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OGT compositional bias

Abstract

O-GIcNAc transferase (OGT) is an essential glycosylating enzyme that catalyzes the addition of
N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. The
enzyme glycosylates a broad range of peptide sequences and prediction of glycosylation sites has
proven challenging. The lack of an experimentally verified set of polypeptide sequences that are
not glycosylated by OGT has made prediction of legitimate glycosylation sites more difficult.
Here, we tested a number of intrinsically disordered protein regions as substrates of OGT to
establish a set of sequences that are not glycosylated by OGT. The negative data set suggests an
amino acid compositional bias for OGT targets. This compositional bias was validated by
modifying the amino acid composition of the protein Fused in sarcoma (FUS) to enhance
glycosylation. NMR experiments demonstrate that the tetratricopeptide repeat (TPR) region of
OGT can bind FUS and that glycosylation-promoting mutations enhance binding. These results
provide evidence that the TPR recognizes disordered segments of substrates with particular
compositions to promote glycosylation, providing insight into the broad specificity of OGT.
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Introduction

Intracellular O-linked-p-N-acetylglucosamine (O-GIcNAC) is an essential post-translational
modification (PTM). Since discovery of the modification more than three decades ago(1),
various proteomic studies have identified thousands of proteins with the modification(2-6).
Underscoring the importance of the modification, the single enzyme responsible for adding O-
GIcNAc onto proteins, O-GIcNAc transferase (OGT), is required for the viability of dividing
mammalian cells and embryogenesis(7, 8). O-GIcNAc is thought to play essential roles in
nutrient sensing and stress response with implications for diabetes, cancer and diseases of aging,
including neurodegenerative disease(reviewed in (9)). O-GlcNAc-modified proteins implicated
in neurodegenerative diseases including amyloid precursor protein(10), tau(11), a-synuclein(12)
and superoxide dismutase(13). Mutations in OGT have also been implicated in intellectual
disability(14). Unlike other glycan modifications, which are often multimeric(15), O-GIcNAc
modification involves addition of a single GICNAc moiety to serine or threonine hydroxyls. O-
GIcNACc significantly affects protein thermodynamic and solvation properties and modulates
protein thermal stability(16) and aggregation propensity(11, 17, 18). In addition, O-GIcNAc
modification has been recently demonstrated to modulate protein phase separation, based on
experimental work with EWS, CAPRIN1 and SynGAP/PSD-95 as well as broader
bioinformatics results(19-21).

Given the significant biological impact of this PTM, several studies have grappled with defining
OGT sequence specificity(22—26) using O-GIcNAc-modified sites identified in cell extracts by
mass spectrometry or by utilizing high throughput assays performed on peptide or protein
microarrays(22, 27). O-GIcNAc status in vivo is a convolution of multiple factors. These include
the specificity of OGT and the specificity of the enzyme that removes O-GIcNAc moieties, O-
GIcNAcase (OGA)(28). The efficiency and specificity of OGT is also influenced by the
expressed splice isoform(29), since different OGT isoforms contain different numbers of
tetratricopeptide (TPR) repeats and TPR repeats are involved in peptide substrate
recognition(24, 26, 30-32). OGT may also be recruited to substrates by adaptor proteins(33-35).
The concentration of glucose and insulin as well as tissue type and developmental stage also
contribute(36, 37). Finally, OGT modification sites are primarily found in extended loops or
intrinsically disordered regions (IDRs)(5) that can access the catalytic site.

Several closely related OGT recognition sequences have been identified. For example, Pathak et
al. identified the OGT recognition sequence as [TS][PT][VT]S/T[RLV][ASY](22). Nevertheless,
a scan of O-GIcNAcylated peptide sequences in the PhosphoSite database(38) indicates that most
substrates fall outside of this definition, as well as definitions put forward by other groups.
Computational methods that make use of machine learning or neural networks to predict sites of
O-GIcNAc modification(23, 39-46) have been used to address this shortcoming. These
computational methods take both sequence and amino acid combinations into account when
making their predicitions. Predictors include YinOYang(43), OGTSite(42), O-GIcNAcscan(46)
and O-GIcNACPRED-11(41), although not all of these predictors are still available online.
Evaluating the effectiveness of these predictors is very challenging, in part because of the lack of
experimentally verified negative sites. Particular attention must be paid to sensitivity when
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evaluating these O-GIcNAc predictors, because only a small minority of serines and threonines
are expected to be modified. While many proteins can be modified by OGT, the proportion of
individual serines and threonines that are modified may be as low as 1.4% (45). The small
number of modified residues makes it easy to achieve a high level of accuracy (combined
proportion of correctly identified positive and negative sites) by setting a very high threshold for
positive site identification. A high threshold enables correct identification of negative sites,
which represent the vast majority of sites. The trade-off is that many positive sites will be
missed, yielding a low sensitivity (proportion of positive sites correctly identified). Thus, when
evaluating O-GIcNACc site predictors, sensitivity is a critical parameter. Taking sensitivity into
consideration, O-GIcNACPRED-I1 seems to outperform other prediction methods(41, 45).
Despite the extensive effort put into these computational methods, they yield many false positive
and false negative sites, so experimental validation is still necessary(47, 48).

The inability to clearly define OGT specificity is the result of at least two contributing factors.
First, many of these attempts to define specificity have focussed on peptide regions in the
immediate vicinity of the glycosylated region, roughly the length of peptide than can be
accommodated in the catalytic site of the enzyme. It is now known that efficient substrate
recognition can involve a more extended peptide region than what is incorporated into existing
predictors(31). For example, efficient glycosylation of the RNA Polymerase C-terminal domain
requires more than 20 heptad repeats or over 140 residues(30). The largest isoform of OGT
(ncOGT) is comprised of a catalytic domain preceded in sequence by 13 tetratricopeptide (TPR)
repeats (24, 49, 50). The TPR region forms a large superhelix that has been shown to influence
recognition of extended lengths of substrate peptides(30, 51, 52). Thus, improving predictors will
require consideration of a broader sequence context.

