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Introduction 20 

Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial 21 

dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies 22 

explain the complex dynamics of bacterial populations and activities based on tradeoffs in 23 

energy allocation to growth, resource acquisition, and survival. Such tradeoffs influence the fate 24 

of soil C, but their genomic basis remains poorly characterized. We used multi-substrate 25 

metagenomic DNA stable isotope probing to link genomic features of bacteria to their C 26 

acquisition and growth dynamics. We identify several genomic features associated with patterns 27 

of bacterial C acquisition and growth, notably genomic investment in resource acquisition and 28 

regulatory flexibility. Moreover, we identify genomic tradeoffs defined by numbers of 29 

transcription factors, membrane transporters, and secreted products, which match predictions 30 

from life history theory. We further show that genomic investment in resource acquisition and 31 

regulatory flexibility can predict bacterial ecological strategies in soil. 32 

Soil dwelling microorganisms are essential mediators of terrestrial C cycling1–5, yet their 33 

immense diversity6,7 and physiological complexity, as well as the mazelike heterogeneity of their 34 

habitats8–11, make it difficult to study their ecology in situ. Life history theory has been proposed 35 

as a framework for predicting bacterial activity in soils12–15. Life history theory16,17 explains the 36 

ecological properties of organisms based on their energy allocation to growth, resource 37 

acquisition, and survival3,14,18–20. A fundamental aspect of this framework is that life history traits 38 

impose ecological tradeoffs that constrain fitness with respect to environmental properties16,17. 39 

For example, tradeoffs between bacterial growth rate and yield are thought to constrain bacterial 40 

activity with respect to environmental variability18. Such tradeoffs can influence C fate by 41 

controlling the amount of C mineralized to CO2 or converted into microbial products that 42 
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become SOM18. As a result, the accuracy of global C-cycling models can be improved by 43 

including information about microbial ecological strategies21–23. Unfortunately, bacterial life 44 

history traits resist in situ characterization, and experiments with cultured strains often ignore the 45 

complex microbe-microbe and microbe-environment interactions that occur in soil24.  46 

In a previous study15, we quantified the dynamics of C acquisition and growth for diverse 47 

soil dwelling bacteria by performing a multi-substrate DNA stable isotope probing (DNA-SIP) 48 

experiment that tracked nine different C sources, which varied in bioavailability, through the soil 49 

food web over a period of 48 days (Fig. S1). Through this approach we demonstrated that 50 

Grime’s C-S-R life history framework explains significant variation in bacterial growth and C 51 

acquisition dynamics in soil15. We used these data to calculate several parameters that describe 52 

patterns of resource acquisition and growth. Resource bioavailability was determined as the 53 

average bioavailability of the 13C-labeled C sources assimilated by taxa. Maximum log2 fold 54 

change (max LFC) was determined as the maximal change in differential abundance of taxa in 55 

response to C input. Latency of C assimilation was determined for taxa as the difference in time 56 

between maximal 13C mineralization and earliest 13C-labelling for a given C source. Latency 57 

changes in proportion to the likelihood that taxa engage in primary assimilation of 13C directly 58 

from a C source, or secondary assimilation of 13C following microbial processing. Here we have 59 

sought to identify genomic features that underlie bacterial life history traits linked to the C-S-R 60 

framework.  61 

Since the majority of soil dwelling bacteria remain uncultivated and poorly described25,26, 62 

there is great utility in identifying genomic features that predict the ecological strategies of 63 

bacteria27. Genomic features of life history strategies have been identified in marine bacteria28 64 

and proposed for soil dwelling bacteria29. Genomic features associated with growth, resource 65 
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acquisition, and survival are of particular interest when assessing life history tradeoffs13,14,30,31. 66 

Numerous genes control such quantitative traits, however, and it is difficult to predict these 67 

complex traits de novo from genomic data. We hypothesized that life history strategies impose 68 

tradeoffs that alter genomic investment in the gene systems (i.e., numbers of genes devoted to a 69 

particular system) that govern quantitative traits linked to growth, resource acquisition, and 70 

survival. We predicted that these tradeoffs would manifest in gene systems that control 71 

transcriptional regulation, membrane transport, secreted enzyme production, secondary 72 

metabolite production, motility, attachment, osmotic stress response, and dormancy. We linked 73 

genomic investment in these systems to patterns of resource acquisition and growth for soil 74 

dwelling bacteria by performing metagenomic analysis of 13C-labeled DNA (metagenomic-SIP) 75 

derived from our previous multi-substrate DNA-SIP experiment. 76 

Metagenomic-SIP allowed us to link 13C-labeled contigs and metagenome-assembled 77 

genomes (MAGs) to patterns of resource acquisition and growth as they occurred within soil 78 

(Fig. S1). For metagenomic-SIP, we selected eight 13C-labeled samples from the prior 79 

experiment, because these 8 samples were enriched in genomes of taxa whose resource 80 

acquisition and growth dynamics represented extremes in the C-S-R life history framework (Fig. 81 

S1, S2). This strategy, by diminishing the confounding contribution of genomes from organisms 82 

having intermediate life-history strategies, facilitates identification of genome features that 83 

underlie life history tradeoffs. We took three approaches to analyzing these metagenomic-SIP 84 

data, each increasing in complexity: (i) a 13C-labeled contig-based approach to assess whether 85 

genome feature enrichment correlates with resource acquisition and growth parameters at 86 

community scale, (ii) a 13C-labeled MAG approach to assess whether genome feature enrichment 87 

correlates with resource acquisition and growth parameters for discrete taxa, and (iii) a 13C-88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.09.507310doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.09.507310
http://creativecommons.org/licenses/by-nc-nd/4.0/


labeled MAG approach to assess tradeoffs between genome features predicted from the C-S-R 89 

framework.  90 

The third approach was designed to identify bacterial life history strategies by 91 

characterizing tradeoffs between genomic investment in regulatory flexibility and resource 92 

acquisition, as predicted from the C-S-R framework30,31. We chose to assess genomic investment 93 

in regulatory flexibility as the number of transcription factors (TF) relative to total gene number 94 

(TF:gene). Environmental variability will favor high TF:gene because TF regulate gene 95 

expression in response to changes in the cellular environment32. We chose to assess genomic 96 

investment in resource acquisition as the number of genes encoding secreted enzymes (SE), 97 

secondary metabolite biosynthetic pathways (SM), and membrane transporters (MT). SE and SM 98 

are required for acquisition and control of extracellular resources. MT are required for resource 99 

uptake and their function provides the physiological foundation for the concept of the 100 

copiotrophy-oligotrophy continuum12,33–35. The C-S-R framework describes tradeoffs with 101 

respect to resource acquisition and environmental variability30,31. Competitors (C) have high 102 

investment in resource acquisition and favor intermediate levels of environmental variability. 103 

