

1 **“Molecular analysis of the interactions between phages and the bacterial host**
2 ***Klebsiella pneumoniae*”**

3
4 Inés Bleriot^{1,2}, Lucia Blasco^{1,2}, Olga Pachos^{1,2}, Laura Fernández-García^{1,2}, María López^{1,2,8}, Concha
5 Ortíz-Cartagena^{1,2}, Antonio Barrio-Pujante^{1,2}, Felipe Fernández Cuenca^{2,3,6}, Álvaro Pascual^{2,3,6},
6 Luis Martínez-Martínez^{2,4,6}, Jesús Oteo-Iglesias^{2,5,6} and María Tomás^{1,2,6*}

7
8 1. Microbiology Department-Research Institute Biomedical A Coruña (INIBIC); Hospital A
9 Coruña (CHUAC); University of A Coruña (UDC), A Coruña, Spain.
10 2. Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the
11 behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC).
12 3. Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen
13 Macarena, Institute of Biomedicine of Seville (University Hospital Virgen
14 Macarena/CSIC/University of Seville), Seville, Spain.
15 4. Clinical Unit of Microbiology, Reina Sofía University Hospital, Maimonides Biomedical
16 Research Institute (IMIBIC) of Cordoba, Spain.
17 5. Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections,
18 National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid,
19 Spain.
20 6. Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades
21 Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.

22
23
24
25
26
27
28
29
30
31
32 **Running title:** Molecular response to phages in the host *Klebsiella pneumoniae*
33 **Keywords:** *Klebsiella pneumoniae*, Lytic phages, Phage-Host interaction, Defence
34 mechanism, Prophages, Plasmid.

35 **ABSTRACT:**

36 Lytic phages are currently considered among the best options for treating infections
37 caused by multi-drug resistant pathogens. Phages have some advantages over
38 conventional antibiotics. For example, phages acquire modifications in accordance with
39 their environment, and thus with the bacteria present, which has led to the co-evolution
40 of both types of organism. Therefore, both phages and bacteria have acquired resistance
41 mechanisms for protection. In this context, the aims of the present study were to
42 analyze the proteins isolated from twenty-one novel lytic phages of *Klebsiella*
43 *pneumoniae* in search of defence mechanisms against bacteria and also to determine
44 the infective capacity of the phages. A proteomic study was also conducted to
45 investigate the defence mechanisms of two clinical isolates of *Klebsiella pneumoniae*
46 infected by phages. For this purpose, the twenty-one lytic phages were sequenced and
47 *de novo* assembled using the Illumina-Miseq system and Spades V.3.15.2 respectively.
48 Gene annotation was performed with Patric, Blast, Hhmer and Hhpred tools. The
49 evolutionary relationships between phages were determined by RaxML. The host-range
50 was determined in a collection of forty-seven clinical isolates of *K. pneumoniae*,
51 revealing the variable infectivity capacity of the phages. Genome sequencing showed
52 that all of the phages were lytic phages belonging to the family *Caudovirales*. The size
53 and GC content of the phages ranged from 39,371 to 178,532 bp and from 41.72 % to
54 53.76 %, respectively. Phage sequence analysis revealed that the proteins were
55 organized in functional modules within the genome. Although most of the proteins have
56 unknown functions, multiple proteins were associated with defence mechanisms
57 against bacteria, including the restriction-modification (RM) system, the toxin-antitoxin
58 (TA) system, evasion of DNA degradation, blocking of host RM, the orphan CRISPR-Cas
59 system and the anti-CRISPR system. Proteomic study of the phage-host interactions (i.e.
60 between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages
61 vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several
62 defence mechanisms against phage infection (prophage, plasmid,
63 defence/virulence/resistance and oxidative stress proteins) in the bacteria, and of the
64 Acr candidate (anti-CRISPR protein) in the phages.

65

66

67 **IMPORTANCE**

68

69 Phages, viral parasites of bacteria, have long protected the Earth's biosphere against

70 bacterial overgrowth and could now help in the fight against antimicrobial resistance.

71 However, researchers, including microbiologists and infectious disease specialists,

72 require more knowledge about the interactions between phages and their bacterial

73 hosts and about the defence mechanisms in both viruses and bacteria. In this study, we

74 analyzed the molecular mechanisms of viral and bacterial defence in phages infecting

75 clinical isolates of *Klebsiella pneumoniae*. Viral defence mechanisms included RM

76 system evasion, the Toxin-Antitoxin system, DNA degradation evasion, blocking of host

77 RM and resistance to the abortive infection system (Abi), anti-CRISPR and CRISPR-Cas

78 systems. Regarding bacterial defence mechanisms, proteomic analysis revealed

79 overexpression of proteins involved in the prophage (FtsH protease modulator), plasmid

80 (cupin phosphomannose isomerase protein), defence/virulence/resistance (porins,

81 efflux pumps, LPS, pili elements, quorum network proteins, TA systems and

82 methyltransferases), oxidative stress mechanisms and Acr candidates (anti-CRISPR

83 protein). The findings reveal some important molecular mechanisms involved in the

84 phage-host bacterial interactions; however, further study in this field is required to

85 improve the efficacy of phage therapy.

86

87 **INTRODUCTION**

88 Bacteriophages, or phages, are natural predators of bacteria. Phages are the most
89 abundant and ubiquitous biological entities on Earth, accounting for an estimated total
90 of 10^{31} viral particles (1, 2). In the current context of increasing antibiotic resistance, the
91 emergence of alternative therapies is welcome. Thus, lytic phages are currently
92 considered one of the best options for treating infections caused by multidrug-resistant
93 (MDR) bacteria (3, 4), as demonstrated in clinical trials conducted to date (5-10). In
94 general, phage therapy has some advantages over the use of conventional antibiotics,
95 such as low toxicity and high host specificity (3, 11). These characteristics enable phages
96 to target the pathogen responsible for the infection to be treated, thus preserving the
97 commensal or mutualistic bacteria that make up the microbiota, whose role in human
98 health we are only beginning to understand. In addition, phages are usually easier to
99 administer, as they do not require repeated administration, as is generally required with
100 antibiotics. This is because phages divide at the site of infection and can therefore
101 remain in the human body for relatively long periods of time. Another characteristic of
102 phages that makes them good candidates for therapy is their ability to adapt to changes
103 in the bacterial host, which has resulted from the coevolution of both types of organisms
104 (12).

105 Bacteria have developed mechanisms to prevent phage infection at almost all stages of
106 the viral replication cycle (13, 14). Firstly, bacteria can prevent phage attachment by
107 mutating or altering their surface receptors, by producing inhibitors that outcompete
108 the phage for receptors, or by producing polysaccharides that physically mask phage
109 receptors (13). In order to prevent injection of phage DNA into the cytoplasm, the
110 bacteria then use the superinfection exclusion (Sie) system, which is characterized by
111 proteins that block the entry of phage DNA into host cells (15). If the phage nevertheless
112 manages to enter the cell, the bacteria employ other defence systems such as the
113 abortive infection system (Abi) to interrupt phage development at any stage
114 (replication, transcription or translation) (16), the bacteriophage exclusion system
115 (BREX) (17) or the defence island system associated with restriction-modification
116 (DISARM) (18) to interrupt replication. Phages can also use the Toxin-Antitoxin (TA)
117 systems, characterized by adjacent genes, generally consisting of two components: a
118 stable toxin and an unstable antitoxin. The unstable component is degraded under

119 stress conditions by the protease system, leading to toxin activation and often resulting
120 in reduced bacterial metabolism and phage inhibition (19, 20). Bacteria can also employ
121 other types of systems to cleave phage DNA, such as the restriction-modification (RM)
122 system, which is characterized by an endonuclease protein that protects the bacterial
123 cell by cutting foreign DNA at specific points, and a cognate DNA methylase, which
124 modifies and protects the host DNA (21). They can also employ the clustered regularly
125 interspaced short palindromic repeats–CRISPR-associated proteins (CRISPR-Cas)
126 system, an adaptive immune system (22) characterized by the acquisition of spacer
127 sequences, which are small fragments of foreign nucleic acids of phage or foreign DNA,
128 between the repeats of the CRISPR locus (23).

129 Phages have, in turn, developed counterstrategies to evade bacterial defence
130 mechanisms (24). For example, for successful adsorption, phages can modify their
131 receptor binding proteins (RBPs) by acquiring mutations to obtain new receptors (25).
132 In turn, they are also able to acquire enzymes such as depolymerase to access masked
133 receptors (26, 27) in a way that allows them to interact with a surface component
134 expressed by the host at that time (28). However, when a phage genome manages to
135 enter the cell, it can still face the myriad intracellular antiviral barriers described above.
136 Phages can respond to these by promoting the mutation of specific genes to prevent
137 activation of the bacterial Abi system (29). They can also evade bacterial RM systems
138 by reducing the number of restriction sites in their genome (30), modifying bases in their
139 genome (31), co-injecting protein (for instance, DarA and DarB in the phage P1) with the
140 genome to bind directly to the phage DNA and mask restriction sites (32), stimulating
141 the action of modification enzymes and degrading an RM cofactor. Phages can also
142 sequester host antitoxins via a protein that probably inhibits Lon protease activity, to
143 avoid the deleterious action of the toxins of the TA systems (33). To circumvent the
144 effect of bacterial TA systems, one phage, T4, encodes its own antitoxin protein (Dmd)
145 that functionally replaces the unstable antitoxin of the host, thereby promoting phage
146 propagation (34). Finally, phages have developed mechanisms to evade the bacterial
147 CRISPR-Cas system. For instance, they can evade CRISPR through a single-nucleotide
148 substitution or a complete deletion in the protospacer region or in the conserved
149 protospacer-adjacent motif (PAM) (35). Phages have also developed anti-CRISPR
150 systems, which basically consist of Acr proteins (typically small proteins of 80-150 aa)

151 that inhibit bacterial CRISPR-Cas activity by binding directly to, and thus inactivating, the
152 Cas protein, so that phages can successfully replicate in the bacterial host (36).

153 A better understanding of phage-host interaction could lead to the development of
154 more successful therapeutic applications for phages. In this context, the aims of the
155 present study were to analyze the proteins isolated from twenty-one novel lytic phages
156 of *K. pneumoniae* in search of defence mechanisms against bacteria and also to
157 determine the infectivity capacity of the phages. A further aim was to investigate the
158 defence mechanisms of bacteria in response to phage infection.

159 **MATERIAL AND METHODS**

160 **Bacterial strains**

161 A collection of forty-seven clinical isolates of carbapenemase-producing *K. pneumoniae*
162 obtained from the Virgen Macarena University Hospital (Seville, Spain) and the National
163 Centers for Microbiology (CNM; Carlos III Health Institute, Spain) was used in this study
164 (Table 1). The sequence type (ST) and the capsular type (K) of each strain were
165 determined using the methods available on the Pasteur Institute website
166 (<http://bigsdn.web.pasteur.fr/Klebsiella>, accessed between 2018 and present) and the
167 Kaptive website (<https://Kaptive-web-erc.monash.edu>, accessed in April 2020),
168 respectively. All strains were grown in Luria-Bertani (LB) medium (0.5 % NaCl, 0.5 %
169 yeast extract, 1 % tryptone).

170 **Isolation and purification of lytic phages**

171 Ten new lytic phages isolated from sewage water samples and twelve lytic phages
172 previously isolated by our research group (20, 37, 38) were used in this study. Briefly, 50
173 mL samples of water were collected near sewage plants and held at room temperature
174 until processing in the laboratory. Once in the laboratory, the samples were vortexed
175 and centrifuged at 4000 × g for 10 min. The supernatant was recovered and filtered
176 through membranes of pore sizes 0.45 µm and 0.22 µm, to remove debris. One-mL
177 aliquots of the filtered samples were then added to 500 µL of the natural host *K.*
178 *pneumoniae* (Table 2) in 4 mL of soft agar (0.5 % NaCl, 1 % tryptone and 0.4 % agar;
179 supplemented or not with 1 mM CaCl₂) and poured onto TA agar plate (0.5 % NaCl, 1 %
180 tryptone and 1.5 % agar; supplemented or not with 1 mM CaCl₂) (i.e. the double-layer
181 agar technique). The plates were incubated at 37 °C. Isolated plaques of different
182 morphology were then recovered by picking with a micropipette and were stored at –

183 80°C. Two additional plaque assays and plaque picking steps were performed to check
184 and purify the isolated plaques.

185 **Propagation of phage and transmission electron microscopy**

186 Plaque-purified phages were amplified in LB liquid media (supplemented or not with 1
187 mM CaCl₂, depending on phage), with shaking (180 rpm) at 37 °C, by infecting an early
188 logarithmic growth phase (OD_{600nm} = 0.3 – 0.4) of the natural host of each phage (Table
189 2). After lysis, i.e. when the culture appeared clear, bacterial debris was removed by
190 centrifugation (4302 × g 10 min) and the remaining suspension was filtered through
191 membranes of pore sizes 0.45 µm and 0.22 µm. Finally, the supernatants were serially
192 diluted in SM buffer (0.1 M NaCl, 10 mM MgSO₄, 20 mM Tris-HCl pH 7.5) and seeded by
193 the double-layer agar method. The ten new lytic phage solutions were negatively
194 stained with 1 % aqueous uranyl acetate before being analyzed by transmission electron
195 microscopy (TEM) in a JEOL JEM-1011 electron microscope.

196 **Phage DNA extraction and whole genome sequencing (WSG)**

197 The phage DNA of the ten new lytic phages was isolated from the strains with the
198 phenol:chloroform method following the phagehunting protocol
199 (<http://phagesdb.org/media/workflow/protocols/pdfs/PCI SDS DNA extraction 2.20 13.pdf>, accessed on 1 February 2021). DNA concentrations and quality were measured
200 in a Nanodrop ND-10000 spectrophotometer (NanoDrop Technologies, Waltham, MA,
201 USA) and Qubit fluorometer (Thermo Fisher Scientific, USA). Genomic libraries were
202 then prepared using the Nextera XT Library prep kit (Illumina), following the
203 manufacturer's instructions. The distribution of fragment lengths was checked in an
204 Agilent 2100 Bioanalyser, with the Agilent Hight sensitivity DNA kit. Libraries were
205 purified using the Mag-Bind RXNPure plus magnetic beads (Omega Biotek) and finally,
206 the pool was sequenced in Miseq platform (Illumina Inc, USA). The quality of the FASTQ
207 file was checked using the software FastQC (39) and summarized using MultiQC (40).
208 Sequences of 300 bp paired-end reads of each isolate were “*de novo*” assembled using
209 Spades V.3.15.2 (41).

211 **Phage genome annotation**

212 ***Defence mechanisms:***

213 All assemblies were initially annotated by sequence homology using Patric 3.6.9
214 (<http://patricbrc.org>, accessed on 22 February 2021) and were then manually refined

215 using Blastx (<http://blast.ncbi.nlm.nih.gov>, accessed between August and October 2021)
216 and Hhmer (<http://hmmer.org>, accessed between August and October 2021), as well as
217 the Hhpred tool (<https://toolkit.tuebingen.mpg.de/tools/hhpred>, accessed between
218 August and October 2021), which predict functions through protein structure. In
219 addition, to search for phage defence mechanisms against bacteria, the CRISPR Miner 2
220 (<http://www.microbiome-bigdata.com/CRISPRminer2/index/>, accessed in March 2022)
221 and PADLOC (<https://padloc.otago.ac.nz/padloc/>, accessed in March 2022) tools were
222 used to search for possible CRISPR-cas systems, as well as the AcrDB tool
223 (<https://bcb.unl.edu/AcrFinder/>, accessed on October 2021) to search for possible anti-
224 CRISPR-cas systems with the defect parameter of the website (Aca e-value: 0.01, Aca
225 identity %: 30. Aca coverage: 0.8, Maximum intergenic distance between genes [bp]:
226 150; Operon up/down-stream range for MGE-Prophage search [no. of genes]: 10).
227 Finally, the family and genus of the different phages were determined by sequence
228 homology with the phage sequences available in the NCBI database. Complete genome
229 sequences were included in the GenBank Bioproject PRJNA739095
230 (<http://www.ncbi.nlm.nih.gov/bioproject/739095>).

