

Calmodulin mediates redox sensitivity of Kv7 channels

Redox regulation of K_v7 channels through EF3 hand of calmodulin

2 Eider Nuñez¹, Frederick Jones², Arantza Muguruza-Montero¹, Janire Urrutia¹, Alejandra
3 Aguado¹, Covadonga Malo¹, Ganeko Bernardo-Seisdedos⁵, Carmen Domene³, Oscar
4 Millet⁴, Nikita Gamper² and Alvaro Villarroel^{1*}

5

6 Eider Nuñez: enviadero@gmail.com
7 Frederick Jones: bs14fj@leeds.ac.uk
8 Arantza Muguruza-Montero: arantza.muguruza.montero@gmail.com
9 Janire Urrutia: janire.urrutia@ehu.eus
10 Alejandra Aguado: aleaguamar@gmail.com
11 Covadonga Malo: covadonga.m@gmail.com
12 Carmen Domene: mcdn20@bath.ac.uk
13 Ganeko Bernardo-Seisdedos: gbernardo.atlas@cicbiogune.es
14 Oscar Milllet: omillet@cicbiogune.es
15 Nikita Gamper: N.Gamper@leeds.ac.uk
16 Alvaro Villarroel: alvaro.villarroel@csic.es

*Correspondence: alvaro.villarroel@csic.es; Tel.: +34 94 601 3225.

19 ¹Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain

20 ²School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
21 Leeds, UK

22 ³Department of Chemistry, University of Bath, BA2 7AY Bath UK; Department of
23 Chemistry, University of Oxford, OX1 3TA Oxford UK

⁴Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain

25 ⁵Atlas Molecular Pharma S.L., 48160 Derio, Spain

26

27 **Keywords:** KCNQ channels, calmodulin, signal transduction, Redox, EF-hand, calcium

28

Calmodulin mediates redox sensitivity of Kv7 channels

29 **ABSTRACT**

30 Neuronal Kv7 channels, important regulators of cell excitability, are among the
31 most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor
32 was reported as a site mediating redox modulation of the channels. Recent structural
33 insights reveal potential interactions between this linker and the Ca^{2+} -binding loop of
34 the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by
35 the C-terminal helices A and B. We found that precluding Ca^{2+} binding to the EF3 hand,
36 but not to EF1, EF2 or EF4 hands, abolishes oxidation-induced enhancement of Kv7.4
37 currents. Monitoring FRET between helices A and B tagged with fluorescent proteins,
38 we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca^{2+} ,
39 but have no effect in the absence of this cation or if the peptide is oxidized. The
40 capacity of loading EF3 with Ca^{2+} is essential for this reversal of the FRET signal, whereas
41 the consequences of obliterating Ca^{2+} binding to EF1, EF2 or EF4 are negligible.
42 Furthermore, we show that EF3 is necessary and sufficient to translate Ca^{2+} signals to
43 reorient the AB fork. Our data is consistent with the proposal that oxidation of cysteine
44 residues in the S2S3 loop relieves Kv7 channels from a constitutive inhibition imposed by
45 interactions between the EF3 hand of CaM which is necessary and sufficient for this
46 signaling.

47

48 **Significance:** Oxidation-dependent enhancement of the Kv7/M-channels plays a
49 cytoprotective role in neurons. Here, we show that calmodulin (CaM), the main protein
50 that conveys information from transient intracellular Ca^{2+} oscillations, plays a critical
51 role in oxidative signal transduction. The prevailing view is that the main role of the EF-
52 hands is to respond to Ca^{2+} and that the two EF-hands of CaM in each lobe act in
53 coordination during signaling. We find that EF3 by itself is sufficient and necessary for
54 the oxidative response of Kv7 channel complex and for gating the Calcium Responsive
55 Domain of Kv7 channels. In addition, the direction of EF3-dependent signaling can be
56 reversed by protein-protein interactions with solvent exposed regions outside the
57 target binding groove between EF-hands.

Calmodulin mediates redox sensitivity of Kv7 channels

58 INTRODUCTION

59 The generation of abnormally high levels of reactive oxygen species (ROS) is
60 linked to cellular dysfunction, including neuronal toxicity and neurodegeneration (3-5).
61 In addition, ROS are important mediators of normal cellular functions in multiple
62 intracellular signal transduction pathways (6-9). ROS generation induces oxidative
63 modifications and augmentation of M-currents in neurons, which provides protective
64 effects on oxidative stress-related neurodegeneration (10-12). Kv7 channels, the
65 substrate of the Kv7-mediated M-current, are among the most sensitive proteins that
66 respond to ROS production (3, 10, 13).

67 Superoxide anion radicals ($O_2\bullet-$), hydroxyl radicals ($\bullet OH$), peroxynitrite
68 ($ONOO-$), and hydrogen peroxide (H_2O_2) are the main ROS species produced in cells
69 (14). These molecules display different reactivity, concentration and lifetime, and most
70 probably play different roles in signal transduction and oxidative stress. Reversible
71 oxidation of cysteine thiol side chains is one of the most recognized post-translational
72 modifications produced by redox mechanisms in cells. Because of its relative stability
73 and ability to cross the plasma membrane, H_2O_2 has been shown to be important in a
74 variety of neurophysiological processes, including neurotransmission, ion channel
75 function, and neuronal activity (15-18).

76 Augmentation of the M-current can be induced by an external
77 H_2O_2 concentration as low as 5 μM (10), or even in the nM range (5). The M-current
78 flows through channels formed of neuronal Kv7 subunits (Kv7.2-Kv7.5, encoded by
79 KCNQ2-5 genes). These tetrameric channels open at the subthreshold membrane
80 potential and dampen cellular excitability (19, 20). Kv7 channels have a core
81 architecture similar to other voltage dependent potassium channels (1, 21-24): they
82 have 6 helical transmembrane domains (S1-S6) with the voltage sensor formed by S1-
83 S4, followed by a pore domain (S5-S6), which continues into a cytosolic C-terminal
84 region. The C-terminus of Kv7 channels contains five helical regions: helices A-D and TW
85 helix between hA and hB. The latter region forms the Calcium Responsive Domain (CRD)
86 with helices AB adopting an antiparallel fork disposition (25). Four C-helices from each
87 subunit come together to form a stem perpendicular to the membrane. This stem

Calmodulin mediates redox sensitivity of Kv7 channels

88 continues with an unstructured linker that connects to helix D, which forms a tetrameric
89 coiled-coil structure that confers subunit specificity during subunit assembly (25).

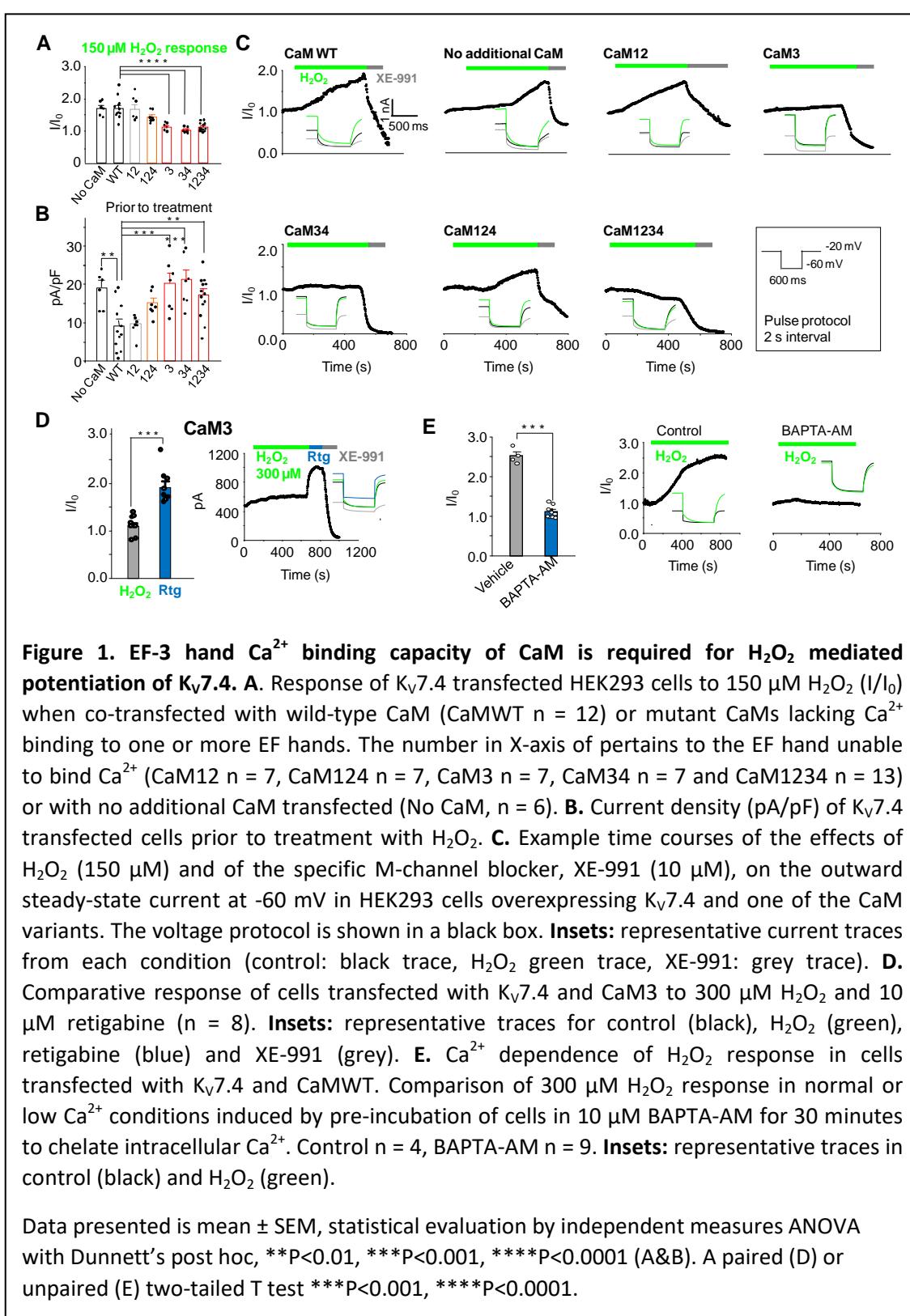
90 All Kv7 channels require the association of calmodulin (CaM) to the CRD to be
91 functional (26-28). Helices AB are embraced by CaM forming a compact structure just
92 under the membrane that can move as a rigid body, with a region connecting S6 and
93 helix A acting as a hinge (22-24). CaM is the main adaptor protein that confers Ca^{2+}
94 sensitivity to an ample array of eukaryotic proteins, and is composed of two highly
95 homologous lobes joined by a flexible linker. In solution, each lobe operates almost
96 independently of the other and contains two similar Ca^{2+} -binding EF-hands (29). This
97 distinct signaling mediated by each CaM lobe was revealed early in *Paramecium* when it
98 was discovered that mutations at the N-lobe affected a Ca^{2+} operated Na^+ conductance,
99 whereas mutations at the C-lobe affected a Ca^{2+} dependent K^+ conductance (30).

