

1 **Title:**

2 **Identifying Pathogen and Allele Type Simultaneously (IPATS) in a single well using**
3 **droplet digital PCR**

4

5 **Authors:** Kosuke Notsu¹, Hala El Daous^{1,2}, Shuya Mitoma¹, Xinyue Wu¹, Junzo Norimine^{3,4},
6 Satoshi Sekiguchi^{3,4*}

7 1. Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki
8 889-1692, Japan

9 2. Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt

10 3. Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki,
11 Miyazaki 889-2192, Japan

12 4. Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan

13

14 ***Corresponding author:** Satoshi Sekiguchi

15 Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1

16 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan

17 Tel: +81-985-58-7676, Fax: +81-985-58-7676

18 E-mail: sekiguchi@cc.miyazaki-u.ac.jp

19

20 **Abstract**

21 A combined host biomarker and pathogen diagnosis provides insight into disease progression
22 risk and contributes to appropriate clinical decision-making regarding prevention and
23 treatment. In preventive veterinary medicine, such combined diagnosis could improve risk-
24 based livestock herd management. We developed a single-well based test for combined
25 diagnosis of bovine leukemia virus (BLV) and bovine MHC (*BoLA*)-*DRB3* alleles. A fourplex
26 droplet digital PCR method targeting the BLV *pol* gene, BLV-susceptible *DRB3*016:01*
27 allele, resistant *DRB3*009:02* allele, and housekeeping *RPP30* gene (IPATS-BLV)
28 successfully measured the percentage of BLV-infected cells and determined allele types
29 precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this
30 method to determine the impact of carrying these alleles on the BLV proviral load (PVL), we
31 found *DRB3*009:02*-carrying cattle could suppress the PVL to a low or undetectable level,
32 even with the presence of a susceptible allele. Although the population of *DRB3*016:01*-
33 carrying cattle showed significantly higher PVLs when compared with cattle carrying other
34 alleles, their individual PVLs were highly variable. Because of the simplicity and speed of
35 this single-well assay, IPATS could be a suitable platform for the combined diagnosis of host
36 biomarkers and pathogens in a wide range of other systems.

37

38 **Background**

39 Owing to decades of effort associating genetic information with disease risk, genomic risk
40 prediction is now being implemented clinically (Abraham & Inouye, 2015; Lewis & Vassos,
41 2020). It contributes to clinician decision-making regarding disease treatment and prevention,
42 and it provides more flexible customized treatment for patients. Overcoming the threat of
43 infectious disease requires an accurate risk prediction of the disease severity for individuals.
44 However, even among those harboring disease-related biomarkers, many of which have been
45 identified in population level studies, disease progression and its outcome vary because of the
46 highly complex and dynamic host-pathogen interactions that occur during infection (Ellner et
47 al., 2021; Zhang et al., 2022). A combined diagnosis that encompasses genomic risk
48 prediction and pathogen identification is one potential solution for overcoming the
49 heterogeneity of individual infection and would provide deeper insight into an individual's
50 infectious status.

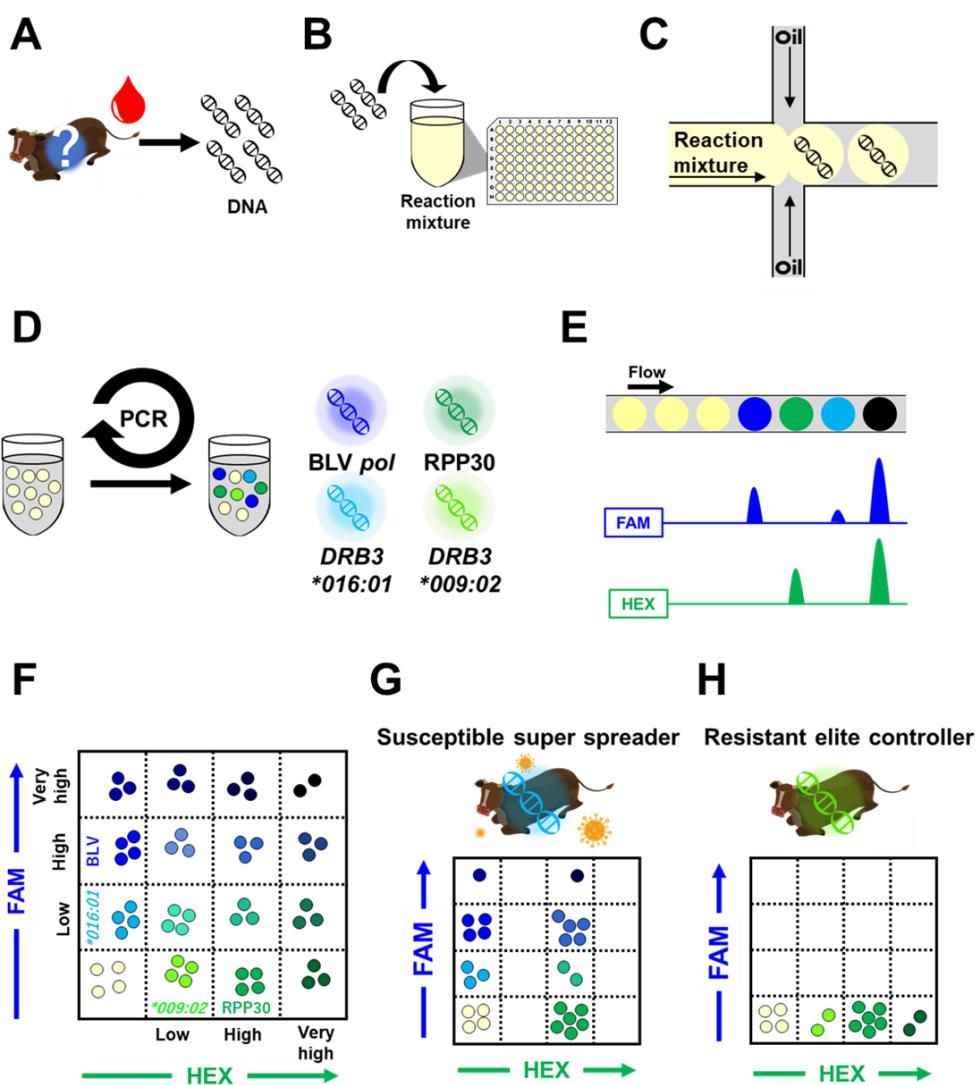
51 Human leukocyte antigen (HLA; major histocompatibility complex (MHC) in humans),
52 proteins on the surface of cells are involved with the regulation of innate immunity and
53 antigen presentation (Neefjes et al., 2011; Wieczorek et al., 2017). The HLA haplotype is
54 informative for predicting the strength of an individual's immune responses against pathogens
55 and is a useful indicator of disease susceptibility (Augusto & Hollenbach, 2022; Matzaraki et
56 al., 2017). The impact of differing immune capacity against viral replication could result in
57 the emergence of a rare population with highly transmissibility to others (super spreaders).
58 Additionally, high immune capacity can suppress an individual's viral load to levels
59 undetectable by diagnostic testing (e.g., elite controllers in human immunodeficiency virus
60 studies). In viral infections, the viral load is diagnostically important because it acts as an
61 indicator of disease severity (Fajnzylber et al., 2020; Granados et al., 2017; Yamano et al.,
62 2002) and transmissibility (Attia et al., 2009; Marc et al., 2021; Marks et al., 2021).
63 Determining both the HLA haplotype and viral load has the benefit of accurately identifying

64 infection susceptible/severe disease patients and infection resistant/mild disease patients. Such
65 information supports the prioritization of intensive medicine and vaccination to the at-risk
66 population.

67 There is a critical need of diagnostics that determine the genomic risk prediction and quantity
68 of pathogens for livestock infectious diseases. The eradication of highly contagious diseases,
69 such as foot and mouth diseases (Knight-Jones & Rushton, 2013) and African swine fever
70 (Mason-D'Croz et al., 2020), and of chronic, untreatable diseases, such as paratuberculosis
71 (Johne's disease) (Garcia & Shalloo, 2015) and bovine leukemia virus (BLV) infection
72 (Pelzer, 1997), is an unavoidable challenge to assure future food production. These diseases
73 are listed as notifiable terrestrial animal diseases by the World Organization for Animal Health
74 (World Organization of Animal Health, 2022). The latter diseases are difficult to control
75 because of their silent spread, owing to the lack of clinical signs, and the unfeasibility of
76 culling of all infected animals, owing to the high prevalence worldwide (Polat et al., 2017;
77 Whittington et al., 2019). To control these diseases while preserving as many animals as
78 possible, identifying and isolating susceptible super spreader animals and maintaining
79 disease-resistant animals via selective breeding is a reasonable approach.