231 Phage phylogenetic analysis and genome comparison:

232 Phylogenetic analysis of the twenty-one phages was performed using the nucleotide
233 sequence of the large terminase subunit of each phage. Alignment was first performed
234 with MAFF server (<https://mafft.cbrc.jp/alignment/server/index.html>, accessed on 3
235 January 2022) and a phylogenetic tree was then constructed using RAxMLHPC-
236 PTHREADS-AVX2 version 8.2.12 (42) under the GTRGAMMA model and 100 bootstrap
237 replicates. A graphical representation of the comparison of all phage genomes was then
238 constructed with the VipTree website (<https://www.genome.jp/viptree/>, accessed in
239 June 2022) according to the previously established phylogenetic relationship.

240 **Host-range assay**

241 The phage host spectrum was tested by the spot test technique (43), in a collection of
242 forty-seven clinical strains of *K. pneumoniae*. Briefly, 200 µL of an overnight culture was
243 mixed with 4 mL soft agar and poured on TA agar plates. Once the soft medium
244 solidified, 15 µL drops of high titre phages were added to the plates. For each isolate, a
245 negative control consisting of SM buffer was included in each plate. All determinations
246 were made in triplicate. The criteria used to determine the phage infectivity were lack

247 of spots (no infection), presence of clear spots (infection) and presence of turbid spots
248 (low infection or resistance).

249 **Study of bacteria genome of the K3574 and K3320 clinical isolates**

250 The genome of the clinical isolates of *K. pneumoniae* K3574 (SAMEA3649560) and K3320
251 (SAMEA3649520) was examined to search CRISPR-Cas systems, by using the CRISPR
252 Miner 2 (<http://www.microbiome-bigdata.com/CRISPRminer2/index/>, accessed in
253 March 2022) and the PADLOC tool (<https://padloc.otago.ac.nz/padloc/>, accessed in
254 March 2022). In addition, the genomic annotation of the Rastserver was also studied in
255 order to check and validate the results obtained with other tools
256 (<https://rast.nmpdr.org>, accessed in August 2022). Plasmids were then searched for
257 using the plasmidfinder v2.0.1 (20-07-01)
258 (<https://cge.food.dtu.dk/services/PlasmidFinder/>, accessed in July 2022), RM system
259 using the Restriction-ModificationFinder v.1.1 (accessed in June 2015)
260 (<https://cge.food.dtu.dk/services/Restriction-ModificationFinder/history.php>, accessed
261 in July 2022) and prophages using the Phaster tools (<http://phaster.ca>, accessed in July
262 2022).

263 **Characterization of phages vB_KpnS-VAC35 and vB_KpnM-VAC36**

264 Phage adsorption:

265 Adsorption of phages vB_KpnS-VAC35 and vB_KpnM-VAC36 to the bacterial surface
266 receptors of clinical strains K3574 and K3320, respectively, was determined from the
267 adsorption curve (44). Briefly, overnight cultures of *K. pneumoniae* K3574 and K3320
268 were diluted 1:100 in LB and incubated at 37 °C at 180 rpm, until a cell count of 10⁸
269 CFU/mL was reached. At this point, the cultures were held at room temperature without
270 shaking and were infected with a phage suspension at multiplicity of infection (MOI) of
271 0.01. Every 2 minutes, 1 mL of culture was removed and placed in contact with 1 % of
272 chloroform. The samples were then centrifuged for 2 min at 12000 × g to sediment the
273 cell debris and adsorbed phage. The supernatants were serially diluted in SM buffer for
274 subsequent plating on a double agar plate with the corresponding host plating (K3574
275 and K3320, respectively). The number of phages mixed with bacterial host cells at time
276 0 was considered 100 % free of phages. The adsorption curve analysis was performed in
277 triplicate.

278 One-step growth curve assay:

279 A one-step growth curve of phages vB_KpnS-VAC35 and vB_KpnM-VAC36 was
280 constructed in clinical strains K3574 and K3320, respectively, to determine the latent
281 period (L) and the burst size (B). The latent period was defined as the interval between
282 adsorption of the phages to the bacterial cells and the release of phage progeny. The
283 phage burst size was defined as the number of viral particles released in each cycle of
284 infection per bacteria cells. For this purpose, an overnight culture of the strains was
285 diluted 1:100 in LB and incubated at 37 °C at 180 rpm, until a cell count of 10⁸ CFU/mL
286 was reached. At this point, cultures were infected with a phage suspension at an MOI of
287 0.01 and held at room temperature for the respective adsorption times (5 and 2 min).
288 The cultures were then washed twice by centrifugation at 6000 × g for 10 min in order
289 to remove the free phages. The pellet was then resuspended in 1 mL of LB, and 25 µL of
290 bacterial mixture was added to 25 mL of LB (time 0). Dilutions were made in SM buffer
291 and subsequently seeded on double agar plates for subsequent quantification. The one-
292 step growth curve analysis was performed in triplicate.

293 Phage kill curve assay in liquid medium:

294 Killing curves were constructed from the selected isolates K3574 and K3320, in
295 accordance with the presence of intact CRISPR-cas system in their genome. Phages
296 vB_KpnS-VAC35 and vB_KpnM-VAC36 were used to monitor the infection of the strain
297 by optical density measured at a wavelength of 600 nm (OD_{600nm}) and counts of CFU/mL
298 and PFU/mL. For this purpose, an overnight culture of the selected strains was diluted
299 1:100 in LB and incubated at 37 °C at 180 rpm, until the early logarithmic phase was
300 reached (OD_{600nm} = 0.3 – 0.4). At this point, cultures were infected with phages at an
301 MOI of 1. The OD_{600nm}, the number of CFU/mL and PFU/mL were determined every 30
302 min for 3 h. In all cases, the control was the strain without phage infection. All analyses
303 were performed in triplicate.

304 **NanoUHPLC-Tims-QTOF proteomic analysis: interaction between phages (vB_KpnS-
305 VAC35 and vB_KpnM-VAC36) and clinical strains (K3574 and K3320)**

306 NanoUHPLC-Tims-QTOF analysis was performed for quantitative study of the protein
307 profile of strain K3574 and K3320 with and without infection with phages vB_KpnS-
308 VAC35 and vB_KpnM-VAC36. The samples were first prepared and overnight culture of
309 strains was diluted 1:100 in 25 mL LB, and incubated at 37 °C at 180 rpm, until the
310 cultures reached an early logarithmic phase of growth (OD_{600nm} = 0.3 - 0.4). The cultures

311 were then infected with phages at an MOI of 1. After 1 h, the cultures of the strains were
312 harvested by centrifugation at $4302 \times g$ for 20 min at 4 °C. The pellets were then stored
313 at – 80 °C to facilitate cell disruption. The next day, the pellet was resuspended in PBS
314 and sonicated. Finally, the sonicated pellets were centrifuged at $4302 \times g$ for 20 min at
315 4 °C, and the flow-through, i.e. crude extract, was analyzed by LC-MS and NanoUHPLC-
316 Tims-QTOF. The equipment used for this purpose was a TimsTof pro mass
317 spectrophotometer (Bruker), a nanoESI source (CaptiveSpray), a time-QTOF analyser
318 and a nanoELUTE chromatograph (Bruker). Sample preparation was carried out by
319 tryptic digestion in solution with reduction-alkylation followed by Ziptip desalting. Data
320 were acquired in nanoESI positive ionization mode, Scan PASEF-MSMS mode and CID
321 fragmentation mode, with an acquisition range of 100-1700 m/z. The products were
322 separated on a Reprosil C18 column (150 × 0.075 mm, 1.9 μm and 120 Å) (Bruker) at 50
323 °C, with an injection volume of 2 μL. The mobile phases consisted of (A) 0.1 %
324 H₂O/formic acid and (B) 0.1 % acetonitrile/formic acid. The flow rate was 0.4 μL/min,
325 and the gradient programme was as follows: 11 % B (0-5 min), 16 % B (5-10 min), 35 %
326 B (10-16 min), 95 % B (16-18 min) and 95 % B (18-20 min). Finally, different software
327 was used for data acquisition: Compass Hystar 5.1 (Bruker) and TimsControl (Bruker)
328 and TimsControl (Bruker), Data analysis (Bruker) and PEAKS studio (Bioinformatics
329 solutions).

330 RESULTS

331 Isolation, propagation and electron microscopic analysis of phages

332 The twenty-one phages used in this study, named according to accepted practices (45)
333 (Table 2), were obtained from wastewater samples. However, to facilitate reading this
334 paper, we will incorporate the data previously found in these studies in order to enable
335 comparison between the phages. Thus, TEM studies revealed that fifteen phages
336 belonged to the *Siphoviridae* family, characterized by a long, flexible tail (vB_KpnS-VAC2,
337 vB_KpnS-VAC4, vB_KpnS-VAC5, vB_KpnS-VAC6, vB_KpnS-VAC7, vB_KpnS-VAC8,
338 vB_KpnS-VAC10 and vB_KpnS-VAC11 (20), vB_KpnS-VAC35, vB_KpnS-VAC51, vB_KpnS-
339 VAC70, vB_KpnS-VAC110, vB_KpnS-VAC111, vB_KpnS-VAC112 and vB_KpnS-VAC113).
340 Moreover, four (vB_KpnM-VAC13 [37], vB_KpnM-VAC25, vB_KpnM-VAC36 and
341 vB_KpnM-VAC66 [38]) were found to be members of the family *Myoviridae*, which is
342 characterized by an icosahedral capsid and a rigid, contractile tail. Finally, only two

343 phages were identified as members of the family *Podoviridae*, characterized by a small,
344 non-contractile tail (vB_KpnP-VAC1 [20] and vB_KpnP-VAC71) (Figure 1B).

345 **Phage genome annotation**

346 Phage genome analysis:

347 The phage genome sequencing revealed that all phages under study, available from the
348 Genbank Bioproject PRJNA739095 (<http://www.ncbi.nlm.nih.gov/bioproject/739095>)
349 (Table 2), were lytic *Caudovirales* phages, i.e. dsDNA tailed phages, lacking lysogenic
350 genes such as integrase, recombinase and excisionase. More specifically, 63.63 % of the
351 phages belonged to the *Drexerviridae* family (14 of 21 phages), 13.64 % belonged to the
352 *Autographiviridae* family (3 of 21 phages), 13.64 % belonged to the *Myoviridae* family (2
353 of 21 phages) and 9.09 % belonged to the *Ackermannviridae* family (2 of 21 phages). The
354 genomes ranged from 39,371 bp in the case of phage vB_KpnP-VAC1, a member of the
355 family *Autographiviridae* and the genus *Teetrevirus*, to 178,532 bp in the case of phage
356 vB_KpnM-VAC66, a member of the family *Myoviridae*, subfamily *Tevenvirinae* and the
357 genus *Slopekvirus*. The guanine-cytosine content ranged from 40.90 % in the case of
358 vB_KpnM-VAC36 to 53.76 % in the case of vB_KpnM-VAC25. The genomic study
359 revealed that the structure of the phage genomes varied depending on the type of
360 phage. In the case of the members of the *Drexerviridae* (vB_KpnS-VAC2-11, vB_KpnS-
361 VAC70 and vB_KpnS-VAC110-113), *Autographiviridae* (vB_KpnP-VAC1, vB_KpnP-VAC25
362 and vB_KpnP-VAC71) and *Ackermannviridae* (vB_KpnS-VAC35 and vB_KpnS-VAC51)
363 families, the genome was organized in functional modules of genes related to structure,
364 packaging, lysis, transcription and regulation. By contrast, for members of the
365 *Myoviridae* (vB_KpnM-VAC13, vB_KpnM-VAC36 and vB_KpnM-VAC66) family, which are
366 “larger phages” (> 100 bp), no lysis-specific blocks were distinguished, and structural
367 and morphogenesis-related proteins were repeated in several blocks throughout the
368 genome. Considering the lysis genes, all phages had endolysins and holins, proteins
369 which are responsible for the degradation of the bacterial cell wall during infection of
370 the host. However, a difference was observed in terms of spanin, a protein involved in
371 the lysis process in Gram-negative hosts, depending on the family to which the phage
372 belongs: the *Drexerviridae* family had a unimolecular spanin (U-spanin), while the
373 *Autographiviridae*, *Ackermannviridae* and *Myoviridae* families had a heterodimer
374 molecule of spanin (I-spanin and O-spanin). Regarding the depolymerase genes,

375 generally related to the tail receptor, five of the phages (23.81 %) had one depolymerase
376 (vB_KpnS-VAC4, vB_KpnS-VAC7, vB_KpnS-VAC10, vB_KpnS-VAC11 and vB_KpnS-
377 VAC70), while two of the phages (9.52 %) (vB_KpnS-VAC2 and vB_KpnS-VAC6) had two
378 different depolymerase genes. It has been observed that the “larger phages” (vB_KpnM-
379 VAC13, vB_KpnS-VAC35, vB_KpnM-VAC36, vB_KpnS-VAC51 and vB_KpnM-VAC66) had
380 numerous tRNA genes (1, 21, 7, 22 and 1 respectively). The presence of HNH homing
381 endonucleases has been observed in the genomes of three phages (vB_KpnP-VAC1,
382 vB_KpnM-VAC13 and vB_KpnM-VAC66). The phage vB_KpnM-VAC66 contains the
383 highest number of HNH homing endonucleases.

384 *Genetic defence mechanisms of phages:*

385 An in-depth study of the phage genomes also revealed the presence of defence
386 mechanisms (Table 3) : thirty-five restriction-modification (RM) system evasion systems
387 located in sixteen phages, six TA systems located in two phages (vB_KpnM-VAC13 and
388 vB_KpnM-VAC66), one DNA degradation evasion located in phage vB_KpnP-VAC1, four
389 blocking RM of host bacteria located in phage vB_KpnM-VAC36, seven genes that confer
390 resistance to the abortive infection (Abi) system of host bacteria located in three phages
391 (vB_KpnM-VAC13, vB_KpnM-VAC36 and vB_KpnM-VAC66) and finally, two possible
392 orphan CRISPR-Cas system was located in the phages vB_KpnS-VAC35 and vB_KpnS-
393 VAC51. In addition, almost all phages possessed a possible anti-CRISPR system,
394 composed by Acr and Aca protein, except for phages vB_KpnS-VAC112 and vB_KpnS-
395 VAC113 (supplementary Table 1). An inhibitor of the TA system (protein ID: QZE51102.1)
396 was also found in the genome of the phage vB_KpnP-VAC1.

397 *Phylogenetic analysis of phages*

398 Phylogenetic analysis of the twenty-one phages revealed that they were clustered in the
399 following families: i) *Drexlerviridae* (vB_KpnS-VAC2, vB_KpnS-VAC4, vB_KpnS-VAC5,
400 vB_KpnS-VAC6, vB_KpnS-VAC7, vB_KpnS-VAC8, vB_KpnS-VAC10, vB_KpnS-VAC11,
401 vB_KpnS-VAC35, vB_KpnS-VAC70, vB_KpnS-VAC110, vB_KpnS-VAC111, vB_KpnS-
402 VAC112 and vB_KpnS-VAC113); ii) *Autographiviridae* (vB_KpnP-VAC1, vB_KpnP-VAC25
403 and vB_KpnP-VAC71); iii) *Ackerviridae* (vB_KpnS-VAC35 and vB_KpnS-VAC51); and iv)
404 *Myoviridae* (vB_KpnM-VAC36, vB_KpnM-VAC13 and vB_KpnM-VAC66). It is worth
405 mentioning that in the case of *Autographiviridae*, phage vB_KpnP-VAC1 was
406 phylogenetically more similar to vB_KpnP-VAC71 than to vB_KpnP-VAC25. Whereas, in

407 the case of the *Myoviridae*, phage vB_KpnM-VAC36 was phylogenetically more distant
408 than phages vB_KpnM-VAC13 and vB_KpnM-VAC66, which are very similar to each
409 other, as demonstrated in a previous study conducted by our research group (38).
410 (Figure 1A).

