

1 **Remodelling of carbon metabolism during sulfoglycolysis in *Escherichia coli***

2

3 Janice W.-Y. Mui,<sup>a,b</sup> David P. De Souza,<sup>a</sup> Eleanor C. Saunders,<sup>c</sup> Malcolm J. McConville,<sup>c</sup> Spencer J.  
4 Williams<sup>a,b</sup>

5

6 <sup>a</sup>Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria  
7 3010, Australia

8 <sup>b</sup>School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia

9 <sup>c</sup>Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology  
10 Institute, University of Melbourne, Parkville, Victoria 3010, Australia

11

12 **Address correspondence to:**

13 Malcolm J. McConville, [malcolmm@unimelb.edu.au](mailto:malcolmm@unimelb.edu.au)

14 Spencer J. Williams, [sjwill@unimelb.edu.au](mailto:sjwill@unimelb.edu.au)

15

16 **Keywords**

17 Metabolomics; sulfosugar; sulfoquinovose; sulfur cycle; central carbon metabolism; carbohydrates

## 18    **Abstract**

19    Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all  
20    photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria,  
21    such as *Escherichia coli*, is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway  
22    termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to consumption of three of the six  
23    carbons of SQ and excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite  
24    profiling of aerobically Glc-grown and SQ-grown *E. coli* was undertaken to identify the metabolic  
25    consequences of switching from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the  
26    diversion of triose-phosphates to synthesize sugar phosphates (gluconeogenesis), and an unexpected  
27    accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with  
28    global changes in central carbon metabolism, as indicated by changes in levels of intermediates in the  
29    tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism,  
30    pyrimidine metabolism and many amino acid metabolic pathways. Upon entry into stationary phase and  
31    depletion of SQ, *E. coli* utilize their glycogen, indicating a reversal of metabolic fluxes to allow  
32    glycolytic metabolism.

## 33    **Importance**

34    The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion tonnes per annum,  
35    making it a major organosulfur species in the biosulfur cycle. Microbial degradation of sulfoquinovose  
36    through sulfoglycolysis allows utilization of its carbon content and contributes to biomineralization of  
37    its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear.  
38    We use metabolomics to identify the metabolic adaptations that *Escherichia coli* undergoes when grown  
39    on sulfoquinovose versus glucose. This revealed increased flux into storage carbohydrates through  
40    gluconeogenesis, and reduced flux of carbon into the TCA cycle and downstream metabolism. These  
41    changes are relieved upon return to stationary phase growth and reversion to glycolytic metabolism.  
42    This work provides new insights into the metabolic consequences of microbial growth on an abundant  
43    sulfosugar.

#### 44      **Introduction**

45      Sulfoquinovose (SQ) is a 6-sulfonated analogue of glucose (Glc) that is produced by most  
46      photosynthetic organisms (Fig. 1A).(1, 2) SQ occurs primarily as the polar head group of  
47      sulfoquinovosyl diacylglyceride (SQDG), a major glycolipid in plant chloroplasts and cyanobacteria.(1,  
48      3) Global production of SQ is estimated to be of the order of 10 billion tonnes per annum.(4)  
49      Consequently, SQ is a major compound in the biogeochemical sulfur cycle. While the biosynthesis of  
50      SQ and SQDG occurs within plants and cyanobacteria,(1, 5) its catabolism appears to be mediated  
51      exclusively by bacteria.

52      The pathways of catabolism of SQ are termed ‘sulfoglycolysis’.(6, 7) The first sulfoglycolytic  
53      pathway was described in *Escherichia coli*,(8) and was coined the sulfoglycolytic Embden-Meyerhof-  
54      Parnas (sulfo-EMP) pathway, owing to its similarity to the ‘investment phase’ of glycolysis or the upper  
55      glycolytic EMP pathway (Fig. 1A), in which two molecules of ATP are consumed to convert Glc to  
56      two molecules of glyceraldehyde-3-phosphate (GAP). Upper glycolysis comprises the steps catalyzed  
57      by hexokinase (phosphorylation of Glc to glucose-6-phosphate (G6P)), G6P isomerase (conversion of  
58      G6P to fructose-6-phosphate (F6P)), F6P kinase (phosphorylation of F6P to form fructose-bisphosphate  
59      (FBP)), FBP aldolase (cleavage of FBP into two 3-carbon (3C) fragments: GAP and dihydroxyacetone  
60      phosphate (DHAP)), and triose-phosphate isomerase (interconversion of GAP and DHAP). During the  
61      ‘payoff phase’, or lower glycolysis, two molecules of GAP are converted to two molecules of pyruvate  
62      over five steps, producing energy as ATP and reducing power as NADH. In contrast, the sulfo-EMP  
63      pathway converts SQ to DHAP and sulfolactoaldehyde (SLA) using a dedicated SQ isomerase (converts  
64      SQ to sulfofructose (SF)), a SF kinase (phosphorylates SF to give sulfofructose-1-phosphate (SFP)),  
65      and a SFP aldolase (cleaves SFP into DHAP and SLA) (Fig. 1A). As in glycolysis, DHAP is isomerized  
66      to GAP, and further catabolized in lower glycolysis, with production of ATP and NADH, while the  
67      other 3C fragment, SLA, is reduced to 2,3-dihydroxypropanesulfonate (DHPS), generating NAD<sup>+</sup>, and  
68      excreted from the cell. The sulfo-EMP pathway therefore has balanced NAD<sup>+</sup>/NADH production, but  
69      yields half the ATP and carbon per hexose sugar compared to the glycolytic EMP pathway.(9)

70        *E. coli* shows a clear preference for growth on Glc versus SQ. Glc-adapted *E. coli* K-12 strain  
71        MG1655 takes two weeks to adapt to growth on SQ, and once adapted, it grows more slowly than on  
72        Glc.(8) Maximum biomass of *E. coli* grown on SQ is also approximately half of cultures grown on  
73        Glc.(8) Reduced growth and biomass on SQ could reflect the lower yield of carbon, ATP and NADH  
74        in the sulfo-EMP pathway and supply of energy and precursors for anabolic processes. The sulfo-EMP  
75        pathway also bypasses the steps in glycolysis that produce G6P or F6P, which are needed to supply  
76        precursors for the pentose phosphate pathway (PPP) and sugar nucleotide and cell wall biosynthesis,  
77        respectively (Fig. 1B). SQ-grown *E. coli* must therefore additionally divert the triose phosphates (triose-  
78        P) DHAP/GAP produced by sulfoglycolysis into G6P and F6P,(10, 11) while maintaining sufficient  
79        flux into lower glycolysis and pyruvate production to sustain the tricarboxylic acid (TCA) cycle and  
80        fatty acid biosynthesis. The switch from glycolysis to sulfoglycolysis therefore requires large-scale  
81        metabolic changes that may be responsible for the slow transition from Glc to SQ. While these changes  
82        have yet to be characterized, limited study has been done: Burrichter and coworkers provided evidence  
83        of a novel mixed-acid fermentation and conversion of SQ-derived triose-P to succinate, acetate and  
84        formate when *E. coli* was grown on SQ under anaerobic conditions.(12)

85        In this work, we investigate metabolic changes occurring in *E. coli* grown with Glc or SQ as  
86        sole carbon sources under aerobic conditions using comparative metabolite profiling. Unexpectedly, we  
87        find evidence for extensive diversion of SQ-derived carbon into glycogen and trehalose storage  
88        carbohydrates in SQ-grown *E. coli* during logarithmic phase, suggestive of limitation in other pathways  
89        required for growth. These storage carbohydrates are utilized following commencement of stationary  
90        phase, suggestive of a reverse diauxic shift whereby bacteria temporarily switch back to glycolysis  
91        following exhaustion of their primary carbon source. Untargeted metabolite analysis reveals further  
92        changes to metabolite levels across a range of metabolic pathways during sulfoglycolytic metabolism:  
93        these include clear perturbations to the TCA cycle, the PPP, polyamine metabolism, pyrimidine  
94        metabolism and many amino acid metabolic pathways. This work shows that metabolic adaptation to  
95        sulfoglycolytic growth in *E. coli* requires the simultaneous operation of gluconeogenesis and lower  
96        glycolysis, leading to the accumulation of storage carbohydrates. We propose that the accumulation of

97 storage carbohydrates during SQ metabolism is associated with primary deficits in energy (as ATP),  
98 reducing power and carbon-based building blocks.

99

100 **Results**

101 **Growth on SQ leads to major changes in *E. coli* metabolism**

102 *E. coli* BW25113 were grown to mid-log phase on Glc (4 mM) and on SQ (8 mM) as sole carbon  
103 sources. The SQ concentration chosen was double that of Glc to account for the fact that *E. coli* excrete  
104 half of the internalized SQ (carbons 4-6 and the sulfonate group) as DHPS; this approach was also  
105 utilized by Burrichter and coworkers.(12) This doubling of SQ concentration does not appear to have  
106 substantial impact on the growth rate; growth was approximately 5-fold slower than in Glc-grown *E.*  
107 *coli* (compared with 3.8-fold in a previous study for *E. coli* MG1655(8)). Cells were harvested,  
108 metabolically quenched and intracellular metabolites were extracted into MeOH:H<sub>2</sub>O (3:1 v/v),(13)  
109 derivatised, then analysed by gas chromatography-electron ionization-triple quadrupole mass  
110 spectrometry (GC-EI-QqQ-MS).(14) Metabolites were detected by multiple reaction monitoring (521  
111 targets, representing approximately 350 metabolites, with two MRM transitions (qualifier and  
112 quantifier) per target). Data was manually inspected and curated prior to more detailed analysis.

113 In total, 146 metabolites were detected in at least one growth condition, of which 117 had  
114 statistically significant differences in abundance in bacteria grown on the two carbon sources (False  
115 Detection Rate-adjusted p-value < 0.05). As shown using a volcano plot, 36 metabolites had lower  
116 abundance in SQ-grown versus Glc-grown *E. coli*, and 81 had a higher abundance (Fig. 2A). Fold  
117 changes spanned several orders of magnitude: lysine was >4000-fold less abundant, several metabolites  
118 were >100-fold less abundant and several were >10-fold more abundant in SQ-grown *E. coli* (Fig. 2B,  
119 2C). There were also large increases in hexose-based sugars in SQ-fed *E. coli*.

