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Abstract  17 

In aquatic ecosystems, the health of fish depends greatly on the dynamics of microbial 18 
community structure in the background environment. Nonetheless, finding microbes with 19 
profound impacts on fish’s performance out of thousands of candidate species remains a 20 
major challenge. We here show that time-series analyses of microbial population dynamics 21 
illuminate core components and structure of fish-associated microbiomes. By targeting eel 22 
aquaculture microbiomes as model systems, we reconstructed the population dynamics of 23 
9,605 bacterial and 303 archaeal species/strains across 128 days. Due to the remarkable 24 
increase/decrease of constituent microbial populations, the taxonomic compositions of 25 
microbiomes changed drastically through time. We then found that some specific microbial 26 
taxa showed positive relationship with eels’ activity level even after excluding cofounding 27 
effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. 28 
In particular, a vitamin B12-producing bacteria, Cetobacterium somerae, consistently showed 29 
strong positive associations with eels’ activity level across the replicate time-series of the five 30 
aquaculture tanks. Network theoretical and metabolic modeling analyses further suggested 31 
that the highlighted bacterium formed compartments of close microbe-to-microbe interactions 32 
with some other bacterial taxa, forming potential core microbiomes with positive impacts on 33 
eels. Overall, these results suggest that integration of microbiology, ecological theory, and 34 
network science allows us to explore core species and interactions embedded within complex 35 
dynamics of fish-associated microbiomes.  36 

 37 
  38 
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Microbial communities are essential factors of the life of vertebrates1–4, playing key roles in 39 
the development and homeostasis of their hosts5–7. Gut microbiomes, for example, play key 40 
roles in the nutrition and disease prevention of human and other mammal species8,9. Such 41 
physiological and ecological effects of gut microbes on hosts have been reported as well for 42 
fish6,10,11. Meanwhile, because fish are continuously exposed to numerous pathogenic and 43 
non-pathogenic microbial species in the water, their performance (or fitness) depends not only 44 
on gut-associated microbes6,10 but also on the microbiomes of the background environment12–45 
14. Therefore, finding key microbiome components whose dynamics determine fish’s health or 46 
performance is of interdisciplinary interest spanning from microbiology to zoology and 47 
environmental science. However, due to the tremendous diversity of bacteria and archaea in 48 
aquatic ecosystems15,16, exploring such core microbial species associated with fish health 49 
remains a challenge.  50 

 A starting point for finding fish-health-associated microbes in aquatic ecosystems is to 51 
track the dynamics of microbial community compositions. Nonetheless, we still have limited 52 
knowledge of the extent to which structure of fish-associated microbiomes change through 53 
time. Although time-series data of microbiomes have become available in pioneering projects 54 
of human-associated microbes17,18, few attempts have been made to monitor microbiomes 55 
associated with other animals over tens of time points. Moreover, continuous sampling of 56 
fecal samples of targeted vertebrate individuals is generally much harder in aquatic 57 
environments than in terrestrial environments. Thus, developing model systems for time-58 
series analyses of microbe–fish ecological interactions is a demanding but essential step for 59 
exploring core bacteria and/or archaea out of thousands of candidate species in microbial 60 
communities. 61 

 Despite the hardship in gaining time-series microbiome samples at the individual level, 62 
fish-associated microbiome dynamics can be monitored at the population or community level 63 
by sampling environmental water samples19–21. Because excrements of fish are released to 64 
water, samples of background water are expected to reflect gut microbiomes of fish 65 
populations or communities. Furthermore, as individual fish are continuously exposed to the 66 
background microbiomes, analyses of water samples provide essential insights into 67 
surrounding environmental conditions and potential sources of gut microbiomes12–14. In this 68 
respect, time-series analyses of aquaculture or aquarium systems offer an ideal opportunity 69 
for investigating relationship between microbial community structure, core microbial species, 70 
and vertebrate health.  71 
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  By targeting a recirculating aquaculture system of the Japanese eel (Anguilla 72 
japonica), we herein integrate microbiology, community ecology, and network science for 73 
detecting key species and structure within fish-associated microbiomes. Based on the DNA 74 
metabarcoding of prokaryote (bacterial and archaeal) communities for the 128-day time-75 
series, we revealed to what extent the compositions of aquaculture microbiomes fluctuate 76 
through time. We then reconstructed the population dynamics (i.e., increase/decrease) of the 77 
9,908 microbial amplicon sequencing variants (ASVs) constituting the aquaculture 78 
microbiomes, screening bacteria or archaea whose abundance was tightly linked with the 79 
health condition of eels. We then found that several microbial ASVs showed positive 80 
associations with eel health consistently across the five replicate aquaculture tanks, even after 81 
controlling the effects of their environmental preference (e.g., preference to pH and dissolved 82 
oxygen level). With the approaches of network science and metabolic modeling, we further 83 
examined potential interactions between the core microbes. Overall, this study illustrates how 84 
core species and interactions are detected based on time-series datasets of microbiome 85 
dynamics.  86 

 87 

Results 88 

Microbiome dynamics. Monitoring of microbiome dynamics was conducted targeting the 89 
five water tanks of an aquaculture farm of the Japanese eel. In each water tank (diameter = 2.5 90 
m; height = 1 m; volume = 20 m3), 1,400–4,300 eel individuals (average weight = 80–130 g) 91 
had been kept. The pH and dissolved oxygen (DO) concentrations were recorded for each 92 
tank every day. In addition, as a measure of ecosystem-level functions of microbiomes, the 93 
health condition of eels was evaluated based on eight criteria, yielding eel activity scores on a 94 
scale of 0 to 40 (see Methods). For the analyses of microbiome dynamics, water was sampled 95 
from each aquaculture tank every 24 hours during 128 days. By applying a quantitative 96 
amplicon sequencing approach for estimating 16S ribosomal RNA gene (16S rRNA) copy 97 
concentrations of respective microbes22,23, we obtained time-series datasets representing the 98 
increase/decrease of 9,605 bacterial and 303 archaeal ASVs representing 618 genera and 325 99 
families (Fig. 1a). Thus, our data offered a novel opportunity to test synchronizations among 100 
microbial population dynamics, environmental factors (pH and DO), and vertebrate 101 
performance (eel activity level).  102 

