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I ntroduction

Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial
dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies
explain the complex dynamics of bacterial populations and activities based on tradeoffs in
energy allocation to growth, resource acquisition, and survival. Such tradeoffs influence the fate
of soil C, but their genomic basis remains poorly characterized. We used multi-substrate
metagenomic DNA stable isotope probing to link genomic features of bacteria to their C
acquisition and growth dynamics. We identify several genomic features associated with patterns
of bacterial C acquisition and growth, notably genomic investment in resource acquisition and
regulatory flexibility. Moreover, we identify genomic tradeoffs defined by numbers of
transcription factors, membrane transporters, and secreted products, which match predictions
from life history theory. We further show that genomic investment in resource acquisition and
regulatory flexibility can predict bacterial ecological strategies in soil.

Soil dwelling microorganisms are essential mediators of terrestrial C cycling®™, yet their
immense diversity®’ and physiological complexity, as well as the mazelike heterogeneity of their
habitats®**, make it difficult to study their ecology in situ. Life history theory has been proposed

as a framework for predicting bacterial activity in soils'*™. Life history theory™®*’

explains the
ecological properties of organisms based on their energy allocation to growth, resource
acquisition, and survival®*****2°. A fundamental aspect of this framework is that life history traits
impose ecological tradeoffs that constrain fitness with respect to environmental properties™®*'.
For example, tradeoffs between bacterial growth rate and yield are thought to constrain bacterial
activity with respect to environmental variability*®. Such tradeoffs can influence C fate by

controlling the amount of C mineralized to CO, or converted into microbial products that
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become SOM™. As a result, the accuracy of global C-cycling models can be improved by
including information about microbial ecological strategies** . Unfortunately, bacterial life
history traits resist in Situ characterization, and experiments with cultured strains often ignore the
complex microbe-microbe and microbe-environment interactions that occur in soil**.

In a previous study™, we quantified the dynamics of C acquisition and growth for diverse
soil dwelling bacteria by performing a multi-substrate DNA stable isotope probing (DNA-SIP)
experiment that tracked nine different C sources, which varied in bioavailability, through the soil
food web over a period of 48 days (Fig. S1). Through this approach we demonstrated that
Grime’s C-S-R life history framework explains significant variation in bacterial growth and C

acquisition dynamics in soil™

. We used these data to calculate several parameters that describe
patterns of resource acquisition and growth. Resource bioavailability was determined as the
average bioavailability of the **C-labeled C sources assimilated by taxa. Maximum log; fold
change (max LFC) was determined as the maximal change in differential abundance of taxa in
response to C input. Latency of C assimilation was determined for taxa as the difference in time
between maximal *3C mineralization and earliest **C-labelling for a given C source. Latency
changes in proportion to the likelihood that taxa engage in primary assimilation of **C directly
from a C source, or secondary assimilation of *C following microbial processing. Here we have
sought to identify genomic features that underlie bacterial life history traits linked to the C-S-R
framework.

Since the majority of soil dwelling bacteria remain uncultivated and poorly described®%,
there is great utility in identifying genomic features that predict the ecological strategies of

bacteria®’. Genomic features of life history strategies have been identified in marine bacteria®®

and proposed for soil dwelling bacteria®®. Genomic features associated with growth, resource


https://doi.org/10.1101/2022.09.09.507310
http://creativecommons.org/licenses/by-nc-nd/4.0/

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.09.507310; this version posted September 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.
acquisition, and survival are of particular interest when assessing life history tradeoffs®!#3%3%,
Numerous genes control such quantitative traits, however, and it is difficult to predict these
complex traits de novo from genomic data. We hypothesized that life history strategies impose
tradeoffs that alter genomic investment in the gene systems (i.e., numbers of genes devoted to a
particular system) that govern quantitative traits linked to growth, resource acquisition, and
survival. We predicted that these tradeoffs would manifest in gene systems that control
transcriptional regulation, membrane transport, secreted enzyme production, secondary
metabolite production, motility, attachment, osmotic stress response, and dormancy. We linked
genomic investment in these systems to patterns of resource acquisition and growth for soil
dwelling bacteria by performing metagenomic analysis of **C-labeled DNA (metagenomic-SIP)
derived from our previous multi-substrate DNA-SIP experiment.

Metagenomic-SIP allowed us to link **C-labeled contigs and metagenome-assembled
genomes (MAGS) to patterns of resource acquisition and growth as they occurred within soil
(Fig. S1). For metagenomic-SIP, we selected eight **C-labeled samples from the prior
experiment, because these 8 samples were enriched in genomes of taxa whose resource
acquisition and growth dynamics represented extremes in the C-S-R life history framework (Fig.
S1, S2). This strategy, by diminishing the confounding contribution of genomes from organisms
having intermediate life-history strategies, facilitates identification of genome features that
underlie life history tradeoffs. We took three approaches to analyzing these metagenomic-SIP
data, each increasing in complexity: (i) a **C-labeled contig-based approach to assess whether
genome feature enrichment correlates with resource acquisition and growth parameters at
community scale, (ii) a**C-labeled MAG approach to assess whether genome feature enrichment

correlates with resource acquisition and growth parameters for discrete taxa, and (iii) a **C-
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89 labeled MAG approach to assess tradeoffs between genome features predicted from the C-S-R
90 framework.

91 The third approach was designed to identify bacterial life history strategies by

92  characterizing tradeoffs between genomic investment in regulatory flexibility and resource

93  acquisition, as predicted from the C-S-R framework***

. We chose to assess genomic investment
94  inregulatory flexibility as the number of transcription factors (TF) relative to total gene number
95  (TF:gene). Environmental variability will favor high TF:gene because TF regulate gene
96  expression in response to changes in the cellular environment®. We chose to assess genomic
97  investment in resource acquisition as the number of genes encoding secreted enzymes (SE),

98 secondary metabolite biosynthetic pathways (SM), and membrane transporters (MT). SE and SM
99  are required for acquisition and control of extracellular resources. MT are required for resource

100 uptake and their function provides the physiological foundation for the concept of the

101  copiotrophy-oligotrophy continuum*?3*-*. The C-S-R framework describes tradeoffs with

102 respect to resource acquisition and environmental variability**3*. Competitors (C) have high

103  investment in resource acquisition and favor intermediate levels of environmental variability.

