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Abstract

Despite attempts to unify the different theoretical accounts of the mismatch negativity (MMN), there is

still an ongoing debate on the neurophysiological mechanisms underlying this complex brain response. On

one hand, neuronal adaptation to recurrent stimuli is able to explain many of the observed properties

of the MMN, such as its sensitivity to controlled experimental parameters. On the other hand, several

modeling studies reported evidence in favor of Bayesian learning models for explaining the trial-to-trial

dynamics of the human MMN. However, direct comparisons of these two main hypotheses are scarce, and

previous modeling studies suffered from methodological limitations. Based on reports indicating spatial and

temporal dissociation of physiological mechanisms within the timecourse of mismatch responses in animals,

we hypothesized that different computational models would best fit different temporal phases of the human

MMN. Using electroencephalographic data from two independent studies of a simple auditory oddball task (n

= 82), we compared adaptation and Bayesian learning models’ ability to explain the sequential dynamics

of auditory deviance detection in a time-resolved fashion. We first ran simulations to evaluate the capacity

of our design to dissociate the tested models and found that they were sufficiently distinguishable above a

certain level of signal-to-noise ratio (SNR). In subjects with a sufficient SNR, our time-resolved approach

revealed a temporal dissociation between the two model families, with high evidence for adaptation during

the early MMN window (from 90 to 150-190 ms post-stimulus depending on the dataset) and for Bayesian

learning later in time (170-180 ms or 200-220ms). In addition, Bayesian model averaging of fixed-parameter

models within the adaptation family revealed a gradient of adaptation rates, resembling the anatomical

gradient in the auditory cortical hierarchy reported in animal studies.

Author summary

The ability to detect and adapt to changes in the environment is an essential feature for survival of living

beings. Two main theories have been proposed to explain how the brain performs such an automatic task in

the auditory domain. The first one, adaptation, emphasizes the ability of auditory cortical and sub-cortical

neurons to attenuate their response to repeated stimuli, which renders the brain more sensitive to deviations

from expected sensory inputs. The second one, Bayesian learning, further involves higher-level cortical regions

which would update their predictions about incoming stimuli, depending on their performance at predicting

previous ones. These two views may not be mutually exclusive, but few experimental works compared them

directly. We used computational models inspired from both accounts to assess which view may provide
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a better fit of two independent electrophysiological datasets from similar auditory experiments. Evidence

from a large sample of 82 human subjects provided a complex picture, with adaptation processes seemingly

dominating the early phase of auditory brain response, and Bayesian learning processes appearing later on.

Our results converge with other recent works in animals and points to the necessary reconciliation of those

two theories for a better understanding of auditory perception and statistical learning.

Introduction 1

The MMN, a widely used tool in neuroscientific research 2

The auditory mismatch negativity (MMN) is a well-investigated electrophysiological marker of automatic 3

neural detection of changes occurring in the auditory environment [1] and is typically induced using an oddball 4

paradigm where sequences of frequent standard tones are presented interspersed with rare deviant tones. In 5

humans, it is recorded through electroencephalography (EEG) or magnetoencephalography (MEG) and is 6

defined as the difference between the deviant and standard event-related potentials (ERPs) [2]. Multifarious 7

deviance features have been shown to induce a MMN response, including pitch, duration, intensity, spatial 8

location, etc. The MMN is even observed in response to violations of abstract regularities that bear no 9

relationship with the physical features of the stimuli [3]. 10

The MMN is a negative wave generally peaking over fronto-central scalp electrodes between 100 and 11

250 milliseconds, with variations depending on the experimental design including the dimension of the 12

deviant feature [1]. Discovered more than 40 years ago [4], it was investigated in research fields as broad 13

as neurolinguistics [5], attention [6], altered states of consciousness [7, 8], aging [9], psychiatry [10, 11], 14

emotions [12], psychedelics [13] or meditation [14]. However, despite its use in clinical research or as an 15

experimental measure for many cognitive functions [15], its generative mechanisms are still widely debated. 16

An old debate around the generative mechanisms of the MMN 17

Recent reviews described in details the different mechanistic hypotheses for the mismatch response [16,17]. 18

The MMN was originally viewed as a marker of sensory memory by its discoverers [18], but such memory-based 19

account quickly found its limits in the face of the existence of MMN responses to abstract deviations [3] and 20

was refined under the model-adjustment hypothesis [19, 20]. In this view the main mechanism behind the 21

MMN is not only the detection of changes in some physical features of a stimulus, but more generally the 22

detection, representation and updating of regularities in the auditory stream. Being more flexible, the model 23
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adjustment account can explain the MMN to most forms of deviance, from omission responses to violations 24

of abstract rules. 25

Another prevailing explanation for the MMN is the adaptation hypothesis, which rests upon electro- 26

physiological observations of stimulus-specific adaptation (SSA) in auditory brain regions at the origin of 27

deviance detection [21–23]. Indeed, midbrain [24], thalamic [25] and cortical [26–29] auditory neurons tuned to 28

frequently repeated tones adapt faster than neurons tuned to rare deviant tones. This differential adaptation 29

at the neuronal level would explain the lower amplitude of the scalp ERP-component N1 in response to 30

frequent, compared to deviant tones, resulting in the observation of the negative MMN deflection. [30–32]. 31

If critics were raised concerning the explanatory power of the adaptation hypothesis and its relation to 32

the MMN [33–35], most of them were fairly answered with simulations works [30, 31, 36, 37] and detailed 33

reviews [22,38]. As May et al. [22] highlighted, memory-based and adaptation accounts fall in two different 34

categories: cognitive and physiological, respectively, which are not mutually exclusive explanations of the 35

MMN but justify further efforts in the development of a more encompassing theory of deviance detection. 36

Bayesian inference, and its implementation in the brain as predictive coding, has been used extensively in 37

the last two decades as a general model of perception [39–43], with particular emphasis on audition [44–46]. 38

In predictive coding, the MMN is seen as an electrophysiological marker of the discrepancy between top- 39

down predictions based on repeated stimuli (i.e. standards) and bottom-up unexpected sensory inputs (i.e. 40

deviants): a prediction error [40]. Propagated through forward connections, prediction errors would trigger 41

the updating and optimization of an internal model of sensory causes at higher cortical areas, in agreement 42

with the model-adjustment hypothesis. Adjusted predictions would then be sent backward to explain away or 43

suppress prediction errors at lower cortical areas, providing a plausible mechanism for repetition suppression. 44

In this framework, suppression of the MMN when deviant tones are repeated and thus become standards, 45

as in the roving standards paradigm [47], is interpreted as a minimization of prediction errors, the internal 46

model having learnt a new statistical regularity. Additionally, hierarchical minimization of prediction errors 47

would also be weighted by the relative precision of the predictions and sensory inputs, accounting for effects 48

of standard variability and deviant probability on MMN amplitude [48]. Physiologically, changes in local, 49

intrinsic connectivity of prediction error units would mediate this weighting process in auditory cortices via 50

modifications of synaptic gains, reminiscent of the adaptation account. Using Dynamic Causal Modelling 51

(DCM) on human EEG data, Garrido and colleagues showed that model-adjustment or adaptation hypotheses 52

alone are not sufficient to explain changes in extrinsic and intrinsic connectivity specific to the MMN in both 53

classical [49–52] and roving [53] auditory oddball paradigms. Converging with previous attempts [54], they 54

proposed that both hypotheses are necessary to fully account for N1 and MMN brain responses, and are 55

September 9, 2022 4/61

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507526doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507526
http://creativecommons.org/licenses/by/4.0/


reconcilable under predictive coding [55]. Empirical support for this integrated account has come from the 56

previously mentioned DCM studies on EEG [49–53] and MEG data [56, 57] as well as EEG-MEG fusion [58] 57

and electrocortigraphy (ECoG) recordings [57]; but also from more classical ERP and sources reconstruction 58

analyses using refined paradigms with EEG and MEG [59] or ECoG [60], to reveal the hierarchical organization 59

of deviance detection processes in auditory, associative and frontal cortices. 60

In parallel to the above MMN studies in humans, an extensive field of research has developed on deviance 61

detection in the animal brain. The possibility to use more invasive methods on cats and rodents allows to 62

gain additional insights on the neural mechanisms of deviance processing. 63

Insights from animal studies 64

Animal studies of deviance detection have focused on the neuronal dynamics and location of such effects. 65

In this context, SSA has been identified as the core neuronal mechanism at the cellular level [26, 27], the 66

MMN being its macroscopic correlate and reflecting the activity of multiple neuronal populations summed 67

together [21]. However, theoretical and methodological issues were encountered while trying to integrate 68

SSA and MMN under the same deviance detection mechanism [21, 61]. More recently, following human 69

research, results in animal studies have been reinterpreted under the predictive coding framework with 70

convincing explanatory power [16, 62]. Building on single neuron recordings and new paradigms allowing 71

to disentangle mere repetition suppression (adaptation mechanism) from prediction error [16], researchers 72

were able to demonstrate empirically the hypothesized hierarchical organization of predictive coding in the 73

auditory system at the neuronal level [63]. If neuronal mismatch activity was predominantly explained by 74

repetition suppression, a significant part could also be accounted for by ”pure” deviance detection (prediction 75

error). Notably, such prediction error–like activity was observed at multiple levels of the neural hierarchy, 76

arising gradually from the inferior colliculus in the midbrain up to thalamic and cortical areas [63]. In 77

addition, the neurons in the non-lemniscal divisions of the recorded brain areas systematically showed higher 78

prediction error–like activity than their lemniscal counterparts at each level of the auditory hierarchy. This 79

empirical finding is consistent with the known anatomical and functional connectivity of the non-lemniscal 80

pathway. Carabajal and Malmierca (2018) have argued that the fact that broadly tuned non-lemniscal 81

neurons receive the bulk of descending cortical signals, as well as inputs from the neighbouring, sharply 82

tuned and tonotopically organized lemniscal neurons, make them a good candidate for hierarchical predictive 83

coding [16]. Interestingly, in a subsequent study, the same authors tested again this dichotomy at frontal 84

areas, confirming the existence of pure, unconfounded by repetition suppression, mismatch responses in the 85
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prefrontal cortex (PFC) of anesthetized rats [64]. Those responses differ in multiple aspects from auditory 86

cortex responses, adding further evidence for the hypothesis of divergent but complementary roles of frontal 87

and sensory areas in predictive coding. Indeed, responses at prefrontal areas were mostly explained by a 88

prediction error index and occurred later than auditory cortex responses dominated by repetition suppression 89

mechanisms. 90

Insights from computational modeling 91

Computational modeling has been of great help to try to better understand MMN generation mechanisms 92

under adaptation and predictive coding accounts. Independent modeling efforts have designed models 93

of adaptation at the neuronal [30, 65, 66] and cortical level [37, 67], while a predictive coding model was 94

implemented with a neuronal architecture simulating a thalamo-cortical network [68]. Additionally, more 95

phenomenological models linked auditory perception as hierarchical Bayesian inference to electrophysiological 96

responses such as the MMN [69,70]. However, if these independent models successfully accounted for critical 97

SSA or MMN features, few studies directly compared models derived from divergent MMN theories. A first 98

attempt found a ”Bayesian surprise” model, consistent with predictive coding accounts, to outperform classical 99

”stimulus change” (or change detection) models at predicting somatosensory mismatch EEG responses at the 100

source level [71]. This work was extended to the auditory MMN in fused EEG-MEG [72] and ECoG [73] 101

modalities, confirming the previous results and designing new Bayesian learning models of auditory deviance. 102