80 BLV belongs to the genus *Deltaretrovirus* in the Retroviridae family, and it has a genomic
81 structure and properties similar to those of human T-lymphotropic virus type 1 (Aida et al.,
82 2013). BLV causes production issues in livestock farms by reducing the milk and meat
83 productivity of infected cattle (Nakada et al., 2022; Ott et al., 2003). Furthermore, just under
84 10% of BLV-infected cattle develop a malignant B-cell lymphoma called enzootic bovine
85 leukosis (EBL) upon lifelong infection (Burny et al., 1988). As there are no effective
86 treatments or vaccines for BLV infection (Barez et al., 2015), an appropriate intervention to
87 prevent the spread of this virus is needed. BLV transmits via the direct transfer of infected
88 blood, so the proviral load (PVL) is a determinant of transmissibility. Previous research
89 revealed an association between exon 2 of the bovine MHC (*BoLA*)-*DRB3* gene (*DRB3*) and

90 the BLV PVL. In the Japanese Black species of cattle, having *DRB3*016:01* is associated
91 with a high PVL (HPL) of BLV; thus, this allele is considered to be a BLV susceptibility gene
92 (Lo et al., 2021; Miyasaka et al., 2013). In contrast, having *DRB3*009:02* is strongly
93 associated with a low PVL (LPL) of BLV in the Japanese Black and Holstein species of cattle;
94 thus, this allele is considered to be a BLV resistance gene (Carignano et al., 2017; El Daous et
95 al., 2021; Hayashi et al., 2017; M. A. Juliarena et al., 2008; Lo et al., 2021; Miyasaka et al.,
96 2013; Takeshima et al., 2019). To provide a method for identifying BLV-susceptible super
97 spreaders and BLV-resistant elite controllers more easily and rapidly, we developed a single-
98 well droplet digital PCR (ddPCR)-based measurement system for the BLV PVL,
99 *DRB3*016:01* allele, and *DRB3*009:02* allele.

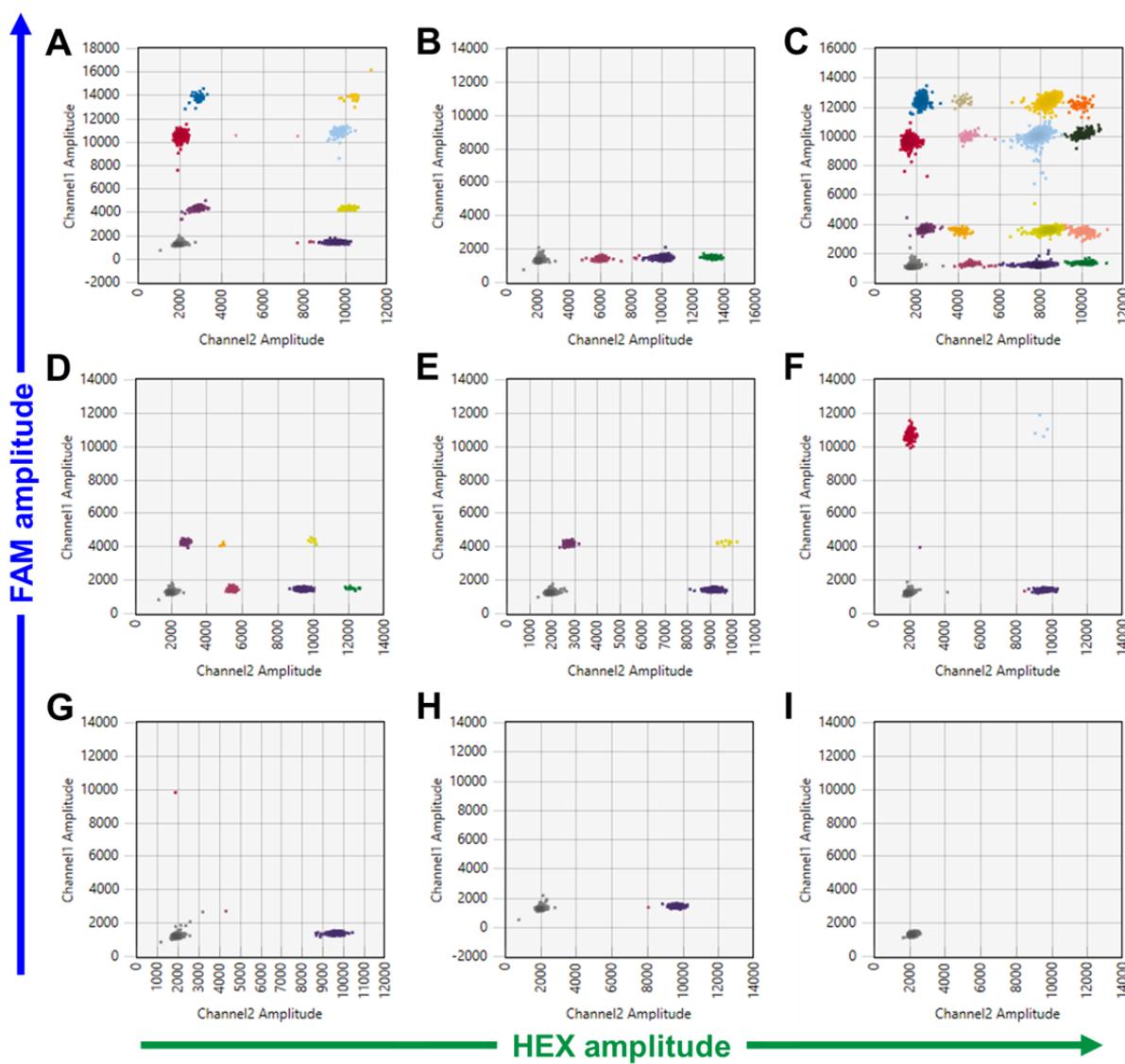

100

101 **Results**

102 ***Single-well measurement of BLV PVL, DRB3*016:01, and DRB3*009:02***

103 This study aimed to design a method for easily and rapidly identifying BLV-susceptible super
104 spreaders (*DRB3*016:01*-carrying cattle with a HPL of BLV) and BLV-resistant elite
105 controllers (*DRB3*009:02*-carrying cattle with an undetectable PVL). We developed a
106 fourplex ddPCR targeting the BLV *pol* gene, *DRB3*016:01* allele, *DRB3*009:02* allele, and
107 housekeeping gene RPP30, named IPATS (Identifying Pathogen and Allele Type
108 Simultaneously)-BLV (Figure 1A–1H). This assay consists of a multiplex TaqMan assay
109 using seven primers, including two locked nucleic acid (LNA) primers, and four TaqMan
110 probes in a single well (Tables S1 and S2). By modulating the amplicon length and
111 primer/probe concentration in the reaction mixture, we succeeded at detecting two targets in
112 the same color with separate fluorescence magnitudes in the PCR-positive droplet (Levy et
113 al., 2021; Miotke et al., 2014). When a droplet contains a *DRB3*016:01* allele or/and
114 *DRB3*009:02* allele, which we set to be detected by a low-concentration probe
115 (approximately 200 bp of amplicon), the droplet exhibits a low level of FAM or/and HEX

116 color, respectively, in our TaqMan assay. When a droplet contains a BLV *pol* gene or/and
117 RPP30, which we set to be detected by a high-concentration probe (approximately 100 bp of
118 amplicon), the droplet exhibits a high level of FAM or/and HEX color, respectively, in our
119 TaqMan assay. When a droplet contains both *DRB3*016:01* and the BLV *pol* gene (i.e., low
120 and high levels of FAM color) or *DRB3*009:02* and RPP30 (i.e., low and high levels of HEX
121 color), a cluster showing a very high level of color is observed (Figure 1D–1F). This assay
122 visualizes the properties of BLV PVL, *DRB3*016:01* allele presence, and *DRB3*009:02*
123 allele presence in samples via the FAM and HEX amplitude cluster patterns of droplets
124 (Figure 1F). We used the percentage of BLV-infected cells as an indicator of the BLV PVL.
125 We could calculate the percentage of BLV-infected cells by dividing the number of BLV-
126 positive droplets by half of the number of RPP30-positive droplets. Furthermore, this assay
127 can determine the heterozygosity or homogeneity of *DRB3*016:01* and *DRB3*009:02* by
128 dividing the number of *DRB3*016:01/*009:02*-positive droplets by the number of RPP30-
129 positive droplets.



130

131 **Figure 1. Workflow of IPATS-BLV**

132 The work flow is indicated from a to f. (A) DNA extraction from bovine whole blood. (B)
133 Addition of DNA samples to the reaction mixture. (C) Generation of droplets for partitioning
134 the sample DNA. (D) Fourplex TaqMan Assay of the droplets. (E) Determination of the
135 fluorescence magnitude. (F) 2D amplitude indicating the position of droplet clusters according
136 to the fluorescence magnitude. (G) 2D amplitude pattern of a BLV-susceptible super spreader.
137 (H) 2D amplitude pattern of a BLV-resistant elite controller.
138

139 As shown in Figure 2A–2I, IPATS-BLV produces a variety of cluster patterns of FAM and
140 HEX fluorescence intensity in 2D amplitude. BLV-susceptible super spreaders produce the
141 cluster patterns shown in Figure 2D and 2C (Figure 2C displays the pattern produced by
142 *DRB3*016:01/*009:02*-carrying cattle with a HPL of BLV). In contrast, BLV-resistant elite
143 controllers produce the cluster patterns shown in Figure 2B and 2D (Figure 2D displays the
144 pattern produced by *DRB3*016:01/*009:02*-carrying cattle with an undetectable PLV of
145 BLV). *DRB3*016:01*-carrying cattle with an undetectable PVL of BLV produce the pattern
146 shown in Figure 2E. When cattle carry neither the *DRB3*016:01* allele nor the *DRB3*009:02*
147 allele, those with a HPL, LPL, or undetectable PVL of BLV produce the cluster patterns
148 shown in Figure 2F, 2G, and 2H, respectively. Figure 2I displays the pattern produced by
149 cattle that are negative for all the target genes. A 1D amplitude of these patterns is provided in
150 Figure S1A-S1I.

