

384 **ACKNOWLEDGEMENTS**

385 Funding for this research was provided by NIH R01-GM123089 (FD, GR). We are
386 grateful to Nao Hiranuma for DeepAccuracyNet support.

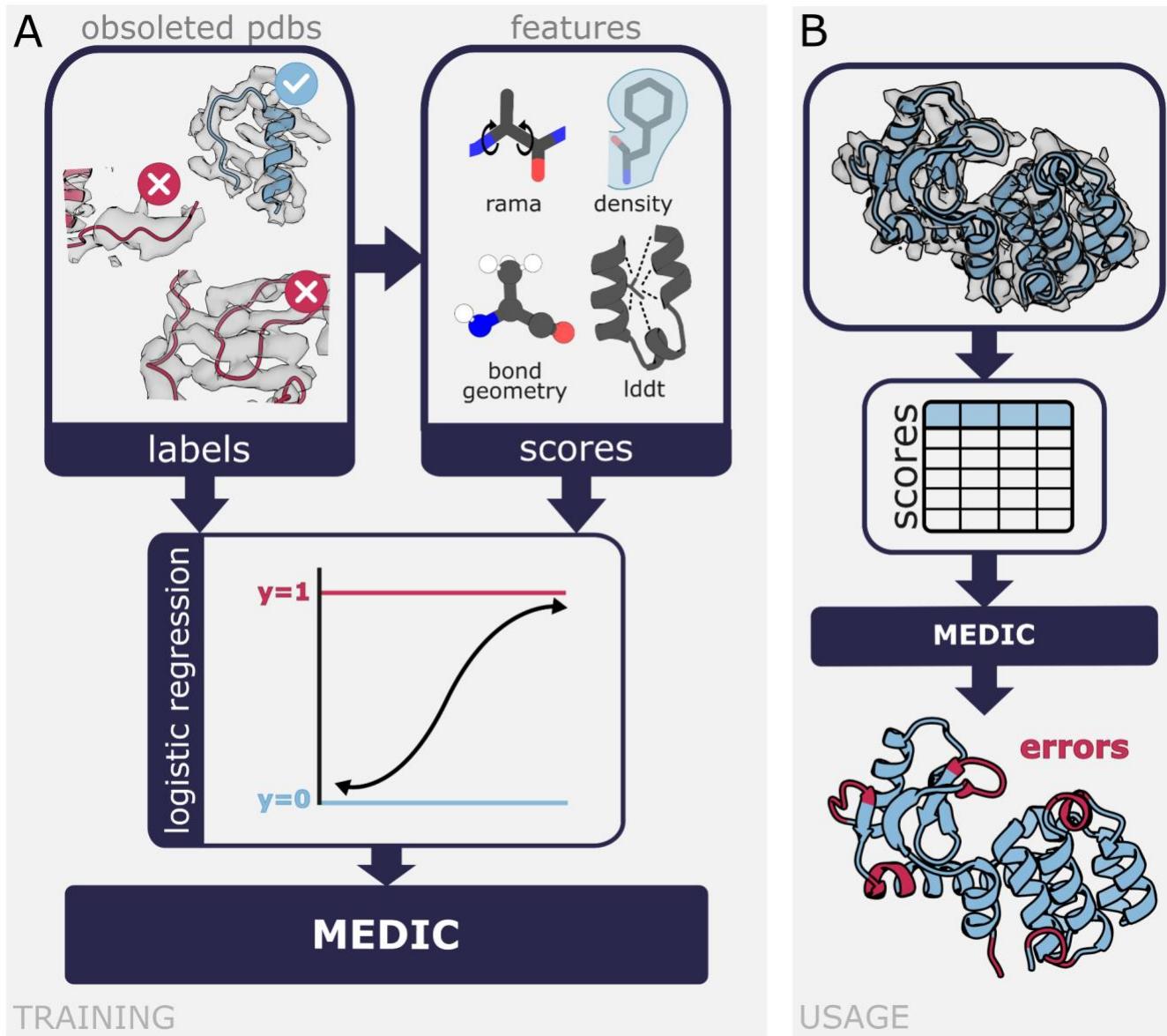
387

REFERENCES

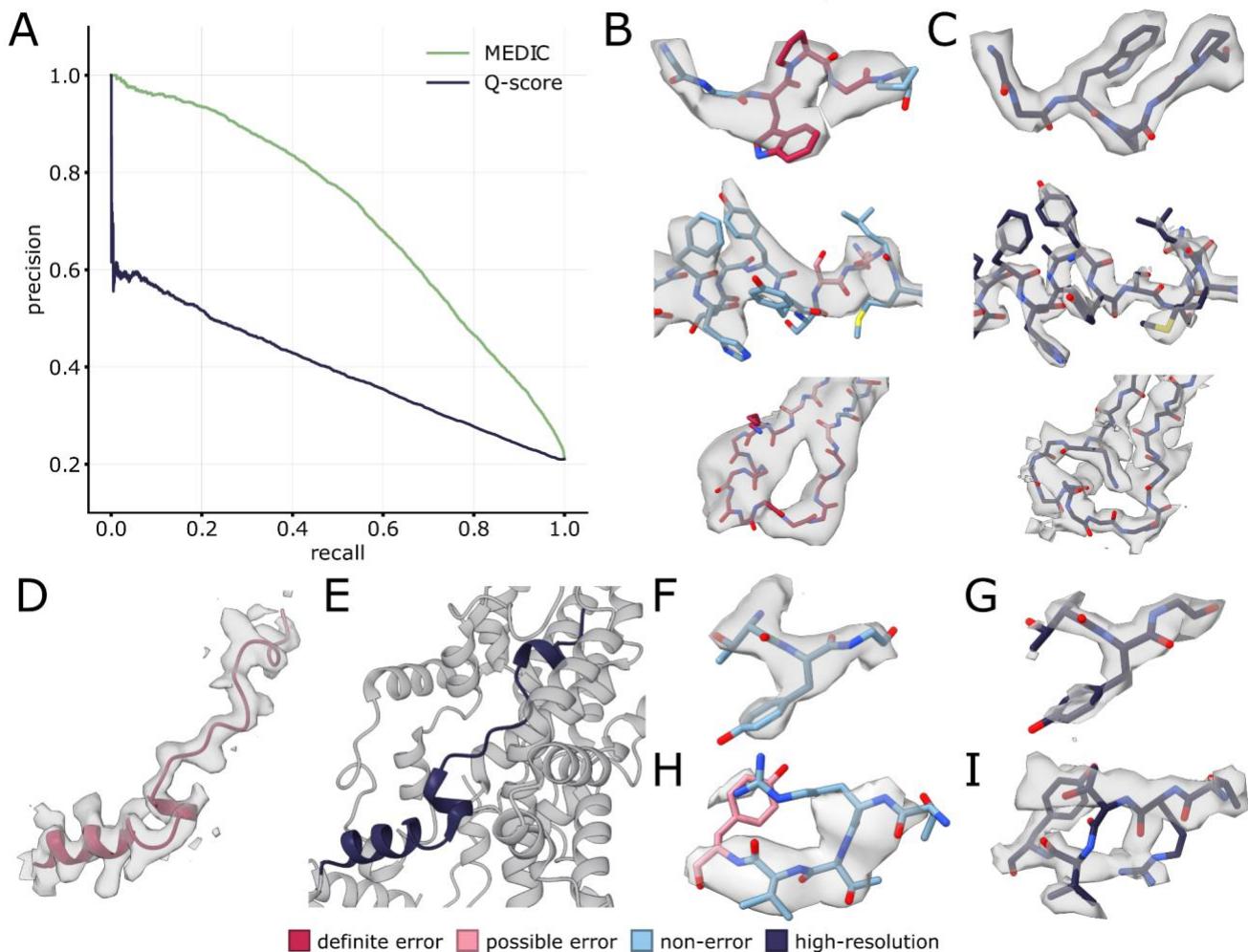
1. Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis, S., Brown, P. M., Grigoras, I. T., Malinauskaite, L., Malinauskas, T., Miehling, J., Uchański, T., Yu, L., Karia, D., Pechnikova, E. V., de Jong, E., Keizer, J., Bischoff, M., McCormack, J., Tiemeijer, P., ... Scheres, S. H. (2020). Single-particle cryo-em at atomic resolution. *Nature*, 587(7832), 152–156. <https://doi.org/10.1038/s41586-020-2829-0>
2. Lawson, C., Patwardhan, A., Pintilie, G. D., Sanz Garcia, E., Lagerstedt, I., Baker, M. L., Sala, R., Ludtke, S. J., Berman, H. M., Kleywegt, G., & Chiu, W. (2013). Emdatabank: Unified Data Resource for 3DEM. *Biophysical Journal*, 104(2). <https://doi.org/10.1016/j.bpj.2012.11.1950>
3. Croll, T. I., Diederichs, K., Fischer, F., Fyfe, C. D., Gao, Y., Horrell, S., Joseph, A. P., Kandler, L., Kippes, O., Kirsten, F., Müller, K., Nolte, K., Payne, A. M., Reeves, M., Richardson, J. S., Santoni, G., Stäb, S., Tronrud, D. E., von Soosten, L. C., ... Thorn, A. (2021). Making the invisible enemy visible. *Nature Structural & Molecular Biology*, 28(5), 404–408. <https://doi.org/10.1038/s41594-021-00593-7>
4. Chang, G., Roth, C. B., Reyes, C. L., Pornillos, O., Chen, Y.-J., & Chen, A. P. (2006). Retraction. *Science*, 314(5807), 1875–1875. <https://doi.org/10.1126/science.314.5807.1875b>
5. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873), 583–589. <https://doi.org/10.1038/s41586-021-03819-2>
6. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., ... Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. *Science*, 373(6557), 871–876. <https://doi.org/10.1126/science.abj8754>
7. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2009). Molprobity: All-atom structure validation for Macromolecular Crystallography. *Acta Crystallographica Section D Biological Crystallography*, 66(1), 12–21. <https://doi.org/10.1107/s0907444909042073>
8. Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S., & Richardson, D. C. (2019). New tools in molprobity validation: Cablam for CryoEM Backbone, UnDowser to rethink “Waters,” and NGL viewer to recapture online 3D graphics. *Protein Science*, 29(1), 315–329. <https://doi.org/10.1002/pro.3786>
9. Pintilie, G., Zhang, K., Su, Z., Li, S., Schmid, M. F., & Chiu, W. (2020). Measurement of atom resolvability in cryo-EM maps with Q-scores. *Nature Methods*, 17(3), 328–334. <https://doi.org/10.1038/s41592-020-0731-1>