100 A structure of the non-neuronal Kv7.1 subunit trapped in a non-functional
101 conformation with the voltage-sensor disengaged from the pore suggests that the EF3-
102 hand of CaM may interact with the voltage-sensor (1, 23, 31) at a site essential for M-
103 current redox modulation (5, 10). This 3D configuration has been assumed to confer a
104 preferential use of EF3 during signaling on Kv7 channels (31-34).

105 Here, we address the role of CaM on redox modulation of Kv7 channels. We
106 have monitored the role of each EF-hand in the redox-dependent current potentiation
107 and in the gating process of the CRD, characterized by the opening of the AB fork (2).
108 We find that the ability of EF3 to bind Ca^{2+} is critical for redox modulation of the CRD by
109 S2S3 and for current potentiation, and this preferential signaling through EF3 is an
110 intrinsic property of the CRD, not derived from the 3D arrangement observed in Kv7
111 structures. Our data suggest that oxidation of Kv7 channels enhances activity by
112 disrupting the interaction between the S2S3 loop and EF3.

113

114

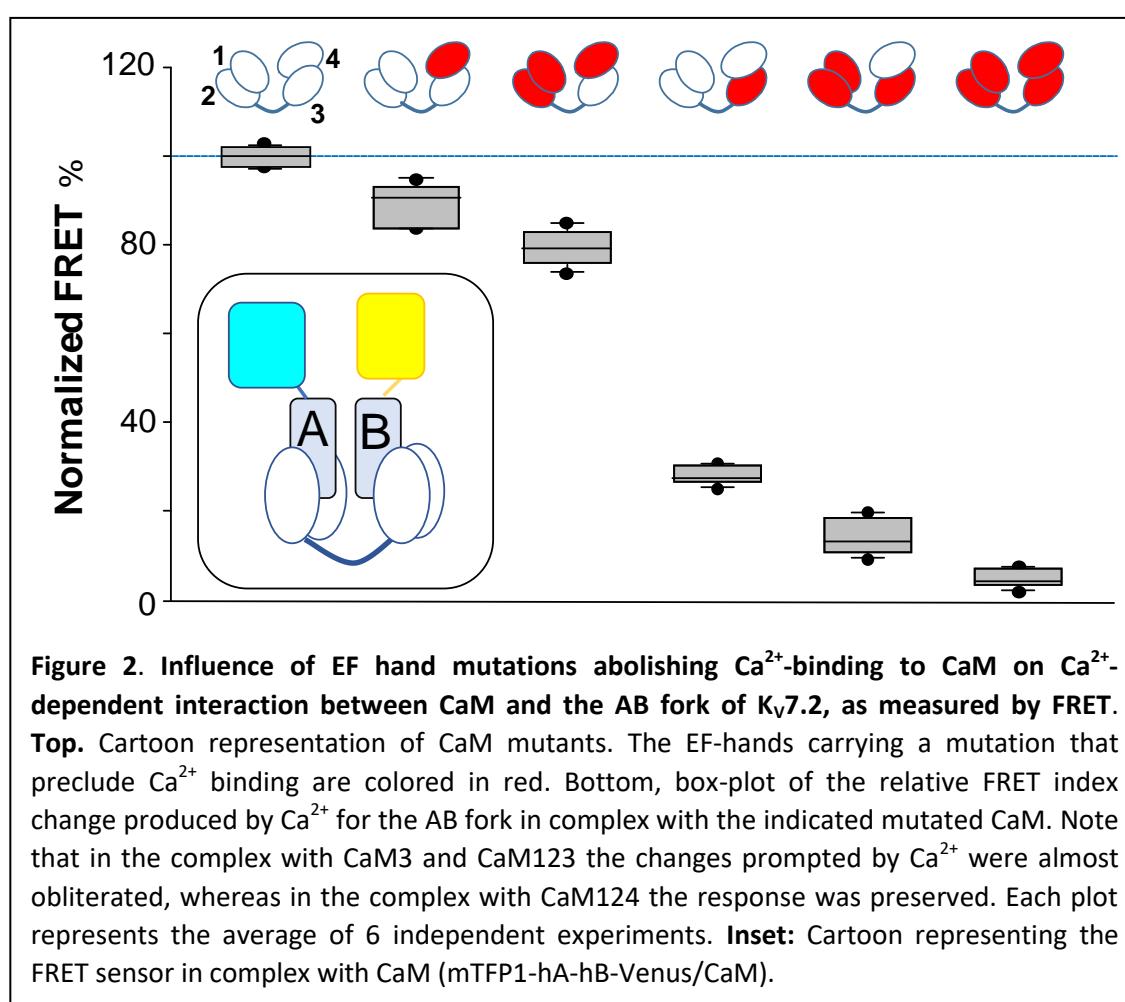

Calmodulin mediates redox sensitivity of Kv7 channels

115 **RESULTS**

116 **CaM plays a critical role in H₂O₂-mediated regulation of Kv7.4 channels**

117 We have previously shown that cysteine residues present in the unusual long
118 intracellular linker between S2S3 transmembrane segments of Kv7 channels are critical
119 for H₂O₂-dependent potentiation (10). Recent studies suggest structural and functional
120 interactions between this loop and calmodulin (CaM) (1, 31-34). To test a possible role
121 of CaM in redox modulation, we used the perforated patch clamp method to measure
122 Kv7.4 activity in response to H₂O₂. Human KCNQ4 cDNA was co-expressed in HEK293
123 cells with either CaM or CaM mutants that disable the Ca²⁺ binding ability of the N-lobe
124 (CaM12), the C-lobe (CaM34), or both (CaM1234) (35, 36) (Fig 1). Bath-application of
125 150 μM H₂O₂ induced a clear augmentation of steady-state currents in the presence of
126 CaM or CaM12 (Fig 1A-C). In contrast, the response was attenuated or precluded in the
127 presence of CaM1234 or CaM34 (Fig 1A-C). Because structural and functional studies
128 suggested a critical role of EF3 (1, 31-34), we tested the effect of CaM3 and CaM124.
129 Whereas the H₂O₂ response in the presence of CaM124 (Fig 1A-C) was maintained, it
130 was diminished with CaM3 (Fig 1D). Importantly, while the response to H₂O₂ was
131 abolished in the presence of CaM3, another Kv7 activator, retigabine, still produced
132 strong activation of Kv7.4 current under these conditions (Fig 1D). Retigabine activates
133 Kv7 channels by binding to a hydrophobic pocket between S4 and S5 domains, a site
134 that does not overlap with CaM binding site (37). These results suggest that EF3 of CaM
135 is necessary for augmentation of Kv7 channels by H₂O₂ specifically.

Calmodulin mediates redox sensitivity of Kv7 channels


Calmodulin mediates redox sensitivity of Kv7 channels

138 EF-hand mutations used above mimic Ca^{2+} -free (apo) state of the CaM, with
139 CaM1234 being completely Ca^{2+} -free, while other mutants are partially Ca^{2+} -free. Since
140 CaM1234 prevented the $\text{K}_v7.4$ current augmentation by H_2O_2 (as did the other mutants
141 containing EF3 mutation), we therefore tested if ‘sponging’ intracellular Ca^{2+} by pre-
142 incubating the cells with BAPTA-AM also prevent the H_2O_2 effect on $\text{K}_v7.4$. BAPTA-AM
143 crosses the membrane, and release the strong Ca^{2+} chelator BAPTA intracellularly,
144 thereby lowering resting free Ca^{2+} levels. The response to oxidation was indeed virtually
145 abolished under these conditions.

146 As expected, the effect of H_2O_2 was absent after substituting the redox-sensitive
147 triplet of cysteine residues at the positions 156, 157, 158 in the S2S3 linker of $\text{K}_v7.4$ by
148 alanine residues (Supplemental Fig 2). There was no difference whether WT CaM or
149 CaM1234 was present, in either case the current produced by CCCAAA $\text{K}_v7.4$ was only
150 marginally affected by 150 μM H_2O_2 (Supplemental Fig 2). Interestingly, all CaM
151 mutants containing EF3 mutations (CaM3, CaM34 and CaM1234) produced small
152 negative shift in $\text{K}_v7.4$ voltage dependence (Supplemental Fig 1), a finding consistent
153 with a presumed removal of a tonic inhibitory effect of calcified EF3.

154 Overall, these experiments suggested that EF3 of CaM and cysteine residues in
155 the S2S3 of $\text{K}_v7.4$ are necessary for current activation by H_2O_2 . We hypothesize that
156 binding of Ca^{2+} to EF3 partially inhibits $\text{K}_v7.4$; preventing such binding or removing Ca^{2+}
157 from this location disinhibits the channel. We further hypothesize that oxidative
158 modification of S2S3 cysteine residues antagonizes the EF3/ Ca^{2+} inhibition of $\text{K}_v7.4$. To
159 get further insights, we analyzed the behavior of the isolated CRD, without constraints
160 imposed by other channel domains, the membrane or the complexity of potential
161 intracellular signaling cascades evoked *in vivo*.