120 **Amino acid pools are perturbed during sulfoglycolysis**

121 Many amino acid pools underwent very large perturbations upon changing from growth on Glc  
122 to SQ (Fig. 2B, 2C, Table S1). Tyrosine was 900-fold less abundant in SQ-grown *E. coli*, yet  
123 phenylalanine and its derivatives phenyllactate and phenylpyruvate(15-17) showed no statistically  
124 significant changes (Fig. 2B, Table S1). Lysine was > 4000-fold less abundant in SQ-grown *E. coli*  
125 (Fig. 2B, Table S1). Alanine, methionine, threonine, valine, arginine and asparagine were also less

126 abundant (Table S1). In contrast, serine, cysteine, glycine, isoleucine, leucine, glutamate, aspartate and  
127 proline were all more abundant in SQ-grown *E. coli* (Table S1).

128 Changes were also observed for intermediates in amino acid biosynthetic and degradation  
129 pathways. The cysteine degradation product 3-sulfino-L-alanine(15-17) was 17-fold less abundant in  
130 SQ-grown *E. coli*, while the lysine degradation products 5-aminopentanoate, glutarate, 2-  
131 hydroxyglutarate and  $\alpha$ -ketoglutarate(15-17) and the valine degradation product 3-  
132 hydroxyisobutyrate(15-17) were all more abundant (Table S1). The leucine precursors 2-  
133 isopropylmalate and ketoleucine(15-17) and the leucine and valine common precursor  $\alpha$ -  
134 ketoisovalerate(15-17) were more abundant in SQ-grown *E. coli*, while the valine, leucine and  
135 isoleucine common precursor  $\alpha$ -ketobutyrate(15-17) was less abundant (Table S1).

136 Putrescine levels were 1.5-fold higher in mid log-phase SQ-grown versus Glc-grown *E. coli*  
137 (Fig. 3A). There was also 1.5-fold more proline and glutamate, but 10-fold less arginine in SQ-grown  
138 *E. coli* (Fig. 3A). Putrescine is derived either from arginine via agmatine (which releases urea), or from  
139 glutamate or proline via ornithine, the latter being more direct (Fig. 3C).(15-20) It has been reported  
140 that in *E. coli*, urea is almost exclusively produced by putrescine biosynthesis from arginine via  
141 agmatine.(18, 21) The observation of 3-fold less urea in SQ-grown *E. coli* may indicate lower  
142 dependence on the agmatine pathway. Putrescine has two possible fates in *E. coli*; it can be oxidised to  
143 GABA or acetylated to *N*-acetyl putrescine (Fig. 3C).(15-17) There was 300-fold less *N*-acetyl  
144 putrescine and 2.4-fold more GABA in SQ-grown *E. coli* (Fig. 3A), suggesting that more oxidation and  
145 less acetylation of putrescine occurs during sulfoglycolysis. The lower levels of *N*-acetylputrescine may  
146 indicate lower levels of acetyl-CoA production.

#### 147 **Sulfoglycolysis perturbs purine and pyrimidine metabolic pools**

148 Adenosine was approximately 6-fold less abundant and xanthine >360-fold less abundant in  
149 SQ-grown versus Glc-grown *E. coli* (Table S1), indicative of a perturbation to purine metabolism.  
150 Pyrimidine metabolism was also perturbed: in SQ-grown *E. coli*, there was >95-fold less orotic acid, as  
151 well as less of the orotic acid precursors *N*-carbamoyl-L-aspartate (>100-fold less) and dihydroxyorotate

152 (230-fold less) (Table S1). In *E. coli* BW25113, orotic acid is a metabolic end product;(22) thus, the  
153 lower levels of orotic acid may suggest decreased input into pyrimidine metabolism in sulfoglycolytic  
154 *E. coli*. Consistent with this observation, broader effects on pyrimidine metabolism were evident: there  
155 was 1.3-fold less uracil and 9-fold less of the uracil degradation product  $\beta$ -alanine in sulfoglycolytic *E.*  
156 *coli*, as well as 2.7-fold more thymine. The cytosine pool was not significantly perturbed (Table S1).

157 **Pools of redox mediators are perturbed upon switching to sulfoglycolysis**

158 Glutathione and NAD(P)H help maintain the redox status of *E. coli* and are cofactors for a  
159 wide range of oxidoreductases. In SQ-grown *E. coli*, there was 7-fold more glutathione and 1.7-fold  
160 more nicotinate and nicotinamide versus glycolytic *E. coli* (Table S1), showing that sulfoglycolysis  
161 perturbs these key species in redox biochemistry.

162 **SQ-grown *E. coli* accumulate carbohydrate during mid-log phase**

163 Various non-phosphorylated sugars (Glc, galactose, mannitol) and oligosaccharides (trehalose,  
164 maltose) accumulated in SQ-grown *E. coli* during mid-log phase (Fig. 2C), suggesting that a significant  
165 fraction of triose-P generated during SQ catabolism is diverted into synthesis of hexose phosphates  
166 (hexose-P) via the action of the reversible FBP aldolase and the dedicated gluconeogenic enzyme,  
167 fructose bisphosphatase (FBPase). The accumulation of Glc (>39-fold increase in SQ-fed versus Glc-  
168 fed bacteria) was unexpected and may reflect the activity of a hexose-P phosphatase (Fig. 2C, 3A) or  
169 constitutive cycling of glycogen pools via glycosidases as well as glycogen phosphorylase. The  
170 conversion of SQ to Glc via the gluconeogenic pathways was confirmed by labelling *E. coli* with  
171 (<sup>13</sup>C<sub>6</sub>)SQ (labelled:unlabelled 1:1). The presence of a prominent +3 isotopomer in the free Glc pool  
172 reflects the incorporation of triose-P into hexose synthesis.

173 Quantitative analysis reveals that there is more GAP but less phosphoenolpyruvate, 3-  
174 phosphoglycerate and 2-phosphoglycerate in mid-log phase SQ-grown *E. coli* (Fig. 3A). In contrast,  
175 higher levels of pyruvate and lactate were present in SQ-grown *E. coli*, which may indicate slower  
176 consumption and/or production of these metabolites through degradative pathways during adaptation  
177 to sulfoglycolysis. Similarly, the TCA cycle was also perturbed by the switch from growth on Glc to

178 SQ.  $\alpha$ -Ketoglutarate was 1.6-fold more abundant and fumarate and citrate 1.6-fold less abundant in the  
179 SQ-grown *E. coli* (Fig. 3A). There were no statistically significant differences in the malate, succinate  
180 and cis-aconitate pools. The perturbations to the TCA cycle and lower glycolytic metabolites are  
181 consistent with diversion of a significant portion of triose-P produced by sulfoglycolysis into  
182 gluconeogenesis, away from these downstream metabolic pathways.

183 The PPP metabolites D-glucono-1,5-lactone, D-gluconate, D-ribose-5-phosphate, D-ribose, D-  
184 seduheptulose-7-phosphate, D-ribulose, D-xylulose and D-arabitol were between 1.5-fold and 3-fold  
185 more abundant in SQ-grown *E. coli* (Fig. 3A), consistent with a general increased flux into sugar-  
186 phosphate synthesis under these growth conditions. *N*-Acetylglucosamine and *N*-acetylmannosamine  
187 were also >5-fold more abundant in SQ-grown *E. coli* (Fig. 3A). The accumulation of these sugars  
188 could reflect both increased flux into amino-sugar synthesis, as well as reduced rate of utilization of  
189 these sugars for cell wall biosynthesis in slower-growing SQ-fed bacteria.(8)

190 **Sulfoglycolysis perturbs cell wall biosynthesis in *E. coli***

191 The levels of *N*-acetylglucosamine, a key component of the peptidoglycan cell wall and outer  
192 membrane of *E. coli*, (23, 24) and *N*-acetylmannosamine, which can interconvert with the former,(15-  
193 17) were >5-fold larger in log-phase SQ-grown *E. coli* (Fig. 3A). The pools of fatty acids, key precursors  
194 required for the lipopolysaccharide outer membrane,(25) were also perturbed; all detected fatty acid  
195 pools, except linoleic acid, were 1.4-fold to 1.9-fold larger in SQ-grown *E. coli* (Table S1). This may  
196 reflect the lower growth rate of SQ-grown *E. coli*,(8) and hence slower consumption of these cell wall  
197 precursors. Alternatively, while cell pellets harvested from Glc-grown and SQ-grown *E. coli* were of  
198 similar size, the SQ-grown pellets were more difficult to resuspend in the extraction solvent, which may  
199 reflect differences in cell wall structure of glycolytic and sulfoglycolytic *E. coli*, such as thicker cell  
200 walls and/or cell walls that lead to greater cell adhesion.

201 ***E. coli* switch from sulfoglycolysis to glycolysis during stationary phase adaptation**

202 The finding that mid-log phase *E. coli* accumulate trehalose and maltose, as well as  
203 intermediates in the PPP and amino-sugar synthesis when grown on SQ, indicated that a substantive

204 proportion of triose-P is diverted into hexose/pentose phosphate synthesis via the final steps of  
205 gluconeogenesis or the PPP transketolase/transaldolase enzymes (Fig. 2C, 3A, Table 1). To assess  
206 whether growth on SQ also resulted in the accumulation of glycogen, the major *E. coli* carbohydrate  
207 reserve,(26-28) Glc- and SQ-grown *E. coli* were collected at five points along the growth curve and  
208 differentially extracted to recover low molecular weight oligosaccharides and glycogen. Maltose and  
209 trehalose were recovered in the methanol/water extract, and total protein and glycogen recovered in the  
210 insoluble pellet. The total carbohydrate content of the soluble fraction was also quantitated after  
211 methanolysis and conversion of Glc and fructose to their TMS derivatives. Storage carbohydrate content  
212 was normalized to total protein content for analysis (Fig. 4, S1, S2).