10. Ramírez-Aportela, E., Maluenda, D., Fonseca, Y. C., Conesa, P., Marabini, R., Heymann, J. B., Carazo, J. M., & Sorzano, C. O. (2021). FSC-Q: A Cryoem Map-to-atomic model quality validation based on the local Fourier shell correlation. *Nature Communications*, 12(1). <https://doi.org/10.1038/s41467-020-20295-w>
11. Williams, Christopher Joseph (2015). *Using C-Alpha Geometry to Describe Protein Secondary Structure and Motifs*. Dissertation, Duke University. Retrieved from <https://hdl.handle.net/10161/9968>.
12. Barad, B. A., Echols, N., Wang, R. Y.-R., Cheng, Y., DiMaio, F., Adams, P. D., & Fraser, J. S. (2015). Emringer: Side chain-directed model and map validation for 3D cryo-electron microscopy. *Nature Methods*, 12(10), 943–946. <https://doi.org/10.1038/nmeth.3541>
13. DiMaio, F., Zhang, J., Chiu, W., & Baker, D. (2013). Cryo-EM model validation using independent map reconstructions. *Protein Science*, 22(6), 865–868. <https://doi.org/10.1002/pro.2267>
14. Istrate, A., Wang, Z., Murshudov, G. N., Patwardhan, A., & Kleywegt, G. J. (2021). 3D-strudel - a novel model-dependent map-feature validation method for high-resolution cryo-EM structures. <https://doi.org/10.1101/2021.12.16.472999>
15. Murshudov, G. N. (2016). Refinement of atomic structures against Cryo-EM Maps. *Methods in Enzymology*, 579, 277–305. <https://doi.org/10.1016/bs.mie.2016.05.033>
16. Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O'Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, T., & Gray, J. J. (2017). The Rosetta all-atom energy function for macromolecular modeling and Design. *Journal of Chemical Theory and Computation*, 13(6), 3031–3048. <https://doi.org/10.1021/acs.jctc.7b00125>
17. Hiranuma, N., Park, H., Baek, M., Anishchenko, I., Dauparas, J., & Baker, D. (2021). Improved protein structure refinement guided by deep learning based accuracy estimation. *Nature Communications*, 12(1). <https://doi.org/10.1038/s41467-021-21511-x>
18. Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). LDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics*, 29(21), 2722–2728. <https://doi.org/10.1093/bioinformatics/btt473>
19. Terwilliger, T. C., Poon, B. K., Afonine, P. V., Schlicksup, C. J., Croll, T. I., Millán, C., Richardson, J. S., Read, R. J., & Adams, P. D. (2022). Improved alphafold modeling with implicit experimental information. <https://doi.org/10.1101/2022.01.07.475350>
20. Fontana, P., Dong, Y., Pi, X., Tong, A. B., Hecksel, C. W., Wang, L., Fu, T.-M., Bustamante, C., & Wu, H. (2022). Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-em and alphafold. *Science*, 376(6598). <https://doi.org/10.1126/science.abm9326>