151

152 **Figure 2. Cluster patterns in IPATS-BLV 2D amplitudes**

153 Cluster patterns of IPATS-BLV of eight cattle with different possession of *DRB3*016:01*,
154 *DRB3*009:02* and BLV provirus, and water is shown. Each droplet produces each different
155 FAM and HEX fluorescence magnitude in TaqMan assay, reflecting a presence of targeting
156 genes within droplet. Droplets makes clusters according to the similarity of fluorescence
157 magnitude. The divisions of clusters are indicated by different color of droplets. (A) BLV-
158 susceptible super spreader. (B) BLV-resistant elite controller. (C) Mixed population of
159 *DRB3*016:01*/015:01*-carrying cattle with a HPL of BLV and *DRB3*009:02*/015:01*-
160 carrying cattle (presumably *DRB3*009:02*/016:01* heterozygous with detectable BLV
161 provirus). (D) *DRB3*009:02*/016:01* heterozygous cattle with undetectable BLV provirus.
162 (E) *DRB3*016:01*-carrying cattle with undetectable BLV provirus. (F) Other allele-carrying
163 cattle with a HPL of BLV. (G) Other allele-carrying cattle with a LPL of BLV. (H) Other
164 allele-carrying cattle with undetectable BLV provirus. (I) Water.
165

166 **Digital allele typing with high accuracy**

167 To assess the accuracy of the *DRB3*016:01* and *DRB3*009:02* genotyping by our new
168 method, we performed IPATS-BLV on 58 bovine genomic DNA samples with *DRB3* allele
169 variation. These samples were previously genotyped using combined PCR-Restriction
170 Fragment Length Polymorphism (RFLP)-sequencing (El Daous et al., 2021; Notsu et al.,
171 2022; Van Eijk et al., 1992). A total of 21 *DRB3* alleles were identified by this previous
172 analysis (Table S3). Among these samples, IPATS-BLV successfully discriminated seven
173 samples with *DRB3*016:01* alleles and 14 samples with *DRB3*009:02* alleles by calculating
174 the ratio of the number of *DRB3*016:01*-positive (*DRB3*016:01* ratio) and *DRB3*009:02*-
175 positive (*DRB3*009:02* ratio) droplets to the number of RPP30-positive droplets (Table 1 -
176 Table S3). Five of these samples were *DRB3*016:01/*009:02* heterozygous. The
177 *DRB3*016:01* and *DRB3*009:02* ratio was 0.4646 (standard error (SE): ± 0.01087) and
178 0.4658 (SE: ± 0.00779), respectively. Because we rounded the values of the *DRB3*016:01* and
179 *DRB3*009:02* ratios of samples carrying other alleles to two decimal places to suppress the
180 effect of noise, all these samples had values of 0.0 for their ratios, except for a sample
181 carrying heterozygous *DRB3*037:01/*044:01* (yellow-highlighted in Table S3) which had a
182 *DRB3*016:01* ratio value of 0.2. Thus, IPATS-BLV had a 100% diagnostic sensitivity and
183 specificity for *DRB3*016:01* and *DRB3*009:02* genotyping.

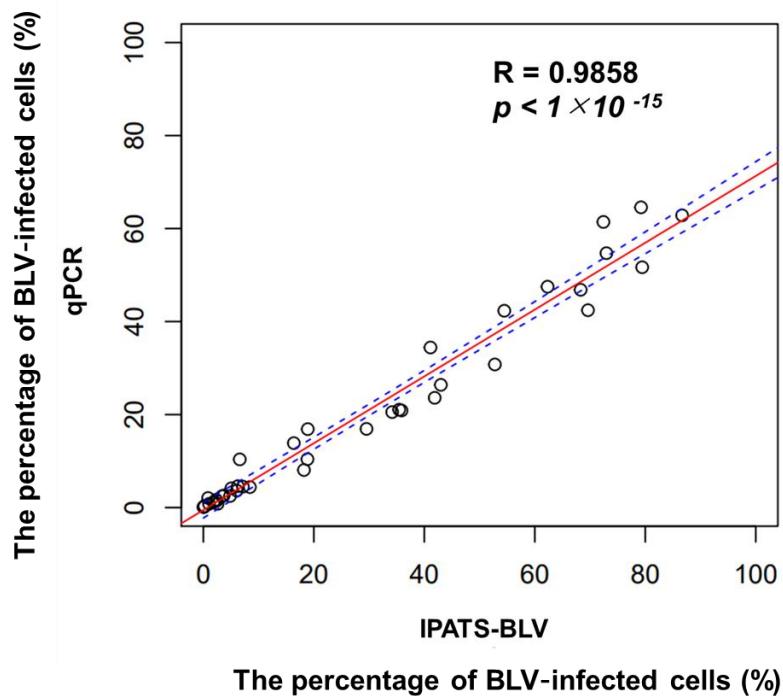
184
185 **Table 1. Comparison of the allele detectability of IPATS-BLV and combined PCR-**
186 **RFLP-sequencing**

IPATS-BLV		Combined PCR-RFLP-sequencing			
		<i>DRB3*016:01</i>	<i>DRB3*009:02</i>	<i>DRB3*016:01/DRB3*009:02</i>	Other alleles
	<i>DRB3*016:01/other allele^a</i>	2	0	0	0
	<i>DRB3*009:02/other allele^b</i>	0	9	0	0
	<i>DRB3*016:01/DRB3*009:02</i>	0	0	5	0
	Other alleles	0	0	0	42

187 ^aexcept *DRB3*009:02*

188 ^bexcept *DRB3*016:01*

189 ***BLV infection diagnostic performance of IPATS-BLV is comparable with that of other***
190 ***diagnostic methods***


191 We first evaluated the BLV infection diagnostic performance of IPATS-BLV by comparing it
192 with that of the anti-gp51 antibody ELISA test. We performed both the ELISA test and
193 IPATS-BLV for 65 samples with an unknown infectious status. We qualitatively compared the
194 ELISA-positive/negative results versus the IPATS-BLV-positive/negative results. As shown in
195 Table 2, 27 samples were identified as BLV-positive and 33 samples as BLV-negative by both
196 assays. One sample was identified as BLV-positive by IPATS-BLV but as BLV-negative by
197 ELISA; this discrepancy could result from a sample taken during the initial phase of BLV
198 infection. Four samples were identified as BLV-negative by IPATS-BLV but as BLV-positive
199 by ELISA. This result might indicate that these cattle were capable of suppressing an increase
200 in the BLV PVL. Among these cattle, one was identified as carrying the *DRB3*009:02* allele.
201 The kappa value between the IPATS-BLV and ELISA was 0.8452 (SE: ± 0.1235).

202
203 **Table 2. Comparison of the BLV detectability of IPATS-BLV and ELISA**

		anti-gp51-ELISA	
		Positive	Negative
IPATS-BLV	Positive	27	1
	Negative	4	33

204
205 Next, we evaluated the accuracy of the measurement of the percentage of BLV-infected cells
206 by IPATS-BLV via a comparison with qPCR. We found a strong correlation (Pearson's
207 coefficient $R = 0.9858$, $p < 1 \times 10^{-15}$) between these two assays, based on the measurement of
208 40 samples with variation in their percentage of BLV-infected cells (Figure 3). Finally, we
209 determined the limit of detection (LOD) of the percentage of BLV-infected cells in IPATS-
210 BLV using DNA extracted from serially diluted whole blood of BLV-infected cattle. IPATS-
211 BLV could detect BLV provirus from cattle in which 1.50×10^{-1} percent of cells were infected
212 with BLV, which is comparable to the LOD of commercial qPCR for BLV provirus (Table 3).

213

214

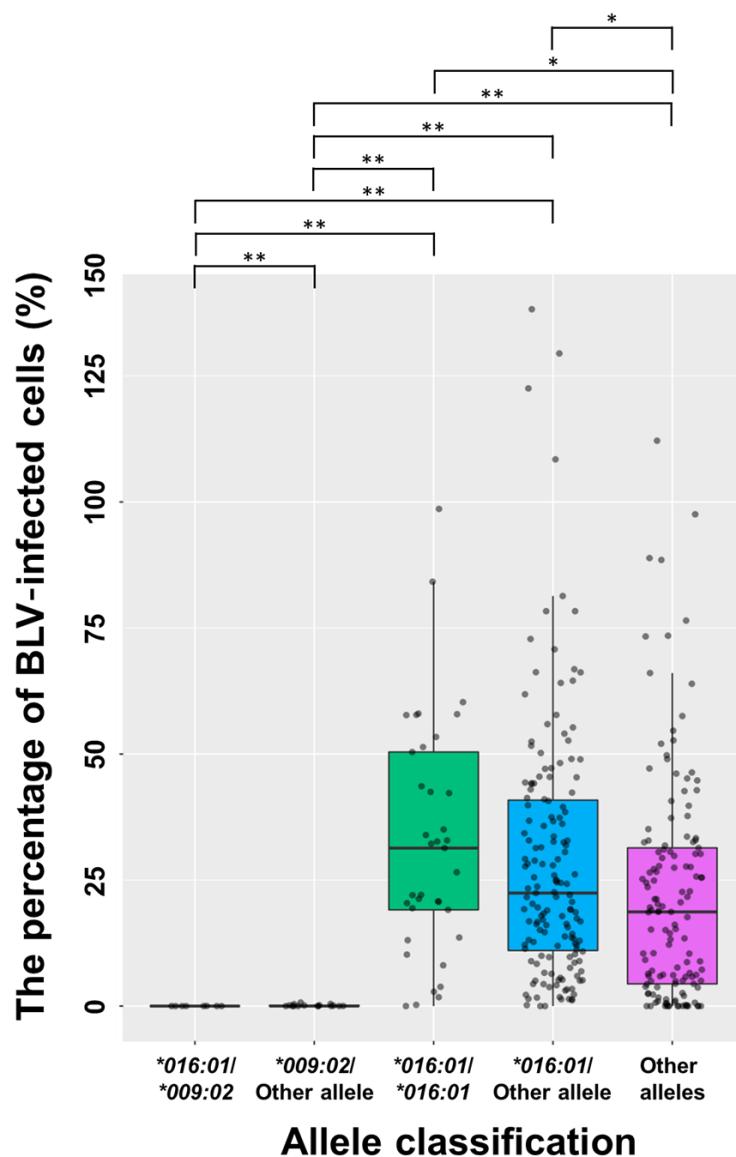
215 **Figure 3. Correlation analysis of the measurement of the percentage of BLV-infected**
216 **cells between IPATS-BLV and qPCR**

