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 2 

Abstract 24 

Specialized metabolite (SM) diversification is a core process to plants’ adaptation to diverse 25 

ecological niches. Here we implemented a computational mass spectrometry (MS)-based 26 

metabolomics approach to explore SM diversification in tissues of 20 species covering Nicotiana 27 

phylogenetics sections. To drastically increase metabolite annotation, we created a large in silico 28 

fragmentation database, comprising more than 1 million structures, and scripts for connecting 29 

class prediction to consensus substructures. Altogether, the approach provides an unprecedented 30 

cartography of SM diversity and section-specific innovations in this genus. As a case-study, and 31 

in combination with NMR and MS imaging, we explored the distribution of N-acyl nornicotines, 32 

alkaloids predicted to be specific to Repandae allopolyploids, and revealed their prevalence in the 33 

genus, albeit at much lower magnitude, as well as a greater structural diversity than previously 34 

thought. Altogether, the novel data integration approaches provided here should act as a resource 35 

for future research in plant SM evolution. 36 

 37 

Keywords:  Computational metabolomics, plant specialized metabolism, chemodiversification, 38 

N-acylnornicotines 39 

 40 

Teaser: Computational metabolomics delineates main trends in the diversification of specialized 41 

metabolism in the genus Nicotiana  42 
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Introduction  45 

Plant metabolic profiles represent complex traits that reflect both evolutionary and temporally 46 

dynamic adaptations to specific ecological niches. Compared with their counterparts integrated 47 

into broadly conserved central C metabolism pathways, specialized metabolites (SMs) contribute 48 

to the largest fraction of inter-specific variations in plant metabolic profiles. This plant 49 

chemodiversity is predicted to account for somewhere on the order of one hundred thousand to 50 

one million chemically unique structures, with an estimated range of five thousand to fifteen 51 

thousand structures per plant species (1). Many of these SMs act as chemical shields or as 52 

attractants in plant biotic interactions. In this respect, a relatively recent paradigm shift as part of 53 

ecological hypotheses such as the synergy (2) and interaction diversity hypotheses (3), has been to 54 

consider SM structural diversity, and not solely the summation of individual metabolites, as a 55 

critical determinant of plants’ ecological interactions. The latter perspective also revives the 56 

interest in the exploration of SM diversity with modern analytical approaches and the use of 57 

adequate statistical descriptors (4). 58 

In analogy to phylogenomics approaches that have flourished as a result of both the 59 

increasing release of annotated genomes and of established comparative bioinformatics pipelines 60 

to analyze these data, recent years have indeed seen a resurgence of plant family-/genus-specific 61 

comparative metabolomics analyses to guide functional biochemical studies. For instance, 62 

comparative metabolomics within the Rhamnaceae revealed that only the Ziziphoid clade of this 63 

family possesses a functional triterpenoid biosynthetic pathway, whereas the Rhamnoid clade 64 

predominantly developed diversity in flavonoid glycosides (5). In a previous study, we 65 

implemented a metabolomics-centered fragmentation rule-based pipeline to annotate the diversity 66 

of 17-hydroxygeranyl linalool (17-HGL) diterpene glycosides within the Solanaceae family and 67 

revealed intense chemotypic structural variations combined with a patchy distribution of this 68 

compound class as it appeared restricted to the Capsicum, Lycium and Nicotiana genera (6). The 69 

latter “phylometabolomics” information facilitated gene candidate selection for functional 70 

biochemical studies in the 17-HGL diterpene glycoside pathway (6). Similarly, comparative 71 

metabolomics across multiple Solanaceae species was instrumental in guiding co-expression 72 

studies for gene discovery for the steroidal glycoalkaloid pathway emblematic of the Solanum 73 

genus (7).  74 

Besides inter-specific variations in SMs, another important dimension, unfortunately 75 

rarely integrated into taxonomic-scale metabolomics studies, is the tissue/organ specialization of 76 

most SM pathways. Exploring these tissue/organ-level variations and their statistical correlation 77 

with gene expression data can be extremely powerful in the process of SM biosynthetic gene 78 
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discovery (8). Analyzing tissue-specific metabolomes is also critical to test ecological theories of 79 

plant investments into metabolic defenses such as the optimal defense theory which predicts 80 

greater metabolic defense accumulation in developmental stages/tissues with higher organismic-81 

level fitness contribution and/or greater predation rates (9). Trichomes, in particular glandular 82 

ones covering most aerial plant tissues, are notorious for their capacity to synthesize high amounts 83 

of very specific SMs  (10). Trichome SMs can be either stored within trichome cells and glands or 84 

actively secreted, such as for Solanaceae-specific poly-acylated sugars, also referred to as O-acyl 85 

sugars and whose biochemistry has been thoroughly investigated in recent years (11). Calyces 86 

formed by the floral sepals and which protect maturating reproductive organs are typically rich in 87 

SMs whose biosynthesis can be dependent on trichomes present on these tissues (12–14). SM 88 

profiles of roots, while much less systematically explored than shoot-based ones, can be as 89 

structurally diverse as trichome-specific ones (15) and have recently become of major focus for 90 

our understanding of SM ecological functions for plant-soil microorganisms’ interactions (16).  91 

Most recent advances in computational metabolomics provide a long-awaited framework 92 

to systematically explore the above-described importance of the species x tissue SM variations 93 

(4). These novel capacities to explore plant chemical spaces are further propelled by platforms 94 

such as, the MassIVE database (https://massive.ucsd.edu/) reaching 12000 metabolomics datasets 95 

in 2022. Despite the increasing amount of data that can be generated from modern MS 96 

instruments, the average annotation rate of most MS metabolomics studies remains at the order of 97 

a few percent of deconvoluted MS/MS features (17). The number of computational tools to 98 

address this challenge of transforming spectral information into chemical knowledge is hence 99 

rapidly increasing and can be divided into two main approaches. One set of approaches relies on 100 

MS/MS spectral grouping, as embodied by the game-changing development of molecular 101 

networking and of the repertoire of network annotation/mining tools embedded within the GNPS 102 

ecosystem (18, 19). A second set of approaches relies on in silico fragmentation and 103 

(sub)structure prediction from mass spectra. Classification of spectra within ontologies of 104 

molecular families can notably be achieved by CANOPUS, a deep neural network method which 105 

is able to predict 2497 compound classes (20) and which is embedded with the elemental formula 106 

prediction and structure annotation pipeline from SIRIUS (21). Alternatively, the MS2LDA 107 

method allows to extract information derived from shared substructures from spectral data via a 108 

Latent Dirichlet Allocation algorithm borrowed from topic modelling (22). Recently developed or 109 

significantly upgraded computational tools such as CFM-ID (23), molDiscovery (24), Metfrag 110 

(25) or QCxMS (26) provide algorithmic means to predict MS/MS spectra from structures. 111 
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However, systematically prioritizing and/or merging the highest confidence predictions from each 112 

of these tools remains a challenge that is rarely tackled in most MS metabolomic studies. 113 

The genus Nicotiana L. combines several appealing features to study SM pathway 114 

diversification. This genus, comprising 13 well phylogenetically-resolved sections for a total of at 115 

least 80 species, is appearing in various morphological forms such as small herbs to shrubs up to 116 

small trees, which often are viscid-glandular and rarely glabrous (27, 28). Among the most 117 

studied species in this genus are Nicotiana tabacum and N. rustica, which are traditionally grown 118 

for tobacco products; N. glauca, which has been a focus of biofuel research studies (29) and N. 119 

benthamiana, a very popular model organism in molecular biology (30). The intense research on 120 

Nicotiana species is further reflected into the very large set of reference transcriptome and 121 

genome resources publicly available for species of this genus (31). As recently reviewed (32), the 122 

phytochemistry of several species of this genus, in particular that of the coyote tobacco Nicotiana 123 

attenuata, a flagship model organism for the chemical ecology of plant-insect interactions (33), 124 

has been extensively studied with notable focus on alkaloids, mono/sesquiterpene volatiles, O-125 

acyl sugars or 17-HGL diterpene glycosides. Finally, half of the species of the Nicotiana genus 126 

are allopolyploids of different ages and for some of them, the closest extant diploid progenitors 127 

have been mapped, thereby providing a phylogenetics framework to study allopolyploidy-128 

mediated contributions to phenotypic trait evolution (34). Among the Nicotiana SM innovations 129 

thought to have been shaped by recent allopolyploidization events are N-acyl-nornicotines 130 

(NANNs), derived from the N-acylation of nornicotine with long chain fatty acyl chains and 131 

which have been described as specific to allopolyploid species of the section Repandae (35). This 132 

Nicotiana section is about 4.5 million years old and has N. sylvestris as its closest diploid 133 

maternal and N. obtusifolia as closest paternal progenitor. The 17 NANN structures originally 134 

described in the Repandae species N. repanda, N. nesophila, N. stocktonii (36, 37), but not in N. 135 

nudicaulis, likely act as gain-of-function anti-herbivory defenses. Indeed, compared with the 136 