Stress tolerators (S) have low investment in resource acquisition and are disfavored by temporal 104 

variability. Ruderals (R) have low investment in resource acquisition and are favored by high 105 

levels of temporal variability. On the basis of this framework, we predicted a tradeoff whereby 106 

investment in resource acquisition (SE + SM) would be highest relative to investment in MT for 107 

intermediate levels of regulatory flexibility (TF:gene) and lowest at both high and low levels of 108 

regulatory flexibility. By clustering MAGs based on these tradeoffs and comparing resource 109 

acquisition and growth parameters across clusters, we demonstrate the ability of these genomic 110 

features to predict bacterial life history strategies. 111 
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 112 

Results and Discussion 113 

Identification of 13C-labeled contigs with metagenomic-SIP 114 

We used metagenomic-SIP to enrich for DNA from 13C-labeled bacteria and to identify 115 

13C-labeled contigs, thereby linking genomic content to C acquisition. Overall, we recovered 116 

between 5 x 108 and 1.3 x 109 reads in each metagenome library after quality control (Table S1). 117 

Co-assembly generated over 1.2 x 106 contigs that were >1000 bp long, of which 639,258 were 118 

13C-labeled in at least one treatment (>5X coverage in the 13C-treatment library and >1.5-fold 119 

increased coverage relative to the corresponding 12C-control library; Table S1). After 120 

normalizing for sequencing depth, the number of genes annotated from 13C-labeled contigs in 121 

each treatment was positively correlated with the number of 13C-labeled OTUs (Fig. S3; 122 

Pearson’s r = 0.795, p-value =0.018), as expected. The phylum representation observed for 13C-123 

labeled contigs differed somewhat from that observed for 13C-labeled OTUs as determined by 124 

16S rRNA sequencing (Fig. S4). This difference could be due to loss of some contigs from 13C-125 

labeled metagenomic libraries on the basis of genome G + C content or due to differences in 126 

annotation methodologies used in metagenomic and 16S rRNA based methods (see 127 

Supplementary Results). 128 

 129 

Genomic features of 13C-contigs explain variation in resource acquisition and growth dynamics 130 

We first tested whether the targeted genomic features explained variation in resource 131 

acquisition and growth dynamics at community level, as assessed across the entire collection of 132 

13C-labeled contigs (Fig. S5, Fig. S6) and 13C-labeled OTUs observed from each 13C-labeled 133 

treatment (Supplementary Dataset). This contig-based approach is meaningful because 13C 134 
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source identity had a large and significant effect on the identity of 13C-labeled taxa, with this 135 

variation driven by the overall dynamics of 13C-assimilation and growth, as previously 136 

described15. Three of the eight genomic features we examined explained significant variation in 137 

resource acquisition and growth dynamics (Fig. 1). Methyl-accepting chemotaxis protein genes 138 

(MCP) were positively correlated with max LFC (Pearson’s r = 0.954, p-value = 0.002; Fig. 1a), 139 

indicating that these genes are frequent in taxa that increase relative abundance dramatically in 140 

respond to new C inputs. In addition, MT (Pearson’s r = 0.907, p-value = 0.015) and osmotic 141 

stress response (OS) genes (Pearson’s r = 0.938, p-value = 0.004) were both positively correlated 142 

with C source bioavailability (Fig. 1b, c).  143 

Soil consists of a complex matrix36,37 in which microbial access to C is limited by spatial 144 

and temporal variability38,39. Moisture is a major determinant of resource availability in soils, 145 

controlling soil matrix conductivity and tortuosity, and thereby regulating rates of diffusion40–43 146 

as well as sorption/desorption kinetics44. For these reasons soil moisture is a major determinant 147 

of bacterial activity in soils45–47. While resource concentration is a major determinant of bacterial 148 

growth kinetics in aquatic environments, bioavailability is a major determinant of bacterial 149 

growth kinetics in soil15. Bioavailability, defined as the ability of a resource to cross the 150 

membrane, is determined in soil by solubility, sorption dynamics, and soil moisture8,48,49. High 151 

bioavailability C sources (e.g., glucose, xylose, and glycerol) are highly soluble, less likely to be 152 

sorbed to soil minerals, readily available for membrane transport, and their availability to cells 153 

governed primarily by diffusive transport as limited by soil moisture35. These substrates are 154 

degraded rapidly and so elevated concentrations are ephemeral in soils50. Hence, to compete 155 

effectively for highly bioavailable C sources, bacteria must exploit ephemeral periods when their 156 

resources are present in high concentration. Low bioavailability C sources (e.g., cellulose and 157 
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palmitic acid), in contrast, cannot be transported directly across the membrane until transformed 158 

by extracellular microbial products such as secreted enzymes3,31,51 or biosurfactants52. These 159 

substrates are typically insoluble in soils and degraded over a span of weeks, months, or even 160 

years. Hence, to compete effectively for low bioavailability C sources soil dwelling bacteria 161 

must invest in resource acquisition, by manufacturing extracellular products that facilitate access 162 

to insoluble particulate materials. 163 

Chemotactic bacteria can move through soil pore water and water films, allowing 164 

preferential access to C sources detected by MCP53,54. MCPs are a dominant chemoreceptor 165 

family shared by diverse bacterial phyla55,56, and they are widely recognized as directing 166 

chemotaxis56,57. Our finding that MCP genes increase in proportion to the max LFC of bacterial 167 

taxa (Fig. 1a), suggests that chemotaxis is an important determinant of fitness for bacteria whose 168 

relative abundance increases dramatically during ephemeral periods of high resource availability. 169 

Similar explosive population dynamics are expected for organisms having a ruderal strategy as 170 

described in Grime’s C-S-R framework30. Hence, we hypothesize that chemotaxis is adaptive in 171 

soils for growth-adapted bacteria that compete for ephemeral resources whose availability is 172 

driven by high environmental variability, and that MCP gene count is a genomic feature that can 173 

help identify soil dwelling bacteria having this life history trait. 174 

MT activity regulates resource uptake, and transporter kinetics have been described as a 175 

key determinant of copiotrophic and oligotrophic life history strategies in aquatic 176 

environments33–35,58. Hence, membrane transport is likely a key determinant of bacterial life 177 

history strategies in soil. We show that high MT gene frequency correlates with the ability of soil 178 

bacteria to acquire high bioavailability C sources (Fig. 1b). We hypothesize that high MT gene 179 

count is adaptive for bacteria that compete for ephemeral, highly bioavailable C sources. In soil, 180 
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high MT gene count is likely indicative of more copiotrophic bacteria with copiotrophs 181 

encompassing a wide diversity of life history strategies including both ruderals and competitors 182 

as defined by Grime’s framework30. We also hypothesize that low MT gene count is likely an 183 

indicator of oligotrophic bacteria that compete for less bioavailable C sources in soil, with low 184 

