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Group heteroscedasticity is commonly observed in pseudo-bulk
single-cell RNA-seq datasets and when not modelled appro-
priately, its presence can hamper the detection of differen-
tially expressed genes. Most bulk RNA-seq methods assume
equal group variances which will under- and/or over-estimate
the true variability in such datasets. We present two methods
that account for heteroscedastic groups, namely voomByGroup
and voomWithQualityWeights using a blocked design (voomQWB).
Compared to current gold standard methods that do not ac-
count for heteroscedasticity, we show results from simulation
studies and various experiments that demonstrate the superior
performance of both voomByGroup and voomQWB in error con-
trol and power when group variances in pseudo-bulk scRNA-
seq data are unequal. We recommend the use of either of these
methods over established approaches, with voomByGroup hav-
ing the advantage of accurate variance estimation since group
variance trends can take on different ‘‘shapes”, whilst voomQWB
has the advantage of catering to complex study designs.
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Background

Single-cell RNA sequencing (scRNA-seq) allows the quan-
tification of transcript profiles across individual cells and has
become widely adopted over the past few years. A major
advantage of scRNA-seq is the high resolution it offers, en-
abling researchers to study molecular responses to different
biological perturbations at the cellular-level (1) rather than
the population-level as surveyed by bulk RNA-sequencing
approaches. Many statistical tools and methods have been
developed to make use of these high resolution data, such as
methods for trajectory analysis (2), cell-to-cell interactions
(3) and differential expression (DE) analysis (4, 5).

Early DE analysis of this data type aimed to fully leverage
information from individual cells, whereby each cell in com-
parison is treated as an independent biological unit (or ‘repli-
cate’). To achieve this, a number of studies used established
methods developed for bulk RNA-seq data (6). However, due
to sparsity of the gene count matrix, which is a major point of
difference between single-cell and bulk data (4, 5), other re-
searchers modelled scRNA-seq data as either zero-inflated or
multi-modal in distribution, and developed tailored DE anal-

ysis methods for scRNA-seq data (e.g. MAST (4), BPSC (7)
and DEsingle (8)). To guide the analysts’ choice, various
evaluation studies have assessed the performance of bulk and
tailored scRNA-seq analysis methods, although their findings
have varied. Some showed that bulk methods are unsuitable
when directly applied to scRNA-seq data (9, 10), while oth-
ers found bulk methods were comparable to tailored scRNA-
seq methods (11). Another analysis strategy performs DE
analysis on pseudo-bulk samples that are created by cell ag-
gregation (12). This strategy was pointed out to perform bet-
ter than single-cell methods that treat each cell as an inde-
pendent replicate in the analysis in two independent studies
(13, 14). Through the use of an aggregation approach, de-
pendencies between cells from the same sample are avoided
(15) so that intrinsic variability of biological replicates is
well-estimated leading to fewer false discoveries compared
to methods that fail to account for this (14). Although a gen-
eralized linear mixed model with a random effect to take care
of zeros and correlation structure within a sample provides
slightly more power compared to pseudo-bulk aggregation
methods (13, 16), it brings a much heavier computational bur-
den (13, 14).

Most of the DE analysis methods applied on pseudo-bulk
data in the literature are ‘gold standard’ bulk DE analysis
methods, including edgeR (17), DESeq2 (18), limma-voom
and limma-trend (19, 20). Both edgeR and DESeq2 were
developed based on the assumption that gene-level counts
follow a negative binomial distribution, while limma derived
methods (voom and limma-trend) assume normality of trans-
formed counts in RNA-seq analysis. With voom, the rela-
tionship between the mean and variance across all observa-
tions are modelled by a fitted LOWESS trend and precision
weights calculated based on the estimated trend are used in
the linear modelling.

Due to limited sample numbers, most bulk DE analysis meth-
ods including the aforementioned ‘gold standard’ methods,
borrow information between genes to estimate the variance
(17, 21-23) and assume equal variances between experimen-
tal groups (also referred to as ‘homoscedasticity’). However,
there are cases where the variability observed is distinct for
different groups (‘heteroscedasticity’). Here we use ’group’
as a general term that covers common experimental variables
or conditions such as treatment (drug A, drug B, vehicle con-
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trol), genotype (wild-type, knock-out), sex (male, female),
etc. In scRNA-seq analysis, DE methods can be used to
find marker genes as well (24), in which case, the concept
of *group’ can extend to different cell types or clusters.
Heteroscedasticity has been frequently observed in microar-
ray gene expression data (25, 26), for instance, Demissie
et al. showed that a moderated Welch test performs better
than the moderated ¢-test when group variances are unequal
(26). In large-scale bulk RNA-seq data, under the scenar-
ios of heteroscedasticity, Ran et al. pointed out that voom
was unable to model the variability appropriately and they
noted that the weighting strategy used in voomWithQuali-
tyWeights (voomQW) may be more helpful (27) on account
of its joint modelling of variability at the observational and
sample-level. Chen ef al. noted an unequal group variance
in single-cell data as well, stating that unequal variance tests
are underused (28). They made use of the large sample sizes
available when each cell is considered as a replicate and esti-
mated group-specific dispersions for each gene separately.
In this article, we examine whether group-specific variances
are homoscedastic (equal) or heteroscedastic (unequal) in
pseudo-bulk scRNA-seq data. We show that heteroscedas-
tic groups are frequently observed in the data and that the
application of current DE analysis methods has variable per-
formance. Importantly, ‘gold standard’ methods that do
not model group-level variability can both under- and over-
estimate variances leading to poor error control or reduced
power to detect DE genes. We demonstrate that methods that
account for heteroscedastic groups, namely voomByGroup
and voomQW using a blocked design, have superior perfor-
mance in this regard when group variances are unequal.