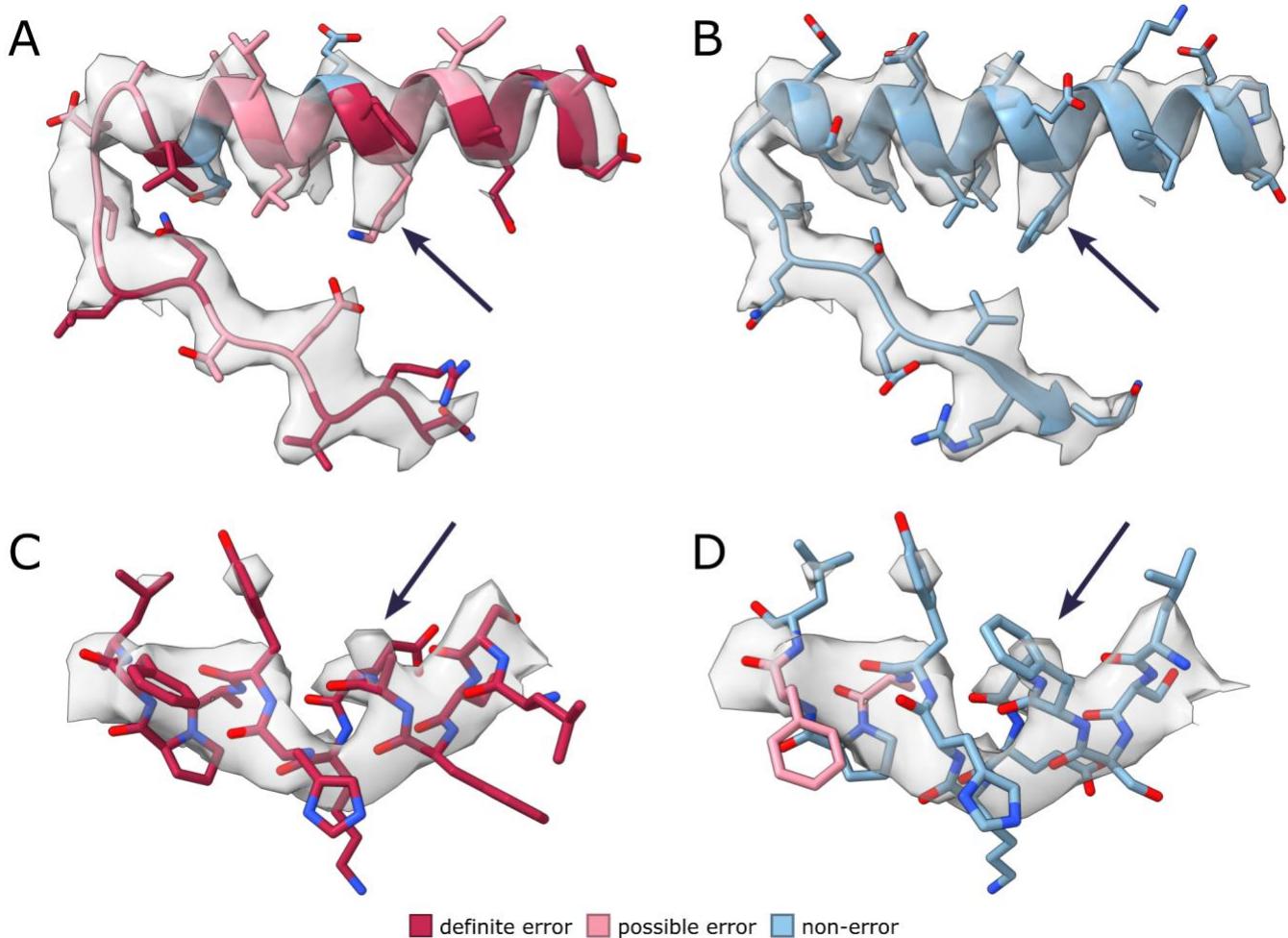
21. Wang, R. Y.-R., Song, Y., Barad, B. A., Cheng, Y., Fraser, J. S., & DiMaio, F. (2016). Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. *ELife*, 5. <https://doi.org/10.7554/elife.17219>
22. Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., ... Zhuravleva, M. (2020). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and Applied Research and education in fundamental biology, biomedicine, biotechnology, Bioengineering and Energy Sciences. *Nucleic Acids Research*, 49(D1). <https://doi.org/10.1093/nar/gkaa1038>
23. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera: a visualization system for exploratory research and analysis. *Journal of Computational Chemistry*, 25(13), 1605–1612. <https://doi.org/10.1002/jcc.20084>
24. Song, Y., DiMaio, F., Wang, R. Y.-R., Kim, D., Miles, C., Brunette, T. J., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with ROSETTACM. *Structure*, 21(10), 1735–1742. <https://doi.org/10.1016/j.str.2013.08.005>
25. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D., & DiMaio, F. (2017). RosettaES: A sampling strategy enabling automated interpretation of difficult cryo-EM maps. *Nature Methods*, 14(8), 797–800. <https://doi.org/10.1038/nmeth.4340>
26. Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2020). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Science*, 30(1), 70–82. <https://doi.org/10.1002/pro.3943>