Nicotiana widespread nicotine and nornicotine non-acylated alkaloids, NANNs are highly 137 

effective against and evade the resistance acquired for nicotine/nornicotine by the tobacco 138 

hornworm Manduca sexta, a native herbivore (38). However, the evolution of this defensive trait 139 

is largely underexplored and detailed investigations on the NANN structural diversity within the 140 

genus Nicotiana are missing. 141 

Here, we implemented a comprehensive computational MS metabolomics workflow to 142 

explore SM chemodiversity in various tissues of 20 species representative of the main 143 

phylogenetic sections within the Nicotiana genus. By employing a multi-inference deep 144 

annotation approach that ultimately connects information theory statistics, chemical class 145 
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mapping and substructure inferences, we provide an unprecedented cartography of SM tissue-146 

level distribution in this genus. The results of this study provide access to novel SM annotations 147 

and tissue x species distribution data to guide future biochemical studies and notably shed light on 148 

the unsuspected structural diversity and evolutionary trajectory of the NANNs defensive pathway 149 

within the Nicotiana genus. 150 

 151 

  152 
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Results 153 

Tissue-level metabolomics data capture phylogenetically-relevant Nicotiana SM diversity 154 

In order to comprehensively explore tissue-level SM diversification in the Nicotiana genus, we 155 

profiled the metabolome of leaves elicited or not with methyljasmonate, concentrated leaf surface 156 

exudates, complete root and of calyces (Fig. 1B) of 20 species covering all of the main sections of 157 

this genus as well as diploid and allotetraploid states (Fig.1A and Table S1). Besides 158 

phylogenetic position, species selection further took into consideration the availability of 159 

transcriptomics/genomics data as a platform for future functional studies (31). Sampled tissues 160 

were selected based on previous studies of our group (8) indicating the high degree of tissue-level 161 

specialization in SM distribution and conversely the importance of concatenating multi-tissue 162 

profiles to increase SM coverage. Additionally, we aimed via this pluri-tissue approach to explore 163 

tissue-level shifts in SM class prevalence across the focal species as a mechanism of organismic-164 

level chemodiversification. Noteworthy, amounts of leaf exudate material collected greatly 165 

differed among the focal species, with Nicotiana setchellii (2.7 mg of exudate per g leaf fresh 166 

weight) and Nicotiana glutinosa (2.5 mg/g) producing the largest amounts of dried exudates 167 

collected from leaf washes (Fig. S1 and Table S1). All methanolic extracts were analyzed using a 168 

previously established UPLC-ESI+QTOFMS method with optimized settings for massive MS/MS 169 

data collection (6). 17901 metabolite-derived MS/MS spectra (hereafter referred to as features) 170 

were, after a data redundancy and contaminant check using a custom script, deconvoluted and 171 

considered for Feature-based Molecular Networking (FBMN) processing with settings that were 172 

optimized to handle the species x tissue-exacerbated metabolic diversity in the dataset. The 173 

resulting species x tissue MS/MS feature compendium served as input for the data exploration 174 

workflow presented in Fig. 1D (Fig. S2). 175 

To contrast patterns of feature diversity across species, we calculated, for each of the 176 

tissue types, α-diversity scores based on the Shannon Entropy (H) from Information Theory (8) 177 

(Fig. 2A). A unifying trend in these tissue-level analyses was that species’ profiles, differed 178 

extremely in their α-diversity indices, up to 3-fold counter-species variations being detected 179 

depending on the tissue type. Root samples were, from all examined plant samples, those with 180 

consistently lower α-diversity scores (average H = 7.6), likely indicative of the prevalence of only 181 

a few SM classes in these samples for the analytical conditions considered in this study (Fig. 1C). 182 

As expected, highest α-diversity scores were on average detected for MeJA-elicited leaves 183 

(average H = 9.4) (Fig. S3), followed by uninduced leaves (average H = 9.3) and calyces (average 184 

H = 9.0). The effect of the MeJA elicitation on feature diversity was consistently more apparent at 185 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.12.507566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

the level of detected features and very variable among the focal species (Fig. S3). Interestingly, 186 

we noted that these inter-species variations in MeJA inducibility (indicative of the amplitude of a 187 

“metabolome plasticity” to this treatment) were strongly negatively correlated (Pearson 188 

Correlation Coefficient = -0.76, P-value = 1.04 x 10-4) with α-diversity scores of uninduced 189 

leaves (“constitutive diversity”) (Fig. S3). Additionally, while we initially assumed that the 190 

metabolic profiles of the exudates collected from uninduced leaves would be restricted to a few 191 

prevalent SMs (thereby resulting into in low α-diversity scores for this sample type), the 192 

relatively high α-diversity scores detected in most species were consistent with a far greater 193 

chemical diversity in those extracts. In clear constrast, Repandae species, with the exception of N. 194 

nudicaulis and the hybrid N. sylvestris x N. repanda, exhibited much lower α-diversity scores (H 195 

ranging from 3.5 to 3.7 compared with the average H value of 8.5 for the rest of the species) that 196 

were in line with the previously reported over-dominance of NANNs within their exudates (37). 197 

When feasible based on the species sampling, we also compared the α-diversity scores of 198 

allotetraploid species to those of closest diploid progenitors. Independently of the tissue type 199 

considered, we did not observe evidence of clear metabolic additivity in allotetraploid species, 200 

which would translate into higher α-diversity scores as compared to those of closest diploid 201 

progenitors (Fig. 2A).  202 

To analyze the relatedness of species’ metabolomes, we further computed inter-species 203 

metabolic distances based the molecular networking information and used the resulting distance 204 

matrices for constructing “phylometabolomics” trees. Several studies had previously attempted to 205 

construct such “phylometabolomics” trees but from single-tissue metabolome data. Here, we 206 

constructed trees both from the tissue-level (Fig. S4) and combined tissue data (Fig. 2B). The 207 

resulting “all tissues” phylometabolomics tree captured patterns of metabolome-relatedness that 208 

were frequently in accordance with the species’ tree section-level grouping and relatedness (Fig. 209 

2B). Among other interesting insights, Repandae species’ metabolomes, with the exception of 210 

that of N. nudicaulis, appeared much closely-related at the “all tissues” metabolome level to that 211 

the Sylvestres section from which their maternal progenitor had been associated with, than to the 212 

Trigonophyllae section (paternal progenitor section) (Fig. 2B, Table S2). 213 

 214 

Creating a cartography of Nicotiana SM class diversification 215 

After highlighting counter-species chemodiversity variations, we then systematically 216 

characterized onto which SM classes they mapped. In analogy to gene family inference and 217 

survey across focal species as a first step in phylogenomics, we first employed the CANOPUS 218 
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tool for ad hoc systematic compound class and chemical ontology predictions. To combine 219 

FBMN and CANOPUS information, we implemented a frequency-based molecular network-220 

based propagation of CANOPUS (NP-CANOPUS) predictions, resulting into class predictions for 221 

86.5 % of the total features within the 1586 networks retrieved by FBMN. CANOPUS “super-222 

class” and “most specific class” intensity distributions integrating all tissue samples of given 223 

species were encapsulated as treemaps and mapped onto the species tree to provide a bird’s eye 224 

view on class expansions and shrinkages (Fig. 3B). For the sake of simplicity, only a few of the 225 

main tendencies are reported below; close-up views on particular “metabolic tiles” and tissue-226 

specific treemaps are accessible in Data S1. Most clearly apparent was the highest proportion of 227 

“lipids and lipid-like molecules” in all species, with a significant fraction of these lipids being, in 228 

many species, contributed by the saccharolipid sub-class commonly referred to as O-acyl sugars 229 

in the Solanaceae. Browsing these treemaps supported the presence of high amounts of predicted 230 

diterpenes in N. tabacum, N. sylvestris and the cross between N. repanda x N. sylvestris – the 231 

latter hybrid having been initially incorporated to test progenitor chemical trait dominance. 232 

Among other trends, this analysis also pinpointed on N. setchellii exhibiting the most diverse and 233 

abundant set of “phenylpropanoid derivatives” from predicted 3-O-methylated flavonoids 234 

(connected to network #361), simple hydroxycinnamic acids (network #990), up to coumarin 235 

glycosides (network #532). Noteworthy, the performance of CANOPUS predictions was 236 

nonetheless hampered for SMs that contained substructures from independent biosynthetic 237 

origins, thereby resulting into heterogeneous CANOPUS ontologies. For instance, the large 238 

“amino acids and derivatives” tile within the N. glauca treemap was mostly associated with 239 

network #468, but the features embedded in this network were manually curated as N-240 

hydroxycinnamoyl-spermidine conjugates which are commonly encountered in leaves of 241 

Solanaceae species as antiherbivore defenses (39). Also highlighting this limitation was that the 242 

high-level of NANNs which are emblematic of the Repandae section, was not as easily noticeable 243 

on the corresponding treemaps. Previously characterized NANNs were indeed split into several 244 

classes as “organoheterocyclic compounds”, “benzenoids” and “organic nitrogen compounds” 245 

(Data S1). 246 

 247 

Deep metabolome annotation empowered by a multi-inference approach incorporating a 1 248 

million natural product in silico spectral database and consensus substructure computations 249 

The previous analysis indicated a critical need not only for broadly increasing feature annotations 250 

beyond CANOPUS class predictions but also for gaining structural insights into core 251 