411 **Genomic comparison:**

412 In the case of the *Drexilerviridae* family, the results show that phages vB_KpnS-VAC110
413 and vB_KpnS-VAC113 are very similar (query: 97 %, identity: 99.83 %), as are phages
414 vB_KpnS-VAC7 and vB_KpnS-VAC4 (query: 91 %, identity: 98.93 %) and phages vB_KpnS-
415 VAC111 and vB_KpnS-VAC112 (query: 90%, identity: 99.55 %). However, phages
416 vB_KpnS-VAC70, vB_KpnS-VAC2, vB_KpnS-VAC6 and vB_KpnS-VAC111 show a low
417 degree of similarity (query > 75%, identity: > 82 %). In the *Autographiviridae* family, a
418 low degree of similarity between all phages was observed (query > 22 %, identity: >
419 76%). In the *Ackerviridae* family, partial similarity between phages vB_KpnS-VAC35 and
420 vB_KpnS-VAC51 (query: 93 %, identity: 95.37 %) was observed. Finally, in the *Myoviridae*
421 family, the phage vB_KpnM-VAC36 was very different from the other two phages,
422 vB_KpnM-VAC13 (query: 0 %, identity: 80.75 %) and vB_KpnM-VAC66 (query: 3 %,
423 identity: 85.05 %), which are very similar (query: 95 %, identity: 97.56%), as previously
424 demonstrated in a study carried out by our research group (38) (Figure 2).

425 **Host-range assay**

426 The phage infectivity in the collection of forty-seven clinical strains of *K. pneumoniae* is
427 shown in Figure 3A. The results showed a high variability of infectivity between the
428 phages (Figure 3B). Phage vB_KpnP-VAC1 had the lowest host-range, infecting only the
429 strain K2986, while phage vB_KpnM-VAC13 presented the highest range of activity,
430 infecting twenty-seven strains. Phages vB_KpnS-VAC35 and vB_KpnM-VAC36 also
431 exhibited a high host-range, infecting both fourteen strains. Therefore, the following
432 experiments focused on these two phages (vB_KpnS-VAC35 and vB_KpnM-VAC36).

433 **Bacterial genome analysis: K3574 and K3320 clinical isolates**

434 Both strains were found to have an intact CRISPR-Cas type I-E, with 35 spacers and 29
435 repeats in the case of K3574, and with 32 spacers and 29 repeats in the case of strain
436 K3320 (Figure 4 A and B). In turn, five plasmids located in five different contigs was found
437 in the strain K3474, while strain K3320 had four plasmids located in three different
438 contigs (Table 4). On the other hand, only strain K3574 exhibited an RM system, which

439 was type II and functioned as a methyltransferase (Table 4). Finally, five prophages (two
440 intact and three questionable) were detected in strain K3574, and seven prophages
441 (three intact, two incomplete and two questionable) were detected in strain K3320.
442 However, only the data of the prophages considered intact are shown in Table 5.

443 **Characterization of phages vB_KpnS-VAC35 and vB_KpnM-VAC36**

444 Phage adsorption:

445 Adsorption of phages vB_KpnS-VAC35 and vB_KpnM-VAC36 (Figure 5 A and B) to the
446 bacterial surface receptor was studied with the previously selected strains K3574 and
447 K3320. Phage vB_KpnS-VAC35 showed a high percentage of adsorption, with 91.28 % of
448 phage adsorbed in the strain K3574 after 5 min, while phage vB_KpnM-VAC36 showed
449 slight adsorption in the strain K3320, with 39.02 % of phage adsorbed after 2 min (Figure
450 5 C and D).

451 One-step growth curve assay:

452 The latent period determined by the one-step growth curve indicating the time taken
453 for a phage particle to reproduce inside an infected host cell and the burst size (i.e.
454 number of viral particles released in each infection cycle per cell) were respectively 10
455 min and 45.52 PFU/mL for phage vB_KpnS-VAC35 in strain K3574 and 8 min and 2.71
456 PFU/mL for the phage vB_KpnM-VAC36 in strain K3320 (Figure 5 E and F).

457 Phage kill curve of phage:

458 The infectivity assay in liquid medium to determine the infection curve for phage
459 vB_KpnS-VAC35 and vB_KpnS-VAC36 at a MOI of 1 in the selected clinical strains: K3574
460 and K3320, showed that both phages yielded successful infection, with OD_{600nm} values
461 of respectively 0.155 ± 0.05 and 0.05 ± 0.01 reached after 1 h 30 of infection (Figure 6 A
462 and B). In addition, the presence of resistant bacteria was not observed during the
463 duration of the experiment (3 h). We monitored the CFU/mL and observed that for
464 phage vB_KpnS-VAC35 in clinical strain K3574, the count reached $1.15 \times 10^4 \pm 1.34 \times 10^4$
465 CFU/mL. However, we observed a slight increase in the number of CFU/mL after 3 h of
466 phage infection, reaching $2.35 \times 10^4 \pm 2.12 \times 10^4$ CFU/mL. Therefore, although the
467 presence of resistant bacteria was not apparent from the optical density curves, the
468 CFU/mL counts show that they were present. In phage vB_KpnM-VAC36 we observed a
469 slight decrease in CFU/mL counts, which reached a value of $5.0 \times 10^4 \pm 2.83 \times 10^4$ after
470 1h 30 of phage infection and an increase of count after 2 h 30 of phage infection $1.35 \times$

471 $10^5 \pm 3.54 \times 10^4$ (Figure 6 C and D). Thus, although the appearance of resistant bacteria
472 was not observed in the optical density test and the density remained unchanged, they
473 did appear in the CFU/mL count test, as in the case of vB_KpnS-VAC35. Finally, we
474 monitored the PFU/mL, and in both cases observed an increase in the number of
475 PFU/mL after 30 min of phage infection, with values of $1.25 \times 10^9 \pm 4.95 \times 10^8$ PFU/mL
476 for the phage vB_KpnS-VAC35 and $1.35 \times 10^9 \pm 4.95 \times 10^8$ PFU/mL for the phage
477 vB_KpnM-VAC36 (Figure 5 E and F). Consequently, we can conclude that the number of
478 CFU/mL is inversely proportional to the number of PFU/mL. These data confirm that the
479 reduction in CFUs is due to multiplication of the phages.

480 **NanoUHPLC-Tims-QTOF proteomic analysis: interaction between phages (vB_KpnS-
481 VAC35 and vB_KpnM-VAC36) and clinical strains (K3574 and K3320)**

482 The proteomic study conducted by NanoUHPLC-Tims-QTOF analysis revealed a large
483 variety of proteins uniquely present in the phage-infected strain (listed in Figures 7 and
484 8 A, with the respective proportions in each strain): defence, resistance and virulence
485 proteins, oxidative stress proteins, plasmid related proteins, cell wall related proteins
486 and membrane proteins, as well as some transport proteins and proteins related to
487 DNA, biosynthesis or degradation of proteins, ribosomes, metabolism, and some of
488 unknown function. In the case of strain K3574 infected with phage vB_KpnS-VAC35,
489 some prophage-related proteins were found, while in strain K3320 infected with phage
490 vB_KpnM-VAC36 a large amount of tRNA was found. Regarding the defence proteins,
491 we found proteins related to porins, multidrug efflux RND transporter, restriction-
492 modification system type I methyltransferase, methyltransferase, two-component
493 response regulator system, TA system type II RelE/ParE family, DNA starvation protein,
494 fimbriae, pili (Figure 7 and 8 B). The details of all defence proteins, oxidative stress,
495 plasmid/prophages and tRNA are summarised in Figures 7 and 8 B. The presence of
496 some Acr candidates in the phage-infected strains was detected by NanoUHPLC-Tims-
497 QTOF analysis: seven in K3574 infected by vB_KpnS-VAC35 and one in K3320 infected
498 by the vB_KpnM-VAC36 phage (Table 6).

499 **DISCUSSION**

500 Lytic phage therapy is currently considered one of the best alternatives for treating
501 infections caused by multi-drug resistant bacterial pathogen (3, 4). Phages are known to
502 exhibit some advantages over the use of antibiotics, including the continued warfare

503 between phages and bacteria during the co-evolution of both organisms (12).
504 Consequently, phages have developed defence mechanisms to evade the resistance
505 mechanisms of bacteria (24-36), while at the same time bacteria have developed
506 defence mechanisms to evade phage infection (46). In this context, the aims of the
507 present study were to analyze twenty-one new lytic phages in search of defence
508 mechanisms, and also to identify the defence mechanisms of two clinical strain K3574
509 and K3320 when infected by phages, as better knowledge of the latter will lead to
510 improvements in the use of phages to treat infections caused by MDR bacteria.
511 Regarding the results of the whole genome sequencing (WSG) and annotation, we
512 observed that all of the phages belonged to the order *Caudoviridae*. Several studies have
513 shown that dsDNA-tailed phages are the most abundant entity on earth (47, 48). Most
514 of these phages are members of the *Siphoviridae* family (76.19 %), three are members
515 of the *Myoviridae* family (14.29 %) and three are member of the *Podoviridae* family
516 (14.29 %). Genome annotation has previously shown that all phages are lytic and lacking
517 lysogenic genes such as integrase, recombinase and excisionase (20). This point is of vital
518 importance for use of these phages in phage therapy (49, 50). Most phages were found
519 to have a typical organization of the genome in functional modules, as previously
520 described (2, 51, 52). By contrast, members of the *Myoviridae* family, which are included
521 in the "larger phages" (> 100 bp), did not present specific lysis blocks, and structural and
522 morphogenesis-related proteins were repeated in several blocks throughout the
523 genome (38, 53). The genomes of all phages had endolysins and holins, proteins that are
524 responsible for degradation of the bacterial cell wall during the infection by the host to
525 facilitate the exit of the phage progeny (54).
526 Genomic annotation revealed the presence of numerous bacterial defence mechanisms:
527 RM system evasion, TA system, DNA degradation evasion, blocking RM of host bacteria,
528 genes that confer resistance to Abi system of host bacteria, a possible orphan CRISPR-
529 cas system, and almost all the phages possessed a possible anti-CRISPR system. These
530 mechanisms have all already been described (14). The anti-CRISPR, which is composed
531 by operons of Acr and Aca proteins, was first discovered in 2013 in phages and
532 prophages of *Pseudomonas aeruginosa* (55). Acr-Aca operons are defined as genomic
533 loci fulfilling the following criteria: all genes should be in the same strand; all intergenic
534 distances should be less than 150 bp; all genes encode proteins shorter than 200 amino

535 acids in length; and finally at least one gene should be homologous to Acr or Aca proteins
536 (56). The main problem of the search of new anti-CRIPSR is that Acr proteins are very
537 poorly conserved, and the best way to discover new anti-CRISPR is therefore to use the
538 guilt-by-association approach, which searches for Aca in the genome of phages.
539 Although the function of Acas is not yet understood, these gene often encode a protein
540 containing a helix-turn-helix (HTH) motif, suggesting that they fulfil a regulatory function
541 (57).

542 The study of phage infectivity capacity revealed a large disparity in the infectivity, as
543 previously demonstrated (58, 59): phages vB_KpnM-VAC13 and vB_KpnM-VAC66
544 displayed the highest infectivity capacity (38), whereas phage vB_KpnP-VAC1 displayed
545 the lowest infectivity capacity (20). The wide host-range could be an advantage as it
546 allows infection of a larger number of hosts (60), and this trait could be useful for
547 successful phage therapy. In addition, the “larger phages” vB_KpnS-VAC35 (112.662 bp)
548 and vB_KpnM-VAC36 (169.970 bp) showed a high capacity for infectivity, infecting
549 fourteen clinical strains. Moreover, a possible anti-CRISPR system was detected in their
550 genome. Thus, the presence of the CRISPR-Cas system in the bacterial strains that were
551 successfully infected by these phages was examined to study the possible interaction of
552 both defence mechanisms. The result of this search showed the presence of class I Type
553 I-E intact CRISPR-Cas system in the genome of the strain K3574 and K3320. Both phages
554 were examined with their respective host strains. The adsorption curve revealed that
555 phage vB_KpnS-VAC35 displays a higher percentage of adsorption, a higher burst size
556 and a longer latent period than phage vB_KpnM-VAC36. Moreover, analysis of the
557 infectivity capacity by killing assay measuring the OD_{600nm}, CFU/mL and PFU/mL revealed
558 that phage vB_KpnS-VAC35 was more effective than phage vB_KpnM-VAC36.

559 Finally, proteomic studies were conducted with bacterial strains K3574 and K3320 with
560 and without phage infection (vB_KpnS-VAC35 and vB_KpnS-VAC36) to determine any
561 differences at the level of protein expression after phage infection. The pattern of
562 protein expression was found to vary depending on the strain considered. This may be
563 due to the different infection status of the bacterial cell at the time of sample processing
564 or due to the inherent proprieties of the bacteria. Therefore, the results revealed the
565 expression of FtsH protease modulator located in prophage of K3574 strain, which
566 controls the lytic pathway (61), as well as overexpression of the cupin protein located in

567 plasmid, a phosphomannose isomerase involved in LPS synthesis, which is an important
568 determinant of pathogenicity and phage susceptibility (62). In addition, proteins related
569 to bacterial defence, resistance and virulence and also to oxidative stress mechanisms
570 (63) have been observed in the phage-infected strains. Overexpression of porins, efflux
571 pumps, LPS and pili elements, previously described in the literature as phage receptors
572 (64, 65), was also observed. Moreover, proteins involved in the *quorum* network were
573 observed in both phage-infected strains, e.g. the LuxS that synthesizes AI-2 molecules,
574 or the presence of the CsrA regulator in the strain K3320 infected by phage vB_KpnM-
575 VAC36 (66, 67). Indeed, previous studies have associated the *quorum* network with
576 phage infection (68, 69). In addition, a type II RelE/ParE TA system was expressed in
577 strain K3320. This is a very interesting finding, as phage vB_KpnM-VAC36 did not
578 successfully infect strain K3320. The fundamental role played by TA systems in the
579 inhibition of phage infection has recently been demonstrated (20, 70-72). Interestingly,
580 an inhibitor of the TA system (protein ID: QZE51102.1) was found in the genome of the
581 phage vB_KpnP-VAC1. This type of gene, previously only described in one *E.coli* phage
582 (33), may play a role in phage defence against bacteria.

583 The methyltransferases, other important proteins that play a key role in phage infection
584 (73), were overexpressed in both K3574 and K3320 strains infected by phages. In
585 addition, several Acr candidate proteins were expressed in the infected strains. This is a
586 very interesting finding, because the anti-CRISPR could inhibit the host's CRISPR-cas
587 system and thus promote infection (57). Activation of all mechanisms could therefore
588 be due to the phage-host interaction, with the bacteria trying to use all of their defence
589 mechanisms in response to the infection. On the other hand, it was also observed that
590 the protein biosynthesis and degradation machinery was highly activated, which may
591 indicate the formation of new viral particles. Finally, a large amount of tRNA ligase was
592 observed in strain K3320 infected with phage vB_KpnM-VAC36, whereas none was
593 observed in strain K3574 infected with phage vB_KpnS-VAC35. This may be due to the
594 presence of large amounts of tRNA in the genome of phage vB_KpnM-VAC36.

595 **CONCLUSION**

596 Phage-host interactions have been examined ever since the discovery of phages a
597 century ago. The present study revealed numerous defence mechanisms both against
598 bacteria by phage (RM system evasion, TA system, DNA degradation evasion, RM block

599 of host, resistance to Abi, anti-CRISPR and CRISPR-cas system) and against phage
600 infection by bacteria (prophage, plasmid, defence/virulence/resistance and oxidative
601 stress proteins). However, phage-host bacteria interactions remain poorly understood
602 and further study is required in order to improve the efficacy of phage therapy.