Results

Observing heteroscedasticity in scRNA-seq pseu-
do-bulk data. To study whether group variances are equal
or unequal in scRNA-seq pseudo-bulk data, we explored
pseudo-bulk scRNA-seq datasets generated with cells from
specific cell types obtained from various sample types rang-
ing from experimental replicates of mice to human sam-
ples (see Methods). We examined three things: 1) multi-
dimensional scaling (MDS) plots, 2) common biological co-
efficient of variation (BCV) of groups, and 3) mean-variance
trends derived from individual groups (we refer to these as
“group-specific voom trends”). Larger distances between
samples in a group on the MDS plots indicate more within-
group variation, and higher common BCV values correspond
to more biological variation between samples across genes
based on the assumption of the negative-binomial (NB) dis-
tribution in edgeR. For the group-specific voom trends, we
are interested in observing where the curves sit relative to
other groups in the same study, as well as the shape of the
curve. The shape and “height” of the curves reflect the total
variation within groups — both technical and biological.

For studies involving mice (lung tissue) (29) and Xenopus
(tail) (30), we observed some minor differences in group-
specific voom trends although, with the curves sitting close
together and mostly overlapping one another (Figure 1a-b).
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Common BCV values for these studies ranged from 0.197 to
0.240 across 2 groups in mouse lungs, and 0.226 to 0.295
across 5 groups in Xenopus tails.

In human datasets, the differences in group variances were
greater. For human peripheral blood mononuclear cells
(PBMCs) (31), healthy controls unsurprisingly exhibited
lower variability than the 3 other patient groups to which
they were compared (Figure lc). This was evident from
group-specific voom trends — although the curves had simi-
lar shapes, the curve of the healthy controls sat distinctly be-
low the curves of other groups. BCV values for the PBMCs
ranged from 0.154 to 0.241, with the lowest for healthy con-
trols and the highest for asymptomatic patients.

A separate study on human macrophages collected from lung
tissues (32) showed even higher levels of heteroscedasticity,
where BCV values ranged from 0.338 to 0.495 (Figure 1d).
Group-specific voom trends had distinct shapes and were well
separated from one another along the vertical axis (with the
exception of IPF and Control groups which were quite sim-
ilar). Moreover, the plateauing of voom trends at higher ex-
pression values that are commonly observed in many datasets
were not observed here. This might be on account of the com-
plexity of regions in the lung where samples are collected, the
diverse causes of lung fibrosis, and limited patient numbers
for some groups. High levels of biological variation are re-
flected in the large BCV values in this dataset.

Whilst we have not commented specifically on MDS plots,
these plots (or other similar plots e.g. principle components
analysis) provide a useful first glance of the data and are al-
ready part of many analysis pipelines (Figure 1). What we
look for in these plots is the spread of samples within groups,
and observe whether one group is more spread out than an-
other. For example, in the study of mouse lung tissue, the 3-
month (“3m”) samples are less spread out across dimensions
1 and 2 than the 24-month (“24m”) samples, indicating that
the 3m group has lower variability than the 24m group. This
is confirmed by the groups’ BCV values and voom trends.

In conclusion, we observe unequal group variability across
multiple scRNA-seq pseudo-bulk datasets. At this stage, it
is unclear whether gold standard bulk DE analysis methods
are robust against heteroscedasticity, and how different group
variances need to be before it affects their performance. We
test this in later sections of this article, using three gold stan-
dard methods that do not account for heteroscedasticity and
two novel methods that do.

Novel use of voomWithQualityWeights using a block
design (voomQWAB). The first method that accounts for
group-level variability makes novel use of the existing
voomQW method. The standard use of voomQW as-
signs a different quality weight to each sample, which
then adjusts the sample’s variance estimate — a strategy
used to tackle individual outliers in the dataset. Rather
than adjusting the variance of individual samples, we ad-
just the variance of whole groups by specifying sample
group information via the var.group argument in the
voomWithQualityWeights function. This produces
quality weights as “blocks” within groups (identical weights
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Fig. 1. Group variation in scRNA-seq pseudo-bulk datasets. Group variation in 4 publicly available scRNA-seq datasets with various experimental designs, with replicates
samples from a) Mouse lungs, b) Xenopus tails, ¢) Human PBMCs, and d) Human lungs are summarized. For each scRNA-seq dataset, cells of one particular type were
selected (see Methods), and the cells from each sample were aggregated to create pseudo-bulk counts. Multidimensional scaling plots of pseudo-bulk data were plotted in
the left panel, with distances computed from the log-CPM values and samples colored by groups. Group-wise common BCVs are plotted in the middle panel. Group-wise
mean-variance trends are plotted in the right panel. Colors denote groups.
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Fig. 2. An overview of the voom-based mean-variance modelling methods applied. On the PBMC1 pseudo-bulk data, group-specific weights estimated using voomQWB by
defining each block (group) as different levels of the symptom variable are plotted in a). The equal weight (= 1) level is plotted as a dashed line. Across all observations, gene-
wise square-root residual standard deviations are plotted against average log-counts in grey in b). voom applies a LOWESS trend (black curve) to capture the relationship
between the gene-wise means and variances. Based on the final precision weights used in voomQWB, adjusted curves for each block are plotted in ¢), where replicates in the
same group share the same curve. Different colors and line types represent different groups (blocks). Dashed lines were used to avoid over-plotting. When voomByGroup is
used, LOWESS trends are fitted separately to the data from individual groups to capture any distinct mean-variance trends that may be present d-f). All group-specific trends

from this dataset are plotted together in panel g), with different colors per group.

for samples in the same group) and adjusts each group’s vari-
ance estimate — we refer to this method as “voomQW using a
block design”, or simply voomQWB.