(sub)structures underlying molecular networks’ topology. As outlined in a recent review (40), 252 
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substructure annotation provides information on functional groups, building blocks, or scaffolds 253 

within a chemical structure. This level of information is complementary to compound class 254 

prediction, most commonly addressing biosynthetic origin and/or compound physico-chemical 255 

properties. To propel substructure identification in our dataset, we first optimized a multi-256 

inference annotation pipeline (Fig. S2 and S5). Briefly, feature spectra were first queried against 257 

an in-house Nicotiana attenuata SM MS/MS database (NaMS, entries resulting from the analysis 258 

of purified SMs) and the GNPS library, the resulting hits being referred respectively to as 259 

annotation levels 1 to 2 according to the Metabolomics Standard Initiative nomenclature (41). 260 

Interrogation of these two experimental spectral databases provided hits for 4% of the MS/MS 261 

features (Fig. 3A). Level 3 of the annotation nomenclature regrouped class-based annotations 262 

mostly derived from manual inspection of network-level hits (5%). To circumvent limitations in 263 

the chemical space covered by these two experimental databases, spectral interrogations were 264 

conducted in parallel against in silico-predicted MS/MS spectral libraries using both 265 

molDiscovery which predicts MS spectra of small molecules on-the-fly and scores their 266 

probabilistic modeling (24), and a combination of CFM-ID and MatchMS. To further expand the 267 

power of this approach beyond the chemical space of the molDiscovery built-in library, we 268 

computed MS/MS spectra for the 429 natural products reported in a recent Nicotiana 269 

phytochemistry review (32) and, more importantly, we undertook the development of an in silico 270 

spectral library for about 1.1 million natural products (1M-NP).  271 

A comprehensive description of the creation of the 1M-NP in silico spectral library and of 272 

its architecture is reported as Supplementary Text (see also Fig. S6 and S7). The capacity of 273 

such in silico spectra-based approach to increase the annotation coverage of plant SM profiles has 274 

initially been exemplified in a pioneer study by Allard et al. (2016), but was restricted to chemical 275 

entries (~ 220,000) retrieved from the copyrighted Dictionary of Natural Products 276 

(http://dnp.chemnetbase.com). Here, we concatenated chemical structures derived from several 277 

public natural product libraries (Table S3), which resulted, after filtering out duplicated InChI 278 

representations and CFM-ID-based computation of composite MS/MS spectral predictions, into 279 

1,066,512 unique MS/MS spectra that covered a vast proportion of the natural product chemical 280 

classification proposed by NP-classifier (43). As CFM-ID version 4.0 computations returned 281 

slightly different MS/MS spectra for stereoisomers – see MS/MS spectra predicted (+)-/(-)-282 

shikonin and (+)-/(-) thalidomide in Fig. S8 –, stereoisomers were kept in the library. Altogether, 283 

this important computational delivery of this study represents, to the best of our knowledge, the 284 

largest natural product-derived in silico spectral library and is now available for spectral 285 

interrogation as part of the GNPS ecosystem (Data and Material Availability).  286 
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The above-described multi-query approach of the 17901 features from our dataset 287 

retrieved annotations for 57 % of these features, with 9 % hits for priority levels 1-to-3 (Fig. 3A). 288 

To maximize structural insights that could be gained from this deep annotation, we finally 289 

computed the top most common substructures (referred to as Network Consensus Structure, NCS) 290 

based on feature annotations for each of the FBMN molecular networks that did not contain any 291 

level 1-to-2 annotations. Consensus structure computational prediction relies on a new 292 

algorithmic approach that employs hits obtained from in silico MS/MS spectral databases (See 293 

description in the Method section and Code Availability and Description). The NCS strategy is 294 

illustrated in Fig. 3C-D with top NCS hits for network #486 whose MS/MS features were initially 295 

classified as “Amino acids and derivatives” by CANOPUS. A complete overview of the top NCS 296 

predictions is summarized in Data S3. Altogether, this unique combination of different 297 

computational approaches generated a multi-modal SM cartography that can be navigated from 298 

CANOPUS-based ontology predictions down to sets of molecular networks connected to a given 299 

class level and further down to predicted shared substructures within these networks (Data S3 300 

and S4). 301 

 302 

Exploring the chemical substructure basis of Nicotiana section and species-level SM 303 

specialization 304 

Next, we navigated the SM cartography to further dig into the inter-species chemodiversity 305 

variations that were detected from the species-level α-diversity (Fig. 2) and CANOPUS treemap 306 

analyses (Fig. 3). To rigorously infer statistical associations between species and particular 307 

CANOPUS “super-class” / ”most specific class” predictions, we employed non-metric 308 

multidimensional scaling (NMDS). NMDS is a powerful ordination technique in information 309 

visualization that is frequently employed in ecology to spatially represent interconnections among 310 

species or communities based on a series of univariate descriptors (44). The strength of this 311 

statistical approach is that it allows to efficiently collapse the information from multiple 312 

dimensions (here summed peak areas and connected CANOPUS predictions) into a limited 313 

number of descriptors exhibiting high-confidence statistical associations to species. Using 314 

NMDS, we computed projections of species and CANOPUS predictions as intrinsic variables and 315 

extracted strongest associations based on P-values < 0.05 (Permutation tests) and minimal cosine 316 

scores for angular distances between these two set of entities in NMDS projections (Fig. 4A, 317 

Data S2). A hierarchical clustering analysis of previously extracted most significant associations 318 

resulted into four main clusters referred to as Family Clusters (FC) (Fig. 4B). Distribution of 319 

these associations was not directly consistent with the species-/section phylogeny and thereby 320 
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indicative of gains and losses in species/section-level capacities for the abundant production of 321 

specific SM core structures. Family Cluster 1 (FC1) regrouped predictions associated to O-acyl 322 

glycerol structures that appeared to be prevalent within species of the section Suaveolentes and to 323 

a lower extend in the Petunoides, Polydicliae, Paniculatae and Rusticae. In accordance with the 324 

pronounced expansion of this compound class in the Nicotiana genus (11), O-acyl sugar 325 

predictions enriched in FC2, exhibited widely distributed significant species associations 326 

throughout the genus. Such associations were remarkably absent for the section Repandae, with 327 

the exception of N. nudicaulis. Strong associations with predicted terpenoid structures caught our 328 

attention when inspecting FC3. Most distinctive ones were detected for sections Nicotiana and 329 

Sylvestres as well as for more distantly related sections Undulatae and Tomentosae. FC4 mostly 330 

captured associations with phenylpropanoid-derived substructures and alkaloids, the latter further 331 

emphasizing on the richness of alkaloid metabolism in the Repandae section.  332 

A detailed interpretation of these species/section metabolic specificities requires a 333 

simplified access to the underlying MS/MS fragmentation schemes. The latter can typically be 334 

approached through MS2LDA, an unsupervised method to extract common patterns of mass 335 

fragments and neutral losses, referred to as mass motifs, from collections of fragmentation spectra 336 

(22). From this analysis, we retained 76 mass motifs that best depicted the structural diversity 337 

within our dataset as confirmed by hierarchical clustering (resulting in clusters of co-varying mass 338 

motifs) and mapping of enriched CANOPUS predictions for each mass motifs (motif-level 339 

propagation of CANOPUS predictions) (Fig. 5A, Fig. S9). In analogy to the critical role of 340 

conserved domain/motif inferences in protein structure-activity studies, mass motif inference 341 

offers a dimensionality reduction perspective on recurrent fragmentation patterns derived from 342 

particular substructures. This approach is however often limited by the scarcity of structurally 343 

annotated mass motifs in MS2LDA libraries. An asset of our approach is that it mutualizes the 344 

previously described SM cartography to mine most interesting mass motifs (Fig. 5B and Data 345 

S5). For instance, we confirmed the presence in motif cluster 1 (MC1) of a mass motif 346 

(Strepsalini_110) which was characteristic of the O-acyl glycerols specific to Suaveolentes. MC1 347 

also contained motif #631 and motif #254 characteristic of steroidal glycoalkaloids and that were 348 

strikingly specific to N. plumbaginifolia. Motif #646, present in the second cluster (MC2) 349 

captured the complete diversity of 17-HGL diterpene glycosides, allowing to efficiently explore 350 

tissue-specificity for this compound class. MC4 contained a motif (motif #37) with fragments 351 

indicative of hydroxycinnamic acid substructures derived from a network of O-phenolic 352 

glycosides. Similarly using inferences derived from these different computational approaches, we 353 

could efficiently inspect motifs corresponding to previously mentioned N-hydroxycinnamoyl-354 
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spermidine conjugates specific to N. glauca (MC5, motif #473), di- and triterpenoids abundantly 355 

found in N. tabacum (MC5, e.g. motif #555, #euphorbia_350) and mono-, sesqui- and diterpenes 356 

(MC5, motifs #558, #675 and #576 respectively) in sections Nicotiana and Sylvestres as well as 357 