Calmodulin mediates redox sensitivity of Kv7 channels

162

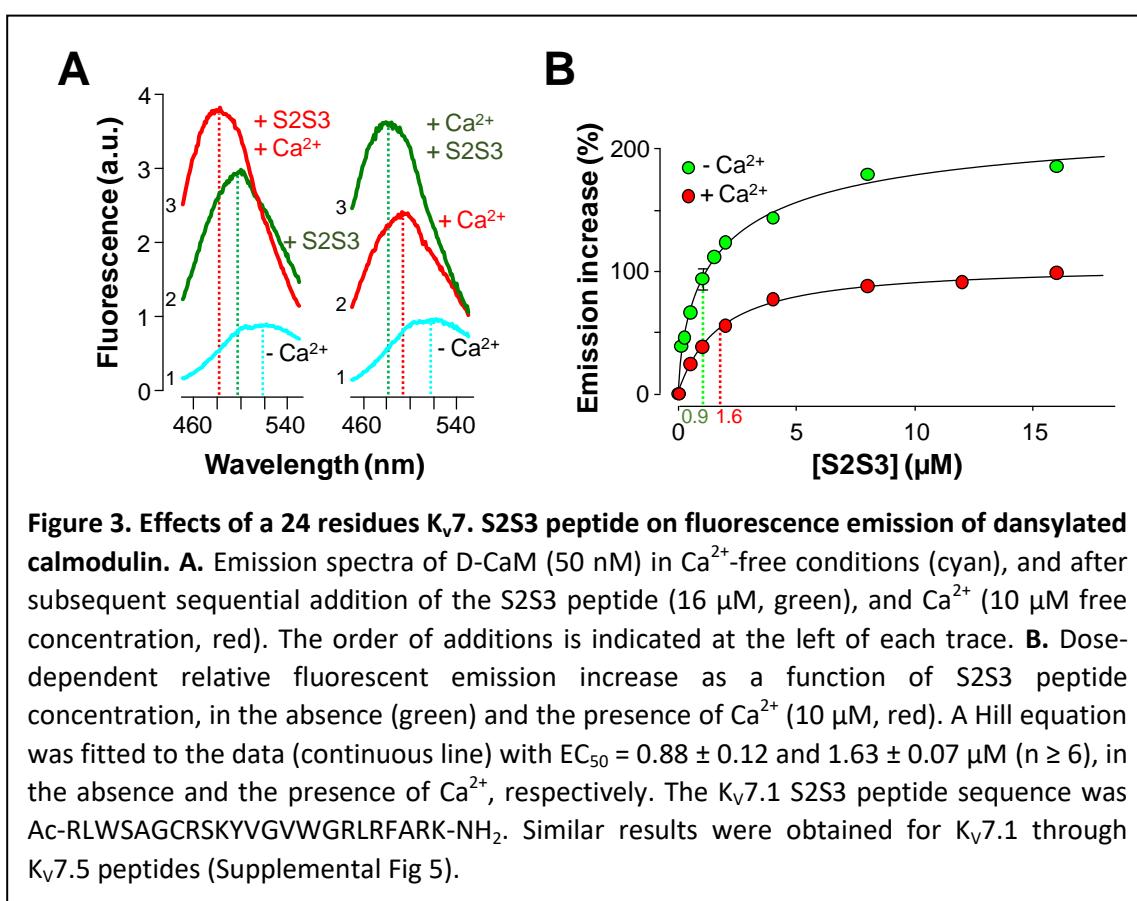
163

164 Ca^{2+} binding to EF3 is critical for signaling within the Calcium Responsive Domain

165 Wild-type or mutant CaMs were co-expressed with the CRD from all five Kv7
166 subunits in bacteria, the complexes were purified, and Ca^{2+} signaling was examined by
167 monitoring the transfer of energy between the two fluorophores attached to the N- and
168 C-termini of the AB fork (See inset in Fig. 2). Experiments with AB fork of Kv7.2 are
169 shown in Figure 2 and results for CRD from other Kv7 subunits are shown in
170 Supplemental Figure. 4. CaM remained firmly attached to the AB fork under our *in vitro*
171 conditions (Supplemental Fig 3). FRET efficiency was reduced in a Ca^{2+} concentration-
172 dependent manner as previously described (2). Mutations into EF1 and EF2 (CaM12) did
173 not significantly alter Ca^{2+} -dependent signaling ($n = 6$), whereas mutations at either EF-
174 hands 3 or 4 (CaM3 or CaM4) reduced the magnitude of FRET changes ($n = 6$). The

Calmodulin mediates redox sensitivity of Kv7 channels

175 extent of the effect was significantly decreased in the complex with CaM3, with a minor
176 effect in the complex with CaM4 (Fig 2 and Supplemental Fig 4).


177 The role of EF3 was further examined combining Ca^{2+} -binding canceling
178 mutations in EF1, EF2 and EF4-hands. The AB/CaM124 complex, that is, with only EF3
179 able to bind Ca^{2+} , presented a response to Ca^{2+} that was ~80% that of the AB in complex
180 with WT CaM (n = 6). In contrast, the response of the complex with CaM3 was reduced
181 to ~30% (n = 6). A similar strategy was followed to evaluate the role of the EF4 hand,
182 testing complexes with CaM123 and CaM4. In the complex with CaM123, the response
183 was almost abolished, whereas in the complex with CaM4 the response was about 90%
184 of that of WT (n = 6) (Fig 2). Thus, EF3 plays a significant role in transmitting Ca^{2+} signals
185 to the AB fork, and EF4 plays a secondary function.

186

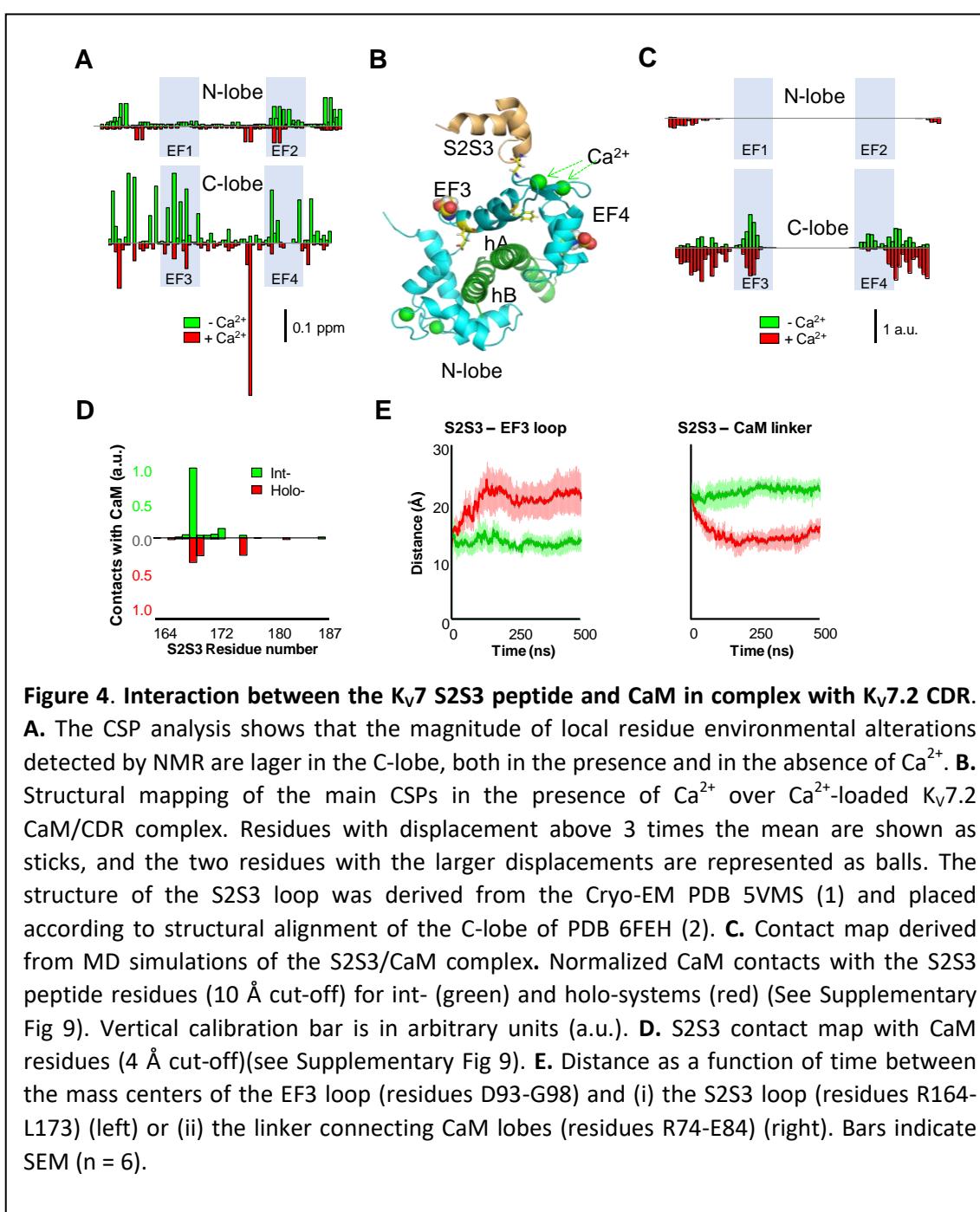
187 Peptides derived from the Kv7 S2S3 loop interact with CaM

188 A subset of cryo-EM Kv7.1 channel particles has revealed a likely interaction
189 between the S2S3 loop of the channel voltage sensor and the EF3 of CaM (1, 21), which,
190 in turn, is engaged to the AB fork. These structural studies suggest that the privileged
191 role of EF3 may derive from constraints imposed by the channel architecture. To address
192 the significance of this interaction in the absence of other channel domains, changes in
193 the fluorescent emission of dansylated CaM (D-CaM) produced by peptides derived
194 from the Kv7 S2S3 sequence were monitored (38). Interaction of alpha helices within
195 the groove of the CaM lobes results in an increase in fluorescent emission of D-CaM,
196 whereas the binding of Ca^{2+} to the EF-hands causes, in addition to an increase in
197 fluorescence, a leftward shift in the position of the peak in the emission spectrum (38).

Calmodulin mediates redox sensitivity of Kv7 channels

198

199 The response to S2S3 peptides rendered an analogous profile to that of Ca^{2+} : a
200 leftward shift on the emission peak, and an increase in fluorescent emission (Fig 3). A
201 similar responses were observed with S2S3 peptides derived from the sequence of
202 human Kv7.1 through Kv7.5 ($n = 3$) (Supplemental Fig 5). The relative increase in
203 emission intensity was twice as large in the absence of Ca^{2+} (Fig 3). This is in contrast to
204 what has been observed for peptides or targets that are embraced within the CaM
205 lobes, in which the relative increase is similar with and without Ca^{2+} (39, 40).
206 Interestingly, the leftward shifts caused by Ca^{2+} and the peptide were additive (Fig 3).
207 These results could be explained if Ca^{2+} and the peptide where interacting with CaM
208 simultaneously. The displacement of the dose-response to the right (Fig 3B), increasing
209 the EC_{50} value, suggest that Ca^{2+} mitigates the effect of S2S3 on D-CaM.