Only one study ( [74]) directly compared all major MMN theories: change detection, adaptation and 103

Bayesian inference, with the latter declined in three distinct models reflecting different views on which aspect 104

of statistical learning is reflected by the MMN (prediction error, Shannon surprise or model adjustment). In 105

their 2013 modelling study of auditory MMN responses elicited by a roving oddball paradigm [74], Lieder 106

and colleagues found substantially higher evidence for the set of Bayesian models compared to the set of 107

alternative models (adaptation and change detection models). However, this result hinged on the model 108

comparison being carried out at the level of families aggregating multiple models, and no conclusion could be 109

drawn at the level of individual models, possibly due to an insufficient sample size (8 participants). Critically, 110

the analysis was performed on a time-averaged signal, rendering it blind to any temporal differences in MMN 111

generation processes. 112
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The current study 113

Building on the strengths of previous modeling studies and addressing some of their methodological short- 114

comings, we used two independent EEG datasets of 28 and 54 subjects recorded from similar auditory 115

oddball paradigms to compare five model families, each encoding a prevailing MMN theory (change detection, 116

adaptation, prediction error, Shannon surprise and model adjustment). We employed a time-resolved dynamic 117

modeling approach to test a putative temporal dissociation in the computational mechanisms explaining the 118

MMN. As a first validity check and critical improvement from former studies, we ran confusion analyses 119

on simulated data with varying signal-to-noise ratio (SNR). Under our experimental design and models set, 120

model recovery on synthetic data was highly dependent on SNR and allowed us to estimate the reliability of 121

model comparison results obtained from empirical data. Bayesian model fitting and comparison revealed a 122

clear distinction in model families’ dominance between early and late windows of the MMN, that could not 123

be explained by confusion between the models. In addition, we could identify a temporal gradient in the rate 124

of adaptation models. We discuss these computational results obtained from human scalp responses in light 125

of recent electrophysiological results in the animal literature. 126

Materials and methods 127

For the present trial-by-trial modeling study, we used datasets from two published EEG experiments 128

investigating the impact of meditation states and meditation expertise on the amplitude of the MMN evoked 129

potential [14], [75]. The original experiments have been extensively described in the corresponding articles; 130

below we report only the materials and methods relevant to the current study. In particular, only the data 131

from the control conditions (defined below) of the two original experiments have been used for modeling. 132

To ensure the quality of the modeled data and thus of the results derived from it, participants with insufficient 133

data after preprocessing or lacking a detectable MMN based on objective criteria were rejected. 134

The last part of the methods section describes in details our modeling approach. We introduce the specific 135

framework used and detail the computational implementations of the prevailing accounts offered as generative 136

models of the MMN response. The parameters of the model fitting procedure are provided for replication 137

purposes. The approaches we implemented for inference based on Bayesian model comparison as well as 138

model recovery analysis are described with their underlying rationale. A last section concerns the measure 139

used to evaluate the absolute goodness-of-fit of the selected models. 140
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Study 1 141

Participants 142

Data from 31 healthy participants (25 males, mean age of 42.9 ± 10.4 years old) were collected. The research 143

protocol was approved by the UW-Madison Health Sciences Internal Review Board and participants provided 144

written informed consent for all study procedures. 145

Experimental design 146

Subjects underwent a passive auditory oddball task [76] consisting of the variable repetition of a standard 147

tone (1000 Hz; 60 ms duration; 10 ms rise and fall; 80 dB SPL) followed by the presentation of a frequency 148

deviant tone (1200 Hz; 60 ms duration; 10 ms rise and fall; 80 dB SPL). Each block of the task contained 149

80% standard tones (n = 200) and 20% deviant tones (n = 50) with a variable inter-stimulus interval (ISI) of 150

800—1200 ms. Each subject underwent three blocks of three conditions each: two meditative practices and 151

one control condition. During the control condition, subjects were instructed to read a newspaper and ignore 152

the auditory stimulation. We refer the interested reader to the mentioned article [14] for details about the 153

meditation instructions. The order of conditions within a block was randomized but all subjects had the 154

same order, with the control condition being the first condition in the first block and then the third condition 155

in the second and third block. For the present article we will only look at data from the control condition, 156

consisting in 750 stimuli (150 deviants) per participant before data rejection. 157

EEG data was collected with a 128-channel Geodesic Sensor Net (Electrical Geodesics, Eugene, OR), 158

sampled at 500 Hz, and referenced to the vertex (Cz). 159

EEG data preprocessing 160

Data were pre-processed using the EEGLAB software [77] on Matlab (The Mathworks Inc.). Notch filtering 161

was applied at 60 Hz to remove line noise, followed by the application of a band-pass filter between 0.5 162

and 100 Hz. Raw data were manually cleared of large movement-related artefacts and bad channels were 163

identified and interpolated. Independent Component Analysis (ICA) was applied to the raw data of each 164

participant (only on the non-interpolated channels) using runica (Infomax) algorithm [78] to identify and 165

remove artefacts caused by eye blinks and saccades, as well as cardiac and muscular activity. After ICA 166

correction, data were re-referenced offline to the average of both mastoids, a non-causal band-pass 1—60 167

Hz digital filter was applied, and two-second epochs centred on stimulus onset (−1 to 1 s) were extracted. 168

Epochs were visually inspected and the ones still presenting muscular or eye movement artefacts were marked 169
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for rejection. Finally, the epoched data were baseline-corrected by subtracting the mean value of the signal 170

during the 100 ms window preceding stimulus presentation. 171

We focused the present analysis on the same region of interest (ROI) as Fucci and colleagues [14], a frontal 172

area comprising 12 electrodes selected based on the previous literature (including Fz). This ROI can be 173

visualized in Fig S1A. The data fed to the models was always the average over these ROI electrodes. 174

Study 2 175

Participants 176

The second dataset used for modeling comes from a subsequent, replication study by the same authors [75]. 177

66 participants were included in this study (30 females, mean age of 52 ± 7.7 years old). All participants 178

signed an informed consent before the beginning of the experiment, and were paid for their participation. 179

Ethical approval was obtained from the appropriate regional ethics committee on Human Research (CPP 180

Sud-Est IV, 2015-A01472-47). 181

Experimental design 182

The experiment consisted in a passive auditory oddball task with sequences of standard tones of variable 183

length (880Hz; 80ms duration; 10ms rise and fall) followed by the presentation of a frequency deviant (988Hz; 184

20% of all auditory stimuli). The stimuli were presented binaurally with a fixed ISI of 500ms. A threat 185

induction procedure [79] was added to the experiment. Participants were exposed to two experimental 186

conditions while passively listening to the tones : ”threat” periods during which they were informed they 187

could receive an electrical shock on the wrist (whose amplitude was calibrated beforehand, based on the 188

participant pain threshold), and ”safe” periods where they knew no shocks would be delivered. Safe and 189

threat periods were alternating randomly every 70 stimuli (35 seconds) and participants were cued to the 190

change. This threat induction oddball paradigm was split into three blocks where subjects were either asked 191

to: watch a silent movie (control condition), practice a focused attention meditation or practice an open 192

presence meditation. The order of the blocks were randomized between participants. 224 standards and 193

56 deviants were presented per block and per condition (4 safe and 4 threat periods per block). The full 194

paradigm was repeated in a second session two hours later. For the purpose of the current article we will 195

focus on EEG data from the control condition (watching a silent movie) and safe periods (no threat of 196

electrical shock) only, leading to 560 stimuli (112 deviants) per participant before data rejection. EEG data 197

was collected in a shielded Faraday chamber with a 64 electrodes Biosemi ActiveTwo system at a 512 Hz 198
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sampling frequency, offset was maintained within 50mV (± 25) as recommended in the Biosemi guidelines. 199

EEG data preprocessing 200

Pre-processing was done using EEGLAB [77] and in-house Matlab scripts (Matlab version R2017a, The 201

Mathworks Inc). EEG data was downsampled to 250 Hz, re-referenced to the average of the mastoids and 202

visually inspected, noisy channels (deficient electrodes, long-lasting muscular artefacts, etc) were marked 203

and removed temporarily. For every subject, and separately for the two sessions, Independent Component 204

Analysis (ICA, with runica algorithm) was applied on 1–20 Hz filtered data (EEGLAB eegfiltnew function, 205

Hamming windowed sinc FIR filter of order 826) to improve ICA decomposition. ICA weights hence obtained 206

were applied to the unfiltered data and ICA components reflecting blinks and eye movements were manually 207

selected and rejected. Subsequently a 2 Hz high-pass filter (Hamming windowed sinc FIR filter of order 208

414) was applied to remove low-frequency drifts most likely caused by stress-related perspiration induced by 209

the threat of electrical shocks. Previously marked bad channels were interpolated using EEGLAB spherical 210

splines interpolation and a line noise removal algorithm (Cleanline, linefreqs=50, bandwith=2, tau=100, 211

winsize=4, winstep=1) was applied. 212

Cleaned data were epoched between -200ms and 500ms around auditory tones. The baseline was chosen as 213

the 100 ms period before stimulus onset, as recommended in most of the MMN literature, and removed for 214

subsequent analyses. Finally epoched data were low-pass filtered at 60 Hz (order 56), a ± 75 mV rejection 215

threshold was applied and epochs marked for rejection visually inspected. For this article where only data 216

from the control state (watching a video) were analysed, the recording for one subject was excluded due 217

to an excessive amount of high-frequency noise and two others because they ended up with less than 35 218

remaining good epochs per condition to compute the MMN (deviant and standard before deviant). This led 219

to 63 participants remaining for Study 2 after EEG preprocessing. 220

For subsequent analyses we selected the same frontal ROI as [75] (Fig S1B), comprising only 5 electrodes 221

but similarly located as the ones in Study 1 when taking into account the difference in electrodes layout 222

(EEG system with 64 electrodes for Dataset 2 instead of 128 for Dataset 1). We always modeled the average 223

over these 5 electrodes ROI. 224

Validation of individual MMN 225

The MMN is a rather robust component observable in virtually all human participants, but in some occasions 226

it might fail to be detected even in healthy participants with intact sound discrimination [80, 81]. We used a 227
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simple automatic procedure to identify those participants that did not show a detectable MMN. For each 228

participant, a Gaussian function was fitted on the standards minus deviants ERPs difference, averaged over all 229

selected ROI electrodes, by optimizing two free parameters—the offset level and the standard deviation—as 230

well as two constrained parameters: the temporal location of the peak forced between 100 and 200ms and the 231

amplitude of the peak, restricted to negative values. If the optimizer converged on a zero amplitude solution, 232

it was interpreted as failing to detect a negative deflection in the signal and the participant was excluded. 233

The results of the Gaussian fit on the ERP procedure are represented in Fig S2. As a result of the 234

procedure, 3 participants out of the 31 in study 1 were excluded, as well as 9 out of 63 in study 2. 235

Signal-to-noise ratio 236

We define the signal-to-noise ratio (SNR) of EEG as the ratio between signal power and noise power: 237

SNR =
Psignal
Pnoise

=
E[S2]

E[N2]
=

E[S]2 + V ar[S]

E[N ]2 + V ar[N ]

Assuming that the noise N has a mean of 0 (i.e. E[N ] = 0) and that most of the signal variance can be

attributed to noise (V ar[N ] ≈ V ar[S]):