Undulatae (Fig. S10). As previously implemented for molecular networks (Fig. 3), mass motifs 358 

can also be used for consensus substructure computations (Motif Consensus Structure, MCS), the 359 

latter providing a further mean to circumvent the scarcity mass motif annotation in MS2LDA 360 

libraries. All 76 MCS computations, combined with CANOPUS predictions and manual curation, 361 

are presented in Data S6. 362 

 363 

N-acylnornicotines (NANNs) as case-study for structural diversity expansion in Repandae 364 

allopolyploids 365 

In the following, we exemplify using the case-study of NANNs, how the Nicotiana genus SM 366 

cartography and connected annotation resources can be exploited to gain novel (bio)chemical and 367 

evolutionary insights into specific SMs. NANNs have been described as leaf exudate 368 

allopolyploidy-mediated innovations specific to the Repandae section (35). In our data-platform, 369 

NANNs’ structural diversity was readily inferable from mass motif #433 (MC7) that included the 370 

two main nornicotine substructure molecular fragments at m/z 132.0825 and at m/z 149.1075 (Fig. 371 

6A). Inspection of this motif retrieved a far greater structural diversity than previously reported, 372 

with 102 of annotated NANNs, not counting novel non-canonical NANN structures with three N 373 

(NANNs integrating an aminated fatty acyl chain) or three O atoms (di-hydroxylated NANNs) or 374 

those built on an anatabine scaffold instead of nornicotine (Data S8). This NANN structural 375 

diversity directly translated from variations at the fatty acyl moiety level, with the presence of iso-376 

/anteiso-branched or straight C1 to C18 chains, with or without hydroxyl groups. As their structure 377 

had not been unambiguously identified in previous phytochemical reports (35), the most abundant 378 

hydroxy NANNs were purified and elucidated by NMR to confirm the unusual position of the 379 

hydroxy group at position 3 (Fig. S11, Supplementary Text).  380 

Total NANN pools were extremely high in leaf exudates and in trichome-rich calyces of 381 

the Repandae species, but at barely detectable levels in N. nudicaulis (Fig. 6B). Most 382 

surprisingly, our data mining revealed that roots harbored a previously unexplored diversity of 383 

NANNs, albeit at almost 2 orders of magnitude lower than in leaves, and with very different 384 

chemotypes (Fig. 6B). In this respect, cross-tissue comparisons of fatty acyl moieties among 385 

NANN chemotypes indicated a general tendency towards shorter chain NANN (most notably C8-386 

nornicotine and formyl-[C1]-nornicotine) accumulation in root tissues (Fig. S12). A closer 387 

inspection of previously noted non-canonical NANNs captured by this exploratory approach led 388 
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to the formulation of structural assignments for 4 structures harboring a second intra-chain 389 

hydroxyl group, and 4 additional ones bearing a third N atom as part of an intra-chain amine 390 

group (Fig. 7A). These non-canonical NANNs were purified; but due to insufficient yields, their 391 

structure could not be further interpreted by NMR. In agreement with the presence of a third N 392 

prone to be positively charged, these non-canonical NANNs mainly appeared in the form of their 393 

[M+2H]2+ and exhibited higher polarity than regular ones. Features corresponding to these non-394 

canonical NANNs shared with canonical ones the mass motif #433 associated with the 395 

nornicotine backbone fragmentation, but were located in different molecular networks (Fig. 7A) 396 

that were specific to the Repandae section (Fig. S13). These Repandae non-canonical NANNs 397 

were further analyzed by ultra-high resolution MALDI MS imaging experiments conducted from 398 

leaf cross-sections of N. nesophila. These analyses supported their uniform distribution within the 399 

leaf lamina, the corresponding MSI images overlapping with those of well-known lamina-400 

distributed SMs such as chlorogenic acid, and not specifically on the leaf surfaces as for canonical 401 

NANNs (Fig. 7B, Fig. S14).  402 

 403 

NANNs evolutionary diversification predates Repandae polyploidy formation 404 

Our data strongly challenged the previous view that NANN biosynthetic capacity strictly arose as 405 

part of the allopolyploidy event at the base of the Repandae and that as such NANNs could be 406 

considered as a transgressive metabolic trait to this section. Indeed, Fig. 6 shows that the 407 

NANNs’ diversity pervades the different Nicotiana sections, albeit at extremely low levels in all 408 

the species examined additionally to the Repandae section. Obviously, complete leaf extracts of 409 

N. nesophila (H=3.25, 53 NANNs) and N. repanda (H=3.17, 49 NANNs) exhibited the overall 410 

greatest NANN α-diversity values (Fig. S15). Of all leaf exudate samples examined, the NANN 411 

α-diversity calculated for hybrid N. repanda X sylvestris (H=3.03, 18 NANNs) was the highest, 412 

which reflected a balanced distribution among NANN relative intensities in this sample. By clear 413 

contrast, lowest NANN α-diversity values were detected for leaf exudates of N. repanda (H=0.42, 414 

24 NANNs), N. stocktonii (H=0.39, 22 NANNs) and N. nesophila (H=0.54, 24 NANNs), which 415 

further indicated, besides the high NANN biosynthetic capacity in these species, their exacerbated 416 

specialization towards C14-OH-nornicotine exudation. In this respect, while the NANN 417 

chemotypes of the leaf exudates of almost all of the focal species were characterized by the 418 

dominance of this particular NANN, N. rustica and N. setchellii were noticeable exceptions, being 419 

dominated by C16-nornicotine (Fig. 6C) and N. glutinosa for its exclusive accumulation of 420 

formyl-nornicotine. As previously noted (Fig. 6B), roots of almost all species harbored a rich 421 

diversity of NANN, particularly exacerbated in N obtusifolia (H=2.26, 8 NANNs), predicted as 422 
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one of the closest diploid progenitors to the Repandae section. Altogether, a most parsimonious 423 

explanation to the evolution of the NANN pathway was that it predates Repandae formation. 424 

Such an evolutionary scenario appeared to be supported in all tissue-level ancestral state 425 

reconstruction (ASR) analyses carried out based on a matK-based species tree and with total 426 

NANN levels expressed as discrete states (Fig. 8). The ASR analysis computed from total root 427 

NANNs in combination with tissue-level NANN chemotypes, further suggested that the last 428 

common ancestor to the examined species had a consequent root-based NANN accumulation 429 

capacity. 430 

 431 

Discussion 432 

Lineage-specific reconfigurations in rapidly evolving sectors of a plant specialized metabolism 433 

can be transparent at the genomics/transcriptomics levels for which most evolutionary studies on 434 

adaptative traits are conducted. This stresses the obvious fact that the power of genomics-driven 435 

evolutionary inferences on plant SM pathways critically relies on the chemical classification of 436 

metabolites part of these metabolic sectors as well as on the phylogenetics contextualization of 437 

this information. To tackle this issue, the open-source computational metabolomics approaches 438 

presented here are propelled by a broadly transposable multi-inference annotation that maximizes 439 

the coverage of substructure predictions, thereby resulting into an unprecedented cartography of 440 

SM diversity in the Nicotiana genus linking species-level SM prevalence to particular 441 

substructures. With this workflow, we notably shed light on the structural diversity and 442 

phylogenetics distribution of NANNs, a gain-of-function defensive innovation previously thought 443 

to have evolved with Repandae allopolyploids speciation (38). 444 

A major challenge in MS metabolomics remains to reach broad structural annotation 445 

(“deep metabolome annotation”) and substructure discovery beyond chemical class predictions 446 

and the dereplication of previously identified SMs, which is the most frequent outcome of 447 

molecular networking-based data exploration. In particular, with the use of heterogeneous 448 

computational annotation tools and that of querying highly diverse experimental and in silico 449 

MS/MS database comes the inherent difficulty of systemically prioritizing and/or merging the 450 

minimal set of most reliable annotations collected from these inferences. MolNetEnhancer has 451 

been developed to more efficiently combine outputs from molecular networking, MS2LDA as 452 

well as in silico and chemical classification tools (45). However, substructure discovery from 453 

MolNetEnhancer outputs is strongly hampered by the scarcity of annotated motifs in the 454 

Mass2Motifs database embedded into MS2LDA, many of which additionally translating from 455 

relatively unspecific fragmentations (e.g. water, methyl, hexose losses). Only 24 of the 76 mass 456 
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motifs retained for further analysis had partial annotation hints in the MS2LDA Mass2Motifs 457 

database (Data S5). To significantly improve substructure discovery and annotation, we 458 

implemented two complementary approaches. On the one hand, we propagated CANOPUS 459 

predictions at mass motif level (MP-CANOPUS) by computing frequencies in “super-class/sub-460 

class/most specific class”, and combined this information with mass motif co-regulation analysis 461 

(Fig. 5). The second approach implemented for substructure analysis involved advanced 462 

maximum common substructure calculations to integrate annotations from multiple tools on a 463 

network (NCS) or motif level (MCS). Overall, we obtained 349 NCS or 303 MCS predictions for 464 

the whole data-set (Data S3 and S6). Maximum common substructure computation for 465 

substructure prediction had been employed in one of our previous studies to cluster candidate 466 

structures obtained by the MetFrag searches among co-regulated herbivory-induced metabolites 467 

(46) and is also one of the processing steps within the Network Annotation Propagation tool of 468 

the GNPS web-platform (47). Altogether, we advocate that the NCS/MCS approach implemented 469 

here has three main advantages: (i) it is an efficient mean of summarizing common substructure 470 

within the diversity of outputs from database queries as SMILES strings, (ii) it can used as input 471 

to reveal substructures statistically associated with intense chemodiversification in a given 472 

species, and (iii) it provides structural guidance during the manual interpretation of mass motifs or 473 

molecular network. In this respect, our study led to the curation of 76 mass motifs (Data S5). 474 