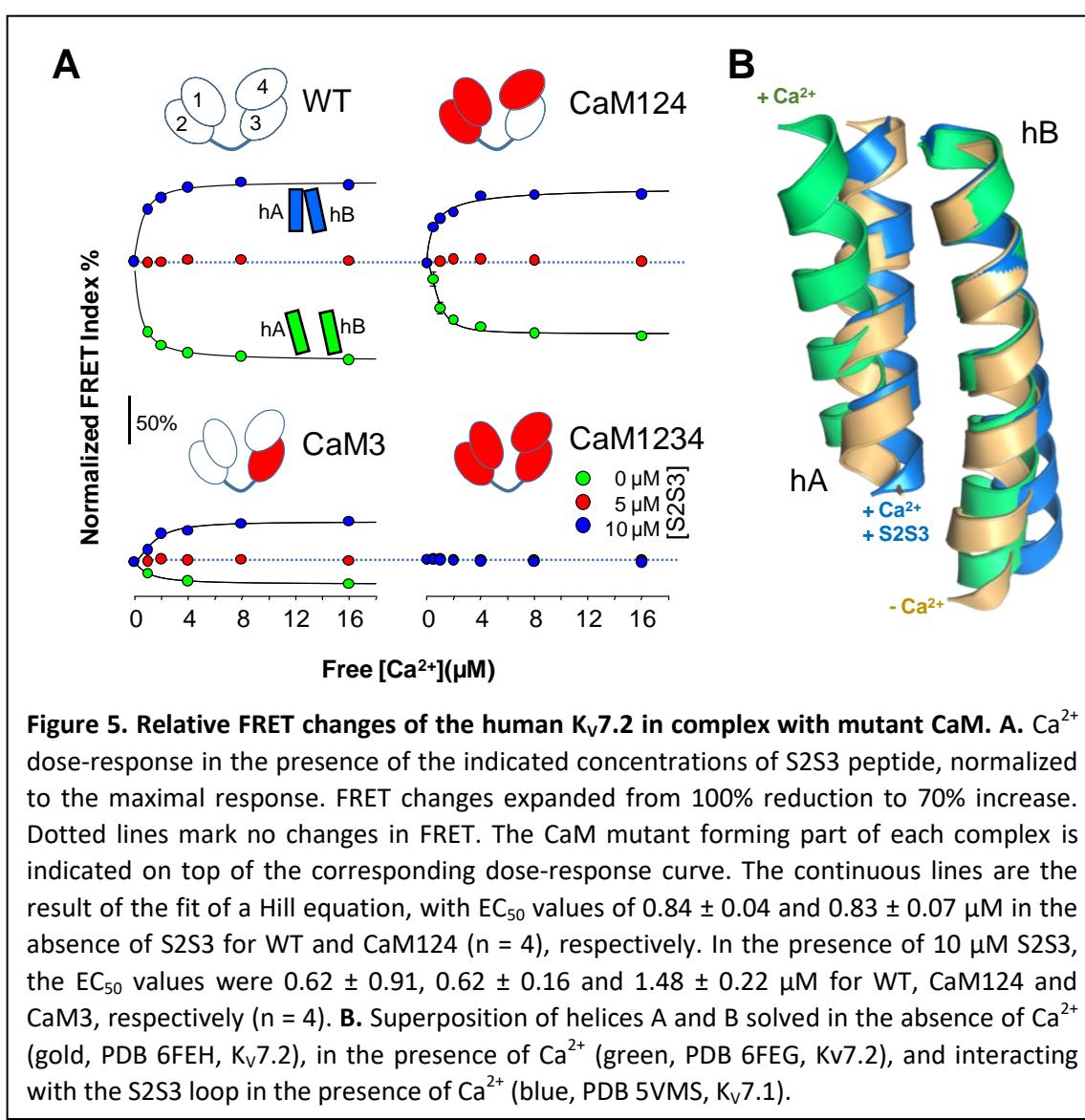

210

Calmodulin mediates redox sensitivity of Kv7 channels

211 **NMR reveals interaction of the S2S3 peptide with the C-lobe of the AB/CaM
212 complex**

213 The NMR signals from labeled WT CaM complexed with non-labeled Kv7.2 AB
214 fork were compared in the presence and absence of the S2S3 peptide, and with Ca^{2+}
215 added (holo-CaM, four EF-hands Ca^{2+} -loaded) or not added (int-CaM, N-lobe Ca^{2+} -
216 loaded). Chemical shift perturbations (CSP) produced by the S2S3 peptide in the ^1H - ^{15}N -
217 HSQC map of int-CaM (holo-N-lobe and apo-C-lobe) and holo-CaM in complex with the
218 Kv7.2 CRD are shown in Fig 4A (See also Supplemental Fig 6). In the presence of the
219 S2S3 peptide, several resonances of CaM residues in the spectrum were shifted, most
220 of them located in the C-lobe. The CSP perturbations, color-coded in the structure of
221 the human Kv7.2 CRD in Supplemental Fig 6, are consistent with the S2S3 loop
222 interacting predominantly with the EF3 Ca^{2+} loop, both in absence and in the presence
223 of Ca^{2+} . EF3 displacements were observed for D94, N98, Y100, I102 and A104, whereas
224 for EF4, changes in the environment of I131 and E139 are beyond the threshold level
225 (Fig 4B). Thus, Ca^{2+} addition produces a significant perturbation map, which is in line
226 with the differential relative increase in fluorescence caused by the peptide in the D-
227 CaM assay (Fig 3B). Next, we performed atomistic molecular dynamics (MD) simulations
228 to investigate the interactions between the Kv7.1 S2S3 peptide and int- or holo-CaM in
229 complex with the Kv7.2 CRD. Consistent with the NMR interaction experiment, the
230 contact map obtained from the simulations shows that the peptide interacts mainly
231 with the EF3 loop and the linker connecting CaM lobes (Figs 4C-D and Supplemental Fig
232 7). In contrast, there were not contacts in the region connecting EF3 and EF4,
233 suggesting that the CSPs observed are better interpreted as an allosteric effect, rather
234 than a direct contact with the peptide.

Calmodulin mediates redox sensitivity of Kv7 channels


235

236 Regarding the S2S3 peptide, residues that form an intracellular loop located
237 between W166-G176 are the ones that interact predominantly with CaM (Fig 4D).
238 During the course of the simulation, the C-terminal region adopted an α -helix
239 conformation for $\geq 97.8\%$ of the time (see Supplemental Fig 8). The N-terminal that
240 started as a 3_{10} helix became unstructured after the initial equilibration. It is reasonable

Calmodulin mediates redox sensitivity of Kv7 channels

241 to expect such differential stability since the N- and C-helices were initially formed by 6
242 and 10 residues, respectively, and 3_{10} helices are less stable than α -helices (41).

243 The interaction between S2S3 and EF3 was more stable when was not loaded
244 with Ca^{2+} (Fig 4E, left). In contrast, the main contacts of the holo-system were
245 established primarily with the linker connecting CaM lobes (Fig 4F, right). To analyze the
246 interaction between S2S3 and EF3, we measured the distance between the center of
247 mass of EF3 and S2S3 loops or the linker connecting the CaM lobes. The results suggest
248 that the interaction between the S2S3 and the empty EF3 loops is rather stable,
249 whereas Ca^{2+} occupancy prompts the movement of the peptide away from EF3 towards
250 the linker on the lobes (Fig 4E). Thus, Ca^{2+} occupancy has an important influence on the
251 S2S3/CaM interaction.

Calmodulin mediates redox sensitivity of Kv7 channels

252

253 Reversal of Ca^{2+} -EF3 signaling by S2S3 peptides

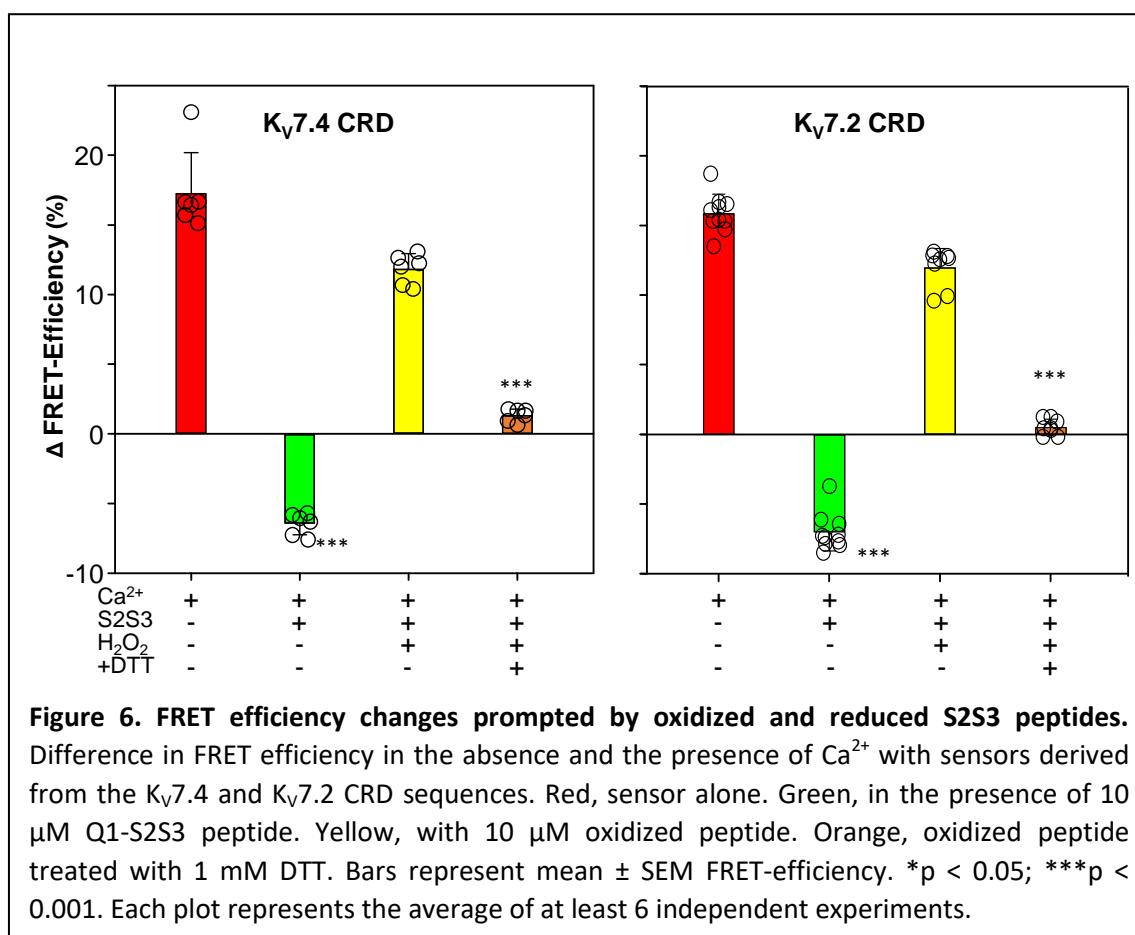
254 Changes on FRET index in response to Ca^{2+} in the presence of S2S3 peptides
255 were monitored as previously described (see Fig 2). Figure 5 shows that the Ca^{2+} -
256 dependent reduction in FRET index was mitigated as the concentration of peptide was
257 increased. At high peptide concentrations ($\geq 10 \mu\text{M}$), the FRET index increased,
258 suggesting that the distance/orientation of AB helices was even more favorable than in
259 the absence of Ca^{2+} . A similar behavior was observed when the effect of the peptide for
260 the other Kv7 family members was examined (Supplemental Fig 9).