Secondly, the inability to clearly define OGT specificity is due to the lack of an experimentally
verified negative data set for prediction purposes. Existing predictors have used protein regions
not annotated as glycosylated, but found in proteins that are glycosylated by OGT, as a negative
dataset(39, 42), or alternatively human proteins from the UniProt database(53) that are not
explicitly known to be glycosylated or predicted to be glycosylated(40). Taking protein regions
not annotated as glycosylated, but found in proteins that are glycosylated has the advantage that
the proteins are known to exist spatially and temporally near to OGT, an important
consideration(54). Nevertheless, the assumption that the absence of mass spectrometry data
supporting glycosylation at a specific site is evidence that the site is not glycosylated is a poor
one. Mass spectrometry studies often do not achieve full coverage for a particular protein and
certainly not for the entire proteome(55). Coverage of the proteome in higher organisms typically
does not exceed 10%. In one study where over 1500 O-GIcNAc modified proteins were
identified, modification sites could only be assigned in 80 proteins(3). Even when a high degree
of coverage is achieved, the identification of post-translational modification sites depends
heavily on the abundance of a particular protein(5), especially when the sites are sub-
stoichiometrically modified as is often the case for O-GIcNAc. Finally, identification of specific
sites is hindered by the lability of the O-GIcNAc modification in MS/MS experiments(56, 57).
For these reasons, construction of a negative dataset based on sites that are not annotated as
glycosylated is not a good strategy. In one recent study the majority of proteins identified as
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being O-GIcNAc modified were not previously known to be modified(16). The case of Lamin A
serves to illustrate the point. Prior to 2018, Lamin A was shown to have two glycosylated
sites(57); more recently, an additional nine sites were identified(47). Only two of the Lamin A
sites (S612 and T643) are currently listed in the PhosphoSite O-GIcNAc database. Interestingly,
the double mutant S612A/T643A of Lamin A is as robustly O-GIcNAc modified as the WT
protein. Inclusion of the nine additional sites in the negative database would clearly impair
prediction. The Ewing sarcoma protein (EWS) is another excellent illustration, since it is a well-
documented OGT substrate(58) but is not present in the PhosphoSite O-GIcNAc database which
was used as the basis for most of the existing predictors.

Here we explored the utility of an experimentally verified negative dataset for prediction of
likely glycosylation target sites for the longest isoform of OGT. Initial work on glycosylation of
the three FET family proteins, Fused in sarcoma (FUS), EWS and TATA binding protein-
associated factor 15 (TAF15), provided insight and suggested a way forward for site prediction.
As in previous examples, we used the PhosphoSite O-GIcNAc database as our positive set, but
extended the length of the peptide region considered. To obtain a negative dataset, we purified a
set of IDRs and subjected them to optimized glycosylation reactions with purified recombinant
OGT, then used whole protein mass spectrometry rather than MS/MS to identify proteins that
were not being glycosylated. We computationally optimized a scoring matrix to distinguish
between the positive set and our experimental negative dataset. The scoring matrix suggests that
OGT substrates have an amino acid compositional bias that extends beyond the polypeptide
region that can be accommodated in the catalytic site of the enzyme. Compositional mutants of
the FUS N-terminal low-complexity region (LCRn) support an OGT compositional bias. We
verified that the TPR region of OGT (OGT-TPR) can bind to FUS and an enhanced-
glycosylation mutant of FUS, leading us to speculate that the TPR region enables OGT to
glycosylate substrates that are not optimally recognized by the catalytic site.

Results
Glycosylation Stoichiometry of the FET Proteins

Previously, Kamemura reported that, of the three FET proteins FUS, EWS and TAF15, only
EWS is glycosylated with high stoichiometry by OGT(58). Since the FET proteins are
homologous, this suggested that further analysis of FET protein glycosylation might inform our
understanding of OGT specificity. We assayed glycosylation levels on undigested protein
samples using electrospray ionization mass spectrometry following in vitro glycosylation of
purified human FUS, EWS and TAF15 fragments (Fig. 1a-c). Specifically, we measured
glycosylation of the N-terminal low-complexity (LCRn) regions of these FET proteins, since this
is the region of EWS which is glycosylated(19, 59): FUS (aa 1-214), EWS (aa 1-264), TAF15
(aa 1-210), hereafter referred to as FUS, EWS and TAF15, respectively. A distribution of
glycosylated states with three to ten added O-GIcNAc moieties was observed for EWS. No
unglycosylated EWS was observed following the reaction. In contrast, the majority of the TAF15
LCRn protein was not glycosylated, although a small amount of singly glycosylated protein was
observed. Modest glycosylation of FUS LCRy was observed, with a median of two sugars
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groups added. These experiments confirm that EWS can be heavily glycosylated, while FUS is
modestly glycosylated and TAF15 is largely unglycosylated in vitro.

Glycosylation Sites in EWS

To identify specific EWS glycosylation sites, we subjected the EWS LCRn to chymotrypsin
digestion followed by LC-MS/MS. As observed by others, we found that the O-GIcNAc group is
labile and is removed during the peptide fragmentation step. Thus, we could determine which
peptides are glycosylated, but could not identify specific serines and threonines that are
glycosylated. Glycosylation sites were spread across the LCRy as indicated in Table 1. We can
determine that there are more than 14 glycosylation sites, though we never observed EWS
protein modified at 14 or more sites simultaneously. We speculate that glycosylation at some
sites might inhibit glycosylation at nearby sites, thus making it unlikely to observe EWS
glycosylated at all possible sites.

Amino Acid Variation in the FET LC Regions

The stark difference in FET protein LCRn glycosylation stoichiometry was surprising since their
sequences share many features. These LCRy are primarily comprised of the amino acids glycine,
alanine, serine, threonine, tyrosine, proline and glutamine, a composition that is similar to the
RNA polymerase C-terminal domain (RNA Pol CTD), which is also known to be glycosylated
by OGT. However detailed comparison of the sequences suggests explanations for their differing
substrate specificity (Fig. 1d). EWS has a much higher percentage of alanine, proline and
threonine residues than either FUS or TAF15. The fractional content of glycine and serine is
lower for EWS than either FUS or TAF15. The RNA Pol CTD is noticeably depleted in glycine
and glutamine residues relative to the FET proteins. TAF15 has a notably higher proportion of
charged residues including arginine, aspartic acid and glutamic acid. Observing these
differences, we decided to investigate the importance of amino acid composition outside of the
immediate vicinity of the glycosylated sites.

Computational Optimization of OGT Substrate Prediction

The inability of OGT to appreciably glycosylate TAF15 suggested that it would be possible to
develop an experimentally verified negative dataset to improve substrate prediction. To that end,
a number of known IDRs were subjected to glycosylation under optimal conditions followed by
intact mass spectrometry. The EWS LCRN served as a positive control for this experiment. High
quality mass spectra for IDRs of SARA (aa 766-822, human)(60), DDX4 (aa 1-236, mouse)(61),
TAF15 (aa 1-210, human), CFTR (aa 654-838, human)(62) and FMRP (aa 445-632, human)(63)
demonstrated that these proteins were not glycosylated to any appreciable extent even after 15
hours of reaction time(Fig. 2). Only one of the IDRs that we tested, from the yeast protein Sicl
(aa 1-90)(64), was significantly glycosylated under our reaction conditions (not shown) and thus
excluded from our negative data set. (Hereafter, these IDRs are referred to only by the name of
the protein.) Close inspection of the DDX4 and TAF15 spectra showed a small fraction of
protein glycosylation on a single site. Nevertheless, we decided to keep DDX4 and TAF15 in our
negative data set, since the site(s) are clearly less than optimal and barely glycosylated even
following overnight incubation. All peptides centered on serine or threonine residues were
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extracted from the relevant TAF15, CFTR, DDX4, FMRP and SARA sequences to use as a
negative dataset. The negative set includes a total of 135 peptides, though many contain
overlapping sequences. Because of the small size of the dataset, we did not exclude any of the
peptides for subsequent testing of the approach. Our positive dataset consists of the sites listed in
the PhosphoSite O-GIcNAc database, which includes 1830 sites primarily from mouse, human
and rat proteins.

