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Abstract

Specialized metabolite (SM) diversification is a core process to plants’ adaptation to diverse
ecological niches. Here we implemented a computational mass spectrometry (MS)-based
metabolomics approach to explore SM diversification in tissues of 20 species covering Nicotiana
phylogenetics sections. To drastically increase metabolite annotation, we created a large in silico
fragmentation database, comprising more than 1 million structures, and scripts for connecting
class prediction to consensus substructures. Altogether, the approach provides an unprecedented
cartography of SM diversity and section-specific innovations in this genus. As a case-study, and
in combination with NMR and MS imaging, we explored the distribution of N-acyl nornicotines,
alkaloids predicted to be specific to Repandae allopolyploids, and revealed their prevalence in the
genus, albeit at much lower magnitude, as well as a greater structural diversity than previously
thought. Altogether, the novel data integration approaches provided here should act as a resource

for future research in plant SM evolution.

Keywords: Computational metabolomics, plant specialized metabolism, chemodiversification,

N-acylnornicotines

Teaser: Computational metabolomics delineates main trends in the diversification of specialized

metabolism in the genus Nicotiana
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Introduction

Plant metabolic profiles represent complex traits that reflect both evolutionary and temporally
dynamic adaptations to specific ecological niches. Compared with their counterparts integrated
into broadly conserved central C metabolism pathways, specialized metabolites (SMs) contribute
to the largest fraction of inter-specific variations in plant metabolic profiles. This plant
chemodiversity is predicted to account for somewhere on the order of one hundred thousand to
one million chemically unique structures, with an estimated range of five thousand to fifteen
thousand structures per plant species (/). Many of these SMs act as chemical shields or as
attractants in plant biotic interactions. In this respect, a relatively recent paradigm shift as part of
ecological hypotheses such as the synergy (2) and interaction diversity hypotheses (3), has been to
consider SM structural diversity, and not solely the summation of individual metabolites, as a
critical determinant of plants’ ecological interactions. The latter perspective also revives the
interest in the exploration of SM diversity with modern analytical approaches and the use of
adequate statistical descriptors (4).

In analogy to phylogenomics approaches that have flourished as a result of both the
increasing release of annotated genomes and of established comparative bioinformatics pipelines
to analyze these data, recent years have indeed seen a resurgence of plant family-/genus-specific
comparative metabolomics analyses to guide functional biochemical studies. For instance,
comparative metabolomics within the Rhamnaceae revealed that only the Ziziphoid clade of this
family possesses a functional triterpenoid biosynthetic pathway, whereas the Rhamnoid clade
predominantly developed diversity in flavonoid glycosides (5). In a previous study, we
implemented a metabolomics-centered fragmentation rule-based pipeline to annotate the diversity
of 17-hydroxygeranyl linalool (17-HGL) diterpene glycosides within the Solanaceae family and
revealed intense chemotypic structural variations combined with a patchy distribution of this
compound class as it appeared restricted to the Capsicum, Lycium and Nicotiana genera (6). The
latter “phylometabolomics” information facilitated gene candidate selection for functional
biochemical studies in the 17-HGL diterpene glycoside pathway (6). Similarly, comparative
metabolomics across multiple Solanaceae species was instrumental in guiding co-expression
studies for gene discovery for the steroidal glycoalkaloid pathway emblematic of the Solanum
genus (7).

Besides inter-specific variations in SMs, another important dimension, unfortunately
rarely integrated into taxonomic-scale metabolomics studies, is the tissue/organ specialization of
most SM pathways. Exploring these tissue/organ-level variations and their statistical correlation

with gene expression data can be extremely powerful in the process of SM biosynthetic gene
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discovery (8). Analyzing tissue-specific metabolomes is also critical to test ecological theories of
plant investments into metabolic defenses such as the optimal defense theory which predicts
greater metabolic defense accumulation in developmental stages/tissues with higher organismic-
level fitness contribution and/or greater predation rates (9). Trichomes, in particular glandular
ones covering most aerial plant tissues, are notorious for their capacity to synthesize high amounts
of very specific SMs (/0). Trichome SMs can be either stored within trichome cells and glands or
actively secreted, such as for Solanaceae-specific poly-acylated sugars, also referred to as O-acyl
sugars and whose biochemistry has been thoroughly investigated in recent years (/7). Calyces
formed by the floral sepals and which protect maturating reproductive organs are typically rich in
SMs whose biosynthesis can be dependent on trichomes present on these tissues (/2—7/4). SM
profiles of roots, while much less systematically explored than shoot-based ones, can be as
structurally diverse as trichome-specific ones (/5) and have recently become of major focus for
our understanding of SM ecological functions for plant-soil microorganisms’ interactions (/6).
Most recent advances in computational metabolomics provide a long-awaited framework
to systematically explore the above-described importance of the species x tissue SM variations
(4). These novel capacities to explore plant chemical spaces are further propelled by platforms
such as, the MassIVE database (https://massive.ucsd.edu/) reaching 12000 metabolomics datasets
in 2022. Despite the increasing amount of data that can be generated from modern MS
instruments, the average annotation rate of most MS metabolomics studies remains at the order of
a few percent of deconvoluted MS/MS features (/7). The number of computational tools to
address this challenge of transforming spectral information into chemical knowledge is hence
rapidly increasing and can be divided into two main approaches. One set of approaches relies on
MS/MS spectral grouping, as embodied by the game-changing development of molecular
networking and of the repertoire of network annotation/mining tools embedded within the GNPS
ecosystem (/8, 719). A second set of approaches relies on in silico fragmentation and
(sub)structure prediction from mass spectra. Classification of spectra within ontologies of
molecular families can notably be achieved by CANOPUS, a deep neural network method which
is able to predict 2497 compound classes (20) and which is embedded with the elemental formula
prediction and structure annotation pipeline from SIRIUS (27). Alternatively, the MS2LDA
method allows to extract information derived from shared substructures from spectral data via a
Latent Dirichlet Allocation algorithm borrowed from topic modelling (22). Recently developed or
significantly upgraded computational tools such as CFM-ID (23), molDiscovery (24), Metfrag
(25) or QCxMS (26) provide algorithmic means to predict MS/MS spectra from structures.
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However, systematically prioritizing and/or merging the highest confidence predictions from each
of these tools remains a challenge that is rarely tackled in most MS metabolomic studies.

The genus Nicotiana L. combines several appealing features to study SM pathway
diversification. This genus, comprising 13 well phylogenetically-resolved sections for a total of at
least 80 species, is appearing in various morphological forms such as small herbs to shrubs up to
small trees, which often are viscid-glandular and rarely glabrous (27, 28). Among the most
studied species in this genus are Nicotiana tabacum and N. rustica, which are traditionally grown
for tobacco products; N. glauca, which has been a focus of biofuel research studies (29) and N.
benthamiana, a very popular model organism in molecular biology (30). The intense research on
Nicotiana species is further reflected into the very large set of reference transcriptome and
genome resources publicly available for species of this genus (37). As recently reviewed (32), the
phytochemistry of several species of this genus, in particular that of the coyote tobacco Nicotiana
attenuata, a flagship model organism for the chemical ecology of plant-insect interactions (33),
has been extensively studied with notable focus on alkaloids, mono/sesquiterpene volatiles, O-
acyl sugars or 17-HGL diterpene glycosides. Finally, half of the species of the Nicotiana genus
are allopolyploids of different ages and for some of them, the closest extant diploid progenitors
have been mapped, thereby providing a phylogenetics framework to study allopolyploidy-
mediated contributions to phenotypic trait evolution (34). Among the Nicotiana SM innovations
thought to have been shaped by recent allopolyploidization events are N-acyl-nornicotines
(NANNS), derived from the N-acylation of nornicotine with long chain fatty acyl chains and
which have been described as specific to allopolyploid species of the section Repandae (35). This
Nicotiana section is about 4.5 million years old and has N. sylvestris as its closest diploid
maternal and N. obtusifolia as closest paternal progenitor. The 17 NANN structures originally
described in the Repandae species N. repanda, N. nesophila, N. stocktonii (36, 37), but not in N.
nudicaulis, likely act as gain-of-function anti-herbivory defenses. Indeed, compared with the
Nicotiana widespread nicotine and nornicotine non-acylated alkaloids, NANNs are highly
effective against and evade the resistance acquired for nicotine/nornicotine by the tobacco
hornworm Manduca sexta, a native herbivore (38). However, the evolution of this defensive trait
is largely underexplored and detailed investigations on the NANN structural diversity within the
genus Nicotiana are missing.