261 The response to Ca^{2+} in the presence of S2S3, in terms of FRET index, was in the
262 opposite direction than when the peptide was absent. The magnitude of signaling
263 reversal was similar in WT and CaM124 complexes, whereas it was reduced in
264 complexes with CaM3 (Fig 5). Thus, the direction/orientation of the movements in the
265 AB fork when EF3 is loaded with Ca^{2+} is reversed upon interaction with S2S3.

266

267 All Kv7 CRDs display a similar response to Ca^{2+}

268 A panel of Kv7 biosensors in which the fork sequence was replaced by the
269 equivalent segment from Kv7.1 through Kv7.5 human isoforms were created. FRET index
270 was reduced for all biosensors in the presence of Ca^{2+} , and the signal was significantly
271 preserved in complexes formed with CaM124, whereas it was decreased in complexes
272 with CaM3. The apparent affinity for Ca^{2+} was lower in the presence of the peptides, but
273 the difference was not statistically significant (Supplemental Fig 9). Thus, we conclude
274 that EF3 plays a similar role across the Kv7 family of CRDs.


275

276 Treatment with H_2O_2 reduces the effect of S2S3 peptides

277 The S2S3 loop, which is highly conserved among Kv7 channels, contains one
278 (Kv7.1) or three cysteine residues (Kv7.2-Kv7.5). The cysteine site mediates an increase
279 in open channel probability in response to oxidizing conditions (10). We tested the

Calmodulin mediates redox sensitivity of Kv7 channels

280 influence of oxidation by removing DTT from the buffer, and including H_2O_2 to obtain a
281 derivate that will be referred to as oxidized-S2S3. There was a negligible impact of this
282 treatment on helicity as assessed by circular dichroism (Supplemental Fig 6). Contrary to
283 the increase observed with control S2S3 peptide, no changes in fluorescent emission of
284 D-CaM were observed after addition of oxidized-S2S3 (Supplemental Fig 10).

Figure 6. FRET efficiency changes prompted by oxidized and reduced S2S3 peptides. Difference in FRET efficiency in the absence and the presence of Ca^{2+} with sensors derived from the Kv7.4 and Kv7.2 CRD sequences. Red, sensor alone. Green, in the presence of 10 μM Q1-S2S3 peptide. Yellow, with 10 μM oxidized peptide. Orange, oxidized peptide treated with 1 mM DTT. Bars represent mean \pm SEM FRET-efficiency. * $p < 0.05$; *** $p < 0.001$. Each plot represents the average of at least 6 independent experiments.

285

286 The Ca^{2+} titration profile using Kv7.2AB/CaM complex in the presence of oxidized
287 S2S3 peptide (10 μM) was similar to that obtained in the absence of control S2S3,
288 suggesting that oxidized S2S3 can no longer affect the AB-CaM interaction. FRET
289 decreased from an efficiency of 40.7 ± 1.03 ($n = 10$) in the absence of Ca^{2+} to 30.5 ± 0.71
290 in the presence of 1 mM Ca^{2+} ($n = 10$). These values are similar to those obtained in the
291 absence of control S2S3, where the efficiency of FRET dropped from 44.2 ± 0.03 ($n = 6$)
292 to 29.1 ± 1.17 ($n = 6$). Using the Kv7.4/CaM complex the behavior was almost identical.
293 In the presence of oxidized peptide the FRET efficiency drops from 49.7 ± 0.67 ($n = 16$)

Calmodulin mediates redox sensitivity of Kv7 channels

294 to 41.4 ± 0.41 with Ca^{2+} ($n = 6$), which resembles the results obtained in the absence of
295 control S2S3 peptide, where FRET efficiency decreases from 41.1 ± 0.40 ($n = 6$) to $27 \pm$
296 0.40 ($n = 6$) (Fig 5).

297 The oxidized S2S3 peptide was incubated with the reducing agent DTT aiming to
298 reverse the effect of the treatment with H_2O_2 . We observed a partial recovery: In the
299 presence of reduced S2S3 peptide, FRET efficiency upon adding 1 mM Ca^{2+} reached a
300 value of 43.3 ± 0.22 ($n = 10$) with the $\text{K}_v7.2$ sensor and 43.3 ± 0.23 ($n = 6$) with the $\text{K}_v7.4$
301 sensor (Fig 6). These results suggest that oxidation disrupts the interaction between
302 S2S3 and EF3 loops.

303

304

305

Calmodulin mediates redox sensitivity of Kv7 channels

306 **DISCUSSION**

307 As its name suggests, calmodulin (CaM) is a CALcium MODULated protein,
308 regarded as a fundamental player in the orchestration of Ca^{2+} signals in every eukaryotic
309 cell (42). Notwithstanding, its function is not limited to Ca^{2+} signaling, having important
310 functions in protein trafficking to the plasma membrane, protein folding, and other
311 functions (43). Here, the portfolio of CaM capacities is extended by providing evidence
312 of its essential role in transducing redox signaling in conjunction with Kv7 channels,
313 which exhibit an exquisite sensitivity to oxidation.

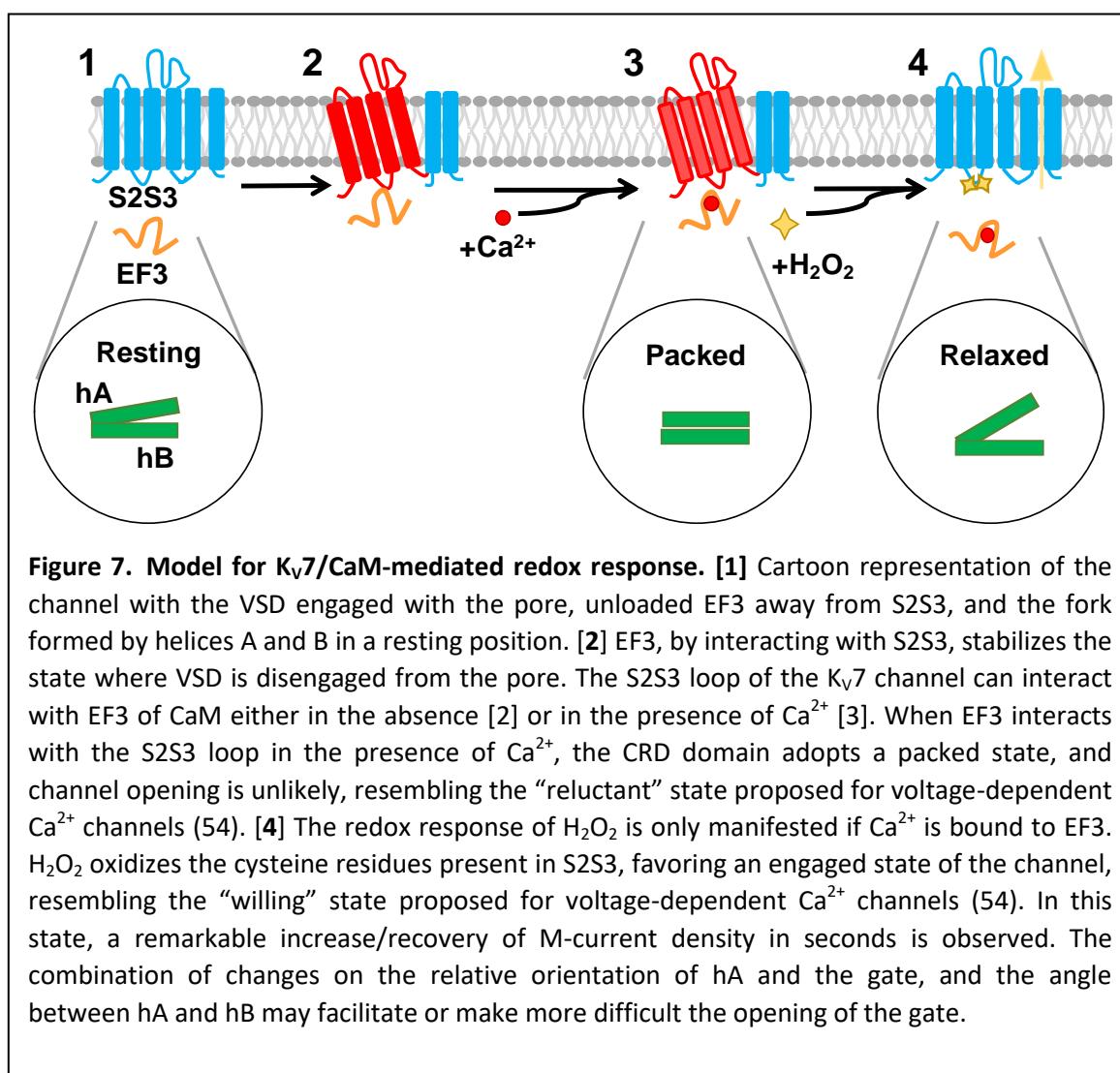
314 Previously, we demonstrated the significance of cysteine residues in neuronal
315 Kv7 channels located in the unusually long intracellular linker joining transmembrane
316 segments S2 and S3, which are part of the voltage sensor (10). Here, we show that the
317 ability of the EF3-hand of CaM to bind Ca^{2+} is essential in this redox signaling pathway.
318 This is inferred, among others, from the observation that the effect of bath application
319 of H_2O_2 is lost in cells overexpressing CaM variants with a disabled EF3-hand or treated
320 with the membrane permeable Ca^{2+} chelator BAPTA-AM.