MT gene frequency indicating a tendency towards resource specialization. 185 

OS genes are affiliated with several cellular systems for surviving low water activity 186 

including compatible solutes, aquaporins, and ion homeostasis59,60. OS systems are of vital 187 

importance for microbial survival in soils due to the high variation in water activity61,62. We 188 

show that OS genes are more frequent in soil dwelling bacteria that acquire C from highly 189 

bioavailable C sources (Fig. 1c). Highly bioavailable C sources are transiently abundant in water 190 

filled pore space when soils are moist63. Soil pores dry out rapidly as moisture becomes limiting, 191 

hence we predict that OS is adaptive for bacteria that exploit resources present in water filled 192 

pore space. In contrast, bacteria using low bioavailability C sources localize preferentially to 193 

surfaces. Water films and biofilms are favored on soil surfaces42, buffering the organisms 194 

localized there from rapid variation in water activity. Our results suggest that OS is adaptive for 195 

soil dwelling bacteria of more copiotrophic character (i.e., ruderals and competitors), those that 196 

compete for high bioavailability substrates whose availability corresponds with rapid changes in 197 

water activity. 198 

One might naively predict that OS would be a characteristic of organisms having a stress 199 

tolerant life history strategy. The observation that OS does not predict a ‘stress tolerant’ bacterial 200 

lifestyle requires us to carefully consider how we define ‘stress’ in bacterial ecology. Grime’s 201 

original framework, from plant ecology, describes plant stress as limitation for light, nutrients, 202 

and/or water, which are resources required for plant growth30. This plant-centric definition of 203 
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stress, based on resource limitation, conflicts with the microbiological definition, in which 204 

‘stress’ is usually interpreted as abiotic stress (e.g., tolerance to pH, salinity, temperature, O2). 205 

Those bacteria that are adapted for resource limitation are typically defined as oligotrophs. 206 

Hence, Grime’s ‘stress tolerator’ strategy, as interpreted in the proper ecological context, is 207 

indicative of bacteria having oligotrophic characteristics15, and not those adapted for extremes of 208 

abiotic stress (e.g., extremophiles). These contrasting definitions of stress are a potential source 209 

of confusion when life history theory developed for plants is applied to bacteria. We propose that 210 

a better understanding of bacterial life history theory would be provided by interpreting the ‘S’ in 211 

C-S-R as a ‘scarcity-adapted’ rather than ‘stress-adapted’.  212 

 213 

Genomic features of 13C-MAGs explain variation in resource acquisition and growth dynamics 214 

 A limitation of the contig-based analysis described above is that statistical power is low 215 

since we have only 8 treatments. Hence, we also used MAGs to evaluate associations between 216 

genomic features and activity characteristics. We recovered 27 ‘medium quality’ MAGs64 from 217 

the 13C-labeled contigs (> 50% completeness and < 10% contamination; Supplemental Dataset; 218 

Supplemental Results). We linked these MAGs to corresponding 13C-labeled OTUs present in 219 

the exact same 13C-labeled DNA sample on the basis of taxonomic annotations (assigned by 220 

GTDBtk65, Supplemental Dataset). For example, the 13C-labeled MAG Glucose_Day01_bin.1 221 

was classified to the family Burkholderiacea and therefore linked to all Burkholderiacea OTUs 222 

13C-labeled in the glucose day 1 treatment. Three MAGs did not match any OTU 223 

(Cellulose_Day30_bin.7, PalmiticAcid_Day48_bin.4, and Vanillin_Day48_bin.1), while the 224 

others matched 1–56 OTUs each. For each 13C-labeled MAG, activity characteristics were 225 

averaged across the matching 13C-labeled OTUs (Fig. S7, Supplemental Dataset). We then 226 
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evaluated the number of genes associated with each genomic feature, normalized for MAG size 227 

(Fig. S8, Supplemental Dataset). As before, MT genes were positively correlated with C source 228 

bioavailability (Pearson’s r = 0.550, p-value = 0.043; Fig. 2A), and we found that TF genes 229 

(Pearson’s r = 0.881, p-value < 0.001) and secondary metabolite biosynthetic gene cluster 230 

(SMBC) abundance (Pearson’s r = 0.712, p-value = 0.001) were also positively correlated with C 231 

source bioavailability (Fig. 2b, c).  232 

Having high numbers of TF is thought to be an adaptive trait for microbes living in 233 

highly variable environments32,66,67. Certain taxa are known to be enriched in TF families but the 234 

evolutionary basis of variation in TF gene frequency is not well established68. Our finding that 235 

TF frequency correlates with C source bioavailability (Fig. 2b) suggests that growth on 236 

ephemeral C sources favors high TF, because this adaptive trait allows bacteria to respond 237 

effectively to high environmental variability. The metabolic and physiological changes induced 238 

by these TF may include previously discussed features such as MCP, MT, or OS systems. Our 239 

results support the idea that genomic investment in TF is an adaptive trait that varies with 240 

environmental variability of the ecological niche.   241 

Secondary metabolites include a wide range of small molecules produced by organisms. 242 

Bacteria often use these molecules to interact with their environments. Examples include 243 

antibiotics that kill or prevent the growth of other organisms, signaling molecules that mediate 244 

intercellular interactions, siderophores, chelators, and biosurfactants used to access insoluble 245 

nutrients69. Secondary metabolites can facilitate competition for limited resources70,71 and they 246 

can even mediate microbial predation72. Production of secondary metabolites requires multiple 247 

genes often found in clusters (i.e., SMBCs)73,74. We show that SMBC frequency correlates with 248 

C source bioavailability (Fig. 2c). This finding, runs counter to the idea that secondary 249 
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metabolites are important for competition on low bioavailability resources69,75,76. Given that this 250 

observation matches patterns observed for TF and MT we expect that SMBC are favored by 251 

conditions of environmental variability and/or resource acquisition. 252 

 253 

Genomic feature correlation in publicly available soil genomes and metagenomes 254 

We observed through metagenomic-SIP that C source bioavailability correlates with MT, 255 

OS, TF and SMBC frequencies and we hypothesize that these gene frequencies are predictive of 256 

an organisms position on the copiotroph-oligotroph continuum. From this hypothesis, we predict 257 

that these genomic features should correlate in independent genomic and metagenomic datasets. 258 

We assessed these relationships in several datasets generated from a range of different soils (see 259 

Supplementary Results). Since MT were significantly associated with C source bioavailability at 260 

both community level (13C-labeled contigs) and genome level (13C-labeled MAGs), we compared 261 

the gene frequencies for MT with those of TF, OS, and SMBCs in each independent dataset. 262 