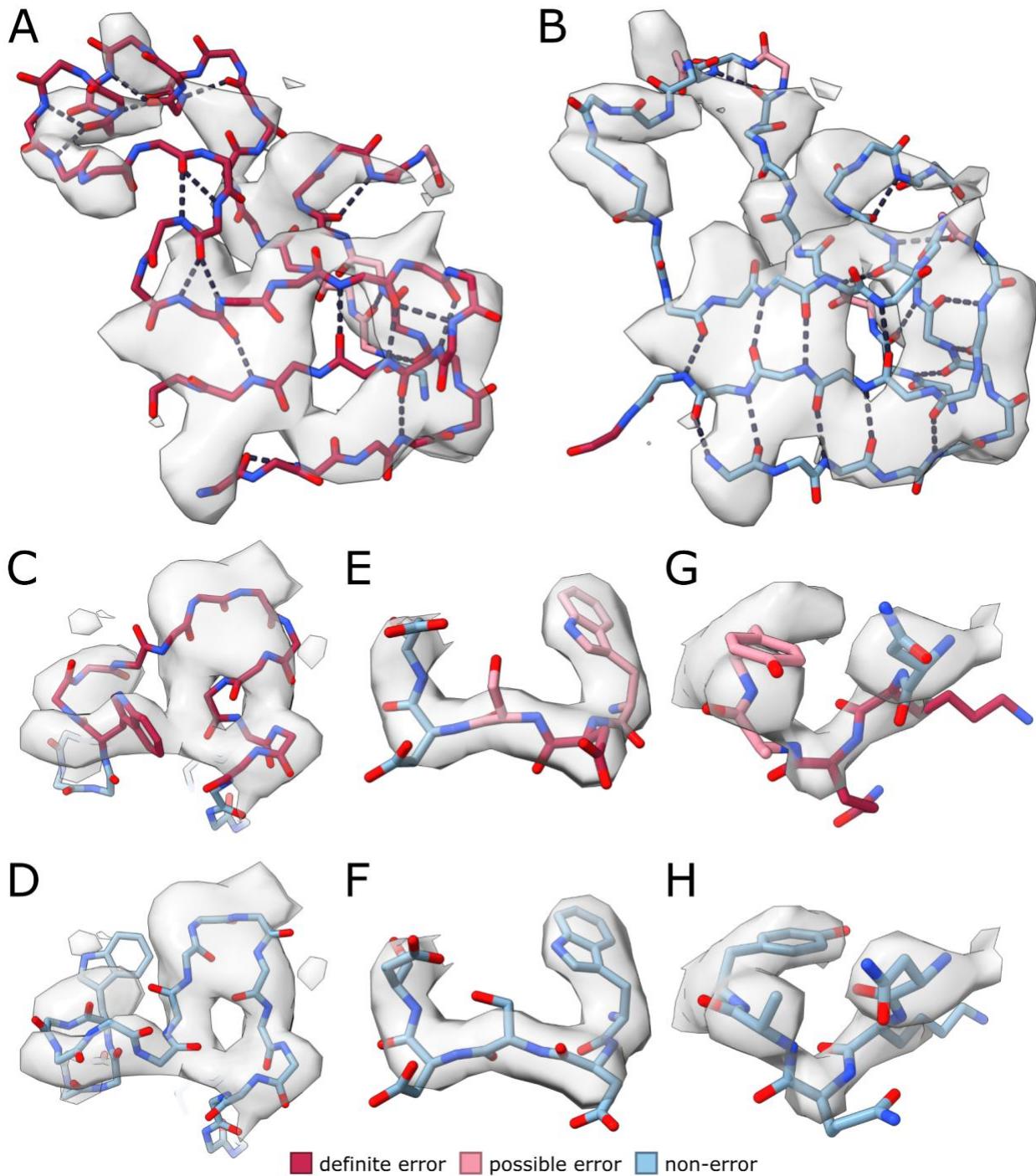
388 **Figure 1. Overview of training and usage of MEDIC.** (A) Pulling pdbs that had been edited
389 after deposition, we marked every residue for which the backbone moved between the two
390 versions as an error (red) and collected scores from each of our features on all residues. These
391 labels and scores were fed to logistic regression, which gives us the statistical model, MEDIC.
392 (B) To use MEDIC, provide a map/model pair to the program. We calculate the scores for each
393 of our features, which are then passed to MEDIC. MEDIC predicts a probability that each
394 residue is an error, where higher probability is indicative of an error.



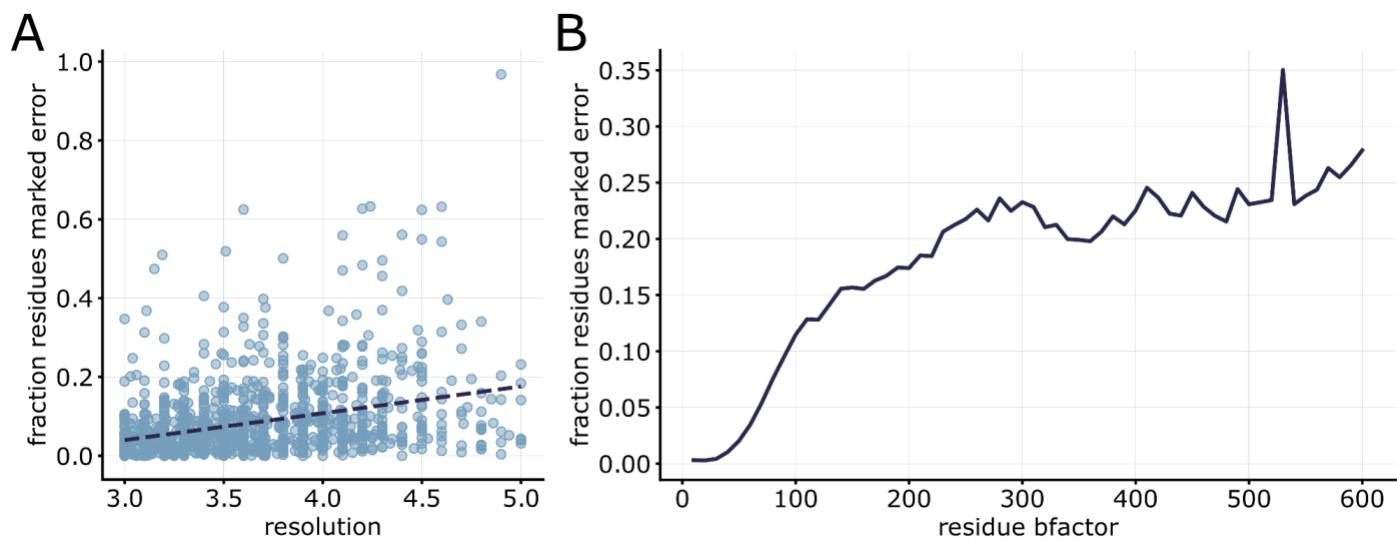
395 **Figure 2. Results on validation set of analogous low-resolution and high-resolution**
396 **structures.** For panels B, D, F, and H, residues are colored by MEDIC error prediction. (A)
397 Precision-recall curve of MEDIC error prediction and Q-scores on differences between low-
398 resolution and high-resolution structures. (B) Examples of successful identification of errors in
399 low-resolution structures: voltage-gated calcium channel (PDB 5GJW) (**top**), insulin degradation
400 enzyme (PDB 6B70) (**middle**), transmembrane channel (PDB 6M66) (**bottom**) (C) The
401 analogous region in the high-resolution structure: voltage-gated calcium channel (PDB 6JPA)
402 (**top**), insulin degradation enzyme (PDB 7K1F) (**middle**), transmembrane channel (PDB 6WBF)
403 (**bottom**). (D) False positive predicted by MEDIC in ATP synthase (PDB 6F36). (E) High-
404 resolution structure ATP synthase (PDB 6RD5) with missing context from low-resolution
405 structure colored in gray. (F) MEDIC misses an incorrect carbonyl in low-resolution structure of
406 a dehydrogenase (PDB 7E5Z). (G) Analogous region in high-resolution structure (PDB 7VW6).
407 (H) MEDIC does not mark a region in the dehydrogenase (PDB 7E5Z) that matches the high-
408 resolution data. (I) Mistake made in the high-resolution model (PDB 7VW6).