 At the community level, drastic taxonomic turnover was observed in the timeseries of 103 
each aquaculture tank (Fig. 1; Extended Data Figs. 1-3). In Tanks 1 and 2, for example, the 104 
community structure characterized by the predominance of Fusobacteriaceae and 105 
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Microbacteriaceae was suddenly altered by a Flavobacteriaceae-dominated state around Day 106 
45 (Fig. 1). Meanwhile, microbiomes of Tanks 3–5 displayed more complex dynamics 107 
represented by frequent shifts between Flavobacteriaceae-dominated and Chitinophagaceae-108 
dominated states, although clear classification of community states was difficult (Fig. 1).  109 

 A multivariate analysis of the prokaryote community structure indicated that the 110 
community state characterized by dominance of Fusobacteriaceae and Microbacteriaceae was 111 
associated with high eels’ activity (Fig. 2). In contrast, the Flavobacteriaceae-dominated and 112 
Chitinophagaceae-dominated states, which were observed in high-pH conditions, were 113 
associated with low eels’ activity (Fig. 2). At the genus level, the high-eel-activity-related 114 
state of dominance by Fusobacteriaceae and Microbacteriaceae was characterized by high 115 
relative abundance of Cetobacterium, which includes species potentially contribute to fish 116 
physiological homeostasis24. On the other hand, the Flavobacteriaceae-dominated and 117 
Chitinophagaceae-dominated states associated with low eels’ activity were represented by 118 
Flavobacterium and Edaphobaculum, respectively (Extended Data Fig. 4). Among the 119 
genera, Flavobacterium includes fish pathogens25, while Edaphobaculum26 has been poorly 120 
investigated in terms of their effects on fish physiology. These results suggest potential 121 
impacts of environmental microbiome dynamics on fish health/behavior in aquaculture 122 
systems.  123 

 124 

Exploring microbes with key roles. We next evaluated how the population dynamics of 125 
each microbial ASV were associated with environmental variables and eels’ activity level. 126 
Specifically, we examined how population size (absolute abundance) of each ASV varied 127 
with pH, DO, and eels’ activity level (Fig. 3a) based on correlation analyses with twin-128 
surrogate permutations27 (Fig. 3b-c). The ASVs varied in their environmental preference for 129 
pH and DO conditions as well as in their associations with eels’ activity level (Extended Data 130 
Fig. 5). We also found that ASVs’ relationship with eels’ activity level displayed tank-131 
dependent complex associations with pH or DO preference (Fig. 3d-e). Thus, for each 132 
microbial ASV in each aquaculture tank, we calculated a partial correlation between absolute 133 
abundance and eels’ activity scores through the time-series by controlling the effects of pH or 134 
DO. Because partial correlation coefficients were consistent between the pH-controlled and 135 
DO-controlled calculations (Fig. 3f), the pH-controlled partial correlation coefficients were 136 
used in the following analyses.  137 

 The partial correlation coefficients with eels’ activity level varied greatly depending on 138 
prokaryote taxa (Fig. 2e). Nonetheless, ASVs belonging to some bacterial genera showed 139 
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consistently positive correlation with eels’ activity scores across the five tanks (Fig. 2g; 140 
Extended Data Fig. 5). The list of those ASVs included bacteria belonging to the genera 141 
Cetobacterium (Fusobacteriaceae; Fusobacteriia; ASV ID = X_0002), Plesiomonas 142 
(Enterobacteriaceae; Gammaproteobacteria; X_0020), Turicibacter (Erysipelotrichaceae; 143 
Bacilli; X_0041), Paraclostridium (Clostridiaceae; Clostridia; X_0014), Romboutsia 144 
(Peptostreptococcaceae; Clostridia; X_0028), Edwardsiella (Hafniaceae; 145 
Gammaproteobacteria; X_0027), Clostridium (Clostridiaceae; Clostridia; X_0029), and an 146 
ASV belonging to Barnesiellaceae (Bacteroidia; X_0064) (Fig. 3g; Extended Data Fig. 5d).  147 

 An additional database search of the 16S rRNA sequences suggested that some of the 148 
ASVs with positive associations with eels’ activity level belonged to bacterial species with 149 
potential physiological impacts on fish. For example, the Cetobacterium ASV, which showed 150 
strongest positive partial correlation with eels’ activity level, was represented by the 16S 151 
rRNA sequences completely matching that of Cetobacterium somerae (formerly recognized 152 
as “Bacteroides type A”) in the NCBI nucleotide database. This Cetobacterium species has 153 
been known to produce high concentrations of vitamin B12 and hence their potential 154 
contributions to fish’s physiology have been anticipated. Meanwhile, the Edwardsiella ASV 155 
listed above was allied to the notorious fish pathogen E. tarda28, illuminating paradoxical 156 
relationships with eels’ health. However, our supplementary phylogenetic analysis based on 157 
the sodB gene marker29 indicated that 95.1 % of Edwardsiella bacteria detected in the focal 158 
eel aquaculture system belonged to non-pathogenic clades29,30 within the genus Edwardsiella 159 
(Extended Data Fig. 6).  160 

 In terms of negative impacts on eels’ activity level, bacteria in the genera Aeromonas 161 
(Aeromonadaceae; Gammaproteobacteria), Methylobacterium (alternatively, Methylorubrum; 162 
Beijerinckiaceae; Alphaproteobacteria), and Acinetobactor (Moraxellaceae; 163 
Gammaproteobacteria) were highlighted (Fig. 3g). Among them, Aeromonas and 164 
Acinetobactor have been known to include fish pathogens31,32. At the ASV level, an ASV 165 
allied to the cvE6 clade within the order Chlamydiales (Chlamydiae; Verrucomicrobiota) 166 
showed strongest negative correlation with eels’ activity scores (Extended Data Fig. 5d).  167 

 Although the above analysis controlling environmental preferences of respective 168 
bacteria allows high-throughput screening for species with potential positive/negative impacts 169 
on target biological functions, the simple statistical approach with partial correlation analyses 170 
precludes insights into the direction of causality. Specifically, it is important to consider the 171 
possibility that high/low abundance of an ASV is a consequence but not a cause of eels’ 172 
high/low activity. Therefore, we performed an additional analysis introducing time lags into 173 
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eels’ activity scores throughout the time-series. We then found that the abundance of the 174 
Cetobacterium ASV was positively correlated with eels’ activity scores of the next day, while 175 
correlations between Cetobacterium abundance and past eels’ activity scores were much 176 
lower than those with no time lags (Fig. 3h). Meanwhile, high correlation between 5-days-ago 177 
eels’ activity level and present-day Cetobacterium abundance was observed in some tanks 178 
(Tanks 1 and 4; Fig. 3h), illuminating the importance of carefully interpreting the results of 179 
the time-series analysis.  180 