603

604 **ACKNOWLEDGEMENTS**

605 This study was funded by grant PI19/00878 awarded to M. Tomás within the State Plan
606 for R+D+I 2013-2016 (National Plan for Scientific Research, Technological Development
607 and Innovation 2008-2011) and co-financed by the ISCIII-Deputy General Directorate for
608 Evaluation and Promotion of Research - European Regional Development Fund "A way
609 of Making Europe" and Instituto de Salud Carlos III FEDER, Spanish Network for the
610 Research in Infectious Diseases (REIPI, RD16/0016/0006 and CIBER21/13/00012,
611 CB21/13/00084 and CIBER21/13/00095) and by the Study Group on Mechanisms of
612 Action and Resistance to Antimicrobials, GEMARA (SEIMC, <http://www.seimc.org/>). M.
613 Tomás was financially supported by the Miguel Servet Research Programme (SERGAS
614 and ISCIII). I. Bleriot was financially supported by pFIS program (ISCIII, FI20/00302). O.
615 Pachos L. Fernández-García and M. López were financially supported by a grant IN606A-
616 2020/035, IN606B-2021/013 and IN606C-2022/002, respectively (GAIN, Xunta de
617 Galicia). The authors acknowledge CESGA (www.cesga.es) in Santiago de Compostela,
618 Spain for providing access to computing facilities and the RIAIDT-USC analytical facilities.
619 Finally, we thank to researchers from the Spanish Network of Bacteriophages and
620 Transducer Elements (FAGOMA) for contributing the lytic phages.

621

622 **AUTHOR CONTRIBUTIONS**

623

624 **TRANSPARENCY DECLARATIONS**

625 The authors declare that there are no conflicts of interest.

626

627

628

629

630 **TABLES**

631 **Table 1.** Characteristic of the collection of the forty-seven clinical strains of *K. pneumoniae*. ^a
632 MSLT, determined by <http://bigsdb.pasteur.fr/Klebsiella.html>, ^b Carbapenemase, determined
633 by <https://cge.cbs.dtu.dk/services/ResFinder/>, ^c Capsular type, determined by
634 <https://kaptive-web.erc.monash.edu>. ^d In bold, the clinical strains selected for phage
635 interaction studies.

636 **Table 2.** Characteristics of the twenty-one lytic phages of *K. pneumoniae*. In bold, the clinical
637 strains selected for phage interaction studies.

638 **Table 3.** Phage defence mechanisms against bacteria detected in the phages under study. In
639 bold, the clinical strains selected for phage interaction studies.

640 **Table 4.** Plasmid and RM system of the selected clinical strains of *Klebsiella pneumoniae* K3574
641 and K3320.

642 **Table 5.** Intact prophage found in the genome of K3574 and K3320.

643 **Table 6.** Acr candidate protein in phages vB_KpnS-VAC35 and vB_KpnM-VAC36 detected in
644 the proteomic study (NanoUHPLC-Tims-QTOF). *Description* the protein header information as
645 seen in the NCBI database, *Accession* the accession number of the protein as seen in the NCBI
646 database, *-10LogP* the protein confidence score and *position* localization in the phage
647 genome.

648 **FIGURES**

649 **Figure 1. (A)** Phylogenetic analysis of the twenty-one phages performed with the nucleotide
650 sequence of the large terminase subunit of each phage. **(B)** Transmission electron microscopy
651 images showing the structure of the twenty-one phages under study. All belong to the order
652 *Caudovirales*. vB_KpnP-VAC1 and vB_KpnP-VAC71 are members of the *Podoviridae* family,
653 characterized by a short tail. On the other hand, phages vB_KpnS-VAC2, vB_KpnS-VAC4,
654 vB_KpnS-VAC5, vB_KpnS-VAC6, vB_KpnS-VAC7, vB_KpnS-VAC8, vB_KpnS-VAC10, vB_KpnS-
655 VAC11, vB_KpnS-VAC35, vB_KpnS-VAC70, vB_KpnS-VAC110, vB_KpnS-VAC111, vB_KpnS-
656 VAC112 and vB_KpnS-VAC113 are members of the *Siphoviridae* family, characterized by large,
657 flexible tails. Finally, phages vB_KpnM-VAC13, vB_KpnM-VAC35 and vB_KpnM-VAC66 are
658 members of the *Myoviridae* family, characterized by an icosahedral capsid and a rigid,
659 contractile tail. The scale bar of the TEM represents 50 or 100 nm, depending on the phage.

660 **Figure 2.** Graphic comparison of the homology of the twenty-one phages, grouped according
661 to their families and in the same order as in the phylogenetic tree. The schematic

662 representation was conducted with VipTree (<https://www.genome.jp/viptree/>, accessed in
663 June 2022)

664 **Figure 3. (A)** Schematic representation of the host-range technique **(B)** Host-range of the
665 twenty-one phages included in the collection of forty-seven clinical strains of *K. pneumoniae*
666 and percentage of infectivity.

667 **Figure 4. (A)** Scheme of the modular organization of class I, type I CRISPR-Cas systems.
668 Diagram adapted from Ishino et al. (2018). SS* indicates the putative small subunit (SS) that
669 might be fused to the large subunit in several type I subtypes. **(B and C)** Graphic representation
670 of the CRISPR-cas system of strains K3574 and K3320, and adapted image of CRISPR Miner 2
671 (<http://www.microbiome-bigdata.com/CRISPRminer2/index/>, accessed in March 2022).

672 **Figure 5. (A and B)** Graphic representation of the genome of the phage vB_KpnS-VAC35 and
673 vB_KpnM-VAC36, constructed with the Snapgene tool, version 6.0.5. **(C and D)** Adsorption
674 curve for phages vB_KpnS-VAC35 and vB_KpnM-VAC36, with an adsorption time of 5 min and
675 2 min respectively. The error bar represents the standard deviation of the three experimental
676 replicates. **(E and F)** One-step growth curve of phages vB_KpnS-VAC35 and vB_KpnS-VAC36,
677 with a latent time (L) of 10 min and 8 min and a burst size (B) of 45.52 PFU/mL and 2.71
678 respectively. The error bar represents the standard deviation of the three experimental
679 replicates.

680 **Figure 6. (A and B)** Infection curve of the strains K3574 (orange) and K3320 (blue), respectively
681 with phages vB_KpnS-VAC35 (light orange) and vB_KpnM-VAC36 (light blue) at an MOI of 1.
682 **(C and D)** Measurement of viability by CFU/mL counts of strains K3574 and K3320 infected
683 with respectively phage vB_KpnS-VAC35 and vB_KpnM-VAC36, at an MOI of 1, over time. **(E**
684 **and F)** Measurement of PFU/mL counts of the phages vB_KpnS-VAC35 and vB_KpnM-VAC36
685 at an MOI 1 over time.

686 **Figure 7. (A)** Graphical representation of the proteomics results, showing the abundance of
687 each group of proteins that are only present in the culture with the bacterial strain K3574
688 infected with phage vB_KpnS-VAC35. **(B)** Table showing the proteins of the functional groups
689 of most relevance for phage-bacteria interactions: the other proteins present are listed in
690 Supplementary Table 2. *Description* the protein header information as seen in the NCBI
691 database, $-10\log P$ the protein confidence score. *Area* the area under the curve of the peptide
692 feature found at the same m/z and retention time as the MS/MS scan. This can be used as an

693 indicator of the abundance and *Avg. Mass* is the protein mass calculated using the average
694 mass.

695 **Figure 8. (A)** Graphical representation of the proteomics results, showing the abundance of
696 each group of proteins only present in the culture with the bacterial strain K3320 infected with
697 phage vB_KpnM-VAC36. **(B)** Table showing the proteins of the functional groups of most
698 relevance for phage-bacteria interaction: the other proteins present are listed in
699 Supplementary Table 2. *Description* the protein header information as seen in the NCBI
700 database, $-10\log P$ the protein confidence score. *Area* the area under the curve of the peptide
701 feature found at the same *m/z* and retention time as the MS/MS scan. This can be used as an
702 indicator of the abundance and *Avg. Mass* is the protein mass calculated using the average
703 mass.

704 **SUPPLEMENTARY FILES**

705 **Supplementary Table 1.** Possible Aca and Acr proteins of the anti-CRISPR system detected in
706 the phages with the AcrDB bioinformatics tool (<https://bcb.unl.edu/AcrFinder/>, accessed in
707 October 2021).

708 **Supplementary Table 2.** Table of the proteins found in the proteomic study by NanoUHPLC-
709 Tims-QTOF in the strains infected with phages vB_KpnS-VAC35 and vB_KpnM-VAC36.
710 *Description* the protein header information as seen in the NCBI database, $-10\log P$ the protein
711 confidence score. *Area* the area under the curve of the peptide feature found at the same *m/z*
712 and retention time as the MS/MS scan. This can be used as an indicator of the abundance and
713 *Avg. Mass* is the protein mass calculated using the average mass.

Name	MLST ^a	Carbapenemase ^b	Capsular type ^c	Origen	Genbank accession no.	References
K2535	ST15	SHV-28, SHV106	KL112	Blood	SAMEA3538911	This study
K2551	ST15	OXA-48, OXA-1, TEM-1B, CTX-M-15	KL112	Blood	SAMEA3538915	This study
K2597	ST15	OXA-48, OXA-1, TEM-1B, CTX-M-15	KL112	Blood	SAMEA3538926	This study
K2691	ST11	CTX-M-15	KL24	Blood	SAMEA3538940	(37)
K2707	ST11	KPC-2	KL13	Blood	SAMEA3538945	(37)
K2715	ST45	SHV-1	KL24	Blood	SAMEA3538948	This study
K2783	ST11	KPC-2	KL13	Blood	SAMEA3538957	This study
K2791	ST11	CTX-M-15	KL24	Blood	SAMEA3538958	This study
K2982	ST605	ND	KL58	Blood	SAMEA3649451	This study
K2983	ST2449	ND	KL5	Blood	SAMEA3649452	(74)
K2984	ST405	CTX-M-15, SHV-76, TEM-1B	KL151/K1151	Blood	SAMEA3649453	(37)
K2986	ST307	CTX-M-15	KL102	Blood	SAMEA3649454	(37)
K2989	ST661	OXA-1, SHV-27	KL24	Blood	SAMEA3649457	(37)
K2990	ST107	SHV-1	KL142	Blood	SAMEA3649458	This study
K3318	ST15	OXA-1, CTM-X-15, OXA-48, TEM-1B	KL112	Blood	SAMEA3649518	This study
K3320^d	ST163	SHV-16	KL139	Blood	SAMEA3649520	This study
K3321	ST466	SHV-33	KL22/K37	Blood	SAMEA3649521	This study
K3322	ST35	SHV-1	KL22/K37	Blood	SAMEA3649522	This study
K3323	ST3645	ND	KL126	Blood	SAMEA3649523	This study

K3324	ST542	SHV-1	KL8	Blood	SAMEA3649524	This study
K3325	ST42	ND	KL64	Blood	SAMEA3649525	(37)
K3416	ST483	SHV-27, VIM-1	KL110	Blood	SAMEA3649537	This study
K3509	ST35	SHV-1	KL22/K37	Blood	SAMEA3649551	This study
K3571	ST33	SHV-108	KL13	Blood	SAMEA3649557	This study
K3573	ST37	ND	KL15/K51/K52	Blood	SAMEA3649559	This study
K3574^d	ST3647	ND	KL30	Blood	SAMEA3649560	This study
K3575	ST14	SHV-1	KL2	Blood	SAMEA3649561	This study
K3579	ST16	CTX-M-15, OXA-1	KL51	Blood	SAMEA3649562	This study
K3667	ST326	ND	KL25	Blood	SAMEA3649564	This study
K3668	ST405	OXA-48, OXA-1, SHV-1	KL151/K1151	Blood	SAMEA3649629	This study
K3669	ST258	KPC-3	KL107/K81	Blood	SAMEA3649638	This study
ST405-OXA48	ST405	OXA-48	KL151/K1151	Wound	WRXJ00000000	(2)
ST15-VIM1	ST15	VIM-1	KL24	Blood	WRXI00000000	(2)
ST11-OXA245	ST11	OXA-245	KL24	Wound	WRXH00000000	(2)
ST437-OXA245	ST437	OXA-245	KL36	Rectal	WRXG00000000	(2)
ST16-OXA48	ST16	OXA-48	KL51	Urine	WRXF00000000	(2)
ST101-KPC2	ST101	KPC-2	KL17	Rectal	WRXE00000000	(2)
ST147-VIM1	ST147	VIM-1	KL64	Rectal	WRXD00000000	(2)
ST11-VIM1	ST11	VIM-1	KL24	Respiratory	WRXC00000000	(2)

ST846-OXA48	ST846	OXA-48	KL110	Sputum	WRXB00000000	(2) ⁷¹⁴ 715
ST340-VIM1	ST340	VIM-1	KL15	Rectal	WRXA00000000	(2) ⁷¹⁶
ST13-OXA48	ST13	OXA-48	KL30	Rectal	WRWZ00000000	(2) ⁷¹⁷ 718
ST512-KP3	ST512	KPC-3	KL107/K81	Axillary smear	WRWY00000000	(2) ⁷¹⁹
ST15-OXA48	ST15	OXA-48	KL112	Axillary smear	WRWX00000000	(2) ⁷²⁰ 721
ST11-OXA48	ST11	OXA-48	KL24	Urine	WRWW00000000	(2) ⁷²² 723
ST258-KPC3	ST258	KPC-3	KL107/K81	Urine	WRWV00000000	(2) ⁷²⁴
ST979-OXA48	ST974	OXA-48	KL38	Urine	WRWT00000000	(2) ⁷²⁵ 726

727

728 **Table 1.**

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

Phage	Natural host	Acc. Number	Family	Genus	Genome size (bp)	G+C %	References
vB_KpnP-VAC1	ATCC10031	SAMN19773206	<i>Autographiviridae</i>	<i>Teetrevirus</i>	39,371	50.75 %	(20)
vB_KpnS-VAC2	ATCC10031	SAMN19773207	<i>Drexlerviridae</i>	<i>Webervirus</i>	51,784	47.86 %	(20)
vB_KpnS-VAC4	ATCC10031	SAMN19773215	<i>Drexlerviridae</i>	<i>Webervirus</i>	45,558	51.11 %	(20)
vB_KpnS-VAC5	ATCC10031	SAMN19773216	<i>Drexlerviridae</i>	<i>Webervirus</i>	49,636	50.46 %	(20)
vB_KpnS-VAC6	ATCC10031	SAMN19773219	<i>Drexlerviridae</i>	<i>Webervirus</i>	51,554	51.63 %	(20)
vB_KpnS-VAC7	ATCC10031	SAMN19773224	<i>Drexlerviridae</i>	<i>Webervirus</i>	49,684	51.25 %	(20)
vB_KpnS-VAC8	ATCC10031	SAMN19773221	<i>Drexlerviridae</i>	<i>Webervirus</i>	48,933	50.52 %	(20)
vB_KpnS-VAC10	ATCC10031	SAMN19773232	<i>Drexlerviridae</i>	<i>Webervirus</i>	48,935	50.65 %	(20)
vB_KpnS-VAC11	ATCC10031	SAMN19773540	<i>Drexlerviridae</i>	<i>Webervirus</i>	48,826	50.83 %	(20)
vB_KpnM-VAC13	ATCC10031	SAMN22059222	<i>Myoviridae</i>	<i>Slopekivirus</i>	174,826	41.93 %	(37)
vB_KpnM-VAC25	K3579	SAMN20298869	<i>Autographiviridae</i>	<i>Drulisivirus</i>	43,777	53.76 %	This study
vB_KpnS-VAC35	K3574	SAMN20298871	Ackermannviridae	Taipeivirus	112,862	45.44 %	This study
vB_KpnM-VAC36	K3573	SAMN20298872	Myoviridae	Slopekivirus	169,970	40.90 %	This study
vB_KpnS-VAC51	K3325	SAMN23489160	<i>Ackermannviridae</i>	<i>Taipeivirus</i>	113,149	45.40 %	This study
vB_KpnM-VAC66	K3320	SAMN22059211	<i>Myoviridae</i>	<i>Slopekivirus</i>	178,532	41.72 %	(38)
vB_KpnS-VAC70	K3318	SAMN20298916	<i>Drexlerviridae</i>	<i>Webervirus</i>	49,631	50.70 %	This study
vB_KpnP-VAC71	K3318	SAMN20298917	<i>Autographiviridae</i>	<i>Przondovirus</i>	40,388	52.98 %	This study
vB_KpnS-VAC110	K2691	SAMN24377650	<i>Drexlerviridae</i>	<i>Webervirus</i>	45,195	50.44 %	This study
vB_KpnS-VAC111	K2691	SAMN20298918	<i>Drexlerviridae</i>	<i>Webervirus</i>	50,559	50.5 %	This study
vB_KpnS-VAC112	K2691	SAMN20298919	<i>Drexlerviridae</i>	<i>Webervirus</i>	49,068	50.20 %	This study
vB_KpnS-VAC113	K2691	SAMN20298921	<i>Drexlerviridae</i>	<i>Webervirus</i>	49,568	50.46 %	This study

Table 2.