Here, we implemented a comprehensive computational MS metabolomics workflow to
explore SM chemodiversity in various tissues of 20 species representative of the main
phylogenetic sections within the Nicotiana genus. By employing a multi-inference deep

annotation approach that ultimately connects information theory statistics, chemical class
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mapping and substructure inferences, we provide an unprecedented cartography of SM tissue-
level distribution in this genus. The results of this study provide access to novel SM annotations
and tissue x species distribution data to guide future biochemical studies and notably shed light on

the unsuspected structural diversity and evolutionary trajectory of the NANNs defensive pathway

within the Nicotiana genus.
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Results

Tissue-level metabolomics data capture phylogenetically-relevant Nicotiana SM diversity

In order to comprehensively explore tissue-level SM diversification in the Nicotiana genus, we
profiled the metabolome of leaves elicited or not with methyljasmonate, concentrated leaf surface
exudates, complete root and of calyces (Fig. 1B) of 20 species covering all of the main sections of
this genus as well as diploid and allotetraploid states (Fig.1A and Table S1). Besides
phylogenetic position, species selection further took into consideration the availability of
transcriptomics/genomics data as a platform for future functional studies (37). Sampled tissues
were selected based on previous studies of our group (8) indicating the high degree of tissue-level
specialization in SM distribution and conversely the importance of concatenating multi-tissue
profiles to increase SM coverage. Additionally, we aimed via this pluri-tissue approach to explore
tissue-level shifts in SM class prevalence across the focal species as a mechanism of organismic-
level chemodiversification. Noteworthy, amounts of leaf exudate material collected greatly
differed among the focal species, with Nicotiana setchellii (2.7 mg of exudate per g leaf fresh
weight) and Nicotiana glutinosa (2.5 mg/g) producing the largest amounts of dried exudates
collected from leaf washes (Fig. S1 and Table S1). All methanolic extracts were analyzed using a
previously established UPLC-ESI'QTOFMS method with optimized settings for massive MS/MS
data collection (6). 17901 metabolite-derived MS/MS spectra (hereafter referred to as features)
were, after a data redundancy and contaminant check using a custom script, deconvoluted and
considered for Feature-based Molecular Networking (FBMN) processing with settings that were
optimized to handle the species x tissue-exacerbated metabolic diversity in the dataset. The
resulting species x tissue MS/MS feature compendium served as input for the data exploration
workflow presented in Fig. 1D (Fig. S2).

To contrast patterns of feature diversity across species, we calculated, for each of the
tissue types, a-diversity scores based on the Shannon Entropy (H) from Information Theory (&)
(Fig. 2A). A unifying trend in these tissue-level analyses was that species’ profiles, differed
extremely in their o-diversity indices, up to 3-fold counter-species variations being detected
depending on the tissue type. Root samples were, from all examined plant samples, those with
consistently lower a-diversity scores (average H = 7.6), likely indicative of the prevalence of only
a few SM classes in these samples for the analytical conditions considered in this study (Fig. 1C).
As expected, highest a-diversity scores were on average detected for MeJA-elicited leaves
(average H = 9.4) (Fig. S3), followed by uninduced leaves (average H = 9.3) and calyces (average

H =9.0). The effect of the MeJA elicitation on feature diversity was consistently more apparent at
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the level of detected features and very variable among the focal species (Fig. S3). Interestingly,
we noted that these inter-species variations in MeJA inducibility (indicative of the amplitude of a
“metabolome plasticity” to this treatment) were strongly negatively correlated (Pearson
Correlation Coefficient = -0.76, P-value = 1.04 x 10™*) with a-diversity scores of uninduced
leaves (“constitutive diversity”) (Fig. S3). Additionally, while we initially assumed that the
metabolic profiles of the exudates collected from uninduced leaves would be restricted to a few
prevalent SMs (thereby resulting into in low a-diversity scores for this sample type), the
relatively high a-diversity scores detected in most species were consistent with a far greater
chemical diversity in those extracts. In clear constrast, Repandae species, with the exception of V.
nudicaulis and the hybrid N. sylvestris x N. repanda, exhibited much lower a-diversity scores (H
ranging from 3.5 to 3.7 compared with the average H value of 8.5 for the rest of the species) that
were in line with the previously reported over-dominance of NANNs within their exudates (37).
When feasible based on the species sampling, we also compared the a-diversity scores of
allotetraploid species to those of closest diploid progenitors. Independently of the tissue type
considered, we did not observe evidence of clear metabolic additivity in allotetraploid species,
which would translate into higher o-diversity scores as compared to those of closest diploid
progenitors (Fig. 2A).

To analyze the relatedness of species’ metabolomes, we further computed inter-species
metabolic distances based the molecular networking information and used the resulting distance
matrices for constructing “phylometabolomics” trees. Several studies had previously attempted to
construct such “phylometabolomics” trees but from single-tissue metabolome data. Here, we
constructed trees both from the tissue-level (Fig. S4) and combined tissue data (Fig. 2B). The
resulting “all tissues” phylometabolomics tree captured patterns of metabolome-relatedness that
were frequently in accordance with the species’ tree section-level grouping and relatedness (Fig.
2B). Among other interesting insights, Repandae species’ metabolomes, with the exception of
that of N. nudicaulis, appeared much closely-related at the “all tissues” metabolome level to that
the Sylvestres section from which their maternal progenitor had been associated with, than to the

Trigonophyllae section (paternal progenitor section) (Fig. 2B, Table S2).

Creating a cartography of Nicotiana SM class diversification
After highlighting counter-species chemodiversity variations, we then systematically
characterized onto which SM classes they mapped. In analogy to gene family inference and

survey across focal species as a first step in phylogenomics, we first employed the CANOPUS
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tool for ad hoc systematic compound class and chemical ontology predictions. To combine
FBMN and CANOPUS information, we implemented a frequency-based molecular network-
based propagation of CANOPUS (NP-CANOPUS) predictions, resulting into class predictions for
86.5 % of the total features within the 1586 networks retrieved by FBMN. CANOPUS “super-
class” and “most specific class” intensity distributions integrating all tissue samples of given
species were encapsulated as treemaps and mapped onto the species tree to provide a bird’s eye
view on class expansions and shrinkages (Fig. 3B). For the sake of simplicity, only a few of the
main tendencies are reported below; close-up views on particular “metabolic tiles” and tissue-
specific treemaps are accessible in Data S1. Most clearly apparent was the highest proportion of
“lipids and lipid-like molecules” in all species, with a significant fraction of these lipids being, in
many species, contributed by the saccharolipid sub-class commonly referred to as O-acyl sugars
in the Solanaceae. Browsing these treemaps supported the presence of high amounts of predicted
diterpenes in N. tabacum, N. sylvestris and the cross between N. repanda x N. sylvestris — the
latter hybrid having been initially incorporated to test progenitor chemical trait dominance.
Among other trends, this analysis also pinpointed on N. sefchellii exhibiting the most diverse and
abundant set of “phenylpropanoid derivatives” from predicted 3-O-methylated flavonoids
(connected to network #361), simple hydroxycinnamic acids (network #990), up to coumarin
glycosides (network #532). Noteworthy, the performance of CANOPUS predictions was
nonetheless hampered for SMs that contained substructures from independent biosynthetic
origins, thereby resulting into heterogeneous CANOPUS ontologies. For instance, the large
“amino acids and derivatives” tile within the N. glauca treemap was mostly associated with
network #468, but the features embedded in this network were manually curated as N-
hydroxycinnamoyl-spermidine conjugates which are commonly encountered in leaves of
Solanaceae species as antiherbivore defenses (39). Also highlighting this limitation was that the
high-level of NANNs which are emblematic of the Repandae section, was not as easily noticeable
on the corresponding treemaps. Previously characterized NANNs were indeed split into several
classes as “organoheterocyclic compounds”, “benzenoids” and “organic nitrogen compounds”

(Data S1).

Deep metabolome annotation empowered by a multi-inference approach incorporating a 1
million natural product in silico spectral database and consensus substructure computations

The previous analysis indicated a critical need not only for broadly increasing feature annotations
beyond CANOPUS class predictions but also for gaining structural insights into core

(sub)structures underlying molecular networks’ topology. As outlined in a recent review (40),
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substructure annotation provides information on functional groups, building blocks, or scaffolds
within a chemical structure. This level of information is complementary to compound class
prediction, most commonly addressing biosynthetic origin and/or compound physico-chemical
properties. To propel substructure identification in our dataset, we first optimized a multi-
inference annotation pipeline (Fig. S2 and S5). Briefly, feature spectra were first queried against
an in-house Nicotiana attenuata SM MS/MS database (NaMS, entries resulting from the analysis
of purified SMs) and the GNPS library, the resulting hits being referred respectively to as
annotation levels 1 to 2 according to the Metabolomics Standard Initiative nomenclature (47).
Interrogation of these two experimental spectral databases provided hits for 4% of the MS/MS
features (Fig. 3A). Level 3 of the annotation nomenclature regrouped class-based annotations
mostly derived from manual inspection of network-level hits (5%). To circumvent limitations in
the chemical space covered by these two experimental databases, spectral interrogations were
conducted in parallel against in silico-predicted MS/MS spectral libraries using both
molDiscovery which predicts MS spectra of small molecules on-the-fly and scores their
probabilistic modeling (24), and a combination of CFM-ID and MatchMS. To further expand the
power of this approach beyond the chemical space of the molDiscovery built-in library, we
computed MS/MS spectra for the 429 natural products reported in a recent Nicotiana
phytochemistry review (32) and, more importantly, we undertook the development of an in silico
spectral library for about 1.1 million natural products (1M-NP).