Such effort is important to empower supervised search of mass motifs which is already possible in 475 

MS2LDA and which will be greatly facilitated with the recent release of the MS2QUERY tool 476 

(48).  477 

A very important delivery of our work is the development and public sharing of the 1M-478 

DB which is, to the best of our knowledge, the largest in silico spectral database. This approach 479 

resulted into 5-fold more hits (annotation of 57% of the total features), than experimental spectral 480 

database interrogation alone. Data of the 1M-DB can currently be accessed and interrogated from 481 

the GNPS platform. The size of this data-set can represent a challenge for MatchMS-based 482 

queries, which can nonetheless be locally implemented with reasonable computing capacity with 483 

the parallelized script (Code Availability and Description) provided with our study. It is 484 

therefore foreseeable that the efficiency of the interrogation of the 1M-DB will strongly benefit 485 

from up-to-date optimization of MatchMS parallelization as part of future version releases. 486 

Multiple tools have been developed in recent years to produce hypothetical MS/MS spectra (23–487 

26, 49). A more recent development in this area is that of QCxMS which provides, in our 488 

experience, very high-quality spectra. This program is currently too much computationally 489 

demanding and could not be transposed to the scale of this study, besides the computation of 490 
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MS/MS predictions for the 429 structures of the Jassbi database and using a limited number of 491 

fragmentation trajectories (Zenodo link, https://doi.org/10.5281/zenodo.6536010). One promising 492 

direction for improving the confidence of such in silico fragmentation-based annotation is 493 

exemplified by the recently developed COSMIC workflow that incorporates a confidence score 494 

consisting of kernel density P-value estimation from a decoy library and a support vector machine 495 

algorithm (50). With the increasing quality of MS/MS predictions, one interesting perspective 496 

could be to extract mass motifs from them and thus directly infer fragment substructures produced 497 

from known structure in silico decomposition. 498 

In terms of structural information, rhe SM metabolic cartography generated in this study 499 

goes far beyond to a recently published chemotypic classification of the Nicotiana genus which 500 

mostly consisted in the dereplication of primary metabolites such as steroids and only a few SMs 501 

(51).  In our opinion, this data platform and our SM cartography provide complementary views on 502 

the metabolic diversity of this genus. Noteworthy, the aforementioned study did solely focus on 503 

leaf metabolomes, while ours and previous studies (8) unambiguously indicated the importance of 504 

“screening” multiple tissues to capture a broader SM diversity picture. In this respect, we 505 

demonstrated that expanding the analysis at the multi-tissue level (by combing tissue-level 506 

molecular network information) resulted into a “phylometabolomics” tree that captured shared 507 

SM biosynthetic potential among closely-related species with more resolution (Fig. 2). Beyond 508 

simple presence/absence of SM classes which has been a traditional focus of chemotaxonomic 509 

studies, the fact that structural diversity can nowadays be more efficiently accessed with 510 

computational MS metabolomics opens novel research avenues for understanding the evolution of 511 

SM, as implemented in a recent survey of the SM synapomorphies and homoplasies in the 512 

Malpighiaceae family (52). Information theory Shannon statistics transposed to MS feature 513 

analysis or individual metabolites can also provide an efficient means of contrasting metabolic 514 

diversity among the metabolic profiles to examine evolutionary ecology theories and 515 

contextualize those at relevant taxonomic scales (53). By employing α-diversity analysis, we 516 

confirmed that roots exhibit, under our analytical conditions, the most specific metabolomes, a 517 

pattern which had been previously detected in a study focusing on N. attenuata as the sole model 518 

species (8). α-Diversity scores further varied in-between species, thereby indicating variations in 519 

constitutive SM biosynthetic capacities and/or constitutive vs stress-induced investments into SM 520 

production. In this respect, we further observed that these inter-species variations in MeJA 521 

inducibility were negatively correlated with α-diversity scores constitutive leaf metabolome. This 522 

trend is reminiscent of the inter-species patterns detected from the comparative analysis of early 523 
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herbivory-induced transcriptomes for 6 Nicotiana species (54), and may reflect physiological 524 

trade-offs between constitutive vs inducible metabolic diversity maintenance. 525 

Many interesting novel biochemical insights worth to be pursuing by gene function 526 

studies, were extracted from the SM cartography produced from this study. Our analysis notably 527 

detected the presence of mono-O-acylglycerols (classified under the CANOPUS most specific 528 

class 1-monoacylglycerols) specifically on the leaf surfaces of the section Suaveolentes and at 529 

lower abundances in the Rusticae. Besides its well-known housekeeping function in the synthesis 530 

of di- and tri-O-acylglycerols via the action of GPAT enzymes (55), the latter compound class has 531 

been poorly investigated regarding its presence on plant aerial surfaces. Main reports on the 532 

possible defense-related functions of this compound class derive from studies on their presence as 533 

abundant surface metabolites on the calyx of several Scrophulariaceae species (56), and from a 534 

unique report for the Nicotiana genus describing these compounds as efficient chemical glues 535 

against small insects on the leaf surfaces of N. benthamiana (57). The prevalence of this 536 

compound class in the Suaveolentes section, in particular in N. benthamiana, along with the here-537 

described high levels of O-acyl glucoses (58) could point to an interesting case-study to 538 

functionally examine the biochemistry and evolution of this pathway and compare it with that of 539 

the thoroughly investigated and structurally reminiscent O-acyl sugars (11). Our analysis also 540 

revealed subtle tissue-level chemotypic variations within O-acyl sugars networks. Apart fro, 541 

confirming previously detected strong cross-species variations in structural diversity, inspections 542 

of these networks also pinpointed that some of these O-acylsugars are present at low levels in 543 

roots (Fig. S10). This could further illuminate recent work on the predicted role of these SMs in 544 

plant-soil microbiome interactions (15). Our SM cartography also provided a far greater species x 545 

tissue resolution on terpene-related classes’ distribution compared to tendencies previously 546 

sketched in Nicotiana studies that targeted trichome-based cembrene diterpene (59) and 17-HGL-547 

DTG (6). Our study revealed for these two classes of diterpenes, pronounced expansions of 548 

structural diversity and significant associations with the Nicotiana, Sylvestres, Undulatae, 549 

Tomentosae, Trigonophyllae (17-HGL-DTG) sections that include species in which emblematic 550 

structures of these compound classes had been originally detected (6). An unexpected result was 551 

the detection, at large levels in N. plumbaginifolia and to a minor extent in N. glutinosa, of 552 

steroidal glycoalkaloids, emblematic of the Solanum genus and whose presence is considered as 553 

erratic in other Solanaceae genera. Within the structurally rich network of steroidal glycoalkaloids 554 

identified in our study, the dereplication of solaplumbin m/z 722.4479, ([M+H]+, C39H64NO11) is 555 

supported by old phytochemistry reports (60). Such unexplored patchy distribution of steroidal 556 
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glycoalkaloids within the Solanaceae provides exciting foundations for future evolutionary 557 

biochemistry studies. 558 

The fact that α-diversity scores, independently of the tissue type, were not reflecting direct 559 

metabolic additivity in allotetraploid species. This, along with unique metabolic characteristics as 560 

compared to their closest extent diploid progenitors, could be reminiscent of patterns observed 561 

when inspecting complex reconfigurations of floral morphological and associated metabolic traits 562 

in Nicotiana allotretraploids (34). Due to their previously reported absence in Repandae closest 563 

diploid progenitors (Nicotiana sylvestris and Nicotiana obtusifolia), NANNs have often been 564 

considered as “transgressive” metabolic traits derived from the Repandae allopolyploidization. In 565 

our study, we annotated 102 NANNs, including 6 first elucidation by NMR, and discovered 566 

NANN-related structures built from anatabine as a backbone, and the presence of novel NANNs 567 

leaf lamina-based restricted to Repandae and incorporated uncommon aminated fatty acyl 568 

moieties. Above all, our study indicates that the NANN biosynthetic capacity predates the 569 

Repandae section formation. However, a main innovation of Repandae species is their capacity to 570 

accumulate very high level of canonical NANNs on their surfaces as well as N3-containing 571 