Support for a relationship between MT and both TF and OS was supported in 4 of 7 independent 263 

datasets (Fig. 3a-e). We found no correlation between MT and SMBC frequencies within any of 264 

the datasets (Fig. 3).  265 

We also observed that MCP gene counts (Fig. 1a) and predicted rRNA gene (rrn) copy 266 

number15 both correlate with max LFC when new C is added to soil. We hypothesize that these 267 

traits are linked to ruderal strategies (a subset of copiotrophs), hence we predict that rrn copy 268 

number should correlate with MCP gene frequency in independent datasets. We compared MCP 269 

gene frequency to the natural log of either rrn copy number (for RefSoil), or tRNA gene count 270 

(for reference metagenome MAGs). While the RefSoil database contains complete genomes with 271 

accurate rrn copy numbers, MAGs from metagenomic datasets do not provide accurate rrn 272 
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annotations, therefore we used tRNA gene abundances as a proxy since tRNA gene count 273 

correlates with rrn copy number77. In further support of this proxy, we observed that rrn copy 274 

number and tRNA gene count are strongly correlated in RefSoil bacterial genomes (Pearson’s r = 275 

0.792, p-value < 0.001; Fig. S9). The natural log of rrn copy number was positively correlated to 276 

MCP gene abundance across the RefSoil dataset (Fig. 3a), yet the natural log of the tRNA gene 277 

counts were not correlated with MCP gene abundance in any of the other datasets (Fig. 3b-g).  278 

A correlational approach, as applied above, has two notable limitations. First, many of 279 

the genes in metagenomic datasets are poorly annotated. Inaccurate annotation can produce 280 

inaccurate gene counts for all of the gene systems we assessed. Second, adaptive tradeoffs 281 

between gene systems will not produce straightforward correlations, because the concept of a 282 

tradeoff implies an interaction whereby the adaptive benefit varies depending on the life history 283 

strategy of the organism78.  284 

 285 

Tradeoffs in genomic investment define life history strategies 286 

 Tradeoffs occur when the benefit of a trait in a given environment differs between two 287 

groups. For example, increases in environmental variability might tend to favor more investment 288 

in resource acquisition for oligotrophic organisms (because higher variability tends to produce 289 

higher average nutrient levels when resources are low), but less investment in resource 290 

acquisition in copiotrophic organisms (because investing in extracellular products that enable 291 

resource acquisition provides little benefit in a highly disturbed environment). To detect, among 292 

our 13C-labeled MAGs, tradeoffs between regulatory flexibility, resource acquisition, and 293 

membrane transport, we examined relationships between TF:gene and [SE + SM]:MT. The ratio 294 

TF:gene measures genomic investment in regulatory flexibility. The ratio [SE + SM]:MT 295 
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captures genomic investment in resource acquisition relative to uptake. SM represents the sum of 296 

all genes found in SMBCs, reflecting genomic investment in secondary metabolite biosynthesis. 297 

We summed SM and SE because these features represent genomic investment in extracellular 298 

products. Groups of genomes adapted to similar life history strategies should exhibit comparable 299 

genomic investment in these gene systems. We used k-means clustering based on genomic 300 

investment in these gene systems to group the MAGs into three clusters that we hypothesized 301 

would represent the C-S-R strategies. We then determined whether the properties of the genomes 302 

in each cluster matched predictions from the C-S-R framework. 303 

We observed evidence for tradeoffs in both regulatory flexibility and resource acquisition 304 

among these three clusters. TF tended to increase with total gene count (as expected), but 305 

TF:gene differed between the three clusters (Fig. 4a). When genome size was small, the three 306 

clusters differed little in TF, but as total gene count increased the clusters diverged with one 307 

cluster having less regulatory flexibility than the other two (Fig. 4a). We also observe that [SE + 308 

SM] gene counts tend to increase in proportion to MT counts in two clusters (as expected), but 309 

the other cluster, which has the highest MT counts, maintains low [SE + SM] counts (Fig. 4b). 310 

When these relationships are plotted together, we observe that one cluster tends to increase 311 

relative investment in resource acquisition ([SE + SM]:MT) along with regulatory flexibility 312 

(TF:gene), while the other two have the opposite response (Fig. 4c).  313 

These three clusters demonstrate adaptive tradeoffs consistent with Grime’s C-S-R 314 

framework. The scarcity strategists (i.e., oligotrophs; S) have low regulatory flexibility (Fig. 4a), 315 

and generally low genomic investment in transport (Fig. 4b), but their genomic investment in 316 

resource acquisition tends to increase in proportion to regulatory flexibility (Fig. 4c). That is, 317 

scarcity strategists whose ecological niches are the most constant require little genomic 318 
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investment in regulatory flexibility and resource acquisition, while those whose niches are more 319 

variable require more investment in regulatory flexibility and resource acquisition. In contrast, 320 

ruderals (R) have high regulatory flexibility (Fig. 4a), and high investment in transport (Fig. 4b), 321 

but they have low genomic investment in resource acquisition (Fig. 4b, c). Finally, the 322 

competitive strategists (C) have intermediate to high levels of regulatory flexibility (Fig. 4a), 323 

intermediate investment in membrane transport (Fig. 4b), but high genomic investment in 324 

resource acquisition (Fig. 4a) with little relationship between resource acquisition and regulatory 325 

flexibility (Fig. 4c). We expect many intermediate strategies among the C-S-R vertices, and as 326 

expected we see that scarcity specialists adapted for high levels of regulatory flexibility are 327 

difficult to distinguish from competitive specialists adapted for lower levels of regulatory 328 

flexibility.  329 

MAGs assigned to the three clusters differ in their resource acquisition and growth 330 

dynamics consistent with the expectations of life history theory. Ruderals and competitors 331 

acquired C sources that had significantly higher bioavailability than scarcity specialists (Fig. 5a), 332 

and they also consumed a higher diversity of C sources than the scarcity specialists, and this 333 

difference was significant (Fig. 5d). Ruderals, however, had significantly higher max LFC 334 

relative to competitors indicating the ability to increase population size dramatically in response 335 

to C input (Fig. 5b).  336 

In terms of genomic features, we see that both ruderals and competitors have higher TF 337 

and OS gene frequencies than scarcity specialists (Fig. 6a), while only the ruderals have higher 338 

MT relative to scarcity specialists, and these differences are significant (Fig. 6a). Ruderals are 339 

distinguished from both competitors and scarcity specialists by their low investment in SE and 340 

high investment in MCP (Fig. 6a). Competitors are distinguished from both scarcity and ruderal 341 
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specialists by their higher investment in adhesion (Fig. 6a). The general theme is that both 342 

ruderals and competitors have copiotrophic characteristics, but ruderals appear to be opportunists 343 

with adaptations that maximize their ability to exploit ephemeral resources, while competitors 344 

have greater genomic investment in resource acquisition. Scarcity specialists appear less well 345 

adapted for regulatory flexibility and more likely to specialize in their C sources (Fig. 5d). 346 