 181 

Networks of interactions. We then reconstructed webs of potential microbe-to-microbe 182 
interactions to illuminate microbial groups or interactions positively associated with eels’ 183 
health. We first applied the Meinshausen-Bühlmann (MB) method, which was designed to 184 
evaluate patterns of coexistence realized by the effects of microbe–microbe interactions as 185 
well as those of niche sharing between microbes. For each aquaculture tank, the reconstructed 186 
network of microbe–microbe coexistence (Extended Data Figs. 7–8; Supplementary Table 1) 187 
was compartmentalized into several modules, which differed in mean partial correlations with 188 
eels’ activity scores (Fig. 4). We then found that each of the five networks included a module 189 
constituted by the abovementioned Cetobacterium ASV and several other ASVs with 190 
consistently positive associations with eels’ activity level (Fig. 4; Extended Data Fig. 9). The 191 
bacteria consistently formed network modules of coexistence with the Cetobacterium ASV 192 
were Plesiomonas (X_0020), Turicibacter (X_0041), Paraclostridium (X_0014), Romboutsia 193 
(X_0028), Edwardsiella (X_0027), and Clostridium (X_0029) (Fig. 4).  194 

 To infer the presence/absence of direct interactions between these bacteria with positive 195 
relationship with eels’ activity level, we conducted an additional network analysis based on 196 
the sparse and low-rank (SLR) decomposition method, which allowed us to remove latent 197 
effects of environmental conditions. In the networks reconstructed with the SLR method (Fig. 198 
5), potential effects of niche sharing were controlled and hence the links between bacterial 199 
ASVs were expected to represent potential positive interactions. The estimated interaction 200 
coefficients were highly correlated between the MB and SLR methods (Extended Data Fig. 201 
10). Meanwhile, in the SLR-based network, removing the effects of potential niche sharing 202 
(sharing of environmental preference) resulted in the simplification of network structure, in 203 
which estimated direct interactions between microbes were focused (Fig. 5). Despite the 204 
considerable difference between MB- and SLR-based network topology, the Cetobacterium 205 
ASV with the strongest associations with eels’ activity level was, again, linked with the 206 
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Plesiomonas, Turicibacter, Paraclostridium, Romboutsia, Edwardsiella, and Clostridium 207 
ASVs within the SLR network (Fig. 5), suggesting positive interactions with these bacteria.  208 

 209 

Potential metabolic interactions. To estimate functional interactions between microbes, we 210 
focused on genomic compositions of respective microbes within the aquaculture 211 
microbiomes. After retrieving the information of genomic compositions from reference 212 
databases, we analyzed the inferred gene repertoires (KEGG metabolic pathway/process 213 
profiles) of the microbial ASVs based on multivariate analysis. Along the principal 214 
component axes, Cetobacterium, which showed consistent correlations with eels’ activity 215 
(Fig. 3g; Extended Data Fig. 5d), was located distantly from Edwardsiella, Plesiomonas, and 216 
Turicibacter (Fig. 6a). In contrast, Romboutsia, Paraclostridium, and Clostridium displayed 217 
similar metabolic gene repertories with Cetobacterium (Fig. 6a).  218 

 We next evaluated potential competitive and facilitative interactions between microbes 219 
based on a genome-scale metabolic modeling approach. In the analysis, reference genomic 220 
information was used to infer competition for available resources and exchanges of 221 
metabolites, yielding metabolic resource overlap and metabolic interaction potential scores 222 
for each pair of microbial ASVs. We then found that the Romboutsia, Edwardsiella, and 223 
Plesiomonas ASVs had relatively low metabolic resource overlap and relatively high 224 
metabolic interaction potential with the Cetobacterium ASV among the prokaryotes examined 225 
(Fig. 6b).  226 

 227 

Discussion 228 

Through the 128-day monitoring of thousands of microbial species/strains, we here found that 229 
aquatic microbiomes associated with fish could show drastic shifts of community structure 230 
through time. Such dynamical nature of community processes has been intensively 231 
investigated in human-associated microbiomes in light of potential influence on host 232 
status17,18. In particular, shifts (collapse) of microbial community structure to disease-related 233 
states (i.e., dysbiosis) have been considered as essential mechanisms determining human 234 
health33,34. Given the growing literature on microbiome dynamics in medical science, 235 
knowledge of shifts between alternative states of fish-related microbiomes14 is expected to 236 
shed new lights on physiological and ecological processes of vertebrates.  237 
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 The aquaculture microbiome dynamics were described as shifts among 238 
Fusobacteriaceae-abundant states, Flavobacteriaceae-dominated states, and 239 
Chitinophagaceae-dominated states, although intermediate states existed through the time-240 
series (Fig. 1). Among them, Fusobacteriaceae-abundant states, which were characterized by 241 
high abundance of Cetobacterium, were designated as microbiome compositions positively 242 
associated with eels’ activity level (Fig. 2; Extended Data Fig. 4). In fact, among the 9,908 243 
microbial ASVs examined, the ASV representing Cetobacterium somerae showed the 244 
strongest associations with eel’s activity level through the time-series even after controlling 245 
effects of environmental preference (Fig. 3; Extended Data Fig. 5). This Cetobacterium 246 
species has been reported from a broad taxonomic range of freshwater fish35–37, especially 247 
from intestines of species that do not require dietary vitamin B1224. Although vitamin B12 248 
(cobalamin) plays essential roles in animal physiology (e.g., normal functioning of nervous 249 
systems and the maturation of red blood cells), they can be synthesized only by specific 250 
clades of bacteria and archaea38,39. Genomic studies have shown that C. somerae has a series 251 
of genes for anaerobic vitamin B12 biosynthesis40. Indeed, the bacterium produces highest 252 
concentrations of vitamin B12 compared to other culturable bacteria within freshwater fish-253 
associated microbiomes24,41. Given the prevalence of Cetobacterium in freshwater fish 254 
species35–37, our results suggest that maintaining microbiomes at Cetobacterium-abundant 255 
states is the key to build general platforms for stably keeping freshwater 256 
aquaculture/aquarium systems.  257 