Figure 2a shows the estimated group-specific weights from
voomQWB for a study comparing healthy controls to
COVID-19 patients that are moderately sick and those that
are asymptomatic (31). Samples of moderately sick and
asymptomatic patients have similar weights, just under 1;
whilst the weights for healthy controls are above 1 (1.27).
The sample weights are combined with observation-level
weights derived from the overall mean-variance trend from
voom (Figure 2b). What this achieves in practice is an up-
shift of the voom trend for groups with sample weights below
1 (Figure 2c pink and green curves), resulting in a higher
variance estimate and a smaller precision weight for statis-
tical modelling (see Methods). On the other hand, groups
with sample weights that are greater than 1 have a down-
shifted voom trend (purple curve), resulting in lower variance
estimates and larger precision weights. There are a couple
of things to note here: 1) the group-specific voom trends
from voomQWB (Figure 1c) are roughly parallel to the sin-
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gle voom trend (Figure 1b), and 2) the group-specific trends
shown here are created manually, not as an output of the
voomWithQualityWeights function.

voomByGroup: modelling observation-level variance
in individual groups. As mentioned above, voomQWB
models group-wise mean-variance relationships via roughly
parallel trend-lines, which has the disadvantage of not being
able to capture more complicated shapes observed in differ-
ent datasets (Figure 1). The second method we describe here,
called voomByGroup can account for such group-level vari-
ability with greater flexibility. voomByGroup achieves this
by subsetting the data and estimating separate voom trends
for each group. In other words, while voomQWB can shift
the same voom trend up and down for each group, voomBy-
Group estimates distinct group-specific trends that can also
allow up- and down-shifts for different groups.

For example, on the PBMCI dataset, the mean and variance
are calculated for the logycounts-per-million (log-CPM) of
each gene in “Group 1 (Moderate symptoms)” and a curve, or
trend, is fitted to these values from which precision weights
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are then calculated (Figure 2d). Similarly, a curve is fitted
separately to each of the other groups in the dataset (Figure
2e and 2f). This results in 3 non-parallel curves as shown in
the summary plot (Figure 2g) which includes all 3 trends. In
theory the voomByGroup method gives more robust estimates
of variability since the trend for each group can take on a
different “shape” - we test how this works in practice in the
following sections.

Group variance methods provide a balance between
power and error control. Using simulated data, we test
the performance of 3 gold standard methods against the 2
new methods that account for heteroscedastic groups. The
gold standard methods are: voom, edgeR using a likelihood-
ratio test (edgeR LRT) and edgeR quasi-likelihood (edgeR
QL). The methods that account for group heteroscedastic-
ity (“group variance methods”) are: voomQWB and voom-
ByGroup. Using simulations of pseudo-bulk data, we can
examine the effects of unequal group variation while control-
ling other factors. Specifically, group variation can be divided
into biological variation between RNA samples and technical
variation caused by sequencing technologies.

In the first scenario (scenario 1), we looked into unequal
group variation as a result of biological variation. To obtain
pseudo-bulk data, we simulated single-cell gene-wise read
counts that followed a correlated negative binomial distribu-
tion and aggregated the reads from each sample (see Methods
and Supplementary Figure S1). Each simulation consists of
4 groups with 3 samples in each group — a total of 50 such
simulations were generated. We generated varying group-
specific BCVs for the 4 groups that are well within the range
of BCV values observed in experimental datasets (Figure 1
and Figure 3a) — the BCV values averaged over 50 simula-
tions were 0.2, 0.22, 0.26, and 0.28 (the values in Figure 3a
are for one such simulation).

The mean-variance trends generated for the different groups
appear as expected, with a typical decreasing “voom-trend”
with increasing gene expression and the curves ordered cor-
rectly from those with the most biological variation at the
top of the plot (group 4 in Figure 3a) to the group with the
least biological variation at the bottom of the plot (group
1). The left-hand side of these mean-variance trends is
primarily driven by technical variation — as expected, here
they mostly overlap each other since groups were generated
to have the same technical variation in these simulations.
These group-specific mean-variance plots generated by the
voomByGroup function provide a useful “first glance” of
the data before any formal testing was carried out.

We then performed differential gene expression analysis for
all pairwise group comparisons, which gave a total of 6 com-
parisons. In these simulations, 50 genes were generated to be
up-regulated in each group, such that 100 genes are differen-
tially expressed in each pairwise comparison (see Methods).
We noticed that the number of differentially expressed genes
varied from method to method, and calculated the false dis-
covery rate (FDR) of each method which was averaged over
the 50 simulations. The FDR, or type I error rate, is calcu-
lated as the number of genes that were incorrectly identified
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as differentially expressed out of the total number of genes
that were identified as differentially expressed at a particu-
lar adjusted p-value cut-off. We observed that none of the
methods controlled type I error for all comparisons across
the 3 cut-offs we examined: adjusted p-value cut-off of 0.01,
0.05, and 0.10 (Figure 3b, Supplementary Figure S2); such
that the methods detected false discoveries at a higher rate
than expected. voomByGroup out-performed other methods
by controlling type I error at the 0.01 and 0.10 cut-offs, and
only exceeding the threshold marginally for 2 out of 6 com-
parisons at the 0.05 cut-off (FDR of 0.054 and 0.056).

A closer look at these plots revealed that the gold standard
methods had FDR values that spanned a broad range; with
some comparisons having FDR values that were well under
the threshold, and others that exceeded the threshold by 2- or
3-fold. This means that it could be difficult to gauge whether
the DE results are too conservative, too liberal, or perhaps
“just right” for a given comparison in real datasets when ap-
plying these methods to heteroscedastic groups. The range of
FDR values are broadest for edgeR LRT, followed by edgeR
QL, then voom. In comparison, the group variance methods,
though not perfect in terms of type I error control, had a sub-
stantially tighter range of FDR values, and the comparisons
that exceeded the FDR threshold only exceed it by a small
margin.