213 In Glc-grown *E. coli*, glycogen levels rose during log phase, peaking at the transition to  
214 stationary phase (or in late log phase), before declining as stationary phase progressed (Fig. 4A, 4C).  
215 This is broadly consistent with a previous report for this strain of *E. coli* (BW25113) in M9 minimal  
216 media containing 0.2% Glc (compared with 0.072% Glc in this work), in which glycogen levels peak  
217 around late log phase or the transition to stationary phase, and decline as stationary phase  
218 progresses.(29) SQ-grown *E. coli* also produced glycogen, accumulating during log phase, peaking in  
219 early stationary phase, then falling as stationary phase progressed (Fig. 4B, 4C). Peak levels were  
220 similar in SQ- and Glc-grown *E. coli*. Collectively, these data show that *E. coli* grown on SQ continue  
221 to accumulate glycogen and low molecular weight oligosaccharides at the expense of carbon flow into  
222 lower glycolysis. The accumulated glycogen appears to function as an alternative carbon source once  
223 extracellular Glc or SQ is depleted and cells enter stationary phase.

224 To verify that depletion of glycogen during stationary phase in SQ-grown *E. coli* was due to  
225 catabolism and not conversion to smaller storage carbohydrates such as the disaccharides  
226 trehalose/maltose, we analysed the carbohydrate content of the soluble fraction of stationary phase cells.  
227 No maltose was detected under either growth condition, and only very low levels of trehalose (an order  
228 of magnitude smaller than glycogen levels) were detected in SQ-grown *E. coli*, with levels decreasing  
229 as stationary phase progressed (Fig. 4B, 4C, 4D). Only trace amounts of trehalose were detected in Glc-  
230 grown *E. coli* during all stages of growth. In the total monosaccharide analysis, we targeted Glc and

231 fructose. Only Glc was detected in both Glc- and SQ-grown *E. coli*, with levels an order of magnitude  
232 higher than glycogen in SQ-grown *E. coli* (Fig. 4B, 4C, 4E), indicating that most carbohydrate in Glc-  
233 and SQ-grown *E. coli* is present as free Glc and/or unidentified Glc-containing disaccharides. Glc levels  
234 rose across log phase in SQ-grown *E. coli*, then fell as stationary phase progressed. Taken together,  
235 these results suggest that glycogen accumulated during log-phase growth of *E. coli* on SQ is consumed  
236 upon transition to stationary phase, indicating a reversal in carbon flux from  
237 sulfoglycolytic/gluconeogenic to upper glycolytic.

238

239 **Discussion**

240 Metabolism of SQ through the sulfo-EMP pathway leads to formation of triose-P, bypassing  
241 key steps in upper glycolysis that generate G6P and F6P for the PPP and the synthesis of cell wall  
242 intermediates. As a result, triose-P generated by SQ metabolism must be diverted into upper  
243 gluconeogenesis for hexose/pentose-phosphate production, as well as further catabolized in ATP-  
244 generating steps in lower glycolysis. This requirement imposes a double bioenergetic burden on SQ-  
245 grown bacteria: sulfoglycolysis only provides one 3C fragment and consumes one molecule of ATP.  
246 Furthermore, while upper glycolysis produces no reducing power, the sulfo-EMP pathway consumes  
247 one molecule of NADH (for reduction of SLA to DHPS) per SQ. While *E. coli* is thought to derive  
248 most of its ATP from oxidative phosphorylation when utilizing Glc as carbon source, the markedly  
249 reduced growth rate of SQ-grown *E. coli* compared to Glc-grown *E. coli*(8) indicates that the  
250 bioenergetic burden associated with SQ metabolism is substantial.

251 To partially compensate for the reduced carbon yield associated with SQ versus Glc  
252 metabolism, *E. coli* were cultivated in 8 mM SQ and 4 mM Glc. This ensured that the quantity of carbon  
253 (and potentially energy) available to the cells was essentially the same for both growth substrates.  
254 Nonetheless, substantially slower (approx. 5-fold) growth was observed for SQ-grown *E. coli* compared  
255 to Glc-grown *E. coli*. Comparative analysis of metabolite abundances in mid-log phase *E. coli* grown  
256 on SQ or Glc revealed that under SQ- or Glc-replete conditions there were large perturbations in levels  
257 of amino acids, various sugars and assorted cellular metabolites of a wide range of pathways, and  
258 possibly cell wall peptidoglycan. These changes are likely secondary effects that arise from large  
259 differences in the channelling of carbon that occurs from switching from growth on Glc (and use of  
260 both upper and lower glycolysis) to use of the sulfo-EMP pathway (use of sulfoglycolysis, lower  
261 glycolysis and upper gluconeogenesis); that is, these changes arise due to a switch from glycolytic to  
262 gluconeogenic metabolism.

263 Unexpectedly, we show that log phase sulfoglycolytic cells produce large quantities of hexoses  
264 and disaccharides, as well as the storage polysaccharide glycogen. Thus, under both Glc- and SQ-replete  
265 conditions, *E. coli* diverts some of the G6P produced through upper glycolysis/gluconeogenesis into

266 storage carbohydrates. Glycogen is typically produced in *E. coli* when excess carbon is present but  
267 growth is limited by deficiency of an essential nutrient(s) required for growth.(26) Similarly, cultivation  
268 on SQ may lead to reduced flux into lower glycolysis and/or the TCA cycle and reduced synthesis of  
269 multiple anabolic intermediates needed for biomass (protein, nucleic acid, lipid) accumulation, leading  
270 to diversion of the resultant excess triose-P into carbohydrate synthesis.

271 Alternatively, the unbalanced diversion of triose-P into hexose-P synthesis during SQ  
272 metabolism may lead to reduced flux into lower glycolysis, oxidative phosphorylation and downstream  
273 metabolic pathways. Reduced downstream flux will result in less ATP, reducing power and carbon-  
274 based building blocks being available in sulfoglycolytic *E. coli*, which may be the main origin of the  
275 adjustments undertaken by *E. coli* to maintain balanced growth and thus the lower rate of growth on  
276 SQ. In accordance with this analysis, products of the TCA cycle were perturbed, suggesting an  
277 adaptation to reduced carbon input, and putrescine acetylation was depressed, potentially due to a lack  
278 of acetyl-CoA (Fig. 1C, 3C). Lower levels of pyrimidine biosynthesis metabolites may also arise from  
279 a deficiency of carbon building blocks. Amino acid levels were generally lower in sulfoglycolytic cells,  
280 which could reflect the overall energy state of the cell, given that protein synthesis is one of the most  
281 energy-intensive cellular process (Fig. 2B, 2C). Similarly, in SQ-grown *E. coli*, putrescine biosynthesis  
282 appears to prefer the more energetically favourable pathway direct from glutamate and/or proline via  
283 ornithine, with the alternative pathway from arginine via agmatine seemingly disfavoured (Fig. 3C).(15-  
284 18) Levels of glutathione and other redox-active metabolites were perturbed and oxidation of putrescine  
285 to GABA appeared to increase during sulfoglycolytic metabolism, potentially reflecting an altered  
286 redox state.

287 Organisms regulate levels of intracellular metabolites to prevent their accumulation to toxic  
288 levels. This can be especially pronounced during logarithmic growth, when metabolite production can  
289 far exceed cellular needs, leading to spillover. For example, yeast possess an energy-consuming futile  
290 cycle that consumes ATP through the production of trehalose from the sugar nucleotide UDP-Glc and  
291 Glc, while no ATP is produced in the hydrolysis of trehalose to Glc, even under conditions such as heat-  
292 shock where trehalose is accumulated.(30) Formation of glycogen in SQ-grown *E. coli* is a resource-

293 intensive process: formation of one G6P from triose-P through gluconeogenesis requires investment of  
294 two ATP and consumption of two SQ; UTP must also be invested to form UDP-Glc. In Glc-grown *E.*  
295 *coli*, diversion of Glc into glycogen via G6P is less energy-intensive, requiring investment of only one  
296 ATP and one UTP. Futile cycling of cellular glycogen and other storage polysaccharides provides a  
297 mechanism to consume overflow ATP via conversion of G1P to UDP-Glc to make glucosidic linkages,  
298 and then release this carbon as G1P by phosphorolysis. Possibly, accumulation of cellular glycogen  
299 occurs to provide a substrate for an energy-consuming futile cycle.

300 Analysis of the storage polysaccharide content of *E. coli* cells grown on both Glc and SQ at  
301 different stages of growth indicates that upon transition to stationary phase, carbohydrates stored during  
302 log phase are consumed. In the case of SQ-grown *E. coli*, depletion of SQ appears to trigger a reverse  
303 diauxic shift whereby cells switch from a limited gluconeogenic metabolism to a canonical glycolytic  
304 metabolism as Glc/G6P is mobilized from glycogen/trehalose/maltose breakdown. Thus, growth on SQ  
305 requires multiple changes in the direction of flux of central carbon metabolism depending on growth  
306 state. The requirement for a change in flux from the glycolytic to gluconeogenic direction upon the  
307 switch to growth on SQ may in part contribute to the slow adaptation of *E. coli* to SQ;(8) in *E. coli*,  
308 switching from glycolytic to gluconeogenic metabolism also induces a long lag phase.(31, 32) In  
309 contrast, in *E. coli*, the switch from gluconeogenic to glycolytic metabolism occurs quickly(31, 32) and  
310 so the reversal upon SQ exhaustion is expected to be rapid.

311 Most enzymes in upper glycolysis/gluconeogenesis are reversible, and  
312 glycolysis/gluconeogenesis is almost thermodynamically neutral. As such, only limited changes in  
313 protein expression are required for change in flux direction, assisted by the presence of concentration  
314 gradients as one substrate is depleted and another becomes dominant, as well as allosteric effects.  
315 Growth on Glc provides a strong gradient promoting flux in the glycolytic direction, while growth on  
316 SQ leads to production of large amounts of triose-P, reversing the concentration gradient and providing  
317 a driving force for upper gluconeogenesis. Expression of class I FBP aldolase of *E. coli*, which is  
318 induced by growth on gluconeogenic substrates and presumed to be utilized for gluconeogenesis (as  
319 opposed to the constitutively expressed class II aldolase presumed to be utilized for glycolysis),(33)

320 may be required upon a switch to SQ. In contrast, it has been shown that switching of *E. coli* from  
321 growth on Glc to the gluconeogenic substrate acetate results in just 2-fold change in expression levels  
322 of the upper gluconeogenic enzyme FBPase,(32) a key regulatory enzyme of gluconeogenesis.(34)  
323 FBPase is subject to complex allosteric regulation, with AMP and G6P serving as allosteric  
324 inhibitors(34, 35) while TCA cycle intermediates (such as citrate and isocitrate),(36) phosphorylated  
325 3C carboxylic acids (such as PEP(37) and 3PG(36)), sulfate(37) and phosphate(36) are allosteric  
326 activators. The key allosteric interactions appear to be activation by citrate and PEP(34, 36) and  
327 synergistic inhibition by AMP and G6P.(34) There is likely an interplay of the production of storage  
328 carbohydrates from hexose-P generated by gluconeogenesis in SQ-grown *E. coli*, and the inhibitory  
329 effect of G6P on FBPase.