A simple computational strategy was used to optimize a substrate scoring matrix (Fig. 3a,b). The
substrate scoring matrix had position relative to the potential glycosylation site along one axis
and the amino acids along the other axis. Tryptophan and cysteine were excluded from the
scoring matrix, as they were considered too rare to properly evaluate. Substrates in the positive
and negative sets were scored by summing the value of the appropriate matrix positions for each
amino acid in the sequence. Random modifications were made to the matrix and were kept if the
distance between the median scores of the positive and negative dataset increased. The optimized
matrices converged on similar matrices, despite starting from very different starting matrices.
Matrices for peptide lengths of 15, 23, 31 and 39 were evaluated. As some of the observed trends
spanned the longest 39 residue peptides, we chose this length for our further work, consistent
with longer lengths being required for optimal glycosylation of some substrates.

The optimized matrix (Fig. 3b) suggests that glycosylated peptides have a bias for the methyl
group-containing amino acids alanine, valine, methionine, threonine, isoleucine and leucine;
proline was also favorable. Glycosylated peptides were depleted in glycine, glutamine and
asparagine as well as the charged amino acids, glutamate, aspartate and arginine. Trends for
glycine, alanine, proline, asparagine and glutamine seemed to be consistent across the length of
the matrix. The results of the optimization are shown in Figure 3c, which demonstrate that the
positive and negative sets are largely separated. Notably, peptide scores for individual IDRs in
the negative dataset are quite variable. Peptides derived from low-complexity IDRs that readily
phase separate, such as DDX4, FMRP and TAF15, are overrepresented in the negative set due to
the bias in protein availability in our lab. The smaller number of peptides derived from CFTR
and SARA do not score as poorly as the other peptides in the negative set, indicative of a
deficiency in the negative set (see below). The similarities of the matrix values along the length
of the peptides suggested that OGT might select IDRs with particular amino acid makeups,
rather than exclusively selecting short linear motifs via the active site. We refer to our predictive
algorithm that utilizes the compositional bias of 39 residues around the modification site as
OGTcomPred.

Testing Compositional Bias

To measure compositional bias in the positive and negative datasets, we used the program
fLPS2.0(65). The background proportions of amino acid types were those derived from human
UniProt records(53) or alternatively a dataset of disordered proteins (Fig. S1). To determine the
proportions of amino acids in disordered proteins, we determined their abundance in a
MobiDB(66) manually curated version of the DisProt database(67). We further selected only
human proteins with greater than 50% fractional disorder. The compositional biases were more
evident in the PhosphoSite database, due to the larger size of the database, when compared to the
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experimental negative set (Table 2). As expected, there is a bias for inclusion of serine and
threonine in the positive dataset, since these residues are present in every peptide in the database,
that was observed when either the human proteome amino acid composition was used or when
the disordered protein amino acid composition was used. In contrast, the negative dataset does
not appear biased for threonine in either case, suggesting that threonines might be more
favorable for glycosylation. As suggested by the substrate scoring matrix, there is a bias for
inclusion of methyl-containing residues like alanine and valine and for isoleucine and methionine
when using disordered protein amino acid composition. The positive set also has a bias for
prolines, though this disappears when using the disordered protein composition. The negative set
has a notable bias for inclusion of glycine and to a lesser extent glutamine and asparagine. Thus,
analysis of the training datasets support a difference in the compositional biases of the positive
and negative datasets and a role for amino acid compositional bias in glycosylation target
selection.

Compositional Mutations

To test the effect of amino acid composition on glycosylation, we used the trends from our
optimized matrix incorporated into our OGTcomPred algorithm and the compositional bias
measures to predict mutations in the FUS LCRn that would enhance glycosylation. We made six
constructs containing various combinations of mutations. Mutation were chosen on the basis of
composition with no regard for local sequence motifs, in order to test the role of composition
rather the role of specific glycosylation motifs. In total, thirteen glycines were mutated to
alanine, threonine or proline. Long stretches of alanines were avoided to prevent a-helix
formation. The remaining substitutions were glutamines mutated to threonine or proline, serines
mutated to threonines and a single aspartate mutated to threonine. Mut-A contained the
mutations Q31T, G34A, Q36A, G40T, Q43P, D46T and G49A. Mut-B contained the mutations
G67A, Q69T, G74A, G76P, G79A, G80P, G82A, S83T and Q85P. Mut-C contained the
mutations G99A, G101T, S107T, S108T, G111A, G114A and S115T. Mut-D combined Mut-A
and B mutation. Mut-E combined Mut-B and C mutations. Mut-F combined mutations from
Mut-A, B and C (Supplementary Table 1). The total number of serines and threonine increased
by less than 10% going from WT to Mut-F. SUMO fusions of the mutants Mut-B through Mut-F
were successfully purified, glycosylated and subjected to LC-MS. We failed to purify Mut-A.
Unlike in the initial experiment with the three FET proteins (Fig. 1), SUMO fusions with the
LCRn were used in the glycosylation reactions and the mass spectrometry experiments as we
could not consistently get data without the fusion tag in place. However, the SUMO may have
reduced the level of glycosylation possibly via transient steric inhibition. Under the conditions
used in this experiment, we observed only a single O-GIcNAc modification on WT FUS. With
an increasing number of mutations, higher O-GIcNAc stoichiometries were observed, with as
many as seven on the mostly highly mutated construct, Mut-F (Fig. 4a). Comparing the
maximum number of observed sites with the number of sites predicted by our OGTcomPred
algorithm gave a Pearson correlation of 0.84 with a p value of 0.038 (Fig. 4b). In contrast,
comparing the number of sites predicted by O-GIcNAcPredlIl, considered to be the best existing
predictor(45), gave a Pearson correlation of 0.59 with a p value of 0.21 for this set. The data for
individual mutants showed a distribution in the number of glycosylation sites, matching
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expectation. However, for mut-D, peptides with one, three and four added sugars were observed,
but peptides with two added sugars were not observed (Fig. 4a). The explanation for this is
unclear, though it is possible that this peptide simply was not detected in the mass spectrometer.
In summary, the FUS glycosylation mutations support the hypothesis that OGT can utilize amino
acid composition over significant stretches within IDRs to recognize substrates and suggests that
the relatively short peptide sequences used by O-GIcNAcPredll to identify glycosylation sites do
not fully capture this compositional bias.