750

751

Phage	E-value	Description	Accession n.
Evasion of the restriction modification system			
vB_kpnS-VAC2	1.00E-177	DNA adenine methyltransferase	QZE50413.1
	4.00E-166	DNA methylase	QZE50429.1
	2.00E-47	DNA cytosine methylase	QZE50430.1
	4.00E-47	DNA cytosine methyltransferase	QZE50431.1
vB_KpnS-VAC4	1.00E-171	Cytosine DNA methylase	QZE50543.1
	3.00E-180	DNA adenine methyltransferase	QZE50559.1
vB_KpnS-VAC5	3.00E-179	DNA adenine methyltransferase	QZE50572.1
	4.00E-170	DNA cytosine methyltransferase	QZE50589.1
vB_KpnS-VAC6	2.00E-180	DNA adenine methyltransferase	QZE50665.1
	9.00E-178	DNA methylase	QZE50681.1
vB_KpnS_VAC7	8.00E-171	DNA cytosine methyltransferase	QZE50785.1
	3.00E-180	DNA adenine methyltransferase	QZE50801.1
vB_KpnS-VAC8	2.00E-170	DNA cytosine methyltransferase	QZE50869.1
	3.00E-179	DNA adenine methyltransferase	QZE50885.1
vB_knpS-VAC10	2.00E-41	Methyltransferase type 11	QZE50901.1
	3.00E-179	DNA adenine methyltransferase	QZE50946.1
vB_KpnS-VAC11	1.00E-22	DNA adenine methyltransferase	QZE50991.1
	8.00E-123	DNA adenine methyltransferase	QZE50992.1
	2.00E-173	DNA cytosine methylase	QZE51007.1
vB_KpnM_VAC13	0.00E+00	Putative methyl transferase	QWY13741.1
	0.00E+00	Cytosine-specific methyltransferase	QWY13835.1
vB_KpnM-VAC66	0.00E+00	DNA adenine methylase	QYC51093.1
	0.00E+00	putative methyl transferase	QYC51156.1

vB_KpnS-VAC70	3.00E-180	DNA adenine methyltransferase	UEW68160.1
	4.00E-169	DNA cytosine methyltransferase	UEW68177.1
vB_KpnS-VAC110	2.10E-164	Cytosine DNA methylase	UKL59162.1
	3.90E-162	DNA adenine methyltransferase	UKL59178.1
vB_KpnS-VAC111	7.00E-179	DNA adenine methyltransferase	UEP19890.1
	3.00E-164	Cytosine DNA methylase	UEP19925.1
vB_KpnS-VAC112	2.00E-41	Methyltransferase type 11	UEW68274.1
	4.00E-169	DNA cytosine methyltransferase	UEW68302.1
	2.00E-180	DNA adenine methyltransferase	UEW68318.1
vB_KpnS-VAC113	5.00E-171	cytosine DNA methylase	UEP19765.1
	3.00E-179	DNA N-6-adenine-methyltransferase	UEP19781.1
Toxin-antitoxin system			
vB_KpnM_VAC13	0.00E+00	RNA ligase - RnlB Antitoxin	QWY13674.1
	3.10E-05	DUF1778 domain-containing protein; TA toxin, antitoxin, N-acetyl transferase	QWY13811.1
	1.50E-13	RNase III inhibitor; macrodomain, toxin-antitoxin	QWY13854.1
vB_KpnM-VAC66	0.00E+00	RNA ligase - RnlB antitoxin	QYC51086.1
	3.10E-05	DUF1778 domain-containing protein; TA toxin, antitoxin, N-acetyl transferase	QYC51228.1
	1.50E-13	RNase III inhibitor; macrodomain, toxin-antitoxin	QYC51272.1
Evasion of DNA degradation			
vB_KpnP-VAC1	2.00E-30	Inhibitor of recBCD nuclease	QZE51097.1
Block Restriction-Modification of host bacteria			
vB_KpnS-VAC36 ^a	4.00E-159	Anti-restriction nuclease	UEP19370.1
	4.00E-41	putative anti-restriction nuclease	UEP19372.1
	1.00E-87	Anti-restriction nuclease	UEP19373.1
	0.00E+00	Anti-restriction endonuclease	UEP19375.1
Resistance to the Abortive-infection system of host bacteria			
vB_KpnM-VAC13	0.00E+00	RIIB protector from prophage-induced early lysis	QWY13711.1

	0.00E+00	RIIA-RIIB membrane associated protein/rIIA lysis inhibitor	QWY13712.1
	3.00E+00	RIIA lysis inhibitor	UEP19351.1
vB_KpnM-VAC36	0.00E+00	RIIA membrane-associated protein	UEP19352.1
	0.00E+00	RIIB lysis inhibitor	UEP19353.1
vB_KpnM-VAC66	0.00E+00	RIIB protein	QYC51123.1
	0.00E+00	RIIA protector from prophage-induced early lysis	QYC51124.1
CRISPR-CAS system			
vB_KpnS-VAC35^a		Orphan CRISPR array: 94 Number spacer 1	ND
vB_KpnS-VAC51		CRISPR-CAS Length: 219, DR length: 25 Number spacers: 3	ND

752

753 **Table 3.**

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

PLASMID						
Database	Plasmid	Identity	Contig	Start	Stop	Accession n.
K3574						
Enterobacterales	Col(pHAD28)	97.78	NODE_58_length_2240_cov_4.51213_ID_117	2148	2237	KU674895
Enterobacterales	Col440I	96.49	NODE_50_length_4243_cov_1686.76_ID_93	2628	2741	CP023920
Enterobacterales	IncFIA(HI1)	98.97	NODE_34_length_20733_cov_46.3618_ID_67	19450	19836	AF250878
Enterobacterales	IncFIB(K)	98.93	NODE_24_length_50018_cov_32.4049_ID_47	43034	43593	JN233704
Enterobacterales	IncFIB(pKPHS1)	96.43	NODE_1_length_470932_cov_21.7106_ID_1	156126	156685	CP003223
K3320						
Enterobacterales	Col(pHAD28)	100.0	NODE_100_length_2065_cov_2074.6_ID_199	1	100	KU674895
Enterobacterales	Col(pHAD28)	100.0	NODE_100_length_2065_cov_2074.6_ID_199	1886	2016	KU674895
Enterobacterales	IncFIB(K)	98.93	NODE_69_length_8285_cov_27.8857_ID_137	3503	4062	JN233704
Enterobacterales	IncR	99.2	NODE_76_length_6016_cov_46.5918_ID_151	648	898	DQ449578
RESTRICTION MODIFICATION SYSTEM						
Type: Function	Gen: Recognition seq	Identity	Contig	Start	Stop	Recognition seq
K3574						
Type II R-M : Methyltranferase	M.Kpn34618DCM : CCWGG	99.79	Node_3_length_359415_cov_23.4099_ID_5	316287	317720	CPO10392
K3320						
NA	NA	NA	NA	NA	NA	NA

770

771 **Table 4.**

772

773

774

775

776

777

PROPHAGE						
Name	Region length (Kb)	Nº total protein	Contig	Start	Stop	% GC
K3574						
vB_Kpn-1.K3574	116.7	121	Node_1_length_470932_cov_21.7106_ID_1	132732	249436	50.1
vB_Kpn-2.K3574	34.7	46	Node_26_length_35850_cov_26.2256_ID_51	243	34952	51
K3320						
vB_Kpn-1.K3320	34.6	47	Node_6_length_198717_cov_16.8897_ID_11	32703	67316	55.3
vB_Kpn-2.K3320	55.9	82	Node_12_length_157528_Cov_17.5093_ID_23	338	56297	50.2
vB_Kpn-3.K3320	27.1	39	Node_45_length_28501_Cov_18.8915_ID_89	842	27971	51.2

778

779 **Table 5.**

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

Description	Accession number	-10LogP	Position
K3574 + vB_KpnS-VAC35			
Hypothetical protein KPN4_89 (Acr candidate) [<i>Klebsiella</i> phage KPN4]	QEG11275.1	146.67	24497-24667
4-hydroxy-3-polypropenylbenzoate decarboxylase (Acr candidate) [<i>Klebsiella</i> phage vB_KpnS-VAC35]	UEP19035.1:3-122	107.65	22800-233162
Hypothetical protein JIPhKp127_0059 (Acr candidate) [<i>Klebsiella</i> phage JIPh_Kp127]	QFR57489.1	104.09	23369-23911
6-phosphofructokinase (Acr candidate) [<i>Klebsiella</i> phage vB_KpnS-VAC35]	UEP19028.1	102.81	20466-20858
Hypothetical protein (Acr candidate) [<i>Klebsiella</i> phage vB_KpnS-VAC35]	UEP19032.1	86.070	22064-22273
Hypothetical protein (Acr candidate) [<i>Klebsiella</i> phage vB_KpnS-VAC35]	UEP19030.1:10-99	66.120	21405-21677
Hypothetical protein (Acr candidate) [<i>Klebsiella</i> phage vB_KpnS-VAC35]	UEP19036.1	61.440	23155-23382
K3320 + vB_KpnM-VAC36			
Hypothetical protein (Acr candidate) [<i>Klebsiella</i> phage vB_KpnM-VAC36]	UEP19294.1	78.95	66295-66492

797

798 **Table 6.**

799

800

801

802

803

804

805

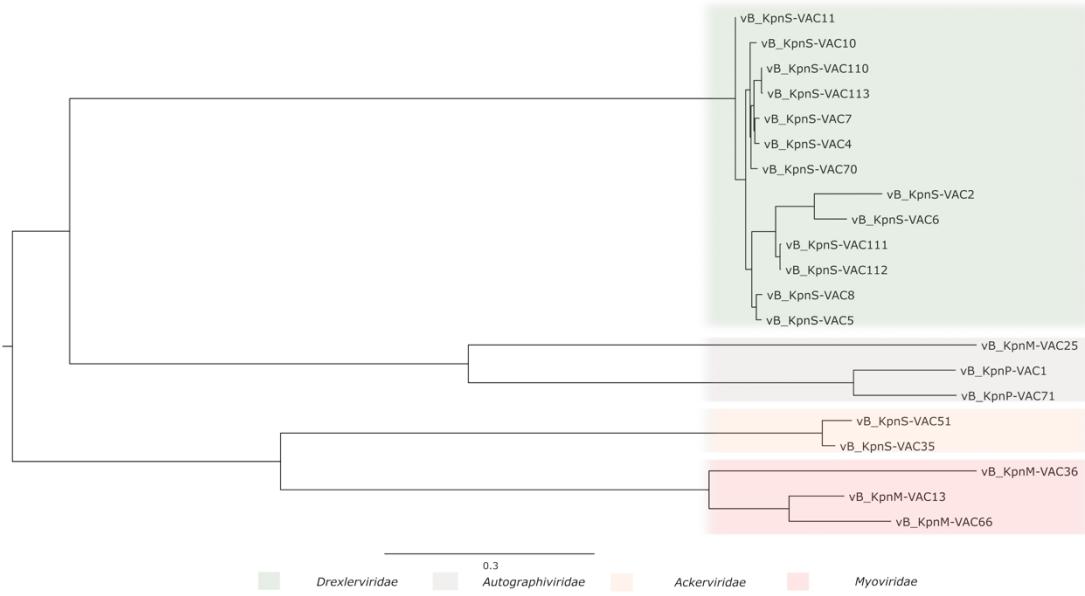
806

807

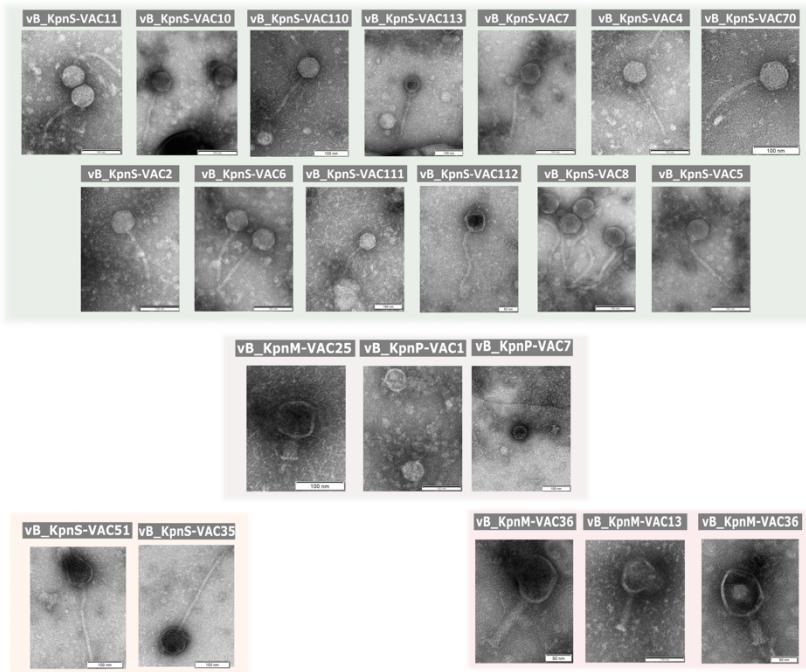
808

809

810


811

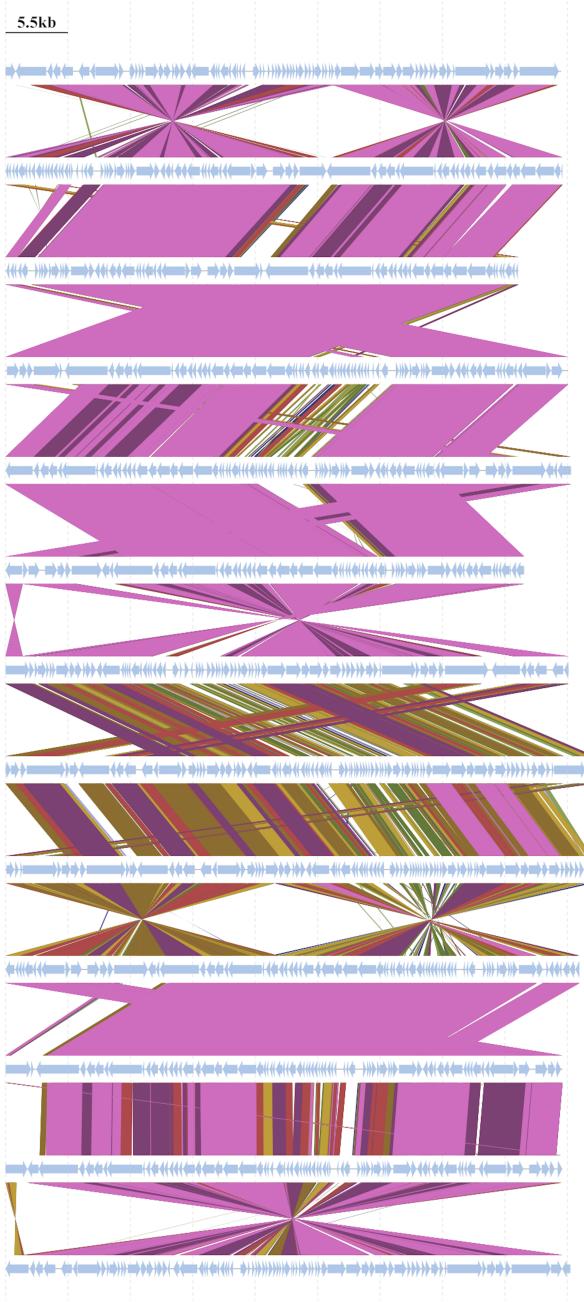
812


813

814

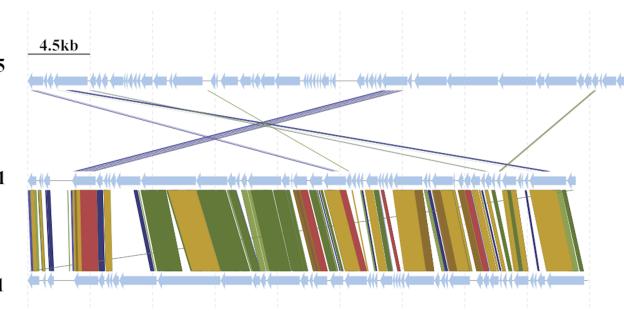
815
816 (A)