330 **Conclusions**

331 We provide evidence that growth of *E. coli* on SQ imposes a significant bioenergetic cost on  
332 the bacteria, as a result of the lower yield of carbon from each molecule of SQ catabolized, and the need  
333 to divert a significant fraction of triose-P produced into hexose/pentose-phosphate synthesis. As a result,  
334 the reduced rate of growth of *E. coli* on SQ likely stems from reduced flux of carbon into the TCA cycle  
335 and downstream metabolism, producing lower levels of carbon building blocks, NADH and ATP,  
336 thereby triggering large-scale changes to cell metabolism to maintain balanced growth. Further work is  
337 needed to define the factors that regulate the partitioning of carbon between upper gluconeogenesis and  
338 lower glycolysis under SQ-grown conditions, while the mobilization of low and high molecular weight  
339 carbohydrates following depletion of SQ indicates that the accumulation of these molecules is an  
340 important adaptive response. This work highlights the ascetic nature of growth on SQ and provides  
341 insights into the metabolic adaptations of *E. coli* to growth on this widespread but poorly studied  
342 organosulfur sugar.

343

344 **Material and Methods**

345 **Reagents.** SQ and (<sup>13</sup>C<sub>6</sub>)SQ synthesized according to methods described previously.(38)

346 **Comparative metabolite profiling of *E. coli* on Glc and SQ**

347 *E. coli* BW25113 (adapted to growth on the relevant substrate) was used to inoculate a 5 mL starter  
348 culture of M9 minimal media containing 4 mM Glc or a 3 mL starter culture of M9 minimal media  
349 containing 8 mM SQ. The Glc starter culture was grown to OD<sub>600</sub> 0.0680 (6 h 20 min) and the SQ starter  
350 culture was grown to OD<sub>600</sub> 0.1864 (41 h) at 37°C with shaking (250 rpm) and used to inoculate the six  
351 experimental cultures. These experimental cultures contained either 4 mM Glc or 8 mM SQ. The culture  
352 volume was 50 mL for Glc and 20 mL for SQ and the inoculant volume was 298 µL for Glc and 118  
353 µL for SQ. The Glc cultures were grown at 30°C with shaking (250 rpm) for 11 h, then at 37°C with  
354 shaking (250 rpm) until mid-logarithmic phase was achieved (approx. OD<sub>600</sub> 0.50). The SQ cultures  
355 were grown at 37°C with shaking (250 rpm) until mid-logarithmic phase was achieved (approx. OD<sub>600</sub>  
356 0.44). One 5 mL aliquot was harvested per culture.

357 Aliquots of cell culture media were metabolically arrested by infusing with ice-cold PBS (3 ×  
358 aliquot volume) and placing in an ice-water slurry for 10 min. The cell suspension was centrifuged  
359 (4000 rpm, 10 min, rt) and the supernatant discarded. Cells were washed 3 times by resuspending them  
360 in ice-cold PBS, pelleting them by centrifugation (14000 rpm, 1 min, rt) and discarding the supernatant.  
361 Cell pellets were then centrifuged again (14000 rpm, 1 min, rt) to remove residual culture medium and  
362 PBS prior to metabolite extraction.

363 **Extraction, derivatization and analysis of metabolites for comparative metabolite profiling**

364 Cell pellets were resuspended in chilled extraction solution (500 µL) comprised of 3:1 MeOH: H<sub>2</sub>O and  
365 (<sup>13</sup>C<sub>5</sub>, <sup>15</sup>N)valine (1 mM, 0.5 µL) and (<sup>13</sup>C<sub>6</sub>)sorbitol (1 mM, 0.5 µL) as internal standards. The  
366 suspensions were subjected to freeze-thaw cycles to facilitate lysis of the cells (30 s in liquid N<sub>2</sub>, 30 s  
367 in a dry ice/EtOH bath for 10 cycles), and shaken (9000 rpm, 10 min, 2°C). The samples were then  
368 centrifuged (12700 rpm, 5 min, 1°C) to remove cell debris and precipitated macromolecules.(13)

369        The cell lysate supernatant was transferred into glass inserts and dried in a rotational vacuum  
370      concentrator. To remove all residual H<sub>2</sub>O, all samples were washed with MeOH (50 µL). The glass  
371      inserts were transferred to 2 mL autosampler vials. Online derivatization was conducted using an  
372      autosampler robot (Shimadzu AOC6000). All samples were methoximated with methoxylamine  
373      hydrochloride solution (30 mg/mL in pyridine, 20 µL) for 2 h at 37°C, followed by trimethylsilylation  
374      in BSTFA + 1% TMCS (20 µL) for 1 h at 37°C with continuous mixing. Samples were incubated at rt  
375      for 1 h prior to GC-MS analysis.

376        Metabolite profiles were acquired on a Shimadzu 2010 GC coupled to a TQ8040 QqQ mass  
377      spectrometer. The inlet temperature was held at 280°C and helium was used as a carrier gas (purge flow  
378      = 5.0 mL/min, column flow = 1.1 mL/min). 1 µL of derivatized sample was injected into the GC-QqQ-  
379      MS in splitless mode. Chromatographic separation was achieved using a J&W DB-5 capillary  
380      column(14) (30 m × 0.25 mm × 1.00 µM). The oven had a starting temperature of 100°C, which was  
381      held for 4 min, then ramped to 320°C at 10°C/min and held for 10 min. The transfer line temperature  
382      was 280°C and the ion source temperature was 200°C. Compounds were fragmented using electron (EI)  
383      ionization. Argon was used as the collision-induced dissociation gas. The metabolite detection was  
384      performed using the Shimadzu Smart MRM database, which contains up to 521 targets, representing ≈  
385      350 metabolites with two multiple reaction monitoring (MRM) transitions (quantifier and qualifier) per  
386      target, including precursor ion, product ion, collision energy, retention index and time, with a minimal  
387      dwell time of 2 msec set up for the acquisition method. The Automatic Adjustment of Retention Time  
388      (AART) in GCMSsolution software (V 4.42, Shimadzu) and a standard alkane series mixture (C7-C33  
389      Restek) were used to correct retention time shifts in the acquisition method when the column is cut or  
390      replaced.

391      **Data analysis for comparative metabolite profiling**

392      Using Shimadzu Lab Solutions Insight, each target was visually inspected and manually integrated if  
393      required. Targets that were lacking in either the qualifier or quantifier MRM or had a quantifier < 50%  
394      of the abundance of the qualifier or had inconsistent retention times (either between the qualifier and  
395      quantifier, or between samples) were discarded. This provided a data matrix for downstream data

396 analysis, which was conducted using the Metaboanalyst software  
397 (<https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml>). Data was normalized by median and log-  
398 transformed. FDR-adjusted p-values were considered significant < 0.05.

399 KEGG Mapper Search & Colour Pathway  
400 ([https://www.genome.jp/kegg/tool/map\\_pathway2.html](https://www.genome.jp/kegg/tool/map_pathway2.html), reference organism: *E. coli* K12 W3110) was  
401 used to assist in drawing conclusions. In cases where more than one target corresponding to a single  
402 metabolite was detected, the fold changes of the targets were averaged to give the fold change for the  
403 metabolite.

#### 404 **Metabolite analysis for *E. coli* grown on (<sup>13</sup>C<sub>6</sub>)Glc and (<sup>13</sup>C<sub>6</sub>)SQ**

405 *E. coli* BW25113 (adapted to growth on the relevant substrate) was used to inoculate a 5 mL starter  
406 culture of M9 minimal media containing 4 mM Glc or a 3 mL starter culture of M9 minimal media  
407 containing 8 mM SQ. The Glc starter culture was grown to OD<sub>600</sub> 0.0808 (8 h) and the SQ starter culture  
408 was grown to OD<sub>600</sub> 0.1964 (41 h) at 37°C with shaking (250 rpm) and used to inoculate the  
409 experimental cultures. These experimental cultures were either unlabelled (4 mM (<sup>12</sup>C<sub>6</sub>)Glc or 8 mM  
410 (<sup>12</sup>C<sub>6</sub>)SQ), labelled for the entire growth period (2 mM (<sup>12</sup>C<sub>6</sub>)Glc + 2 mM (<sup>13</sup>C<sub>6</sub>)Glc or 4 mM (<sup>12</sup>C<sub>6</sub>)SQ  
411 + 4 mM (<sup>13</sup>C<sub>6</sub>)SQ) or labelled for a portion of the growth period (4 mM (<sup>12</sup>C<sub>6</sub>)Glc, resuspended into 2  
412 mM (<sup>12</sup>C<sub>6</sub>)Glc + 2 mM (<sup>13</sup>C<sub>6</sub>)Glc 2.75 h before harvest; or 8 mM (<sup>12</sup>C<sub>6</sub>)SQ, resuspended into 4 mM  
413 (<sup>12</sup>C<sub>6</sub>)SQ + 4 mM (<sup>13</sup>C<sub>6</sub>)SQ 4 h before harvest). The culture volume was 50 mL for Glc and 20 mL for  
414 SQ and the inoculant volume was 200 µL for Glc and 112 µL for SQ. The Glc cultures were grown at  
415 30°C with shaking (250 rpm) for 11 h, then at 37°C with shaking (250 rpm) until mid-logarithmic phase  
416 was achieved (approx. OD<sub>600</sub> 0.50). The SQ cultures were grown at 37°C with shaking (250 rpm) until  
417 mid-logarithmic phase was achieved (approx. OD<sub>600</sub> 0.44). Three 5 mL aliquots were harvested per  
418 culture.