SNR ≈ µ2 + σ2

σ2
= 1 +

µ2

σ2
(1)

where µ and σ2 denote the mean and variance of the signal, respectively. Therefore the SNR can be written 238

as a simple function of the amplitude of the averaged ERP and the intertrial variance. 239

Modeling 240

Modeling framework 241

The goal of this study was to compare alternative accounts of MMN generation, namely adaptation and

Bayesian learning. Importantly, those accounts are based on the temporal dependency to previously heard

tones, a feature that is difficult to explore with traditional average-based ERP analyses. Thus we used

dynamic modeling to explore trial-by-trial fluctuations of deviance detection processes. Static models were

also designed to serve as controls. To model MMN responses in a dynamic way we used variational Bayes

inference as implemented in the VBA toolbox [82]. This framework uses non-linear state-space models to

predict a response y (or measurement, e.g. EEG scalp activity) to experimental inputs u (e.g. auditory tones),
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given internal (hidden) states x that are not directly observable. Such models are composed of two functions

working together. First an evolution function f describes how internal hidden states x evolve over time

(here represented by trial index i):

xi+1 = f(xi, ui,θ) (2)

where θ is a vector of evolution parameters and ui codes the identity of trial i (standard tones: u = 0, deviant 242

tones: u = 1). 243

Second we need to define an observation function g that computes the predicted response generated by

hidden states x. The predicted response is connected to neural activity through a simple linear function:

yi = φ0 + φ1g(xi, ui,λ) + εi (3)

where φ0 and φ1 are (fitted) observation parameters and ε the Gaussian measurement noise which is always 244

modeled but will be omitted in later description of the models for the sake of simplicity. λ = (λ0, λ1) is a 245

model-dependent pair of offset and scale factor that normalize the observation function to a similar range 246

across models. Unlike φ, λ is not fitted but estimated for each model using synthetic data, as such they 247

are not model parameters per se. These normalization constants allow the parameters φ to share the same 248

interpretation across models. In practice, we set λ so that φ0 can be interpreted as the mean response to 249

standard tones (ȳu=0), and φ1 as the mean deviant minus standard difference potential (ȳu=1 − ȳu=0). 250

Model inversion over all EEG trials was performed independently for every model, subject and 10ms 251

averaged time window ranging from 45 to 255ms post–stimulus. It issued inversion diagnostics, model’s 252

posterior parameters estimation and goodness–of–fit measures which will be described later. We will now 253

present in more detail the generative models used to formalize the MMN hypotheses at stake. 254

Generative models of brain responses 255

We will first describe the two static models used as controls, namely the null model and the deviant detection. 256

By definition, static models have no evolution function. 257

The Null model predicts a constant response to any auditory stimulus.

g(ui) = 0 (4)
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Deviant detection (DD) model predicts the MMN to be a response to deviant stimuli only:

g(ui) = ui (5)

Adaptation models are based on the neuronal adaptation hypothesis [22] which sees the auditory MMN 258

as resulting from a difference in adaptation of frequency-specific cortical neurons, a process often called 259

stimulus specific adaptation (SSA). Neurons tuned to the frequency of standard tones adapt quickly with 260

recurrent repetitions thus decreasing their responsiveness, while neurons responding preferentially to the 261

frequency of deviant tones presented rarely will adapt less and therefore produce a stronger response on 262

average than their standard counterparts. SSA has been observed throughout the entire auditory hierarchy, 263

particularly in cortical areas [23]. It is commonly and adequately modeled computationally as a process of 264

exponential decay [73,83,84]. For the sake of simplicity we will abbreviate adaptation models to SSA, from 265

the supposed underlying electrophysiological mechanism, yet one has to keep in mind that we do not model a 266

biologically plausible implementation of SSA (see [30,37,65,67] for such works) but only its phenomenological 267

approximation as exponential decay. 268

In the implementation of adaptation dynamics two hidden states (x0, x1) represent neuronal responsiveness 269

to standards and deviants, respectively. Adaptation and recovery are each modeled with exponential functions. 270

Neural activity in response to the presented tones is then supposed to be proportional to the responsiveness 271

of tone-specific neuronal populations: 272

f(xi, ui) :



if ui = 0 (standard)


x0,i+1 = x0,iKa

x1,i+1 = 1− (1− x1,i)Kr

if ui = 1 (deviant)


x0,i+1 = 1− (1− x0,i)Kr

x1,i+1 = x1,iKa

(6)

with Ka = e−1/τa and Kr = e−1/τr

g(xi, ui,λ) = λ0 + xui,iλ1

Single-cell recordings in the cat auditory cortex (A1) have revealed the existence of multiple timescales 273

of adaptation ranging from less than a second to several tens of seconds with recovery rates about twice as 274

high [27]. Based on this literature we implemented six SSA models with different adaptation parameters 275
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τa ∈ [3, 10, 20, 30, 50, 100, 200]. The recovery parameter τr was always set to be twice τa, as informed by 276

electrophysiological data on auditory neurons of anesthetized cats [27]. 277

278

Bayesian Learning (BL) models are based on the predictive coding view of the MMN, they assume the 279

brain learns the probability for a deviant to occur. We inspired from computational models initially designed 280

by Ostwald et al. [71], which treat the MMN as a measure of Bayesian surprise : the difference between prior 281

and posterior distributions of beliefs on states of the world (here states being the category of tone stimulus : 282

deviant or standard). Such models also implement an approximate learning of the statistical regularities of 283

the environment by setting a ”forgetting” constant. In their study, they showed that these models predict the 284

somatosensory mismatch response better than control models that do not learn. This finding was replicated 285

in the auditory modality combining EEG and MEG measurements [72]. 286

A common evolution function models auditory tones as the outcome of a Bernouilli process of parameter

µ ∈ [0, 1], the probability to have a deviant. The belief over µ follows a Beta distribution: µ ∼ Beta(α, β)

with parameters α and β, tracking the number of deviants and standards that have been heard so far,

respectively. The particularity of BL models is to compare prior and posterior beliefs over µ. We thus

assigned hidden states to α and β parameters of the Beta distribution over µ. x1,i and x2,i therefore define

the prior belief over deviant’s probability before having heard the current tone ui, while x1,i+1 and x2,i+1

define the posterior belief. We can see that the main characteristic of these hidden states is to implement

a memory of past inputs. However, to be biologically plausible and to take into account recent inputs history

in a way that better represents ongoing dynamics, this memory should be finite and weigh recent events

more than older ones. Following previous implementations [71, 72], we weighted the stimulus counts by a

”forgetting” constant depending on a temporal integration parameter τt : Kt = e−1/τt , which is hypothesized

to account for different temporal integration windows. Hence with varying forgetting constants, this model

can be seen as having more or less ”memory” or, in a predictive coding scheme, as having more precise prior

beliefs and associated predictions to make its perceptual decision. Thus it can ”learn” if τt is sufficiently high

(Kt → 1, slow forgetting) or not if it is too low (Kt → 0, fast forgetting). Based on our previous work in the

auditory modality [72] we defined models for τt ∈ [5, 10, 20, 30, 50, 100].

f(xi, ui) :


x1,i+1 = ui + x1,iKt

x2,i+1 = (1− ui) + x2,iKt

with Kt = e−1/τt (7)

Multiple hypotheses exist in the predictive processing literature about which internal mechanism is 287
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reflected by the MMN [74]. Accordingly, we derived three BL ”outputs” which differ in their observation 288

function that predicts the mismatch response. 289

• 1. Novelty detection or Surprise (BLsurp). A first way to describe the MMN response in the

Bayesian leaning framework is as a neuronal process encoding surprise about the category of the

stimulus. It corresponds to the novelty detection model about sensory inputs described by Lieder et

al. [74] and can be formulated as the Shannon surprise on the current input category: − ln p(ui|xi), with

p(ui|xi) being the probability of observing input u at trial i given prior belief on stimuli probability xi.

g(xi, ui,λ) = λ0 − ln p(ui|xi)λ1 (8)

with p(ui|xi) =


x1,i

x1,i + x2,i
if ui = 1 (deviant)

x2,i
x1,i + x2,i

if ui = 0 (standard)

• 2. Precision-Weigthed Prediction Error (BLpwpe). In this view, the brain would implement

approximated Bayesian inference by doing predictive coding : hierarchical minimization of precision-

weighted prediction errors [42]. In our modelling framework we could simulate this process by computing

the difference between the prediction about incoming sensory data (i.e. the expected value of the prior

Beta distribution) and sensory input ui, weighted by the precision of the model (i.e. the inverse variance

of the prior Beta distribution).

g(xi, ui,λ) = λ0 +
ui − E[B(x1,i, x2,i)]

var[B(x1,i, x2,i)]
λ1 (9)

• 3. Model ajustment (BLmadj). Finally Bayesian learning can be conceptualized as the amount of

belief updating about model parameters. It was described as ”Bayesian surprise” in Ostwald et al. and

as ”model adjustment” in Lieder et al. We adopted this last formulation and quantified updating as the

divergence between prior and posterior beliefs about parameter µ. In practice it can be computed as the

Kullback-Leibler divergence DKL (or relative entropy) between posterior and prior Beta distributions

over µ, leading to the following observation function :

g(xi, ui,λ) = λ0 +DKL(µprior, µposterior)λ1 (10)

with DKL =

∫
p(µprior) ln

(
p(µprior)

p(µposterior)

)
dµ =

∫
p(µ|x1,i, x2,i) · ln

(
p(µ|x1,i, x2,i)

p(µ|x1,i+1, x2,i+1)

)
dµ
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For Beta distributions DKL is simplified and can be solved analytically:

DKL = log

(
Γ(x1,i + x2,i)

Γ(x1,i+1 + x2,i+1)

)
+ log

(
Γ(x1,i+1)

Γ(x1,i)

)
+ log

(
Γ(x2,i+1)

Γ(x2,i)

)
(x1,i − x1,i+1)[ψ(x1,i)− ψ(x1,i + x2,i)] + (x2,i − x2,i+1)[ψ(x2,i)− ψ(x1,i + x2,i)] (11)

with Γ and ψ the Gamma Euler and digamma Euler functions.