104  Stress tolerators (S) have low investment in resource acquisition and are disfavored by temporal

105  variability. Ruderals (R) have low investment in resource acquisition and are favored by high

106 levels of temporal variability. On the basis of this framework, we predicted a tradeoff whereby

107  investment in resource acquisition (SE + SM) would be highest relative to investment in MT for

108 intermediate levels of regulatory flexibility (TF:gene) and lowest at both high and low levels of

109 regulatory flexibility. By clustering MAGs based on these tradeoffs and comparing resource

110  acquisition and growth parameters across clusters, we demonstrate the ability of these genomic

111  features to predict bacterial life history strategies.
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112

113  Resultsand Discussion

114  Identification of *C-labeled contigs with metagenomic-SIP

115 We used metagenomic-SIP to enrich for DNA from **C-labeled bacteria and to identify
116  “3C-labeled contigs, thereby linking genomic content to C acquisition. Overall, we recovered
117  between 5 x 10° and 1.3 x 10° reads in each metagenome library after quality control (Table S1).
118  Co-assembly generated over 1.2 x 10° contigs that were >1000 bp long, of which 639,258 were
119  C-labeled in at least one treatment (>5X coverage in the *C-treatment library and >1.5-fold
120 increased coverage relative to the corresponding **C-control library; Table S1). After

121 normalizing for sequencing depth, the number of genes annotated from *C-labeled contigs in
122 each treatment was positively correlated with the number of **C-labeled OTUs (Fig. S3;

123 Pearson’s r = 0.795, p-value =0.018), as expected. The phylum representation observed for **C-
124  labeled contigs differed somewhat from that observed for **C-labeled OTUs as determined by
125  16S rRNA sequencing (Fig. S4). This difference could be due to loss of some contigs from **C-
126  labeled metagenomic libraries on the basis of genome G + C content or due to differences in
127  annotation methodologies used in metagenomic and 16S rRNA based methods (see

128  Supplementary Results).

129

130  Genomic features of **C-contigs explain variation in resource acquisition and growth dynamics
131 We first tested whether the targeted genomic features explained variation in resource
132 acquisition and growth dynamics at community level, as assessed across the entire collection of
133 “3C-labeled contigs (Fig. S5, Fig. S6) and *C-labeled OTUs observed from each **C-labeled

134  treatment (Supplementary Dataset). This contig-based approach is meaningful because **C
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135  source identity had a large and significant effect on the identity of **C-labeled taxa, with this

136  variation driven by the overall dynamics of **C-assimilation and growth, as previously

137  described™. Three of the eight genomic features we examined explained significant variation in
138  resource acquisition and growth dynamics (Fig. 1). Methyl-accepting chemotaxis protein genes
139  (MCP) were positively correlated with max LFC (Pearson’s r = 0.954, p-value = 0.002; Fig. 1a),
140 indicating that these genes are frequent in taxa that increase relative abundance dramatically in
141  respond to new C inputs. In addition, MT (Pearson’s r = 0.907, p-value = 0.015) and osmotic
142  stress response (OS) genes (Pearson’s r = 0.938, p-value = 0.004) were both positively correlated
143 with C source bioavailability (Fig. 1b, c).

36,37

144 Soil consists of a complex matrix™ " in which microbial access to C is limited by spatial

145  and temporal variability®**°. Moisture is a major determinant of resource availability in soils,
146  controlling soil matrix conductivity and tortuosity, and thereby regulating rates of diffusion*>**
147  as well as sorption/desorption kinetics*. For these reasons soil moisture is a major determinant
148  of bacterial activity in soils**". While resource concentration is a major determinant of bacterial
149  growth kinetics in aquatic environments, bioavailability is a major determinant of bacterial

150  growth kinetics in soil®

. Bioavailability, defined as the ability of a resource to cross the

151  membrane, is determined in soil by solubility, sorption dynamics, and soil moisture®*#“°, High
152  bioavailability C sources (e.g., glucose, xylose, and glycerol) are highly soluble, less likely to be
153  sorbed to soil minerals, readily available for membrane transport, and their availability to cells
154  governed primarily by diffusive transport as limited by soil moisture®. These substrates are

155  degraded rapidly and so elevated concentrations are ephemeral in soils*®. Hence, to compete

156  effectively for highly bioavailable C sources, bacteria must exploit ephemeral periods when their

157  resources are present in high concentration. Low bioavailability C sources (e.g., cellulose and
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palmitic acid), in contrast, cannot be transported directly across the membrane until transformed

33151 or biosurfactants®. These

by extracellular microbial products such as secreted enzymes
substrates are typically insoluble in soils and degraded over a span of weeks, months, or even
years. Hence, to compete effectively for low bioavailability C sources soil dwelling bacteria
must invest in resource acquisition, by manufacturing extracellular products that facilitate access
to insoluble particulate materials.

Chemotactic bacteria can move through soil pore water and water films, allowing
preferential access to C sources detected by MCP>***. MCPs are a dominant chemoreceptor

family shared by diverse bacterial phyla®=°

, and they are widely recognized as directing
chemotaxis®®*’. Our finding that MCP genes increase in proportion to the max LFC of bacterial
taxa (Fig. 1a), suggests that chemotaxis is an important determinant of fitness for bacteria whose
relative abundance increases dramatically during ephemeral periods of high resource availability.
Similar explosive population dynamics are expected for organisms having a ruderal strategy as
described in Grime’s C-S-R framework*®. Hence, we hypothesize that chemotaxis is adaptive in
soils for growth-adapted bacteria that compete for ephemeral resources whose availability is
driven by high environmental variability, and that MCP gene count is a genomic feature that can
help identify soil dwelling bacteria having this life history trait.

MT activity regulates resource uptake, and transporter kinetics have been described as a
key determinant of copiotrophic and oligotrophic life history strategies in aquatic
environments®*>*® Hence, membrane transport is likely a key determinant of bacterial life
history strategies in soil. We show that high MT gene frequency correlates with the ability of soil

bacteria to acquire high bioavailability C sources (Fig. 1b). We hypothesize that high MT gene

count is adaptive for bacteria that compete for ephemeral, highly bioavailable C sources. In soil,
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high MT gene count is likely indicative of more copiotrophic bacteria with copiotrophs
encompassing a wide diversity of life history strategies including both ruderals and competitors
as defined by Grime’s framework®. We also hypothesize that low MT gene count is likely an
indicator of oligotrophic bacteria that compete for less bioavailable C sources in soil, with low
MT gene frequency indicating a tendency towards resource specialization.