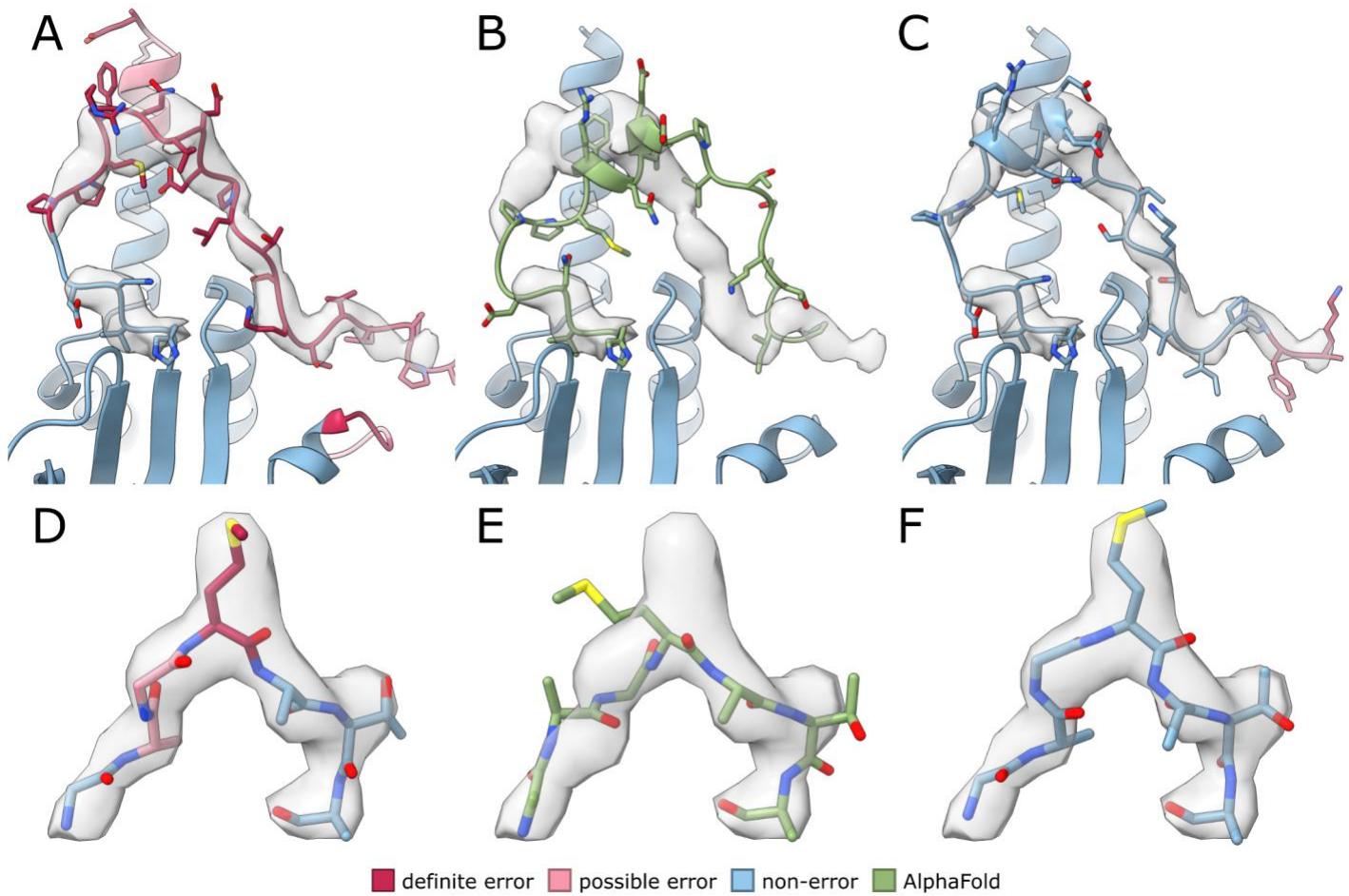
409 **Figure 3. Sequence registration errors identified in deposited structures.** All residues
410 colored by predicted error from MEDIC. **(A)** Sequence registration error in lipid scramblase
411 (PDB 6E1O). **(B)** Rebuilt model of **A**, where phenylalanine fills large side-chain density. **(C)**
412 Sequence registration error in hedgehog receptor (PDB 6DMB). **(D)** Rebuilt model of **C** with a
413 bulge added, where phenylalanine fills large side-chain density.



421 (PDB 7QFQ). **(H)** Rebuilt model of **G** with better fit to density and improved Ramachandran
422 angles.



423 **Figure 5. Aggregate statistics on all deposited structures in the EMDB.** For both plots,
424 residues with low density cross correlation, less than 0.4, were not included. **(A)** Fraction of
425 residues marked as an error by MEDIC in each deposited structure. **(B)** Fraction of residues
426 marked as an error with atomic B-factors between X-10 and X.