Model fitting 290

We ran VBA model inversion scheme on the 27 models defined before (null, DD, SSA with seven different τa 291

and three BL outputs with six different τt each), independently for each subject and time window of epoched 292

EEG data. We defined 21 non overlapping 10ms time windows from 45 to 255 ms around tone onset (45 to 293

55ms, 55 to 65ms, etc). The data given to the VBA model inversion function was the EEG activity averaged 294

temporally over each 10ms window, and spatially over the ROI defined before, trial by trial. 295

Priors over models’ parameters and initial hidden states need to be set before model inversion and were 296

identical for both studies. All priors and initial hidden states were defined as multivariate normal distributions. 297

No evolution parameters θ were used as for the SSA and BL model families, τa and τt were fixed for each 298

different model and not fitted. 299

All models had two observation parameters φ (except the null model which only had one): a factor φ1 300

scaling the model response and an offset φ0. We set them empirically in the same manner for all models with 301

prior means: 302

• φ0 = mean(standards) : the mean amplitude over all standard tones (in the given time window) 303

• φ1 = mean(deviants) − mean(standards) : averaged deviant minus standard amplitude, hence a 304

measure of the MMN response (again in the time window of interest) 305

and a diagonal prior covariance matrix with variance 10. 306

The prior for the measurement noise precision σ was a Gamma distribution of shape 0.1 and rate 1, consistent 307

with a standard deviation (inverse precision) for amplitude measurement of 10 µV. 308

Initial hidden states (X0) are necessary to initiate the inversion and depended on the models. The null 309

model did not have any hidden state. For all other models, a null covariance matrix was specified, encoding 310

absolute certainty about the initial values of hidden states. The DD model’s single hidden state was initiated 311

to 0, while SSA models’ initial hidden states were set to 1, reflecting the likely assumption that both standard 312

and deviant specific neuronal populations are not adapted before hearing any tone and their responsiveness 313
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is therefore maximal. BL models’ initial hidden states were also conventionally set to 1, even if no tones 314

were ever heard, to satisfy computational constraint (the Kullback-Leibler divergence is not defined for null 315

hidden states). 316

In study 2, all parameters were reinitialized and fitted independently for the two sessions, as these were 317

acquired several hours apart. In Study 1, and within each session of Study 2, experimental conditions and 318

blocks were separated only by short transitions of a few seconds (these were not considered in the modeling 319

scheme). Therefore, the inputs from all conditions and blocks were used and treated as a continuous and 320

uninterrupted sequence for the evolution function, but only the EEG data from the control conditions were 321

used to inform model inversion. Similarly trials marked for rejection during pre-processing, as well as outliers 322

defined as any trial whose EEG amplitude exceeded four times the standard deviation over all trials, were 323

included in the sequence of inputs to modeled—informing the evolution function dynamics—but not in the 324

computation of goodness-of-fit measures. 325

VBA inversion outputs the summary statistics (mean and covariance) of the posterior distributions of all 326

model variables, as well as goodness-of-fit metrics of which two will be of particular interest to us: 327

• the model’s variational free energy F—an approximation of model log-evidence that favors accuracy 328

while penalizing model complexity [85]. It was shown to outperform other information-theoretic criteria 329

for model comparison [86] and so will be used in this sense (see below). 330

• the percentage of variance explained by the model R2
obs, which will allow us to derive an absolute 331

goodness-of-fit measure. 332

Inference 333

We carried out inference in two hierarchical steps. First we compared models at the level of families, i.e. sets 334

of models sharing a similar structure or computational feature. In the present study the families are SSA and 335

the three outputs of BL, and each of them aggregates models that differ only in the value of the temporal 336

parameter τ (τa for SSA and τt for BL). This first step allowed us to select the most plausible computational 337

mechanism for each (10ms averaged) post-stimulus time windows of the auditory evoked response. Second, 338

we estimated the value of τ for the winning family through Bayesian model averaging (BMA). The two steps 339

are described below in more detail. 340

341

Bayesian Model Comparison (BMC). There are two different approaches to BMC, depending on 342

the assumption made about the structure of the underlying population. In fixed-effect BMC (ffx–BMC), 343
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the population is assumed to be homogeneous in the sense that all subjects’ data are best described by the 344

same unique model. Alternatively, random-effect BMC (rfx–BMC) treats the optimal generative model as a 345

random effect that may vary across subjects, with a fixed but unknown heterogeneous population distribution. 346

Stephan et al. (2010) recommends to select the population structure (and, therefore, the BMC procedure) 347

based on characteristics of the effect of interest, with the homogeneous assumption being ”warranted when 348

studying a basic physiological mechanism that is unlikely to vary across the subjects” [87]. The mechanisms 349

underlying the MMN arguably falls under this definition, justifying the use of ffx-BMC. Alternatively, the 350

choice between inference procedures may be data-driven as described in S1 Text. 351

In fixed-effect BMC group-level inference starts out by calculating the evidence for each model given the

whole sample using the product rule for independent events:

p(y|m) = p(y(1), y(2), · · · , y(N)|m) =

N∏
s=1

p(y(s)|m) (12)

where y(s) is the observed data for the participant s and N is the number of participants. Group model

evidence is often calculated in log form:

log(p(y|m)) =

N∑
s=1

log p(y(s)|m) (13)

Then, the posterior model probability (PMP) of model mj can be derived from all models evidence using

the Bayes theorem:

p(mj |y) =
p(y|mj)p(mj)∑
k p(y|mk)p(mk)

(14)

In the context of a uniform distribution over model space (i.e. the prior belief that all models are equally

likely), which we will assume in the present study, the previous formula can be further simplified to:

p(mj |y) =
p(y|mj)∑
k p(y|mk)

(15)

The model with the highest posterior model probability may then be selected as the most plausible at

the population level. Alternatively, one may focus on the Bayes Factor for a model j (compared to all other
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models) which can be written as the ratio of posterior odds to prior odds:

BFmj ,all =
p(mj |y)

1− p(mj |y)

/
p(mj)

1− p(mj)
=

p(mj |y)

1− p(mj |y)
(K − 1) (16)

with K the number of compared models, all with equal prior probability p(mk) = 1/K. 352

353

Bayesian Model Averaging (BMA). Once a model family has been selected, the best value for the τ

parameter can be found by using a BMC procedure again, this time restricted to a single family. Alternatively

it is possible to take into account the model uncertainty in the estimation of τ . BMA does so by averaging all

possible (modeled) values of the parameter, weighted by the posterior probability of the corresponding model:

τ̂ =
∑
m∈M
τ∈T

τ · p(mτ |y)

|T |
(17)

where M designates a family of model, T the set of τ values that were modeled, and |T | the size of T . 354

355

Interpretation of Bayes Factors. We will adopt the conventional heuristics proposed by Kass and 356

Raftery (1995) [88] whereby a BF higher than 100 is interpreted as decisive evidence, a BF between 10 and 357

100 indicates strong evidence and a BF between 3 and 10 suggests substantial evidence. BF below 3 are 358

deemed inconclusive. 359

Model recovery 360

Before taking the results of model comparison at face value, it is essential to validate that the BMC procedure 361

delivers reliable results using simulations [89]. Model recovery analysis ascertains whether and under which 362

experimental conditions (design, sample size, signal-to-noise ratio) we can conclusively arbitrate between 363

different models. The overall approach involves generating synthetic data from each of the candidate models 364

and fitting all the models to determine whether we can recover the true one. The main purpose of the model 365

recovery analysis for the present study is to assess the separability of SSA from BL models, and the possibility 366

to disambiguate BL outputs. Therefore we restricted the simulated model space to one specific value of τa 367

(for SSA models) and one for τt (for BL models), making the analysis more tractable. Based on previous 368

modeling results obtained from an oddball experiment by some of us [72], we chose τt = 20. The three BL 369

output functions are highly correlated at this value of τt (0.93 on average), more so than at most other 370

parameter values, ensuring that the results of model recovery will be conservative. Following the same logic 371
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we chose the value of τa that maximized the correlation between SSA and BL20 models, that is 10 (average 372

SSA10–BL20 correlation = 0.94). 373

The details of our model recovery analysis are depicted in Fig 1. For each participant, the input sequence

that was presented to her is fed to a candidate model to generate a series of predicted responses (Fig 1A),

which is then declined in multiple versions varying in amplitude of the predicted deviant minus standard

difference response, as well as in level of Gaussian noise (Fig 1B). Amplitude and noise levels were manipulated

factorially, resulting in 30 pairs chosen to span the range of SNR values observed in the electrophysiological

data during the MMN time window. Besides, 5 datasets were generated for each (amplitude, noise) pair—these

datasets shared the same statistics and differed only in the actual realization of noise. Therefore, a total of

150×K ×N datasets were generated, where K denotes the number of candidate models and N the number

of participants. The candidate models were then fitted on these synthetic datasets, yielding free-energy

approximations of model evidence that were used to select the best model as described before, i.e. the

model with the highest posterior probability (Fig 1C). In practice we carried out BMC on 1000 bootstrapped

samples. Each of these samples was composed of N participants’ data simulated at the appropriate levels of

amplitude and noise, each randomly draw from one of the 5 realizations of noise—allowing for 5N possible

combinations. The results from the 1000 simulations can be conveniently summarized and displayed in a

confusion matrix A = (aij) where the element aij denotes the frequency with which each candidate model j

has been selected for data simulated under model i (Fig 1D). The confusion matrix is of size K ×K but may

be summarized in fewer pieces of information (Fig 1E). Of particular interest are two performance indices

that are defined model-wise: the true positive rate (TPR) which is the chance we have to select the true

model as the best one assuming that it is included in the model space, and the positive predictive value (PPV)

which is the chance that a model selected as the best is indeed the true model (again, assuming that the

latter is in the model space). TPR and PPV are measures of sensitivity and specificity, respectively, with

TPR amounting to statistical power in a 2-class problem. Ideally if the BMC procedure worked perfectly the

confusion matrix would be the K ×K identity matrix and we would have TPR=PPV= 1. Thus, another

useful summary statistic of a confusion matrix is its distance from the optimal, identity matrix IK—which

we computed using the L1 norm:

|A− IK |1 =
K∑
i=1

K∑
j=1

|aij − δij | with δij =


1 if i = j

0 otherwise

(18)

Conversely, if models were not distinguishable and the model selection produced random results under 374
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the experimental design and other relevant characteristics of the data, the confusion matrix would be a 375

matrix UK with all elements equal to 1/K (hereafter called the normalized unit matrix ) and we would have 376

TPR=PPV= 1/K. The randomness of the confusion matrix may be summarized by its distance from the 377

normalized unit matrix. 378

Confusion matrices, as well as their distance to identity and normalized unit matrices are displayed as 379

a function of SNR (magnitude/noise pairs) in Fig 4 and interpreted in the results section. In order to get 380

a hint of our ability to decide between different models in our real data along the timecourse of the MMN 381

response, we selected confusion matrices matching the level of SNR in EEG data for each participant, at each 382

post-stimulus time window (50-250ms). Time-resolved TPR and PPV metrics were then computed based on 383

”real SNR” and compared to conventional thresholds (Fig 6). 384
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Fig 1. Model recovery analysis pipeline.
(A) The sequences of input presented to participants are fed to the candidate models to generate sequences
of synthetic data which are subsequently (B) scaled and noised in multiple ways to cover a range of signal
amplitudes and intertrial variances. The large number of synthetic datasets thus obtained can be used to
constitute unique samples with an arbitrary distribution of amplitude and variance. (C) Each such sample is
subjected to model fitting (free energies) and group-level inference (posterior model probabilities). (D) The
results of model selection from 1000 simulated samples are reflected in a single confusion matrix, which may
be (E) summarized in quantities of interest such as the distance from ideal matrices or indices of sensitivity
and specificity.
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Absolute goodness-of-fit 385

BMC procedures pick a model out of a set of candidates based only on their relative performance, i.e. their 386

comparative ability to predict the observed data while being parsimonious. Said otherwise, model comparison 387

can single out a model as being better at predicting the data than other examined models, but it does not 388

follow that the selected model is good in an absolute sense. It might actually be missing important features 389

of the data, suggesting that the true generative model (or a useful approximation of it) was not in the set of 390

candidate models and remains to be discovered. 391

A simple and straightforward measure of absolute fit is the coefficient of determination R2, which in the 392

context of linear regression, can be interpreted as the proportion of variance in the data accounted for by the 393

fitted model. However, there is no universal threshold for R2 that qualifies a model as ”sufficiently good”. In 394

the context of the phenomenon of interest here, the variance in EEG-recorded neural activity can be divided 395

in two sources: variance due to history-dependent processing of the controlled auditory stimuli, and variance 396

due to uncontrolled factors (background neural and physiological activity and measurement noise). Only 397

the former is the target of the modelling efforts and can theoretically be accounted for at 100% by a perfect 398

model—but its relative importance with respect to the total variance remains unknown. 399