 347 

Predicting ecological strategies from genome features 348 

 We used parameters of TF:gene and [SE + SM]:MT, defined from the three 13C-labeled 349 

MAG clusters described above, to predict life history strategies for RefSoil genomes. The 350 

resulting RefSoil genome clusters, predicted from these genome parameters, exhibited genomic 351 

characteristics representative of the expected life history tradeoffs (Fig. 7a-c). The relationship 352 

between TF:gene and [SE + SM]:MT is roughly triangular, as we would expect for the C-S-R 353 

framework (Fig. 7c). It is apparent that a vast diversity of intermediate life history strategies exist 354 

(Fig. 7c), and this is also an expected result since relatively few taxa will maximize adaptive 355 

tradeoffs while most will optimize adaptive traits to suit their particular ecological niche. 356 

Genomes having ruderal characteristics are enriched in the Gammaproteobacteria and 357 

Firmicutes (Fig. 7f, Fig. S10), as we would expect, though members of these phyla can be found 358 

in all three clusters (Fig. S10) owing to the vast diversity of these groups. In addition, genomes 359 

having competitive characteristics are highly enriched in the Actinobacteria and 360 

Betaproteobacteria, while genomes characteristic of scarcity specialists are enriched in the 361 

Alphaproteobacteria and other diverse phyla (e.g., Verrucomicrobia, Acidobacteria, 362 

Gemmatamonadetes, Chloroflexi, etc.) whose members are difficult to cultivate in laboratory 363 

media  (Fig. 7f, Fig. S10). Most bacterial phyla are metabolically and ecologically diverse and 364 
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we would not expect homogeneity among species within a phylum. In addition, previous 365 

observations show that C assimilation dynamics in soil are not well predicted by phylum level 366 

classification15. However, certain strategies are more common in some phyla than others, and 367 

these patterns, along with the taxonomic makeup of our MAG clusters (Fig. 5d-f) match general 368 

expectations. Furthermore, the three clusters we defined for RefSoil genomes possess patterns of 369 

genomic investment that match predictions derived from the C-S-R framework and are consistent 370 

with predictions based on the 13C-labeled MAGs (Fig. S11, Table S2). 371 

 372 

Conclusions 373 

 Metagenomic-SIP enables us to link genome features to growth dynamics and C 374 

acquisition dynamics of bacteria as they occur in soil. We used a targeted approach, employing 375 

data from a multi-substrate DNA-SIP experiment, to select bacterial genomes that maximize life 376 

history tradeoffs. We identified genomic features (MCP, MT, OS, TF, and SMBCs) that are 377 

associated with growth and C acquisition dynamics of soil dwelling bacteria. We also identified 378 

genomic signatures (TF:gene and [SE + SM]:MT) that represent life history parameters useful in 379 

inferring bacterial ecological strategies from genome sequence data. We show that, while many 380 

intermediate strategies exist, there are diverse taxa that maximize life history tradeoffs defined 381 

by these genomic parameters. The genomic signatures we identified are readily assessed using 382 

genomic and metagenomic sequencing and these parameters may be useful in the assessment of 383 

bacterial life history strategies.  384 

 385 

Methods 386 

Soil microcosms, DNA extraction, and isopycnic centrifugation 387 
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The multi-substrate DNA-SIP experiment that provided the DNA samples we used for 388 

metagenomic-SIP has been described in detail elsewhere15. An overview of the experimental 389 

design for this prior DNA-SIP experiment is provided for reference in Fig. S1. Briefly, a mixture 390 

of 9 different C sources was added to soil at 0.4 mg C g-1 dry soil each (each representing about 391 

3.3% of total soil C), moisture was maintained at 50% water holding capacity, and sampling was 392 

performed destructively over a period of 48 days. All treatments were derived from the exact 393 

same soil sample (from an agricultural field managed under a diverse organic cropping rotation), 394 

they received the exact same C sources, and they were incubated under the exact same 395 

conditions, the only variable manipulated was the identity of the 13C-labeled C source. Eight 13C-396 

treatments from this prior experiment (each defined by the identity of the 13C source and the time 397 

of sampling) were chosen for metagenomic-SIP because the previous analysis15 indicated that 398 

their 13C-labeled DNA was enriched in bacteria that maximized differences in life history 399 

strategy (Fig. S2 and see also Fig. 5e from the prior study15). The treatments selected for 400 

metagenomic-SIP were: glucose day 1, xylose day 6, glucose day 14, glycerol day 14, cellulose 401 

day 30, palmitic acid day 30, palmitic acid day 48, and vanillin day 48. We also sampled 12C-402 

control treatments for days 1, 6, 14, 30, and 48 to facilitate identification of 13C-labeled contigs 403 

and improve metagenome assembly and binning79. DNA used in this experiment (after 404 

undergoing extraction, isopycnic centrifugation, and fractionation) was the same as described 405 

previously15 and was archived at -20˚C for ~2 years prior to use in this study. 406 

 407 

Metagenomic sequencing 408 

For each of the eight treatments and five controls, we combined 10 µl of purified, 409 

desalted, DNA solution from each CsCl gradient fraction having a buoyant density between 1.72 410 
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and 1.77 g ml-1. By pooling equal volumes from these fractions, we aimed to replicate the 411 

composition of the DNA pool of the entire heavy buoyant density window (1.72-1.77 g ml-1). 412 

Metagenomic-SIP simulations have demonstrated that this buoyant density range sufficiently 413 

enriches for 13C-labeled bacterial DNA79. DNA amplification and sequencing were performed by 414 

the Joint Genome Institute (JGI; Berkeley, CA, USA) using standard procedures. In short, DNA 415 

was amplified and tagged with Illumina adaptors using a Nextera XT kit (Illumina Inc, San 416 

Diego, CA, USA) and sequencing was performed on the NovaSeq system (Illumina Inc). 417 

 418 

Read processing, metagenome assembly and annotation, and MAG binning 419 

Quality control read processing and contig assembly was performed by the JGI as 420 

previously described80. Contigs were generated via terabase-scale metagenome coassembly from 421 

all 13 libraries using MetaHipMer81. Gene calling and annotation of assembled contigs was 422 

performed through JGI’s Integrated Microbial Genomes and Microbiomes (IMG/M) system82. 423 

Quality filtered reads, co-assembled contigs, and IMG annotations can be accessed through the 424 

JGI genome portal (CSP ID 503502, award DOI: 10.46936/10.25585/60000933). We mapped 425 

reads from each library to all contigs that were over 1000 bp in length using BBMap83 then 426 

calculated contig coverages using jgi_summarize_bam_contig_depths from MetaBAT84.  427 