 Further analyses based on network theory and metabolic modeling indicated the 258 
possibility that the Cetobacterium species form facilitative interactions with some other 259 
microbial species/ASVs (Figs. 4-6). Among the bacteria for which interactions with 260 
Cetobacterium were inferred from multiple analyses, Edwardsiella tarda has been known to 261 
include notorious pathogens of broad taxonomic groups of fish including eels28,29,42. However, 262 
we found that the E. tarda population of the investigated aquaculture system was dominated 263 
by non-pathogenic strains29,30 of the species (Extended Data Fig. 6). Thus, the presence of 264 
microbial species/strains belonging to broadly-known taxa of pathogens do not necessarily 265 
result in negative impacts on fish. Rather, our analyses suggested that “seemingly pathogenic” 266 
microbes could be involved in core microbiome components (network modules) constituted 267 
by microbes contributing to the maintenance of fish health. Further studies are awaited to 268 
explore potential mechanisms such as competitive exclusion of pathogenic strains by non-269 
pathogenic strains43,44 or indirect negative impacts on pathogenic strains through the 270 
activation of fish immune systems6,45 by non-pathogenic strains. In contrast to E. tarda, 271 
Romboutsia and Plesiomonas, which were inferred as microbes with facilitative interactions 272 
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with C. somerae, too (Figs. 4-6), have been poorly investigated in terms of their functions. 273 
Their potential roles in competitive exclusion of pathogens or activation of host immune 274 
systems deserve further investigations.  275 

 While the time-series dataset allowed us to highlight core species and interactions 276 
within microbial communities, more sophisticated statistical platforms beyond simple 277 
correlational approaches are necessary for confirming causative relationships between 278 
microbiome dynamics and vertebrate health/performance. In this respect, methods based on 279 
nonlinear mechanics, such as transfer entropy and empirical dynamic modeling46,47, are 280 
expected to help us infer causative interactions among microbial population dynamics, 281 
environmental factors, and vertebrate performance. Albeit promising, these methods require 282 
substantial computational resources when we try to analyze microbiomes consisting of 283 
thousands of ASVs. Further methodological advances will deepen our understanding of the 284 
mechanisms by which microbiome dynamics and vertebrate performance are linked with each 285 
other.  286 

 As the analyses of microbiome dynamics extend from medical science to researches 287 
targeting other vertebrates, we will be more and more aware of overlooked roles of microbes 288 
in both terrestrial and aquatic ecosystems. Feedback between intestine and environmental 289 
microbiomes, for example, deserves future intensive research in terms of potential great 290 
impacts on ecosystem processes. In particular, given that aquatic vertebrates are continuously 291 
exposed to excrements of other individuals or species, their gut microbiome dynamics (and 292 
related health conditions) may be more likely to be synchronized at the population or 293 
community levels than those of terrestrial vertebrates. Therefore, simultaneous monitoring of 294 
intestine and background environmental microbiomes will provide platforms for uncovering 295 
such feedback and synchronization processes. Further insights into fish-associated 296 
microbiome dynamics will reorganize our basic understanding of aquatic ecosystem 297 
dynamics, advancing technologies for sustainable food production through stable aquaculture 298 
systems48–50.  299 

 300 
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Methods 476 

Sampling. Monitoring of microbiome dynamics was conducted targeting the five water tanks 477 
of the eel aquaculture system of A-Zero Inc. (Nishiawakura, Okayama Prefecture, Japan). In 478 
each water tank (diameter = 2.5 m; height = 1 m; volume = 20 m3), 1,400–4,300 eel 479 
individuals (average weight = 80–130 g) had been kept. About 10 % of tank water was 480 
replaced with warmed fresh well water every day, and the water temperature in the tanks was 481 
kept at around 30 ºC. The drainage from the five tanks were mixed and processed in a series 482 
of filtration equipment. The filtered drainage was returned to each tank after being processed 483 
in another filtration equipment adjacent to each tank. The eels were fed with mixture of 484 
commercial artificial diets. The pH, dissolved oxygen (DO), and eels’ activity level were 485 
recorded for each tank every day. The eels’ activity level was evaluated based on the sum of 486 
the scores of the following eight criteria: initial responses to feeders, the proportion of eels 487 
responding to feeders, sharpness of movement, the proportion of eels eating the artificial diet, 488 
the level of splashes, the amount of scattered diet, the time to consume the diet, and the 489 
proportion of foraging eels at the end of feeding. For each of the criteria, scoring was done on 490 
a five-point scale (maximum point = 5) by an expert of eel aquaculture maintenance: thus, 40 491 
(5 ´ 8 criteria) is the maximum point of the eels’ activity score. Albeit subjective, the criteria 492 
evaluated continuously by a professional provide inferences of eel’s health conditions 493 
throughout the time series. The water in the tanks were continuously mixed by the movement 494 
of eels.  495 

From each aquaculture tank (Tank 1–5), ca. 1.5 mL of water was sampled in the 496 
morning every day during the 128 days from March 25 to July 30, 2020, except for 9 days 497 
(Days 102, 103, 120, 121, 122, 123, 124, 125, and 126): i.e., the samples of 119 days were 498 
available. In Tank 4, samples were unavailable on additional three days (Day 67–69) due to 499 
the cleaning and the entire replacement of water. Consequently, the number of collected 500 
samples were 592 (119 days ´ 5 tanks – 3 days in Tank 4). Water sample was collected in a 501 
2.0 mL microtube and they were immediately stored at -20 ºC in a freezer until DNA 502 
extraction.  503 

 504 

Quantitative 16S rRNA sequencing. To extract DNA from each sample, 250 μL of the 505 
collected water was mixed with mixed with 400 μL lysis buffer (0.0025 % SDS, 20 mM Tris 506 
(pH 8.0), 2.5 mM EDTA, and 0.4 M NaCl) and 250 μL 0.5 mm zirconium beads in a 2.0 mL 507 
microtube. The microtubes were then shaken at 25 Hz for 5 min using TissueLyser II 508 
(Qiagen, Venlo). After centrifugation, the aliquot was mized with proteinase K solution 509 
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(×1/100 of the total volume), being incubated at 40 ºC for 60 min followed by 95 ºC for 5 510 
min. 511 