OS genes are affiliated with several cellular systems for surviving low water activity
including compatible solutes, aquaporins, and ion homeostasis®>®. OS systems are of vital
importance for microbial survival in soils due to the high variation in water activity®®*. We
show that OS genes are more frequent in soil dwelling bacteria that acquire C from highly
bioavailable C sources (Fig. 1c). Highly bioavailable C sources are transiently abundant in water
filled pore space when soils are moist®®. Soil pores dry out rapidly as moisture becomes limiting,
hence we predict that OS is adaptive for bacteria that exploit resources present in water filled
pore space. In contrast, bacteria using low bioavailability C sources localize preferentially to
surfaces. Water films and biofilms are favored on soil surfaces*?, buffering the organisms
localized there from rapid variation in water activity. Our results suggest that OS is adaptive for
soil dwelling bacteria of more copiotrophic character (i.e., ruderals and competitors), those that
compete for high bioavailability substrates whose availability corresponds with rapid changes in
water activity.

One might naively predict that OS would be a characteristic of organisms having a stress
tolerant life history strategy. The observation that OS does not predict a “stress tolerant’ bacterial
lifestyle requires us to carefully consider how we define “stress’ in bacterial ecology. Grime’s
original framework, from plant ecology, describes plant stress as limitation for light, nutrients,

and/or water, which are resources required for plant growth®. This plant-centric definition of
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204  stress, based on resource limitation, conflicts with the microbiological definition, in which

205  ‘stress’ is usually interpreted as abiotic stress (e.g., tolerance to pH, salinity, temperature, O,).
206  Those bacteria that are adapted for resource limitation are typically defined as oligotrophs.

207  Hence, Grime’s ‘stress tolerator’ strategy, as interpreted in the proper ecological context, is

208 indicative of bacteria having oligotrophic characteristics™, and not those adapted for extremes of
209 abiotic stress (e.g., extremophiles). These contrasting definitions of stress are a potential source
210  of confusion when life history theory developed for plants is applied to bacteria. We propose that
211  a better understanding of bacterial life history theory would be provided by interpreting the ‘S’ in
212 C-S-R as a ‘scarcity-adapted’ rather than “stress-adapted’.

213

214  Genomic features of *C-MAGs explain variation in resource acquisition and growth dynamics
215 A limitation of the contig-based analysis described above is that statistical power is low
216  since we have only 8 treatments. Hence, we also used MAGs to evaluate associations between
217  genomic features and activity characteristics. We recovered 27 ‘medium quality’ MAGs® from
218  the *C-labeled contigs (> 50% completeness and < 10% contamination; Supplemental Dataset;
219  Supplemental Results). We linked these MAGs to corresponding **C-labeled OTUs present in
220  the exact same **C-labeled DNA sample on the basis of taxonomic annotations (assigned by

221  GTDBtk®, Supplemental Dataset). For example, the **C-labeled MAG Glucose Day01_bin.1
222 was classified to the family Burkholderiacea and therefore linked to all Burkholderiacea OTUs
223 '3C-labeled in the glucose day 1 treatment. Three MAGs did not match any OTU

224 (Cellulose_Day30 bin.7, PalmiticAcid_Day48 bin.4, and Vanillin_Day48 bin.1), while the

225  others matched 1-56 OTUs each. For each *C-labeled MAG, activity characteristics were

226  averaged across the matching *C-labeled OTUs (Fig. S7, Supplemental Dataset). We then
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227  evaluated the number of genes associated with each genomic feature, normalized for MAG size
228  (Fig. S8, Supplemental Dataset). As before, MT genes were positively correlated with C source
229  bioavailability (Pearson’s r = 0.550, p-value = 0.043; Fig. 2A), and we found that TF genes

230 (Pearson’sr =0.881, p-value < 0.001) and secondary metabolite biosynthetic gene cluster

231  (SMBC) abundance (Pearson’s r = 0.712, p-value = 0.001) were also positively correlated with C
232 source bioavailability (Fig. 2b, c).

233 Having high numbers of TF is thought to be an adaptive trait for microbes living in

234 highly variable environments®®®®’. Certain taxa are known to be enriched in TF families but the
235  evolutionary basis of variation in TF gene frequency is not well established®. Our finding that
236  TF frequency correlates with C source bioavailability (Fig. 2b) suggests that growth on

237  ephemeral C sources favors high TF, because this adaptive trait allows bacteria to respond

238  effectively to high environmental variability. The metabolic and physiological changes induced
239 by these TF may include previously discussed features such as MCP, MT, or OS systems. Our
240  results support the idea that genomic investment in TF is an adaptive trait that varies with

241  environmental variability of the ecological niche.

242 Secondary metabolites include a wide range of small molecules produced by organisms.
243  Bacteria often use these molecules to interact with their environments. Examples include

244  antibiotics that kill or prevent the growth of other organisms, signaling molecules that mediate
245 intercellular interactions, siderophores, chelators, and biosurfactants used to access insoluble

246  nutrients®®. Secondary metabolites can facilitate competition for limited resources’®"*

and they
247  can even mediate microbial predation’®. Production of secondary metabolites requires multiple
248  genes often found in clusters (i.e., SMBCs)"®"*. We show that SMBC frequency correlates with

249  C source bioavailability (Fig. 2c). This finding, runs counter to the idea that secondary


https://doi.org/10.1101/2022.09.09.507310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.09.507310; this version posted September 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

250  metabolites are important for competition on low bioavailability resources®™’®®. Given that this
251  observation matches patterns observed for TF and MT we expect that SMBC are favored by

252 conditions of environmental variability and/or resource acquisition.