As we were primarily interested in genomes of bacteria that incorporated 13C into their 428 

DNA, we only used putatively 13C-labeled contigs to bin metagenome assembled genomes 429 

(MAG). Within each treatment, we defined a 13C-labeled contig as having an average read 430 

coverage greater than 5X in the 13C-treatment library and a 1.5 fold increase in coverage from 431 

the 12C-control to 13C-treatment library after accounting for difference in sequencing depths. In 432 

calculating the fold increase in coverage, we normalized for sequencing depth by dividing 433 
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coverage by read counts. We binned 13C-labeled contigs separately for each treatment based on 434 

both tetranucleotide frequency and differential coverage with MetaBAT284, MaxBin85, and 435 

CONCOCT86. Default settings were used with the exceptions that minimum contig lengths was 436 

set to 1000 bp for both MaxBin and CONCOCT and 1500 bp for MetaBAT2. Final MAGs were 437 

generated by refining bins from all three binning tools using metaWRAP87. Coverage 438 

information used during each binning run was from the paired 13C-treatment and 12C-control 439 

libraries, not the entire set of libraries. Therefore, we ran MAG binning eight separate times, 440 

once for each treatment. MAG qualities were calculated using CheckM88. For further analyses, 441 

we only used MAGs with over 50% completeness and less than 10% contamination (i.e., 442 

‘medium quality’ MAGs) following the guidelines for minimum information about metagenome-443 

assembled genomes64. 444 

The binning approach we employed used co-assembled contigs, but binned these contigs 445 

separately across the eight 13C-labeled treatments. As such, some MAGs were identified in 446 

multiple treatments if their genomes were 13C-labeled by multiple 13C-labeled C sources. These 447 

sister MAGs might represent a single population that can derive its C from multiple C sources, or 448 

functionally distinct subpopulations each preferentially adapted for a different C source. Strain 449 

heterogeneity has previously been implicated as a cause of poor binning outcomes with soil 450 

metagenomes89. Traditional MAGs tend to include the entire pan-genome of heterogeneous 451 

strains representing an individual taxon90. Our 13C-labelling informed binning strategy should 452 

have greater ability to differentiate functionally differentiated sub-populations than traditional 453 

binning strategies. Further characteristics of our MAGs are discussed in Supplemental Results. 454 

 455 

Statistical analysis and computing 456 
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 Unless otherwise stated, all statistical analyses were performed and all figures generated 457 

with R91 version 3.6.3. Code for all analyses and most processing is available through GitHub 458 

(https://github.com/seb369/CcycleGenomicFeatures). 459 

 460 

Testing associations between genomic features and activity characteristics 461 

We first assessed associations between genomic features and activity characteristics by 462 

comparing the genetic composition of 13C-labeled contigs with the averaged characteristics of the 463 

13C-labeled OTUs identified in each corresponding treatment from our prior study15. We 464 

developed a list of eight genome features hypothesized to be associated with life history 465 

strategies and microbial C-cycling activity in soil environments: 1) MCP genes were identified 466 

by the product name “methyl-accepting chemotaxis protein”. 2) Transporter genes were 467 

identified by product names containing the terms “transporter”, “channel”, “exchanger”, 468 

“symporter”, “antiporter”, “exporter”, “importer”, “ATPase”, or “pump”. The resulting gene list 469 

was then filtered to include only those predicted by TMHMM92 (version 2.0c) to have at least 470 

one transmembrane helix. 3) Adhesion associated genes included adhesins and holdfast and 471 

identified by product names “holdfast attachment protein HfaA”, “curli production 472 

assembly/transport component CsgG/holdfast attachment protein HfaB”, “adhesin/invasin”, 473 

“fibronectin-binding autotransporter adhesin”, “surface adhesion protein”, “autotransporter 474 

adhesin”, “adhesin HecA-like repeat protein”, “ABC-type Zn2+ transport system substrate-475 

binding protein/surface adhesin”, “large exoprotein involved in heme utilization and adhesion”, 476 

“Tfp pilus tip-associated adhesin PilY1”, “type V secretory pathway adhesin AidA”. 4) 477 

Transcription factor genes were first identified by product names containing the terms 478 

“transcriptional regulator”, “transcriptional repressor”, “transcriptional activator”, “transcription 479 
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factor”, “transcriptional regulation”, “transcription regulator”, or “transcriptional [family] 480 

regulator”, where [family] is replaced by some gene family identification. Additional 481 

transcription factor genes were identified from the protein fasta sequences using DeepTFactor93. 482 

5) Osmotic stress related genes were identified by product names containing the terms 483 

“osmoregulated”, “osmoprotectant”, “osmotically-inducible”, “osmo-dependent”, “osmolarity 484 

sensor”, “ompr”, “l-ectoine synthase”. 6) Dormancy related genes covered three different 485 

mechanisms94. Endospore production was indicated by products containing the name “Spo0A”, 486 

though no Spo0A genes were found. Dormancy resuscitation was indicated by products 487 

containing the name “RpfC”, a resuscitation promoting factor. Dormancy related toxin-antitoxin 488 

systems were indicated by products containing the names “HipA”, “HipB”, “mRNA interferase 489 

MazF”, “antitoxin MazE”, “MazEF”, “RelB”, “RelE”, “RelBE”, “DinJ”, or “YafQ”. 7) Secreted 490 

enzyme genes were first annotated against three enzyme databases to include enzymes important 491 

for breakdown of organic matter. Carbohydrate active enzymes were annotated by mapping 492 

protein sequences to the dbCAN95 database (release 9.0) with HMMER using default settings. Of 493 

these enzyme genes only those in the glycoside hydrolase (GH), polysaccharide lyase (PL), or 494 

carbohydrate lyase (CE) groups were retained. Proteases were annotated by mapping protein 495 

sequences to the MEROPS96 database (release 12.3) using DIAMOND blastp alignment with 496 

default settings except an E-value < 1x10-10. Enzymes containing an α/β hydrolysis unit were 497 

annotated by mapping protein sequences to the ESTHER97 database (downloaded June 11th, 498 

2021) with HMMER using default settings. While some enzymes containing α/β hydrolysis units 499 

are included in the carbohydrate active enzymes, this group also includes lipases. All annotated 500 

enzyme genes from these three groups were then filtered to those containing a secretion signal 501 

peptide sequence annotated by SignalP98 (version 5.0b). Gram + annotations were used for any 502 
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genes annotated to the Firmicutes or Actinobacteria phyla, and Gram – annotations were used 503 

for all others. 8) Bacterial secondary metabolite biosynthetic gene clusters (SMBC) were 504 

predicted using antiSMASH99 (version 5.1.2) with default settings. 505 

For each genomic feature, except for SMBCs, we calculated the percentage of all protein 506 

coding genes from each 13C-labeled contig pool (i.e., 13C-labeled in each treatment) that were 507 

annotated as described above. For SMBCs, we divided the number of SMBCs in each 13C-508 

labeled contig pool by the number of protein coding genes in that pool. We then measured 509 