 We then performed PCR by applying a quantitative amplicon sequencing method22,51. 512 
Although most existing microbiome studies were designed to infer “relative” abundance of 513 
microbial amplicon sequence variants (ASVs) or operational taxonomic units (OTUs), 514 
information of “absolute” abundance provide additional insights into microbiome dynamics: 515 
i.e., insights into increase/decrease of the population size of each prokaryote ASV/OTU 516 
within a microbiome throughout a time-series22. The quantitative amplicon sequencing 517 
approach is based on the addition of artificial (standard) DNA sequences with defined 518 
concentrations into PCR master solutions. Therefore, even if compositions or concentrations 519 
of PCR inhibitor molecules in DNA extracts vary among time-series samples, potential bias 520 
caused by such inhibitors can be corrected based on the use of the internal standards (i.e., 521 
standard DNAs within PCR master solutions). 522 

 Prokaryote 16S rRNA region was PCR-amplified with the forward primer 515f52 fused 523 
with 3–6-mer Ns for improved Illumina sequencing quality and the forward Illumina 524 
sequencing primer (5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-525 
mer Ns] – [515f] -3’) and the reverse primer 806rB53 fused with 3–6-mer Ns for improved 526 
Illumina sequencing quality54 and the reverse sequencing primer (5’- GTC TCG TGG GCT 527 
CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [806rB] -3’) (0.2 µM each). To 528 
apply the quantitative amplicon sequencing, five standard DNA sequence variants with 529 
different concentrations of artificial 16S rRNA sequences (0.1, 0.05, 0.02, 0.01, and 0.005 530 
nM) were added to PCR master mix solutions22. The buffer and polymerase system of KOD 531 
One (Toyobo) was used with the temperature profile of 35 cycles at 98 ºC for 10 s, 55 ºC for 532 
30 s, 68 ºC for 30 s. To prevent generation of chimeric sequences, the ramp rate through the 533 
thermal cycles was set to 1 ºC/sec55. Illumina sequencing adaptors were then added to 534 
respective samples in the supplemental PCR using the forward fusion primers consisting of 535 
the P5 Illumina adaptor, 8-mer indexes for sample identification56 and a partial sequence of 536 
the sequencing primer (5’- AAT GAT ACG GCG ACC ACC GAG ATC TAC AC - [8-mer 537 
index] - TCG TCG GCA GCG TC -3’) and the reverse fusion primers consisting of the P7 538 
adaptor, 8-mer indexes, and a partial sequence of the sequencing primer (5’- CAA GCA GAA 539 
GAC GGC ATA CGA GAT - [8-mer index] - GTC TCG TGG GCT CGG -3’). KOD One 540 
was used with a temperature profile: followed by 8 cycles at 98 ºC for 10 s, 55 ºC for 30 s, 68 541 
ºC for 30 s (ramp rate = 1 ºC/s). The PCR amplicons of the samples were then pooled after a 542 
purification/equalization process with the AMPureXP Kit (Beckman Coulter). Primer dimers, 543 
which were shorter than 200 bp, were removed from the pooled library by supplemental 544 
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purification with AMpureXP: the ratio of AMPureXP reagent to the pooled library was set to 545 
0.6 (v/v) in this process. Because the quality of forward sequences is generally higher than 546 
that of reverse sequences in Illumina sequencing, we optimized the MiSeq run setting in order 547 
to use only forward sequences. Specifically, the run length was set 271 forward (R1) and 31 548 
reverse (R4) cycles to enhance forward sequencing data: the reverse sequences were used 549 
only for screening 16S rRNA sequences in the following bioinformatic pipeline.   550 

 551 

Bioinformatics. In total, 16,298,203 sequencing reads were obtained in the Illumina 552 
sequencing. The raw sequencing data were converted into FASTQ files using the program 553 
bcl2fastq 1.8.4 distributed by Illumina. The raw sequencing data were converted into FASTQ 554 
files using the program bcl2fastq 1.8.4 distributed by Illumina. The output FASTQ files were 555 
demultiplexed using Claident v0.2. 2018.05.2957. The removal of low-quality sequences and 556 
ASV inferences were done using DADA258 v.1.22.0 of R 4.1.259(R Core Team, 2020). The 557 
taxonomy of the output ASVs was inferred based on the naive Bayesian classifier method60 558 
using the SILVA v.138 database61. Based on the calibration with the concentration gradients 559 
of the five standard DNAs, concentrations of respective ASVs were obtained for each sample 560 
(16S rRNA copy numbers per unit volume of tank water samples; copies/μL). As the number 561 
of 16S rRNA copies per genome generally varies among prokaryotic taxa62, 16S rRNA copy 562 
concentration is not directly the optimal proxy of cell or biomass concentration. Meanwhile, 563 
in this study, estimates of 16S rRNA copy concentrations were used to observe 564 
increase/decrease of abundance (i.e., population dynamics) within the time-series of 565 
respective microbial ASVs. Thus, variation in the number 16S rRNA copy numbers among 566 
microbial taxa had no qualitative effects on the subsequent population- and community-567 
ecological analyses. The samples in which Pearson’s coefficients of correlations between 568 
sequencing read numbers and standard DNA copy numbers (i.e., correlation coefficients 569 
representing calibration curves) were less than 0.8 were removed as those with unreliable 570 
estimates. Samples with less than 1,000 reads were discarded as well. In total, microbiome 571 
data were successfully obtained from 577 out of 592 samples. For each aquaculture tank, we 572 
then obtained a sample ´ ASV matrix, in which a cell entry depicted the concentration of 16S 573 
rRNA copies of an ASV in a sample.  574 

 575 

Community structure. For each aquaculture tank, Bray-Curtis b-diversity was calculated for 576 
all pairs of time points based on the matrix describing the relative abundance of prokaryote 577 
families using the vegan 2.6.2 package63 of R. Based on the b-diversity estimates, the 578 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.11.507499doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.11.507499
http://creativecommons.org/licenses/by-nd/4.0/


 

 20 

community structure of all the samples across the five water tanks were visualized on the 579 
surface of non-metric multidimensional scaling (NMDS). The vectors representing the 580 
environmental variables (pH and DO) and eels’ activity level were calculated with the 581 
“envfit” function of R and they were shown on the NMDS surface. The analysis was 582 
conducted as well based on the matrix describing the relative abundance of genera.  583 