To understand how heteroscedasticity influences DE analysis
in more detail, we focused on results obtained using a 0.05
adjusted p-value cut-off. Across the 6 comparisons, group
variance methods tend to detect similar numbers of differen-
tially expressed genes, the same goes for gold standard meth-
ods (Figure 3c-d, Supplementary Figure S3). There is some
variation between gold standard and group variance mod-
elling methods, with some comparisons having quite similar
results, while others produce results that are very different. A
closer examination of the comparison between group 3 and
group 4 (which we refer to as “High vs High” in terms of bi-
ological variation) and group 1 and group 2 (“Low vs Low”)
shows where the 2 classes of methods differ.

In the High vs High comparison, gold standard methods de-
tect more DE genes than group variance methods. However,
the DE genes contain a much higher proportion of false dis-
coveries than it was controlled for. It is not as though gold
standard methods were prioritising false positive genes in
terms of significance — it had similar numbers of true and
false positives genes when looking at top-ranked genes (Sup-
plementary Figure S4). Rather, gold standard methods had
smaller adjusted p-values than group variance methods, al-
lowing more genes detected at a certain cut-off (Supplemen-
tary Figure S5a). By pooling variance estimates across all 4
groups, gold standard methods under-estimate the variances
for groups 3 and 4, when in fact those groups have relatively
high biological variation, resulting in poor type I error con-
trol. voomByGroup and voomQWB are more robust in their
estimation of individual group variances, allowing them to
maintain good type I error control.

In the Low vs Low comparison, all methods have good type I
error control, with group variance methods detecting substan-
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Fig. 3. Group variance modelling methods provide good power whilst controlling the false discovery rate. a) Mean-variance trends plotted for each group by the voomByGroup
function on simulated scRNA-seq data with varying group-specific BCV values, where colors represent different groups. In terms of the simulated variability-level, groups
1 and 2 represent 'Low’ variation, while 3 and 4 have 'High’ variation. Based on DE analysis results, FDR across methods in different comparisons (colors denote the 3
comparison types) are summarized in panel b) at a cut-off of 0.05. The number of DE genes recovered by different methods for comparison between the two groups with
higher variability (panel ¢)) and the two groups with lower variability (panel d)) at the same FDR cut-off are shown. For each bar in these plots, grey represents true positive
genes, red represents false positive genes, and the FDR is labelled at the top of the bar.

tially more DE genes than gold standard methods. Although
top-ranked genes were yet again very similar (Supplemen-
tary Figure S4), this time, gold standard methods had larger
adjusted p-values than group variance methods (Supplemen-
tary Figure S5b), meaning that fewer genes were selected at
a given threshold. Here, the pooled variance estimates used
by gold standard methods resulted in an over-estimation of
variances for the two groups with relatively low biological
variation (groups 1 and 2). In consequence, gold standard
methods suffered from a loss of power.

These simulations demonstrated that in the presence of group
heteroscedasticity, group variance methods have a good bal-
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ance between controlling type I error and power to detect
DE genes. To ensure that the superior performance of group
variance methods was due to group heteroscedasticity in the
data, we separately simulated 50 null simulations (scenario
2) where all groups had equal underlying biological variation
(see Methods). We observed similar numbers of true posi-
tives and false discoveries between gold standard and group
variance methods (Supplementary Figure S6).

voomByGroup captures both biological and techni-
cal variation well in individual groups. Systematic dif-
ferences are commonly observed in the sequenced libraries
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https://doi.org/10.1101/2022.09.12.507511
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.12.507511; this version posted September 14, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has

granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Group1 Group2

Group3 Group4 . Group1

600 1:1:1 1:0.8:0.8

Number of cells

4004
el | | WM T 1 -..

1:2:2 . Group2
. Group3
. Group4

b c
- 2+ 2, BCV: 0.22
S 1, BCV: 0.219
2 2 3,BCV:0.218 @
(0] - i )
8 4, BCV: 0.217 g
g 2 - 5
E s
S o
» | a
= L
o
» ¢

© T T T

0 5 10 15

log2( count size + 0.5)

0.154

Comparison

O grouptvsgroup2
group1vsgroup3

0.104

O grouptvsgroup4
0] O group2vsgroup3
005-——@———@——@——@-——8——

<) group2vsgroup4
O group3vsgroup4

0.00 4

edgeR LRT
edgeR QL
voom 4
voomQWB -
voomByGroup A

Fig. 4. voomByGroup captures both biological and technical variation. a) Summary of the simulation design with unequal numbers of cells per sample, with colors denoting
the different groups in the dataset. In the scenario with technical variation only (unequal library sizes) across groups, mean-variance trends estimated by voomByGroup are
plotted in panel b, with common group-wise BCVs displayed in the top-right corner. Based on DE analysis results, FDRs across methods for different comparisons, denoted

by distinct colors, are summarized in panel ¢) at an FDR cut-off of 0.05.

of scRNA-seq data (33). For example, gene counts vary be-
tween cells on account of limited starting material per cell
and variations in technical efficiency. In addition, the number
of cells detected in each sample is also variable. After aggre-
gating cells, pseudo-bulk samples have library sizes that are
more variable than that of bulk RNA-seq data — contributing
to a major source of technical variation in pseudo-bulk data.
We explore the influence of unequal library sizes by varying
the number of cells in each sample for a new set of simula-
tions. Keeping the underlying biological variation constant
between groups (homoscedasticity), we first vary the library
sizes of samples. The simulated number of cells are 250, 250,
and 250 in group 1, 250, 200, and 200 in group 2, 250, 500,
and 500 in group 3, and 250, 750, and 750 in group 4 (Figure
4a). The expected library size for each cell remains constant
(see Methods).