NANNs in their leaf laminas. These data provide rigorous support to old literature that reports 572 

anecdotal evidence (61, 62) for low amounts of short (-formyl, -acetyl) and middle (C4-C8) chain 573 

length NANNs present in other Nicotiana species (63). Interestingly, N. obtusifolia, considered as 574 

a closest extant female progenitor to Repandae, is one of the Nicotiana species that accumulates 575 

the largest nornicotine-to-nicotine ratio in its leaves (64). Another interesting observation to 576 

pursue is that N. sylvestris, the closest extant male progenitor to Repandae, is thought to have 577 

contributed to several allopolyploidization events in the genus Nicotiana, many of which being 578 

able to accumulate greater NANN amounts than the other species tested in this study. As such, 579 

our data suggest a more complex than previously thought evolution of the NANN pathway. A 580 

direct perspective will be the identification of the canonical NANN biosynthetic N-581 

acyltransferase(s) which is predicted to be abundant in Repandae trichomes from our data and 582 

from previous phytochemical analyses on crude trichome fractions (35–37, 65). Our tissue 583 

cartography finally revealed a largely unexplored repertoire of NANNs in the roots of all 584 

examined species. These data and ASR analyses are in favor of shorter chain NANN production 585 

in roots being a most ancestral trait in this metabolic class. In the context of future biochemical 586 

investigations, the latter interpretation would be consistent with the fact that the accumulation of 587 

canonical NANNs onto aerial surfaces involves trichome-based N-acyltransferase enzymes with 588 

greater affinity for long chain fatty acyl-CoA as compared to those present in roots. 589 
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In conclusion, the fully open data and broad range of data integration approaches and 590 

provided here present an unprecedented resource to revive SM analysis in the Nicotiana genus 591 

and contribute to the establishment of phylometabolomics as an instrumental bottom-up approach 592 

to guide future evolutionary biochemistry studies. 593 

 594 

Material and Methods 595 

Plant material, growth conditions and treatment 596 

Nicotiana species with their origin and associated accession numbers are summarized in Table 597 

S1. Seeds of all Nicotiana species were directly germinated on soil, with the exception of N. 598 

attenuata, for which smoke-induced seed germination was established as described previously 599 

(Krügel et al., 2002). For all species, glasshouse growth conditions were as described previously 600 

(Krügel et al., 2002). Six-to-eight weeks old elongated plants were used for all metabolomics 601 

analyses. In order to analyze the regulatory function of jasmonate signaling on metabolomics-602 

inferred specialized metabolism classes, petioles of 2 elongated plants were treated with either 20 603 

µL lanolin paste containing 150 µg methyl jasmonate (Lan + MeJA) or with 20 µL pure lanolin 604 

(Lan) according to Heiling et al. (2021). Leaf samples were harvested 72 h after treatment, flash-605 

frozen in liquid nitrogen, and stored at -80°C until use.  606 

 607 

Metabolite extraction procedures for UPLC-QTOF MS 608 

Leaf, root and calyx metabolites were extracted for UPLC-QTOF MS analysis as previously 609 

described (Heiling et al., 2017). Briefly, for leaf samples, 12 discs per plant (~ 100 mg fresh-610 

weight tissue) were flash-frozen in liquid nitrogen immediately after harvest and stored at -80°C 611 

until use. The latter frozen leaf samples were ground in a Tissue Lyzer II for 3 min at 30 Hz and 612 

metabolites extracted by addition of 1 mL of 80 % methanol, 1 h of shaking at 1000 rpm at 4°C 613 

and further kept with a gentle agitation overnight at 4°C. Samples were finally centrifuged for 10 614 

min at 14000 g and the resulting supernatants transferred into glass vials. Root samples referred to 615 

the complete root system of about-8 weeks old plants. After soil removal, roots were rinsed in 616 

water, gently dried with paper towels and flash-frozen in liquid nitrogen. Root samples were 617 

homogenized in a Tissue Lyzer II for 4 min at 30 Hz. Metabolite extraction was conducted as 618 

above described from 200 to 400 mg root material (primary, secondary and tertiary roots). Flower 619 

calyces were collected from about 8 weeks old plants and processed for metabolite extraction 620 

using above leaf metabolite extraction conditions. To obtain leaf exudates enriched into semi-621 

polar to apolar surface metabolites, fully elongated leaves were briefly rinsed with acetonitrile. 622 

These exudates were filtered on filter paper and completely dried under reduced pressure. Dried 623 
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residues were then re-dissolved in methanol and total metabolite concentration was adjusted to 1 624 

mg.mL-1, except for Nicotiana repanda, N. stocktonii and N. nesophila exudates which were 625 

diluted to 0.001 mg.mL-1 and 0.1 mg.mL-1 (see Table S1) in order to avoid detector saturation, 626 

due to the high levels of NANNs in these samples. Peaks areas were corrected by corresponding 627 

dilution factors. 628 

 629 

UPLC-QTOF MS chromatographic conditions 630 

Methanolic extracts were analyzed using ultra-high pressure liquid chromatography coupled to 631 

high-resolution mass spectrometry on an UltiMate 3000 system (Thermo) coupled to an Impact II 632 

(Bruker) quadrupole time-of-flight (QTOF) spectrometer. Chromatographic separation was 633 

performed on an Acquity UPLC ® BEH C18 column (2.1x100mm, 1.7µm, Waters) equipped 634 

with an Acquity UPLC ® BEH C18 pre-column (2.1x5mm, 1.7µm, Waters) and using a gradient 635 

of solvents A (water, 0.1% acetonitrile, 0.05% formic acid) and B (acetonitrile, 0.05% formic 636 

acid). Chromatography was carried out at 35°C with a flux of 0.4 mL.min-1, starting with 10% B 637 

for 3 min, and reaching successively 20% B at 12 min, 35% B at 17 min, 40% B at 23 min, 45% 638 

B at 25 min, 50% B at 30 min, and 95% B at 40 min, holding 95% for 5 min and coming back to 639 

the initial condition of 10 % B in 3 min. These chromatographic conditions (total running time of 640 

48 min) were previously optimized for the comparative metabolomics of methanolic extracts of 641 

Solanaceae species in one of our previous studies (Heiling et al., 2016). Samples were kept at 4°C 642 

during the sequence of injections and 5µL per sample were injected in full-loop mode with a 643 

washing step after sample injection involving 150µL of the wash solution (water:methanol, 80:20, 644 

v:v). 645 

 646 

Conditions for DDA MS/MS data collection during UPLC-QTOF MS analysis 647 

The Impact II QTOF instrument was equipped with an electrospray ionization source and 648 

operated in positive ionization mode on a 50-to-1500 Da mass range with a spectra rate of 5 Hz 649 

and by further using the AutoMS/MS fragmentation mode. The end plate offset was set at 500 V, 650 

capillary voltage at 4500 V, nebulizer at 2 Bar, dry gas at 10 L.min-1 and dry temperature at 651 

200°C. The transfer time was set at 60-70 µs and MS/MS collision energy at 80-120% with a 652 

timing of 50-50% for both parameters. The MS/MS cycle time was set to 2 seconds, absolute 653 

threshold to 31 cts and active exclusion was used with an exclusion threshold at 3 spectra, release 654 

after 1 min and an ion was reconsidered as precursor for the fragmentation if the ratio current 655 

intensity/previous intensity was higher than 5. MS/MS collision energy was set according to the 656 

mass from 25 V for a mass of 100 Da to 50V for a mass of 1 500 Da. The MS/MS spectra 657 
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acquisition rate was further optimized, from 3 Hz to 7 Hz, according to the intensity of the 658 

observed mass. A calibration segment was included at the beginning of the runs allowing the 659 

injection of a calibration solution from 0.05 to 0.25 min. The calibration solution used was a fresh 660 

mix of 50 mL isopropanol:water (50:50, v:v), 500 µL NaOH 1M, 75 µL acetic acid and 25 µL 661 

formic acid. The spectrometer was calibrated on the [M+H]+ form of reference ions (57 masses 662 

from m/z 22.9892 to m/z 990.9196) in high precision calibration mode with a standard deviation 663 

below 1 ppm before injections, and re-calibration of each raw data was performed after injection 664 

using the calibration segment.  665 

 666 

Ultra-high resolution MS imaging data acquisition and processing 667 

Freshly collected rosette leaves of N. nesophila were embedded into M-1 embedding matrix 668 

(Thermo Scientific) and frozen before cutting. Cuts were done on a transverse plane at 25µm 669 

thickness and -15°C using a cryotome FSE. Sections were deposited on indium-tin-oxide coated 670 

slides and sprayed with a-cyano-4-hydroxycinnamic acid (HCCA) matrix at 10mg/mL in 70% 671 

ACN, 0.1% trifluoroacetic acid using the HTX M5 sprayer. Nozzle temperature was set at 75°C, 672 

flow rate at 0.120mL/min, velocity at 1200 mm/min, pressure at 10 psi, gas flow rate at 3 L/min 673 

and nozzle height at 40mm. Four passes were applied with a track spacing of 3mm and a HH 674 

pattern. 675 

Samples were analyzed with a Burker SolariX 7T Fourier transform ion cyclotron mass 676 

spectrometer at resolving power R=120,000 at m/z = 400. Acquisition was performed in positive 677 

ion mode on a 100-500 m/z mass range, with an accumulation of 0.020 s, the transfer optics time 678 

of flight set at 0.600 ms, frequency at 6 Hz and RF amplitude at 350 Vpp. The MALDI plate 679 

offset was set at 100 V, deflector plate at 200 V, laser power was set at 20%, laser shots at 100 680 

and frequency at 1000 Hz with a small laser focus. The instrument was calibrated by multipoint 681 

correction using the peaks of the HCCA matrix (m/z = 379.0924, 399.0377, 401.0744, 417.0483). 682 

The regions of interest were determined in FlexImaging with a raster width of 50µm. Images of 683 

the ions of interest +/- 3 ppm were displayed in MSiReader v1.03 (66). The data was submitted to 684 

metaspace and is available at https://metaspace2020.eu/project/nicotiana_msi-2022 685 

 686 

Feature-based molecular networking of UPLC-QTOF MS data 687 

Raw data were converted to the .mzML format using MSConvert (Version 3.0.21112-b41ef0ad4, 688 