In order to estimate the proportion of total variance in the EEG signal that could be attributed to 400

stimulus and regularity processing, we used the models to generate pure synthetic datasets whose variance, 401

by construction, can be entirely attributed to stimulus processing. This variance could then be compared to 402

the total variance observed in the data at a given latency t, yielding an ideal coefficient of determination 403

R2
max, i.e. the maximum proportion of variance that can be expected to be accounted for by a model m, 404

assuming that this model has generated the data. R2
max can be expressed as a ratio of sum-of-squares: 405

R2
max(m, t) =

SSmodel
SStotal

=

∑
i(gm,i − ḡm)2∑
i(yt,i − ȳt)2

(19)

where gm is the observation function of model m (see Eq 3), yt the EEG data at latency t, i indexes the 406

trials and the overline designates the mean across all trials. The actual observed coefficient of determination 407

R2
obs(m, t) can then be compared to this ideal index: 408

R2
obs(m, t) = 1− SSres

SStotal
= 1−

∑
i ε

2
m,i∑

i(yt,i − ȳt)2
(20)
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with εm,i the Gaussian measurement noise for model m at trial i (see Eq 3). 409

Note that R2
obs may be greater than R2

max by chance alone, e.g. if the actual realization of noise positively 410

correlates with the predictions of the generative model. Therefore, a conclusion may be reached only by 411

examining the distribution of R2
obs/R

2
max at the group level. 412
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Results 413

In order to test whether different mechanisms underlie the MMN at various latencies of the difference potential, 414

we fitted candidate computational models on EEG data collected during passive oddball experiments. Each 415

of these models was designed to implement a prevailing account of the MMN and generates predictions of 416

the trial-to-trial dynamics of the auditory ERP. Models were fitted independently on 10ms–wide averaged 417

post-stimulus time windows ranging from 45 to 255ms using a Bayesian modeling framework. Thereafter we 418

will refer indistinctly to these temporally averaged windows as ”(post-stimulus) time windows” or ”latencies”. 419

The free energy approximation to model evidence and the coefficient of determination R2 were used as 420

measures of relative and absolute goodness-of-fit, respectively. 421

In the first section we validated the relevance of the tested models by comparing them to a null model 422

devoid of any dynamics. We then analyzed the relationship between model evidence and SNR to explore the 423

relationship between data quality and inferential value. 424

In the second section, and before moving on to the actual comparison of models, we performed a simulation 425

analysis to assess the identifiability of models under the two studies designs and the effect of SNR on the 426

performance of model recovery. 427

In the third section we compared the candidate models between them in two steps, starting with fixed-effect 428

BMC at the level of families, with each family corresponding to a theoretical account of the MMN. Models 429

within each family share the same computational rules and are differentiated only by a parameter τ governing 430

the temporal scale of the dynamics, which was estimated in a second step through Bayesian model averaging. 431

Finally, we used an absolute measure of goodness-of-fit to evaluate how accurately the previously selected 432

models can generate the EEG data. 433

Model evidence 434

As a first step we validated the ability of implemented models to capture the general features of trial-to-trial 435

variations in the EEG signal better than simple control models. We used group Bayes Factors (BF) between 436

the models of interest on one hand, and the null model on the other hand, as a measure of model relevance. In 437

both studies and for almost all models, BF values exceeded levels corresponding to decisive evidence against 438

the null in time windows showing a significant MMN, and dropped down rapidly outside that range (Fig 2). 439

The influence of the temporal parameter τ varied across model families. For the SSA and BLmadj families, 440

the BF of models with fast dynamics (low τ) tended to rise, peak or decrease later than models with higher 441

τ . As far as the maximum BF is concerned, intermediate values of τt (20-30) obtained slightly higher model 442

September 9, 2022 24/61

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507526doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507526
http://creativecommons.org/licenses/by/4.0/


evidence than others within the BLmadj family, but no consistent pattern could be found across the SSA 443

family for τa. Finally, the value of τt appears to have little to no influence on model evidence for BLpwpe and 444

BLsurp models. 445

Fig 2. Group-level Bayes Factors of models of interest against the null model. Positive and
negative values indicate evidence against and in favor of the null model, respectively. Horizontal lines
represent Jeffreys’ conventional thresholds for decisive evidence (BF=100). For each study, the time range for
which the deviant − standard difference potential, i.e. the MMN, is statistically significant is highlighted.
Based on the definition of the model evidence, the group Bayes Factor (BF) is the product of individual BF,
therefore the group log(BF) is the sum of individual log(BF). DD : deviant detection, SSA: stimulus-specific
adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error,
madj : model adjustment.
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Sensitivity to signal-to-noise ratio 446

Fig 2 represents the Bayes Factor of models at the level of the whole sample, which is obtained by aggregating 447

Bayes Factors of individual participants. However, the examination of individual model log-evidence reveals a 448

widespread, strongly skewed distribution with many participants’ values clustering around 0 or even negative 449

(i.e. in favor of the null) and only a minority of the participants displaying substantial evidence against the 450

null (e.g. about a third of the sample for SSA models; Fig 3 upper plots). While this pattern could result 451

from inter-individual variability in MMN mechanisms, e.g. in prevailing time constants, such high individual 452

selectivity is rather unlikely. We explored the alternative and more parsimonious hypothesis that the quality 453

of the recorded data—indexed by the signal-to-noise ratio (SNR)—could partly condition the evidence against 454

the null at the individual level. 455

The lower plots of Fig 3 represent a linear model of the relationship between log(BF) and SNR for a 456

couple of selected models. There appears to be a strong association between the two variables, with a simple 457

linear function of SNR predicting a large portion of log(BF) variance, as indicated by the high R2 values. 458

The value of SNR above which log(BF) is predicted to be positive is around 0.02–0.03, with a high degree of 459

consistency across models and studies (exhaustive data not shown). 460

Model recovery 461

Sensitivity to signal-to-noise ratio 462

Before performing model comparison and selection we assessed the ability of such procedure to disambiguate 463

the candidate models given our experimental designs and levels of signal (MMN amplitude) and noise 464

(spontaneous trial-to-trial variability). We simulated data based on stimuli sequences provided to the actual 465

participants and for a wide range of signal statistics values, and performed BMC on the synthetic data to 466

evaluate model recovery and confusion. The results are displayed in Fig 4. Models can be perfectly recovered 467

at the highest levels of SNR (Fig 4A), despite models being strongly correlated (see Fig S3). However, 468

identification gets poorer when noise increases or signal power decreases. The first models to be affected by 469

degraded signal quality are BLsurp and BLpwpe which get mixed up, consistent with them being the most 470

correlated models (r >.99). With even poorer SNR, model selection becomes biased rather than random, as 471

indicated by the fact that the confusion matrix gets farther away from the optimal, identity matrix while 472

remaining quite distinct from the random-selection, uniform matrix (Fig 4B and Fig 4C). At the lowest SNR, 473

BLsurp tends to come out as the winning model independently of the true generative mechanism, especially 474

in Study 2 (in Study 1, dominance is shared between BLsurp and BLmadj). 475
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Fig 3. Bayes Factors distributions and sensitivity to signal-to-noise ratio. For each study, the
upper plots depict the distribution of participants’ model evidence for each value of τ within each family of
models at the MMN peak latency. Vertical lines indicate thresholds for substantial and strong evidence,
respectively. The lower plots represent the relationship between log(BF) and SNR for a couple of
representative models. The values of R2 refer to the fraction of variance modeled by a linear function. DD :
deviant detection, SSA: stimulus-specific adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe:
precision-weighted prediction error, madj : model adjustment.
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Fig 4. Model recovery analysis in the noise-amplitude grid space (see next page).
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Fig 4 (previous page). The noise-amplitude grid was defined so as to cover the range of observed noise
levels and signal amplitude, which was slightly different between the two studies. (A) The confusion matrix
is perfect at the highest SNR levels (high amplitude and low noise, bottom left) but gets increasingly
degraded at lower SNR (low amplitude or high noise, upper right corner of the grid) towards biased model
selection. (C) The effect of poor SNR can be quantified using the matrix distance between the confusion
matrix and the optimal, identity matrix (left) or the uniform matrix (right). Matrices that are far from the
identity matrix are those with low diagonal elements, corresponding to poor recovery of the true model in
favor of confounding competitors, but not necessarily random ones. Matrices that are far from the uniform
matrix correspond to deterministic identification, i.e. the same model tends to win systematically under a
given generative model, but not necessarily the correct one. Light lines indicate isocontours of SNR values.
(C) Matrix distances as a function of SNR. At low SNR, the high distance from both the identity and the
uniform matrix indicate that confusion matrices become biased rather than random.

Sensitivity to sample size 476

The results above were obtained with the same number of participants than found in the collected datasets. 477

Fig 5A illustrates what happens when the sample size decreases for one representative combination of MMN 478

amplitude and noise level. Unlike with SNR (Fig 5B), decreasing sample size blurs the confusion matrix, 479

rendering model selection more and more random. 480

Fig 5. Influence of sample size on model recovery. (A) Decreasing sample size has the effect of
degrading the confusion matrix towards more ”blurred” (i.e. uniform) matrices. (B) Representing confusion
matrices by their distance from the identity and the uniform matrices (I and U, respectively), emphasizes the
specific influences of sample size and SNR on model discrimination. While low SNR leads to highly
precise—i.e. deterministic—but biased confusion matrices (marked as B on the graph), low sample size
results in random model selection.
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Sample-based model recovery 481

Fig 6 summarizes the results of the model recovery analysis based on latency-dependent levels of noise and 482

MMN amplitude that were observed in our samples. As expected the confusion matrices (top row) are the 483

closest to the optimal, identity matrix at latencies matching the peak of the MMN, typically around 150ms. 484

Consistently, the sensitivity (TPR) and specificity (PPV) indices peak at the same time for most models. At 485

earlier and later latencies confusion matrices stray away from the optimal structure with noticeable differences 486

between the two studies: in Study 1 the confusion matrix becomes blurrier with the consequence that all 487

models lose both sensitivity and specificity, whereas in Study 2 the confusion matrix remains sharper but 488

exhibits a strong bias in favor of BLsurp and at the expense of SSA and BLpwpe. This bias is present to some 489

extent throughout the entire time range and leads to poor positive predictive value of the BLsurp model in 490

Study 2. 491

Fig 6. Time-resolved model recovery analysis. (Top) Confusion matrices were constructed for each
latency using simulations matching the noise level and signal amplitude of each participant. The true
positive rate (TPR, middle) and the positive predictive value (PPV, bottom) were then extracted for each
model. Dashed red lines indicate conventional thresholds: 0.8 for TPR (corresponding to 80% statistical
power) and 0.95 for PPV (analogous to a type I error rate of 5%).
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Group-level inference 492

Model comparisons at the family level 493

In the previous section we established that all candidate generative models of the MMN are plausible under 494

the collected EEG data. The question that then arises is whether some models are superior to others in 495

their ability to explain the observed data. There are two approaches to Bayesian group inference depending 496

on whether the targeted population is homogeneous—i.e. one may assume that all participants’ data have 497

been generated by the same model—or heterogeneous [87]. For such fundamental and automatic cognitive 498

processes as low–level perceptual learning, it is reasonable to assume that their fundamental architecture 499

and biological mechanisms have been primarily shaped by evolution, and as such are hard-coded rather than 500

experience-dependent. Following this logic, one may presume that all participants in an oddball experiment 501

share the same generative mechanism(s) for the MMN, justifying a fixed-effect approach to group-level in 502