419 Cell pellets were resuspended in chilled extraction solution (500 µL) comprised of 3:1 MeOH:  
420 H<sub>2</sub>O and *scyllo*-inositol (1 mM, 0.5 µL) as an internal standard. Cell suspensions were subjected to  
421 freeze-thaw cycles to facilitate lysis of the cells (30 s in liquid N<sub>2</sub>, 30 s in a dry ice/EtOH bath for 10

422 cycles), and shaken (9000 rpm, 10 min, 4°C). The samples were then centrifuged (14000 rpm, 5 min,  
423 1°C) to remove cell debris.(13)

424 The cell lysate supernatant was transferred into glass inserts and dried in a rotational vacuum  
425 concentrator. To remove all residual H<sub>2</sub>O, all samples were washed with MeOH (50 µL). The glass  
426 inserts were transferred to 2 mL autosampler vials. Online derivatization was conducted with a Gerstel  
427 MSP2 XL autosampler robot (Gerstel, Germany). All samples were methoximated with methoxylamine  
428 hydrochloride solution (30 mg/mL in pyridine, 20 µL) for 2 h at 37°C, followed by trimethylsilylation  
429 in BSTFA + 1% TMCS (20 µL) for 1 h at 37°C with continuous mixing. Samples were incubated at rt  
430 for 1 h prior to GC-MS analysis.

431 Metabolite profiles were acquired on an Agilent 7890A Gas Chromatograph coupled to a 5975  
432 mass spectrometer as a detector. 1 µL of derivatized sample was injected in splitless mode into a  
433 split/splitless inlet set at 250°C. Chromatographic separation was achieved using a J&W VF-5 ms  
434 capillary column (30 m × 0.25 mm × 0.25 µM + 10 m duraguard). The oven had a starting temperature  
435 of 35°C, which was held for 1 min, then ramped to 320°C at 25°C/min and held for 5 min. Helium was  
436 used as the carrier gas at a flow rate of 1 mL/min. Compounds were fragmented using electron impact  
437 (EI) ionization and detected across a mass range of 50-600 amu with a scan speed of 9.2 scans/s.(39)

438 Chromatograms produced from unlabelled samples were used for pool size comparisons. Using  
439 Agilent's Mass Hunter Quantitative Analysis software for GC-MS, metabolites contained within an in-  
440 house Metabolomics Australia library, with the addition of some metabolites detected and identified in  
441 the chromatograms using Agilent ChemStation for GC-MS and the Fiehn L metabolite library, were  
442 identified and representative target ion areas were integrated. Each detected metabolite in each  
443 chromatogram was visually inspected and manually integrated if required. These formed an output data  
444 matrix for downstream data analysis,(39) which was conducted using the Metaboanalyst software  
445 (<http://www.metaboanalyst.ca/faces/ModuleView.xhtml>). Data was normalized by median and log-  
446 transformed. P-values were considered significant < 0.05 and fold changes were considered significant  
447 < 1.5.

448 To detect labelled metabolites, chromatograms were processed using the Non-targeted Tracer  
449 Fate Detection software (<https://ntfd.bioinfo.nat.tu-bs.de/>) (peak threshold: 5, minimum peak height: 5,  
450 deconvolution width: 5 scans, minimum % label: 5%, maximum % label: 100%, minimum R<sup>2</sup>: 0.95,  
451 maximum fragment deviation: 0.20, required no. of labelled fragments: 1, M<sub>1</sub> correction: 0.0109340),  
452 followed by manual verification by visual inspection using Agilent ChemStation for GC-MS.  
453 Identification was achieved by comparison with the unlabelled samples, from which metabolites were  
454 identified using Agilent ChemStation for GC-MS and the Fiehn L metabolite library.

455 **Storage carbohydrate analysis**

456 *E. coli* BW25113 (adapted to growth on the relevant substrate) was used to inoculate a 5 mL starter  
457 culture of M9 minimal media containing 4 mM Glc or a 3 mL starter culture of M9 minimal media  
458 containing 8 mM SQ. The Glc starter culture was grown to OD<sub>600</sub> 0.0630 (5 h 15 min) and the SQ starter  
459 culture was grown to OD<sub>600</sub> 0.2524 (41 h) at 37°C with shaking (250 rpm) and used to inoculate the two  
460 experimental cultures that contained either 4 mM Glc or 8 mM SQ. The culture volume was 50 mL for  
461 Glc and 20 mL for SQ and the inoculant volume was 322 µL for Glc and 87 µL for SQ. The Glc cultures  
462 were grown at 30°C with shaking (250 rpm) for 11 h, then at 37°C with shaking (250 rpm). The SQ  
463 cultures were grown at 37°C with shaking (250 rpm). Bacteria were harvested at 5 different time points,  
464 with two aliquots harvested per culture at each time point. The harvest points for the Glc cultures were:  
465 960 min (OD<sub>600</sub> 0.2380, 0.24120), 1060 min (OD<sub>600</sub> 0.7528, 0.7504), 1090 min (OD<sub>600</sub> 0.9512, 0.9436),  
466 1330 min (OD<sub>600</sub> 1.0444, 1.0472), and 5040 min (OD<sub>600</sub> 1.0100, 0.9464). The harvest points for the SQ  
467 cultures were: 33 h (OD<sub>600</sub> 0.3988, 0.3636), 41 h (OD<sub>600</sub> 0.7172, 0.6736), 59 h (OD<sub>600</sub> 1.0012, 0.8600),  
468 78 h (OD<sub>600</sub> 1.0376, 0.9088) and 147 h (OD<sub>600</sub> 0.8920, 0.8100). The culture volume harvested contained  
469 the same number of cells (by OD<sub>600</sub>) as 500 µL of OD<sub>600</sub> 0.5 culture.

470 Aliquots of cell culture media were metabolically arrested by infusing with ice-cold PBS (800 µL,  
471 except for 960 min harvest for Glc, and 33 h harvest for SQ, which used 400 µL and 700 µL  
472 respectively) and placing in an ice-water slurry for 5 min. The cell suspension was centrifuged (14000  
473 rpm, 5 min, rt) and the supernatant discarded. Cells were washed 3 times by resuspending them in ice-  
474 cold PBS (0.2 mL), pelleting them by centrifugation (14000 rpm, 1 min, rt) and discarding the

475 supernatant. Cell pellets were then centrifuged again (14000 rpm, 1 min, rt) to remove residual culture  
476 medium and PBS prior to glycogen extraction. Cell pellets were thawed in 100  $\mu$ L of MilliQ water. 375  
477  $\mu$ L of 1:2 CHCl<sub>3</sub>: MeOH was then added. The samples were incubated at rt for 1 h and vortexed  
478 regularly. The samples were then centrifuged (15000 rpm, 10 min, rt) to separate soluble and insoluble  
479 metabolites.

480 **Analysis for glycogen content**

481 Insoluble metabolites were resuspended in 100  $\mu$ L of MilliQ water. 10  $\mu$ L of each sample was  
482 transferred to a glass insert. Each insert also contained 1 nmol of *scyllo*-inositol. Standards were also  
483 prepared: 1 nmol *scyllo*-inositol only, 5 nmol Glc, 2.5 nmol Glc, 1 nmol Glc, 0.5 nmol Glc and 0.25  
484 nmol Glc. All inserts were dried in a rotational vacuum concentrator (1 h). 50  $\mu$ L of 2 M TFA in water  
485 was then added, and the samples and standards incubated for 2 h at 100°C and dried under N<sub>2</sub> (1 h). 10  
486  $\mu$ L of MeOH was added and the inserts dried in a rotational vacuum concentrator to remove all H<sub>2</sub>O  
487 (25 min). 50  $\mu$ L of 0.5 M HCl in MeOH was added and the samples and standards incubated for 17 h  
488 at 80°C. 10  $\mu$ L pyridine was added to neutralize the HCl and the inserts were dried in a rotational  
489 vacuum concentrator (30 min). 20  $\mu$ L of pyridine was added, followed by 20  $\mu$ L of BSTFA + 1%  
490 TMCS.

491 Samples and standards were analysed on an Agilent 7890A Gas Chromatograph coupled to a  
492 5975 mass spectrometer as a detector. The inlet temperature was 250°C and helium was used as a carrier  
493 gas (purge flow = 20 mL/min, column flow = 1 mL/min). 1  $\mu$ L of derivatized sample was injected.  
494 Chromatographic separation was achieved using a DB-5 capillary column (30 m  $\times$  0.25 mm  $\times$  1.00  
495  $\mu$ M). The oven had a starting temperature of 70°C, which was held for 1 min, then ramped to 295°C at  
496 12.5°C/min, then 320°C at 25°C/min. The transfer line temperature was 250°C and the ion source  
497 temperature was 230°C. Compounds were fragmented using electron (EI) ionization. Spectra were  
498 acquired over the range 50-500 m/z.

499 Data was analysed using the Agilent MassHunter software. The total ion chromatogram for  
500 each sample and standard was integrated. Sugars were identified based on GC retention time and mass  
501 spectra of authentic standards. The ratio of the minor  $\beta$ -anomer of Glc (16.4 min) to *scyllo*-inositol (18.7

502 min) was determined, with that peak chosen as it was well resolved compared to the major  $\alpha$ -anomer.  
503 A Glc calibration curve was constructed using the  $\beta$ -Glc: *scyllo*-inositol ratio from the 5 Glc standards  
504 and used to determine the quantity of Glc in each of the samples. The quantity of Glc found in the  
505 *scyllo*-inositol blank was subtracted, and this value used to determine the quantity of Glc in each cell  
506 pellet.

507 **Analysis for disaccharide content(40)**

508 120  $\mu$ L of the soluble fraction of each sample and 1 nmol *scyllo*-inositol was transferred to a glass insert.  
509 Standards were prepared for trehalose and maltose at the following quantities: 100 nmol, 50 nmol, 25  
510 nmol, 12.5 nmol, 6.25 nmol, 3.125 nmol, 1.563 nmol, 0.781 nmol, 0.391 nmol and 0.195 nmol. All  
511 inserts were dried in a rotational vacuum concentrator (1 h). 20  $\mu$ L of 20 mg/mL methoxyamine  
512 hydrochloride in pyridine was added and the samples and standards incubated with continuous mixing  
513 for 14 h at 25°C. 20  $\mu$ L of BSTFA + 1% TMCS was added and samples and standards incubated for 1  
514 h at 25°C.

515 Samples and standards were analysed on an Agilent 7890A Gas Chromatograph coupled to a  
516 5975 mass spectrometer as a detector. The inlet temperature was kept at 250°C. Chromatographic  
517 separation was achieved using an Agilent CP9013 VF-5ms column (30 m  $\times$  0.25 mm  $\times$  0.25  $\mu$ M) with  
518 10 m EZ-guard. The oven had a starting temperature of 70°C, which was held for 2 min, then ramped  
519 to 295°C at 12.5°C/min, then 320°C at 25°C/min, then held at 320°C for 3 min. The transfer line  
520 temperature was 280°C. Compounds were fragmented using electron (EI) ionization.