A comprehensive description of the creation of the 1M-NP in silico spectral library and of
its architecture is reported as Supplementary Text (see also Fig. S6 and S7). The capacity of
such in silico spectra-based approach to increase the annotation coverage of plant SM profiles has
initially been exemplified in a pioneer study by Allard et al. (2016), but was restricted to chemical
entries (~ 220,000) retrieved from the copyrighted Dictionary of Natural Products
(http://dnp.chemnetbase.com). Here, we concatenated chemical structures derived from several
public natural product libraries (Table S3), which resulted, after filtering out duplicated InChl
representations and CFM-ID-based computation of composite MS/MS spectral predictions, into
1,066,512 unique MS/MS spectra that covered a vast proportion of the natural product chemical
classification proposed by NP-classifier (43). As CFM-ID version 4.0 computations returned
slightly different MS/MS spectra for stereoisomers — see MS/MS spectra predicted (+)-/(-)-
shikonin and (+)-/(-) thalidomide in Fig. S8 —, stereoisomers were kept in the library. Altogether,
this important computational delivery of this study represents, to the best of our knowledge, the
largest natural product-derived in silico spectral library and is now available for spectral

interrogation as part of the GNPS ecosystem (Data and Material Availability).

10


https://doi.org/10.1101/2022.09.12.507566
http://creativecommons.org/licenses/by-nc-nd/4.0/

87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507566; this version posted September 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

The above-described multi-query approach of the 17901 features from our dataset
retrieved annotations for 57 % of these features, with 9 % hits for priority levels 1-to-3 (Fig. 3A).
To maximize structural insights that could be gained from this deep annotation, we finally
computed the top most common substructures (referred to as Network Consensus Structure, NCS)
based on feature annotations for each of the FBMN molecular networks that did not contain any
level 1-to-2 annotations. Consensus structure computational prediction relies on a new
algorithmic approach that employs hits obtained from in silico MS/MS spectral databases (See
description in the Method section and Code Availability and Description). The NCS strategy is
illustrated in Fig. 3C-D with top NCS hits for network #486 whose MS/MS features were initially
classified as “Amino acids and derivatives” by CANOPUS. A complete overview of the top NCS
predictions is summarized in Data S3. Altogether, this unique combination of different
computational approaches generated a multi-modal SM cartography that can be navigated from
CANOPUS-based ontology predictions down to sets of molecular networks connected to a given
class level and further down to predicted shared substructures within these networks (Data S3

and S4).

Exploring the chemical substructure basis of Nicotiana section and species-level SM
specialization

Next, we navigated the SM cartography to further dig into the inter-species chemodiversity
variations that were detected from the species-level a-diversity (Fig. 2) and CANOPUS treemap
analyses (Fig. 3). To rigorously infer statistical associations between species and particular
CANOPUS “super-class” / “most specific class” predictions, we employed non-metric
multidimensional scaling (NMDS). NMDS is a powerful ordination technique in information
visualization that is frequently employed in ecology to spatially represent interconnections among
species or communities based on a series of univariate descriptors (44). The strength of this
statistical approach is that it allows to efficiently collapse the information from multiple
dimensions (here summed peak areas and connected CANOPUS predictions) into a limited
number of descriptors exhibiting high-confidence statistical associations to species. Using
NMDS, we computed projections of species and CANOPUS predictions as intrinsic variables and
extracted strongest associations based on P-values < 0.05 (Permutation tests) and minimal cosine
scores for angular distances between these two set of entities in NMDS projections (Fig. 4A,
Data S2). A hierarchical clustering analysis of previously extracted most significant associations
resulted into four main clusters referred to as Family Clusters (FC) (Fig. 4B). Distribution of

these associations was not directly consistent with the species-/section phylogeny and thereby
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indicative of gains and losses in species/section-level capacities for the abundant production of
specific SM core structures. Family Cluster 1 (FC1) regrouped predictions associated to O-acyl
glycerol structures that appeared to be prevalent within species of the section Suaveolentes and to
a lower extend in the Petunoides, Polydicliae, Paniculatae and Rusticae. In accordance with the
pronounced expansion of this compound class in the Nicotiana genus (11), O-acyl sugar
predictions enriched in FC2, exhibited widely distributed significant species associations
throughout the genus. Such associations were remarkably absent for the section Repandae, with
the exception of N. nudicaulis. Strong associations with predicted terpenoid structures caught our
attention when inspecting FC3. Most distinctive ones were detected for sections Nicotiana and
Sylvestres as well as for more distantly related sections Undulatae and Tomentosae. FC4 mostly
captured associations with phenylpropanoid-derived substructures and alkaloids, the latter further
emphasizing on the richness of alkaloid metabolism in the Repandae section.

A detailed interpretation of these species/section metabolic specificities requires a
simplified access to the underlying MS/MS fragmentation schemes. The latter can typically be
approached through MS2LDA, an unsupervised method to extract common patterns of mass
fragments and neutral losses, referred to as mass motifs, from collections of fragmentation spectra
(22). From this analysis, we retained 76 mass motifs that best depicted the structural diversity
within our dataset as confirmed by hierarchical clustering (resulting in clusters of co-varying mass
motifs) and mapping of enriched CANOPUS predictions for each mass motifs (motif-level
propagation of CANOPUS predictions) (Fig. SA, Fig. S9). In analogy to the critical role of
conserved domain/motif inferences in protein structure-activity studies, mass motif inference
offers a dimensionality reduction perspective on recurrent fragmentation patterns derived from
particular substructures. This approach is however often limited by the scarcity of structurally
annotated mass motifs in MS2LDA libraries. An asset of our approach is that it mutualizes the
previously described SM cartography to mine most interesting mass motifs (Fig. SB and Data
S5). For instance, we confirmed the presence in motif cluster 1 (MCI1) of a mass motif
(Strepsalini_110) which was characteristic of the O-acyl glycerols specific to Suaveolentes. MC1
also contained motif #631 and motif #254 characteristic of steroidal glycoalkaloids and that were
strikingly specific to N. plumbaginifolia. Motif #646, present in the second cluster (MC2)
captured the complete diversity of 17-HGL diterpene glycosides, allowing to efficiently explore
tissue-specificity for this compound class. MC4 contained a motif (motif #37) with fragments
indicative of hydroxycinnamic acid substructures derived from a network of O-phenolic
glycosides. Similarly using inferences derived from these different computational approaches, we

could efficiently inspect motifs corresponding to previously mentioned N-hydroxycinnamoyl-
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spermidine conjugates specific to N. glauca (MCS5, motif #473), di- and triterpenoids abundantly
found in N. tabacum (MCS5, e.g. motif #555, #euphorbia 350) and mono-, sesqui- and diterpenes
(MC5, motifs #558, #675 and #576 respectively) in sections Nicotiana and Sylvestres as well as
Undulatae (Fig. S10). As previously implemented for molecular networks (Fig. 3), mass motifs
can also be used for consensus substructure computations (Motif Consensus Structure, MCS), the
latter providing a further mean to circumvent the scarcity mass motif annotation in MS2LDA
libraries. All 76 MCS computations, combined with CANOPUS predictions and manual curation,

are presented in Data S6.

N-acylnornicotines (NANNs) as case-study for structural diversity expansion in Repandae
allopolyploids

In the following, we exemplify using the case-study of NANNs, how the Nicotiana genus SM
cartography and connected annotation resources can be exploited to gain novel (bio)chemical and
evolutionary insights into specific SMs. NANNs have been described as leaf exudate
allopolyploidy-mediated innovations specific to the Repandae section (35). In our data-platform,
NANNS’ structural diversity was readily inferable from mass motif #433 (MC7) that included the
two main nornicotine substructure molecular fragments at m/z 132.0825 and at m/z 149.1075 (Fig.
6A). Inspection of this motif retrieved a far greater structural diversity than previously reported,
with 102 of annotated NANNS, not counting novel non-canonical NANN structures with three N
(NANNS integrating an aminated fatty acyl chain) or three O atoms (di-hydroxylated NANNS) or
those built on an anatabine scaffold instead of nornicotine (Data S8). This NANN structural
diversity directly translated from variations at the fatty acyl moiety level, with the presence of iso-
/anteiso-branched or straight C, to Cs chains, with or without hydroxyl groups. As their structure
had not been unambiguously identified in previous phytochemical reports (35), the most abundant
hydroxy NANNs were purified and elucidated by NMR to confirm the unusual position of the
hydroxy group at position 3 (Fig. S11, Supplementary Text).