Under this scenario (scenario 3), the mean-variance trends
generated appear to mostly overlap each other on the right-
hand side as expected on account of equal group dispersions,
while on the left-hand side, slight differences appear (Fig-
ure 4b). DE analysis was then performed over 50 simulations
and averaged FDR rates and numbers of DE genes were com-
pared. We observed much tighter ranges of FDR values com-
pared to those from scenario 1 (Figure 4c, where the same
y-axis range from Figure 3b was used) and a similar number
of true positive genes compared to the null simulation (Sup-
plementary Figure S7). These suggest that simulated techni-
cal variation does not have a significant influence on the DE
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results. To compare the influence of technical and biological
variation in the simulations, we carried out another separate
50 simulations (scenario 4) with both aspects of variation in-
corporated (see Methods). For these results, we observed ex-
pected location trends that differed on both the left and right
sides (Supplementary Figure S8a). FDR results were rather
similar to what was observed in the scenario where biologi-
cal variation was unequal (Supplementary Figure S8b, Figure
3b), indicating that biological variation is the major source of
variation that influences the DE results.

However, closer inspection of the FDR plot from scenario 3
where only the number of cells differed between groups, re-
vealed that among those comparisons, voom and voomQWB
performed similarly, as a result of the weighting strategy used
in voomQWB only adjusting the group-wise weight in an
overall manner. While voomByGroup is more flexible, we
observed that for group-wise mean-variance trends, regard-
less of the overlapping trends on the right-hand side, on the
left-hand side, groups with fewer cells (groupl and group2)
exhibit slightly more variation and sit at the top, while the
group with the largest number of cells (group4) is at the bot-
tom (Figure 4b). Because of the well-captured mean-variance
relationship, voomByGroup delivered well-controlled FDR
compared to those from voom and voomQWB, especially
when comparing between groupl versus group?2 in scenario
3, where slightly higher technical variation is present (Figure
4c).
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Immune responses in asymptomatic COVID-19 pa-
tients. While the simulations allowed us to assess the perfor-
mance of gold standard methods and group variance meth-
ods based on known truth, these results have no biological
interest. Moreover, no matter how carefully thought-out and
well-designed our simulations, these data will inevitably miss
some features from experimental data. Thus, we also exam-
ined the performance of methods on human scRNA-seq data.

Zhao et al. (31) investigated PBMCs from COVID-19 pa-
tients of varying severity alongside healthy controls (HCs),
with a focus on the comparison between asymptomatic indi-
viduals and HCs.

The study found that interferon-gamma played an important
role in differentiating asymptomatic individuals and HCs,
such that it was more highly expressed in natural killer (NK)
cells of asymptomatic individuals (31). In their data, the ex-
pression of /JFNG was observed to be up-regulated in asymp-
tomatic individuals, however, the difference was not statis-
tically significant when analysed with edgeR QL. We re-
analysed this dataset (PBMC1, see Methods) to see whether
group variance methods could offer improved results. We ag-
gregated CD56%™ CD16* NK cells from each sample to cre-
ate pseudo-bulk samples and then filtered out samples with
fewer than 50 cells. A first glance of the data via MDS and
group-specific mean-variance plots shows that HCs have a
distinct mean-variance trend and have less biological varia-
tion (Figure 1c). By accounting for the relatively low vari-
ance in the HC group, we found that group variance methods
outperformed gold standard methods in terms of statistical
power, such that they detected more DE genes for the com-
parison between HCs and asymptomatic individuals (Figure
5a) — this is consistent with our simulation results when com-
paring groups with low variance (Figure 3b). voomByGroup
detected the most DE genes, followed by voomQWB; 880 and
719 genes respectively. The gold standard methods, edgeR
LRT, voom and edgeR QL detected 664, 453 and 403 DE
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genes respectively.

To understand our results further, we looked at the consis-
tency at which genes were detected as DE between meth-
ods (Supplementary Figure S9a). We excluded edgeR LRT
from our Venn diagram since the inclusion of all 5 meth-
ods greatly increased the complexity of the plot, and edgeR
LRT was of less interest to us since we previously demon-
strated that it performed poorly in the control of type I er-
ror. Although group variance methods detected almost dou-
ble the number of DE genes as compared to voom and edgeR
QL, most genes were detected by all methods (356 genes).
Both of the voom-variants, voomQWB and voomByGroup,
detected all of the genes that were also detected by voom.
With the exception of 1 gene, voomByGroup also detected all
of the genes that were detected by voomQWB. From voom to
voomQWB then voomByGroup, the methods increase in their
level of group-specific variance modelling. The overlap be-
tween these methods and the extra DE genes reflects the hi-
erarchy in variance modelling for these methods and demon-
strates the potential gain in statistical power when capturing
group variance more accurately.

Next, we turned to Gene Ontology (GO) enrichment analysis
to study the biological processes that play a role in COVID-
19. We looked for any enrichment in GO terms for signifi-
cantly up-regulated genes in asymptomatic patients for each
of the methods under examination. voomByGroup was the
only method to detect the “interferon-gamma-mediated sig-
naling pathway” as significant using a p-value cut-off of 0.01,
with 5 DE genes enriched in this term (Figure 5b). None of
the other methods found any of these 5 genes as significant —
they had much higher p-values as compared to that of voom-
ByGroup (Supplementary Figure S9b). To confirm the role
of interferon-gamma in asymptomatic patients, we analysed
data from a separate study also involving CD56%™ CD16*
NK cells in COVID-19 patients of varying severity (34). The
original study did not look into the role of interferon-gamma.
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Reanalysing these data (PBMC2, see Methods), we found
that in this second dataset the “interferon-gamma-mediated
signaling pathway” was enriched using any of the DE meth-
ods under examination, and those group-specific variances
were similar between all groups (Supplementary Figure S10).
Taking the two COVID-19 datasets into consideration, we
noticed a few things: 1) group variances can change be-
tween one dataset and another, even for studies on simi-
lar cell types and similar subjects — this perhaps has to do
with how samples are processed (technical variation) and/or
the “grouping” criterion plus the individual subjects involved
(biological variation); 2) when variance trends are not too
distinct from one another, all methods perform similarly,
as observed in the second dataset (PBMC2); 3) when vari-
ance trends are distinct, group variance methods may bene-
fit from a gain in statistical power, as observed in the first
dataset (PBMC1); and 4) by modelling group-specific vari-
ances closely, voomByGroup was the only method that ob-
tained statistically significant results for the biological pro-
cess of interest in both datasets. These two datasets are used
here to highlight how results of biological interest may be
“missed” if heteroscedasticity is not carefully considered.