253

254  Genomic feature correlation in publicly available soil genomes and metagenomes

255 We observed through metagenomic-SIP that C source bioavailability correlates with MT,
256  OS, TF and SMBC frequencies and we hypothesize that these gene frequencies are predictive of
257  an organisms position on the copiotroph-oligotroph continuum. From this hypothesis, we predict
258  that these genomic features should correlate in independent genomic and metagenomic datasets.
259  We assessed these relationships in several datasets generated from a range of different soils (see
260  Supplementary Results). Since MT were significantly associated with C source bioavailability at
261  both community level (**C-labeled contigs) and genome level (**C-labeled MAGs), we compared
262  the gene frequencies for MT with those of TF, OS, and SMBCs in each independent dataset.

263  Support for a relationship between MT and both TF and OS was supported in 4 of 7 independent
264  datasets (Fig. 3a-e). We found no correlation between MT and SMBC frequencies within any of
265  the datasets (Fig. 3).

266 We also observed that MCP gene counts (Fig. 1a) and predicted rRNA gene (rrn) copy
267  number™ both correlate with max LFC when new C is added to soil. We hypothesize that these
268 traits are linked to ruderal strategies (a subset of copiotrophs), hence we predict that rrn copy
269  number should correlate with MCP gene frequency in independent datasets. We compared MCP
270  gene frequency to the natural log of either rrn copy number (for RefSoil), or tRNA gene count
271  (for reference metagenome MAGS). While the RefSoil database contains complete genomes with

272 accurate rrn copy numbers, MAGs from metagenomic datasets do not provide accurate rrn
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273 annotations, therefore we used tRNA gene abundances as a proxy since tRNA gene count

274  correlates with rrn copy number’’. In further support of this proxy, we observed that rrn copy
275  number and tRNA gene count are strongly correlated in RefSoil bacterial genomes (Pearson’s r =
276  0.792, p-value < 0.001; Fig. S9). The natural log of rrn copy number was positively correlated to
277  MCP gene abundance across the RefSoil dataset (Fig. 3a), yet the natural log of the tRNA gene
278  counts were not correlated with MCP gene abundance in any of the other datasets (Fig. 3b-g).
279 A correlational approach, as applied above, has two notable limitations. First, many of
280  the genes in metagenomic datasets are poorly annotated. Inaccurate annotation can produce

281 inaccurate gene counts for all of the gene systems we assessed. Second, adaptive tradeoffs

282  between gene systems will not produce straightforward correlations, because the concept of a
283  tradeoff implies an interaction whereby the adaptive benefit varies depending on the life history
284  strategy of the organism’®.

285

286  Tradeoffsin genomic investment define life history strategies

287 Tradeoffs occur when the benefit of a trait in a given environment differs between two
288  groups. For example, increases in environmental variability might tend to favor more investment
289 in resource acquisition for oligotrophic organisms (because higher variability tends to produce
290 higher average nutrient levels when resources are low), but less investment in resource

291  acquisition in copiotrophic organisms (because investing in extracellular products that enable
292  resource acquisition provides little benefit in a highly disturbed environment). To detect, among
293  our *C-labeled MAGs, tradeoffs between regulatory flexibility, resource acquisition, and

294  membrane transport, we examined relationships between TF:gene and [SE + SM]:MT. The ratio

295  TF:gene measures genomic investment in regulatory flexibility. The ratio [SE + SM]:MT
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296  captures genomic investment in resource acquisition relative to uptake. SM represents the sum of
297  all genes found in SMBCs, reflecting genomic investment in secondary metabolite biosynthesis.
298  We summed SM and SE because these features represent genomic investment in extracellular
299  products. Groups of genomes adapted to similar life history strategies should exhibit comparable
300 genomic investment in these gene systems. We used k-means clustering based on genomic

301 investment in these gene systems to group the MAGs into three clusters that we hypothesized
302  would represent the C-S-R strategies. We then determined whether the properties of the genomes
303 in each cluster matched predictions from the C-S-R framework.

304 We observed evidence for tradeoffs in both regulatory flexibility and resource acquisition
305 among these three clusters. TF tended to increase with total gene count (as expected), but

306 TF:gene differed between the three clusters (Fig. 4a). When genome size was small, the three
307 clusters differed little in TF, but as total gene count increased the clusters diverged with one

308 cluster having less regulatory flexibility than the other two (Fig. 4a). We also observe that [SE +
309 SM] gene counts tend to increase in proportion to MT counts in two clusters (as expected), but
310 the other cluster, which has the highest MT counts, maintains low [SE + SM] counts (Fig. 4b).
311  When these relationships are plotted together, we observe that one cluster tends to increase

312  relative investment in resource acquisition ([SE + SM]:MT) along with regulatory flexibility

313  (TF:gene), while the other two have the opposite response (Fig. 4c).

314 These three clusters demonstrate adaptive tradeoffs consistent with Grime’s C-S-R

315 framework. The scarcity strategists (i.e., oligotrophs; S) have low regulatory flexibility (Fig. 4a),
316 and generally low genomic investment in transport (Fig. 4b), but their genomic investment in
317  resource acquisition tends to increase in proportion to regulatory flexibility (Fig. 4c). That is,

318  scarcity strategists whose ecological niches are the most constant require little genomic
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319 investment in regulatory flexibility and resource acquisition, while those whose niches are more
320 variable require more investment in regulatory flexibility and resource acquisition. In contrast,
321  ruderals (R) have high regulatory flexibility (Fig. 4a), and high investment in transport (Fig. 4b),
322 but they have low genomic investment in resource acquisition (Fig. 4b, c). Finally, the

323 competitive strategists (C) have intermediate to high levels of regulatory flexibility (Fig. 4a),
324  intermediate investment in membrane transport (Fig. 4b), but high genomic investment in

325  resource acquisition (Fig. 4a) with little relationship between resource acquisition and regulatory
326  flexibility (Fig. 4c). We expect many intermediate strategies among the C-S-R vertices, and as
327  expected we see that scarcity specialists adapted for high levels of regulatory flexibility are

328  difficult to distinguish from competitive specialists adapted for lower levels of regulatory

329 flexibility.

330 MAGs assigned to the three clusters differ in their resource acquisition and growth

331 dynamics consistent with the expectations of life history theory. Ruderals and competitors

332  acquired C sources that had significantly higher bioavailability than scarcity specialists (Fig. 5a),
333  and they also consumed a higher diversity of C sources than the scarcity specialists, and this
334  difference was significant (Fig. 5d). Ruderals, however, had significantly higher max LFC

335 relative to competitors indicating the ability to increase population size dramatically in response
336 to Cinput (Fig. 5b).