321 The redox response is characterized by a remarkable increase/recovery in M-
322 current density on a second to minute time scale and it can be reversed by reducing
323 agents (5, 10). This could derive from insertion of new channels, engaging silent
324 channels, higher open probability, or a combination of these. Although the
325 insertion/recruitment of new channels cannot be completely discarded, H_2O_2 causes an
326 increase in single channel activity in excised patches were incorporation of new
327 channels cannot take place (10). The redox impact on Kv7 channels is accompanied by a
328 left shift in the current-voltage relationship of macroscopic currents, meaning that
329 channel opening becomes easier at lower voltages or that the probability of opening at
330 a given voltage increases (10). Interestingly, Kv7.3 channels, that present a very high
331 open probability (44), do not respond to H_2O_2 (10), perhaps because there is little room
332 for further channel activation.

333 Large leftwards shifts in voltage dependency of Kv7 channels after over-
334 expression of CaM C-lobe mutants (33, 45) have been reported, suggesting a critical
335 role for EF3 (33). However, this shift has not always been observed (46). In this study,

Calmodulin mediates redox sensitivity of Kv7 channels

336 we saw relatively small (~10 mV) but consistent leftward shift in voltage dependence of
337 Kv7.4 co-expressed with all CaM mutants containing the EF3 mutation, suggesting a
338 degree of tonic channel inhibition conferred via EF3.


339 Taking into account the images at atomic resolution of CaM interacting with the
340 voltage sensor of Kv7.1 channels (1), it is tempting to propose that CaM makes it more
341 difficult to reach the up position that leads to gate opening in response to
342 depolarizations, or that CaM is stabilizing the state where the voltage sensor is
343 disengaged from the pore. In other words, we envisage CaM constitutively and
344 dynamically inhibiting channel activation and that the redox action relieves this
345 inhibition by weakening the dynamic CaM-S2S3 interaction in a Ca^{2+} -dependent
346 manner. This idea fits with the observation that EF3 is not interacting with S2S3 in the
347 available atomic resolution structures trapped in a partially (21) and fully (47) open
348 states. To harmonize with other observations, we propose that this inhibition is
349 counterbalanced by CaM-dependent promotion of surface expression when CaM or
350 CaM1234 are over-expressed (48, 49). Further, our data suggest that Ca^{2+} binding to
351 EF3 should help releasing the voltage sensor from CaM.

352 Interestingly, FRET changes in the isolated recombinant CRD caused by S2S3
353 peptides depend on the concentration of Ca^{2+} , are reversibly sensitive to H_2O_2
354 treatment, and are primarily governed by EF3. The dose-response relationship with D-
355 CaM and our MD simulations illustrate that the interaction is weaker when the EF3-
356 hand is loaded with this cation. It is very clear that the influence of S2S3 on the relative
357 orientation of helices A and B is only manifested in the presence of Ca^{2+} , which is also a
358 necessary condition for functional effects of hydrogen peroxides on Kv7.4 currents. The
359 lack of any impact on energy transfer on the CRD reveals that the interaction under low
360 Ca^{2+} conditions does not result in a conformational change in the AB fork.

361 Remarkably, we find that EF3 is essential and sufficient within the isolated
362 recombinant CRD to translate Ca^{2+} signaling into conformational changes, which result
363 in an 18° opening of the AB fork (2). Thus, signaling through EF3 is a property inherent
364 to the CRD, and does not derive from constraints that the geometry of the voltage
365 sensor-pore imposes. We note that the architecture of Kv7 channels allows exploiting

Calmodulin mediates redox sensitivity of Kv7 channels

366 EF3 signaling in a more efficient way. We call attention on the conditional duality of this
367 signaling system. One branch operates on the voltage sensor (S2S3/EF3), and another
368 branch changes the orientation of helix A (Fig 7), likely affecting S6, and therefore the
369 main gate formed by the S6 bundle crossing.

370 An unexpected observation was the reversal in FRET index observed at higher
371 S2S3 peptide concentrations only in the presence of Ca^{2+} . Although our data suggest
372 that S2S3 interacts with CaM in the presence and absence of Ca^{2+} , occupation EF3 by
373 this cation is a requirement to signal the reorganization of the CRD and for the
374 functional redox effect on the channel. FRET changes caused by Ca^{2+} are opposed in the
375 presence of S2S3 peptides. At the molecular level, we do not know what the reversal of
376 the signal implies, because any modification in distance or orientation causes FRET
377 alterations. It seems reasonable to propose that, in this scenario, the movement within

Calmodulin mediates redox sensitivity of Kv7 channels

378 the AB helices goes in the opposite direction, leading to a tighter packing of the fork,
379 which is consistent with increased FRET signal. Tighter packing is what is observed when
380 comparing the Kv7.2 fork in absence of S2S3 -with and without Ca^{2+} - with the S2S3 loop
381 interacting with EF3, presumably loaded with Ca^{2+} (1) (Fig 5B). It has to be noted that
382 various other modes of CaM induced modulation of Kv7 channels were also proposed in
383 the past, thus N-lobe of CaM was suggested to mediate effect of transient cytosolic Ca^{2+}
384 elevation on Kv7.4 (50) and complex CaM lobe switching with raising Ca^{2+} was also
385 proposed (46). Hence, there is room for further research, especially with regards to the
386 specific molecular interactions during rapidly changing cytosolic Ca^{2+} dynamics induced
387 by Ca^{2+} signaling events in cells. Our data presented here, however, make a clear case
388 for the specific importance of EF3 in bringing together redox- and Ca^{2+} /CaM-dependent
389 modulation of Kv7 channel activity.

390 Based on docking calculations, the functional existence of significant interactions
391 between a target protein and apo-CaM through the EF-hands of the C-lobe was first
392 proposed for the smoothelin-like 1 protein (51). Subsequently, direct interactions
393 between apo-EF3 and myosin were observed in X-ray structures, and this interaction
394 was postulated to play an important role in signal transduction (52). Recent analysis of
395 surface interaction from cryo-EM structures of ion channels with CaM hints to
396 interactions between EF3 or EF4 with Eag1, TRPV5 and TRPV6 channels (53). Thus, Ca^{2+}
397 signal bi-directional transduction through direct interaction between the Ca^{2+} -binding
398 sites and CaM target protein could be a widespread mechanism.

399 In summary, our data show that EF3 is essential for hA-hB FRET Ca^{2+} -dependent
400 reduction and that Ca^{2+} and EF3 are essential for H_2O_2 effects on current potentiation
401 (Figs 1, 2 and 5). We also show that S2S3 interacts with EF3, which alters Ca^{2+} effect on
402 hA-hB FRET (Fig 5), Ca^{2+} reduces S2S3-EF3 interaction (Fig 4) and S2S3 oxidation by H_2O_2
403 eliminates the impact on Ca^{2+} -dependent hA-hB FRET changes. From these data we
404 infer that the S2S3-EF3 interaction is essential for the H_2O_2 effect, that oxidized S2S3 no
405 longer interacts with EF3, and that interference with the S2S3-EF3 interaction led to
406 current activation.

Calmodulin mediates redox sensitivity of Kv7 channels

407

408

Calmodulin mediates redox sensitivity of Kv7 channels

409 **MATERIAL AND METHODS**

410 See SI material and methods.

411

412

Calmodulin mediates redox sensitivity of Kv7 channels

413 **Acknowledgements:** The Government of the Autonomous Community of the
414 Basque Country (Elkartek BG2019, IT1165-19 and KK-2020/00110) and the Spanish
415 Ministry of Science and Innovation (RTI2018-097839-B-100, RTI2018-101269-B-100 and
416 PID2021-128286NB-100) and FEDER funds. The work in NG's laboratory was supported
417 by Wellcome Trust Investigator Award (212302/Z/18/Z) and MRC Training grant
418 (MR/P015727/1). E.N. and A.M-M. are supported by predoctoral contracts from the
419 Basque Government administered by University of the Basque Country. C.M. was
420 supported by the Basque Government through a Basque Excellence Research Centre
421 (BERC) and J.U. was partially supported by BERC funds. C.D. thanks PRACE for awarding
422 access to computational resources in CSCS, the Swiss National Supercomputing Service,
423 in the 17th and 20th Project Access Calls. We acknowledge CESGA and CSIC for granting
424 us access to computational resources to FinisTerrae II supercomputer.

425

426 **Figure 1. EF-3 hand Ca²⁺ binding capacity of CaM is required for H₂O₂ mediated potentiation**
427 **of Kv7.4.** **A.** Response of Kv7.4 transfected HEK293 cells to 150 μM H₂O₂ (I/I₀) when co-
428 transfected with wild-type CaM (CaMWT n = 12) or mutant CaMs lacking Ca²⁺ binding to one or
429 more EF hands. The number in X-axis of pertains to the EF hand unable to bind Ca²⁺ (CaM12 n
430 = 7, CaM124 n = 7, CaM3 n = 7, CaM34 n = 7 and CaM1234 n = 13) or with no additional CaM
431 transfected (No CaM, n = 6). **B.** Current density (pA/pF) of Kv7.4 transfected cells prior to
432 treatment with H₂O₂. **C.** Example time courses of the effects of H₂O₂ (150 μM) and of the
433 specific M-channel blocker, XE-991 (10 μM), on the outward steady-state current at -60 mV in
434 HEK293 cells overexpressing Kv7.4 and one of the CaM variants. The voltage protocol is shown
435 in a black box. **Insets:** representative current traces from each condition (control: black trace,
436 H₂O₂ green trace, XE-991: grey trace). **D.** Comparative response of cells transfected with Kv7.4
437 and CaM3 to 300 μM H₂O₂ and 10 μM retigabine (n = 8). **Insets:** representative traces for
438 control (black), H₂O₂ (green), retigabine (blue) and XE-991 (grey). **E.** Ca²⁺ dependence of H₂O₂
439 response in cells transfected with Kv7.4 and CaMWT. Comparison of 300 μM H₂O₂ response in
440 normal or low Ca²⁺ conditions induced by pre-incubation of cells in 10 μM BAPTA-AM for 30
441 minutes to chelate intracellular Ca²⁺. Control n = 4, BAPTA-AM n = 9. **Insets:** representative
442 traces in control (black) and H₂O₂ (green).