 584 

Environmental preference of ASVs. To evaluate environmental preference of each 585 
microbial ASV, Spearman’s correlation between absolute abundance (in the metric of DNA 586 
copy numbers of 16S rRNA) and pH was calculated. For each tank, the ASVs that appeared 587 
in 30 or more samples were subjected to the analysis. For each ASV in each water tank, the 588 
statistical significance of the obtained correlation coefficient was examined with a 589 
randomization analysis obtained based on a twin-surrogate method for time-series data27 590 
(100,000 permutations). Correlation coefficients less than -0.3 and those larger than 0.3 591 
tended to show statistically significant negative and positive correlations with pH, 592 
respectively, after Benjamini-Hochberg adjustment of P values in multiple testing [i.e., false 593 
discovery rate (FDR)]. Likewise, Pearson’s correlation coefficients between respective ASVs’ 594 
absolute abundance and DO concentrations were calculated.  595 

 596 

ASV abundance and eel’s activity. We explored microbial ASVs that potentially have 597 
profound impacts on eels’ health. For each water tank, Spearman’s correlation between 598 
absolute abundance and eels’ activity score was calculated for the ASVs that appeared in 30 599 
or more samples. However, because ASV abundance could be affected by pH or dissolved 600 
oxygen concentration, the use of such simple correlation coefficients might be misleading. 601 
Therefore, we controlled potential effects by environmental factors/conditions based on a 602 
partial correlation approach as follows: 603 

𝑟!"∙$ =
%!"&%!#%"#

'(&%!#$ 	'(&%"#$
, 604 

where 𝑟!", 𝑟!$, and 𝑟"$ were correlation between ASV abundance and eels’ activity level, 605 

that between ASV abundance and an environmental factor (pH or dissolved oxygen 606 
concentration), and that between eels’ activity level and an environmental factor, respectively. 607 
For each ASV, a randomization analysis was performed with the twin-surrogate method 608 
(100,000 permutations).  609 
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 610 

Time-lag analysis. We extended the analysis of partial correlation between microbial 611 
abundance and eels’ activity level by introducing time lags between the two variables. 612 
Specifically, partial correlation between an ASV’s abundance on Day x and eels’ activity 613 
score on Day x + l was calculated. The time lag l ranged from -5 to 5 in the analysis (l = 0 614 
means no delay introduced to eels’ activity level).   615 

 616 

Pathogenic and non-pathogenic Edwardsiella. We performed an additional analysis to infer 617 
the proportion of pathogenic and non-pathogenic clades29,30 of Edwardsiella bacteria in the 618 
aquaculture system. In a previous phylogenetic study based on an internal fragment of iron-619 
cofactored superoxide dismutase gene (sodB), Edwardsiella species and strains have been 620 
classified into two major clades, which differ in the presence of pathogenicity to fish 621 
(hereafter, “pathogenic” and “non-pathogenic” clades). Therefore, we characterized 622 
Edwardsiella bacteria in the aquaculture tanks based on the illumina sequencing of the 623 
Edwardsiella sodB gene sequences. The fragment of the sodB region was PCR-amplified with 624 
the forward primer E1F29 fused with 3–6-mer Ns for improved Illumina sequencing quality 625 
and the forward Illumina sequencing primer (5’- TCG TCG GCA GCG TCA GAT GTG TAT 626 
AAG AGA CAG- [3–6-mer Ns] – [E1F] -3’) and the reverse primer 497R29 fused with 3–6-627 
mer Ns for improved Illumina sequencing quality54 and the reverse sequencing primer (5’- 628 
GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [497R] -3’) 629 
(0.2 µM each). The buffer and polymerase system of KOD One (Toyobo) was used with the 630 
temperature profile of 35 cycles at 98 ºC for 10 s, 55 ºC for 5 s, 68 ºC for 30 s (ramp rate = 1 631 
ºC/sec). The sequencing adaptors and sample identifier indexed were added to the amplicons, 632 
and the purification of the library and sequencing was performed as detailed above. 633 

 The output sequencing data were demultiplexed and processed with DADA2. The 634 
ASVs that were not aligned to the sodB sequences of Edwardsiella29 were discarded. The 635 
neighbor-joining tree of the remaining ASVs and previously reported Edwardsiella sequences 636 
was reconstructed based on the maximum composite likelihood method with a bootstrap test 637 
(1,000 permutations). The ASVs belonging to the pathogenic clade and those belonging to the 638 
non-pathogenic clade of Edwardsiella were distinguished within the phylogeny.  639 

 640 

Microbe–microbe interactions. Potential positive/negative interactions between microbial 641 
ASVs were inferred based on the framework of sparse inverse covariance estimation for 642 
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ecological associations (SPIEC-EASI64). For each water tank, patterns in the coexistence (co-643 
occurrence) were examined with the Meinshausen-Bühlmann (MB) method as implemented 644 
in the SpiecEasi package64 of R. The network inference based on coexistence patterns allowed 645 
us to detect pairs of microbial ASVs that potentially interact with each other in facilitative 646 
ways and/or those potentially sharing environmental preference. Because estimation of 647 
coexistence patterns was not feasible for rare nodes, the microbial ASVs that appeared in less 648 
than 30 samples were excluded from the input matrices of the network analysis. Network 649 
modules, within which closely associated ASVs were interlinked with each other, were 650 
identified with the algorithm based on edge betweenness using the igraph package65 of R. For 651 
each network module in each water tank, mean partial correlation with eels’ activity level was 652 
calculated across ASVs constituting the module.  653 

 In addition to the networks representing whole coexistence patterns, we reconstructed 654 
networks depicting direct interactions between microbial ASVs. To separate effects of direct 655 
microbe–microbe interactions from those of shared environmental preferences between 656 
microbes (i.e., shared niches), 10 latent components (latent variables) were included in the 657 
analysis based on the “sparse and low-rank” (SLR) model66.  658 

 659 

KEGG pathway/process profiles. To infer metabolic interactions between microbial ASVs, 660 
we performed a series of analysis based on reference genome information. We performed 661 
phylogenetic prediction of gene repertoires using PICRUSt2 v2.3.0-b67 in order to gain the 662 
overview of the niche space defined with metagenomic information68,69. ASVs that appeared 663 
in 30 or more sample across the five tanks were subjected to the analysis. Based on the 664 
inferred KEGG metabolic pathway/process profiles70, microbial ASVs were plotted on a two-665 
dimensional surface of a principal coordinate analysis (PCoA) based on Bray-Curtis b-666 
diversity of KEGG metabolic pathway/process profiles.  667 