337 In terms of genomic features, we see that both ruderals and competitors have higher TF
338 and OS gene frequencies than scarcity specialists (Fig. 6a), while only the ruderals have higher
339  MT relative to scarcity specialists, and these differences are significant (Fig. 6a). Ruderals are
340 distinguished from both competitors and scarcity specialists by their low investment in SE and

341  high investment in MCP (Fig. 6a). Competitors are distinguished from both scarcity and ruderal
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342  specialists by their higher investment in adhesion (Fig. 6a). The general theme is that both

343  ruderals and competitors have copiotrophic characteristics, but ruderals appear to be opportunists
344  with adaptations that maximize their ability to exploit ephemeral resources, while competitors
345 have greater genomic investment in resource acquisition. Scarcity specialists appear less well
346  adapted for regulatory flexibility and more likely to specialize in their C sources (Fig. 5d).

347

348 Predicting ecological strategiesfrom genome features

349 We used parameters of TF:gene and [SE + SM]:MT, defined from the three **C-labeled
350 MAG clusters described above, to predict life history strategies for RefSoil genomes. The

351  resulting RefSoil genome clusters, predicted from these genome parameters, exhibited genomic
352  characteristics representative of the expected life history tradeoffs (Fig. 7a-c). The relationship
353  between TF:gene and [SE + SM]:MT is roughly triangular, as we would expect for the C-S-R
354  framework (Fig. 7c). It is apparent that a vast diversity of intermediate life history strategies exist
355  (Fig. 7c), and this is also an expected result since relatively few taxa will maximize adaptive
356 tradeoffs while most will optimize adaptive traits to suit their particular ecological niche.

357  Genomes having ruderal characteristics are enriched in the Gammaproteobacteria and

358 Firmicutes (Fig. 7f, Fig. S10), as we would expect, though members of these phyla can be found
359 inall three clusters (Fig. S10) owing to the vast diversity of these groups. In addition, genomes
360 having competitive characteristics are highly enriched in the Actinobacteria and

361 Betaproteobacteria, while genomes characteristic of scarcity specialists are enriched in the

362  Alphaproteobacteria and other diverse phyla (e.g., Verrucomicrobia, Acidobacteria,

363  Gemmatamonadetes, Chloroflexi, etc.) whose members are difficult to cultivate in laboratory

364 media (Fig. 7f, Fig. S10). Most bacterial phyla are metabolically and ecologically diverse and
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365  we would not expect homogeneity among species within a phylum. In addition, previous

366  observations show that C assimilation dynamics in soil are not well predicted by phylum level
367 classification™. However, certain strategies are more common in some phyla than others, and
368 these patterns, along with the taxonomic makeup of our MAG clusters (Fig. 5d-f) match general
369  expectations. Furthermore, the three clusters we defined for RefSoil genomes possess patterns of
370  genomic investment that match predictions derived from the C-S-R framework and are consistent
371 with predictions based on the **C-labeled MAGs (Fig. S11, Table S2).

372

373  Conclusons

374 Metagenomic-SIP enables us to link genome features to growth dynamics and C

375  acquisition dynamics of bacteria as they occur in soil. We used a targeted approach, employing
376  data from a multi-substrate DNA-SIP experiment, to select bacterial genomes that maximize life
377  history tradeoffs. We identified genomic features (MCP, MT, OS, TF, and SMBCs) that are

378  associated with growth and C acquisition dynamics of soil dwelling bacteria. We also identified
379  genomic signatures (TF:gene and [SE + SM]:MT) that represent life history parameters useful in
380 inferring bacterial ecological strategies from genome sequence data. We show that, while many
381 intermediate strategies exist, there are diverse taxa that maximize life history tradeoffs defined
382 by these genomic parameters. The genomic signatures we identified are readily assessed using
383  genomic and metagenomic sequencing and these parameters may be useful in the assessment of
384  bacterial life history strategies.

385

386 Methods

387  Soil microcosms, DNA extraction, and isopycnic centrifugation
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388 The multi-substrate DNA-SIP experiment that provided the DNA samples we used for
389  metagenomic-SIP has been described in detail elsewhere™. An overview of the experimental
390  design for this prior DNA-SIP experiment is provided for reference in Fig. S1. Briefly, a mixture
391  of 9 different C sources was added to soil at 0.4 mg C g™ dry soil each (each representing about
392  3.3% of total soil C), moisture was maintained at 50% water holding capacity, and sampling was
393  performed destructively over a period of 48 days. All treatments were derived from the exact
394  same soil sample (from an agricultural field managed under a diverse organic cropping rotation),
395 they received the exact same C sources, and they were incubated under the exact same

396  conditions, the only variable manipulated was the identity of the *C-labeled C source. Eight **C-
397  treatments from this prior experiment (each defined by the identity of the **C source and the time
398  of sampling) were chosen for metagenomic-SIP because the previous analysis™ indicated that
399 their *C-labeled DNA was enriched in bacteria that maximized differences in life history

400  strategy (Fig. S2 and see also Fig. 5e from the prior study®). The treatments selected for

401  metagenomic-SIP were: glucose day 1, xylose day 6, glucose day 14, glycerol day 14, cellulose
402  day 30, palmitic acid day 30, palmitic acid day 48, and vanillin day 48. We also sampled **C-
403  control treatments for days 1, 6, 14, 30, and 48 to facilitate identification of **C-labeled contigs
404  and improve metagenome assembly and binning®. DNA used in this experiment (after

405  undergoing extraction, isopycnic centrifugation, and fractionation) was the same as described
406  previously™ and was archived at -20°C for ~2 years prior to use in this study.