521 Data was analysed using the Agilent MassHunter software. The total ion chromatogram for  
522 each sample and standard was integrated. Sugars were identified based on GC retention time and mass  
523 spectra of authentic standards. The ratio of trehalose (19.8 min) to *scyllo*-inositol (15.1 min) was  
524 determined. Calibration curves were constructed using the disaccharide: *scyllo*-inositol ratio from 7 of  
525 the standards (25 nmol, 50 nmol and 100 nmol excluded due to loss of linearity) and used to determine  
526 the quantity of trehalose in each of the samples. This value was used to determine the quantity of  
527 trehalose in each cell pellet.

528

529 **Monosaccharide derivatization and analysis(40)**

530 80  $\mu$ L of the soluble fraction of each sample was transferred to a glass insert that also contained 1 nmol  
531 *scyllo*-inositol. Standards were also prepared for glucose and fructose at the following quantities: 100  
532 nmol, 50 nmol, 25 nmol, 12.5 nmol, 6.25 nmol, 3.125 nmol, 1.563 nmol, 0.781 nmol, 0.391 nmol and  
533 0.195 nmol. All inserts were dried in a rotational vacuum concentrator (1 h). 50  $\mu$ L of 0.5 M HCl in  
534 MeOH was added and the samples and standards incubated for 3 h at 80°C. 10  $\mu$ L pyridine was added  
535 to neutralize the HCl and the inserts were dried in a rotational vacuum concentrator (30 min). 20  $\mu$ L of  
536 BSTFA + 1% TMCS was added and samples and standards incubated for 1 h at 25°C.

537 Samples and standards were analysed on an Agilent 7890A Gas Chromatograph coupled to a  
538 5975 mass spectrometer as a detector. The inlet temperature was kept at 250°C. Chromatographic  
539 separation was achieved using an Agilent CP9013 VF-5ms column (30 m  $\times$  0.25 mm  $\times$  0.25  $\mu$ M) with  
540 10 m EZ-guard. The oven had a starting temperature of 70°C, which was held for 2 min, then ramped  
541 to 295°C at 12.5°C/min, then 320°C at 25°C/min, then held at 320°C for 3 min. The transfer line  
542 temperature was 280°C. Compounds were fragmented using electron (EI) ionization.

543 Data was analysed using the Agilent MassHunter software. The total ion chromatogram for  
544 each sample and standard was integrated. Sugars were identified based on GC retention time and mass  
545 spectra of authentic standards. Due to high variation in internal standard (*scyllo*-inositol) peak areas  
546 across the standards and samples, peak areas were normalized to the lowest detected internal standard  
547 peak area. The ratio of the normalized peak area of the first-eluting Glc peak (13.96 min) to the area of  
548 the *scyllo*-inositol peak (15.1 min) was determined. Calibration curves were constructed using the Glc:  
549 *scyllo*-inositol ratio from 4 of the standards (6.25 nmol – 50 nmol) and used to determine the quantity  
550 of Glc in each of the samples. This value used to determine the quantity of Glc in each cell pellet.

551 **BCA Protein Assay**

552 60  $\mu$ L of insoluble metabolites suspended in MilliQ water from each sample was dried in a rotational  
553 vacuum concentrator (1.5 h, 50°C). 60  $\mu$ L of 0.5% SDS in dH<sub>2</sub>O was added, the samples were vortexed,  
554 then boiled for 5 min and centrifuged (16100 rpm, 5 min, rt) to pellet cell debris. The supernatant and  
555 standards containing bovine serum albumin (BSA) were analyzed using a BCA protein assay kit  
556 (Sigma).

557 **Acknowledgements**

558 We thank Elizabeth King for helpful technical support.

559 **Conflict of Interest**

560 The authors declare no conflict of interest.

561 **Author Contributions**

562 SJW and MJM conceptualized research; JM, DD, EK and ES conducted research; JM, MJM and SJW  
563 analyzed the data; and JM, MJM and SJW wrote the paper.

564 **Funding**

565 JM was supported by a Sir John and Lady Higgins Research Scholarship. This work was supported by  
566 Australian Research Council grants DP210100233 and DP210100235. MJM is a NHMRC Principal  
567 Research Fellow.

568

569 **References**

- 570 1. Benson AA, Daniel H, Wiser R. 1959. A sulfolipid in plants. Proceedings of the National  
571 Academy of Sciences 45:1582-1587.
- 572 2. Haines TH. 1973. Sulfolipids and halosulfolipids, p 197-232. In Erwin JA (ed), Lipids and  
573 Biomembranes of Eukaryotic Microorganisms. Academic Press.
- 574 3. Daniel H, Miyano M, Mumma RO, Yagi T, Lepage M, Shibuya I, Benson AA. 1961. The  
575 plant sulfolipid. Identification of 6-sulfo-quinovose. Journal of the American Chemical  
576 Society 83:1765-1766.
- 577 4. Harwood JL, Nicholls RG. 1979. The plant sulpholipid—A major component of the sulphur  
578 cycle. Biochemical Society Transactions 7:440-447.
- 579 5. Benson AA. 1963. The plant sulfolipid, p 387-394. In Paoletti R, Kritchevsky D (ed),  
580 Advances in Lipid Research, vol 1. Elsevier.
- 581 6. Liu J, Wei Y, Ma K, An J, Liu X, Liu Y, Ang EL, Zhao H, Zhang Y. 2021. Mechanistically  
582 diverse pathways for sulfoquinovose degradation in bacteria. ACS Catalysis 11:14740-14750.
- 583 7. Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. 2021. Sulfoglycolysis: Catabolic  
584 pathways for metabolism of sulfoquinovose. Chemical Society Reviews 50:13628-13645.
- 585 8. Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, Huhn T, Cook AM,  
586 Schleheck D. 2014. Sulphoglycolysis in *Escherichia coli* K-12 closes a gap in the  
587 biogeochemical sulphur cycle. Nature 507:114-117.
- 588 9. Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: Occurrence,  
589 metabolism and functions. Biochemical Journal 474:827-849.
- 590 10. Li J, Epa R, Scott NE, Skoneczny D, Sharma M, Snow AJD, Lingford JP, Goddard-Borger  
591 ED, Davies GJ, McConville MJ, Williams SJ, Master ER. 2020. A sulfoglycolytic Entner-  
592 Doudoroff pathway in *Rhizobium leguminosarum* bv. *trifolii* SRDI565. Applied and  
593 Environmental Microbiology 86:e00750-20.
- 594 11. Sharma M, Abayakoon P, Epa R, Jin Y, Lingford JP, Shimada T, Nakano M, Mui JWY,  
595 Ishihama A, Goddard-Borger ED, Davies GJ, Williams SJ. 2021. Molecular basis of  
596 sulfosugar selectivity in sulfoglycolysis. ACS Central Science 7:476-487.
- 597 12. Burrichter A, Denger K, Franchini P, Huhn T, Müller N, Spiteller D, Schleheck D. 2018.  
598 Anaerobic degradation of the plant sugar sulfoquinovose concomitant with H<sub>2</sub>S production:  
599 *Escherichia coli* K-12 and *Desulfovibrio* sp. strain DF1 as co-culture model. Frontiers in  
600 Microbiology 9:2792.
- 601 13. Bitew MA, Khoo CA, Neha N, De Souza DP, Tull D, Wawegama NK, Newton HJ, Sansom  
602 FM. 2018. De novo NAD synthesis is required for intracellular replication of *Coxiella*  
603 *burnetii*, the causative agent of the neglected zoonotic disease Q fever. J Biol Chem  
604 293:18636-18645.

605 14. Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S, Tull D, Rathi V, Gray DH,  
606 Ritchie ME, McConville MJ, Sutherland KD. 2018. Synergy between the KEAP1/NRF2 and  
607 PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment.  
608 *Cell Metab* 27:935-943.

609 15. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 2021. KEGG:  
610 integrating viruses and cellular organisms. *Nucleic Acids Research* 49:D545-d551.

611 16. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic  
612 Acids Research* 28:27-30.

613 17. Kanehisa M. 2019. Toward understanding the origin and evolution of cellular organisms.  
614 *Protein Science* 28:1947-1951.

615 18. Morris DR, Koffron KL. 1969. Putrescine biosynthesis in *Escherichia coli* : Regulation  
616 through pathway selection. *Journal of Biological Chemistry* 244:6094-6099.

617 19. Morris DR, Pardee AB. 1965. A biosynthetic ornithine decarboxylase in *Escherichia coli*.  
618 *Biochemical and Biophysical Research Communications* 20:697-702.

619 20. Morris DR, Pardee AB. 1966. Multiple pathways of putrescine biosynthesis in *Escherichia  
620 coli*. *Journal of Biological Chemistry* 241:3129-35.

621 21. Morris DR, Koffron KL. 1967. Urea production and putrescine biosynthesis by *Escherichia  
622 coli*. *Journal of bacteriology* 94:1516-1519.

623 22. Womack JE, O'Donovan GA. 1978. Orotic acid excretion in some wild-type strains of  
624 *Escherichia coli* K-12. *Journal of Bacteriology* 136:825-827.

625 23. De Carvalho CCCR, Caramujo MJ. 2018. The various roles of fatty acids. *Molecules*  
626 23:2583.

627 24. David L. Nelson MMC. 2013. *Lehninger Principles of Biochemistry*, 6th Edition ed. W. H.  
628 Freeman and Company, New York.

629 25. Cronan JE, Thomas J. 2009. Bacterial fatty acid synthesis and its relationships with  
630 polyketide synthetic pathways. *Methods in enzymology* 459:395-433.

631 26. Preiss J, Romeo T. 1990. Physiology, biochemistry and genetics of bacterial glycogen  
632 synthesis, p 183-238. *In* Rose AH, Tempest DW (ed), *Advances in Microbial Physiology*, vol  
633 30. Academic Press.

634 27. Preiss J, Yung SG, Baecker PA. 1983. Regulation of bacterial glycogen synthesis. *Molecular  
635 and Cellular Biochemistry* 57:61-80.