Chambers et al., 2012). The resulting data files were then processed with the Batch Mode (See 689 

Code availability, Script S10) of MZMine 2.53 (68) and exported for Feature-based molecular 690 

networking (FBMN) analysis in the GNPS environment (Nothias et al., 2020; Wang et al., 2016) 691 
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and for spectral analyses in Sirius (21). The resulting .mgf and .csv files were further filtered to 692 

exclude redundant none-biologically informative MS/MS features using newly developed Python 693 

Scripts S11 and S12 (see Code availability). The m/z signals that appear more than 5 times (± 694 

3ppm) with a retention time coefficient of variation greater then 10 % were discarded. This 695 

filtering step excluded 11580 features (out of a total of 29481 retrieved from the MZMine-based 696 

processing), a vast majority of those corresponded to redundant features detected at high-level in 697 

solvent blanks. Finally, FBMN was performed using the modified cosine as spectral similarity 698 

metric and with standard settings (Version release_28.2, except lower precursor and fragment 699 

tolerance of 0.005 Da). Output of the FBMN analysis is available on GNPS at the following link: 700 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cf822b6c7c914206941bb0b6007e7eb0 701 

 702 

MS/MS elemental formula and compound class predictions with Sirius 703 

Sirius (Version 4.8.2) was used to predict elemental formulas for MS/MS precursors as well as for 704 

the deep neural network-based compound class prediction as part of the CANOPUS pipeline (20). 705 

Sirius commands are summarized as part of Script S13 (see Code availability). Elemental 706 

formulas by Sirius were further processed with Scripts S14 and S15 (see Code availability) to 707 

restore Feature IDs and calculate the degree of unsaturation of these formulas. A main strength of 708 

CANOPUS-based class prediction is that does not involve the interrogations of spectral libraries 709 

with fragmentation spectra, thereby allowing class prediction of MS/MS features for which no 710 

database hit is retrieved and circumventing the possible issue of error propagation when false 711 

class prediction is obtained by FBMN network-level propagation from feature-derived database 712 

hits. MS/MS feature-level ontologies were retrieved from CANOPUS predictions as well as 713 

FBMN network-propagated superclass, subclass and most specific class ontologies. The latter 714 

ontology propagation was implemented using Script S19. 715 

 716 

Mass motif inference by MS2LDA 717 

Mass motifs were inferred using standard settings of MS2LDA (Version release_23.1, Wandy et 718 

al., 2018), submitted trough the GNPS workflow. Available at: 719 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6f325f462e1145bfb465c679c2ee17d6 720 

A total of 609 motifs were assigned including already existing motifs from motifdb. To explore 721 

mass motifs assignments on a species level, a binary mass motif matrix for all tissues was created 722 

by setting features above peak area of 10.000 to the value of 1 and those below to 0 (Script S17). 723 

The resulting matrix was combined and presence was summed per tissue and then set again into a 724 

binary matrix. Following this binary transposition of motif distributions, feature presence per 725 
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motif was determined per species, resulting in a motif count table (Script S18). This set of mass 726 

motif counts (after filtering and manual curation 76 motifs), was then normalized by motif id and 727 

clustered by hierarchical clustering using the Ward clustering method implemented in 728 

MetaboAnalyst (69). 729 

 730 

MS/MS annotation based on spectral database interrogations 731 

We implemented a 3-pronged approach to annotate MS/MS from the interrogation of 732 

experimental and in silico fragmentation databases, similar as proposed in Sumner et al., 2007. 733 

Level 1 in our priority assignment of annotations corresponded to hits retrieved from 734 

experimental spectral databases and or NMR structural confirmation. Highest priority within level 735 

1 of annotated spectra (level 1a) was given to hits confirmed by NMR in this work. Level 1b 736 

annotations correspond to hits from spectral alignments (and correspondence of precursor m/z 737 

values) using a local MatchMS (score above 0.65 and more than 6 matching peaks) 738 

implementation (Script S8, see Code availability) with the modified cosine score, from an in 739 

house high-resolution experimental MS/MS spectra database of Nicotiana attenuata specialized 740 

metabolites and/or manual inspection of spectra. Level 2 corresponded in our annotation approach 741 

to hits retrieved, with the cosine score from high-resolution MS/MS spectra of the GNPS 742 

database. Level 3 annotations were considered for hits from alignments with in silico MS/MS 743 

spectra or in the case of network propagation of hits from the experimental databases, both after 744 

manual inspection. Jobs for the recently developed molDiscovery approach (Version 1.0.0, Cao et 745 

al., 2021) were submitted through GNPS with both the molDiscovery built-in library and the 746 

Jassbi compound database created as part of this study. The Jassbi compound database (429 747 

structures) was compiled from structures extracted from a recent Nicotiana phytochemistry 748 

review (32).  In silico MS/MS spectra for the Jassbi compound database were also produced with 749 

the fragmentation tool CFM-predict 4.0 (23) (Script S5, see Code availability) database 750 

searching was performed with MatchMS (70) (Script S9). 751 

 752 

Consensus substructure and molecular network chemical classes 753 

We implemented a new algorithmic approach to deal with the high number of annotations 754 

retrieved from the various in silico MS/MS spectral databases. To this end, we used annotations 755 

retrieved form Sirius (confidence score above 0.65), 1M-DB searched with modified cosine 756 

(score above 0.5 and 5 matching peaks), CFM-DB 1M searched with spec2vec (score above 0.5), 757 

Jassbi-CFM (score above 0.5 and 5 matching peaks) and Jassbi-molDiscovery. These annotations 758 
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were retrieved at the molecular network or at the MS2LDA mass motif level in order to calculate 759 

consensus substructures for a given network (NCS) or mass motif (MCS).  760 

Main steps involved in consensus substructure calculations involved the following commands 761 

(Script S16, S19, see Code Availability and Description): (1) fragment structures, (2) get the 762 

most common fragments, (3) select the top 50 and only keep the ones with more than 12 atoms, 763 

(4) cluster by structural similarity, (5) sort by cluster size, (6) calculate the maximum common 764 

substructure within the cluster, (7) retrieve the top 4 results. 765 

To harness the vast amount of structural information classified by molecular networking, 766 

we selected the top 252 networks sorted by only picking networks containing more than 10 nodes. 767 

The peak areas within these networks were summed with Script S24. Peak areas were normalized 768 

(Excel’s STANDARDIZE function) by cluster id and the maximum on tissue level per species 769 

was kept. The propagated CANOPUS classes were grouped their peak areas summed (Script S28) 770 

and the resulting data was used to create per species treemaps in Excel. A summary of the Top252 771 

molecular networks, their calculated consensus substructures and their propagated CANOPUS 772 

classes can be found in Data S3. Additionally, Data S4 and S7 allow to navigate this multi-level 773 

information at mass motif and network levels. 774 

 775 

Computing MS/MS-informed phylometabolomics species trees 776 

To create MS/MS similarity-based species, referred to in the text as phylometabolomic trees, we 777 

used the data compiled as mentioned above (Script S24) (Fig. 2A) or the data from the motif 778 

count (Script S18) (Fig. S9) in order to calculate the Euclidean pairwise distances between 779 

species’ metabolomes (Script S20). The resulting matrix was then used to plot trees in R with the 780 

APE package using the Neighbor-Joining algorithm and bootstrapping 999 with iterations. (Script 781 

S21) 782 

 783 

Ancestral state reconstruction for the relative occurrence of N-acylnornicotines 784 

We adapted the concept of ancestral state reconstruction (ASR) classically employed for the 785 

evolutionary analysis of quantitative phenotypic traits for the exploration of NANNs’ relative 786 

occurrence. To this end, we first constructed a phylogenetic tree of the focal Nicotiana species 787 

based sequences of the matK gene obtained from a previous study (71), the sequence of N. 788 

maritma was used to account for N. wuttkei position within the species tree due to unavailable 789 

genome data for the latter species. Laskowska and Berbec (2003) previously suggested the very 790 

close relationship between the latter two species as well as reported their successful hybridization 791 

in the wild. Nicotiana setchelli matK gene sequence was obtained from the assembly of 792 
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transcriptomics data publicly available for NCBI SRA accession SRR2106530. The species tree 793 

was constructed using NGPhylogeny.fr (73) with default one click options and the PhyML 794 

Maximum Likelihood method. For ASR, feature intensities accounting for the species and tissue-795 

wide NANN diversity were retrieved using the above-described mass motif characterization 796 

approach. ASR was performed with the MBASR package (Heritage, 2021; Script S25) on peak 797 

areas of the root that have been transformed into a ordered trait of 5 categories (Fig. 8, Fig. S1). 798 

 799 

α-Diversity analysis and CANOPUS class distance computation 800 

The alpha-diversity was calculated for each species based on Shannon Entropy (Script S29) using 801 

the scikit-bio package and sample features as OTUs. The top 252 networks as mentioned 802 

previously were selected their raw peak areas summed based on propagated CANOPUS classes 803 

(Script S28) and then converted to integers, networks without class annotations were discarded. 804 

The vegan package was used to perform non-metric multidimensional scaling (NMDS) followed 805 

by the calculation of intrinsic variables (CANOPUS classes) with 999 permutations (Script S30). 806 