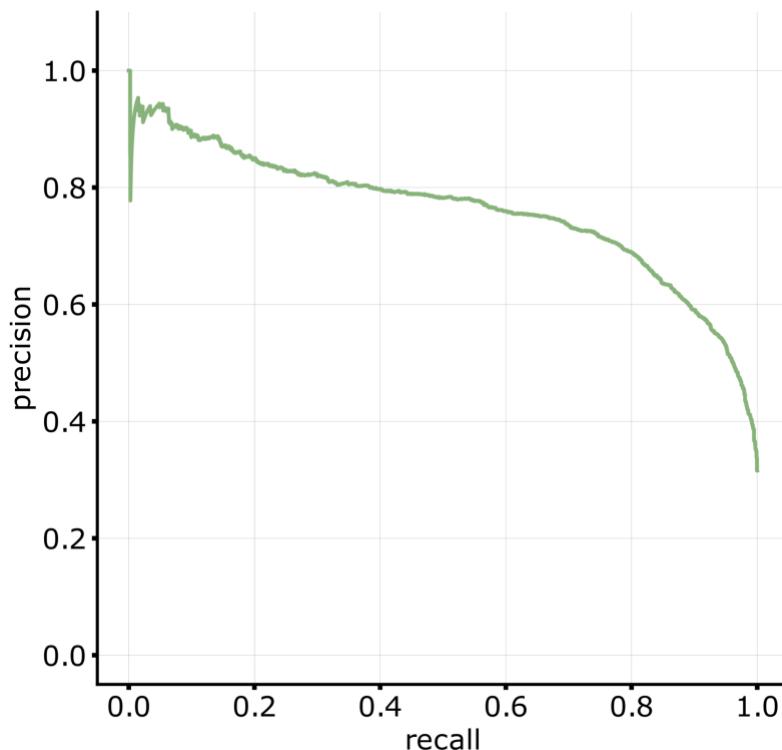


427 **Figure 6. Errors identified by MEDIC where AlphaFold models do not match the density.**
428 (A) Deposited structure of prestin (PDB 7S9D), colored by error prediction. (B) AlphaFold
429 model for prestin after docking the relevant domain into the density. (C) Rebuilt structure of loop
430 in C, colored by error prediction. (D) Deposited structure for bluetongue virus (PDB 3J9E) in
431 density map, colored by error prediction. (E) AlphaFold model for bluetongue virus after
432 refining the model into the density. (F) Rebuilt structure of loop in D, colored by error
433 prediction.

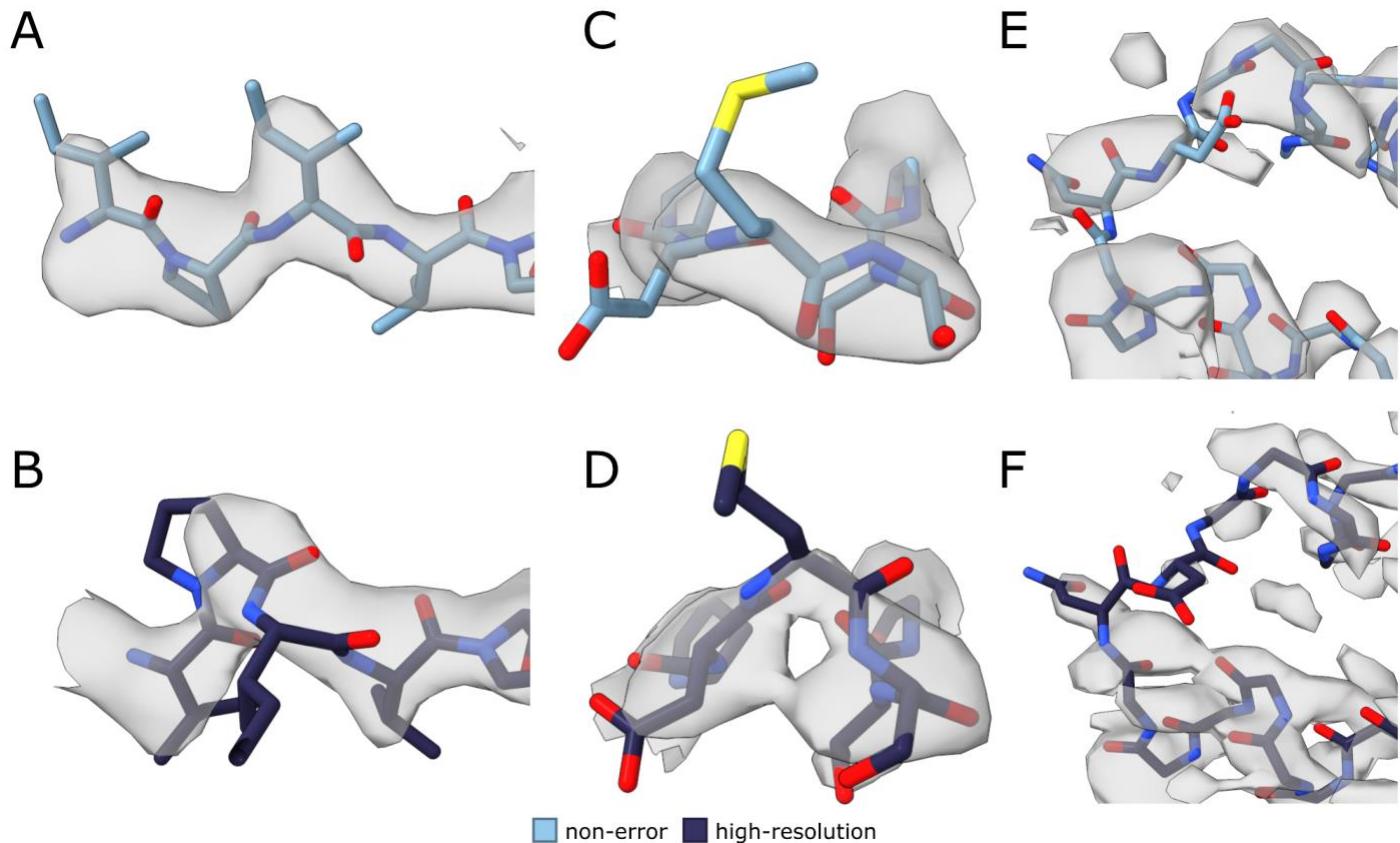
PDB ID	Total Segments		
	Marked by MEDIC	Fixed	Improved
6JT1	7	2	1
incorrect loop	3	2	1
7R9U	8	6	1
poor secondary structure	5	4	1
incorrect loop	3	2	0
7QFQ	30	26	1
poor secondary structure	16	16	0
incorrect loop	9	8	1
incorrect carbonyls	2	2	0
3J9E	4	3	1
incorrect loop	2	1	1
incorrect carbonyls	2	2	0
7S9D	24	16	1
poor secondary structure	11	10	1
incorrect loop	7	6	0
5MM4	56	25	9
poor secondary structure	17	14	3
incorrect loop	17	9	5
incorrect carbonyls	3	2	1
6C14	10	5	0
poor secondary structure	4	3	0
incorrect loop	2	2	0
6XOW	4	3	0
incorrect loop	3	3	0