Total NANN pools were extremely high in leaf exudates and in trichome-rich calyces of
the Repandae species, but at barely detectable levels in N. nudicaulis (Fig. 6B). Most
surprisingly, our data mining revealed that roots harbored a previously unexplored diversity of
NANNS, albeit at almost 2 orders of magnitude lower than in leaves, and with very different
chemotypes (Fig. 6B). In this respect, cross-tissue comparisons of fatty acyl moieties among
NANN chemotypes indicated a general tendency towards shorter chain NANN (most notably Cs-
nornicotine and formyl-[C,]-nornicotine) accumulation in root tissues (Fig. S12). A closer

inspection of previously noted non-canonical NANNSs captured by this exploratory approach led
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to the formulation of structural assignments for 4 structures harboring a second intra-chain
hydroxyl group, and 4 additional ones bearing a third N atom as part of an intra-chain amine
group (Fig. 7A). These non-canonical NANNs were purified; but due to insufficient yields, their
structure could not be further interpreted by NMR. In agreement with the presence of a third N
prone to be positively charged, these non-canonical NANNs mainly appeared in the form of their
[M+2H]*" and exhibited higher polarity than regular ones. Features corresponding to these non-
canonical NANNs shared with canonical ones the mass motif #433 associated with the
nornicotine backbone fragmentation, but were located in different molecular networks (Fig. 7A)
that were specific to the Repandae section (Fig. S13). These Repandae non-canonical NANNs
were further analyzed by ultra-high resolution MALDI MS imaging experiments conducted from
leaf cross-sections of N. nesophila. These analyses supported their uniform distribution within the
leaf lamina, the corresponding MSI images overlapping with those of well-known lamina-
distributed SMs such as chlorogenic acid, and not specifically on the leaf surfaces as for canonical

NANNs (Fig. 7B, Fig. S14).

NANNs evolutionary diversification predates Repandae polyploidy formation

Our data strongly challenged the previous view that NANN biosynthetic capacity strictly arose as
part of the allopolyploidy event at the base of the Repandae and that as such NANNs could be
considered as a transgressive metabolic trait to this section. Indeed, Fig. 6 shows that the
NANNSs’ diversity pervades the different Nicotiana sections, albeit at extremely low levels in all
the species examined additionally to the Repandae section. Obviously, complete leaf extracts of
N. nesophila (H=3.25, 53 NANNSs) and N. repanda (H=3.17, 49 NANNSs) exhibited the overall
greatest NANN a-diversity values (Fig. S15). Of all leaf exudate samples examined, the NANN
a-diversity calculated for hybrid N. repanda X sylvestris (H=3.03, 18 NANNs) was the highest,
which reflected a balanced distribution among NANN relative intensities in this sample. By clear
contrast, lowest NANN a-diversity values were detected for leaf exudates of N. repanda (H=0.42,
24 NANNS), N. stocktonii (H=0.39, 22 NANNSs) and N. nesophila (H=0.54, 24 NANNs), which
further indicated, besides the high NANN biosynthetic capacity in these species, their exacerbated
specialization towards Cj4-OH-nornicotine exudation. In this respect, while the NANN
chemotypes of the leaf exudates of almost all of the focal species were characterized by the
dominance of this particular NANN, N. rustica and N. setchellii were noticeable exceptions, being
dominated by Cjs-nornicotine (Fig. 6C) and N. glutinosa for its exclusive accumulation of
formyl-nornicotine. As previously noted (Fig. 6B), roots of almost all species harbored a rich

diversity of NANN, particularly exacerbated in N obtusifolia (H=2.26, 8 NANNSs), predicted as

14


https://doi.org/10.1101/2022.09.12.507566
http://creativecommons.org/licenses/by-nc-nd/4.0/

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507566; this version posted September 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

one of the closest diploid progenitors to the Repandae section. Altogether, a most parsimonious
explanation to the evolution of the NANN pathway was that it predates Repandae formation.
Such an evolutionary scenario appeared to be supported in all tissue-level ancestral state
reconstruction (ASR) analyses carried out based on a matK-based species tree and with total
NANN levels expressed as discrete states (Fig. 8). The ASR analysis computed from total root
NANNS in combination with tissue-level NANN chemotypes, further suggested that the last
common ancestor to the examined species had a consequent root-based NANN accumulation

capacity.

Discussion

Lineage-specific reconfigurations in rapidly evolving sectors of a plant specialized metabolism
can be transparent at the genomics/transcriptomics levels for which most evolutionary studies on
adaptative traits are conducted. This stresses the obvious fact that the power of genomics-driven
evolutionary inferences on plant SM pathways critically relies on the chemical classification of
metabolites part of these metabolic sectors as well as on the phylogenetics contextualization of
this information. To tackle this issue, the open-source computational metabolomics approaches
presented here are propelled by a broadly transposable multi-inference annotation that maximizes
the coverage of substructure predictions, thereby resulting into an unprecedented cartography of
SM diversity in the Nicotiana genus linking species-level SM prevalence to particular
substructures. With this workflow, we notably shed light on the structural diversity and
phylogenetics distribution of NANNSs, a gain-of-function defensive innovation previously thought
to have evolved with Repandae allopolyploids speciation (38).

A major challenge in MS metabolomics remains to reach broad structural annotation
(“deep metabolome annotation”) and substructure discovery beyond chemical class predictions
and the dereplication of previously identified SMs, which is the most frequent outcome of
molecular networking-based data exploration. In particular, with the use of heterogeneous
computational annotation tools and that of querying highly diverse experimental and in silico
MS/MS database comes the inherent difficulty of systemically prioritizing and/or merging the
minimal set of most reliable annotations collected from these inferences. MolNetEnhancer has
been developed to more efficiently combine outputs from molecular networking, MS2LDA as
well as in silico and chemical classification tools (45). However, substructure discovery from
MolNetEnhancer outputs is strongly hampered by the scarcity of annotated motifs in the
Mass2Motifs database embedded into MS2LDA, many of which additionally translating from

relatively unspecific fragmentations (e.g. water, methyl, hexose losses). Only 24 of the 76 mass
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motifs retained for further analysis had partial annotation hints in the MS2LDA Mass2Motifs
database (Data S5). To significantly improve substructure discovery and annotation, we
implemented two complementary approaches. On the one hand, we propagated CANOPUS
predictions at mass motif level (MP-CANOPUS) by computing frequencies in “super-class/sub-
class/most specific class”, and combined this information with mass motif co-regulation analysis
(Fig. 5). The second approach implemented for substructure analysis involved advanced
maximum common substructure calculations to integrate annotations from multiple tools on a
network (NCS) or motif level (MCS). Overall, we obtained 349 NCS or 303 MCS predictions for
the whole data-set (Data S3 and S6). Maximum common substructure computation for
substructure prediction had been employed in one of our previous studies to cluster candidate
structures obtained by the MetFrag searches among co-regulated herbivory-induced metabolites
(46) and is also one of the processing steps within the Network Annotation Propagation tool of
the GNPS web-platform (47). Altogether, we advocate that the NCS/MCS approach implemented
here has three main advantages: (i) it is an efficient mean of summarizing common substructure
within the diversity of outputs from database queries as SMILES strings, (ii) it can used as input
to reveal substructures statistically associated with intense chemodiversification in a given
species, and (iii) it provides structural guidance during the manual interpretation of mass motifs or
molecular network. In this respect, our study led to the curation of 76 mass motifs (Data S5).
Such effort is important to empower supervised search of mass motifs which is already possible in
MS2LDA and which will be greatly facilitated with the recent release of the MS2QUERY tool
(48).