Discussion

We have shown that modelling the mean-variance relation-
ship at the group-level and the use of group-wise precision
weights enhances DE analysis results when there is group
heteroscedasticity. Simulations demonstrated that voomQWB
and voomByGroup have a good balance between control-
ling type I error and the power to detect DE genes. Ad-
ditionally, voomByGroup performs better at capturing tech-
nical variation in the mean-variance trends. The analysis
of PBMC data agreed with our simulation results whereby
methods that model group-specific variation provide more
DE genes when low-BCV groups are included in the com-
parison, with statistically significant results obtained for key
biological processes of interest with voomByGroup. Null
simulations confirmed that established gold standard meth-
ods and approaches that model group-specific variation per-
formed similarly when there were no distinct differences in
variability between groups. Consistent results were presented
by Chen er al. on scRNA-seq data (28) where methods that
accounted for heteroscedasticity performed as well as meth-
ods that do not account for heteroscedasticity when there is
equal group variation, which indicates there is potential for
group-variation methods to be more broadly used.

In this article, we demonstrate that group variance modelling
methods outperform gold standard methods for DE analysis
of pseudo-bulk scRNA-seq data. Specifically, voomByGroup
has the best performance in terms of balancing type I error
control and power. This is because voomByGroup models the
mean-variance relationships for different groups more flexi-
bly to better capture the distinct trends that may be present in
the data. voomQWB also performs very well; with better re-
sults than gold standard methods in the presence of group het-
eroscedasticity Its performance is similar, and second only to,
voomByGroup. Relative to voomByGroup, voomQWB lacks
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the flexibility to capture the distinct shapes of group-specific
mean-variance trends, which could explain some of the dif-
ferences in performance.

We recommend the use of either voomByGroup or voomQWB
over gold standard methods in scRNA-seq pseudo-bulk anal-
ysis in datasets that exhibit heteroscedastic variation across
different experimental groups. In the case of homoscedastic-
ity, methods that model group-specific variability performs
similarly to the standard methods in terms of error control
and power to detect DE genes. The voomByGroup soft-
ware provides useful diagnostic plots that can help guide the
choice of method, with code that is easy to run, taking sim-
ilar inputs to the widely used and well-established voom ap-
proach (see Methods). Running voomByGroup first can al-
low the analyst to determine the level of heteroscedasticity
in a given dataset. For example, if the mean-variance trends
per group are mostly overlapping each other, then group vari-
ance methods are likely to offer very similar results to cur-
rent gold standard methods (Figure 2a). In this case, method
choice will not affect the results much, and one may prefer
to choose a method that is simpler, based on fewer assump-
tions, such as voom. If voomByGroup mean-variance plots
show distinct trends in one or more groups, then the variance
for that group can be more closely modelled using voomBy-
Group or voomQWB (e.g. “ST40_3” in Figure 2b, “Severe”
in Figure 2c, and “NSIP” and “cHP” in Figure 2d). In such
cases, methods that explicitly model group-specific variabil-
ity are highly recommended over standard methods that do
not. Moreover, the BCV values that are automatically gener-
ated and displayed on these plots provide summary informa-
tion about differences in mean dispersion for different groups
calculated across all genes.

Between the two group variance methods, voomByGroup
out-performs voomQWRB slightly. It also provides group-
specific mean-variance plots that are a useful diagnostic in
exploratory data analysis. voomByGroup, however, has some
limitations related to its use of a subset of the design matrix
and data — a necessary step to obtain distinct group-specific
shapes for the mean-variance trends. This means that in prac-
tice, the use of voomByGroup is most suitable for simple
block designs with a single group factor only. When there
are additional explanatory variables, voomByGroup may not
estimate covariates accurately or may run out of degrees of
freedom when estimating coefficients for additional factors.

For these complex experimental designs, voomQWRB is ideal
since it can handle the same complexity as gold standard
methods such as voom, but with the additional safe-guard
against heteroscedastic groups. One such example of this
includes datasets that are collected over several batches.
voomQWB can properly accommodate biological groups of
interest and batch information into the linear modelling,
whilst handling differences in group variability.

For experiments with very small group sizes, voomByGroup
offers the option of applying the overall voom trend to spe-
cific groups rather than using the default group-specific trend
— this is specified in the dynami c argument of the function.
Since voomByGroup estimates group variances using only
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the relevant samples, group-specific mean-variance trends
could be unstable when modelled using a limited number of
samples. We recommend the application of an overall voom
trend to groups of size 1 or 2.

In situations where there are individual samples with higher
variability (outliers), the voomQWB and voomByGroup meth-
ods may work less well, with the inclusion of highly variable
samples increasing the estimated group variation, which may
decrease power. In these situations, regular sample-specific
modelling of variability (i.e. voomWithQualityWeights with-
out specifying the var.group option) would be more ap-
propriate. In our study, we did not explore datasets with out-
lier samples and leave such investigations as future work.

In this study, we also observed that edgeR-based methods re-
turned relatively different results compared to voom-based
methods (Figure 5a). One major source of this is the dif-
ferent distributional assumptions between methods. Due to
the mathematical intractability of the NB distribution (ba-
sic distribution in edgeR) compared to the normal distribu-
tion, methods were first developed for modelling group het-
erogeneity in limma (e.g. voomWithQualityWeights), which
assumes normally distributed data. When modelling data us-
ing a NB-GLM, modelling group-wise variation is more chal-
lenging. An example of weighted regression in this context
comes from Zhao et al., who used observational weights to
account for outlier observations.