443 Data presented is mean ± SEM, statistical evaluation by independent measures ANOVA with
444 Dunnett's post hoc, **P<0.01, ***P<0.001, ****P<0.0001 (A&B). A paired (D) or unpaired (E)
445 two-tailed T test ***P<0.001, ****P<0.0001.

446 **Figure 2. Influence of EF hand mutations abolishing Ca²⁺-binding to CaM on Ca²⁺-dependent**
447 **interaction between CaM and the AB fork of Kv7.2, as measured by FRET.** **Top.** Cartoon
448 representation of CaM mutants. The EF-hands carrying a mutation that preclude Ca²⁺ binding
449 are colored in red. **Bottom,** box-plot of the relative FRET index change produced by Ca²⁺ for the
450 AB fork in complex with the indicated mutated CaM. Note that in the complex with CaM3 and

Calmodulin mediates redox sensitivity of Kv7 channels

451 CaM123 the changes prompted by Ca^{2+} were almost obliterated, whereas in the complex with
452 CaM124 the response was preserved. Each plot represents the average of 6 independent
453 experiments. **Inset:** Cartoon representing the FRET sensor in complex with CaM (mTFP1-hA-
454 hB-Venus/CaM).

455 **Figure 3. Effects of a 24 residues Kv7. S2S3 peptide on fluorescence emission of dansylated**

456 calmodulin. A. Emission spectra of D-CaM (50 nM) in Ca^{2+} -free conditions (cyan), and after
457 subsequent sequential addition of the S2S3 peptide (16 μM , green), and Ca^{2+} (10 μM free
458 concentration, red). The order of additions is indicated at the left of each trace. **B.** Dose-
459 dependent relative fluorescent emission increase as a function of S2S3 peptide concentration,
460 in the absence (green) and the presence of Ca^{2+} (10 μM , red). A Hill equation was fitted to the
461 data (continuous line) with $\text{EC}_{50} = 0.88 \pm 0.12$ and $1.63 \pm 0.07 \mu\text{M}$ ($n \geq 6$), in the absence and
462 the presence of Ca^{2+} , respectively. The Kv7.1 S2S3 peptide sequence was Ac-
463 RLWSAGCRSKYVGWGRLFARK-NH₂. Similar results were obtained for Kv7.1 through Kv7.5
464 peptides (Supplemental Fig 5).

465 **Figure 4. Interaction between the Kv7 S2S3 peptide and CaM in complex with Kv7.2 CDR. A.**
466 The CSP analysis shows that the magnitude of local residue environmental alterations detected
467 by NMR are larger in the C-lobe, both in the presence and in the absence of Ca^{2+} . **B.** Structural
468 mapping of the main CSPs in the presence of Ca^{2+} over Ca^{2+} -loaded Kv7.2 CaM/CDR complex.
469 Residues with displacement above 3 times the mean are shown as sticks, and the two residues
470 with the larger displacements are represented as balls. The structure of the S2S3 loop was
471 derived from the Cryo-EM PDB 5VMS (1) and placed according to structural alignment of the C-
472 lobe of PDB 6FEH (2). **C.** Contact map derived from MD simulations of the S2S3/CaM complex.
473 Normalized CaM contacts with the S2S3 peptide residues (10 Å cut-off) for int- (green) and
474 holo-systems (red) (See Supplementary Fig 9). Vertical calibration bar is in arbitrary units (a.u.).
475 **D.** S2S3 contact map with CaM residues (4 Å cut-off) (see Supplementary Fig 9). **E.** Distance as a
476 function of time between the mass centers of the EF3 loop (residues D93-G98) and (i) the S2S3
477 loop (residues R164-L173) (left) or (ii) the linker connecting CaM lobes (residues R74-E84)
478 (right). Bars indicate SEM ($n = 6$).

479 **Figure 5. Relative FRET changes of the human Kv7.2 in complex with mutant CaM. A.** Ca^{2+}
480 dose-response in the presence of the indicated concentrations of S2S3 peptide, normalized to
481 the maximal response. FRET changes expanded from 100% reduction to 70% increase. Dotted
482 lines mark no changes in FRET. The CaM mutant forming part of each complex is indicated on
483 top of the corresponding dose-response curve. The continuous lines are the result of the fit of
484 a Hill equation, with EC_{50} values of 0.84 ± 0.04 and $0.83 \pm 0.07 \mu\text{M}$ in the absence of S2S3 for
485 WT and CaM124 ($n = 4$), respectively. In the presence of 10 μM S2S3, the EC_{50} values were 0.62
486 ± 0.91 , 0.62 ± 0.16 and $1.48 \pm 0.22 \mu\text{M}$ for WT, CaM124 and CaM3, respectively ($n = 4$). **B.** **B.**
487 Superposition of helices A and B solved in the absence of Ca^{2+} (gold, PDB 6FEH, Kv7.2), in the
488 presence of Ca^{2+} (green, PDB 6FEG, Kv7.2), and interacting with the S2S3 loop in the presence
489 of Ca^{2+} (blue, PDB 5VMS, Kv7.1).

490 **Figure 6. FRET efficiency changes prompted by oxidized and reduced S2S3 peptides.**
491 Difference in FRET efficiency in the absence and the presence of Ca^{2+} with sensors derived
492 from the Kv7.4 and Kv7.2 CRD sequences. Red, sensor alone. Green, in the presence of 10 μM
493 Q1-S2S3 peptide. Yellow, with 10 μM oxidized peptide. Orange, oxidized peptide treated with
494 1 mM DTT. Bars represent mean \pm SEM FRET-efficiency. * $p < 0.05$; *** $p < 0.001$. Each plot
495 represents the average of at least 6 independent experiments.

Calmodulin mediates redox sensitivity of Kv7 channels

496 **Figure 7. Model for Kv7/CaM-mediated redox response.** [1] Cartoon representation of the
497 channel with the VSD engaged with the pore, unloaded EF3 away from S2S3, and the fork
498 formed by helices A and B in a resting position. [2] EF3, by interacting with S2S3, stabilizes the
499 state where VSD is disengaged from the pore. The S2S3 loop of the Kv7 channel can interact
500 with EF3 of CaM either in the absence [2] or in the presence of Ca^{2+} [3]. When EF3 interacts
501 with the S2S3 loop in the presence of Ca^{2+} , the CRD domain adopts a packed state, and channel
502 opening is unlikely, resembling the “reluctant” state proposed for voltage-dependent Ca^{2+}
503 channels (54). [4] The redox response of H_2O_2 is only manifested if Ca^{2+} is bound to EF3. H_2O_2
504 oxidizes the cysteine residues present in S2S3, favoring an engaged state of the channel,
505 resembling the “willing” state proposed for voltage-dependent Ca^{2+} channels (54). In this state,
506 a remarkable increase/recovery of M-current density in seconds is observed. The combination
507 of changes on the relative orientation of hA and the gate, and the angle between hA and hB
508 may facilitate or make more difficult the opening of the gate.

509

Calmodulin mediates redox sensitivity of Kv7 channels

510

Reference List

511

- 512 1. Sun J, MacKinnon R (2017) Cryo-EM Structure of a KCNQ1/CaM Complex Reveals
513 Insights into Congenital Long QT Syndrome. *Cell* 169:1042-1050.
- 514 2. Bernardo-Seisdedos G, Nunez E, Gomis C, Malo C, Villarroel A, Millet O (2018)
515 Structural basis and energy landscape for the Ca^{2+} gating and calmodulation of the
516 Kv7.2 K^+ channel. *Proc Natl Acad Sci U S A* 115:2395-2400.
- 517 3. Sahoo N, Hoshi T, Heinemann SH (2014) Oxidative modulation of voltage-gated
518 potassium channels. *Antioxid Redox Signal* 21:933-952.
- 519 4. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. *Free Radic Biol Med*
520 52:539-555.
- 521 5. Abdullaeva OS, Sahalianov I, Silvera EM, Jakesova M, Zozoulenko I, Liin SI, Glowacki ED
522 (2022) Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type
523 Voltage-Gated Potassium Channels. *Adv Sci (Weinh)* 9:e2103132.
- 524 6. Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation
525 by reactive oxygen species. *J Biochem* 151:255-261.
- 526 7. Weidinger A, Kozlov AV (2015) Biological Activities of Reactive Oxygen and Nitrogen
527 Species: Oxidative Stress versus Signal Transduction. *Biomolecules* 5:472-484.
- 528 8. Wani R, Murray BW (2017) Analysis of Cysteine Redox Post-Translational Modifications
529 in Cell Biology and Drug Pharmacology. *Methods Mol Biol* 1558:191-212.
- 530 9. Dantzler HA, Matott MP, Martinez D, Kline DD (2019) Hydrogen peroxide inhibits
531 neurons in the paraventricular nucleus of the hypothalamus via potassium channel
532 activation. *Am J Physiol Regul Integr Comp Physiol* 317:R121-R133.
- 533 10. Gamper N, Zaika O, Li Y, Martin P, Hernandez CC, Perez MR, Wang AY, Jaffe DB,
534 Shapiro MS (2006) Oxidative modification of M-type K^+ channels as a mechanism of
535 cytoprotective neuronal silencing. *EMBO J* 25:4996-5004.
- 536 11. Bierbower SM, Choveau FS, Lechleiter JD, Shapiro MS (2015) Augmentation of M-type
537 (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. *J*
538 *Neurosci* 35:2101-2111.
- 539 12. Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ,
540 Holstein DM, Sprague SM *et al.* (2020) Prevention of brain damage after traumatic
541 brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") $\text{K}(+)$ currents in
542 neurons. *J Cereb Blood Flow Metab* 40:1256-1273.
- 543 13. Jones F, Gamper N, Gao H (2021) Kv7 Channels and Excitability Disorders. *Handb Exp*
544 *Pharmacol* 267:185-230.
- 545 14. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in
546 inflammation and tissue injury. *Antioxid Redox Signal* 20:1126-1167.