Pearson’s correlation between the genomic feature abundance and each of the activity 510 

characteristics averaged across the OTUs that were also 13C-labeled in each treatment. Within 511 

this bulk measurement, a greater percentage of the protein coding gene pool annotated to a 512 

genomic signature can indicate that, 1) a greater proportion of the represented genomes contain 513 

those genes, 2) the represented genomes have multiple copies of those genes, or 3) there is a 514 

greater diversity of those genes within the represented genomes. To account for increased false 515 

discovery rate with multiple comparisons, we adjusted p-values within each activity 516 

characteristic using the Benjamini-Hochburg procedure (n = 7). 517 

 518 

Examining genomic signatures of life history strategies in MAGs 519 

We next assessed associations between genomic features and activity characteristics by 520 

comparing the genetic composition of 13C-labeled MAGs with the averaged characteristics of the 521 

OTUs mapping to those MAGs. As very few 16S rRNA genes were recovered and binned, we 522 

matched MAGs to 13C-labeled OTUs based on taxonomy and 13C-labeling patterns. MAG 523 

taxonomy was assigned using GTDB-Tk65. MAGs were taxonomically mapped to the set of 524 

OTUs that matched at the highest corresponding taxonomic level, then this set of OTUs was 525 
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filtered to include those that were 13C-labeled in the same treatment as the MAG. Genomic 526 

features within the contigs of each MAG were determined as described above, except that for 527 

secreted enzymes, gram positive or gram negative SignalP predictions were assigned based on 528 

MAG taxonomy. Gene and SMBC counts were adjusted as before but based on the total protein 529 

coding gene count of the MAGs. We then measured Pearson’s correlation between the genomic 530 

feature abundance within the MAGs and each of the activity characteristics averaged across the 531 

OTUs mapped to the MAGs. To account for increased false discovery rate with multiple 532 

comparisons, we adjusted p-values within each activity characteristic using the Benjamini-533 

Hochburg procedure (n = 8). 534 

 535 

Examining genomic signatures of life history strategies with independent studies 536 

 We analyzed publically available soil microbiome datasets to determine whether the 537 

genomic relationships we observed in 13C-labeld MAGs were representative of soil dwelling 538 

bacteria. Seven datasets where chosen: RefSoil100, Diamond et al. 2019101, Yu et al. 2020102, 539 

Wilhelm et al. 2019103, Wilhelm et al. 2021104, Zhalnina et al. 2018105, and Li et al. 2019106. 540 

Assemblies from Diamond et al. 2019, Yu et al. 2020, and Zhalnina et al. 2018 were 541 

downloaded from GenBank on June 21st, 2021 (NCBI accessions in Supplemental dataset). 542 

Assemblies from Wilhelm et al. 2019 and Wilhelm et al. 2021 were acquired from the authors. 543 

Assemblies from Li et al. 2019 were downloaded from figshare 544 

(https://figshare.com/s/2a812c513ab14e6c8161). Annotation was performed identically for all 545 

assemblies to avoid biases introduced by different annotation pipelines. Protein coding genes 546 

were identified and translated using Prodigal107 through PROKKA108. Transcription factor genes, 547 

SMBCs, and genes encoding transmembrane helices were further annotated as described above. 548 
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Transporter genes, transcription factor genes, MCP genes, osmotic stress response genes, and 549 

SMBCs were identified and abundances were calculated as described above. 16S rRNA genes 550 

and tRNA genes were identified from PROKKA annotations. Pearson correlations were analyzed 551 

between transporter gene abundances and transcription factor gene abundances, osmotic stress 552 

response gene abundances, and SMBC abundances and between the natural log of 16S rRNA 553 

gene counts or tRNA gene counts MCP gene abundances separately for each independent 554 

dataset. Within each dataset, p-values were adjusted for multiple comparisons using the 555 

Benjamini-Hochburg procedure (n = 4). 556 

 557 

Using tradeoffs to define and predict life history strategies 558 

 The C-S-R framework predicts evolutionary tradeoffs in energy allocation to resource 559 

acquisition across habitats that vary temporally (e.g., variation in disturbance frequency). Since 560 

deletion bias in microbial genomes produces streamlined genomes of high coding density, we 561 

can assess evolutionary investment in a particular cellular system by quantifying genomic 562 

resources devoted to the operation of that system. That is, genetic information must be replicated 563 

and repaired with each generation; hence, energy allocation to a given cellular system over 564 

evolutionary time can be assessed as the proportion of the genome devoted to that system. To 565 

identify putative life history strategies for 13C-labeled MAGs, we used k-means clustering to 566 

group MAGs based genomic investment in transcription factors and resource acquisition. 567 

Investment in transcription factors was defined as the TF gene count divided by total gene counts 568 

(TF:gene). Relative investment in resource acquisition was determined by summing SE and SM 569 

counts, removing duplicates found in both categories, then dividing by the number of MT genes 570 

([SE + SM]/MT). k-means clustering was performed using k-centroids cluster analysis with R 571 
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package flexclust109 after scaling and centering the two values and using a k = 3. Statistical 572 

significance was assessed using the Kruskal-Wallis test and the Dunn test was used to assess 573 

post-hoc comparisons.  574 

 We calculated the same tradeoffs in genomic investment (TF:gene and [SE + SM]/MT) 575 

for RefSoil genomes. Predicted clusters for RefSoil genomes were made using these two 576 

genomic signatures as inferred by the R package flexclust109, and using the three 13C-labeled 577 

MAG clusters as the training dataset. Differences in genomic investments for the eight 578 

previously discussed genomic features were then assessed across clusters using the Kruskal-579 

Wallis test with the Dunn test used to assess post-hoc comparisons.  However, in this analysis, 580 

adhesion genes were identified as genes with product names containing the terms “adhesion” or 581 

“adhesins” because the previously used product names were not found in these annotations. 582 
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 845 

 846 

Figure 1: Genomic features of 13C-labeled contigs correlate with activity characteristics of 13C-847 

labeled OTUs. a) Abundance of methyl-accepting chemotaxis protein (MCP) genes correlates 848 

positively with the mean maximum log2 fold change (Max LFC) of the 13C-labeled OTUs. b) 849 

Abundance of membrane transporter (MT) genes correlates positively with the mean 850 

bioavailability of C sources acquired by the 13C-labeled OTUs. c) Abundance of osmotic stress 851 

response genes (OS) correlates positively with the mean bioavailability of C sources acquired by 852 

the 13C-labeled OTUs. In all cases, the abundance is calculated as the percent of protein coding 853 

genes in 13C-labeled contigs that are annotated within the genomic feature. Red lines represent 854 

linear relationships with shading indicating the 95% confidence intervals. Pearson’s r and p-855 

values are provided. p-values are adjusted for multiple comparisons using the Benjamini-856 

