

Apelin Stimulation of the Perivascular MuSC Niche Enhances Endogenous Repair in Muscular Dystrophy

Emmeran Le Moal¹, Yuguo Liu^{1*}, Jasmin Collerette-Tremblay^{1*}, Simon Dumontier¹, Joël Boutin¹, Junio Dort², Zakaria Orfi², Joris Michaud³, Hugo Giguère^{1,4}, Alexandre Desroches¹, Kien Trân¹, François Vézina⁵, Sonia Bedard⁵, Catherine Raynaud⁵, Frederic Balg⁵, Philippe Sarret¹, Michelle S. Scott⁶, Jerome N. Feige^{3,7}, Jean-Bernard Denault¹, Nicolas A. Dumont², Eric Marsault¹, Mannix Auger-Messier^{1,4}, C. Florian Bentzinger^{1,#}

1. Département de pharmacologie-physiologie
Institut de pharmacologie de Sherbrooke
Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke
Faculté de médecine et des sciences de la santé
Université de Sherbrooke, QC, Canada
2. CHU Sainte-Justine Research Center
School of rehabilitation
Faculty of Medicine
Université de Montréal, QC, Canada
3. Nestlé Institute of Health Sciences
Nestlé Research, Lausanne, Switzerland
Lausanne, Switzerland
4. Division of Cardiology
Department of Medicine
Centre de Recherche du CHUS
Université de Sherbrooke, QC, Canada
5. Department of Surgery
Division of Orthopedics
Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke
Faculté de médecine et des sciences de la santé
Université de Sherbrooke, QC, Canada
6. Département de Biochimie et Génomique Fonctionnelle
Faculté de médecine et des sciences de la santé
Université de Sherbrooke, QC, Canada
7. School of Life Sciences
École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

* Equal contribution

Corresponding author: C. Florian Bentzinger, cf.bentzinger@usherbrooke.ca

Abstract

1 Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to
2 the pathogenesis of muscular dystrophy (MD). Here we describe that defects in the endothelial
3 cell (EC) compartment of the perivascular stem cell niche in three different types of MD are
4 associated with inefficient mobilization of MuSCs following tissue damage. Using
5 chemoinformatic analysis, we identified the 13 amino acid form of the peptidic hormone apelin
6 (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. In dystrophic mice,
7 administration of AP-13 generates a pro-myogenic EC-rich niche that supports MuSC function
8 and markedly improves tissue regeneration, muscle strength, and physical performance.
9 Moreover, we demonstrate that EC specific knockout of the AP-13 receptor leads to regenerative
10 defects that phenocopy major pathological features of MD. Altogether, we provide *in vivo* proof-
11 of-concept that enhancing endogenous repair by targeting the perivascular niche is a viable
12 therapeutic avenue for MD and characterize AP-13 as a novel drug candidate for systemic
13 treatment of stem cell dysfunction.

Keywords: MuSCs; Satellite cells, Muscular dystrophy; Stem cell niche; Endothelial cells; Apelin; Endogenous repair

Main

1 Muscular dystrophies (MDs) are a heterogeneous group of rare genetic diseases usually
2 diagnosed in children that are often characterized by severe skeletal muscle wasting and a
3 progressive loss of ambulation. The heterogeneity of genetic defects causing MD represents a
4 major challenge for the development and manufacturing of genome targeted therapeutics.
5 Therefore, mutation-independent treatment approaches that are applicable to a broad spectrum
6 of MD patients represent an important therapeutic opportunity.

7 Several non-genetic approaches for the treatment of MD have been described. Most
8 common are glucocorticoids, which preserve muscle strength and prolong ambulation in kids
9 with Duchenne MD by reducing inflammation and fibrosis¹. In addition, a number of drugs that
10 modulate autophagy, reduce oxidative stress, and boost mitochondrial function have been
11 shown to improve myofiber survival and thereby slow disease progression². In preclinical models
12 of certain forms of congenital MD (CMD), anti-apoptotic agents display beneficial effects and are
13 now evaluated in clinical trials^{3,4}. Next to targeting inflammation and increasing myofiber
14 survival, stimulating endogenous repair of skeletal muscle has emerged as a therapeutic
15 approach for MD⁵. Myofibers in dystrophic muscles undergo constant cycles of de- and
16 regeneration. Over time, the muscle stem cell (MuSC) pool and its myogenic support cell
17 environment fail to keep up with tissue repair leading to a progressive loss of contractile
18 function⁶⁻⁸. Thus, stimulating MuSCs so that myogenic repair outpaces tissue degeneration
19 represents an attractive strategy to preserve functional muscle mass in MD.