Bayesian modeling. Alternatively, one may sidestep such speculations and rather choose to approach the issue 503

of population structure as an empirical question that may itself be addressed using the Bayesian inference 504

framework. We implemented this data-driven approach and obtained results aligned with the theoretical 505

assumption of homogeneity (see S1 Text and Fig S4). 506

We first compared the four families of interest—SSA, BLsurp BLpwpe and BLmadj—along with a control 507

family that included null and DD models (Fig 7). We found that SSA models dominated the first part of 508

the MMN time-window, from the moment it could be disambiguated from pure noise around 80-90ms until 509

150-160ms. SSA models then overlapped with BLmadj for 20ms, before finally making way for BLsurp and 510

BLpwpe models, especially in Study 1. Importantly, the general temporal organisation of models was largely 511

similar across the two independent studies, suggesting that this pattern of results is replicable and reliable. 512

Discrepancies between the studies appeared only at the latest latencies and will be discussed in the next 513

paragraph. 514

Simulation-based assessment of reliability 515

The results from the simulation-based, model recovery analysis are of great value to understand and assess 516

the reliability of the patterns observed in the real data depicted in Fig 7. The first remarkable result is the 517

domination of SSA models from the onset of the MMN until about 150ms. From the model recovery analysis 518

SSA appears to have very high positive predictive value (>.95) on the entire MMN time window in Study 2, 519

and acceptable PPV (>.80) between 140 and 180ms in Study 1 (Fig 6), suggesting that the dominance of SSA 520

is most likely a true finding rather than a confusion from BL models. A similar reasoning may be applied 521
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Fig 7. Family-wise fixed-effect BMC.
(Top) Posterior model probabilities (PMP) at the family level for each study and each post-stimulus latency.
Latency-specific sample sizes are indicated above PMP plots along with dark bars representing the fraction
of the study sample retained. Shaded PMP bars correspond to latencies for which no model family dominate
substantially (BF <3). (Bottom) Relative evidence of each model family against all other families. Only
families with a substantial level of evidence (BF > 3) are displayed. In practice, most of the time there was
one and only one family with substantial evidence at each latency, except at t=180ms and t=190ms in Study
2. ctrl : control models (null and deviant detection), SSA: stimulus-specific adaptation, BL: Bayesian learning,
surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj : model adjustment.
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to the moment when BLmadj starts competing with SSA: at these latencies BLmadj has a high PPV (>.90) 522

according to the simulations, and the probability that it confounds SSA is low in both studies (Study 1: 523

p(BLmadj |SSA) <.10 at t=160–170ms; Study 2: p(BLmadj |SSA) <.14 at t=170–180ms). Importantly, the 524

reciprocal was true at these latencies: SSA had a low chance to be selected as the winning model under 525

BLmadj in the simulations (p<.09 in Study 1; p < .02 in Study 2). All in all the simulation analysis suggests 526

that the very close posterior probabilities of model families SSA and BLmadj around 170ms are unlikely to be 527

driven by a lack of separability, but may rather reflect a temporal overlap of the two modeled mechanisms. 528

Lastly, the two studies diverge with respect to the dominant family at the latest latencies with Study 1 529

favoring BLsurp and Study 2 showing evidence for BLpwpe. Unfortunately these two BL outputs are the most 530

correlated (r >.99) and are not easily disambiguated, even under good SNR conditions. 531

Model comparisons in high quality samples 532

Our exploration of the effect of SNR on model identifiability (Fig 4) suggested that the presence of low 533

SNR participants is far from innocuous: not only does it impact negatively statistical power—as one would 534

expect from any source of noise that does not contribute useful information but is permitted to weigh on the 535

inferential process—but it also biases the model selection procedure. An optimistic way of looking at it is 536

that the sensitivity and reliability of the inference should improve when it is focused on those participants 537

that exhibit the highest SNR, so long as the sample size remains sufficient. We explored this possibility by 538

restricting the family-wise BMC analysis to latency-specific subsets of participants exceeding certain SNR 539

thresholds. The results are depicted in Fig 8 and indicate that the effect of subsetting to high SNR participants 540

have largely common but also some diverging effects across the two studies. In both studies adaptation (SSA) 541

dynamics are detected earlier and BL dynamics up to 230ms post-stimulus. This improvement in time range 542

shows even after a slight thresholding (SNR >0.001) in Study 1 but is more gradual in Study 2. The general 543

temporal organization of models does not change significantly in either studies compared to the full sample, 544

but while it is markedly reinforced in Study 2 with a clearer and extended dominance of BLmadj followed by 545

BLsurp in the most restricted samples (SNR >0.004 and >0.016), it is partially attenuated in Study 1 with 546

the elimination of BLmadj at SNR >0.016. Here the discrepancies between the two studies might be due 547

to differences in sample size, with the smaller number of participants in Study 1, especially after stringent 548

selection, negatively impacting model identifiability to the point of canceling the gain offered by the increased 549

sample SNR. 550
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Fig 8. Family-wise fixed-effect BMC in high quality samples.
Posterior model probabilities of model families (PMP) and relative evidence against all other families (BF) in
subsets of samples defined by SNR exceeding 0.001 (top), 0.008 (middle) and 0.024 (bottom). Latency-specific
sample sizes are indicated above PMP plots along with dark bars representing the fraction of the study
sample retained. Shaded PMP bars correspond to latencies for which no model family dominate substantially
(BF <3). ctrl : control models (null and deviant detection), SSA: stimulus-specific adaptation, BL: Bayesian
learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj : model adjustment.
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Parameter estimation 551

In the present study we have adopted a fixed parameter approach whereby the value of the τ parameter 552

was fixed in submodels of the SSA and BL families rather than fitted. We used Bayesian model averaging 553

(BMA) to estimate the value of the parameter by integrating over the family model space taking into account 554

the uncertainty of the submodels as indexed by posterior model probability. The results for the adaptation 555

parameter of SSA models and the integration constant of BL models are quite distinct (Fig 9). For the former, 556

we found a consistent decrease of τa through time in both datasets—although less marked for Study 2 at higher 557

SNR. This suggests an increasing gradient of adaptation (see relationship between τa and responsiveness 558

in Eq.6) along the MMN timecourse which echoes electrophysiological results in rats and will be discussed 559

later. On the other hand the time constant for BL models in the later stage of the MMN was rather constant 560

through time. 561

Absolute goodness-of-fit 562

The average proportion of total single-trial EEG variance accounted for by the best model across all subjects 563

was similar across studies but depended on the MMN latency, ranging from 0.5 to 1.5% in Study 1, and 564

from 0.6 to 1.8% in Study 2 (Fig 10, upper plots). While these figures may seem low at first glance they are 565

consistent with the fact that, in EEG recordings background stimulus-unrelated activity and other sources of 566

noise drown the event-related potentials by an order of magnitude or higher, requiring numerous presentations 567

of the same stimulus and averaging of the resulting data to obtain an informative signal. 568

To gain an accurate sense of how adequate is the observed proportion of variance accounted for by a given 569

model (denoted R2
obs), we compared it to the expected value (denoted R2

max) calculated from simulations 570

that assumed the said model truly generated the data. R2
max is subject–, model– and latency– dependent. 571

By definition R2
obs is expected to be lower to R2

max on average. A low R2
obs/R

2
max ratio indicates that the 572

model is suboptimal and is, at best, only an approximation of the generative process. Conversely, a ratio 573

close to 1 suggests that the model can account for all the variance produced by the generative process 574

and is indistinguishable from it under the circumstances of the study. This is indeed the case for the 575

set of latency-dependent models that have been selected by the fixed-effect BMC procedure, as we found 576

that R2
obs/R

2
max was not significantly different from 1 in either studies (Study 1, between 90 and 220ms: 577

estimate=1.03, 95% CI [0.95, 1.12], t(103)=0.81, p=.42; Study 2, between 90 and 180ms: estimate=1.03, 95% 578

CI [0.93, 1.14], t(136)=0.51, p=.61). 579

As a sanity check and validation of the R2
obs/R

2
max ratio, we calculated it for some models at latencies for 580
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Fig 9. Within-family Bayesian model averaging of the temporal parameter τ .
(Bar plots) Posterior model probabilities (PMP) at the model level within the best family for each study
and each post-stimulus latency without SNR filtering (top panel, dev-std <0, see Fig 7) and with only SNR
>0.008 samples (bottom panel, see Fig 8). Colored bars are stacked from bottom to top in decreasing order
of PMP. Values of τ are in stimulus units. (Line graphs) Estimated values for the time constant τ obtained
by model averaging, i.e. averaged over all models of a family weighted by their respective PMP. Values are in
seconds. ctrl : control models (null and deviant detection), SSA: stimulus-specific adaptation, BL: Bayesian
learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error, madj : model adjustment.
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which they were not the best. In Study 1, models that dominated the earliest and latest latencies (SSA50 581

and BLsurp5 , respectively) had a significant low ratio at other latencies (SSA50, between 130 and 220ms: 582

estimate=0.66, 95% CI [0.57, 0.77], t(79)=-5.46, p<.001; BLsurp5 , between 90 and 190ms: estimate=0.92, 583

95% CI [0.88, 0.97], t(86)=-3.46, p<.001). The same pattern was found in Study 2 for models that dominated 584

the early and late MMN latencies (SSA50, between 100 and 190ms: estimate=0.78, 95% CI [0.70, 0.88], 585

t(131)=-4.36, p<.001; BLmadj30 , between 90 and 160ms: estimate=0.84, 95% CI [0.76, 0.92], t(119)=-3.88, 586

p<.001). 587

Fig 10. Variance accounted for by best models. (Top) Group distribution of the proportion of
variance accounted for (denoted R2

obs) by the best model family selected at each MMN latency by the
Bayesian model comparison (see Fig 8) and for the parameter τ closest to the value estimated by Bayesian
model averaging (see Fig 9). (Bottom) Comparison between the actual values of R2

obs and theoretical
maximum proportions of variance that can be accounted for by the models (R2

max), given the variance
observed in the data. The ratios being positively skewed, they were log-transformed for normality (the
optimal ratio value of 1 is thus transformed to 0).
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Discussion 588

In this paper we have revisited the trial-by-trial computational modeling of EEG-recorded scalp potentials 589

in response to sounds embedded in oddball sequences. The study design focused on four aspects that have 590

emerged in recent years as important for drawing reliable conclusions from computational studies. First, we 591

specified the model space so as to represent all mechanisms that have been proposed for the generation of the 592