The resulting vectors were used to calculate the per species cosine distances (Script S31). 807 

 808 

Code availability 809 

All scripts used in this study are available at the Github repository: 810 

https://github.com/volvox292/Nicotiana_metabolomics 811 
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Figure 1 838 

 839 
Figure 1. Experimental and data processing set-ups to explore species x tissue specialized metabolism 840 
diversification in the Nicotiana genus. (A) Schematic Nicotiana phylogenetic tree highlighting main genus sections 841 
and representative species selected for metabolomics analysis. Four allotretraploid sections, dashed lines indicate 842 
sections containing closest extant diploid progenitors. Accessions and origins of the selected species are referred to in 843 
Table S1. N. glutinosa* and N. glauca* are considered as homoploid hybrids as summarized in (34). (B) Tissue 844 
sampled from 6-to-8 weeks old plants of the selected 20 Nicotiana species. Fully elongated leaves were considered 845 
for leaf-based samplings. Leaf exudates were prepared by acetonitrile-based leaf surface rinsing; methyljasmonate 846 
(MeJA)-treated leaves were harvested 72h post-treatment. (C) Representative Base Peak Chromatograms (BPC) from 847 
the UPLC-ESI+-QTOF MS analysis of methanolic extracts of N. repanda roots, untreated leaves and calyces. (D) 848 
Data processing pipeline to construct a species x tissue MS/MS spectral matrix and for its deep structural annotation 849 
prior to metabolic class diversification analysis. Architecture of the data processing pipeline and organization of the 850 
different output matrices as supplementary data-sets are presented in Fig. S2. 851 
  852 
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Figure 2 853 
 854 

 855 
Figure 2. Species metabolome α-diversity and “phylometabolomics” relatedness. (A) Biplots depict the number 856 
of detected features and the Information Theory Shannon α-diversity as an index of feature richness per tissue. 857 
Nicotiana phylogenetic sections are color-coded. (B) “Phylometabolomics tree computed from the molecular 858 
networking information. To analyze the relatedness of species’ metabolomes, we first computed inter-species 859 
Euclidean distances based the molecular networking information and used the resulting distance matrices for 860 
constructing a “phylometabolomics” tree based on the Neighbor-Joining algorithm (bootstrap values derived from 861 
999 iterations) (Table S2). Trees were also constructed from the tissue-level data (Fig. S4).  862 
  863 
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 864 
Figure 3 865 

 866 
Figure 3. Cartography of Nicotiana species-level metabolic class and substructure distribution using a novel 867 
molecular network-propagated consensus substructure approach. (A) Molecular networking of species x tissue 868 
deconvoluted MS/MS features. The top252 molecular networks were retrieved for a minimum MS/MS pairwise 869 
cosine value of 0.7 and of 6 matching m/z signals. Node colors refer to network-propagated CANOPUS super-class 870 
predictions. Bars refer to the relative proportions of individual MS/MS further annotated from the three levels of 871 
annotation confidence (see Material and Methods section) or with databases build from in silico generated MS/MS 872 
spectra (see panel C). (B) Treemap visualization of species-level super-class and most specific class distribution. 873 
Colors denote for different NP-CANOPUS super-classes, with each individual uniformly colored rectangles depicting 874 
most-specific classes hierarchically classified as part of a NP-CANOPUS super-class. A close-up view on two super-875 
classes (“Organic acids and derivatives” / “Phenylpropanoids and polyketides”) detected in N. glauca (Ngla) is 876 
presented. (C) Network Consensus Structure (NCS) computations from hits obtained from the interrogation of in 877 
silico generated MS/MS spectra (Fig. S10). Hits obtained for each MS/MS feature-level database search within a 878 
network were compiled input to compute a consensus (sub)structure for each network. (D) NCS computed for 879 
network #486 whose MS/MS features were classified in (A) as those of “Amino acids and derivatives”. The library of 880 
feature/network/NP-CANOPUS/NCS associations is reported in Data S1, S3 and S4.  881 
  882 
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Figure 4 883 

 884 
Figure 4.  Non-metric multidimensional scaling reveals main statistical trends of Nicotiana section and species-885 
level metabolic specialization. (A) Non-metric multidimensional scaling (NMDS) was used to infer directionalities, 886 
followed by the calculation of intrinsic variables to test for statistical significance (P-value [999 permutations] lower 887 
or equal to 0.05), in the association between species and CANOPUS super-class and most specific class predictions 888 
(CANOPUS, Fig. 2). All P-values and cosine distances are summarized in Data S2. (B) Heatmap representation 889 
(based on cosine distances) of statistically significant associations between species and NP-CANOPUS predictions 890 
for “most-specific classes” (colored according to upper-level “super-classes”). A hierarchical clustering analysis was 891 
conducted to group similarly distributed CANOPUS predictions, thereby emphasizing on four highly distinctive 892 
clusters referred to as metabolic family clusters (FC).  893 
 894 
  895 
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Figure 5 896 

 897 
 898 

Figure 5. A minimal set of MS motifs captures substructure diversity in Nicotiana chemotypes. (A) Hierarchical 899 
clustering analysis (HCA) based on the species-level motif count (Z-score normalized) of top76 mass motifs inferred 900 
by unsupervised decomposition of overall MS spectra via the text-mining program MS2LDA. Species x tissue motif 901 
counts matrices can be explored within Data S5. Motifs clusters (MC) extracted from the HCA approach refer to 902 
clusters of tightly covarying MS motifs. A Principal Component (PC) analysis (2 first PCs) based on species-level 903 
MS motif relative intensity and loadings exerted on sample PC coordinates by each MS motifs, highlighted the strong 904 
resolving power for species grouping of these MCs (Fig. S9). (B) Strategy for MS motif-guided exploration of 905 
substructure enrichment in particular molecular networks. MS motifs are selected based on their peculiar 906 
species/section-level distribution, annotated using MS fragmentation curation and connected molecular network are 907 
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finally visualized. Node colors denote for the species-overall feature relative abundance in the analyzed tissues. 908 
Rectangles report network and MS motif ids, their colors refer to MC. A representative high confidence predicted 909 
structure per network (connected to the double circled node) is presented with annotation of the MS motif main 910 
fragments. Additional examples are presented as part of Fig. S10. Overall MS motif data are reported in Data S6 and 911 
S7.   912 
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Figure 6 913 

 914 
 915 
Figure 6. Navigating MS motifs pinpoints on a diversity of N-acylnornicotines that dominate leaf surfaces of 916 
Nicotiana section Repandae species. (A) Main molecular networks extracted connected to MS motif 433 (MC7, Fig. 917 
5A) characterized by a strong relative abundance in Repandae species. NMR-elucidated N-acylnornicotine (NANN) 918 
structure (see further NMR-elucidated NANNs in Fig. S11), with fragment annotations captured by the NANN MS 919 
motif, for the MS/MS feature represented by the double circled node. Node colors denote for the species-overall 920 
feature relative abundance in the analyzed tissues. (B) Total NANN pools (relative to maximum in N. nesophila 921 
exudates) as inferred from MS/MS features of MS motif 433 (Data S8). (C) Species-level NANN elemental formula 922 
distribution (Z-score normalized) and indication of the acyl chain length and of its 3-hydroxylation.  923 
 924 
  925 
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Figure 7 926 
 927 

 928 
Figure 7. Characterization of non-canonical leaf lamina NANNs specific to the Repandae. (A) Molecular 929 
networks and fragmentation characterization of 3N-containing and di-hydroxylated NANN specific to the Repandae 930 
(Fig. S13). Node colors denote for the species-overall feature relative abundance in the analyzed tissues. (B) MALDI 931 
MS images depicting spatially-resolved relative abundance of selected metabolites in a leaf cross section of N. 932 
nesophila. Insert in the first image corresponds to the optical image of the matrix-embedded leaf cut used for MALDI 933 
MSI. The two first images correspond to the MSI data for two 3N-containing NANNs: m/z 346.2853 (± 3ppm, 934 
C21H35N3O, [M+H]+) and m/z 362.2802 (± 3ppm, C21H35N3O2, [M+H]+) exhibiting a quasi-uniform distribution 935 
within the complete leaf section and comparable to that of chlorogenic acid (third image, m/z 355.1026 ± 3ppm). 936 
Selected MSI data are presented for additional N. nesophila metabolites in Fig. S14. 937 
  938 
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Figure 8 939 
 940 

 941 
Figure 8. Ancestral state reconstruction and structural diversity analysis indicate that NANNs predate 942 
Repandae speciation and a major root-to-shoot compositional shift. Total root NANN pools of the focal species 943 
were transposed as relative scaling into an ordered trait (total states colored from white to dark brown) and used as 944 
input for ancestral state reconstruction using the MBASR software with default settings. The species tree was 945 
constructed from matK as described in (71). Bubble plots on the right part of the figure depicts relative NANN fatty 946 
acyl chain distribution with indication of fatty acyl chain carbon number (Fig. S12), for total NANN pools see Fig. 947 
6B. Bubble size denote for relative acyl chain level within the NANN pool of a species and per tissue. Color-filled 948 
bubbles refer to hydroxylated NANNs.  949 
 950 
 951 

  952 
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