817 (B)

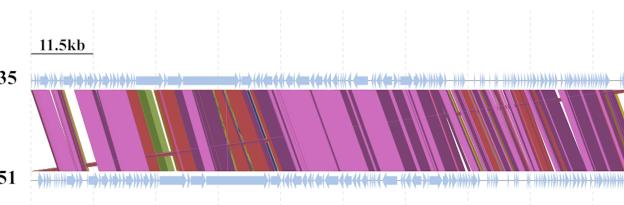


818 **Figure 1.**

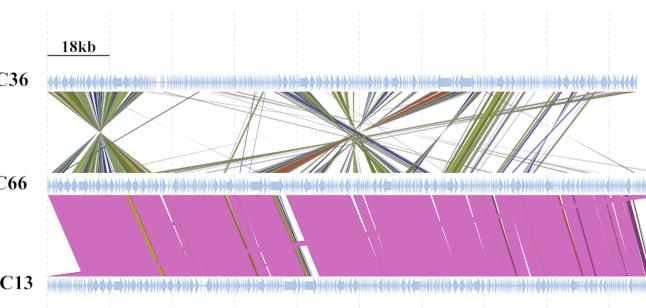
819
820
821
822
823
824
825
826
827


Drexlerviridae

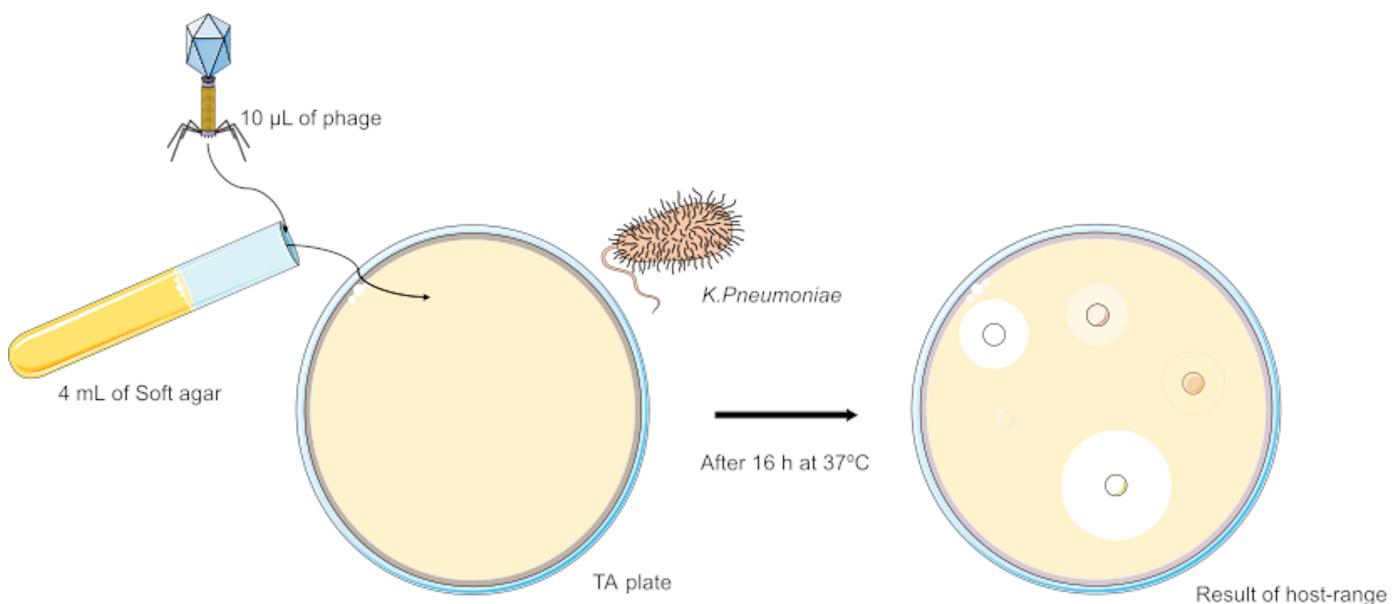
VAC10	vB_KpnS-VAC11	48,953 nt
VAC110	vB_KpnS-VAC10	49,062 nt
VAC113	vB_KpnS-VAC110	45,195 nt
VAC110	vB_KpnS-VAC113	49,568 nt
VAC7	vB_KpnS-VAC7	49,811 nt
VAC4	vB_KpnS-VAC4	45,685 nt
VAC70	vB_KpnS-VAC70	49,631 nt
VAC2	vB_KpnS-VAC2	51,911 nt
VAC6	vB_KpnS-VAC6	51,681 nt
VAC111	vB_KpnS-VAC111	50,559 nt
VAC112	vB_KpnS-VAC112	49,068 nt
VAC8	vB_KpnS-VAC8	49,046 nt
VAC5	vB_KpnS-VAC5	49,763 nt


Autographiviridae

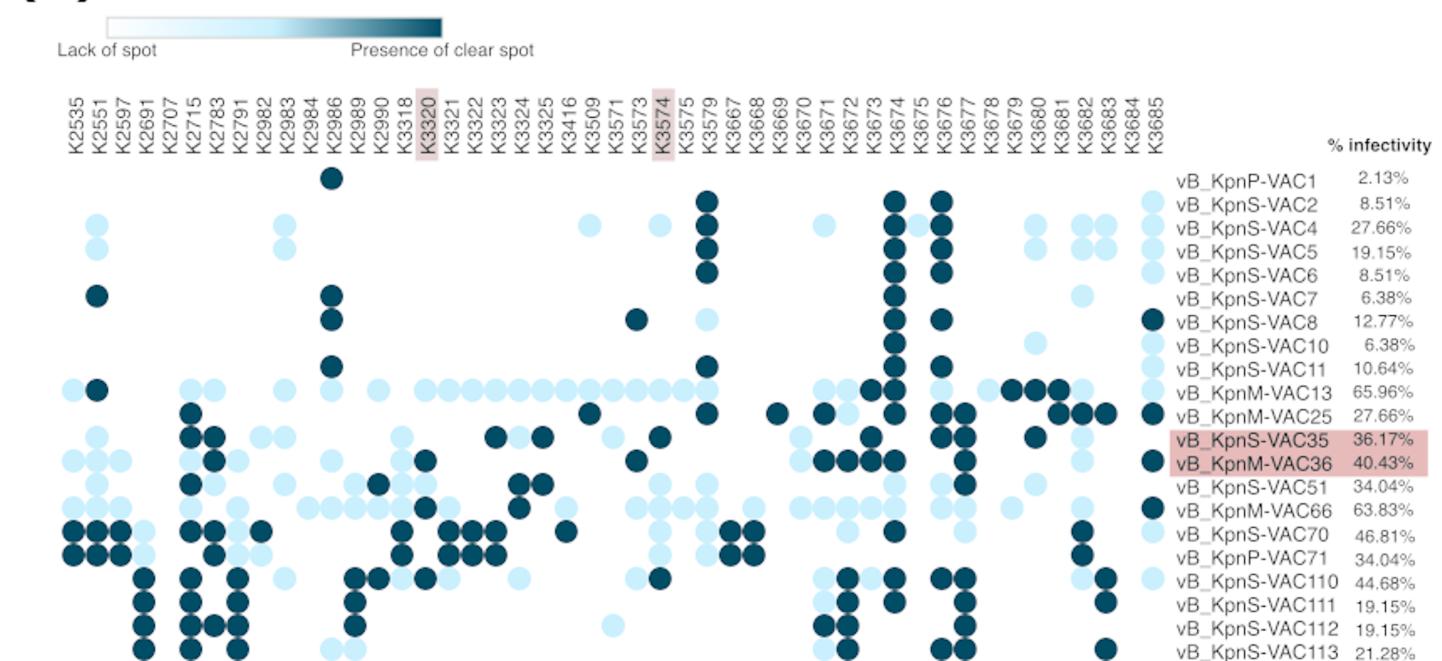
VAC1	vB_KpnM-VAC25	43,904 nt
VAC71	vB_KpnP-VAC1	39,498 nt
VAC1	vB_KpnP-VAC71	40,388 nt

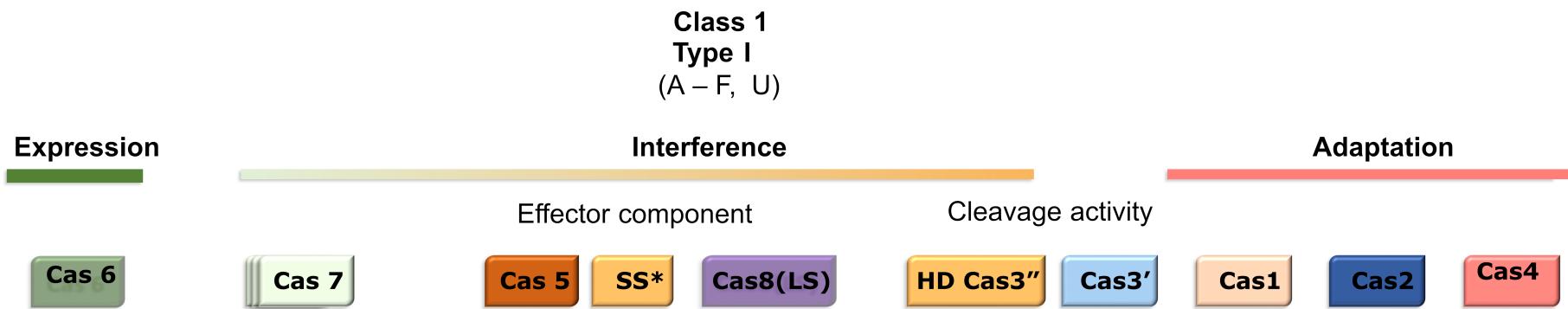

Ackerviridae

VAC51	vB_KpnS-VAC35	112,862 nt
VAC51	vB_KpnS-VAC51	113,149 nt

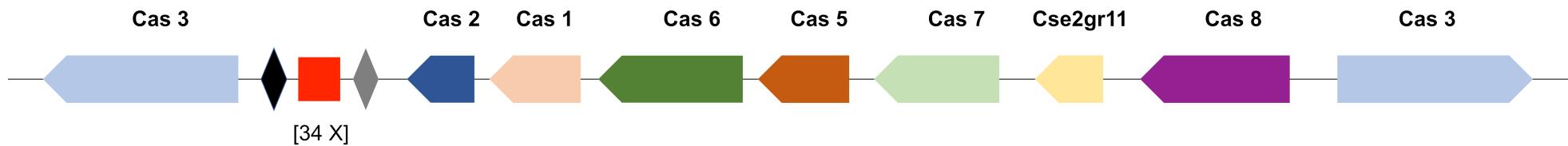


Myoviridae


VAC66	vB_KpnM-VAC36	169,970 nt
VAC66	vB_KpnM-VAC66	178,532 nt
VAC66	vB_KpnM_VAC13	174,826 nt


(A)

(B)



(A)

(B)

Strain K3574
CRISPR-Cas I-E
Position: 74946-105436

Strain K3320
CRISPR-Cas I-E
Position: 173619-182830

(C)