407

408 Metagenomic sequencing

409 For each of the eight treatments and five controls, we combined 10 pl of purified,

410 desalted, DNA solution from each CsClI gradient fraction having a buoyant density between 1.72
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411  and 1.77 g mI™. By pooling equal volumes from these fractions, we aimed to replicate the

412 composition of the DNA pool of the entire heavy buoyant density window (1.72-1.77 g ml™).
413  Metagenomic-SIP simulations have demonstrated that this buoyant density range sufficiently
414  enriches for *C-labeled bacterial DNA’®. DNA amplification and sequencing were performed by
415  the Joint Genome Institute (JGI; Berkeley, CA, USA) using standard procedures. In short, DNA
416  was amplified and tagged with Illumina adaptors using a Nextera XT kit (Illumina Inc, San

417 Diego, CA, USA) and sequencing was performed on the NovaSeq system (lllumina Inc).

418

419  Read processing, metagenome assembly and annotation, and MAG binning

420 Quiality control read processing and contig assembly was performed by the JGI as

421  previously described®. Contigs were generated via terabase-scale metagenome coassembly from
422  all 13 libraries using MetaHipMer®. Gene calling and annotation of assembled contigs was

423  performed through JGI’s Integrated Microbial Genomes and Microbiomes (IMG/M) system®.
424  Quality filtered reads, co-assembled contigs, and IMG annotations can be accessed through the
425  JGI genome portal (CSP ID 503502, award DOI: 10.46936/10.25585/60000933). We mapped
426  reads from each library to all contigs that were over 1000 bp in length using BBMap®® then

427  calculated contig coverages using jgi_summarize_bam_contig_depths from MetaBAT®*.

428 As we were primarily interested in genomes of bacteria that incorporated *C into their
429 DNA, we only used putatively **C-labeled contigs to bin metagenome assembled genomes

430  (MAG). Within each treatment, we defined a *3C-labeled contig as having an average read

431  coverage greater than 5X in the **C-treatment library and a 1.5 fold increase in coverage from
432 the C-control to **C-treatment library after accounting for difference in sequencing depths. In

433  calculating the fold increase in coverage, we normalized for sequencing depth by dividing
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434 coverage by read counts. We binned **C-labeled contigs separately for each treatment based on
435  both tetranucleotide frequency and differential coverage with MetaBAT2*, MaxBin®, and

436 CONCOCT®. Default settings were used with the exceptions that minimum contig lengths was
437  set to 1000 bp for both MaxBin and CONCOCT and 1500 bp for MetaBAT2. Final MAGs were
438  generated by refining bins from all three binning tools using metaWRAP®'. Coverage

439  information used during each binning run was from the paired *C-treatment and *C-control
440 libraries, not the entire set of libraries. Therefore, we ran MAG binning eight separate times,
441  once for each treatment. MAG qualities were calculated using CheckM®. For further analyses,
442  we only used MAGs with over 50% completeness and less than 10% contamination (i.e.,

443  “‘medium quality’ MAGS) following the guidelines for minimum information about metagenome-
444  assembled genomes®™.

445 The binning approach we employed used co-assembled contigs, but binned these contigs
446  separately across the eight “*C-labeled treatments. As such, some MAGs were identified in

447  multiple treatments if their genomes were **C-labeled by multiple **C-labeled C sources. These
448  sister MAGs might represent a single population that can derive its C from multiple C sources, or
449  functionally distinct subpopulations each preferentially adapted for a different C source. Strain
450  heterogeneity has previously been implicated as a cause of poor binning outcomes with soil

451  metagenomes™. Traditional MAGs tend to include the entire pan-genome of heterogeneous

452  strains representing an individual taxon®. Our **C-labelling informed binning strategy should
453  have greater ability to differentiate functionally differentiated sub-populations than traditional
454  Dbinning strategies. Further characteristics of our MAGs are discussed in Supplemental Results.
455

456  Satistical analysis and computing
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457 Unless otherwise stated, all statistical analyses were performed and all figures generated
458  with R* version 3.6.3. Code for all analyses and most processing is available through GitHub
459  (https://github.com/seb369/CcycleGenomicFeatures).

460

461  Testing associations between genomic features and activity characteristics

462 We first assessed associations between genomic features and activity characteristics by
463  comparing the genetic composition of **C-labeled contigs with the averaged characteristics of the
464  C-labeled OTUs identified in each corresponding treatment from our prior study™. We

465  developed a list of eight genome features hypothesized to be associated with life history

466  strategies and microbial C-cycling activity in soil environments: 1) MCP genes were identified
467 by the product name “methyl-accepting chemotaxis protein”. 2) Transporter genes were

468 identified by product names containing the terms “transporter”, “channel”, “exchanger”,

469  “symporter”, “antiporter”, “exporter”, “importer”, “ATPase”, or “pump”. The resulting gene list
470  was then filtered to include only those predicted by TMHMM® (version 2.0c) to have at least
471  one transmembrane helix. 3) Adhesion associated genes included adhesins and holdfast and
472  identified by product names “holdfast attachment protein HfaA”, “curli production

473  assembly/transport component CsgG/holdfast attachment protein HfaB”, “adhesin/invasin”,
474  *“fibronectin-binding autotransporter adhesin”, “surface adhesion protein”, “autotransporter

475 adhesin”, “adhesin HecA-like repeat protein”, “ABC-type Zn2+ transport system substrate-
476  binding protein/surface adhesin”, “large exoprotein involved in heme utilization and adhesion”,
477  “Tfp pilus tip-associated adhesin PilY1”, “type V secretory pathway adhesin AidA”. 4)

478  Transcription factor genes were first identified by product names containing the terms

77 L& 77 GE 77 GE

479  “transcriptional regulator”, “transcriptional repressor”, “transcriptional activator”, “transcription
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480  factor”, “transcriptional regulation”, “transcription regulator”, or “transcriptional [family]

481  regulator”, where [family] is replaced by some gene family identification. Additional

482  transcription factor genes were identified from the protein fasta sequences using DeepTFactor™.
483  5) Osmotic stress related genes were identified by product names containing the terms

, ‘osmoprotectant”,

484  “osmoregulated osmotically-inducible”, “osmo-dependent”, “osmolarity
485  sensor”, “ompr”, “l-ectoine synthase”. 6) Dormancy related genes covered three different

486  mechanisms®. Endospore production was indicated by products containing the name “Spo0A”,
487  though no SpoOA genes were found. Dormancy resuscitation was indicated by products