A very important delivery of our work is the development and public sharing of the 1M-
DB which is, to the best of our knowledge, the largest in silico spectral database. This approach
resulted into 5-fold more hits (annotation of 57% of the total features), than experimental spectral
database interrogation alone. Data of the 1M-DB can currently be accessed and interrogated from
the GNPS platform. The size of this data-set can represent a challenge for MatchMS-based
queries, which can nonetheless be locally implemented with reasonable computing capacity with
the parallelized script (Code Availability and Description) provided with our study. It is
therefore foreseeable that the efficiency of the interrogation of the 1M-DB will strongly benefit
from up-to-date optimization of MatchMS parallelization as part of future version releases.
Multiple tools have been developed in recent years to produce hypothetical MS/MS spectra (23—
26, 49). A more recent development in this area is that of QCxMS which provides, in our
experience, very high-quality spectra. This program is currently too much computationally

demanding and could not be transposed to the scale of this study, besides the computation of
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MS/MS predictions for the 429 structures of the Jassbi database and using a limited number of
fragmentation trajectories (Zenodo link, https://doi.org/10.5281/zenodo.6536010). One promising
direction for improving the confidence of such in silico fragmentation-based annotation is
exemplified by the recently developed COSMIC workflow that incorporates a confidence score
consisting of kernel density P-value estimation from a decoy library and a support vector machine
algorithm (50). With the increasing quality of MS/MS predictions, one interesting perspective
could be to extract mass motifs from them and thus directly infer fragment substructures produced
from known structure in silico decomposition.

In terms of structural information, rhe SM metabolic cartography generated in this study
goes far beyond to a recently published chemotypic classification of the Nicotiana genus which
mostly consisted in the dereplication of primary metabolites such as steroids and only a few SMs
(51). In our opinion, this data platform and our SM cartography provide complementary views on
the metabolic diversity of this genus. Noteworthy, the aforementioned study did solely focus on
leaf metabolomes, while ours and previous studies (&§) unambiguously indicated the importance of
“screening” multiple tissues to capture a broader SM diversity picture. In this respect, we
demonstrated that expanding the analysis at the multi-tissue level (by combing tissue-level
molecular network information) resulted into a “phylometabolomics” tree that captured shared
SM biosynthetic potential among closely-related species with more resolution (Fig. 2). Beyond
simple presence/absence of SM classes which has been a traditional focus of chemotaxonomic
studies, the fact that structural diversity can nowadays be more efficiently accessed with
computational MS metabolomics opens novel research avenues for understanding the evolution of
SM, as implemented in a recent survey of the SM synapomorphies and homoplasies in the
Malpighiaceae family (52). Information theory Shannon statistics transposed to MS feature
analysis or individual metabolites can also provide an efficient means of contrasting metabolic
diversity among the metabolic profiles to examine evolutionary ecology theories and
contextualize those at relevant taxonomic scales (53). By employing a-diversity analysis, we
confirmed that roots exhibit, under our analytical conditions, the most specific metabolomes, a
pattern which had been previously detected in a study focusing on N. attenuata as the sole model
species (8). a-Diversity scores further varied in-between species, thereby indicating variations in
constitutive SM biosynthetic capacities and/or constitutive vs stress-induced investments into SM
production. In this respect, we further observed that these inter-species variations in MeJA
inducibility were negatively correlated with a-diversity scores constitutive leaf metabolome. This

trend is reminiscent of the inter-species patterns detected from the comparative analysis of early
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herbivory-induced transcriptomes for 6 Nicotiana species (54), and may reflect physiological
trade-offs between constitutive vs inducible metabolic diversity maintenance.

Many interesting novel biochemical insights worth to be pursuing by gene function
studies, were extracted from the SM cartography produced from this study. Our analysis notably
detected the presence of mono-O-acylglycerols (classified under the CANOPUS most specific
class 1-monoacylglycerols) specifically on the leaf surfaces of the section Suaveolentes and at
lower abundances in the Rusticae. Besides its well-known housekeeping function in the synthesis
of di- and tri-O-acylglycerols via the action of GPAT enzymes (535), the latter compound class has
been poorly investigated regarding its presence on plant aerial surfaces. Main reports on the
possible defense-related functions of this compound class derive from studies on their presence as
abundant surface metabolites on the calyx of several Scrophulariaceae species (56), and from a
unique report for the Nicotiana genus describing these compounds as efficient chemical glues
against small insects on the leaf surfaces of N. benthamiana (57). The prevalence of this
compound class in the Suaveolentes section, in particular in N. benthamiana, along with the here-
described high levels of O-acyl glucoses (58) could point to an interesting case-study to
functionally examine the biochemistry and evolution of this pathway and compare it with that of
the thoroughly investigated and structurally reminiscent O-acyl sugars (/7). Our analysis also
revealed subtle tissue-level chemotypic variations within O-acyl sugars networks. Apart fro,
confirming previously detected strong cross-species variations in structural diversity, inspections
of these networks also pinpointed that some of these O-acylsugars are present at low levels in
roots (Fig. S10). This could further illuminate recent work on the predicted role of these SMs in
plant-soil microbiome interactions (/5). Our SM cartography also provided a far greater species x
tissue resolution on terpene-related classes’ distribution compared to tendencies previously
sketched in Nicotiana studies that targeted trichome-based cembrene diterpene (59) and 17-HGL-
DTG (6). Our study revealed for these two classes of diterpenes, pronounced expansions of
structural diversity and significant associations with the Nicotiana, Sylvestres, Undulatae,
Tomentosae, Trigonophyllae (17-HGL-DTG) sections that include species in which emblematic
structures of these compound classes had been originally detected (6). An unexpected result was
the detection, at large levels in N. plumbaginifolia and to a minor extent in N. glutinosa, of
steroidal glycoalkaloids, emblematic of the Solanum genus and whose presence is considered as
erratic in other Solanaceae genera. Within the structurally rich network of steroidal glycoalkaloids
identified in our study, the dereplication of solaplumbin m/z 722.4479, (IM+H]", C30HeNOy) is
supported by old phytochemistry reports (60). Such unexplored patchy distribution of steroidal
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glycoalkaloids within the Solanaceae provides exciting foundations for future evolutionary
biochemistry studies.

The fact that a-diversity scores, independently of the tissue type, were not reflecting direct
metabolic additivity in allotetraploid species. This, along with unique metabolic characteristics as
compared to their closest extent diploid progenitors, could be reminiscent of patterns observed
when inspecting complex reconfigurations of floral morphological and associated metabolic traits
in Nicotiana allotretraploids (34). Due to their previously reported absence in Repandae closest
diploid progenitors (Nicotiana sylvestris and Nicotiana obtusifolia), NANNs have often been
considered as “transgressive” metabolic traits derived from the Repandae allopolyploidization. In
our study, we annotated 102 NANNSs, including 6 first elucidation by NMR, and discovered
NANN-related structures built from anatabine as a backbone, and the presence of novel NANNs
leaf lamina-based restricted to Repandae and incorporated uncommon aminated fatty acyl
moieties. Above all, our study indicates that the NANN biosynthetic capacity predates the
Repandae section formation. However, a main innovation of Repandae species is their capacity to
accumulate very high level of canonical NANNs on their surfaces as well as Nj-containing
NANNS in their leaf laminas. These data provide rigorous support to old literature that reports
anecdotal evidence (61, 62) for low amounts of short (-formyl, -acetyl) and middle (C4-Cs) chain
length NANNSs present in other Nicotiana species (63). Interestingly, N. obtusifolia, considered as
a closest extant female progenitor to Repandae, is one of the Nicotiana species that accumulates
the largest nornicotine-to-nicotine ratio in its leaves (64). Another interesting observation to
pursue is that N. sylvestris, the closest extant male progenitor to Repandae, is thought to have
contributed to several allopolyploidization events in the genus Nicotiana, many of which being
able to accumulate greater NANN amounts than the other species tested in this study. As such,
our data suggest a more complex than previously thought evolution of the NANN pathway. A
direct perspective will be the identification of the canonical NANN biosynthetic N-
acyltransferase(s) which is predicted to be abundant in Repandae trichomes from our data and
from previous phytochemical analyses on crude trichome fractions (35-37, 65). Our tissue
cartography finally revealed a largely unexplored repertoire of NANNs in the roots of all
examined species. These data and ASR analyses are in favor of shorter chain NANN production
in roots being a most ancestral trait in this metabolic class. In the context of future biochemical
investigations, the latter interpretation would be consistent with the fact that the accumulation of
canonical NANNs onto aerial surfaces involves trichome-based N-acyltransferase enzymes with

greater affinity for long chain fatty acyl-CoA as compared to those present in roots.
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In conclusion, the fully open data and broad range of data integration approaches and
provided here present an unprecedented resource to revive SM analysis in the Nicotiana genus
and contribute to the establishment of phylometabolomics as an instrumental bottom-up approach

to guide future evolutionary biochemistry studies.