 668 

Metabolic modeling. To infer potential metabolic interactions between microbes, we 669 
performed the species metabolic interaction analysis71. For the ASVs that appeared in 30 or 670 
more samples (day) in at least one aquaculture tank, we explored NCBI RefSeq genome 671 
sequences whose 16S rRNA sequences matched those of query ASVs with ³ 99 % identity. In 672 
the database exploration, reference genome information was available for 181 out of 417 673 
ASVs examined. The reference genome information was subjected to genome-scale metabolic 674 
modeling as implemented in CarveMe72 1.5.0. Metabolic resource overlap (MRO) and 675 
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metabolic interaction potential (MIP) were then estimated for each pair of microbial ASVs as 676 
implemented in SMETANA71 1.0.0.  677 

 678 

Data availability 679 

The 16S rRNA sequencing data are available from the DNA Data Bank of Japan (DDBJ) with 680 
the accession number PRJDB14313. The microbial community data are deposited at the 681 
GitHub repository (https://github.com/hiro-toju/EelMicrobiome128).  682 

 683 

Code availability 684 

All the R scripts used to analyze the data are available at the GitHub repository 685 
(https://github.com/hiro-toju/EelMicrobiome128). 686 
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 703 

Fig. 1 | Microbiome dynamics in the eel aquaculture system. a, Dynamics of absolute 704 
abundance. For each water sample of each aquaculture tank, absolute abundance of 705 
prokaryotes was inferred as 16S rRNA gene copy concentration based on the quantitative 706 
amplicon sequencing approach with standard DNA gradients. b, Dynamics of relative 707 
abundance. The time-series of the family-level taxonomic compositions are shown for each 708 
aquaculture tank. See Extended Data Figures 1–3 for phylum-, order-, and genus-level 709 
taxonomic compositions.  710 
  711 
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 712 

Fig. 2 | Multivariate analysis of community structure. a, Community state space. 713 
Community compositions of the samples are plotted on the two-dimensional surface defined 714 
with non-metric multidimensional scaling (NMDS). The NMDS was performed based on the 715 
Bray-Curtis b-diversity of family-level taxonomic compositions. The projections of the data 716 
points onto the vectors have maximum correlation with the variables examined (pH, DO, and 717 
eels’ activity level). See Extended Data Figure 4 for an additional analysis based on genus-718 
level taxonomic compositions. b, Examples of community structure in the NMDS surface. 719 
For several points within the NMDS surface (panel a), family-level taxonomic compositions 720 
are shown. The example points are ordered along the vector representing high eels’ activity 721 
level.  722 
  723 
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 724 

Fig. 3 | Microbes associated with eels’ activity. a, Timeseries of pH, dissolved oxygen (DO) 725 
level, and eels’ activity score are shown for each aquaculture tank. b, Example of the 726 
correlation analysis. For each variable shown in the panel b, Spearman’s correlation with the 727 
absolute abundance of each ASV in each aquaculture tank was examined. c, Randomization 728 
analysis of correlation. Significance of correlation coefficients was examined based on a twin-729 
surrogate randomization analysis of time-series data (100,000 permutations). Coefficients less 730 
than -0.3 and those larger than 0.3 roughly represent significant negative and positive 731 
correlations, respectively. d, Each ASV’s correlation with pH and eels’ activity level. e, Each 732 
ASV’s correlation with DO and eels’ activity level. f, Partial correlation with eels’ activity 733 
level. To control the effects of pH or DO, partial correlation between absolute abundance and 734 
eels’ activity scores was calculated for each ASV in each tank. g, Taxonomic comparison of 735 
relationship with eels’ activity level. Partial correlation with eels’ activity level is shown for 736 
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the genera that appeared in all the aquaculture tanks (shown in the decreasing order of mean 737 
values). h, Time-lag analysis of correlations. In calculating partial correlation between eels’ 738 
activity level and the absolute abundance of the Cetobacterium ASV (X_0002), defined time-739 
lag was introduced to the eels’ activity variable.  740 
  741 
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 742 

Fig. 4 | Microbe-to-microbe coexistence networks. For each aquaculture tank, patterns of 743 
coexistence were analyzed based on the sparse inverse covariance estimation for ecological 744 
associations with the Meinshausen-Bühlmann (MB) model. Only the ASVs that appeared in 745 
30 or more samples were targeted in the analysis of each tank. Within the networks, pairs of 746 
microbial ASVs that may interact with each other in facilitative ways and/or those potentially 747 
sharing environmental preference are linked with each other. Network modules, which 748 
represent groups of densely linked ASVs, are shown for each network. The color of nodes 749 
indicates partial correlation between ASV abundance and eels’ activity level (controlled 750 
variable = pH). The inferred network modules are shown by colors for each tank in a box. The 751 
ASVs that consistently displayed positive or negative correlation with eels’ activity level 752 
(Extended Data Fig. 5) are highlighted with the defined symbols. See Extended Data Figures 753 
6–8 for additional information of the nodes (ASVs) and modules within the network. ASVs 754 
included in minor sub-networks (number of nodes < 5) are not shown. 755 
  756 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.11.507499doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.11.507499
http://creativecommons.org/licenses/by-nd/4.0/


 

 29 

 757 

Fig. 5 | Inferred direct interactions between microbes. Based on the “sparse and low-rank” 758 
(SLR) model, direct interactions between microbial ASVs were inferred by controlling the 759 
effects of shared environmental preference. Only the ASVs that appeared in 30 or more 760 
samples were targeted in the analysis of each tank. The links between nodes represent 761 
potentially positive interactions between ASVs. The color of nodes indicates partial 762 
correlation between ASV abundance and eels’ activity level (controlled variable = pH). ASVs 763 
included in minor sub-networks (number of nodes < 5) are not shown. 764 

 765 
  766 
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 767 

Fig. 6 | Metabolic interactions between microbes. a, Metagenomic niche space. Microbial 768 
ASVs are plotted on a two-dimensional surface of PCoA based on their KEGG metabolic 769 
pathway/process profiles inferred with a phylogenetic prediction of genomes. Microbial 770 
ASVs plotted closely within the surface are expected to have similar gene repertoires. The 771 
ASVs highlighted in Figures 4 and 5 are shown with large symbols. b, Potential competitive 772 
and facilitative interactions. Based on the NCBI RefSeq genome information, potential 773 
metabolic interactions between each pair of ASVs were inferred in terms of metabolic 774 
resource overlap (MRO) and metabolic interaction potential (MIP). Histograms of MRO and 775 
MIP are shown on the horizontal and vertical axes, respectively. ASV pairs including the 776 
Cetobacterium ASV, whose abundance were positively associated with eels’ activity level in 777 
all the five water tanks (Fig. 3g; Extended Data Fig. 5), are shown in pink. Relationships 778 
between the Cetobacterium ASV and the ASVs highlighted in Figures 4 and 5 are indicated 779 
as well.  780 
  781 
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Extended Data Figures 782 