PDB ID	Total Segments Marked by MEDIC	Fixed	Improved
7VOJ	1	0	1
incorrect loop	1	0	1
6DMB	36	22	10
poor secondary structure	3	1	2
incorrect loop	18	10	8
sequence registry	1	1	0
incorrect carbonyls	9	9	0
6E1O	11	9	0
poor secondary structure	3	3	0
incorrect loop	5	5	0
sequence registry	1	1	0
6C0V	13	4	1
poor secondary structure	1	0	1
incorrect loop	4	3	0
incorrect carbonyls	1	1	0
Totals	204	120	26
poor secondary structure	60	51	8
incorrect loop	74	51	17
sequence registry	2	2	0
incorrect carbonyls	17	16	1

434 **Table 1. Summary of identified and corrected high-probability errors in 12 deposited**
 435 **models, excluding disordered regions.**

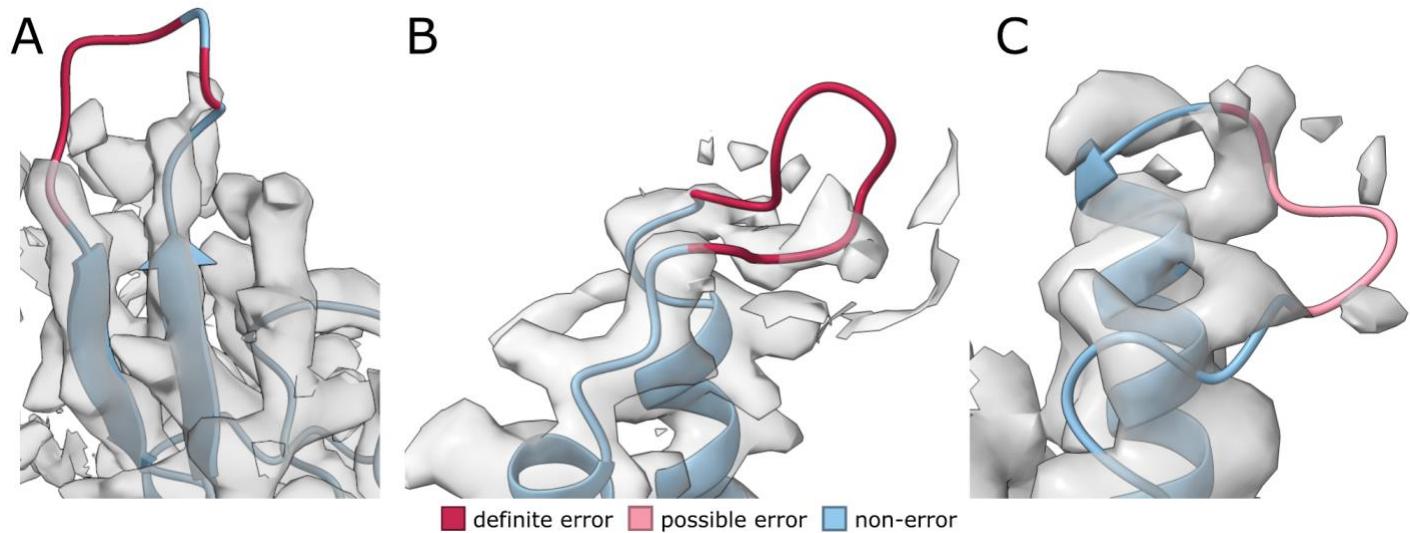


436 **Supplemental Figure 1. Precision-recall of MEDIC predictions for the set of 3 withheld**
437 **obsoleted structures using an early version of MEDIC.**