NMR evidence for direct interaction between OGT-TPR and FUS

Since it is known that some OGT substrates require the TPR for efficient glycosylation, we
hypothesized that the TPR functions by binding to substrates to increase the likelihood of contact
with the catalytic domain. NMR is a reliable means of confirming protein interactions involving
conformationally flexible IDRs. Therefore, to test whether the TPR can bind to FUS, we
generated NMR spectra of *°N-labelled WT FUS LCRy in the presence and absence of
unlabelled TPR region of OGT (OGT-TPR, aa 2-474) fused to a SUMO tag. The °N labelling
allows us to observe spectral peaks (circles in Fig. 5) that correspond to individual amide protons
in FUS. In the overlay of the WT FUS spectra with and without OGT-TPR (Fig. 5a), we observe
that addition of OGT-TPR causes several peaks to largely disappear, specifically, peaks arising
from the two SYXGY motifs (motifs found at aa 37-41 and 96-100) in FUS. In Fig. 5c, a plot of
signal intensity ratios with and without OGT-TPR demonstrates the heterogeneity in peak
intensity changes, with intensity losses ranging from none to 90% and an average peak intensity
ratio of 0.48 +/- 024. The simplest mechanistic explanation is that FUS binds to the OGT-TPR,
which is 50 kDa in size and is known to form a dimer, causing the rotational motion of FUS-
interacting residues to slow dramatically and leading to significant NMR signal loss. Residues
further from the directly interacting residues experience less restriction in rotational motion and
consequently less signal loss. The heterogeneous peak intensity loss provides solid evidence that
the OGT-TPR binds to WT FUS in a dynamic manner, with multiple interacting elements of
FUS exchanging on and off the surface of the TPR(68), and suggests that some parts of the FUS
sequence are preferred binding sites. To test whether the compositional mutations enhance
binding to OGT-TPR, we next recorded NMR spectra of FUS Mut-F in the presence and absence
of OGT-TPR. The Mut-F overlay shows a more dramatic loss of signal intensity in the presence
of OGT-TPR (Fig. 5b and 5d), with an average peak intensity ratio of 0.36 +/- 0.22, strongly
suggesting that the compositional mutations enhance binding to the OGT-TPR. To control for
possible binding of SUMO to WT FUS and FUS Mut-F, we repeated the experiment using OGT-
TPR not fused to SUMO. The results were qualitatively similar (Fig. S2) providing evidence that
changes in the FUS spectra are due to TPR binding and not SUMO binding. However, in the
absence of the SUMO, the samples with OGT-TPR phase separated which made quantitative
comparison of the apo and plus OGT-TPR samples impossible.

Test Case: CREB-binding protein (CBP)

We next tested our compositional matrix glycosylation site predictor, OGTcomPred, on four
known IDRs from human CBP (69-71) and then measured glycosylation experimentally using
mass spectrometry. The four regions were the ID1 (CBP aa 1-344), ID3 (CBP aa 676-1080), 1D4
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(CBP aa 1851-2057) and ID5 (CBP aa 2124-2442). We predicted 13, 34, 15 and 6 sites in ID1,
ID3, ID4 and ID5, respectively (Fig. 6), whereas only one site in each of ID1 and ID5 and no
sites in ID3 and 1D4 are listed in the PhosphoSite O-GIcNAc database. Following overnight
glycosylation, mass spectrometry demonstrated glycosylation at a median of 3 sites in ID1 and a
median of 2 sites in ID5 (Fig. 6). ID4 was predominantly unglycosylated, which could be due to
secondary structure elements unaccounted for by the prediction (see Discussion). We were
unable to obtain mass spectrometry data on the full ID3, so we digested the glycosylated protein
with trypsin and submitted the sample to MS/MS (Table 3). We found glycosylation at S709,
with a further three sites between residues 715 and 768 and one between residues 972 and 998.
Therefore, there are at least 5 possible glycosylation sites in ID3. These results confirm that OGT
can glycosylate more sites than are listed in the PhosphoSite database, but indicates that our
predictor shares a high false positive rate with previously developed predictors.

Dataset Analysis

To gain further insight into OGT substrate recognition, we analyzed matrix plots of position-
dependent amino acid frequencies for the positive and negative datasets used here and in the O-
GIcNACPRED-II predictor development (Fig. 7). The O-GIcNACPRED-II positive dataset (Fig.
7b) and the PhosphoSite dataset (Fig. 7a) from which it is derived are highly similar. In contrast,
the experimental negative set from this study (Fig. 7c¢) and the negative set for the O-
GIcNACPRED-I1 study (Fig. 7d) are quite different. Although published details on how the O-
GIcNACPRED-II negative dataset were obtained are limited, it contains approximately 51,000
peptide sequences. This database is large and, at first glance, appears to have a very limited
amount of residual sequence-specific information with nearly uniform amino acid frequencies
along the length of the peptide. As such the database may have been useful as a way to normalize
the positive dataset against expected amino acid frequencies, rather than primarily contributing
information on sites that are difficult to glycosylate. Consistent with this, the O-GICNACPRED-11
negative dataset matrix is very similar to the matrix for all human protein S/T centred peptides
derived from UniProt (Fig. 7e). Examination of the positive datasets demonstrates overall amino
acid frequencies that are similar to the O-GIcNACPRED-II negative set and the human proteome.
For example, serines and to a lesser extent prolines, alanines, glycines and leucines are present
with high frequency in the positive datasets and the O-GIcNACPRED-II negative dataset.
However, in the positive sets, one also sees amino acids that are over- or under-represented in a
position-dependent manner relative to the O-GIcNACPRED-II negative set. These primarily
occur within the 4 residues before and after the serine/threonine glycosylation site and likely
represent sequence specific elements that are recognized by the catalytic domain of OGT. For
example, peptides with prolines in the i-3, i-2 and i+2 position seem to be favorably selected by
OGT. The presence of many threonines in the i+1 through i+14 indicates a preference for
threonines C-terminal to the serine/threonine glycosylation site, an observation that has
previously been reported(72). In contrast to the O-GIcNACPRED-II negative set, the
experimental negative set presented here is extremely small, just 135 peptides with overlapping
sequences, and is likely not a very good sampling of the OGT negative site proteome. The small
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size of the dataset results in a rather noisy dataset. Nonetheless, the amino acid frequencies differ
significantly from the human proteome as shown by the compositional bias results above. In the
matrix representation of the negative set, glycine and to a lesser extent arginine, aspartate,
asparagine and glutamine have a higher relative abundance compared to the other datasets. At
the same time alanine, proline, valine, isoleucine, leucine and methionine are less abundant than
in the other datasets. While the small size and biased nature of the negative dataset make strong
conclusions unwise, the compositional bias is suggestive. Of note, the noise in the negative
dataset precludes discernment of any sequence specific information.