 783 
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Extended Data Fig. 1 | Phylum-level community structure. a, Dynamics of absolute 785 
abundance. For each water sample of each aquaculture tank, absolute abundance of 786 
prokaryotes was inferred as 16S rRNA gene copy concentration based on the quantitative 787 
amplicon sequencing approach with standard DNA gradients. b, Dynamics of relative 788 
abundance. The time-series of the phylum-level taxonomic compositions are shown for each 789 
aquaculture tank.  790 
  791 
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Extended Data Fig. 2 | Order-level community structure. a, Dynamics of absolute 793 
abundance. For each water sample of each aquaculture tank, absolute abundance of 794 
prokaryotes was inferred as 16S rRNA gene copy concentration based on the quantitative 795 
amplicon sequencing approach with standard DNA gradients. b, Dynamics of relative 796 
abundance. The time-series of the order-level taxonomic compositions are shown for each 797 
aquaculture tank.  798 
  799 
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Extended Data Fig. 3 | Genus-level community structure. a, Dynamics of absolute 801 
abundance. For each water sample of each aquaculture tank, absolute abundance of 802 
prokaryotes was inferred as 16S rRNA gene copy concentration based on the quantitative 803 
amplicon sequencing approach with standard DNA gradients. b, Dynamics of relative 804 
abundance. The time-series of the genus-level taxonomic compositions are shown for each 805 
aquaculture tank.  806 
  807 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.11.507499doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.11.507499
http://creativecommons.org/licenses/by-nd/4.0/


 

 38 

 808 

Extended Data Fig. 4 | Multivariate analysis of community structure (genus level). a, 809 
Community state space. Community compositions of the samples are plotted on the two-810 
dimensional surface defined with non-metric multidimensional scaling (NMDS). The NMDS 811 
was performed based on the Bray-Curtis b-diversity of genus-level taxonomic compositions. 812 
The projections of the data points onto the vectors have maximum correlation with the 813 
variables examined (pH, DO, and eels’ activity level). Examples of community structure in 814 
the NMDS surface. For several points within the NMDS surface (panel a), genus-level 815 
taxonomic compositions are shown. The example points are ordered along the vector 816 
representing high eels’ activity level. c, Indicator genera. The vectors representing the relative 817 
abundance of Cetobacterium, Flavobacterium, and Edaphobaculum, which were highlighted 818 
in the main text, are shown.  819 
  820 
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 821 

Extended Data Fig. 5 | ASV-level comparison of correlation with environmental 822 
variables and eels’ activity level. a, Correlation with pH. Correlation with eels’ activity level 823 
is shown for the ASVs that appeared in all the aquaculture tanks (shown in the decreasing 824 
order of mean values). The boxes and bars represent variation across tanks. b, Correlation 825 
with DO. c, Correlation with eels’ activity level. d, Partial correlation with eels’ activity level 826 
(controlled variable = pH). Taxonomic information is shown for the ASVs discussed in the 827 
main text.  828 
  829 
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 830 

Extended Data Fig. 6 | Phylogenetic analysis of Edwardsiella. a, Phylogeny of 831 
Edwardsiella. In an additional amplicon sequencing of the sodB gene, the neighbor-joining 832 
tree of the Edwardsiella bacteria was reconstructed with the maximum composite likelihood 833 
method. Bootstrap values larger than 70 % are shown on the nodes (1,000 permutations). The 834 
pathogenic and non-pathogenic clades identified in a previous study29 are indicated. b, Time-835 
series of pathogenic and non-pathogenic Edwardsiella. The number of detected sequencing 836 
reads of the sodB fragment is across the time-series of each aquaculture tank.  837 
  838 
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 839 

Extended Data Fig. 7 | Taxonomy of the nodes within the coexistence networks. Within 840 
the coexistence networks shown in Figure 4, phylum-level taxonomy of the ASVs is shown. 841 
ASVs included in minor sub-networks (number of nodes < 5) are not shown. Only the ASVs 842 
that appeared in 30 or more samples were targeted in the analysis of each tank. 843 
  844 
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Extended Data Fig. 8 | Correlations with environmental variables. a, Correlation with pH. 846 
For each microbial ASV included within the coexistence network of each aquaculture tank 847 
(Fig. 4), correlation between absolute abundance and pH is shown. ASVs included in minor 848 
sub-networks (number of nodes < 5) are not shown. Only the ASVs that appeared in 30 or 849 
more samples were targeted in the analysis of each tank. b, Correlation with dissolved oxygen 850 
level. For each microbial ASV included within the coexistence network of each aquaculture 851 
tank (Fig. 4), correlation between absolute abundance and dissolved oxygen (DO) level is 852 
shown. 853 
  854 
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 855 

Extended Data Fig. 9 | Properties of network modules. a, Module size and mean partial 856 
correlation with eels’ activity level. For each module within the coexistence network of each 857 
aquaculture tank (Fig. 4), the number of ASVs and mean partial correlation with eels’ activity 858 
level are shown. The modules including the Cetobacterium ASV (X_0002) is indicated by 859 
arrows. The outlier modules with large numbers of constituent ASVs and low/high mean 860 
partial correlation with eels’ activity level are highlighted by circles. b, Modules including the 861 
Cetobacterium ASV (X_0002). The top-five ASVs with the highest partial correlation with 862 
eels’ activity level are shown for each module. c, Outlier modules with high mean partial 863 
correlation with eels’ activity level. d, Outlier module with low mean partial correlation with 864 
eels’ activity level.  865 
  866 
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 867 

Extended Data Fig. 10 | Comparison of network reconstruction methods. For each 868 
aquaculture tank, the network links inferred with the MB method was compared with those 869 
inferred with the SLR methods. The former is expected to represent interspecific interactions 870 
as well as potential sharing of environmental preference (i.e., niches) between nodes (ASVs). 871 
Meanwhile, the latter is expected to represent direct interactions between nodes. A 872 
positive/negative value indicates a potentially positive/negative interaction between a pair of 873 
microbial ASVs. The positive values (> 0) were used to draw networks of potential positive 874 
interactions between microbes as shown in Figure 5. 875 
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