636 28. Morin M, Ropers D, Cinquemani E, Portais J-C, Enjalbert B, Cocaign-Bousquet M. 2017.  
637 The Csr system regulates *Escherichia coli* fitness by controlling glycogen accumulation and  
638 energy levels. *mBio* 8:e01628-17.

639 29. Wang M, Liu Q, Kang X, Zhu Z, Yang H, Xi X, Zhang X, Du Y, Guo M, Tang D, Wang L.  
640 2020. Glycogen metabolism impairment via single gene mutation in the *glgBXCAP* operon

641 alters the survival rate of *Escherichia coli* under various environmental stresses. *Frontiers in*  
642 *Microbiology* 11:588099.

643 30. Hottiger T, Schmutz P, Wiemken A. 1987. Heat-induced accumulation and futile cycling of  
644 trehalose in *Saccharomyces cerevisiae*. *Journal of Bacteriology* 169:5518-5522.

645 31. Schink SJ, Christodoulou D, Mukherjee A, Athaide E, Brunner V, Fuhrer T, Bradshaw GA,  
646 Sauer U, Basan M. 2022. Glycolysis/gluconeogenesis specialization in microbes is driven by  
647 biochemical constraints of flux sensing. *Molecular Systems Biology* 18:e10704.

648 32. Basan M, Honda T, Christodoulou D, Hörl M, Chang Y-F, Leoncini E, Mukherjee A, Okano  
649 H, Taylor BR, Silverman JM, Sanchez C, Williamson JR, Paulsson J, Hwa T, Sauer U. 2020.  
650 A universal trade-off between growth and lag in fluctuating environments. *Nature* 584:470-  
651 474.

652 33. Scamuffa MD, Caprioli RM. 1980. Comparison of the mechanisms of two distinct aldolases  
653 from *Escherichia coli* grown on gluconeogenic substrates. *Biochim Biophys Acta* 614:583-90.

654 34. Hines JK, Kruesel CE, Fromm HJ, Honzatko RB. 2007. Structure of inhibited fructose-1,6-  
655 bisphosphatase from *Escherichia coli*: distinct allosteric inhibition sites for AMP and glucose  
656 6-phosphate and the characterization of a gluconeogenic switch. *J Biol Chem* 282:24697-  
657 24706.

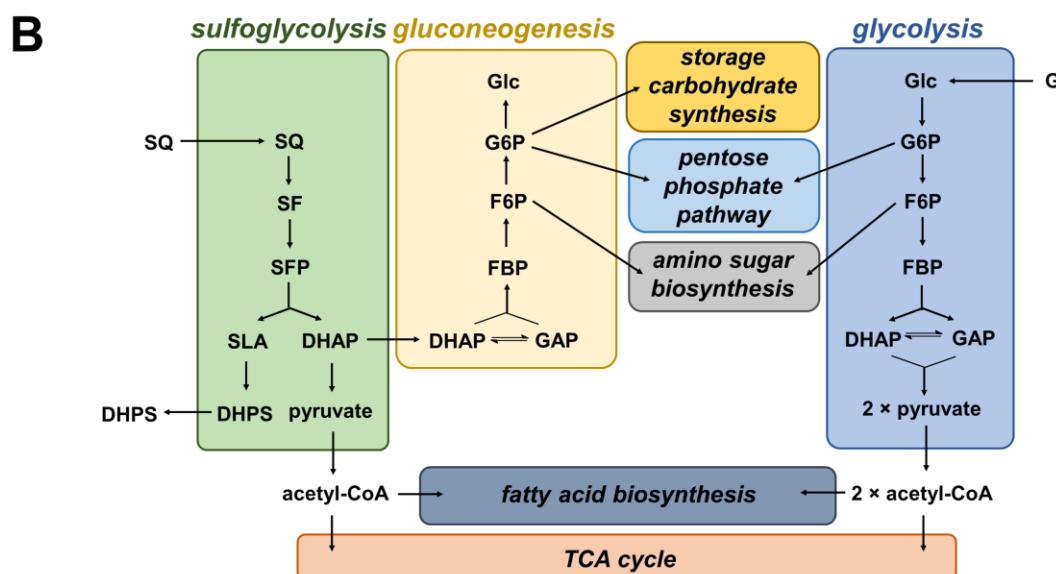
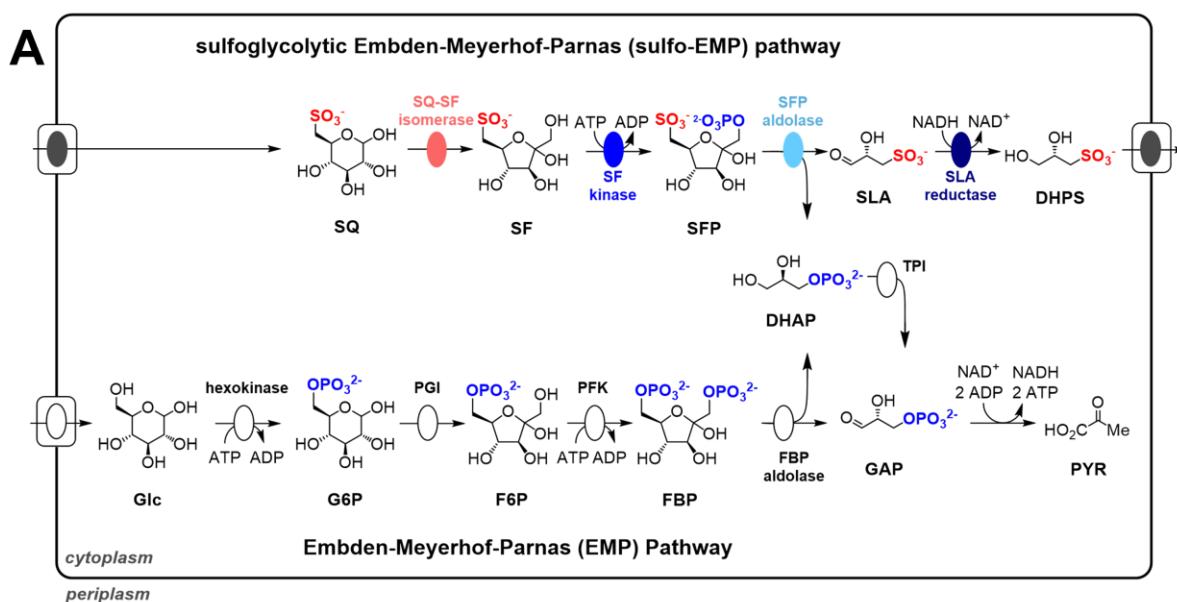
658 35. Fraenkel DG, Horecker BL. 1965. Fructose-1,6-diphosphatase and acid hexose phosphatase  
659 of *Escherichia coli*. *Journal of Bacteriology* 90:837-842.

660 36. Hines JK, Fromm HJ, Honzatko RB. 2007. Structures of activated fructose-1,6-  
661 bisphosphatase from *Escherichia coli*. Coordinate regulation of bacterial metabolism and the  
662 conservation of the R-state. *J Biol Chem* 282:11696-11704.

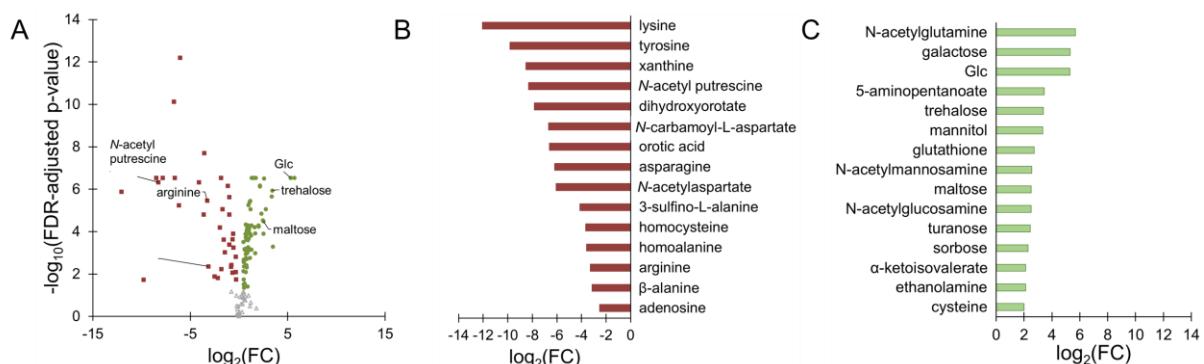
663 37. Hines JK, Fromm HJ, Honzatko RB. 2006. Novel allosteric activation site in *Escherichia coli*  
664 fructose-1,6-bisphosphatase. *J Biol Chem* 281:18386-18393.

665 38. Abayakoon P, Epa R, Petricevic M, Bengt C, Mui JYW, van der Peet PL, Zhang Y, Lingford  
666 JP, White JM, Goddard-Borger ED, Williams SJ. 2019. Comprehensive synthesis of  
667 substrates, intermediates, and products of the sulfoglycolytic Embden–Meyerhoff–Parnas  
668 pathway. *The Journal of Organic Chemistry* 84:2901-2910.

669 39. Kowalski GM, De Souza DP, Burch ML, Hamley S, Kloehn J, Selathurai A, Tull D,  
670 O'Callaghan S, McConville MJ, Bruce CR. 2015. Application of dynamic metabolomics to  
671 examine *in vivo* skeletal muscle glucose metabolism in the chronically high-fat fed mouse.  
672 *Biochem Biophys Res Commun* 462:27-32.



673 40. Saunders EC, Ng WW, Chambers JM, Ng M, Naderer T, Krömer JO, Likic VA, McConville  
674 MJ. 2011. Isotopomer profiling of *Leishmania mexicana* promastigotes reveals important  
675 roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA)  
676 anaplerosis, glutamate synthesis, and growth. *J Biol Chem* 286:27706-17.

677 41. Boos W, Ehmann U, Forkl H, Klein W, Rimmele M, Postma P. 1990. Trehalose transport and  
678 metabolism in *Escherichia coli*. *Journal of Bacteriology* 172:3450-3461.


679 42. Giaevers HM, Styrvold OB, Kaasen I, Strøm AR. 1988. Biochemical and genetic  
680 characterization of osmoregulatory trehalose synthesis in *Escherichia coli*. *Journal of*  
681 *Bacteriology* 170:2841-9.