Hochburg procedure (n = 8). 857 

 858 

 859 

 860 

 861 

Figure 2: Genomic features of 13C-labeled MAGs correlate with activity characteristics of 13C-862 

labeled OTUs taxonomically and isotopically mapped to MAGs. a) MT frequency, b) TF 863 

frequency, and c) SMBC abundance all correlate positively with the mean bioavailability of C 864 

sources acquired. For MT and TF, frequency is calculated as the percent of protein coding genes 865 

in MAGs that are annotated within the genomic feature. For SMBCs, abundance is the number of 866 

SMBCs divided by the number of protein coding genes in MAGs. Red lines represent linear 867 

relationships with shading indicating the 95% confidence intervals. Pearson’s r and p-values are 868 

provided. p-values are adjusted for multiple comparisons using the Benjamini-Hochburg 869 

procedure (n = 8). 870 

 871 

 872 

 873 
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 874 

 875 

Figure 3: MT correlates with TF and OS in 4 of 7 independent metagenomic datasets examined 876 

and MCP correlates with log rrn copy number in the RefSoil database. The tRNA gene count 877 

was used as a proxy for rrn copy number as described in text. The datasets are a) RefSoil 878 

genomes, b) Diamond et al. 2019 MAGs recovered from drought simulated meadow soils, c) Yu 879 

et al. 2020 MAGs recovered from heavy DNA extracted from agricultural soils supplied with 880 
13C-labeled ryegrass, d) Wilhelm et al. 2019 MAGs recovered from heavy DNA extracted from 881 

forest soils treated with either 13C-labeled cellulose or lignin, e) Wilhelm et al. 2021 phylobins 882 

recovered from heavy DNA fractions extracted from agricultural soil supplied with 13C-labeled 883 

cellulose, f) Zhalnina et al. 2018 genomes isolated from Avena barbata rhizosphere, and g) Li et 884 

al. 2019 MAGs recovered from rhizospheres of Zea mays, Triticum aestivum, and Arabidopsis 885 

thaliana. Red or grey lines represent the linear relationships with shading indicating the 95% 886 

confidence intervals. Red relationships are statistically significant (adjusted p-value < 0.05) with 887 
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p-value adjusted for multiple comparisons within dataset using the Benjamini-Hochberg 888 

procedure (n = 4). Correlation statistics are in Supplementary Dataset. 889 

  890 

 891 

 892 

 893 

Figure 4: Genomic investment in gene systems can be used to cluster MAGs into life history 894 

strategies. MAGs were grouped using k-means clustering on scaled values of TF:genes and [SE 895 

+ SM]:MT. a) Relationship between TF and total gene count. b) Relationship between summed 896 

SE and SM gene counts and MT, where SM indicates total genes within SMBCs. c) The 897 

relationship between genomic investment in resource acquisition ([SE + SM]:MT) and 898 

regulatory flexibility (TF:genes). Clusters are colored by predicted life history strategies within 899 

the C-S-R framework. d-f) The taxonomic identifies of the MAGs (at the order level) 900 

corresponding to panels a-c.  901 

 902 
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 904 

 905 

Figure 5: Resource acquisition and growth dynamics differ across life history strategies 906 

indicative of tradeoffs predicted from Grime’s C-S-R framework. Clusters corresponding to life 907 

history strategies were determined from k-means clustering based on TF:genes and [SE + 908 

SM]:MT, as previously indicated (from Fig. 4). Significance was determined by Kruskal-Wallis 909 

tests with post hoc comparisons performed using Dunn tests. a) Bioavailability of 13C sources 910 

acquired was lower for scarcity adapted MAGs than for competitor or ruderal MAGs. b) Max 911 

LFC was higher for ruderal MAGs than competitor MAGs. c) No difference was observed in 912 

latency across the three clusters. d) Number of 13C sources acquired was lower for scarcity 913 
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adapted MAGs than for competitor or ruderal MAGs. e) No difference was observed in the 914 

natural log of rrn copy number across the clusters. 915 

 916 

 917 

 918 

 919 

Figure 6: Genomic investment in gene systems differs across the three life history strategies 920 

indicative of tradeoffs predicted from Grime’s C-S-R framework. Clusters corresponding to life 921 

history strategies were determined from k-means clustering based on TF:genes and [SE + 922 

SM]:MT, as previously indicated (from Fig. 4). Significance was determined by Kruskal-Wallis 923 

tests with post hoc comparisons performed using Dunn tests. a) Ruderal MAGs have higher 924 
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investment in MCP than competitor or scarcity adapted MAGs. b) Ruderal MAGs have higher 925 

investment in MT than scarcity adapted MAGs. c) Competitor MAGs have higher investment in 926 

adhesion genes than ruderal or scarcity adapted MAGs. d) Scarcity adapted MAGs have a lower 927 

investment in TF than ruderal or competitor MAGs. e) Scarcity adapted MAGs have a lower 928 

investment in OS than ruderal or competitor MAGs. f) There is no statistically significant 929 

difference in investment in dormancy genes across clusters. g) Ruderal MAGs have a lower 930 

investment in SE than competitor or scarcity adapted MAGs. h) There is no statistically 931 

significant difference in investment in SMBCs across clusters. 932 

 933 

 934 

 935 

 936 

Figure 7: Tradeoffs in genomic features can be used to predict life history strategies from 937 

reference genomes. RefSoil bacterial genomes were clustered based on genomic tradeoffs 938 

between resource acquisition ([SE + SM]:MT) and regulatory flexibility (TF:genes) using k-939 

means clustering trained on the three clusters defined for 13C-labeled MAGs (from Fig. 4) a) 940 

Relationship between TF and total gene count. b) Relationship between summed SE and SM 941 

gene counts and MT, where SM genes are total genes within SMBCs. c) The relationship 942 

between genomic investment in resource acquisition ([SE + SM]:MT) and regulatory flexibility 943 

(TF:genes). Clusters are colored by predicted life history strategies within the C-S-R framework. 944 

d-f) Taxonomic identifies of genomes corresponding with panels a-c (at the phylum or class 945 

level: Actino. = Actinobacteria, Alpha. = Alphaproteobacteria, Bact. = Bacteroidetes, Cyano. = 946 

Cyanobacteria, Delta. = Deltaproteobacteria, Firm. = Firmicutes, Gamma. = 947 
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Gammaproteobacteria, Spiro. = Spirochetes, and ‘< 10’ = aggregated taxa that have less than 10 948 

genomes each). 949 
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