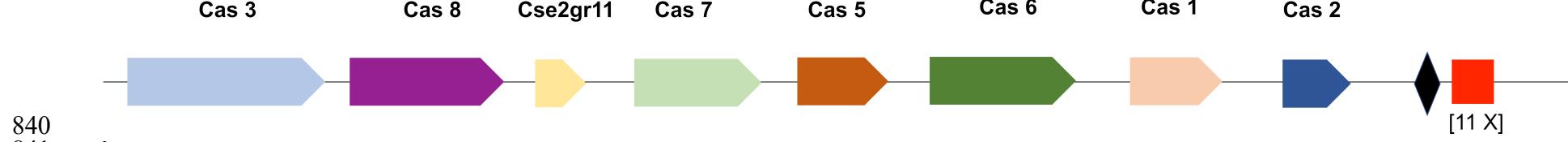
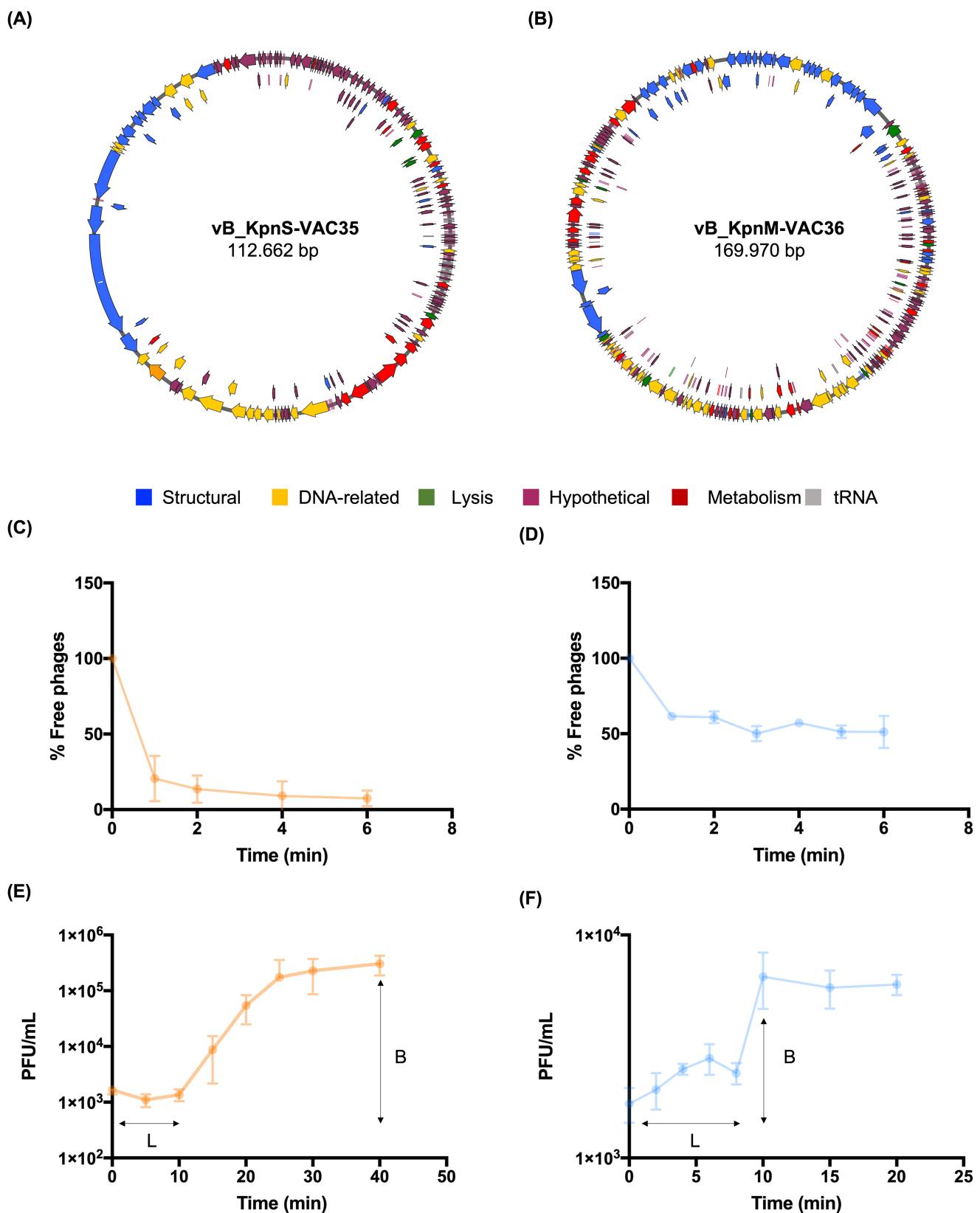
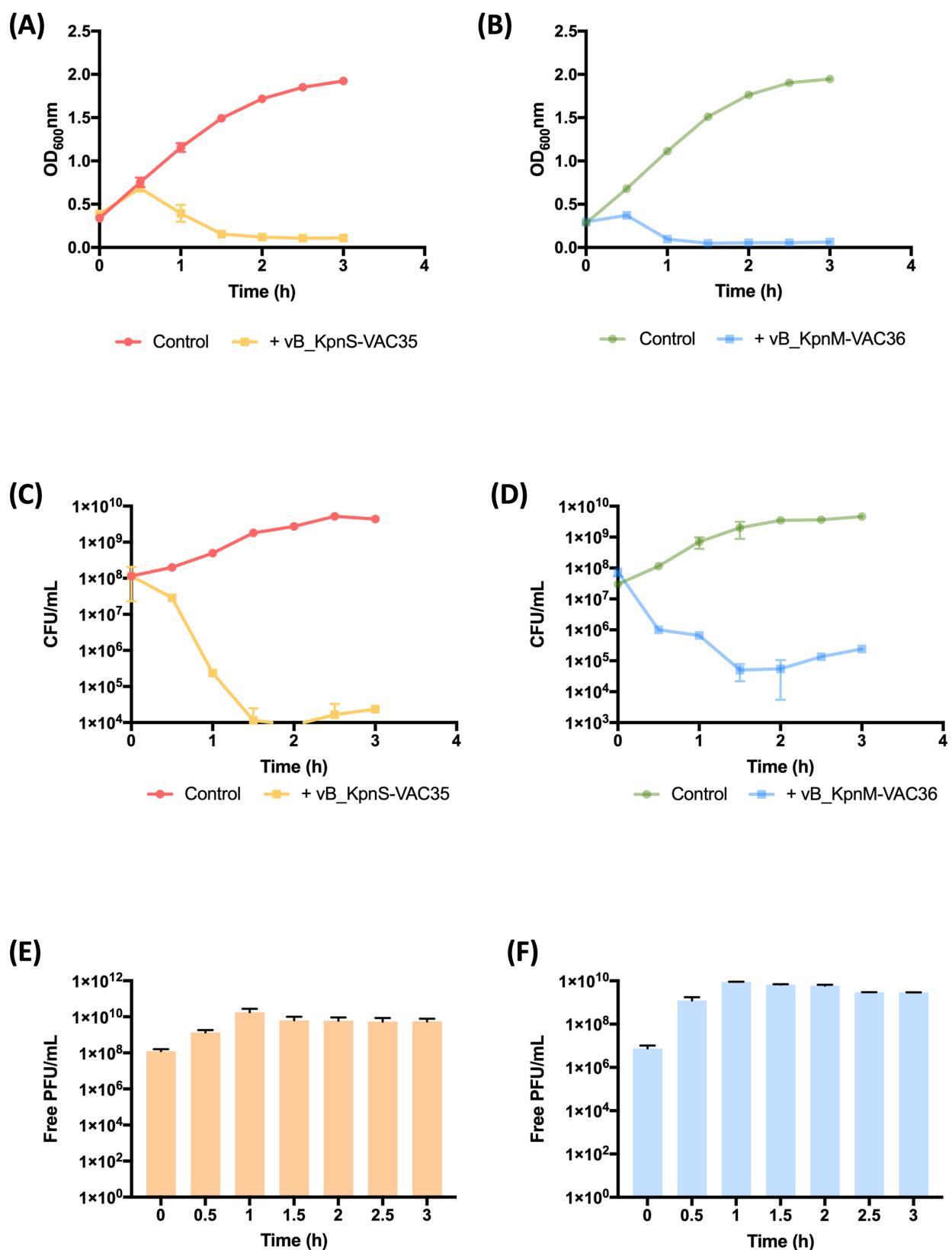
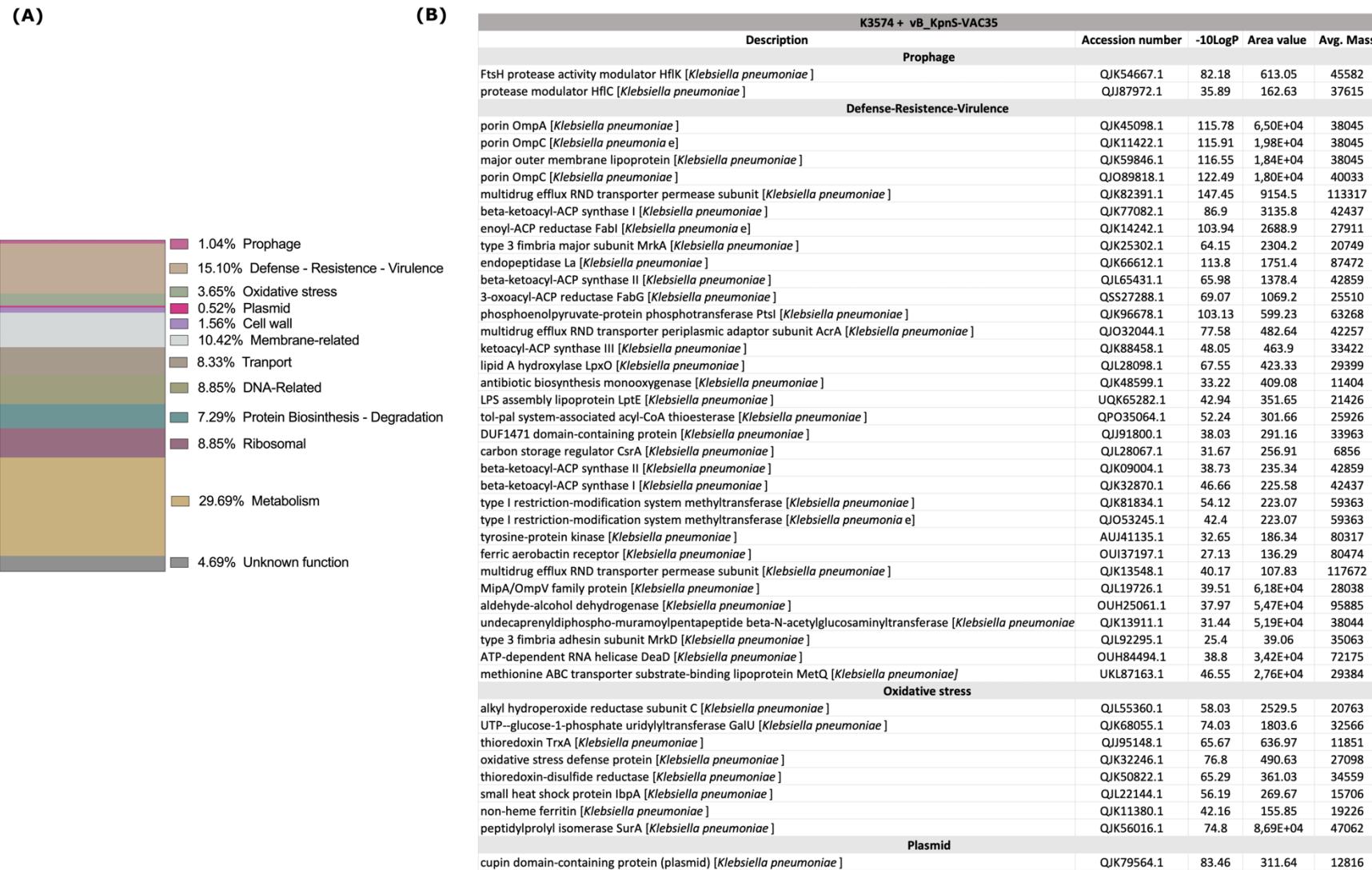




Figure 4.

842
843
844
845 **Figure 5.**
846
847


848

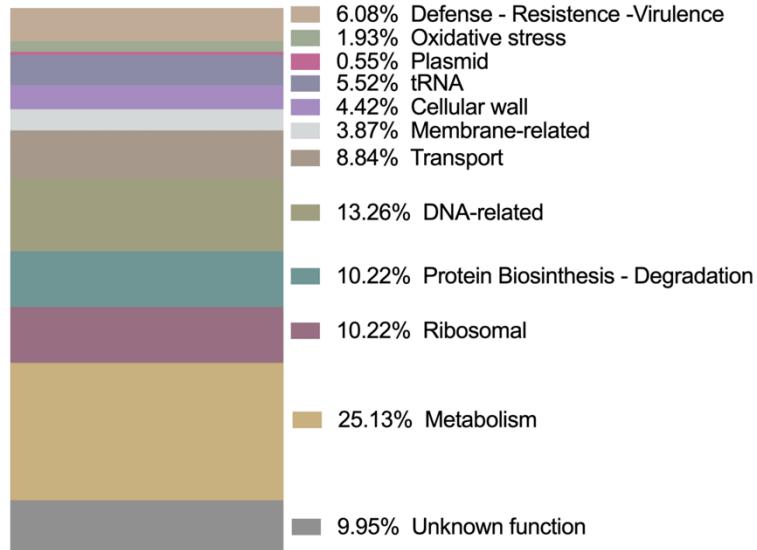

849
850

Figure 6.

K3574 + vB_KpnS-VAC35

(A)

(B)

K3320 + vB_KpnS-VAC36					
Description	Accession number	-10LogP	Area value	Avg. Mass	
Defence - Virulence - Pathogenesis					
GTP-binding protein TypA [<i>Klebsiella pneumoniae</i> subsp. <i>pneumoniae</i>]	OCO25732.1	155.36	1,09E+04	67259	
LuxS (sintesis AI-2) [<i>Klebsiella pneumoniae</i>]	OCN68952.1	87.74	4628.4	19401	
tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase MiaB [<i>Klebsiella pneumoniae</i>]	OCO14563.1	84.77	4418.3	53551	
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase [<i>Klebsiella pneumoniae</i>]	OCN81762.1	49.75	1,87E+03	24490	
tRNA/rRNA methyltransferase [<i>Klebsiella pneumoniae</i>]	OCN64920.1	91.85	1399.4	39594	
DNA starvation/stationary phase protection protein Dps [<i>Klebsiella pneumoniae</i>]	OCN79341.1	74.28	1395.7	18708	
Salmolysin [<i>Klebsiella pneumoniae</i>]	AKE75729.1	66.28	1260.9	16532	
lipoyl synthase [<i>Klebsiella pneumoniae</i>]	AIW75620.1	81.53	1040.1	36038	
porin [<i>Klebsiella pneumoniae</i>]	OCN82062.1	76.23	899.97	18601	
gram-negative pili assembly chaperone C-terminal domain protein [<i>Klebsiella pneumoniae</i>]	AIK82776.1	88.25	791.89	23976	
osmotically-inducible protein OsmY [<i>Klebsiella pneumoniae</i>]	OCN46096.1	74.99	599.59	20066	
23S rRNA methyltransferase [<i>Klebsiella pneumoniae</i>]	AIK82527.1	73.73	437.34	26534	
16S rRNA methyltransferase [<i>Klebsiella pneumoniae</i>]	AIW74910.1	48.7	378.64	30582	
metalloprotease TldD [<i>Klebsiella pneumoniae</i>]	OCN89036.1	41.08	335.25	51236	
uroporphyrin-III methyltransferase [<i>Klebsiella pneumoniae</i>]	KPV67308.1	31.29	295.27	42849	
tellurium resistance protein TerA [<i>Klebsiella pneumoniae</i>]	ROD80591.1	41.61	276.12	41855	
spermidine synthase [<i>Klebsiella pneumoniae</i>]	OCN27747.1	53.22	249.4	32194	
two-component system response regulator [<i>Klebsiella pneumoniae</i>]	AMA14502.1	39.9	242.86	23919	
tRNA (uridine(54)-C5)-methyltransferase TrmA [<i>Klebsiella pneumoniae</i>]	OCO25657.1	39.43	110.02	41859	
Type II toxin-antitoxin system RelE/ParE family toxin [<i>Enterobacteriales</i>]	WP_001763177.1	42.18	104.36	13156	
cytosine-specific methyltransferase [<i>Klebsiella pneumoniae</i>]	AIK78647.1	38.78	7,55E+04	52116	
paraquat-inducible protein B [<i>Klebsiella pneumoniae</i>]	AMA29683.1	31.98	3,22E+04	60177	
Oxidative stress - General stress					
cold-shock protein [<i>Klebsiella pneumoniae</i>]	AIW70077.1	71.42	1,37E+04	7449	
Clp protease ClpB [<i>Klebsiella pneumoniae</i>]	KPV71373.1	133.91	4154.6	95406	
TerD family protein [<i>Klebsiella pneumoniae</i>]	RTA46365.1	75.84	1,36E+03	23511	
arginine decarboxylase [<i>Klebsiella pneumoniae</i>]	AIK82652.1	57.33	871.95	71077	
universal stress protein UspF [<i>Klebsiella pneumoniae</i>]	THQ31790.1	43.31	672.83	15583	
quinone oxidoreductase [<i>Klebsiella pneumoniae</i>]	OCN82190.1	56.69	559.9	34509	
catalase/peroxidase HPI [<i>Klebsiella pneumoniae</i>]	OCN24951.1	90.66	402.54	78951	
Plasmid					
MULTISPECIES: plasmid segregation protein ParM [<i>Enterobacteriaceae</i>]	WP_032752080.1	65.93	1078.9	35580	
plasmid-partitioning protein SopA (plasmid) [<i>Klebsiella pneumoniae</i>]	AIW79883.1	63.44	373.43	43219	
tRNA					
asparagine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCN87665.1	129.24	9673.8	52495	
alanine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCO19336.1	145.31	8757.8	95622	
threonine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OAK86486.1	117	8722.6	73937	
leucine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCN88308.1	125.36	6741.6	97026	
aspartate-tRNA ligase [<i>Klebsiella pneumoniae</i>]	AIK78695.1	122.25	6737.9	64444	
valine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCO30437.1	124.71	6332.5	108294	
serine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	ROG29865.1	106.97	4788.4	48637	
methionine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	AMA19261.1	140.5	4,04E+03	76165	
isoleucine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCO45564.1	126.58	4030.5	104479	
phenylalanyl-tRNA synthetase [<i>Klebsiella pneumoniae</i>]	AIW71649.1	122.13	3716.1	36799	
glutamine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OQ239325.1	112.8	3664.3	63612	
Tyrosine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	AKE75735.1	120.98	3522.8	47250	
cysteine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCN98823.1	109.56	2888.9	52168	
arginine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCN83480.1	103.34	2102.5	64243	
tryptophan-tRNA ligase [<i>Klebsiella pneumoniae</i>]	OCO29174.1	87.06	1783.7	37505	
Lysine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	AKE74328.1	135.17	1624.5	57532	
tRNA s(4)U8 sulfurtransferase [<i>Klebsiella pneumoniae</i>]	AIW69698.1	62.33	878.69	54717	
tRNA-modifying protein YgfZ [<i>Klebsiella pneumoniae</i>]	ROG23658.1	51.6	817.39	35593	
lysine-tRNA ligase [<i>Klebsiella pneumoniae</i>]	AIX77944.1	107.47	281.95	57652	
tRNA guanosine(34) transglycosylase Tgt [<i>Klebsiella pneumoniae</i>]	OCN69869.1	53.57	144.2	42568	