217 The red line and blue dotted line indicate the linear model and 95% CI, respectively.
218

219 **Table 3. Comparison of the BLV LOD between qPCR and IPATS-BLV**

Percentage of infected cells (%)	qPCR		IPATS-BLV	
	Ct	The No. of positive droplet	CNV ^a	
1.50	Fraction 1	34.71	39	0.014444
	Fraction 2	34.32	37	0.016897
	Fraction 3	34.68	46	0.018678
1.50×10^{-1}	Fraction 1	38.08	5	0.001672
	Fraction 2	38.3	3	0.001059
	Fraction 3	39.52	6	0.002066
1.50×10^{-2}	Fraction 1	Undetected	1	0.000326
	Fraction 2	40.65	0	NA ^b
	Fraction 3	Undetected	0	NA
1.50×10^{-3}	Fraction 1	Undetected	0	NA
	Fraction 2	Undetected	0	NA
	Fraction 3	Undetected	0	NA

220 ^aBLV copy number per two RPP30 copies


221 ^bNA: Not available

222

223 ***Survey for the percentage of DRB3*016:01- and DRB3*009:02-carrying cattle, and impact***
224 ***of these alleles on the percentage of BLV-infected cells***

225 A field survey of the percentage of *DRB3*016:01* or *DRB3*009:02*-carrying cattle and the
226 impact of these alleles on the BLV PVL was carried out in Miyazaki prefecture, Japan. First,
227 we used an anti-gp51 ELISA to screen for BLV-infected cattle. Among 4,603 asymptomatic
228 Japanese Black cattle from 1,394 farms, 353 cattle (7.7%) from 164 farms were identified as
229 BLV-positive by ELISA (“ELIZA-positive”). We then performed IPATS-BLV on samples
230 from the 353 ELISA-positive cattle; 200 cattle (56.7%) and 24 cattle (6.8%) were found to
231 carry *DRB3*016:01* and *DRB3*009:02*, respectively. Prior to performing a comparison of the
232 percentage of BLV-infected cells, we classified these cattle into the following five groups:
233 *DRB3*016:01/*009:02* heterozygous (n = 8), *DRB3*009:02*/Other allele heterozygous (n =
234 16), *DRB3*016:01/*016:01* homozygous (n = 37), *DRB3*016:01*/Other allele heterozygous
235 (n = 155), and Other alleles (n = 137) (Figure 4). The 37 *DRB3*016:01/*016:01* homozygous
236 cattle showed an average *DRB3*016:01* ratio of 0.9930 (SE: ± 0.014965). Cattle with a
237 *DRB3*009:02* allele had a significantly lower percentage of BLV-infected cells compared
238 with the in the other groups, even when the cattle were heterozygous for the BLV-susceptible
239 *DRB3*016:01* allele. Although cattle with a *DRB3*016:01* allele had a statistically
240 significantly higher percentage of BLV-infected cells compared with other allele-carrying
241 cattle, their PVLs varied widely.

242

243

244 **Figure 4. Comparison of the percentage of BLV-infected cells by allele classification**

245 A box-and-whisker plot is shown. Box: 25th–75th percentile of the range of the percentage of
246 BLV-infected cells. Intermediate line in the box: Median. Dot: Each sample. * $p < 0.5$; ** $p <$
247 0.0001

248

249 **Discussion**

250 This study successfully developed a simple and relatively speedy test for both host genetic
251 susceptibility and pathogen quantity, which will provide a deeper understanding of infection
252 in individual patients and guide their appropriate treatment. An important usage of this
253 platform is a risk analysis of the transmissibility of infected animals for veterinary science.
254 We developed the IPATS-BLV method to identify BLV-susceptible super spreaders and BLV-
255 resistant elite controllers more easily and rapidly. This test provides an absolute DNA
256 quantification of the BLV *pol* gene, BLV-susceptible *DRB3*016:01* allele, BLV-resistant
257 *DRB3*009:02* allele, and RPP30 by using a fourplex ddPCR. IPATS-BLV was demonstrated
258 to accurately measure the percentage of BLV-infected cells and provide highly sensitive and
259 specific allele typing that discriminates between homozygous and heterozygous carriers, all in
260 a single-well reaction. We found that cattle carrying the BLV-resistant *DRB3*009:02* allele
261 had a strong ability to maintain the PVL of BLV at a low or undetectable level. In contrast,
262 *DRB3*016:01*-carrying cattle were found to have a relatively higher percentage of BLV-
263 infected cells when compared with other allele-carrying cattle.

264 Here, we demonstrated the allelic impact of the previously identified BLV-susceptibility
265 *DRB3*016:01* allele and BLV-resistant *DRB3*009:02* allele on the BLV PVL, as shown in
266 Figure 4. *DRB3*009:02*-carrying cattle had a low/undetectable level of BLV provirus, even
267 when their other allele was the BLV-susceptible *DRB3*016:01* allele. This result is supported
268 by previous studies, indicating a strong association between *DRB3*009:02* and a
269 low/undetectable PVL of BLV under the consideration of allele heterozygosity (El Daous et
270 al., 2021; Lo et al., 2021). However, not all *DRB3*009:02*-carrying cattle are BLV resistant
271 (Farias et al., 2017). It seems that BLV resistance is determined by not only the *DRB3* allelic
272 effect but also other factors, such as species and climate. One advantage of IPATS-BLV is that
273 it identifies BLV-resistant elite controllers on the basis of both *DRB3*009:02* and
274 undetectable BLV provirus. Notably, *DRB3*016:01*-carrying cattle had a significantly higher

275 PVL of BLV when compared with cattle with other alleles. This is supported by previous
276 study, indicating that the percentage of BLV HPL cattle was higher among the group of
277 *DRB3*016:01*-carrying cattle (Miyasaka et al., 2013). However, our results also suggest that
278 the PVL of *DRB3*016:01*-carrying cattle varies widely. As BLV susceptibility is a relative
279 property at the population level, BLV-susceptible *DRB3*016:01* does not have sufficient
280 power to strongly associate with BLV HPL, unlike the strong association between
281 *DRB3*009:02* and low/undetectable BLV PVL. A population of BLV-susceptible allele-
282 carrying cattle with low or undetectable BLV provirus was previously found (Nakatsuchi et
283 al., 2022). The association between *DRB3*016:01* and BLV HPL seems to be limited in
284 particular situations. When the property of HPL is derived from genetic susceptibility, BLV-
285 susceptible HPL cattle are considered to maintain a HPL and transmit BLV to others over a
286 long span. BLV-susceptible allele (*DRB3*015:01*)-carrying Holstein cattle with a HPL
287 continued to have a HPL over a long observation period (Bai et al., 2021). We recommend
288 prioritizing the isolation of cattle with both *DRB3*016:01* and a HPL of BLV among BLV-
289 infected cattle.

290 The simultaneous detection of pathogens and host biomarkers contributes to strengthening the
291 control of livestock infectious diseases. Because there are presently no vaccines or effective
292 treatments for BLV infection, prevention is only available countermeasure. BLV was
293 previously eliminated in some countries in Europe via the identification and stamping out of
294 infected animals and the restriction of between-farm cattle movement from infected farms
295 (Maresca et al., 2015; Nuotio et al., 2003). As the BLV PVL varies by individual, depending
296 on the virus–host interaction and other factors, not all infected cattle pose a risk of
297 transmitting BLV to other cattle. Recently, BLV control on the basis of the PVL has been
298 implemented under the presumption that cattle with a LPL have low or no risk of BLV
299 transmission (Marcela. A. Juliarena et al., 2016; Mekata et al., 2015; Ruggiero et al., 2019). In
300 addition to viral factors, host factors such as the *DRB3* haplotype have also received focus as