Comparison to other O-GIlcNAcylation predictors

Rigorous comparison of site predictors requires definitive knowledge of both positive and
negative sites, since specificity and accuracy cannot be calculated without knowing the number
of negative sites. Our knowledge of negative sites is still extremely limited, in part due to a focus
on high-throughput approaches, which are better at identifying positive sites. Lamin A is an O-
GlIcNAcylation target that has been studied in a targeted low-throughput approach, giving more
confidence that sites not identified as glycosylated are in fact not glycosylated by OGT(47). We
used Lamin A as a test case to crudely compare the different predictors (Table 4). Results from
our simple predictor OGTcomPred compare favorably with early predictors, though they are not
as good as more sophisticated tools such as O-GIcCNACPRED-11(41)). Interestingly, preliminary
exploration suggests that adding some sequence specificity back into our predictor improves
prediction results while decreasing the ability of our predictor to discriminate between our
positive and negative datasets (not shown). This supports our suspicion that some sequence
specificity is lost due to the small size of our experimental negative set. Nevertheless, the fact
that our predictor OGTcomPred compares well with some of the other predictors, despite this
loss, supports our contention that OGT substrates have a compositional bias.

Discussion

It is not yet possible to reliably predict O-GIcNAcylation sites despite there being a significant
amount of effort put towards developing predictors for O-GIcNAcylation sites. Here we
developed a small, experimentally-tested negative dataset, which suggests that OGT has the
ability to distinguish between substrates and non-substrates based on amino acid composition
over an extended sequence length, a factor that should be a consideration in predicting
glycosylation. Specifically, methyl group-containing amino acids and proline were favorable,
while glycine, glutamine and asparagine as well as the charged amino acids, glutamate, aspartate
and arginine seem to inhibit glycosylation. Compositional mutations introduced into the FUS
LCRy with no regard for specific active-site recognition motifs support this idea. Changes in
glycosylation stoichiometry were correlated with the number of glycosylation sites predicted by
our compositional matrix predictor OGTcomPred. NMR data provide evidence that
glycosylation-promoting compositional mutations enhance OGT-TPR binding to the FUS LCR.
Together, these observations support a model in which interactions between intrinsically
disordered substrates and the OGT-TPR can facilitate glycosylation of sites that have a
suboptimal interaction with the catalytic site, as has been previously observed(73).
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There are many factors that affect OGT recognition in vivo. Here we focused on factors that
influence the ability of ncOGT (OGT with 13 TPR repeats) to directly recognize and glycosylate
other proteins in vitro, including interactions of the substrate with the catalytic site and the TPR
(Fig. 8). While some substrates seem to require the full TPR for efficient glycoslyation, others
can be glycosylated with minimal TPR repeats. An example of the latter is a 12-amino acid
substrate peptide derived from the casein kinase 11 (CKII), which can be glycosylated by a
shortened OGT variant that is missing 5.5 TPR repeats relative to the full ncOCT variant(31).
Furthermore, addition of TPR in trans does not competitively inhibit glycosylation of CKI11(31),
suggesting that the TPR region does not contribute significantly to recognition of CKIll as a
substrate. In contrast, other substrates like TRAK1(31) and the C-terminal domain of RNA
polymerase 11(30) require all of the TPR repeats for efficient glycosylation. OGT with a full TPR
is known to glycosylate a broader range of substrates than OGT isoforms with fewer TPR
repeats(26). This is consistent with OGT requiring a threshold level of affinity for efficient
glycosylation, with that affinity being achieved either by optimal interaction between a short
peptide segment of an IDR and the OGT catalytic region or alternatively by a combination of
many weak interactions between a long IDR and the OGT catalytic region and the TPR.

Catalytic Site Interactions

From a structural perspective, it is not yet well understood how substrates are recognized by the
catalytic site. Consistent with the wide array of OGT substrates, there are relatively few contacts
between the catalytic site and the sidechains of peptide substrates, with crystal structures
demonstrating that most contacts involved the backbone of substrate peptides (2, 22).
Nonetheless, a screen of randomly-generated 13-residue peptides shows a highly specific
selection of substrates for this class of short peptide, with less than 10% of the peptides in the
screen being glycosylated as efficiently as the positive control. Crystal structures of multiple
substrates demonstrate a highly constrained peptide backbone in the -3 to +2 region involving
hydrogen bonds to the peptide backbone. These structures suggest the presence of size
preferences or steric restrictions in the different positions along the substrate. For example,
smaller amino acids are preferred in the -3 and +2 position, while the -2 position seems to
disfavor small amino acids such as alanine and glycine. Even dramatic substitutions of single
residues, for example, replacing serines and alanines in the +2 position with phenylalanine,
merely reduce the efficiency of glycosylation, introducing energetic costs that might be
overcome through TPR interactions with longer peptides. However, the additive effects of
several unfavorable changes could possibly prevent glycosylation. So, rather than trying to
define sequences that interact optimally with the catalytic site, it might be more helpful to look
for sequences that prohibit glycosylation. The large number of possible sequence combinations
will make uncovering prohibitive sequences difficult, but may be a key piece of solving the
prediction puzzle.

A second piece of the puzzle is trying to define the amino acid preferences for interactions with
the OGT-TPR. In the crystal structure of OGT-TPR bound to a peptide derived from HCF-1, the
substrate is in an extended conformation in the inside of the helix. A series of conserved
asparagine residues arranged on the inside of the TPR helix(24) form bidentate interactions with
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the substrate peptide backbone(72). Mutation of five of these asparagines selectively inhibited a
substantial number of substrates that require the OGT-TPR for efficient glycosylation(52). Since
these are backbone contacts, they likely play a minimal role in specificity. Structures with an
HCF-1-derived peptide bound inside the helix also show four TPR aspartates forming hydrogen
bonds with threonine sidechains in the HCF-1 peptide. This explains the prevalence of threonines
C-terminal to the glycosylation site in the Phosphosite and O-GIcNACPRED-II positive datasets.
Our work suggests that glycines are unfavorable, possibly because they are less conformationally
restricted, which would impose a greater entropic cost for binding to the asparagine ladder. We
also found that small hydrophobic residues such as alanine, valine and proline are favorable. We
speculate that these can make favorable van der Waals interactions with the concave surface of
the TPR helix, possibly via transient, dynamic interactions(64) that allow substrate sidechains to
be correctly positioned in the catalytic site. In contrast, amino acids with sidechains that can
form hydrogen bonds seem unfavorable with the exception of threonines and serines. Hydrogen
bond-forming amino acids such as asparagine, glutamine and glutamate may introduce geometric
constraints that are difficult to satisfy. Glutamate may additionally be unfavorable because of the
net excess of acidic residues on the concave surface of the TPR. Consistent with this, OGT
constructs with fewer TPR repeats more readily glycosylate substrates with polar uncharged and
charged residues such as glutamine, asparagine, lysine, glutamate and aspartate(26).