488  containing the name “RpfC”, a resuscitation promoting factor. Dormancy related toxin-antitoxin
489  systems were indicated by products containing the names “HipA”, “HipB”, “mRNA interferase
490 MazF”, “antitoxin MazE”, “MazEF”, “RelB”, “RelE”, “RelBE”, “DinJ”, or “YafQ”. 7) Secreted
491  enzyme genes were first annotated against three enzyme databases to include enzymes important
492  for breakdown of organic matter. Carbohydrate active enzymes were annotated by mapping

493  protein sequences to the dbCAN® database (release 9.0) with HMMER using default settings. Of
494  these enzyme genes only those in the glycoside hydrolase (GH), polysaccharide lyase (PL), or
495  carbohydrate lyase (CE) groups were retained. Proteases were annotated by mapping protein

496  sequences to the MEROPS™ database (release 12.3) using DIAMOND blastp alignment with
497  default settings except an E-value < 1x107'°. Enzymes containing an o/p hydrolysis unit were
498  annotated by mapping protein sequences to the ESTHER®’ database (downloaded June 11",

499  2021) with HMMER using default settings. While some enzymes containing o/ hydrolysis units
500 are included in the carbohydrate active enzymes, this group also includes lipases. All annotated

501 enzyme genes from these three groups were then filtered to those containing a secretion signal

502  peptide sequence annotated by SignalP*® (version 5.0b). Gram + annotations were used for any
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503  genes annotated to the Firmicutes or Actinobacteria phyla, and Gram — annotations were used
504 for all others. 8) Bacterial secondary metabolite biosynthetic gene clusters (SMBC) were

505 predicted using antiSMASH® (version 5.1.2) with default settings.

506 For each genomic feature, except for SMBCs, we calculated the percentage of all protein
507  coding genes from each **C-labeled contig pool (i.e., **C-labeled in each treatment) that were
508  annotated as described above. For SMBCs, we divided the number of SMBCs in each **C-

509 labeled contig pool by the number of protein coding genes in that pool. We then measured

510 Pearson’s correlation between the genomic feature abundance and each of the activity

511  characteristics averaged across the OTUs that were also **C-labeled in each treatment. Within
512 this bulk measurement, a greater percentage of the protein coding gene pool annotated to a

513  genomic signature can indicate that, 1) a greater proportion of the represented genomes contain
514  those genes, 2) the represented genomes have multiple copies of those genes, or 3) there is a
515  greater diversity of those genes within the represented genomes. To account for increased false
516  discovery rate with multiple comparisons, we adjusted p-values within each activity

517  characteristic using the Benjamini-Hochburg procedure (n=7).

518

519 Examining genomic signatures of life history strategiesin MAGs

520 We next assessed associations between genomic features and activity characteristics by
521  comparing the genetic composition of **C-labeled MAGs with the averaged characteristics of the
522  OTUs mapping to those MAGs. As very few 16S rRNA genes were recovered and binned, we
523  matched MAGs to **C-labeled OTUs based on taxonomy and *3C-labeling patterns. MAG

524  taxonomy was assigned using GTDB-Tk®. MAGs were taxonomically mapped to the set of

525  OTUs that matched at the highest corresponding taxonomic level, then this set of OTUs was
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526 filtered to include those that were **C-labeled in the same treatment as the MAG. Genomic

527  features within the contigs of each MAG were determined as described above, except that for
528  secreted enzymes, gram positive or gram negative SignalP predictions were assigned based on
529 MAG taxonomy. Gene and SMBC counts were adjusted as before but based on the total protein
530 coding gene count of the MAGs. We then measured Pearson’s correlation between the genomic
531 feature abundance within the MAGs and each of the activity characteristics averaged across the
532  OTUs mapped to the MAGs. To account for increased false discovery rate with multiple

533  comparisons, we adjusted p-values within each activity characteristic using the Benjamini-

534  Hochburg procedure (n = 8).

535

536 Examining genomic signatures of life history strategies with independent studies

537 We analyzed publically available soil microbiome datasets to determine whether the
538  genomic relationships we observed in **C-labeld MAGs were representative of soil dwelling
539  bacteria. Seven datasets where chosen: RefSoil'®®, Diamond et al. 2019'", Yu et al. 2020'%,
540  Wilhelm et al. 2019'%, Wilhelm et al. 2021'*, Zhalnina et al. 2018'®, and Li et al. 2019*®°.
541  Assemblies from Diamond et al. 2019, Yu et al. 2020, and Zhalnina et al. 2018 were

542  downloaded from GenBank on June 21%, 2021 (NCBI accessions in Supplemental dataset).

543  Assemblies from Wilhelm et al. 2019 and Wilhelm et al. 2021 were acquired from the authors.
544  Assemblies from Li et al. 2019 were downloaded from figshare

545  (https:/figshare.com/s/2a812c513ab14e6¢8161). Annotation was performed identically for all
546  assemblies to avoid biases introduced by different annotation pipelines. Protein coding genes
547  were identified and translated using Prodigal'®” through PROKKA'®, Transcription factor genes,

548 SMBCs, and genes encoding transmembrane helices were further annotated as described above.
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549  Transporter genes, transcription factor genes, MCP genes, osmotic stress response genes, and
550 SMBCs were identified and abundances were calculated as described above. 16S rRNA genes
551  and tRNA genes were identified from PROKKA annotations. Pearson correlations were analyzed
552  between transporter gene abundances and transcription factor gene abundances, osmotic stress
553  response gene abundances, and SMBC abundances and between the natural log of 16S rRNA
554  gene counts or tRNA gene counts MCP gene abundances separately for each independent

555  dataset. Within each dataset, p-values were adjusted for multiple comparisons using the

556  Benjamini-Hochburg procedure (n = 4).

557

558 Using tradeoffsto define and predict life history strategies

559 The C-S-R framework predicts evolutionary tradeoffs in energy allocation to resource
560 acquisition across habitats that vary temporally (e.g., variation in disturbance frequency). Since
561  deletion bias in microbial genomes produces streamlined genomes of high coding density, we
562  can assess evolutionary investment in a particular cellular system by quantifying genomic

563  resources devoted to the operation of that system. That is, genetic information must be replicated
564  and repaired with each generation; hence, energy allocation to a given cellular system over

565 evolutionary time can be assessed as the proportion of the genome devoted to that system. To
566 identify putative life history strategies for *C-labeled MAGs, we used k-means clustering to

567  group MAGs based genomic investment in transcription factors and resource acquisition.