Material and Methods

Plant material, growth conditions and treatment

Nicotiana species with their origin and associated accession numbers are summarized in Table
S1. Seeds of all Nicotiana species were directly germinated on soil, with the exception of N.
attenuata, for which smoke-induced seed germination was established as described previously
(Kriigel et al., 2002). For all species, glasshouse growth conditions were as described previously
(Kriigel et al., 2002). Six-to-eight weeks old elongated plants were used for all metabolomics
analyses. In order to analyze the regulatory function of jasmonate signaling on metabolomics-
inferred specialized metabolism classes, petioles of 2 elongated plants were treated with either 20
pL lanolin paste containing 150 pg methyl jasmonate (Lan + MeJA) or with 20 pL pure lanolin
(Lan) according to Heiling et al. (2021). Leaf samples were harvested 72 h after treatment, flash-

frozen in liquid nitrogen, and stored at -80°C until use.

Metabolite extraction procedures for UPLC-QTOF MS

Leaf, root and calyx metabolites were extracted for UPLC-QTOF MS analysis as previously
described (Heiling et al., 2017). Briefly, for leaf samples, 12 discs per plant (~ 100 mg fresh-
weight tissue) were flash-frozen in liquid nitrogen immediately after harvest and stored at -80°C
until use. The latter frozen leaf samples were ground in a Tissue Lyzer II for 3 min at 30 Hz and
metabolites extracted by addition of 1 mL of 80 % methanol, 1 h of shaking at 1000 rpm at 4°C
and further kept with a gentle agitation overnight at 4°C. Samples were finally centrifuged for 10
min at 14000 g and the resulting supernatants transferred into glass vials. Root samples referred to
the complete root system of about-8 weeks old plants. After soil removal, roots were rinsed in
water, gently dried with paper towels and flash-frozen in liquid nitrogen. Root samples were
homogenized in a Tissue Lyzer II for 4 min at 30 Hz. Metabolite extraction was conducted as
above described from 200 to 400 mg root material (primary, secondary and tertiary roots). Flower
calyces were collected from about 8 weeks old plants and processed for metabolite extraction
using above leaf metabolite extraction conditions. To obtain leaf exudates enriched into semi-
polar to apolar surface metabolites, fully elongated leaves were briefly rinsed with acetonitrile.

These exudates were filtered on filter paper and completely dried under reduced pressure. Dried
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residues were then re-dissolved in methanol and total metabolite concentration was adjusted to 1
mg.mL™, except for Nicotiana repanda, N. stocktonii and N. nesophila exudates which were
diluted to 0.001 mg.mL™" and 0.1 mg.mL" (see Table S1) in order to avoid detector saturation,
due to the high levels of NANNS in these samples. Peaks areas were corrected by corresponding

dilution factors.

UPLC-QTOF MS chromatographic conditions

Methanolic extracts were analyzed using ultra-high pressure liquid chromatography coupled to
high-resolution mass spectrometry on an UltiMate 3000 system (Thermo) coupled to an Impact II
(Bruker) quadrupole time-of-flight (QTOF) spectrometer. Chromatographic separation was
performed on an Acquity UPLC ® BEH C18 column (2.1x100mm, 1.7um, Waters) equipped
with an Acquity UPLC ® BEH C18 pre-column (2.1x5mm, 1.7um, Waters) and using a gradient
of solvents A (water, 0.1% acetonitrile, 0.05% formic acid) and B (acetonitrile, 0.05% formic
acid). Chromatography was carried out at 35°C with a flux of 0.4 mL.min"", starting with 10% B
for 3 min, and reaching successively 20% B at 12 min, 35% B at 17 min, 40% B at 23 min, 45%
B at 25 min, 50% B at 30 min, and 95% B at 40 min, holding 95% for 5 min and coming back to
the initial condition of 10 % B in 3 min. These chromatographic conditions (total running time of
48 min) were previously optimized for the comparative metabolomics of methanolic extracts of
Solanaceae species in one of our previous studies (Heiling et al., 2016). Samples were kept at 4°C
during the sequence of injections and SuL per sample were injected in full-loop mode with a
washing step after sample injection involving 150uL of the wash solution (water:methanol, 80:20,

Viv).

Conditions for DDA MS/MS data collection during UPLC-QTOF MS analysis

The Impact II QTOF instrument was equipped with an electrospray ionization source and
operated in positive ionization mode on a 50-to-1500 Da mass range with a spectra rate of 5 Hz
and by further using the AutoMS/MS fragmentation mode. The end plate offset was set at 500 V,
capillary voltage at 4500 V, nebulizer at 2 Bar, dry gas at 10 L.min" and dry temperature at
200°C. The transfer time was set at 60-70 us and MS/MS collision energy at 80-120% with a
timing of 50-50% for both parameters. The MS/MS cycle time was set to 2 seconds, absolute
threshold to 31 cts and active exclusion was used with an exclusion threshold at 3 spectra, release
after | min and an ion was reconsidered as precursor for the fragmentation if the ratio current
intensity/previous intensity was higher than 5. MS/MS collision energy was set according to the

mass from 25 V for a mass of 100 Da to 50V for a mass of 1 500 Da. The MS/MS spectra
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acquisition rate was further optimized, from 3 Hz to 7 Hz, according to the intensity of the
observed mass. A calibration segment was included at the beginning of the runs allowing the
injection of a calibration solution from 0.05 to 0.25 min. The calibration solution used was a fresh
mix of 50 mL isopropanol:water (50:50, v:v), 500 uL. NaOH 1M, 75 uL acetic acid and 25 pL
formic acid. The spectrometer was calibrated on the [M+H]" form of reference ions (57 masses
from m/z 22.9892 to m/z 990.9196) in high precision calibration mode with a standard deviation
below 1 ppm before injections, and re-calibration of each raw data was performed after injection

using the calibration segment.

Ultra-high resolution MS imaging data acquisition and processing

Freshly collected rosette leaves of N. nesophila were embedded into M-1 embedding matrix
(Thermo Scientific) and frozen before cutting. Cuts were done on a transverse plane at 25pum
thickness and -15°C using a cryotome FSE. Sections were deposited on indium-tin-oxide coated
slides and sprayed with a-cyano-4-hydroxycinnamic acid (HCCA) matrix at 10mg/mL in 70%
ACN, 0.1% trifluoroacetic acid using the HTX M35 sprayer. Nozzle temperature was set at 75°C,
flow rate at 0.120mL/min, velocity at 1200 mm/min, pressure at 10 psi, gas flow rate at 3 L/min
and nozzle height at 40mm. Four passes were applied with a track spacing of 3mm and a HH
pattern.

Samples were analyzed with a Burker SolariX 7T Fourier transform ion cyclotron mass
spectrometer at resolving power R=120,000 at m/z = 400. Acquisition was performed in positive
ion mode on a 100-500 m/z mass range, with an accumulation of 0.020 s, the transfer optics time
of flight set at 0.600 ms, frequency at 6 Hz and RF amplitude at 350 Vpp. The MALDI plate
offset was set at 100 V, deflector plate at 200 V, laser power was set at 20%, laser shots at 100
and frequency at 1000 Hz with a small laser focus. The instrument was calibrated by multipoint
correction using the peaks of the HCCA matrix (m/z = 379.0924, 399.0377, 401.0744, 417.0483).
The regions of interest were determined in FlexImaging with a raster width of 50um. Images of
the ions of interest +/- 3 ppm were displayed in MSiReader v1.03 (66). The data was submitted to

metaspace and is available at https://metaspace2020.eu/project/nicotiana_msi-2022

Feature-based molecular networking of UPLC-QTOF MS data

Raw data were converted to the .mzML format using MSConvert (Version 3.0.21112-b41ef0ad4,
Chambers et al., 2012). The resulting data files were then processed with the Batch Mode (See
Code availability, Script S10) of MZMine 2.53 (68) and exported for Feature-based molecular
networking (FBMN) analysis in the GNPS environment (Nothias et al., 2020; Wang et al., 2016)
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and for spectral analyses in Sirius (27). The resulting .mgf and .csv files were further filtered to
exclude redundant none-biologically informative MS/MS features using newly developed Python
Scripts S11 and S12 (see Code availability). The m/z signals that appear more than 5 times (+
3ppm) with a retention time coefficient of variation greater then 10 % were discarded. This
filtering step excluded 11580 features (out of a total of 29481 retrieved from the MZMine-based
processing), a vast majority of those corresponded to redundant features detected at high-level in
solvent blanks. Finally, FBMN was performed using the modified cosine as spectral similarity
metric and with standard settings (Version release 28.2, except lower precursor and fragment
tolerance of 0.005 Da). Output of the FBMN analysis is available on GNPS at the following link:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cf822b6c7¢91420694 1bb0b6007e7eb0

MS/MS elemental formula and compound class predictions with Sirius

Sirius (Version 4.8.2) was used to predict elemental formulas for MS/MS precursors as well as for
the deep neural network-based compound class prediction as part of the CANOPUS pipeline (20).
Sirius commands are summarized as part of Script S13 (see Code availability). Elemental
formulas by Sirius were further processed with Scripts S14 and S15 (see Code availability) to
restore Feature IDs and calculate the degree of unsaturation of these formulas. A main strength of
CANOPUS-based class prediction is that does not involve the interrogations of spectral libraries
with fragmentation spectra, thereby allowing class prediction of MS/MS features for which no
database hit is retrieved and circumventing the possible issue of error propagation when false
class prediction is obtained by FBMN network-level propagation from feature-derived database
hits. MS/MS feature-level ontologies were retrieved from CANOPUS predictions as well as
FBMN network-propagated superclass, subclass and most specific class ontologies. The latter

ontology propagation was implemented using Script S19.