Substrate structure impact on glycosylation

Of note, based on existing OGT crystal structures, secondary structure elements and folded
domains are predicted to be incompatible with glycosylation by OGT due to steric clashes(22).
This could explain our observation that ID4 of CBP does not get glycosylated despite our
prediction. In fact, the regions that flank the majority of our predicted target serines and
threonines in this intrinsically disordered segment form alpha-helical structures with significant
populations(70). We speculate that disruption of these secondary structure elements could
promote glycosylation of ID4. Amino acids conducive to maintaining an extended or random
coil structure significantly affect the propensity of a peptide to be glycosylated and may explain
the preference for prolines and beta-branched residues(2). Although the vast majority of OGT
substrates are in IDRs(5), there are a few examples of proteins that are glycosylated in folded or
ordered regions, including HBGB-1(74), H2B(75) and aB-Crystallin(76). Glycosylation of these
ordered sites could occur if the TPR is able to move away from the catalytic site, as has been
suggested by a recent electron microscopy structure(77). Alternatively, the OGT-TPR might be
able to unfold a select group of ordered regions, as the TPR-containing karyopherin proteins are
known to behave as chaperones(78). Finally, glycosylation of these ordered regions could occur
co-translationally before the proteins are fully folded(79, 80). Since most OGT ligands are IDRs,
we intentionally picked IDRs to build our negative dataset. When making predictions for
proteins for which the structure is unknown, we also couple the prediction to a disorder
predictor. Attaining more accurate predictions will likely require incorporation of structural and
steric constraints, which may be facilitated by recent advances in structure prediction(81, 82).

How proximal structured elements impact glycosylation is not yet well defined. The range of
possible OGT-TPR entry points and the effect of adjacent folded domains on TPR entry are
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unknown. Examining the TPR structure, it appears that peptides do not need to enter the TPR
helix from one end, since there is sufficient space for a peptide to enter the TPR interior from
points along the helix. However, larger structural elements would not be able to enter the interior
without significant rearrangement of the helix. Thus, our observation that the isolated IDR3 of
CBP can be glycosylated in vitro does not mean that it can be glycosylated in vivo since it is
flanked by folded regions in the full-length CBP protein. These considerations add further
complexity to prediction efforts. Prediction approaches to date have taken a structure-agnostic
approach, but pushing predictions towards higher accuracy will require addressing these
structural issues. Overcoming this complexity is a worthwhile goal given the importance of O-
GIcNAc modification for modulating protein thermodynamics, aggregation and phase separation
propensity.

Experimental Procedures
Expression and Purification of Proteins

All DNA constructs were verified by sequencing. Proteins were expressed in E. coli BL21 (DE3)
RIPL cells using LB media, unless otherwise stated. Cell cultures were grown to an optical
density of 0.8 and then induced with 0.5 mM IPTG and harvested after 16 hours at 18 °C.
Purifications were carried out at room temperature unless otherwise stated. Purified protein
samples were further verified by mass spectrometry to ensure that they were the expected
molecular weight.

EWS, FUS and TAF15 LCRn purification

His-tagged SUMO fusions of LCRn fragments of human EWS (aa 1-264), FUS (aa 1-214), and
TAF15 (aa 1-210) were lysed by sonication and then purified by nickel affinity chromatography
using a buffer containing 20 mM CAPS, pH 11, 500 mM NaCl, 4 M guanidinium chloride
(GdmCI) with 20 mM imidazole added to the aliquot used for lysis and washing and 280 mM
imidazole used in the elution aliquot. Proteins were then subjected to size exclusion
chromatography using a buffer comprised of 40 mM arginine, pH 9. A HiLoad Superdex75 HR
16/600 column (Cytiva) was used for all of the size exclusion chromatography described here.
Only the purest fractions were retained for glycosylation reactions and mass spectrometry. ULP1
protease (purified in-house) was used to remove the His-SUMO fusion protein. The LCRy
protein was then loaded onto a size exclusion column without first concentrating the protein,
since concentrating the protein led to significant loss. The same 40 mM arginine pH 9 buffer was
used for this step.

FUS and FUS mutant LCRn purification

We modified the purification to more reliably obtain FUS or mutant FUS LCRn without the
SUMO fusion tag. Nickel affinity chromatography and size exclusion chromatography were
followed by consecutive purification on a HiTrap Q column (Cytiva) and a 8 ml phenyl Superose
column(Cytiva) using buffer with 40 mM arginine, pH 9 and gradients from 50 mM to 1M NacCl
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and 1 M to 0 M NaCl, respectively. Following cleavage with ULP1 the protein was again
purified by phenyl Superose using the same gradient, to yield highly pure FUS LCRn.

CBP ID1, ID3, ID4 and ID5 purification

Human CBP IDRs (ID1 (1-344), ID3 (676-1080), ID4 (1851-2057) and ID5 (2124-2442) were
lysed in a buffer containing 6 M GdmCl, 50 mM Tris-HCI, pH 8, 500 mM NaCl and 20 mM
imidazole and then loaded onto nickel affinity resin. The protein was eluted from the column
using 4 M GdmClI, 50 mM Tris, pH 8, 200 mM NaCl and 500 mM imidazole. The protein was
then concentrated and purified by gel filtration chromatography using a buffer containing 20 mM
KPQOg4, pH 6.5, 100 mM NaCl and 50 uM EDTA.

OGT purification

Following expression of human ncOGT (full length, 1-1046) in E.coli, cells were resuspended in
a buffer containing 25 mM imidazole, 10 % glycerol, 250 mM NaCl and 25 mM HEPES, pH 7.5,
5 mM B-mercaptoethanol. DNasel and an EDTA-free protease inhibitor tablet (Sigma) were also
added to the lysis buffer. Following lysis by sonication and French press, the protein was
purified by nickel affinity chromatography and eluted in the same buffer with 250 mM instead of
25 mM imidazole. Fractions containing pure protein were then dialyzed in 25 mM HEPES, pH
7.5, 40 mM NaCl, 0.5 mM EDTA and 5 mM B-mercaptoethanol and then loaded onto a 5 mi
HiTrap Q-XL column (Cytiva) and purified at 4 °C using a gradient from 0.05 to 1.0 M NacCl.
Although the protein appeared pure after this anion exchange step, we further purified the protein
using a HiLoad Superdex 200 HR16/600 size exclusion column using a buffer containing 40 mM
KPQOg4, pH 7.5, 125 mM NaCl, 0.5 mM EDTA, 0.5 mM benzamidine and 5 mM f3-
mercaptoethanol to ensure that no contaminating proteases remained.

OGT-TPR purification

A construct containing SUMO fused to residues 2-474 of ncOGT representing the TPR region
was purified by Ni affinity chromatography as for the full-length ncOGT purification. The
SUMO tag was cleaved off using ULP. NaCl was then added to the sample to bring the total
NaCl concentration up to 1M. This was followed by purification on a phenyl Superose column in
a buffer of 25 mM Hepes, pH 7.5, 5 mM B-mercaptoethanol, using a 1 M to 150 mM NaCl. As a
final purification step, the OGT-TPR was subjected to size-exclusion chromatography using a
buffer of 44 mM KPOg4, 137.5 mM NaCl, 0.55 mM EDTA and 0.55 mM benzamidine, pH 7.2.
Purification of the OGT-TPR with the SUMO tag cleaved off was similar.