301 an indicator of BLV disease susceptibility (Takeshima & Aida, 2006). Several studies
302 identified some *DRB3* alleles as being associated with a LPL, including the strongly resistant
303 *DRB3*009:02* (Carignano et al., 2017; El Daous et al., 2021; Hayashi et al., 2017; M. A.
304 Juliarena et al., 2008; Lo et al., 2021; Miyasaka et al., 2013; Takeshima et al., 2019). The
305 identification of BLV elite controllers will be useful in disrupting the chain of BLV
306 transmission (Marcela. A. Juliarena et al., 2016). Despite of the benefit of herd management
307 conducted on the basis of both PVL and *DRB3* haplotype, it is too time-consuming to
308 implement if PVL measurement and allele typing need to be performed independently. Our
309 newly developed method allows these data to be obtained more easily and rapidly and could
310 be further applied to a high-throughput diagnosis. The power of IPATS-BLV opens a new
311 avenue of BLV control by permitting the consideration of both PVL and genetic susceptibility.
312 Disease control using resistant animals has an aspect of providing assurance for food safety.
313 Because of the genetic variation in susceptibility to infectious diseases among species, derived
314 from co-evaluation with pathogens (Duxbury et al., 2019; O'Brien & Evermann, 1988), a
315 population of livestock possessing the power of disease resistance should exist latently
316 everywhere. As selective breeding is an applied use of natural resources, there is no need to
317 evaluate its adverse health effects to humans, unlike products of genome engineering. In the
318 case of genetically modified crops, commercialization requires 13 years from project
319 development and 35.01 million US\$ for the cost of regulatory safety assessment and of
320 securing global registration and authorizations. Notably, it takes five to seven years to perform
321 the safety evaluations and obtain regulatory (Kumar et al., 2020). Ethical problems are also
322 unavoidable when applying genome engineering to animals. Taken together, despite the
323 advantage of the customizability of genome engineering for livestock, there is a bottleneck for
324 implementing this approach. Genetic selection, which is already performed largely in marine
325 (D'Agaro et al., 2021), forest (Lebedev et al., 2020), and livestock agriculture (Hayes et al.,

326 2013), is a feasible alternative to genome engineering. This technique is ready to use when the
327 equipment for selective breeding and diagnostics is available.

328 Consideration of both host biomarkers and pathogen levels has the potential for improving
329 decision-making regarding the treatment and prevention of infectious diseases by providing a
330 deeper understanding of individual infection. For example, septic shock outcome can be
331 successfully predicted by merging information about the quantity of cytokines and bacteria in
332 a patient (Abasianik et al., 2020). Regarding the current outbreak of severe acute respiratory
333 syndrome coronavirus 2 (SARS-CoV-2) infection, researchers are discussing that HLA typing
334 with viral diagnosis could improve the assessment of disease severity and allow high-risk
335 individuals to be prioritized for vaccination (Nguyen et al., 2020). Such concepts contribute to
336 improving preventive veterinary medicine by supporting appropriate herd management. Even
337 when there are effective treatments and vaccinations for some threatening infectious diseases,
338 some countries have a distribution bottleneck for these pharmacologic compounds owing to
339 complex matters including supply chain and equipment (Acosta et al., 2019). Managing
340 animals according to their current and future risk of disease transmissibility results in the best
341 usage of available bioresources to suppress the damage from infectious diseases. Therefore,
342 we expect the power of improved diagnostics to contribute to sustainable production from
343 livestock in the future.

344 Some limitations of this study must be discussed. First, *DRB3*009*02*-carrying cattle with
345 undetectable provirus could be either a BLV elite controller or an uninfected animal. We
346 recommend the use of IPATS-BLV in combination with an antibody detection method, such as
347 an ELISA. Second, *DRB3*009:02*-carrying cattle can have detectable BLV provirus in the
348 initial phase of BLV infection (Forletti et al., 2020). Thus, the determination of BLV-resistant
349 cattle should be conducted by testing the PVL several times.

350 In conclusion, IPATS is an easy and rapid platform with which to measure host biomarkers
351 and pathogen levels. It provides strengthened diagnostics that consider both the disease

352 susceptibility of the host and the actual disease severity/transmissibility. Such an approach has
353 the potential to become a key tool for next-generation human and veterinary medicine.

354

355 **Materials and Methods**

356 ***IPATS-BLV assay design***

357 We designed a fourplex ddPCR based on BLV proviral DNA, *DRB3*009:02*, *DRB3*016:01*,
358 and RPP30-TaqMan Assay (Figure 1A–1F). To address the limited number of channels in our
359 commercial ddPCR system (e.g., QX200 Droplet Digital PCR system, Bio-Rad, Hercules,
360 USA), we modulated the amplicon length and primer/probe concentration in the reaction
361 mixture to enable the separation of different targets within the same color (Levy et al., 2021;
362 Miotke et al., 2014). We set the FAM_low, FAM_high, HEX_low, and HEX_high channels to
363 *DRB3*016:01*, BLV *pol* gene, *DRB3*009:02*, and RPP30, respectively.

364

365 ***Primer/Probe***

366 We obtained 382 sequences of *DRB3.2* alleles from the IPD-MHC database (EBML-EBI,
367 2021). For *DRB3*009:02*, we designed allele-specific primers and probe via minor
368 modification of a previously developed *DRB3*009:02*-TaqMan assay³³. To discriminate
369 *DRB3*016:01*, we designed a *DRB3*016:01*-specific forward primer and probe. The
370 *DRB3*016:01*-TaqMan assay shares the reverse primer for *DRB3*009:02*. One concern of
371 this design was potential nonspecific reactions between the *DRB3*009:02*-primer/probe and
372 *DRB3*009:02*-primer/probe. Thus, we recruited LNA primers to suppress the undesired
373 amplification of untargeted alleles. To detect wild strains of BLV with sequence diversity, we
374 designed primers and probe targeting a conserved region in the *pol* gene, as identified from a
375 database of aligned sequences for 82 reported strains (Table S4). This database includes 72
376 strains of BLV genotype 1 (G1), which is currently dominant worldwide, one strain of G2,
377 one strain of G4, three strains of G6, four strains of G9, and one strain of G10. The primers

378 and probe target a position in the 3' terminal end of the *pol* gene (Figure S2), that is conserved
379 except for an acceptable mismatch at the 5' side of the forward primer in the par91 strain
380 (Acc. No. LC080658.1). We added primers and probe for RPP30 into the reaction for
381 housekeeping purposes. Table S1 indicates the sequences of the primers/probes. We purchased
382 all these primers and probes, except for the LNA primers, from Eurofins Genomics (Tokyo,
383 Japan). We purchased the LNA primers from QIAGEN (Hilden, Germany).

384

385 **IPATS-BLV**

386 We finalized the IPATS-BLV reaction in a 22- μ l reaction mixture containing 14 μ l of 2 \times
387 ddPCR Supermix for Probes (Bio-Rad, #1863023), 909 nM of primers except the RPP30
388 primers (*DRB3*016:01*-forward, *DRB3*009:02*-forward, *DRB3*009:02*-reverse, BLV *pol*
389 4527-forward, and BLV *pol* 4638-reverse), 455 nM of RPP30-forward and reverse primers, 68
390 nM of FAM-labeled *DRB3*016:01*-probe, 182 nM of HEX-labeled *DRB3*009:02*-probe, 295
391 nM of FAM-labeled BLV *pol* 4560-probe, 364 nM of HEX-labeled RPP30-probe, the sample
392 adjusted to <35 ng, and the necessary volume of water to reach 22 μ l (Table S2). We
393 emulsified the reaction mixture using an automated droplet generator (#1864101JA, Bio-Rad)
394 for partitioning into droplets in accordance with the manufacturer's instructions. We
395 performed PCR amplification according to the following amplification profile: 95 °C for 10
396 min; 60 cycles of 94 °C for 30 s and 58 °C for 2 min; 98 °C for 10 min. The FAM and HEX
397 fluorescence magnitude of each droplet were read using a QX200™ Droplet Reader
398 (#1864003JA, Bio-Rad). The number of droplets in each cluster was quantified by
399 automatically/manually setting the appropriate fluorescence amplitude thresholds using QX
400 Manager Software Standard Edition, Version 1.2 (Bio-Rad). We calculated the percentage of
401 BLV-infected cells using below equation.

402 The percentage of BLV – infected cells = $\frac{\text{The number of BLV positive droplets}}{\text{The number of RPP30 positive droplets} \div 2} \times 100$ (1)

403 By calculating the ratio of the number of allele-positive droplets to the number of
404 housekeeping-positive droplets using the below equation, we successfully discriminated
405 whether cattle carry homozygous or heterozygous target alleles.

406
$$DRB3 * 016:01 \text{ (or } DRB3 * 009:02 \text{) ratio} = \frac{\text{The number of } DRB3*016:01 \text{ (or } DRB3*009:02 \text{) positive droplets}}{\text{The number of RPP30 positive droplets}} \quad (2)$$

407 Ratios of approximately 1 and 0.5 indicate homozygosity and heterozygosity of an allele,
408 respectively.

409

410 ***Sensitivity and specificity of DRB3*009:02 and DRB3*016:01 genotyping***

411 To determine the accuracy of *DRB3*009:02* and *DRB3*016:01* genotyping in IPATS-BLV, we
412 genotyped 58 bovine genomic DNAs with varied *DRB3* alleles by IPATS-BLV. These samples
413 included 21 *DRB3* alleles (Table S3), according to the results of *DRB3* allele determination
414 using combined PCR-RFLP-sequencing methods (El Daous et al., 2021; Notsu et al., 2022;
415 Van Eijk et al., 1992). The agreement of *DRB3*.2 allele typing between combined PCR-RFLP-
416 sequencing and IPATS-BLV was judged by calculating the diagnostic sensitivity and
417 specificity.