In our article, we focus on DE analysis of scRNA-seq pseudo-
bulk data because recent benchmark studies have shown that
it gives better results relative to analysing scRNA-seq data
in its original non-aggregated form (13, 14). However, it is
worth noting that by aggregating single-cell data to obtain
pseudo-bulk samples, the variance between cells of the same
sample is masked. Thus it may be useful to check cell-level
gene expression and its variability, especially for any genes
that are detected as significant. To account for this, Zimmer-
man et al. modelled the correlation structure between cells
using a generalized mixed model where individuals were as-
signed as a random effect (16). A similar approach was taken
in Crowell ef al. (13). In a similar way, linear mixed mod-
elling may also be accessible by using the voomQWB method
together with the duplicateCorrelation function in
the 1 imma package.

Whilst we apply group variance methods on pseudo-bulk
samples in this article, the idea of modelling group variances
more closely can in theory be extended to DE analysis on
other data types such as bulk RNA-seq data, pseudo-bulk of
spatial scRNA-seq data, and surface protein data from CITE-
seq. Moreover, the “groups” that are used by voomQWB or
voomByGroup can be extended to cell types or clusters to find
marker genes.

Methods

Revisiting variance modelling with voom. The group
variance methods presented in this article, voomQWB and
voomByGroup are adaptations of voom method by Law et al.
(20). Briefly, the voom method fits a linear model to each
gene using a design matrix with full column rank, X, such
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that

E(yg)= X5,

where y, is a vector of log-CPM values for gene g, and
is a vector of regression coefficients for gene g. The fit-
ted model allows us to calculate residual standard deviations
Sg. Square-root standard deviations /s are plotted against
the average log-count of each gene, and a LOWESS curve
(35) is fitted to the points — this creates the voom-style mean-
variance plots seen throughout this article (Figure 2b). Pre-
cision weights wgy; for gene g and sample 7 are then calcu-
lated as a function of the fitted counts S\Hi using the LOWESS
curve, such that wg; = 10(:\91-)_4. The weights wg; are then
associated with log-CPM values yg4; in the standard limma
pipeline, which uses these in weighted least squares regres-
sion.

Group variance modelling with voomQWB. Written with
outlier sample detection in mind, Liu er al. (36) com-
bined sample-specific weights with the voom precision
weights in their voomWithQualityWeights method. The com-
bined weights, denoted as w;i, can be described as w;i =
wg;/expy;, where 1/expy; represents the sample-specific
weights.

The standard use of voomWithQualityWeights calculates
sample-specific weights based on the similarity of gene ex-
pression profiles within groups, such that any sample that is
dissimilar to the rest of the samples in the same group gets
down-weighted. In other words, samples within the same
group can be assigned varying weights.

Instead, we force samples within the same group to have
the same weight by exploiting the var . group argument in
the voomWithQualityWeights function. A factor rep-
resenting the groups group is assigned to var.group to
obtain “blocked” weights for the samples.

Visually, what this achieves is an adjustment of the stan-
dard voom curve to separate curves for each of the groups,
where the adjustment is based on the blocked sample-specific
weights (Figure 2¢). In practice, the blocked sample-specific
weights are used to adjust the precision weights fed into the
standard limma pipeline, such that w;i rather than wy; is
used.

Group variance modelling with voomByGroup. Our sec-
ond group variance method, voomByGroup, tackles het-
eroscedastic groups from a different angle. voomByGroup
subsets the gene expression data and design matrix X for
each group, such that a LOWESS curve is created using only
the data from specific samples. The LOWESS curve is then
used to obtain precision weights wgy;. for gene g and sample
1 in group (or condition) c¢. As a result, each group has its
own mean-variance curve and set of weights (Figure 2d-g).
The group-specific weights are combined across all groups,
c=1,2,..C, to get wz;’; which replaces wy; in the standard
limma pipeline. Since voomByGroup subsets the data and the
design matrix X to obtain precision weights, any additional
covariates are estimated using only a subset of the data.

Additionally, voomByGroup offers an option make the usage
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of overall voom trend instead of group-specific trends, which
is specified in the argument dynamic with the input as a
vector of BOOLEAN variables. The dynamic is recom-
mended to be turned on for groups with small group sizes,
e.g. 2 or fewer samples in a group.

For groups with relatively more samples (3 or more than 3),
the dynamic can remain FALSE, which means that to esti-
mate the variance, the group-specific trends are still used.

Running variations of voom. The voom, voomByGroup
and voomQWB methods are run in R using the following
functions:

voom(y, design=design, ...)

voomByGroup(y, design=design, group=group, ...)
voomWithQualityWeights(y, design=design,
var.group=group, ...)

All functions are run similarly, with 2 common arguments
and an additional argument for voomByGroup and voomWith-
QualityWeights. y represents pseudo-bulk count data with N
samples and G genes. design is the design matrix with N
rows matching the number of samples and P model parame-
ters. group is a factor vector that is of length N.
Group-specific mean-variance plots are produced in the
voomByGroup function, by specifying plot="separate” to
get individual mean-variance plots for each group (Figure 2d-
f) or plot="combine” to show all mean-variance curves in a
single plot (Figure 2g) which makes relative differences be-
tween the curves easier to spot. BCV values calculated using
estimateCommonDisp function in edgeR are automati-
cally added to the plots.

DE analysis with edgeR. Besides the standard voom
method, two further options for DE analysis using edgeR,
namely edgeR LRT (likelihood-ratio test) (37) and edgeR QL
(quasi-likelihood) (38) were also evaluated. To run edgeR
LRT, glmFit was used with default settings, and only
the count matrix and design matrix provided, followed by
glmLRT. To run edgeR QL, g1mQLFit was used with de-
fault settings and only the count matrix and design matrix
provided, followed by g1mQLFTest. All genes with asso-
ciated p-values from the DE test used were then extracted
with the t opTag function.