855 **REFERENCES**

- 856 1. Bergh O, Børshem KY, Bratbak G, Heldal M. High abundance of viruses found in
857 aquatic environments. *Nature*. 1989;340(6233):467-8.
- 858 2. Blierot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García
859 L, et al. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-
860 producing clinical strains of *Klebsiella pneumoniae*. *Microb Genom*. 2020;6(5).
- 861 3. Domingo-Calap P, Delgado-Martínez J. Bacteriophages: Protagonists of a Post-
862 Antibiotic Era. *Antibiotics (Basel)*. 2018;7(3).
- 863 4. Taati Moghadam M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria
864 Causing Wound Infection: Lesson from Animal Models and Clinical Trials. *Drug Des Devel*
865 *Ther*. 2020;14:1867-83.
- 866 5. Furfaro LL, Payne MS, Chang BJ. Bacteriophage Therapy: Clinical Trials and
867 Regulatory Hurdles. *Front Cell Infect Microbiol*. 2018;8:376.
- 868 6. Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. *Clin*
869 *Microbiol Rev*. 2019;32(2).
- 870 7. Tkhilaishvili T, Merabishvili M, Pirnay JP, Starck C, Potapov E, Falk V, et al. Successful case of adjunctive intravenous bacteriophage therapy to treat left ventricular
871 assist device infection. *J Infect*. 2021;83(3):e1-e3.
- 872 8. Lebeaux D, Merabishvili M, Caudron E, Lannoy D, Van Simaey L, Duyvejonck H,
873 et al. A Case of Phage Therapy against Pandrug-Resistant *Achromobacter xylosoxidans*
874 in a 12-year-old lung transplanted cystic fibrosis patient. *Viruses*. 2021;13(1).
- 875 9. Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, et al. Use
876 of bacteriophages in the treatment of colistin-only-sensitive *Pseudomonas aeruginosa*
877 septicaemia in a patient with acute kidney injury-a case report. *Crit Care*.
878 2017;21(1):129.
- 879 10. Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N, Leshkasheli L, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of
880 fracture-related infection due to pandrug-resistant *Klebsiella pneumoniae*. *Nat*
881 *Commun*. 2022;13(1):302.
- 882 11. Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages
883 for the Treatment of Bacterial Infections. *Front Pharmacol*. 2019;10:513.

887 12. Forterre P, Prangishvili D. The great billion-year war between ribosome- and
888 capsid-encoding organisms (cells and viruses) as the major source of evolutionary
889 novelties. *Ann N Y Acad Sci.* 2009;1178:65-77.

890 13. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. *Nat Rev
891 Microbiol.* 2010;8(5):317-27.

892 14. Ambroa A, Blasco L, López M, Pacios O, Bleriot I, Fernández-García L, et al.
893 Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection.
894 *Front Microbiol.* 2021;12:784949.

895 15. Lu MJ, Henning U. Superinfection exclusion by T-even-type coliphages. *Trends
896 Microbiol.* 1994;2(4):137-9.

897 16. Lopatina A, Tal N, Sorek R. Abortive Infection: Bacterial Suicide as an Antiviral
898 Immune Strategy. *Annu Rev Virol.* 2020;7(1):371-84.

899 17. Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, et al.
900 BREX is a novel phage resistance system widespread in microbial genomes. *EMBO J.*
901 2015;34(2):169-83.

902 18. Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, et al. DISARM is
903 a widespread bacterial defence system with broad anti-phage activities. *Nat Microbiol.*
904 2018;3(1):90-8.

905 19. Song S, Wood TK. A Primary Physiological Role of Toxin/Antitoxin Systems Is
906 Phage Inhibition. *Front Microbiol.* 2020;11:1895.

907 20. Bleriot I, Blasco L, Pacios O, Fernández-García L, Ambroa A, López M, et al. The
908 role of PemIK (PemK/PemI) type II TA system from *Klebsiella pneumoniae* clinical strains
909 in lytic phage infection. *Sci Rep.* 2022;12(1):4488.

910 21. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in
911 addition to cellular defense. *Microbiol Mol Biol Rev.* 2013;77(1):53-72.

912 22. Song S, Wood TK. Post-segregational Killing and Phage Inhibition Are Not
913 Mediated by Cell Death Through Toxin/Antitoxin Systems. *Front Microbiol.* 2018;9:814.

914 23. Guan L, Han Y, Zhu S, Lin J. Application of CRISPR-Cas system in gene therapy:
915 Pre-clinical progress in animal model. *DNA Repair (Amst).* 2016;46:1-8.

916 24. Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating
917 bacterial defences. *Nat Rev Microbiol.* 2013;11(10):675-87.

918 25. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. Repeatability and
919 contingency in the evolution of a key innovation in phage lambda. *Science*.
920 2012;335(6067):428-32.

921 26. Scholl D, Adhya S, Merril C. *Escherichia coli* K1's capsule is a barrier to
922 bacteriophage T7. *Appl Environ Microbiol*. 2005;71(8):4872-4.

923 27. Cornelissen A, Ceyssens PJ, Krylov VN, Noben JP, Volckaert G, Lavigne R.
924 Identification of EPS-degrading activity within the tail spikes of the novel *Pseudomonas*
925 *putida* phage AF. *Virology*. 2012;434(2):251-6.

926 28. Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse
927 transcriptase-mediated tropism switching in *Bordetella* bacteriophage. *Science*.
928 2002;295(5562):2091-4.

929 29. Labrie SJ, Tremblay DM, Moisan M, Villion M, Magadán AH, Campanacci V, et al.
930 Involvement of the major capsid protein and two early-expressed phage genes in the
931 activity of the lactococcal abortive infection mechanism AbiT. *Appl Environ Microbiol*.
932 2012;78(19):6890-9.

933 30. Krüger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding
934 the deoxyribonucleic acid restriction systems of their hosts. *Microbiol Rev*.
935 1983;47(3):345-60.

936 31. Warren RA. Modified bases in bacteriophage DNAs. *Annu Rev Microbiol*.
937 1980;34:137-58.

938 32. Iida S, Streiff MB, Bickle TA, Arber W. Two DNA antirestriction systems of
939 bacteriophage P1, darA, and darB: characterization of darA- phages. *Virology*.
940 1987;157(1):156-66.

941 33. Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, et al. Discovery of functional
942 toxin/antitoxin systems in bacteria by shotgun cloning. *Mol Cell*. 2013;50(1):136-48.

943 34. Otsuka Y, Yonesaki T. Dmd of bacteriophage T4 functions as an antitoxin against
944 *Escherichia coli* LsoA and RnlA toxins. *Mol Microbiol*. 2012;83(4):669-81.

945 35. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage
946 response to CRISPR-encoded resistance in *Streptococcus thermophilus*. *J Bacteriol*.
947 2008;190(4):1390-400.

948 36. Li Y, Bondy-Denomy J. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas
949 inhibitors. *Cell Host Microbe*. 2021;29(5):704-14.

950 37. Pacios O, Fernández-García L, Bleriot I, Blasco L, González-Bardanca M, López M,
951 et al. Enhanced Antibacterial Activity of Repurposed Mitomycin C and Imipenem in
952 Combination with the Lytic Phage vB_KpnM-VAC13 against Clinical Isolates of *Klebsiella*
953 *pneumoniae*. *Antimicrob Agents Chemother*. 2021;65(9):e0090021.

954 38. Pacios O, Fernández-García L, Bleriot I, Blasco L, Ambroa A, López M, et al.
955 Phenotypic and Genomic Comparison of *Klebsiella pneumoniae* lytic phages: vB_KpnM-
956 VAC66 and vB_KpnM-VAC13. *Viruses*. 2021;14(1).

957 39. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and
958 quality control. *F1000Res*. 2018;7:1338.

959 40. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results
960 for multiple tools and samples in a single report. *Bioinformatics*. 2016;32(19):3047-8.

961 41. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
962 SPAdes: a new genome assembly algorithm and its applications to single-cell
963 sequencing. *J Comput Biol*. 2012;19(5):455-77.

964 42. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis
965 of large phylogenies. *Bioinformatics*. 2014;30(9):1312-3.

966 43. Kutter E. Phage host range and efficiency of plating. *Methods Mol Biol*.
967 2009;501:141-9.

968 44. Kropinski AM. Measurement of the rate of attachment of bacteriophage to cells.
969 *Methods Mol Biol*. 2009;501:151-5.

970 45. Adriaenssens E, Brister JR. How to Name and Classify Your Phage: An Informal
971 Guide. *Viruses*. 2017;9(4).

972 46. Rostøl JT, Marraffini L. (Ph)ighting Phages: How Bacteria Resist Their Parasites.
973 *Cell Host Microbe*. 2019;25(2):184-94.

974 47. Ackermann HW. 5500 Phages examined in the electron microscope. *Arch Virol*.
975 2007;152(2):227-43.

976 48. Zinke M, Schröder GF, Lange A. Major tail proteins of bacteriophages of the order
977 *Caudovirales*. *J Biol Chem*. 2022;298(1):101472.

978 49. Pirnay JP, Merabishvili M, Van Raemdonck H, De Vos D, Verbeken G.
979 Bacteriophage Production in Compliance with Regulatory Requirements. *Methods Mol
980 Biol*. 2018;1693:233-52.

981 50. Merabishvili M, Pirnay JP, De Vos D. Guidelines to Compose an Ideal
982 Bacteriophage Cocktail. *Methods Mol Biol.* 2018;1693:99-110.

983 51. Casjens SR. Comparative genomics and evolution of the tailed-bacteriophages.
984 *Curr Opin Microbiol.* 2005;8(4):451-8.

985 52. Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA
986 phages. *Bacteriophage.* 2014;4(1):e28281.

987 53. Nogueira CL, Pires DP, Monteiro R, Santos SB, Carvalho CM. Exploitation of a
988 *Klebsiella* bacteriophage receptor binding protein as a superior biorecognition molecule.
989 *ACS Infect Dis.* 2021;7(11):3077-87.

990 54. Chen X, Liu M, Zhang P, Xu M, Yuan W, Bian L, et al. Phage-Derived Depolymerase
991 as an Antibiotic Adjuvant Against Multidrug-Resistant. *Front Microbiol.* 2022;13:845500.

992 55. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that
993 inactivate the CRISPR/Cas bacterial immune system. *Nature.* 2013;493(7432):429-32.

994 56. Hang Le YB, Yi Haidong, Asif Amina, Wang Jiawi, Lighgow Trevor, Zhang Han, UI
995 Amir Afsar Minhas Fayyayz and Yin Yanbin. AcrDB: a database of anti-CRISPR operons in
996 prokaryotes and viruses. *Nucleic acids res.* 2021; 49(D1):D622-629.

997 57. Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ.
998 Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. *FEMS
999 Microbiol Lett.* 2019;366(9).

1000 58. Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, et al. Multi-
1001 species host range of staphylococcal phages isolated from wastewater. *Nat Commun.*
1002 2021;12(1):6965.

1003 59. Fong K, Tremblay DM, Delaquis P, Goodridge L, Levesque RC, Moineau S, et al.
1004 Diversity and Host Specificity Revealed by Biological Characterization and Whole
1005 Genome Sequencing of Bacteriophages Infecting. *Viruses.* 2019;11(9).

1006 60. de Jonge PA, Nobrega FL, Brouns SJ, Dutilh BE. Molecular and Evolutionary
1007 Determinants of Bacteriophage Host Range. *Trends Microbiol.* 2019;27(1):51-63.

1008 61. Rokney A, Kobiler O, Amir A, Court DL, Stavans J, Adhya S, et al. Host responses
1009 influence on the induction of lambda prophage. *Mol Microbiol.* 2008;68(1):29-36.

1010 62. Rahimi-Midani A, Kim MJ, Choi TJ. Identification of a Cupin Protein Gene
1011 Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of *Acidovorax
1012 citrulli*. *Plant Pathol J.* 2021;37(6):555-65.

1013 63. Sacher JC, Javed MA, Crippen CS, Butcher J, Flint A, Stintzi A, et al. Reduced
1014 Infection Efficiency of Phage NCTC 12673 on Non-Motile *Campylobacter jejuni* strains is
1015 related to oxidative stress. *Viruses*. 2021;13(10).

1016 64. Maffei E, Shaidullina A, Burkholder M, Heyer Y, Estermann F, Druelle V, et al.
1017 Systematic exploration of *Escherichia coli* phage-host interactions with the BASEL phage
1018 collection. *PLoS Biol*. 2021;19(11):e3001424.

1019 65. Stone E, Campbell K, Grant I, McAuliffe O. Understanding and Exploiting Phage-
1020 Host Interactions. *Viruses*. 2019;11(6).

1021 66. Mey AR, Butz HA, Payne SM. *Vibrio cholerae* CsrA Regulates ToxR Levels in
1022 Response to Amino Acids and Is Essential for Virulence. *mBio*. 2015;6(4):e01064.

1023 67. Ambroa A, Blasco L, López-Causapé C, Trastoy R, Fernandez-García L, Blierot I, et
1024 al. Temperate Bacteriophages (Prophages) in *Pseudomonas aeruginosa* isolates
1025 belonging to the international cystic fibrosis clone (CC274). *Front Microbiol*.
1026 2020;11:556706.

1027 68. López M, Rueda A, Florido JP, Blasco L, Fernández-García L, Trastoy R, et al. Evolution of the Quorum network and the mobilome (plasmids and bacteriophages) in
1028 clinical strains of *Acinetobacter baumannii* during a decade. *Sci Rep*. 2018;8(1):2523.

1029 69. Shah M, Taylor VL, Bona D, Tsao Y, Stanley SY, Pimentel-Elardo SM, et al. A phage-
1030 encoded anti-activator inhibits quorum sensing in *Pseudomonas aeruginosa*. *Mol Cell*.
1031 2021;81(3):571-83.e6.

1032 70. Song S, Wood TK. Toxin/Antitoxin System Paradigms: Toxins Bound to Antitoxins
1033 Are Not Likely Activated by Preferential Antitoxin Degradation. *Adv Biosyst*.
1034 2020;4(3):e1900290.

1035 71. Ni M, Lin J, Gu J, Lin S, He M, Guo Y. Antitoxin CrlA of CrlTA Toxin-Antitoxin System
1036 in a Clinical Isolate *Pseudomonas aeruginosa* inhibits lytic phage infection. *Front
1037 Microbiol*. 2022;13:892021.

1038 72. LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, et al. The
1039 DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. *Nat
1040 Microbiol*. 2022;7(7):1028-40.

1041 73. Huang X, Wang J, Li J, Liu Y, Liu X, Li Z, et al. Prevalence of phase variable
1042 epigenetic invertons among host-associated bacteria. *Nucleic Acids Res*.
1043 2020;48(20):11468-85.

1044

1045 74. Pacios O, Fernández-García L, Bleriot I, Blasco L, Ambroa A, López M, et al.

1046 Adaptation of clinical isolates of *Klebsiella pneumoniae* to the combination of

1047 niclosamide with the efflux pump inhibitor phenyl-arginine- β -naphthylamide (Pa β N):

1048 co-resistance to antimicrobials. *J Antimicrob Chemother.* 2022;77(5):1272-81.

1049