682

683



686 **Fig 1** (A) The glycolytic Embden-Meyerhof-Parnas (EMP) pathway, (B) the sulfoglycolytic Embden-  
687 Meyerhof-Parnas (sulfo-EMP) pathway and (C) diagrammatic representation of central carbon  
688 metabolism in glycolytic and sulfoglycolytic *E. coli*. Glc, glucose; G6P, glucose-6-phosphate; F6P,  
689 fructose-6-phosphate; FBP, fructose-bisphosphate; GAP, glyceraldehyde-3-phosphate; DHAP,  
690 dihydroxyacetone phosphate; SQ, sulfoquinovose; SF, sulfoglycose; SFP, sulfoglycose-1-phosphate,  
691 SLA, sulfolactaldehyde; DHPS, 2,3-dihydroxypropanesulfonate; PGI, phosphoglucone isomerase;  
692 PFK, phosphofructokinase 1; FBP aldolase, fructose-bisphosphate aldolase, TPI, triose-phosphate  
693 isomerase; SQ isomerase, sulfoquinovose isomerase; SF kinase, sulfoglycose kinase; SFP aldolase,  
694 sulfoglycose-1-phosphate aldolase; acetyl-CoA, acetyl coenzyme A; TCA cycle, tricarboxylic acid  
695 cycle.



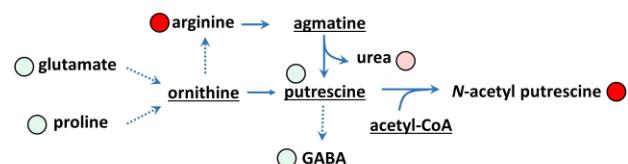
696

697 **Fig 2** Fold change (FC) in metabolite abundance in *E. coli* grown on Glc versus SQ. (A) Volcano plot  
698 of results with selected metabolites labelled, (B) 15 largest decreases in abundance in SQ-grown *E. coli*  
699 and (C) 15 largest increases in abundance in SQ-grown *E. coli*.

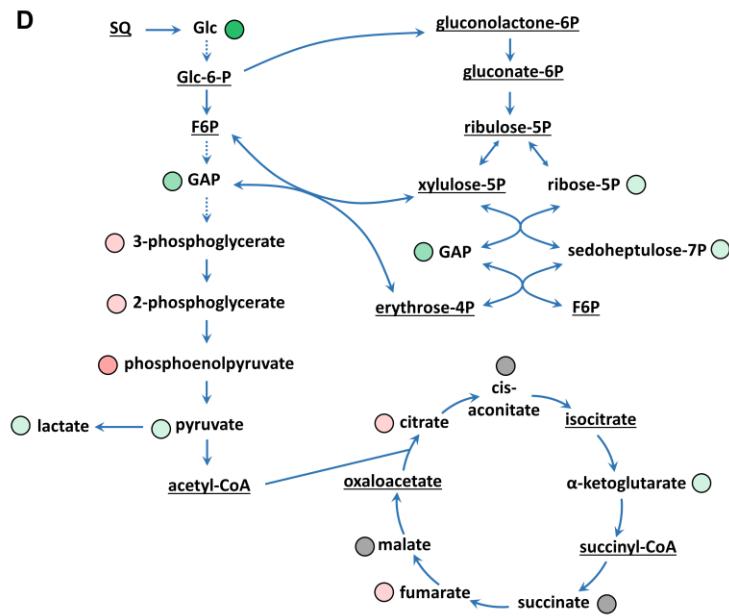
700

A

| Metabolite                  | $\log_2(\text{FC})$ |
|-----------------------------|---------------------|
| Glc                         | 5.29                |
| GAP                         | 1.64                |
| 3-phosphoglycerate          | -0.795              |
| 2-phosphoglycerate          | -0.680              |
| phosphoenolpyruvate         | -1.60               |
| pyruvate                    | 1.233               |
| lactate                     | 0.708               |
| citrate                     | -0.672              |
| $\alpha$ -ketoglutarate     | 0.690               |
| fumarate                    | -0.687              |
| malate                      | -0.0267             |
| succinate                   | -0.0153             |
| cis-aconitate               | 0.528               |
| trehalose                   | 3.39                |
| maltose                     | 2.50                |
| proline                     | 0.435               |
| glutamate                   | 0.579               |
| arginine                    | -3.27               |
| urea                        | -1.72               |
| putrescine                  | 0.613               |
| GABA                        | 1.28                |
| <i>N</i> -acetyl putrescine | -8.31               |
| D-glucono-1,5-lactone       | 0.979               |
| D-gluconate                 | 1.65                |
| D-ribose-5-P                | 0.931               |
| D-ribose                    | 0.689               |
| D-sedoheptulose-7-P         | 1.26                |
| D-ribulose                  | 0.480               |
| D-xylulose                  | 0.429               |
| D-arabitol                  | 1.02                |
| <i>N</i> -acetylglucosamine | 2.50                |
| <i>N</i> -acetylmannosamine | 2.56                |



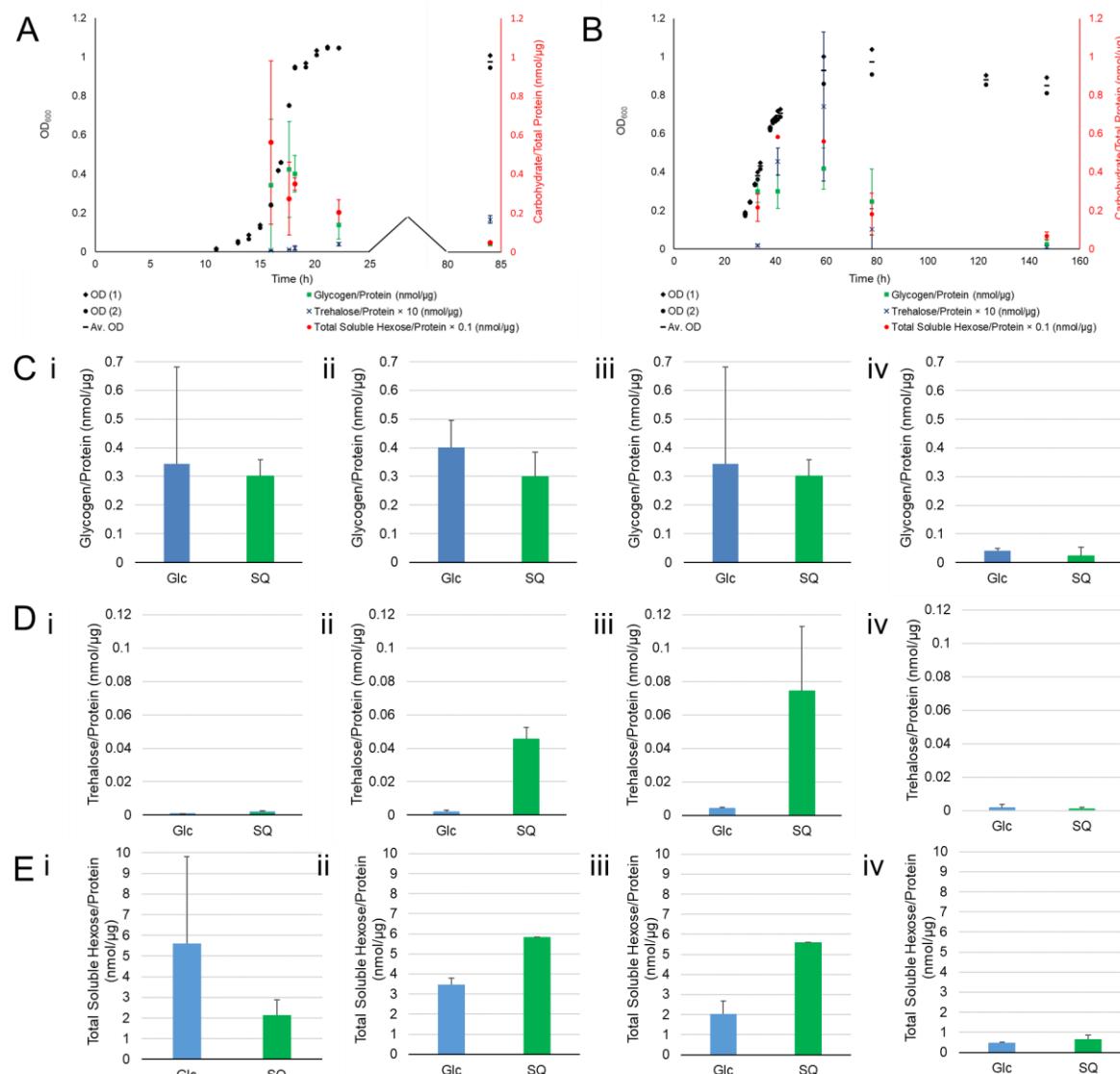

701


B



C




D



702

**Fig 3 (A)** Heat plot of selected metabolites detected in mid-log phase *E. coli* grown on Glc and on SQ depicting fold changes (FC). Selected metabolic pathways in *E. coli*(15-17) grown on minimal media, with FC indicated by coloured text: (B) trehalose, maltose and glycogen biosynthesis,(19, 20, 41, 42) (C) polyamine metabolism(18) and (D) central carbon metabolism. Metabolites highlighted in green are more abundant in SQ-grown *E. coli*, and those highlighted in red are less abundant. Metabolites shown in grey were not statistically different (FDR-adjusted p-value > 0.05). Metabolites shown in black were not detected.

703



710

711 **Fig 4** Storage carbohydrate content of Glc-grown and SQ-grown *E. coli* across the growth curve. (A) 712 Storage carbohydrate content overlaid on growth curve of Glc-grown *E. coli*, (B) storage carbohydrate 713 content overlaid on growth curve of SQ-grown *E. coli*, (C) glycogen content (measured as total Glc 714 present in insoluble fraction) of Glc-grown and SQ-grown *E. coli*, (D) trehalose content of Glc-grown 715 and SQ-grown *E. coli* and (E) Glc content of soluble fraction of Glc-grown and SQ-grown *E. coli*. For 716 (C), (D) and (E): (i) early log phase, (ii) transition to stationary phase, (iii) early stationary phase 717 and (iv) late stationary phase. Data shown is per cell pellet and is average of two independent replicates 718 (mean ± SD,  $n = 2$ ) with exception of data for SQ shown in (E) (ii) and (E) (iii) in which  $n = 1$ .

719