Purification of negative set proteins

Human SARA (aa 766-822)(60), DDX4 (aa 1-236)(61), CFTR (aa 654-838)(62) and FMRP (aa
445-632)(63) were expressed and purified as described previously.

Production of protein for NMR spectroscopy

Isotopically labelled proteins for NMR spectroscopy were expressed in M9 minimal media using
15N ammonium chloride as the sole source of nitrogen.

OGT reaction conditions
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Protein samples were dialyzed into 40 mM K>HPO4, pH 7.5, 125 mM NaCl, 0.5 mM EDTA, 2
mM betamercaptoethanol and 0.5 mM benzamidine. Reactions were performed at a protein
concentration of 20 uM. Following addition of 1 uM ncOGT and 1 mM UDP-GIcNAc, samples
were incubated at room temperature for 16 hours.

Mass Spectrometry

MS experiments were carried out at the Structural Genomics Consortium Toronto facility or at
The Hospital for Sick Children SPARC Molecular Analysis facility. Samples were prepared by
adding formic acid to a final concentration of 0.1% v/v. To determine glycosylation
stoichiometry, purified glycosylated proteins and controls were either run on a Thermo-Fisher
Orbitrap Q Exactive High Field instrument or on an Agilent UPLC-quadrupolar time-of-flight
(Q-ToF) 6545 MS system equipped with a Dual JS electrospray ionization source. Samples were
desalted online via a C18 column. Raw data were either processed using Agilent MassHunter
software or Thermo-Fisher software and deconvoluted using the maximum entropy algorithm
with appropriate mass ranges. The deconvoluted data were then plotted using MATLAB. To
identify specific glycosylation sites in the EWS LCRn region or the ID3 region of CBP, the
protein was digested with chymotrypsin or trypsin respectively, and then subjected to LC-
MS/MS on a Thermo-Fisher Orbitrap Q-Exactive mass spectrometer, using higher energy
collisional dissociation (HCD). To identify glycosylation sites with confidence, we set the
following thresholds: the parent ion error had to be less than 1 ppm and the number of fragment
ions with a score of less than 7 ppm had to be greater than 8. As the O-GIcNAc modification was
lost during the peptide fragmentation step, we were able to identify peptides that were
glycosylated (parent ion had modification), but typically unable to identify exactly which
residues were glycosylation sites. The MS/MS data were analyzed manually, since the software
modification site assignment process assumed that the sugar was still present following the
fragmentation step.

NMR Spectroscopy

HSQC experiments(83) were performed at 5 °C in a buffer containing 40 mM KPOg, pH 7.2, 125
mM NacCl, 0.4 mM EDTA, 0.5 mM benzamidine, 5 mM DTT and 10% D»0. Matched samples
were recorded on 20 uM °N labelled samples (below the threshold for phase separation) of
either WT FUS LCRy or Mut-F FUS LCRy in the absence and presence of 32 uM SUMO-fused
OGT-TPR. Spectra were processed with NMRPipe(84) and displayed in CCPNMR(85) software.
Peak intensities were obtained using Sparky(86) software. Peak assignments for FUS LCRn were
obtained from the BMRB(87, 88). However, since our sample conditions differed from the
conditions used by Burke et al. (BMRB 26672), only peaks in less crowded regions of the
spectrum could be assigned. The experiment was repeated using OGT-TPR with the SUMO
tagged removed to rule out a significant role for SUMO in the interaction.

Matrix Optimization and Score calculation

The Phosphosite O-GIcNAcylation database (1829 peptides) was used as a positive dataset to
optimize a scoring matrix. The negative dataset consisted of peptides extracted from IDRs,
which we experimentally determined to not be glycosylated by OGT under optimal conditions. It
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consisted of 135 peptides centered on serines or threonines extracted from these proteins. In-
house software was used to optimize the matrix to maximize the scoring difference between the
positive and negative datasets, using an iterative process of random changes to the matrix. The
final matrix was then used to score glycosylation sites. The threshold for a positive site was set at
160, unless otherwise indicated. (For Table 4, the low, medium and high thresholds are 123, 148
and 160 respectively). All existing predictors suffer from high numbers of false positive
predictions. Setting a relatively high threshold increases the likelihood that a positive prediction
IS accurate, but results in poor sensitivity.

Measuring Compositional Bias

We measured compositional bias as defined by Harrison and Gerstein(89) and implemented in
fLPS2.0(65). The background proportions of amino acid types were those derived from human
UniProt records(53) or from a dataset of disordered proteins, determined from the MobiDB(66)
manually curated version of the DisProt database(67). We further selected only human proteins
with greater than 50% fractional disorder. The PhosphoSite database was used without
modification. However, the negative dataset is composed of overlapping peptides and thus highly
redundant, which we thought would significantly comprise the bias calculation. Therefore, we
used the sequences of the protein regions containing the peptides in the database, rather than the
database itself. Only biases related to the whole datasets are reported here.

Data availability

The LC-MS/MS data on EWS-LC and CBP 1D3 glycosylation, an optimized scoring matrix and
the script for scoring peptides can be downloaded from https://zenodo.org,

DOI: 10.5281/zen0d0.6986306.

Supporting Information

This article contains supporting information.

Table S1. Sequences of WT and mutant FUS LCRN.

Figure S1. Amino acid proportions in the human proteome and set of disordered proteins.

Figure S2. *H-®*N HSQC spectra of WT FUS LCRy and Mut-F FUS LCRy in the presence and
absence of OGT-TPR.
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Table 1. Location of Glycosylation Sites in the EWS LCRNn. Peptides identified by the MS-
MS sequence are listed. The number of glycosylation sites for each peptide was determined by
the difference in the molecular weight of the parent ion. LC-MS/MS data: DOI:
10.5281/zen0do.6986306.

EWS peptide span Observed glycosylation sites (total number of
serines and threonines in peptide)

45-61 3(6)

87-112 3(10)
119-158 2(9)
145-170 2 (8)
171-195 2(6)
209-226 1(6)
230-254 3(8)
248-264 1(6)

Table 2. Measurement of compositional bias in the positive and negative datasets.
Compositional biases of low probability were assessed for the PhosphoSite database of O-
GIcNAC sites (positive set) and our experimentally determined negative set as a whole using the
method of Harrison and Gerstein as implemented in fLPS 2.0. The background amino acid
composition was either the human proteome composition or the amino acid composition of a set
of disordered proteins (see methods).