418

419 ***Agreement with commercial ELISA***

420 We judged the agreement of qualitative detectability of BLV-infected cattle of IPATS-BLV
421 with a commercial anti-gp51 antibody ELISA kit (#No cat. number, Nippon gene, Tokyo,
422 Japan). In the experiment, we used 65 bovine blood samples of unknown BLV infectious
423 status. We isolated plasma by centrifuging the samples for 10 min at 1000 $\times g$. The ELISA test
424 was performed in accordance with the manufacturer's instructions. We extracted genomic
425 DNA from whole blood using a Wizard® Genomic DNA Purification Kit (#A1120, Promega
426 Corp., Madison, USA) and then performed IPATS-BLV. We defined samples as ELISA-
427 positive if their value was higher than the cut-off S/P value and as IPATS-BLV-positive if
428 more than one BLV-positive droplet was detected in the amplitude. We evaluated the

429 consensus of ELISA-positive/negative versus IPATS-BLV-positive/negative by calculating a
430 kappa value using software in epitools (Sergeant, 2018).

431

432 ***Quantitativity of the percentage of BLV-infected cells***

433 For the accuracy of the quantification of the percentage of infected cells in IPATS-BLV, we
434 determined the correlation of measurement with a commercial qPCR kit (#RC202A, TaKaRa,
435 Shiga, Japan). The commercial qPCR kit targeted the BLV *pol* gene and RPPH1 for
436 housekeeping. We extracted genomic DNA samples from the whole blood of cattle using
437 MagDEA Dx SV reagent (#E1300, Precision System Science, Chiba, Japan) with an
438 automated nucleic acid extraction system (magLEAD 12gC, #A1120, Precision System
439 Science) in accordance with the manufacturer's instructions. Next, we performed qPCR in
440 accordance with the manufacturer's instructions. We selected 40 samples satisfying the
441 variation of the percentage of infected cells and performed IPATS-BLV on these samples. The
442 strength of correlation between qPCR and IPATS-BLV was determined using Pearson's
443 coefficient, calculated using R software v. 3. 6. 2 (R Development Core Team, 2019).

444

445 ***LOD of BLV detection***

446 To determine the LOD of BLV detection in IPATS-BLV, we tested DNA samples extracted
447 from a serial dilution series of whole blood from BLV-infected cattle. This animal carried
448 1.5% of BLV-infected cells (as confirmed using qPCR). We serially diluted the whole blood
449 of this animal 10 times using whole blood from a BLV-uninfected animal. We confirmed the
450 "uninfected" status of these cattle by both the absence of provirus in a qPCR assay and the
451 absence of anti-BLV gp51 antibody in an ELISA. We extracted genomic DNA from three
452 fractions of each dilution using magLEAD 12gC. We performed both IPATS-BLV and qPCR
453 to compare the LOD. In both assays, the sample DNA input in the reaction mixture was 20 ng.

454

455 **Field survey**

456 We performed a field survey for the percentage of *DRB3*016:01*- or *DRB3*009:02*-carrying
457 cattle and the impact of these alleles on the BLV PVL. We targeted asymptomatic Japanese
458 Black cattle in Miyazaki prefecture, Japan. Whole blood samples were collected from 4,603
459 cattle over 1,394 farms by veterinarians and sent to University of Miyazaki. These samples
460 were collected from May 2020 to July 2022. Anti-BLV gp51 antibody ELISA tests were
461 performed immediately to screen for BLV-infected cattle. We stored the whole blood of
462 ELISA-positive samples at -20°C until their use in further analysis. We extracted the
463 genomic DNA of ELISA-positive cattle using either the magLEAD 12gC or a MagMAX™
464 CORE Nucleic Acid Purification Kit (Thermo Fisher Scientific Inc., Waltham, USA) with an
465 automated nucleic acid extraction system (KingFisher Duo Prime; Thermo Fisher Scientific
466 Inc.). We performed IPATS-BLV for *DRB3*016:01*, *DRB3*009:02*, and BLV PVL. We
467 classified these samples into the following five groups: *DRB3*016:01/DRB3*009:02*,
468 *DRB3*009:02/other allele*, *DRB3*016:01/DRB3*016:01* (*DRB3*016:01* homozygous),
469 *DRB3*016:01/other allele*, and other alleles groups prior to a comparison of the percentage of
470 BLV-infected cells between groups. We used a pairwise Wilcoxon rank sum test with
471 Bonferroni's modification for determining the significance of differences between each group
472 using R software. Differences with a *p*-value of <0.05 were judged as statistically significant.
473

474 **Acknowledgements**

475 Research reported in this publication was supported by Grant-in-Aid for JSPS Fellows Grant
476 Number JP21J23396 (K.N) and JSPS KAKENHI Grant Number JP20K06413 (S.S). We thank
477 Toshie Iwanaga and Rika Nohara at University of Miyazaki for data collection assistance and
478 Drs. Chika Ryu and Yuchi Ushitani at JA Miyazaki for coordinating the sample collections.
479 We also thank Katie Oakley, PhD, from Edanz (<https://jp.edanz.com/ac>) for editing a draft of
480 this manuscript.

481 **Author contributions**

482 K.N. and S.S. conceived of this study and acquired funding; S.S. supervised the project; K.N.
483 designed the IPATS-BLV protocol and performed all IPATS-BLV experiments; K.N., H.E.D.,
484 and S.M. performed the *DRB3* allele typing by using combined PCR-RFLP-sequencing; K.N.
485 performed the BLV anti-gp51-ELISA test; K.N. and X.W. performed the BLV qPCR; and
486 K.N. prepared the manuscript and figures. All authors read, revised, and approved the
487 manuscript.

488

489 **Competing interests statement**

490 The authors declare that they have no conflict of interest.

491

492 **References**

493 Abasianik, M. F., Wolfe, K., Van Phan, H., Lin, J., Laxman, B., White, S. R., Verhoef, P. A.,
494 Mutlu, G. M., Patel, B., & Tay, S. (2020). Ultrasensitive digital quantification of
495 cytokines and bacteria predicts septic shock outcomes. *Nature Communications*, 11(1),
496 2607. DOI: <https://doi.org/10.1038/S41467-020-16124-9>

497 Abraham, G., & Inouye, M. (2015). Genomic risk prediction of complex human disease and
498 its clinical application. *Current Opinion in Genetics & Development*, 33, 10–16. DOI:
499 <https://doi.org/10.1016/j.gde.2015.06.005>

500 Acosta, D., Hendrickx, S., & McKune, S. (2019). The livestock vaccine supply chain: Why it
501 matters and how it can help eradicate peste des petits Ruminants, based on findings in
502 Karamoja, Uganda. *Vaccine*, 37(43), 6285–6290. DOI:
503 <https://doi.org/10.1016/j.vaccine.2019.09.011>

504 Aida, Y., Murakami, H., Takahashi, M., & Takeshima, S.-N. (2013). Mechanisms of
505 pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia
506 virus. *Frontiers in Microbiology*, 4, 328. DOI: <https://doi.org/10.3389/fmicb.2013.00328>

507 Attia, S., Egger, M., Müller, M., Zwahlen, M., & Low, N. (2009). Sexual transmission of HIV
508 according to viral load and antiretroviral therapy: Systematic review and meta-analysis.
509 *AIDS*, 23(11), 1397–1404. DOI: <https://doi.org/10.1097/qad.0b013e32832b7dca>

510 Augusto, D. G., & Hollenbach, J. A. (2022). HLA variation and antigen presentation in
511 COVID-19 and SARS-CoV-2 infection. *Current Opinion in Immunology*, 76, 102178.
512 DOI: <https://doi.org/10.1016/j.coi.2022.102178>

513 Bai, L., Borjigin, L., Sato, H., Takeshima, S.-N., Asaji, S., Ishizaki, H., Kawashima, K.,
514 Obuchi, Y., Sunaga, S., Ando, A., Inoko, H., Wada, S., & Aida, Y. (2021). Kinetic Study
515 of BLV Infectivity in BLV Susceptible and Resistant Cattle in Japan from 2017 to 2019.
516 *Pathogens*, 10(10), 1281. DOI: <https://doi.org/10.3390/pathogens10101281>

517 Barez, P.-Y., De Brogniez, A., Carpentier, A., Gazon, H., Gillet, N., Gutiérrez, G., Hamaidia,
518 M., Jacques, J.-R., Perike, S., Sriramareddy, S. N., Renotte, N., Staumont, B., Reichert,
519 M., Trono, K., & Willems, L. (2015). Recent Advances in BLV Research. *Viruses*, 7(11),
520 6080–6088. DOI: <https://doi.org/10.3390/v7112929>

521 Burny, A., Cleuter, Y., Kettmann, R., Mammerickx, M., Marbaix, G., Portetelle, D., Van Den
522 Broeke, A., Willems, L., & Thomas, R. (1988). Bovine leukaemia: facts and hypotheses
523 derived from the study of an infectious cancer. *Veterinary Microbiology*, 17(3), 197–218.
524 DOI: [https://doi.org/10.1016/0378-1135\(88\)90066-1](https://doi.org/10.1016/0378-1135(88)90066-1)

525 Carignano, H. A., Beribe, M. J., Caffaro, M. E., Amadio, A., Nani, J. P., Gutierrez, G.,
526 Alvarez, I., Trono, K., Miretti, M. M., & Poli, M. A. (2017). *BOLA-DRB3* gene
527 polymorphisms influence bovine leukaemia virus infection levels in Holstein and
528 Holstein × Jersey crossbreed dairy cattle. *Animal Genetics*, 48(4), 420–430. DOI:
529 <https://doi.org/10.1111/age.12566>

530 D'Agaro, E., Favaro, A., Matiussi, S., Gibertoni, P. P., & Esposito, S. (2021). Genomic
531 selection in salmonids: new discoveries and future perspectives. *Aquaculture
532 International*, 29(5), 2259–2289. DOI: <https://doi.org/10.1007/s10499-021-00747-w>

533 Duxbury, E. M. L., Day, J. P., Vespaiani, D. M., Thüringer, Y., Tolosana, I., Smith, S. C. L.,
534 Tagliaferri, L., Kamacioglu, A., Lindsley, I., Love, L., Unckless, R. L., Jiggins, F. M., &
535 Longdon, B. (2019). Host-pathogen coevolution increases genetic variation in
536 susceptibility to infection. *ELife*, 8, e46440. DOI: <https://doi.org/10.7554/elife.46440>

537 EBML-EBI. (2021). IPD-MHC database. Ver. 3.6.0.1. Available at:
538 <https://www.ebi.ac.uk/ipd/mhc/>. Accessed at 2021. June. 16th.