MMN. Thus, models that were tested implemented both physiologically–inspired, adaptation–like dynamics 593

and computational, mechanistic models of Bayesian statistical learning. For the latter family of models, 594

different quantities were tested and compared following previous modeling work [74]: precision-weighted 595

prediction error, Shannon’s surprise, and model adjustment. Second, we used simulations to assess models 596

discrimination and guide the interpretation of the findings obtained from the electrophysiological data. Third, 597

we modeled the neural responses in a time-resolved fashion that allowed for latency-specific inferences as 598

the latest research in animals suggests that MMN-like components might result from different mechanisms 599

emerging along the time course of the evoked response and across the auditory hierarchy. Fourth, we provided 600

our own replication by analyzing two independent datasets concurrently, which allowed us to focus on the 601

findings common across the two datasets as the most likely to replicate. 602

As a discussion we will first synthesize the modeling results and speculate on the parallels that may be 603

drawn from the findings in human and animal studies. Then, the significance and impact of methodological 604

choices inherent to computational modeling will be discussed, highlighting the improvements we brought 605

forth in the present study. We will conclude by highlighting the potential limitations hindering our results 606

and suggest improvements for future studies. 607

Multiple mechanisms may underlie the MMN response at different latencies 608

Our results confirm a well-established fact in the MMN literature, namely that neural responses to individual 609

stimuli embedded in a sequence reflect ongoing statistical learning rather than mere processing of physical 610

properties and frequency of occurrence [90–93]. Here this is evidenced by the fact that the deviance detection 611

model—a model capable of producing an MMN–like response but without any dependence on stimulus 612

history—turned out to fit the data less well than all other history–sensitive models. 613

Compared to previous computational modeling studies on time-averaged data [74] or with restricted model 614

space [71, 72], our approach allowed us to identify interesting temporal dynamics in generative models of the 615

MMN. Family-wise model comparison at the group level identified a predominance of adaptation models 616

(SSA) in both EEG datasets during the early MMN window from 80-90 to 150-170ms (Fig 7, BF >100 at most 617
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latencies). Importantly this finding was confirmed when gradually filtering out low SNR datasets (Fig 8), 618

and could not be attributed to confusion of BL models with SSA as the latter model family showed good 619

specificity throughout these early latencies, at least for Study 2 (Fig 6 lower panel, Study 2: PPVSSA > 0.95). 620

The model-adjustment version of Bayesian learning—BLmadj which indexed the MMN as the amount of 621

updating between prior and posterior belief on the probability to get a deviant—then competed with SSA for 622

about 20ms with slightly different latencies depending on the datasets (160-170ms for Study 1 and 170-180 623

for Study 2, Fig 7). Surprisingly, in high SNR samples the evidence for BLmadj decreased in Study 1 but 624

was reinforced in Study 2 (Fig 8). This discrepancy could potentially be explained by the lower specificity 625

of SSA models in Study 1 compared to Study 2 within these time windows (Fig 6). Finally the Bayesian 626

learning implementation of Shannon’s surprise (BLsurp) showed the highest—but relatively moderate (BF 627

>3)—evidence against competitors in the last part of the MMN response up to 230ms, a result made clearer 628

and coherent across studies within the highest SNR samples (Fig 8, middle and lower panels). Yet BLsurp 629

and BLpwpe are not easily disambiguated under our experimental design as their predicted responses are 630

highly correlated (r >0.99) and they consistently showed low specificity (PPV <0.95) or sensitivity (TPR 631

<0.80) in time-resolved model recovery (Fig 6). Therefore, strict conclusions concerning the domination of 632

BLsurp in the late MMN response would be premature, our data being compatible with both surprisal and 633

precision-weighted prediction errors signals. 634

To our knowledge this is the first modeling study of the MMN providing comparable results across two 635

independent EEG datasets and on a substantial total sample of 82 participants. Dynamic Causal Modeling 636

(DCM) studies on EEG data prompted early on towards a multiplicity of mechanisms supporting deviance 637

detection along the cortical hierarchy [52]. Following this intuition Lieder et al. (2013)—in a pioneering 638

computational modeling work—compared most of the potential mechanisms supporting the MMN on trial-wise 639

scalp averaged EEG data [74]. However they could only draw strong conclusions at the level of superfamilies 640

of models, pitting all BL models against phenomenological models (a grouping of adaptation and change 641

detection models). In more fine-grained comparisons the model adjustment Bayesian learning model had 642

the highest posterior probability but the evidence was not compelling. We can only speculate as to why 643

no clear winner stood out in this initial study, but the low sample size (8 participants) and the temporal 644

averaging of the signal seem to be plausible contributing factors in light of our own results. However these 645

factors can hardly explain the very low evidence for adaptation models in their study, which constitutes a 646

major discrepancy with our results. Differences in designs and models implementations may have a significant 647

impact, an issue that we will further discuss below. 648

To summarize, our results suggest the existence of distinct and potentially overlapping generative 649
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mechanisms of the scalp MMN following a temporal pattern. Adaptation–like response seems to dominate 650

most of the MMN window from 80–90 to 150–170 ms, while BL–like processes appear during the late MMN 651

with varying temporality depending on the paradigm (Study 1 or 2) (Fig 7). This temporal pattern may 652

be explained in two distinct interpretation frameworks. One simple and tempting approach is to map ERP 653

latencies on the cortical hierarchy, with early and late post-stimulus activations reflecting low- and high-level 654

processing, respectively. In the present context that would lead us to attribute adaptation–like processes to 655

sources of the MMN located in the temporal cortex and later BL–like responses to frontal areas. But the 656

mixed results from MMN source localization studies does not quite support such a pattern. Frontal sources 657

of the MMN were initially found to be be activated slightly later (8ms) than temporal ones in EEG [94], and 658

correlation analyses of ERP amplitude with fMRI activations associate early MMN response (90–120ms) to 659

signal change in right temporal cortex and late MMN response (140–170ms) with change in right frontal 660

cortex [95]. However more recent studies provided evidence for the involvement of temporal and frontal 661

sources at similar times. For example Philips et al. (2015) did not observe significant differences in the MMN 662

peak latency between primary auditory cortex (A1), superior temporal gyrus (STG) and inferior frontal 663

gyrus (IFG) for multiple deviance types (duration, frequency, gap, intensity and location) in MEG [56]. 664

Another study found activations for frequency and intensity deviances in both supratemporal (Heschl’s gyrus 665

or planum polare depending on deviance type) and infrafrontal cortices (IFG) at the peak of the MMN 666

(150-250ms), but also during early deviance (15-75ms) and the ”rising edge” of the MMN (110-150ms, called 667

elsewhere early MMN) on fused EEG-MEG data [58]. Finally generators for a frequency MMN were found in 668

both A1 and IFG in EEG [96]. 669

Rather than treating the time course of the ERP as reflecting a unidirectional stream of bottom-up 670

cortical activation, an alternative approach consists in interpreting the modulations of the EEG signal as 671

markers of dynamic changes in forward and backward transmission of information within the hierarchical 672

temporo-frontal network generating the MMN. Inferring such temporal causal links require both source-level 673

signals and computational models, such as in Dynamic Causal Modeling (DCM). To our knowledge, only one 674

DCM study has looked into the temporal dynamics of such changes in causal connections. In one of their 675

first DCM study, Garrido et al. evaluated the importance of backward connections for eliciting the ERP to 676

deviants in an oddball task [50]. Their results clearly showed that if forward connections are necessary to 677

explain the evoked response throughout the whole duration of the ERP, backward connections (between A1, 678

STG and left IFG) have a particular influence later in time, starting around 200ms. Thus, the appearance of 679

Bayesian learning–like mechanisms at late latencies in our results could reflect the increased involvement 680

of such backward connections, for example by casting newly updated predictions downward in the cortical 681
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hierarchy. Yet such interpretation is highly speculative and would need further fine–grained time–resolved 682

DCM analyses to be verified in the future. 683

684

Relationship to results from animal studies 685

Recent reviews—combined with novel empirical work—confirmed a high degree of homology between human 686

MMN and rodent mismatch responses [97–99], justifying the use of translational research to better characterize 687

the neurocognitive mechanisms of auditory perception. The gradient of generative mechanisms revealed 688

by the present computational study is strongly reminiscent of electrophysiological results obtained in rats. 689

Using control stimulus sequences and single-unit recordings in the rat auditory areas, Parras et al. [63] were 690

able to decomposed neuronal mismatch responses to oddball sequences into repetition suppression (RS) and 691

prediction error (PE) signals. They showed that mismatch responses in the auditory cortex (AC) and in 692

subcortical auditory areas reflected mainly repetition suppression, especially at latencies below 50ms—with 693

PE signals emerging only later, around 75ms post-stimulus. Applying a similar methodology to the rat 694

medial prefrontal cortex (mPFC), the same team later demonstrated that, in contrast to what has been 695

reported in AC, mPFC mismatch responses are largely driven by PE signals [64]. However, because these 696

frontal responses did not start until 200ms and lasted several hundred milliseconds, they may be analogues of 697

human P3–like rather than MMN responses. More generally, the parallels between previously cited animal 698

findings and ours should be treated with caution as the experimental paradigms differ sensibly in design and 699

measures. Nevertheless, the temporal dynamics of physiological processes described in Parras et al. (2017) 700

appear consistent with the timing of the gradient of computational models we report here, providing one 701

takes into consideration that the latencies of sensory ERP components in rats are roughly twice as short than 702

their human counterparts in comparable settings [100,101]). 703

Our study identified a second type of gradient, this one pertaining to adaptation time constants of SSA 704

models (Fig 9). Models with higher τa, indicative of slow–adaptation (see Eq. 6), dominated the onset of the 705

MMN response and were progressively replaced by fast-adaptation models (lower τa). Said differently, our 706

modeling results suggest that the rate of adaptation to repeated auditory stimuli is not fixed throughout the 707

entire duration of the neural response, but instead increases gradually. Although this gradient was present to 708

some degree in both datasets, it was more pronounced in Study 1, especially due to very slow adaptation at 709

the onset latency of the N1. One explanation for this discrepancy could be the variable ISI in Study 1, as 710

previous studies suggest that temporal predictibility enhances repetition suppression [102,103]. 711
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Once again such results obtained at the computational level with human scalp EEG data are consistent 712

with previous work at the electrophysiological level on auditory neurons of anesthetized rats [29]. Nieto-Diego 713

and Malmierca (2016) first showed that in lemniscal auditory cortices (primary auditory cortex A1, anterior 714

auditory field AAF and ventral auditory field VAF), SSA was significantly stronger during the late window of 715

the rat MMN-like response (figure 5 from [29]). In contrast, SSA in non-lemniscal regions (posterior auditory 716

field PAF and suprarhinal auditory field SRAF) did not change through time after sound onset but was 717

stronger than in lemniscal regions until about 100 ms when adaptation in all auditory areas reached similar 718

high levels (figure 5 from [29]). Additionally, they could estimate the rate of adaptation of individual neurons 719

to standard tones and found adaptation to be faster for non-lemniscal regions (figure 7 from [29]). Finally, the 720

negative component of the difference wave of local-field potentials (LFP)—supposedly more representative 721

of neuronal population processes recorded through non-invasive methods—peaks later in non-primary than 722

primary cortical fields (figure 8 from [29]). To summarize their results, multiple lines of evidence seem to 723

converge towards an increase of SSA in auditory cortex within the time-span of MMN-like neuronal responses. 724