Mass motif inference by MS2LDA

Mass motifs were inferred using standard settings of MS2LDA (Version release 23.1, Wandy et
al., 2018), submitted trough the GNPS workflow. Available at:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6{325{462e1145bfb465c679c2eel7d6

A total of 609 motifs were assigned including already existing motifs from motifdb. To explore
mass motifs assignments on a species level, a binary mass motif matrix for all tissues was created
by setting features above peak area of 10.000 to the value of 1 and those below to 0 (Script S17).
The resulting matrix was combined and presence was summed per tissue and then set again into a

binary matrix. Following this binary transposition of motif distributions, feature presence per
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motif was determined per species, resulting in a motif count table (Script S18). This set of mass
motif counts (after filtering and manual curation 76 motifs), was then normalized by motif id and
clustered by hierarchical clustering using the Ward clustering method implemented in

MetaboAnalyst (69).

MS/MS annotation based on spectral database interrogations

We implemented a 3-pronged approach to annotate MS/MS from the interrogation of
experimental and in silico fragmentation databases, similar as proposed in Sumner et al., 2007.
Level 1 in our priority assignment of annotations corresponded to hits retrieved from
experimental spectral databases and or NMR structural confirmation. Highest priority within level
1 of annotated spectra (level 1a) was given to hits confirmed by NMR in this work. Level 1b
annotations correspond to hits from spectral alignments (and correspondence of precursor m/z
values) using a local MatchMS (score above 0.65 and more than 6 matching peaks)
implementation (Script S8, see Code availability) with the modified cosine score, from an in
house high-resolution experimental MS/MS spectra database of Nicotiana attenuata specialized
metabolites and/or manual inspection of spectra. Level 2 corresponded in our annotation approach
to hits retrieved, with the cosine score from high-resolution MS/MS spectra of the GNPS
database. Level 3 annotations were considered for hits from alignments with in silico MS/MS
spectra or in the case of network propagation of hits from the experimental databases, both after
manual inspection. Jobs for the recently developed molDiscovery approach (Version 1.0.0, Cao et
al., 2021) were submitted through GNPS with both the molDiscovery built-in library and the
Jassbi compound database created as part of this study. The Jassbi compound database (429
structures) was compiled from structures extracted from a recent Nicotiana phytochemistry
review (32). In silico MS/MS spectra for the Jassbi compound database were also produced with
the fragmentation tool CFM-predict 4.0 (23) (Script S5, see Code availability) database
searching was performed with MatchMS (70) (Script S9).

Consensus substructure and molecular network chemical classes

We implemented a new algorithmic approach to deal with the high number of annotations
retrieved from the various in silico MS/MS spectral databases. To this end, we used annotations
retrieved form Sirius (confidence score above 0.65), IM-DB searched with modified cosine
(score above 0.5 and 5 matching peaks), CFM-DB 1M searched with spec2vec (score above 0.5),

Jassbi-CFM (score above 0.5 and 5 matching peaks) and Jassbi-molDiscovery. These annotations
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were retrieved at the molecular network or at the MS2LDA mass motif level in order to calculate
consensus substructures for a given network (NCS) or mass motif (MCS).

Main steps involved in consensus substructure calculations involved the following commands
(Script S16, S19, see Code Availability and Description): (1) fragment structures, (2) get the
most common fragments, (3) select the top 50 and only keep the ones with more than 12 atoms,
(4) cluster by structural similarity, (5) sort by cluster size, (6) calculate the maximum common
substructure within the cluster, (7) retrieve the top 4 results.

To harness the vast amount of structural information classified by molecular networking,
we selected the top 252 networks sorted by only picking networks containing more than 10 nodes.
The peak areas within these networks were summed with Script S24. Peak areas were normalized
(Excel’s STANDARDIZE function) by cluster id and the maximum on tissue level per species
was kept. The propagated CANOPUS classes were grouped their peak areas summed (Script S28)
and the resulting data was used to create per species treemaps in Excel. A summary of the Top252
molecular networks, their calculated consensus substructures and their propagated CANOPUS
classes can be found in Data S3. Additionally, Data S4 and S7 allow to navigate this multi-level

information at mass motif and network levels.

Computing MS/MS-informed phylometabolomics species trees

To create MS/MS similarity-based species, referred to in the text as phylometabolomic trees, we
used the data compiled as mentioned above (Script S24) (Fig. 2A) or the data from the motif
count (Script S18) (Fig. S9) in order to calculate the Euclidean pairwise distances between
species’ metabolomes (Script S20). The resulting matrix was then used to plot trees in R with the
APE package using the Neighbor-Joining algorithm and bootstrapping 999 with iterations. (Script
S21)

Ancestral state reconstruction for the relative occurrence of N-acylnornicotines

We adapted the concept of ancestral state reconstruction (ASR) classically employed for the
evolutionary analysis of quantitative phenotypic traits for the exploration of NANNSs’ relative
occurrence. To this end, we first constructed a phylogenetic tree of the focal Nicotiana species
based sequences of the matK gene obtained from a previous study (77), the sequence of M.
maritma was used to account for N. wuttkei position within the species tree due to unavailable
genome data for the latter species. Laskowska and Berbec (2003) previously suggested the very
close relationship between the latter two species as well as reported their successful hybridization

in the wild. Nicotiana setchelli matK gene sequence was obtained from the assembly of
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transcriptomics data publicly available for NCBI SRA accession SRR2106530. The species tree
was constructed using NGPhylogeny.fr (73) with default one click options and the PhyML
Maximum Likelihood method. For ASR, feature intensities accounting for the species and tissue-
wide NANN diversity were retrieved using the above-described mass motif characterization
approach. ASR was performed with the MBASR package (Heritage, 2021; Script S25) on peak

areas of the root that have been transformed into a ordered trait of 5 categories (Fig. 8, Fig. S1).

a-Diversity analysis and CANOPUS class distance computation

The alpha-diversity was calculated for each species based on Shannon Entropy (Script S29) using
the scikit-bio package and sample features as OTUs. The top 252 networks as mentioned
previously were selected their raw peak areas summed based on propagated CANOPUS classes
(Script S28) and then converted to integers, networks without class annotations were discarded.
The vegan package was used to perform non-metric multidimensional scaling (NMDS) followed
by the calculation of intrinsic variables (CANOPUS classes) with 999 permutations (Script S30).

The resulting vectors were used to calculate the per species cosine distances (Script S31).

Code availability
All  scripts used in this study are available at the Github repository:

https://github.com/volvox292/Nicotiana metabolomics
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39
40 Figure 1. Experimental and data processing set-ups to explore species x tissue specialized metabolism
41 diversification in the Nicotiana genus. (A) Schematic Nicotiana phylogenetic tree highlighting main genus sections
42 and representative species selected for metabolomics analysis. Four allotretraploid sections, dashed lines indicate
43 sections containing closest extant diploid progenitors. Accessions and origins of the selected species are referred to in
44 Table S1. N. glutinosa* and N. glauca* are considered as homoploid hybrids as summarized in (34). (B) Tissue
45 sampled from 6-to-8 weeks old plants of the selected 20 Nicotiana species. Fully elongated leaves were considered
46 for leaf-based samplings. Leaf exudates were prepared by acetonitrile-based leaf surface rinsing; methyljasmonate
47 (MeJA)-treated leaves were harvested 72h post-treatment. (C) Representative Base Peak Chromatograms (BPC) from
48 the UPLC-ESI'-QTOF MS analysis of methanolic extracts of N. repanda roots, untreated leaves and calyces. (D)
49 Data processing pipeline to construct a species x tissue MS/MS spectral matrix and for its deep structural annotation
50 prior to metabolic class diversification analysis. Architecture of the data processing pipeline and organization of the
51 different output matrices as supplementary data-sets are presented in Fig. S2.
52
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Figure 2. Species metabolome c-diversity and “phylometabolomics” relatedness. (A) Biplots depict the number
of detected features and the Information Theory Shannon o-diversity as an index of feature richness per tissue.
Nicotiana phylogenetic sections are color-coded. (B) “Phylometabolomics tree computed from the molecular
networking information. To analyze the relatedness of species’ metabolomes, we first computed inter-species
Euclidean distances based the molecular networking information and used the resulting distance matrices for
constructing a “phylometabolomics” tree based on the Neighbor-Joining algorithm (bootstrap values derived from
999 iterations) (Table S2). Trees were also constructed from the tissue-level data (Fig. S4).
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Figure 3. Cartography of Nicotiana species-level metabolic class and substructure distribution using a novel
molecular network-propagated consensus substructure approach. (A) Molecular networking of species x tissue
deconvoluted MS/MS features. The top252 molecular networks were retrieved for a minimum MS/MS pairwise
cosine value of 0.7 and of 6 matching m/z signals. Node colors refer to network-propagated CANOPUS super-class
predictions. Bars refer to the relative proportions of individual MS/MS further annotated from the three levels of
annotation confidence (see Material and Methods section) or with databases build from in silico generated MS/MS
spectra (see panel C). (B) Treemap visualization of species-level super-class and most specific class distribution.
Colors denote for different NP-CANOPUS super-classes, with each individual uniformly colored rectangles depicting
most-specific classes hierarchically classified as part of a NP-CANOPUS super-class. A close-up view on two super-
classes (“Organic acids and derivatives” / “Phenylpropanoids and polyketides”) detected in N. glauca (Ngla) is
presented. (C) Network Consensus Structure (NCS) computations from hits obtained from the interrogation of in
silico generated MS/MS spectra (Fig. S10). Hits obtained for each MS/MS feature-level database search within a
network were compiled input to compute a consensus (sub)structure for each network. (D) NCS computed for
network #486 whose MS/MS features were classified in (A) as those of “Amino acids and derivatives”. The library of
feature/network/NP-CANOPUS/NCS associations is reported in Data S1, S3 and S4.

30



https://doi.org/10.1101/2022.09.12.507566
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507566; this version posted September 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

83 Figure 4

A

Canopus CANOPUS super-classes
class x Lipids and lipids-like molecules Jlll Phenylpropanoids and polyketides
I Organic oxygene compounds [l Organic nitrogen
8 [ Organic acids and derivatives [l Lignans
2 Species y I Alkaloids and derivatives I Benzenoids
Nucleosides and analogs I Organoheterocyclic compounds
Hydrocarbons
/.. Cosine distance

P-value < 0.05
]
NMD1 g
T
2
@ £
O o
3 hd - @
8 T 8 @ g @
° © S 2 = 2
g » Py ® 2 S ]
K @ O w 2 o © 2
] o Q o £ 0 g = o 2
f , .83 g s % £s & 3 8 £
s 2 38 £ 38 o °© g—; ° 8 3 2 a8 5 2 o 2 & § o
2 2 2 5% 2 ¢ o 2 S o = 9 0 o x o & o 2 » S ® c S &
B > 8823382 25§53 2 8 o® 2o 5 3888 2565 02 88 E o 25 c
258§ 8% s 2 < S 3 E 0 29 o5 ® L B AE g9 5 2 E £ o0 & 2E
L S >0 58 2 2 =5 2§ 52 ® o g E o8 o FHL2=5%5 09 £
Cosine distance u,—>.m=oc§.~m“’osE'=ngoooU‘V'E;.E<~—wa; S = E =
43 55 £8 X852 £ 28E 258 N2 283828 N2XE Q8T
e P X EE TS XTI I IELTE TS RT LSRG P EIE TS
2 0 S5ETI L0 da8iFEadaz=06zafFB8a<cx8d 2z
Nwut [ ]
Suavolentes  Ngoo -
Nben [ |
Noctifiorae ~ Nola [ IR
Nsto |
Nnes
Repandae Nrep
Nrxs
Nnud B N
Nicotiana Ntab | ] [ |
Sylvestres Nsyl | I o ]
Alatae Nplu I S
Petuncides  Natt N EESE—
v . --
i {
Trigonophyllae Nobt
Polydicliae Ncle I | | |
Paniculatae  Npan [N DD
Rusticae Nrus NN T
Undulatae  Nglu ] I
T Nset R
FC1 FC2 FC3 FC4

84
85 Figure 4. Non-metric multidimensional scaling reveals main statistical trends of Nicotiana section and species-

86 level metabolic specialization. (A) Non-metric multidimensional scaling (NMDS) was used to infer directionalities,
87 followed by the calculation of intrinsic variables to test for statistical significance (P-value [999 permutations] lower
88 or equal to 0.05), in the association between species and CANOPUS super-class and most specific class predictions
89 (CANOPUS, Fig. 2). All P-values and cosine distances are summarized in Data S2. (B) Heatmap representation
90 (based on cosine distances) of statistically significant associations between species and NP-CANOPUS predictions
91 for “most-specific classes” (colored according to upper-level “super-classes”). A hierarchical clustering analysis was
92  conducted to group similarly distributed CANOPUS predictions, thereby emphasizing on four highly distinctive
93 clusters referred to as metabolic family clusters (FC).
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Figure 5. A minimal set of MS motifs captures substructure diversity in Nicotiana chemotypes. (A) Hierarchical
clustering analysis (HCA) based on the species-level motif count (Z-score normalized) of top76 mass motifs inferred
by unsupervised decomposition of overall MS spectra via the text-mining program MS2LDA. Species x tissue motif
counts matrices can be explored within Data S5. Motifs clusters (MC) extracted from the HCA approach refer to
clusters of tightly covarying MS motifs. A Principal Component (PC) analysis (2 first PCs) based on species-level
MS motif relative intensity and loadings exerted on sample PC coordinates by each MS motifs, highlighted the strong
resolving power for species grouping of these MCs (Fig. S9). (B) Strategy for MS motif-guided exploration of
substructure enrichment in particular molecular networks. MS motifs are selected based on their peculiar
species/section-level distribution, annotated using MS fragmentation curation and connected molecular network are
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finally visualized. Node colors denote for the species-overall feature relative abundance in the analyzed tissues.
Rectangles report network and MS motif ids, their colors refer to MC. A representative high confidence predicted
structure per network (connected to the double circled node) is presented with annotation of the MS motif main

fragments. Additional examples are presented as part of Fig. S10. Overall MS motif data are reported in Data S6 and
S7.
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16 Figure 6. Navigating MS motifs pinpoints on a diversity of N-acylnornicotines that dominate leaf surfaces of
17 Nicotiana section Repandae species. (A) Main molecular networks extracted connected to MS motif 433 (MC7, Fig.
18 5A) characterized by a strong relative abundance in Repandae species. NMR-elucidated N-acylnornicotine (NANN)
19 structure (see further NMR-elucidated NANNSs in Fig. S11), with fragment annotations captured by the NANN MS
20 motif, for the MS/MS feature represented by the double circled node. Node colors denote for the species-overall
21 feature relative abundance in the analyzed tissues. (B) Total NANN pools (relative to maximum in N. nesophila
22 exudates) as inferred from MS/MS features of MS motif 433 (Data S8). (C) Species-level NANN elemental formula
23 distribution (Z-score normalized) and indication of the acyl chain length and of its 3-hydroxylation.
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29 Figure 7. Characterization of non-canonical leaf lamina NANNs specific to the Repandae. (A) Molecular
30 networks and fragmentation characterization of 3N-containing and di-hydroxylated NANN specific to the Repandae
31 (Fig. S13). Node colors denote for the species-overall feature relative abundance in the analyzed tissues. (B) MALDI
32 MS images depicting spatially-resolved relative abundance of selected metabolites in a leaf cross section of N.
33 nesophila. Insert in the first image corresponds to the optical image of the matrix-embedded leaf cut used for MALDI
34 MSI. The two first images correspond to the MSI data for two 3N-containing NANNs: m/z 346.2853 (+ 3ppm,
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37 Selected MSI data are presented for additional N. nesophila metabolites in Fig. S14.
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Figure 8. Ancestral state reconstruction and structural diversity analysis indicate that NANNs predate
Repandae speciation and a major root-to-shoot compositional shift. Total root NANN pools of the focal species
were transposed as relative scaling into an ordered trait (total states colored from white to dark brown) and used as
input for ancestral state reconstruction using the MBASR software with default settings. The species tree was
constructed from matK as described in (77). Bubble plots on the right part of the figure depicts relative NANN fatty
acyl chain distribution with indication of fatty acyl chain carbon number (Fig. S12), for total NANN pools see Fig.
6B. Bubble size denote for relative acyl chain level within the NANN pool of a species and per tissue. Color-filled
bubbles refer to hydroxylated NANNS.
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