539 El Daous, H., Mitoma, S., Elhanafy, E., Huyen, N. T., Ngan, M. T., Notsu, K., Kaneko, C.,
540 Norimine, J., & Sekiguchi, S. (2021). Relationship between Allelic Heterozygosity in
541 *BoLA-DRB3* and Proviral Loads in Bovine Leukemia Virus-Infected Cattle. *Animals*
542 (*Basel*), 11(3), 1–14. DOI: <https://doi.org/10.3390/ani11030647>

543 Ellner, S. P., Buchon, N., Dörr, T., & Lazzaro, B. P. (2021). Host-pathogen immune
544 feedbacks can explain widely divergent outcomes from similar infections. *Proceedings.*
545 *Biological Sciences*, 288(1951), 20210786. DOI: <https://doi.org/10.1098/rspb.2021.0786>

546 Fajnzylber, J., Regan, J., Coxen, K., Corry, H., Wong, C., Rosenthal, A., Worrall, D., Gigué,
547 F., Piechocka-Trocha, A., Atyeo, C., Fischinger, S., Chan, A., Flaherty, K. T., Hall, K.,
548 Dougan, M., Ryan, E. T., Gillespie, E., Chishti, R., Li, Y., ... Massachusetts Consortium
549 for Pathogen Readiness. (2020). SARS-CoV-2 viral load is associated with increased
550 disease severity and mortality. *Nature Communications*, 11(1), 5493. DOI:
551 <https://doi.org/10.1038/s41467-020-19057-5>

552 Farias, M. V. N., Caffaro, M. E., Lendez, P. A., Passucci, J., Poli, M., Ceriani, M. C., &
553 Dolcini, G. (2017). A novel association of *BoLA DRB3* alleles in BLV infected cattle
554 with different proviral loads. *Brazilian Journal of Veterinary Research and Animal*
555 *Science*, 54(3), 215–224. DOI: <https://doi.org/10.11606/issn.1678-4456.bjvras.2017.123769>

556 Forletti, A., Lützelschwab, C. M., Cepeda, R., Esteban, E. N., & Gutiérrez, S. E. (2020). Early
557 events following bovine leukaemia virus infection in calves with different alleles of the

559 major histocompatibility complex DRB3 gene. *Veterinary Research*, 51(1), 4. DOI:
560 <https://doi.org/10.1186/s13567-019-0732-1/figures/7>

561 Garcia, A. B., & Shalloo, L. (2015). Invited review: The economic impact and control of
562 paratuberculosis in cattle. *Journal of Dairy Science*, 98(8), 5019–5039. DOI:
563 <https://doi.org/10.3168/jds.2014-9241>

564 Granados, A., Peci, A., McGeer, A., & Gubbay, J. B. (2017). Influenza and rhinovirus viral
565 load and disease severity in upper respiratory tract infections. *Journal of Clinical
566 Virology*, 86, 14–19. DOI: <https://doi.org/10.1016/j.jcv.2016.11.008>

567 Hayashi, T., Mekata, H., Sekiguchi, S., Kirino, Y., Mitoma, S., Honkawa, K., Horii, Y., &
568 Norimine, J. (2017). Cattle with the BoLA class II *DRB3*0902* allele have significantly
569 lower bovine leukemia proviral loads. *The Journal of Veterinary Medical Science*, 79(9),
570 1552–1555. DOI: <https://doi.org/10.1292/jvms.16-0601>

571 Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding:
572 genomic selection for efficiency, reduced emissions intensity, and adaptation. *Trends in
573 Genetics*, 29(4), 206–214. DOI: <https://doi.org/10.1016/j.tig.2012.11.009>

574 Juliarena, M. A., Poli, M., Sala, L., Ceriani, C., Gutierrez, S., Dolcini, G., Rodríguez, E. M.,
575 Mariño, B., Rodríguez-Dubra, C., & Esteban, E. N. (2008). Association of BLV
576 infection profiles with alleles of the *BoLA-DRB3.2* gene. *Animal Genetics*, 39(4), 432–
577 438. DOI: <https://doi.org/10.1111/j.1365-2052.2008.01750.x>

578 Juliarena, Marcela. A., Barrios, C. N., Ceriani, M. C., & Esteban, E. N. (2016). Hot topic:
579 Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of
580 infection for BLV-free cattle. *Journal of Dairy Science*, 99(6), 4586–4589. DOI:
581 <https://doi.org/10.3168/jds.2015-10480>

582 Knight-Jones, T. J. D., & Rushton, J. (2013). The economic impacts of foot and mouth
583 disease - what are they, how big are they and where do they occur? *Preventive
584 Veterinary Medicine*, 112(3–4), 161–173. DOI:

585 <https://doi.org/10.1016/j.prevetmed.2013.07.013>

586 Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P.,

587 Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and

588 future prospects. *Planta*, 251(4), 91. DOI: <https://doi.org/10.1007/s00425-020-03372-8>

589 Lebedev, V. G., Lebedeva, T. N., Chernodubov, A. I., & Shestibratov, K. A. (2020). Genomic

590 selection for forest tree improvement: Methods, achievements and perspectives. *Forests*,

591 11(11), 1190. DOI: <https://doi.org/10.3390/f11111190>

592 Levy, C. N., Hughes, S. M., Roychoudhury, P., Reeves, D. B., Amstuz, C., Zhu, H., Huang,

593 M. L., Wei, Y., Bull, M. E., Cassidy, N. A. J., McClure, J., Frenkel, L. M., Stone, M.,

594 Bakkour, S., Wonderlich, E. R., Busch, M. P., Deeks, S. G., Schiffer, J. T., Coombs, R.

595 W., ... Hladik, F. (2021). A highly multiplexed droplet digital PCR assay to measure the

596 intact HIV-1 proviral reservoir. *Cell Reports. Medicine*, 2(4), 100243. DOI:

597 <https://doi.org/10.1016/j.xcrm.2021.100243>

598 Lewis, C. M., & Vassos, E. (2020). Polygenic risk scores: from research tools to clinical

599 instruments. *Genome Medicine*, 12(1), 44. DOI: <https://doi.org/10.1186/s13073-020-00742-5>

600

601 Lo, C.-W., Takeshima, S.-N., Wada, S., Matsumoto, Y., & Aida, Y. (2021). Bovine major

602 histocompatibility complex (BoLA) heterozygote advantage against the outcome of

603 bovine leukemia virus infection. *HLA*, 98(2), 132–139. DOI:

604 <https://doi.org/10.1111/tan.14285>

605 Marc, A., Kerioui, M., Blanquart, F., Bertrand, J., Mitjà, O., Corbacho-Monné, M., Marks, M.,

606 & Guedj, J. (2021). Quantifying the relationship between SARS-CoV-2 viral load and

607 infectiousness. *ELife*, 10, e69302. DOI: <https://doi.org/10.7554/elife.69302>

608 Maresca, C., Costarelli, S., Dettori, A., Felici, A., Iscaro, C., & Feliziani, F. (2015). Enzootic

609 bovine leukosis: report of eradication and surveillance measures in Italy over an 8-year

610 period (2005-2012). *Preventive Veterinary Medicine*, 119(3–4), 222–226. DOI:

611 <https://doi.org/10.1016/j.prevetmed.2015.02.024>

612 Marks, M., Millat-Martinez, P., Ouchi, D., Roberts, C. H., Alemany, A., Corbacho-Monné,
613 M., Ubals, M., Tobias, A., Tebé, C., Ballana, E., Bassat, Q., Baro, B., Vall-Mayans, M.,
614 G-Beiras, C., Prat, N., Ara, J., Clotet, B., & Mitjà, O. (2021). Transmission of COVID-
615 19 in 282 clusters in Catalonia, Spain: a cohort study. *The Lancet. Infectious Diseases*,
616 21(5), 629–636. DOI: [https://doi.org/10.1016/s1473-3099\(20\)30985-3](https://doi.org/10.1016/s1473-3099(20)30985-3)

617 Mason-D'Croz, D., Bogard, J. R., Herrero, M., Robinson, S., Sulser, T. B., Wiebe, K.,
618 Willenbockel, D., & Godfray, H. C. J. (2020). Modelling the global economic
619 consequences of a major African swine fever outbreak in China. *Nature Food*, 1(4), 221–
620 228. DOI: <https://doi.org/10.1038/s43016-020-0057-2>