Yet the fact that adaptation rates are extremely fast in rats (in the order of one second) and estimated from 725

neuronal firing rates makes it unclear whether similar physiological mechanisms underlie the gradient of 726

adaptation that emerged from our modeling study. 727

Conclusions from modeling studies critically depend on modeling choices and 728

methodology 729

The value of the discussion so far rests upon the reliability of the results, i.e. on the ability of the computational 730

modeling and inferential procedure (model selection) to capture some aspects of the generative mechanisms of 731

the MMN. For the present study we have been careful to follow the most recent guidelines for computational 732

modeling of neurophysiological data [89], notably by carrying out model recovery analyses which have largely 733

been missing in previous computational studies of the MMN. Our simulations showed that discriminating 734

between models standing for candidate theories of the MMN was not straightforward—at least using classical 735

oddball paradigms. Statistically powerful and reliable model inference required optimal conditions, including 736

good signal quality (SNR; Fig 4) and sufficient sample size (Fig 5). The effects of sub-optimal conditions 737

were complex and not entirely intuitive for whom is accustomed to more conventional analyses of EEG 738

signal. In the classical frequentist analysis of ERP, low SNR is a well recognized issue that threatens 739

statistical power—–a serious brake to scientific discovery but one that can be mechanically compensated by 740

increasing the sample size [104,105]. Contrasting with this view, we have found that the candidate models 741
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got increasingly confounded when SNR decreased in a strongly biased way that favored some models in all 742

circumstances, including when a competitor was the true generative model, thereby distorting the results 743

rather than simply lowering the chance of positive findings (Fig 4). Unfortunately, the same simulations 744

showed that the distortions introduced by poor signal quality could hardly be offset by the use of larger 745

datasets, as increasing the sample size had primarily the effect of sharpening the confusion matrix but not 746

so much of eliminating bias (said otherwise, large samples resulted in the posterior mass distribution being 747

concentrated on a single model but not necessarily the true one, see Fig 5). This suggests that selecting 748

participants with high quality data, even though it reduces the sample size, might be a worthy strategy 749

to improve the reliability of model selection (Fig 8). However it should be noted that, even under the 750

best conditions afforded by electrophysiological recordings, some models could no be disambiguated, the 751

best example being the Shannon surprise and precision-weighted prediction error outputs of the Bayesian 752

learning process. Altogether our simulations highlight the utmost importance of conducting model recovery 753

analyses prior or jointly with Bayesian model inference, and to use the results of the simulations to inform 754

the interpretation of model selection outcomes. 755

Besides data properties, analytical choices can also influence scientific conclusions, and it is worth reviewing 756

some of the specific ways in which the dependence of results on methods manifests in computational modeling 757

studies—especially regarding model comparison and selection. 758

The first consideration is the model space. By nature, BMC may pick a model out based on its performance in 759

predicting data, but only relatively to other models. The evidence provided by BMC in favor of a model is only 760

as good as the choice of the unfortunate competitors, and the contribution of a modeling study to theoretical 761

debates depends critically on how adequately candidate theories were translated in computational models. 762

Recent unifying efforts have attempted to subsume adaptation dynamics under the predictive coding framework 763

by reframing adaptation processes as a natural component of the predictive processing machinery, namely 764

the attenuation of responsiveness of sensory cortices under the influence of top-down predictions [16,106,107]. 765

The models implemented in the present study have very distinct origins: SSA as exponential decay and 766

recovery is essentially a phenomenological function empirically derived from physiological observations, while 767

Bayesian models are mathematical implementations of computational learning principles. This does not mean 768

that they can not or need not be compared. On the contrary, the combined use of oddball and control stimuli 769

sequences in animal studies allowed for the complete separation of repetition suppression and prediction error 770

signals in single-cell recordings, suggesting distinctive mechanisms at the physical level [16,63,64,108]. In 771

addition, while predictive theories of the MMN interpret the electrophysiological component as an index 772

of Bayesian inference on sensory input, they remain largely uncertain about which aspect of the Bayesian 773
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process is most reflected in the scalp field potential (prediction error, surprise, model updating, etc.). We 774

have accommodated this uncertainty by declining the BL models in multiple versions each implementing a 775

measure or output of the Bayesian learning process. 776

A second important consideration arises at the stage of group-level inference. There are two procedures 777

available for Bayesian model comparison, each suited to distinct scenarios: fixed-effect analysis (ffx–BMC)—– 778

perfectly adapted to a situation where the same mechanism is to be found across all participants—–and a 779

random effect approach more appropriate to heterogeneous populations (rfx–BMC; [87, 109]). The latter 780

is mathematically more sophisticated and as such have benefited from more methodological attention. It 781

may even have been credited with more validity in the domain of brain data modeling, yet the authors 782

of the rfx–BMC themselves present the two approaches as diverging primarily on the specific and distinct 783

assumptions they make on the population structure. For the computational modeling of the MMN we 784

have opted for a fixed-effect approach and this decision is more than a mere methodological concern. The 785

selection of the most plausible population structure is a statement of theoretical interest in itself. While 786

the homogeneous assumption suggests invariance, pointing towards a hard-coded, defining feature of the 787

organism, heterogeneity implies inherent diversity and possibly plasticity. Therefore, as far as elucidating 788

the mechanisms of a cognitive or neural process is concerned, the implications of deciding between either 789

population structures are far-reaching. One epistemological implication is the reasonable expectation one may 790

have about the contribution of modeling studies to debates around competing mechanistic hypotheses. Such 791

contention can, at least in theory, be settled under the homogeneity assumption and optimal experimental 792

conditions But this is not necessarily the case when ties in the competition are tolerated, as it is the case 793

with a random-effect approach. 794

The possibility of multiple coexisting models is also conditioned by the way the temporal dimension of 795

the targeted neural response is handled. There is a long history of debate around the number of cortical 796

generators underlying the MMN [94,110,111] but most computational modeling studies of the MMN have 797

treated it as a uniform component by averaging the signal of a large time-window in the spirit of classical ERP 798

analysis. Yet, following the perspective offered by DCM studies [52,57,58], the MMN appears as a neural 799

marker of a distributed, hierarchical, prediction (error)–based processing of internal and external information. 800

In this view the electrophysiological signal is a mixture of multiple responses from the various units composing 801

the predictive coding architecture, each with its own distinct dynamics, and we may anticipate that temporal 802

averaging will blur the distinctions between them. In this perspective, time-resolved approaches as has 803

been implemented here and in previous works by some of us, appear absolutely essential for computational 804

modeling studies to help elucidate the MMN mechanisms. 805
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Perspectives 806

The present paper has deployed and improved upon a computational approach to the dynamic modeling 807

of brain responses to sequences of sounds, in the context of existing data collected from a classical oddball 808

paradigm. It is noteworthy that robust inference about the mechanisms of the auditory MMN could be drawn 809

from such a simple paradigm, and future research should question whether the findings would replicate in 810

more sophisticated designs including e.g. roving deviants [71, 74], predictable sequences [72], local-global 811

violation rules or omission effects [68]. Another important question is what are the algorithmic underpinnings 812

of the MMN at various latencies in cases where the adaptation mechanism is unlikely to play a significant 813

role, e.g. for deviance features such as delay, duration or intensity or in the context of abstract rules. 814

Future work should also refine the mechanistic accounts of the MMN by fitting time-resolved models on 815

spatially resolved data such as MEG-derived cortical sources [71,72], as well as by testing models that are 816

more biophysically plausible [37,65–68]. 817
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Supporting information 818

Fig S1. Frontal ROIs selected for EEG data for both studies. A: Study 1 EGI GSN200 system 128
electrodes layout, plotted on a head template. The frontal ROI is highlighted, comprising twelve frontal
electrodes, including Fz. B: Study 2 Biosemi Active Two system 64 electrodes layout. For this study the
selected ROI comprised only five frontal electrodes, also including Fz.
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Fig S2. Automatic detection of MMN peak. A Gaussian function has been fitted on each
participant’s average ERP. Participants for whom the gaussian fit has failed to result in a negative peak (due
to an absence of detectable MMN, or presence of a positive deflection instead of the expected negativity)
have been excluded from subsequent analyses.

September 9, 2022 47/61

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507526doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507526
http://creativecommons.org/licenses/by/4.0/


Fig S3. Correlations between models used for the recovery analysis. SSA: stimulus-specific
adaptation, BL: Bayesian learning, surp: Shannon’s surprise, pwpe: precision-weighted prediction error,
madj : model adjustment.

S1 Text. Bayesian modeling of the population structure. 819

The choice between a fixed-effect and a random-effect BMC may be arbitrated from data using Bayesian 820

inference. Each of these approaches correspond to a specific population model : a Dirac and a multinomial 821

distribution, respectively, which we will refer to Mffx and Mrfx. These population models can be formalized 822

in a Bayesian framework and their likelihood estimated and compared so as to infer the best population 823

model given the observed subject-level models’ evidence, the variational free energy F . 824

The assumption about the population structure can be formalized as a prior probability on the distribution

of models frequencies in the population. Let us consider a set of K models mk, each present in the population

with a probability (or frequency) rk, with 0 ≤ rk ≤ 1 and
∑K
k=1 rk = 1. The vector r represents the

distribution of models in the population and is unknown a priori but may can be adequately described using

a multinomial, Dirichlet distribution. If, moreover, we have no prior assumption or information about models

frequencies, we might reasonably assume them to be equally probable, which translates as a symmetric

Dirichlet probability density function for the prior on r:

p(r) = Dir(α) =
Γ(Kα)

Γ(α)K

K∏
k=1

rα−1k (21)

where Γ is the gamma function and α a concentration parameter that controls the degree of heterogeneity 825
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of the population. When α � 1 the prior strongly favors equiprobable distributions of models in the 826

population, thus dismissing poorly heterogeneous population hypothesis. However, the heterogeneous 827

population assumption is more appropriately formalized as an uninformative (flat) prior that is uniform over 828

the space of possible distributions of models frequencies, which can be obtained with α = 1. On the other 829

hand, when α tends towards 0 the prior on r favors population distributions that are concentrated around a 830

unique model, i.e. a homogeneous population. 831

Rigoux et al. (2014) derived approximations of population model evidence; we refer the readers to their 832

paper for mathematical details [112]. These measures have been implemented in the VBA toolbox and are 833

provided by the ”VBA groupBMC” function. 834

Fig S4. Comparing assumptions about the distribution of models frequencies in the
population. Model evidence for the two population structures underlying the ffx-BMC (homogeneous
population, MFFX) and the rfx-BMC (heterogeneous population, MRFX) have been calculated and
contrasted latency-wise at the level of model families. Only participants who displayed a negative MMN at
the target latency were included. The homogeneous population distribution (MFFX) dominated over the
entire MMN time-window in Study 2, and at most latencies in Study 1—except between 130 and 140ms. A
closer inspection of models’ estimated frequencies at t=130ms and 140ms in Study 1 indicated that the slight
evidence in favor of population heterogeneity at these latencies is driven by BLmadj models competing with
SSA models. Given that BLmadj models become dominant in the whole sample at 160ms, the apparent
heterogeneity 20ms earlier might be attributed to inter-individual variation in the time at which the
dominant generative mechanism of the MMN switches between adaptation and Bayesian-like processes.
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LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon, within the program ”Investissements 840

d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The funders had 841

no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 842

We would like to thank Kristien Aarts, Camille Fakche and Arthur Saverot for their help in collecting 843

data for Study 2. 844

Author Contributions 845

Conceptualization: APC, FL, JM, AL, OA. 846

Data curation: APC, EF, AL, OA. 847

Formal analysis: APC, OA. 848

Funding acquisition: RD, JM, AL. 849

Investigation: EF, AL. 850

Methodology: APC, FL, JM, OA. 851

Supervision: AL, OA. 852

Visualization: OA. 853

Writing – original draft preparation: APC, OA. 854

Writing - review and editing: APC, FL, EF, RD, JM, AL, OA. 855

856

September 9, 2022 50/61

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507526doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507526
http://creativecommons.org/licenses/by/4.0/


References
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