Calmodulin mediates redox sensitivity of Kv7 channels

547 15. Kamsler A, Segal M (2007) Control of neuronal plasticity by reactive oxygen species.
548 *Antioxid Redox Signal* 9:165-167.

549 16. Patel JC, Rice ME (2012) Classification of H₂O₂ as a neuromodulator that regulates
550 striatal dopamine release on a subsecond time scale. *ACS Chem Neurosci* 3:991-1001.

551 17. Lee CR, Patel JC, O'Neill B, Rice ME (2015) Inhibitory and excitatory neuromodulation
552 by hydrogen peroxide: translating energetics to information. *J Physiol* 593:3431-3446.

553 18. Gamper N, Ooi L (2015) Redox and nitric oxide-mediated regulation of sensory neuron
554 ion channel function. *Antioxid Redox Signal* 22:486-504.

555 19. Adams P (2016) The discovery of the sub-threshold currents M and Q/H in central
556 neurons. *Brain Res* 1645:38-41.

557 20. Soldovieri MV, Miceli F, Taglialatela M (2011) Driving with no brakes: molecular
558 pathophysiology of Kv7 potassium channels. *Physiology (Bethesda)* 26:365-376.

559 21. Sun J, MacKinnon R (2020) Structural Basis of Human KCNQ1 Modulation and Gating.
560 *Cell* 180:340-347.

561 22. Li T, Wu K, Yue Z, Wang Y, Zhang F, Shen H (2021) Structural Basis for the Modulation
562 of Human KCNQ4 by Small-Molecule Drugs. *Mol Cell* 81:25-37.

563 23. Li X, Zhang Q, Guo P, Fu J, Mei L, Lv D, Wang J, Lai D, Ye S, Yang H *et al.* (2021)
564 Molecular basis for ligand activation of the human KCNQ2 channel. *Cell Res* 31:52-61.

565 24. Xu Q, Chang A, Tolia A, Minor DL, Jr. (2013) Structure of a Ca²⁺/CaM:Kv7.4 (KCNQ4) B
566 helix complex provides insight into M-current modulation. *J Mol Biol* 425:378-394.

567 25. Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W, Peretz A, Pongs O, Svergun D,
568 Attali B, Hirsch JA (2014) Structural Basis of a Kv7.1 Potassium Channel Gating Module:
569 Studies of the Intracellular C-Terminal Domain in Complex with Calmodulin. *Structure*
570 22:1582-1594.

571 26. Yus-Nájera E, Santana-Castro I, Villarroel A (2002) The identification and
572 characterization of a noncontinuous calmodulin-binding site in noninactivating
573 voltage-dependent KCNQ potassium channels. *J Biol Chem* 277:28545-28553.

574 27. Gamper N, Shapiro MS (2003) Calmodulin mediates Ca²⁺-dependent modulation of M-
575 type K⁺ channels. *J Gen Physiol* 122:17-31.

576 28. Wen H, Levitan IB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium
577 channels. *J Neurosci* 22:7991-8001.

578 29. Sorensen BR, Shea MA (1998) Interactions between domains of apo calmodulin alter
579 calcium binding and stability. *Biochemistry* 37:4244-4253.

580 30. Kung C, Preston RR, Maley ME, Ling KY, Kanabrocki JA, Seavey BR, Saimi Y (1992) In
581 vivo Paramecium mutants show that calmodulin orchestrates membrane responses to
582 stimuli. *Cell Calcium* 13:413-425.

Calmodulin mediates redox sensitivity of Kv7 channels

583 31. Kang PW, Westerlund AM, Shi J, White KM, Dou AK, Cui AH, Silva JR, Delemotte L, Cui J
584 (2020) Calmodulin acts as a state-dependent switch to control a cardiac potassium
585 channel opening. *Sci Adv* 6.

586 32. Tobelaim WS, Dvir M, Lebel G, Cui M, Buki T, Peretz A, Marom M, Haitin Y, Logothetis
587 DE, Hirsch JA *et al.* (2017) Competition of calcified calmodulin N lobe and PIP₂ to an
588 LQT mutation site in Kv7.1 channel. *Proc Natl Acad Sci U S A* 114:E869-E878.

589 33. Chang A, Abderemane-Ali F, Hura GL, Rossen ND, Gate RE, Minor DL, Jr. (2018) A
590 Calmodulin C-Lobe Ca²⁺-Dependent Switch Governs Kv7 Channel Function. *Neuron*
591 97:836-852.

592 34. Zhuang W, Yan Z (2020) The S2-S3 Loop of Kv7.4 Channels Is Essential for Calmodulin
593 Regulation of Channel Activation. *Front Physiol* 11:604134.

594 35. Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN (1991) Can calmodulin
595 function without binding calcium? *Cell* 65:949-959.

596 36. Keen JE, Khawaled R, Farrens DL, Neelands T, Rivard A, Bond CT, Janowsky A, Fakler B,
597 Adelman JP, Maylie J (1999) Domains responsible for constitutive and Ca²⁺-dependent
598 interactions between calmodulin and small conductance Ca²⁺-activated potassium
599 channels. *J Neurosci* 19:8830-8838.

600 37. Wuttke TV, Seeböhm G, Bail S, Maljevic S, Lerche H (2005) The new anticonvulsant
601 retigabine favors voltage-dependent opening of the K_V7.2 (KCNQ2) channel by binding
602 to its activation gate. *Mol Pharmacol* 67:1009-1017.

603 38. Alaimo A, Malo C, Aloria K, Millet O, Areso P, Villarroel A (2013) The use of dansyl-
604 calmodulin to study interactions with channels and other proteins. *Methods Mol Biol*
605 998:217-231.

606 39. Bonache MA, Alaimo A, Malo C, Millet O, Villarroel A, Gonzalez-Muniz R (2014) Clicked
607 bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding. *Org Biomol
608 Chem* 12:8877-8887.

609 40. Alaimo A, Alberdi A, Gomis-Perez C, Fernandez-Orth J, Bernardo-Seisdedos G, Malo C,
610 Millet O, Areso P, Villarroel A (2014) Pivoting between Calmodulin Lobes Triggered by
611 Calcium in the Kv7.2/Calmodulin Complex. *PLoS ONE* 9:e86711.

612 41. Bolin KA, Anderson DJ, Trulson JA, Thompson DA, Wilken J, Kent SB, Gantz I, Millhauser
613 GL (1999) NMR structure of a minimized human agouti related protein prepared by
614 total chemical synthesis. *FEBS Lett* 451:125-131.

615 42. Clapham DE (2007) Calcium signaling. *Cell* 131:1047-1058.

616 43. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A, Gomis-
617 Perez C, Soldovieri MV, Ambrosino P, Malo C *et al.* (2014) The ever changing moods of
618 calmodulin: How structural plasticity entails transductional adaptability. *J Mol Biol*
619 426:2717-2735.

Calmodulin mediates redox sensitivity of Kv7 channels

620 44. Li Y, Gamper N, Shapiro MS (2004) Single-channel analysis of KCNQ K⁺ channels reveals
621 the mechanism of augmentation by a cysteine-modifying reagent. *J Neurosci* 24:5079-
622 5090.

623 45. Sihn CR, Kim HJ, Woltz RL, Yarov-Yarovoy V, Yang PC, Xu J, Clancy CE, Zhang XD,
624 Chiamvimonvat N, Yamoah EN (2016) Mechanisms of Calmodulin Regulation of
625 Different Isoforms of Kv7.4 K⁺ Channels. *J Biol Chem* 291:2499-2509.

626 46. Archer CR, Enslow BT, Taylor AB, De IR, V, Bhattacharya A, Shapiro MS (2019) A
627 mutually induced conformational fit underlies Ca²⁺-directed interactions between
628 calmodulin and the proximal C terminus of KCNQ4 K⁺ channels. *J Biol Chem* 294:6094-
629 6112.

630 47. Zheng Y, Liu H, Chen Y, Dong S, Wang F, Wang S, Li GL, Shu Y, Xu F (2021) Structural
631 insights into the lipid and ligand regulation of a human neuronal KCNQ channel.
632 *Neuron*.

633 48. Etxeberria A, Aivar P, Rodriguez-Alfaro JA, Alaimo A, Villace P, Gomez-Posada JC, Areso
634 P, Villarroel A (2008) Calmodulin regulates the trafficking of KCNQ2 potassium
635 channels. *FASEB J* 22:1135-1143.

636 49. Gomis-Perez C, Soldovieri MV, Malo C, Ambrosino P, Taglialatela M, Areso P, Villarroel
637 A (2017) Differential Regulation of PI(4,5)P₂ Sensitivity of Kv7.2 and Kv7.3 Channels by
638 Calmodulin. *Front Mol Neurosci* 10:117.

639 50. Gamper N, Li Y, Shapiro MS (2005) Structural requirements for differential sensitivity
640 of KCNQ K⁺ channels to modulation by Ca²⁺/calmodulin. *Molecular Biology of the Cell*
641 16:3538-3551.

642 51. Ishida H, Borman MA, Ostrander J, Vogel HJ, MacDonald JA (2008) Solution structure
643 of the calponin homology (CH) domain from the smoothelin-like 1 protein: a unique
644 apocalmodulin-binding mode and the possible role of the C-terminal type-2 CH-
645 domain in smooth muscle relaxation. *J Biol Chem* 283:20569-20578.

646 52. Stefan Munnich MH, Manstein DJ (2014) Crystal Structure of Human Myosin 1c - The
647 Motor in GLUT4 Exocytosis: Implications for Ca-Regulation and 14-3-3 Binding. *J Mol
648 Biol.*

649 53. Nunez E, Muguruza-Montero A, Villarroel A (2020) Atomistic Insights of Calmodulin
650 Gating of Complete Ion Channels. *Int J Mol Sci* 21.

651 54. Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in
652 channel voltage dependence. *Nature* 340:153-156.

653

654

655

Calmodulin mediates redox sensitivity of Kv7 channels

656