621 Matzaraki, V., Kumar, V., Wijmenga, C., & Zhernakova, A. (2017). The MHC locus and
622 genetic susceptibility to autoimmune and infectious diseases. *Genome Biology*, 18(1), 76.
623 DOI: <https://doi.org/10.1186/s13059-017-1207-1>

624 Mekata, H., Sekiguchi, S., Konnai, S., Kirino, Y., Horii, Y., & Norimine, J. (2015).
625 Horizontal transmission and phylogenetic analysis of bovine leukemia virus in two
626 districts of Miyazaki, Japan. *The Journal of Veterinary Medical Science*, 77(9), 1115–
627 1120. DOI: <https://doi.org/10.1292/jvms.14-0624>

628 Miotke, L., Lau, B. T., Rumma, R. T., & Ji, H. P. (2014). High sensitivity detection and
629 quantitation of DNA copy number and single nucleotide variants with single color
630 droplet digital PCR. *Analytical Chemistry*, 86(5), 2618–2624. DOI:
631 <https://doi.org/10.1021/ac403843j>

632 Miyasaka, T., Takeshima, S.-N., Jimba, M., Matsumoto, Y., Kobayashi, N., Matsuhashi, T.,
633 Sentsui, H., & Aida, Y. (2013). Identification of bovine leukocyte antigen class II
634 haplotypes associated with variations in bovine leukemia virus proviral load in Japanese
635 Black cattle. *Tissue Antigens*, 81(2), 72–82. DOI: <https://doi.org/10.1111/tan.12041>

636 Nakada, S., Fujimoto, Y., Kohara, J., Adachi, Y., & Makita, K. (2022). Estimation of

637 economic loss by carcass weight reduction of Japanese dairy cows due to infection with
638 bovine leukemia virus. *Preventive Veterinary Medicine*, 198, 105528. DOI:
639 <https://doi.org/10.1016/j.prevetmed.2021.105528>

640 Nakatsuchi, A., Watanuki, S., Borjigin, L., Sato, H., Bai, L., Matsuura, R., Kuroda, M.,
641 Murakami, H., Sato, R., Asaji, S., Ando, A., Matsumoto, Y., Takeshima, S.-N., & Aida,
642 Y. (2022). *BoLA-DRB3* Polymorphism Controls Proviral Load and Infectivity of Bovine
643 Leukemia Virus (BLV) in Milk. *Pathogens*, 11(2), 210. DOI:
644 <https://doi.org/10.3390/pathogens11020210>

645 Neefjes, J., Jongsma, M. L. M., Paul, P., & Bakke, O. (2011). Towards a systems
646 understanding of MHC class I and MHC class II antigen presentation. *Nature Reviews.*
647 *Immunology*, 11(12), 823–836. DOI: <https://doi.org/10.1038/nri3084>

648 Nguyen, A., David, J. K., Maden, S. K., Wood, M. A., Weeder, B. R., Nellore, A., &
649 Thompson, R. F. (2020). Human Leukocyte Antigen Susceptibility Map for Severe
650 Acute Respiratory Syndrome Coronavirus 2. *Journal of Virology*, 94(13), e00510-20.
651 DOI: <https://doi.org/10.1128/jvi.00510-20>

652 Notsu, K., El Daous, H., Mitoma, S., Norimine, J., & Sekiguchi, S. (2022). A pooled testing
653 system to rapidly identify cattle carrying the elite controller *BoLA-DRB3*009:02*
654 haplotype against bovine leukemia virus infection. *HLA*, 99(1), 12–24. DOI:
655 <https://doi.org/10.1111/tan.14502>

656 Nuotio, L., Rusanen, H., Sihvonen, L., & Neuvonen, E. (2003). Eradication of enzootic
657 bovine leukosis from Finland. *Preventive Veterinary Medicine*, 59(1–2), 43–49. DOI:
658 [https://doi.org/10.1016/s0167-5877\(03\)00057-6](https://doi.org/10.1016/s0167-5877(03)00057-6)

659 O'Brien, S. J., & Evermann, J. F. (1988). Interactive influence of infectious disease and
660 genetic diversity in natural populations. *Trends in Ecology & Evolution*, 3(10), 254–259.
661 DOI: [https://doi.org/10.1016/0169-5347\(88\)90058-4](https://doi.org/10.1016/0169-5347(88)90058-4)

662 Ott, S. L., Johnson, R., & Wells, S. J. (2003). Association between bovine-leukosis virus

663 seroprevalence and herd-level productivity on US dairy farms. *Preventive Veterinary*
664 *Medicine*, 61(4), 249–262. DOI: <https://doi.org/10.1016/j.prevetmed.2003.08.003>

665 Pelzer, K. D. (1997). Economics of bovine leukemia virus infection. *The Veterinary Clinics of*
666 *North America. Food Animal Practice*, 13(1), 129–141. DOI:
667 [https://doi.org/10.1016/s0749-0720\(15\)30368-6](https://doi.org/10.1016/s0749-0720(15)30368-6)

668 Polat, M., Takeshima, S.-N., & Aida, Y. (2017). Epidemiology and genetic diversity of
669 bovine leukemia virus. *Virology Journal*, 14(1), 209. DOI:
670 <https://doi.org/10.1186/s12985-017-0876-4>

671 R Core Team. (2019). R: A language and environment for statistical computing. R Foundation
672 for Statistical Computing, Vienna, Austria. Available at: <https://www.R-project.org/>.

673 Ruggiero, V. J., Norby, B., Benitez, O. J., Hutchinson, H., Sporer, K. R. B., Droscha, C.,
674 Swenson, C. L., & Bartlett, P. C. (2019). Controlling bovine leukemia virus in dairy
675 herds by identifying and removing cows with the highest proviral load and lymphocyte
676 counts. *Journal of Dairy Science*, 102(10), 9165–9175. DOI:
677 <https://doi.org/10.3168/jds.2018-16186>

678 Sergeant, ESG. (2018). Epitools Epidemiological Calculators. Ausvet. Available at:
679 <http://epitools.ausvet.com.au>. Accessed at 2022. June. 16th.

680 Takeshima, S.-N., & Aida, Y. (2006). Structure, function and disease susceptibility of the
681 bovine major histocompatibility complex. *Animal Science Journal*, 77, 138–150. DOI:
682 <https://doi.org/10.1111/j.1740-0929.2006.00332.x>

683 Takeshima, S.-N., Ohno, A., & Aida, Y. (2019). Bovine leukemia virus proviral load is more
684 strongly associated with bovine major histocompatibility complex class II *DRB3*
685 polymorphism than with *DQA1* polymorphism in Holstein cow in Japan. *Retrovirology*,
686 16(1), 14. DOI: <https://doi.org/10.1186/s12977-019-0476-z>

687 Van Eijk, M. J., Stewart-Haynes, J. A., & Lewin, H. A. (1992). Extensive polymorphism of
688 the BoLA-DRB3 gene distinguished by PCR-RFLP. *Animal Genetics*, 23(6), 483–496.

689 DOI: <https://doi.org/10.1111/j.1365-2052.1992.tb00168.x>

690 Whittington, R., Donat, K., Weber, M. F., Kelton, D., Nielsen, S. S., Eisenberg, S., Arrigoni,
691 N., Juste, R., Sáez, J. L., Dhand, N., Santi, A., Michel, A., Barkema, H., Kralik, P.,
692 Kostoulas, P., Citer, L., Griffin, F., Barwell, R., Moreira, M. A. S., ... De Waard, J. H.
693 (2019). Control of paratuberculosis: who, why and how. A review of 48 countries. *BMC*
694 *Veterinary Research*, 15(1), 198. DOI: <https://doi.org/10.1186/s12917-019-1943-4>

695 Wieczorek, M., Abualrous, E. T., Sticht, J., Álvaro-Benito, M., Stolzenberg, S., Noé, F., &
696 Freund, C. (2017). Major Histocompatibility Complex (MHC) Class I and MHC Class II
697 Proteins: Conformational Plasticity in Antigen Presentation. *Frontiers in Immunology*, 8,
698 292. DOI: <https://doi.org/10.3389/fimmu.2017.00292>

699 World Organization of Animal Health. (2022). Terrestrial Animal Health Code. Available at:
700 <https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code->
701 [online-access/](https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-). Accessed at 2022. July. 22th.

702 Yamano, Y., Nagai, M., Brennan, M., Mora, C. A., Soldan, S. S., Tomaru, U., Takenouchi, N.,
703 Izumo, S., Osame, M., & Jacobson, S. (2002). Correlation of human T-cell lymphotropic
704 virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells,
705 and disease severity in HTLV-1-associated myelopathy (HAM/TSP). *Blood*, 99(1), 88–
706 94. DOI: <https://doi.org/10.1182/blood.v99.1.88>

707 Zhang, Q., Bastard, P., Karbuz, A., Gervais, A., Tayoun, A. A., Aiuti, A., Belot, A., Bolze, A.,
708 Gaudet, A., Bondarenko, A., Spaan, A. N., Guennoun, A., Arias, A. A., Planas, A. M.,
709 Sediva, A., Shcherbina, A., Neehus, A. L., Puel, A., Froidure, A., ... Casanova, J. L.
710 (2022). Human genetic and immunological determinants of critical COVID-19
711 pneumonia. *Nature*, 603(7902), 587–598. DOI: <https://doi.org/10.1038/s41586-022-04447-0>