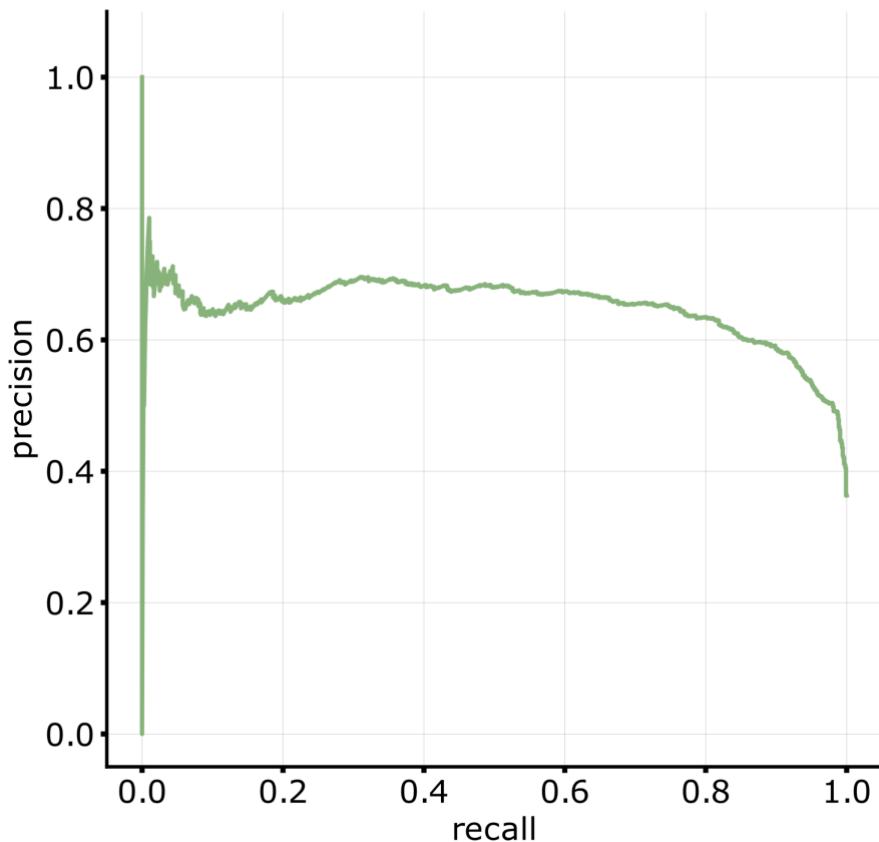


438

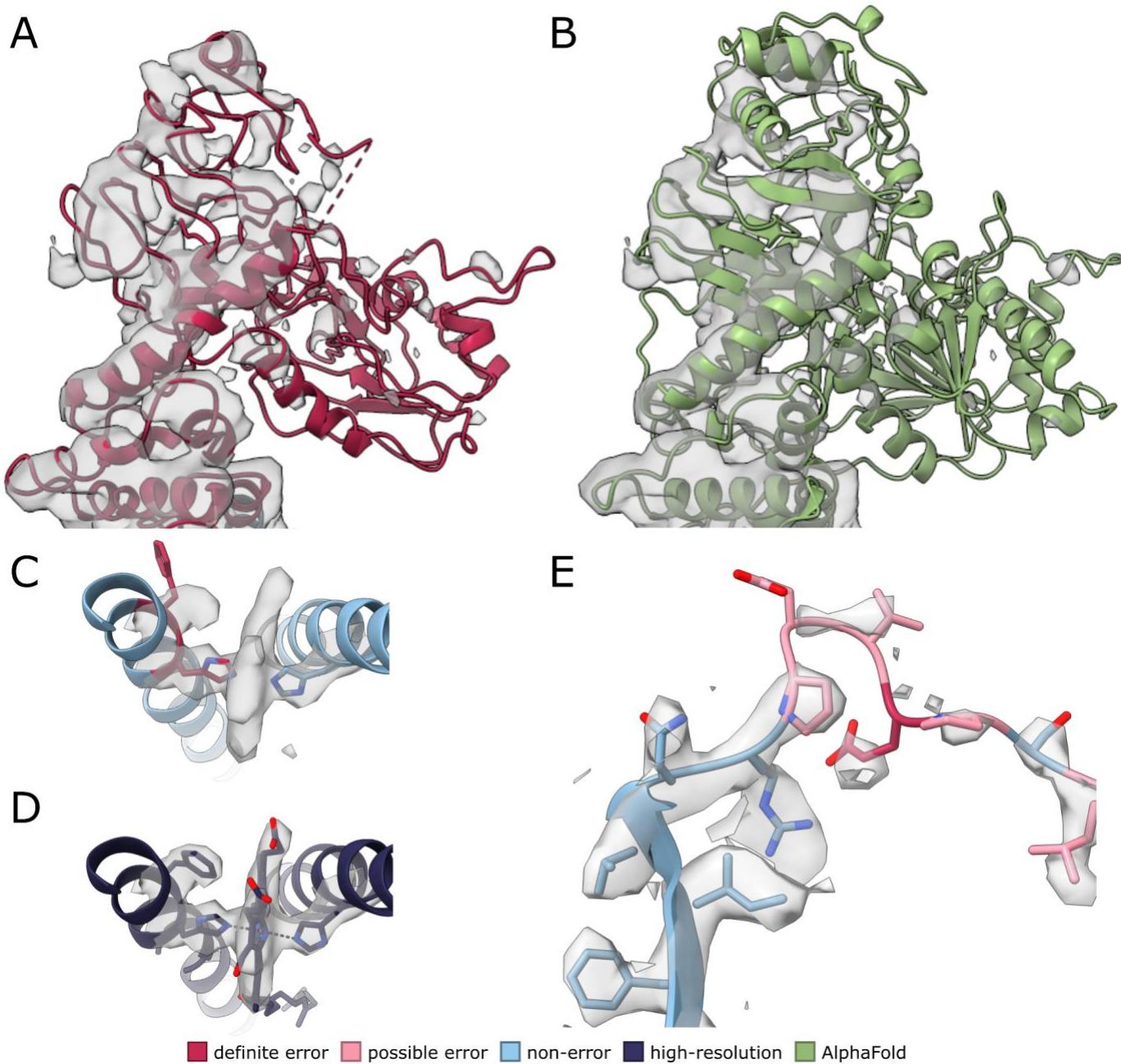
439 **Supplemental Figure 2. False negatives from the high-resolution vs. low-resolution**
440 **validation set that are not supported by the high-resolution data.** Low-resolution structures
441 (A, C, E) colored by MEDIC prediction. (A) Low-resolution structure of glutamate hydrogenase
442 (PDB 3JD3) that differs from high-resolution. (B) High-resolution structure of protein from A
443 (PDB 5K12) appears to have an error in this region. (C) Loop in glutamate hydrogenase (PDB
444 3JD3). (D) High-resolution structure (PDB 5K12) is poorly resolved in the same region from C.
445 (E) Region from low-resolution structure of TRPV5 (PDB 6PBE) is poorly resolved. (F)
446 Corresponding high-resolution structure (PDB 7T6O) is poorly resolved in the same region from
447 E.



449 **Supplemental Figure 3. Regions with little supporting density marked as errors by**
450 **MEDIC.** Regions shown are from our new rebuilt models for the following structures: (A)
451 neurotoxin (PDB 7QFQ), (B) lipid scramblase (PDB 6E1O), (C) prestin (PDB 7S9D).



452 **Supplemental Figure 4. Precision-recall of MEDIC predictions for the set of 12 rebuilt**
453 **structures using the full training dataset.** We used leave-one-out validation on each of the
454 models from the set of 12 rebuilt structures to avoid bias in training.



455
456 **Supplemental Figure 5. Examples of error prediction on deposited models in the EMDB.**
457 (A) Domain from L-fucose-1-P guanylyltransferase (PDB 5YY5) colored by MEDIC prediction.
458 (B) AlphaFold prediction for protein from A docked into the density map. (C) Binding residues
459 of cytochrome C oxidase (PDB 5Z62) after refinement and colored by MEDIC prediction. (D)
460 Deposited structure of cytochrome C oxidase with ligand bound. (E) Rubisco activase complex
461 (PDB 5NV3) colored by MEDIC prediction.