Simulated scRNA-seq data. Single-cell gene-wise
read counts were generated to follow correlated neg-
ative binomial distributions (Figure S2). Baseline ex-
pression frequencies were generated by the function
edgeR: :goodTuringProportions on reference
data (39) (iTreg cells were used, and genes with UMI counts
> 200 were kept). The expected library size for each cell is
estimated using a log-normal distribution (40). Parameters
(location mu and scale sigma) are estimated based on the
reference data as well, and they are then used to calculate
expected library sizes. Then baseline proportions were
multiplied by expected library sizes to generate expected
read counts.
Read counts from the same subject were generated to be cor-
related using a copula-multivariate normal strategy. First,
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multivariate normal deviates were generated with the spec-
ified intra-subject correlation. Then the normal deviates were
transformed to gamma random variables by quantile to quan-
tile transformations to represent the “true® expression levels
of each gene in each cell. Then Poisson counts were gener-
ated with expected values specified by the gamma variates.
Here the gamma deviates represent biological variation be-
tween subjects and cells while the Poisson counts represent
technical variation associated with sequencing (37). This
process ensured that the counts follow marginal negative bi-
nomial distributions and that counts for each subject are cor-
related. Importantly, the intra-subject correlation affects only
the biological part of the variation whereas the technical vari-
ation remains independent.

The relationship of the dispersion of aggregated cells to the
dispersion of single cells is approximate:

Pagg = correlation X ¢sc+ (1 — correlation) /N

where ¢4 is the dispersion of aggregated pseudo-bulk data,
correlation is the intra-subject correlation, ¢4, is the dis-

O Ly)?

persion of single-cell data. N is calculated by N = Sz

where L; is the cell-wise library size. In the current study,
intra-block correlation is set as 0.1 for all simulations.

Simulation scenarios. In this study, we simulate data for
4 scenarios: 1) groups having different biological variations,
2) no biological or technical variation between samples or
groups, 3) samples having different cell numbers (this in-
duces differences in technical variation by having unequal
sample sizes), and 4) samples having different cell numbers
and groups having different levels of biological variation. We
generate 50 simulations for each scenario, with each simula-
tion involving 12 samples (4 groups, with triplicate samples
in each) and 10,000 genes. To induce differentially expressed
genes in the datasets, 50 genes are randomly selected to be
up-regulated in each group with a true logs-fold-change of 2.
This means that for every pairwise comparison, there are 100
true DE genes. For each simulated dataset, genes with fewer
than 30 reads across all pseudo-bulk samples were filtered
out before DE analysis.

In the first scenario (scenario 1), we keep the expected library
size of each sample consistent by generating 250 cells for
each sample. By varying the dispersion in our simulation, we
obtain BCV values that are variable between groups — 0.20,
0.22, 0.26, and 0.28.

The second scenario (scenario 2) generates homoscedastic
groups, such that there should be no true differences (biolog-
ical or technical) in group variability. We use the data here
to confirm whether the methods behave in the way we would
expect — that voomQWB and voomByGroup perform similarly
to voom if there are no group differences. Here, each sample
contains 250 cells and groups have BCV values of ~(.22.

In the third scenario (scenario 3), the biological variation is
consistent between groups (BCV=~.0.22), but the number of
cells varies for each sample. With the baseline number of
cells set as 250, the samples are adjusted by these propor-
tions: 1:1:1, 1:0.8,0.8, 1:2:2, and 1:3:3.
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The expected library for each cell remains constant, such that
a sample with more cells is expected to have a library size
that is proportional to its cell number.

The fourth scenario (scenario 4) combines elements from
the first and third scenarios. Biological variation is adjusted
such that group 1 and group 2 have less biological variation
(BCV=~0.22), and group 3 and group 4 have relatively more
biological variation (BCV=~.0.24).

Samples have variable cell numbers — generated using the
same baseline cell number and proportions as for our third
simulation.

scRNA-seq datasets. Publicly available scRNA-seq
datasets that were examined in this article in Figure 1
include:

* Whole lung tissue from 3-month and 24-month-old
mice (29). Pseudo-bulk data from type2 pneumocytes
were created. These data are available from GEO un-
der accession number GSE124872.

* Xenopus tail from regeneration-competent and in-
competent tadpoles, 1-3 days post-amputation (30).
Pseudo-bulk data from goblet cells were created. The
data is available in the scRNAseq package (41).

* PBMC:s from healthy controls and COVID-19 patients
of varying severity (asymptomatic, moderate, or se-
vere) (31). Pseudo-bulk data from CD356%™ CD16*
NK cells were created. These data are available from
the CNGB Nucleotide Sequence Archive (CNSA) un-
der accession number CNP0001250.

* Human lung tissue from non-fibrotic and pulmonary
fibrosis lungs (32). Pseudo-bulk data from macrophage
cells were created. These data are available from GEO
under accession number GSE135893.

COVID-19 datasets: PBMC1 and PBMC2. We examined
two separate scRNA-seq datasets that sequenced PBMCs
from COVID-19 patients with varying severity (asymp-
tomatic, moderate, and severe) and healthy controls. We refer
to the first dataset described above as “PBMCI”. The second
dataset, which we refer to as “PBMC2” (34), is available from
https://covidl9cellatlas.org/.

Filtering, data normalization, and downstream anal-
ysis. Prior to creating pseudo-bulk samples, we performed
filtering at the gene- and cell-level. We then selected one
cell type per dataset to create pseudo-bulk samples. We fil-
tered out pseudo-bulk samples with relatively fewer cells or
smaller library sizes before performing DE analysis (see Sup-
plementary Table S1 for further details).

Normalization was then performed for each dataset using the
trimmed mean of M values (TMM) method (42) using the
calcNormFactors function.

The goana function in limma was used to carry out Gene
Ontology (GO) analyses on DE results from the COVID-
19 NK cells, using the org. Hs . eg . db annotation package
(version 3.14.0) (43).
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Software. Results were generated using R version 4.1.3
(44), and software packages limma version 3.50.0, edgeR ver-
sion 3.36.0, and ggplot version 3.3.5 (45).
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