568 Investment in transcription factors was defined as the TF gene count divided by total gene counts
569 (TF:gene). Relative investment in resource acquisition was determined by summing SE and SM
570 counts, removing duplicates found in both categories, then dividing by the number of MT genes

571  ([SE + SM]/MT). k-means clustering was performed using k-centroids cluster analysis with R
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572  package flexclust'®

after scaling and centering the two values and using a k = 3. Statistical
573  significance was assessed using the Kruskal-Wallis test and the Dunn test was used to assess
574  post-hoc comparisons.

575 We calculated the same tradeoffs in genomic investment (TF:gene and [SE + SM]/MT)
576  for RefSoil genomes. Predicted clusters for RefSoil genomes were made using these two

199 “and using the three **C-labeled

577  genomic signatures as inferred by the R package flexclust
578 MAG clusters as the training dataset. Differences in genomic investments for the eight

579  previously discussed genomic features were then assessed across clusters using the Kruskal-
580  Wallis test with the Dunn test used to assess post-hoc comparisons. However, in this analysis,
581 adhesion genes were identified as genes with product names containing the terms “adhesion” or
582  *adhesins” because the previously used product names were not found in these annotations.
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Figure 3. MT correlates with TF and OS in 4 of 7 independent metagenomic datasets examined
and MCP correlates with log rrn copy number in the RefSoil database. The tRNA gene count
was used as a proxy for rrn copy number as described in text. The datasets are a) RefSoil
genomes, b) Diamond et al. 2019 MAGs recovered from drought simulated meadow soils, c) Yu
et al. 2020 MAGs recovered from heavy DNA extracted from agricultural soils supplied with
3C-labeled ryegrass, d) Wilhelm et al. 2019 MAGs recovered from heavy DNA extracted from
forest soils treated with either **C-labeled cellulose or lignin, €) Wilhelm et al. 2021 phylobins
recovered from heavy DNA fractions extracted from agricultural soil supplied with **C-labeled
cellulose, f) Zhalnina et al. 2018 genomes isolated from Avena barbata rhizosphere, and g) Li et
al. 2019 MAGs recovered from rhizospheres of Zea mays, Triticum aestivum, and Arabidopsis
thaliana. Red or grey lines represent the linear relationships with shading indicating the 95%
confidence intervals. Red relationships are statistically significant (adjusted p-value < 0.05) with
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p-value adjusted for multiple comparisons within dataset using the Benjamini-Hochberg
procedure (n = 4). Correlation statistics are in Supplementary Dataset.
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Figure 4: Genomic investment in gene systems can be used to cluster MAGs into life history
strategies. MAGs were grouped using k-means clustering on scaled values of TF:genes and [SE
+ SM]:MT. a) Relationship between TF and total gene count. b) Relationship between summed
SE and SM gene counts and MT, where SM indicates total genes within SMBCs. c) The
relationship between genomic investment in resource acquisition ([SE + SM]:MT) and
regulatory flexibility (TF:genes). Clusters are colored by predicted life history strategies within
the C-S-R framework. d-f) The taxonomic identifies of the MAGs (at the order level)
corresponding to panels a-c.
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Figure 5: Resource acquisition and growth dynamics differ across life history strategies
indicative of tradeoffs predicted from Grime’s C-S-R framework. Clusters corresponding to life
history strategies were determined from k-means clustering based on TF:genes and [SE +
SM]:MT, as previously indicated (from Fig. 4). Significance was determined by Kruskal-Wallis
tests with post hoc comparisons performed using Dunn tests. a) Bioavailability of *C sources
acquired was lower for scarcity adapted MAGs than for competitor or ruderal MAGs. b) Max
LFC was higher for ruderal MAGs than competitor MAGs. c) No difference was observed in
latency across the three clusters. d) Number of **C sources acquired was lower for scarcity
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914  adapted MAGs than for competitor or ruderal MAGs. €) No difference was observed in the
915  natural log of rrn copy number across the clusters.
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920 Figure6: Genomic investment in gene systems differs across the three life history strategies
921 indicative of tradeoffs predicted from Grime’s C-S-R framework. Clusters corresponding to life
922  history strategies were determined from k-means clustering based on TF:genes and [SE +

923  SMJ:MT, as previously indicated (from Fig. 4). Significance was determined by Kruskal-Wallis
924  tests with post hoc comparisons performed using Dunn tests. a) Ruderal MAGs have higher
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investment in MCP than competitor or scarcity adapted MAGs. b) Ruderal MAGs have higher
investment in MT than scarcity adapted MAGs. ¢) Competitor MAGs have higher investment in
adhesion genes than ruderal or scarcity adapted MAGs. d) Scarcity adapted MAGs have a lower
investment in TF than ruderal or competitor MAGs. €) Scarcity adapted MAGs have a lower
investment in OS than ruderal or competitor MAGs. f) There is no statistically significant
difference in investment in dormancy genes across clusters. g) Ruderal MAGs have a lower
investment in SE than competitor or scarcity adapted MAGs. h) There is no statistically
significant difference in investment in SMBCs across clusters.
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Figure 7: Tradeoffs in genomic features can be used to predict life history strategies from
reference genomes. RefSoil bacterial genomes were clustered based on genomic tradeoffs
between resource acquisition ([SE + SM]:MT) and regulatory flexibility (TF:genes) using k-
means clustering trained on the three clusters defined for **C-labeled MAGs (from Fig. 4) a)
Relationship between TF and total gene count. b) Relationship between summed SE and SM
gene counts and MT, where SM genes are total genes within SMBCs. c) The relationship
between genomic investment in resource acquisition ([SE + SM]:MT) and regulatory flexibility
(TF:genes). Clusters are colored by predicted life history strategies within the C-S-R framework.
d-f) Taxonomic identifies of genomes corresponding with panels a-c (at the phylum or class
level: Actino. = Actinobacteria, Alpha. = Alphaproteobacteria, Bact. = Bacteroidetes, Cyano. =
Cyanobacteria, Delta. = Deltaproteobacteria, Firm. = Firmicutes, Gamma. =
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948  Gammaproteobacteria, Spiro. = Spirochetes, and ‘< 10° = aggregated taxa that have less than 10
949  genomes each).
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