Dataset Residues with Pbias < 103 using human proteome composition
PhosphoSite T (<107%),S (< 10%%), P (10%%%), A (10®), V (10*?), G(103)
database

Experimental G (10%%), S (10%8), Q (10*), R (103), N (103)

negative set

Residues with Pbias < 1 x 103 using disordered protein database composition

PhosphoSite T (< 1029, S (1029, V (10™Y), A (10°Y), 1 (10°2), F (10%),Y (10°),M (10%)
database
Experimental G (107%), Y (10%), S (10%), N (10%)

negative set
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Table 3. Results of MS-MS experiments on CBP ID3. Peptides identified by the MS-MS
sequence are listed. The number of glycosylation sites for each peptide was determined by the
difference in the molecular weight of the parent ion. One site was identified unambiguously, with
a further four sites for which the precise modification sites could not be determined. LC-MS/MS
data: DOI: 10.5281/zenodo.6986306.

CBP ID3 peptide span Observed glycosylation sites Confirmed Sites
(total number of serines and
threonines in peptide)

676-714 1(1) $709
715-742 2(3)
743-768 1(6)
972-998 1(6)
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Table 4. Assessment of Sensitivity, Specificity and Accuracy for O-GIcNAc predictors using
Lamin A as a test case. Known sites and prediction values for these sites are listed in the top
half of the table and used to assess sensitivity, specificity and accuracy in the bottom half of the
table. Assessments were performed at different threshold levels when possible.

Lamin A Predicted Sites
Known OGTSite YinOYang
. 0-GIcNACPRED-II
Sites med. high >1+ >2+ >3+
603 1 1
612 1 1 1 1 1 1 1
613 1 1 1 1
615 1 1
616 1 1 1
618 1 1 1
619 1
621 1 1 1 1 1 1
623 1 1 1
628 1
643 1 1 1
Positive
Sites Found 7 4 1 4 3 7 2 2 10
TotalSites | 56 10 2 27 6 25 11 4 27
Found
Predicted
Sites 27% 40% 50% 15% 50% 28% 18% 50% 37%
Verified
Sensitivity 64% 36% 9% 36% 27% 64% 18% 18% 91%
Specificity 80% 94% 99% 76% 97% 81% 90% 98% 82%
Accuracy 76% 86% 88% 68% 88% 77% 81% 88% 81%
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Figure Legends

Figure 1. FET protein glycosylation by OGT. Intact mass spectrometry profiles of the LCRy
regions of (a) EWS, (b) FUS and (c) TAF15 before and after glycosylation by OGT. Spectra of
the unglycosylated proteins are shown in blue and spectra following glycosylation (5 hours at lab
temperature) are shown in red, with the number of added sugar groups shown. (d) Amino acid
composition of FET protein LCRn and RNA Polymerase 11 CTD. Compositions are shown for
FUS (aa 1-214), TAF15 (aa 1-210) and EWS (aa 1-264) and RNA Polymerase Il subunit RPB1
(aa 1586-1970) as labelled in the legend. Only amino acids that are observed in at least one of
these regions are shown.

Figure 2. Development of an experimental negative dataset for OGT glycosylation. Mass spectra
of EWS (positive control), SARA (aa 766-822), DDX4 (aa 1-236), TAF15 (aa 1-210), CFTR (aa
654-838) and FMRP (aa 445-632) before (blue) and after (red) overnight glycosylation with
OGT.

Figure 3. Optimization of a matrix for prediction of OGT glycosylation sites. (a) Schematic for
the optimization process. (b) Optimized matrix, with residue position along the horizontal axis
and amino acid type along the vertical axis. Yellow represents residues favorable to
glycosylation, while blue is used to show residues that are unfavorable to glycosylation. The
histogram on the right shows average value for amino acids not in the i position. (c) Boxplots of
peptide scores in the positive and negative sets, as well as boxplots of peptide scores for
individual proteins in the negative set.

Figure 4. Glycosylation of FUS compositional mutants. (a) Mass spectrum of SUMO fusions of
WT and mutant FUS LCRN, before (blue) and after (red) overnight glycosylation by OGT. (b)
Correlation plots of the maximum number of observed sites versus sites predicted by
OGTcomPred or O-GIcNAcPredll.

Figure 5. OGT-TPR interaction with FUS and Mut-F FUS. *H-®*N HSQC spectra of WT FUS
LCRn (a) and Mut-F FUS LCRn (b) in the presence and absence of SUMO-OGT-TPR. Spectra
of the FUS LCRn at 20 uM are shown in blue and spectra in the presence of 32 uM SUMO-
OGT-TPR are shown in orange. Spectra were recorded with a field strength of 600 MHz at 5°C
in a buffer comprised of 40 mM KPOg, 125 mM NaCl, 0.5 mM EDTA, 0.5 mM benzamidine, 5
mM DTT and 10% D0, pH 7.2. Resonance assignments for some peaks in the WT spectrum
were obtained by transferring some assignments from BMRB record 26672. SUMO-control
experiments are shown in Figure S1. Plots (c) and (d) show intensity ratios (plus OGT-TPR/apo)
for WT and Mut-F FUS LCRNy respectively. Intensity ratios are shown in random order, since
most of the residues were not assigned (see Experimental Procedures).

Figure 6. CREB-binding protein (CBP) glycosylation. (a) OGTcomPred prediction of OGT
glycosylation sites for 4 intrinsically disordered segments of CBP. (b) Mass spectrum of CBP
ID1, ID4 and ID5 before (blue) and after (red) glycosylation. Peaks annotated as +1, +2, +3 and
+4 are 203, 406, 609 or 1212 Da bigger than the unglycosylated material. Some of the peaks
appear as doublets (ID1 and ID5) because a large fraction of the protein is modified by a single
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oxidation event (+16 Da). ID4 is modified by several small chemical modifications in addition to
the sugar modification (+203 Da).

Figure 7. Prediction Dataset Analysis. Positional amino acid frequency plots for the (a)
PhosphoSite Database of O-GIcNAc sites, (b) O-GIcNAcPredll positive dataset, (c) the
experimental negative dataset developed here, (d) the negative dataset used in the development
of the O-GIcNAcPredll predictor, and (e) the human proteome (UniProt database). Residue
positions are relative to the serine or threonine at the glycosylation site. Frequency is indicated
by a blue-yellow gradient, with yellow representing high frequency and blue indicating low
frequency.

Figure 8. OGT ligand selection model. The OGT catalytic domain and TPR helix are shown in
blue, bound to a peptide ligand that has an optimal fit to the catalytic site and a TPR interacting
region with a compositional bias that promotes interaction with the TPR. Glycosylation is
indicated by the orange G. Short peptides with optimal fits for the catalytic site can be
glycosylated, but short peptides with suboptimal fits are not glycosylated. Extended peptides
with suboptimal catalytic site fit can still be glycosylated if the peptide has a compositional bias
that is suitable for TPR interaction (green), but not if the compositional bias is less favorable for
a TPR interaction (red).
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Figure 6.
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Figure 7.
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Figure 8.
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