20 In the mdx mouse model of Duchenne MD, increasing asymmetric MuSC divisions using
21 epidermal growth factor promotes the production of committed progeny for differentiation⁹. This
22 strategy leads to enhanced endogenous repair and increases force production in dystrophic
23 muscles. Supplying antibodies or small molecular compounds that activate integrin signaling
24 represents another approach that has been shown to ameliorate the phenotype of mdx mice^{10,11}.
25 Increased integrin activity improves the regenerative function of MuSCs and, at the same time,
26 decreases myofiber membrane damage leading to stronger muscles. Altogether, these studies
27 demonstrate that in the mdx mouse model, multiple approaches that directly target MuSC
28 function have therapeutic effects. Maintenance, self-renewal, and differentiation of MuSCs are
29 tightly controlled by their ECM environment and different supportive cell populations in the stem
30 cell niche¹². Our recent work has shown that a reduction of inflammatory cells in the MuSC niche

1 using pro-resolving mediators mobilizes the stem cell pool and increases myogenic
2 differentiation promoting myofiber repair in *mdx* mice¹³. These results suggest that strategies
3 aiming at a normalization of the stem cell microenvironment represent an additional intervention
4 point for stimulating endogenous repair in Duchenne MD.

5 In contrast to Duchenne MD that is caused by mutations in the inner membrane protein
6 dystrophin, most forms of CMD are caused by truncation or absence of extracellular matrix
7 (ECM) proteins or their receptors¹⁴. Interestingly, regenerative defects have been described in
8 mouse models of both laminin- α 2 (LAMA2) MD and collagen VI (ColVI)-related myopathy^{15,16}.
9 Loss of ECM proteins in certain forms of CMD leads to the upregulation of partially compensating
10 alternative isoforms^{17,18}. In addition, severe forms of CMD lead to major shifts in the cellular
11 composition of the tissue, including increased amounts of inflammatory and pro-fibrotic cells^{19,20}.
12 Therefore, changes in the cellular and extracellular niche environment of MuSCs likely have a
13 dominant role in triggering regenerative defects in CMDs. These observations support the notion
14 that stimulating MuSCs or targeting the niche to normalize stem cell function and enhance
15 endogenous repair also represent a potential therapeutic avenue to slow disease progression in
16 this group of MDs.

17 Here we systematically investigated MuSC function and pathologic adaptations of the
18 stem cell niche in mouse models of Duchenne MD, LAMA2 MD, and ColVI-related myopathy.
19 We demonstrate that an impaired expansion capacity of the stem cell pool and aberrant changes
20 in the endothelial cell (EC) compartment of the niche are a common denominator of all three
21 types of MD. Using chemoinformatic screening, we identify the 13 amino acid hormone apelin
22 as a systemically administrable therapeutic that stimulates ECs and enhances MuSC function
23 in dystrophic muscles. Lastly, we demonstrate that EC specific loss of the apelin receptor (APJ)
24 leads to aberrant changes in the skeletal muscle microvasculature and phenocopies major
25 features of MD. In summary, our work characterizes defects in the perivascular MuSC niche as
26 a hallmark of MD and identifies apelinergic signaling as a therapeutic target for the stimulation
27 of endogenous repair.

Results

1 **Muscular dystrophy affects the proliferative capacity of MuSCs**

2 To systematically assess stem cell function and the regenerative capacity of skeletal muscle
3 across a spectrum of different types of MD, we compared mouse models of ColVI-related
4 myopathy (d16), Duchenne MD (mdx), and LAMA2 MD (dyW), to wild-type (wt) animals (**Fig.**
5 **1a**). In order to maximize tissue regeneration and MuSC activation, we injected mice with the
6 snake venom cardiotoxin (CTX) and analyzed the tissue at 5 and 10 days post injury (dpi).
7 Hematoxylin and eosin staining of muscle cross-sections revealed that at 5 and 10 dpi all three
8 MD models displayed changes in tissue architecture including an increased interstitial volume
9 and a higher abundance of mononuclear cells when compared to wt controls (**Fig. 1b**). In the
10 uninjured baseline, differences in fiber size were observed in all dystrophic models compared to
11 control animals (**Fig. 1c**). mdx and d16 did not display differences in fiber size at 10 dpi (**Fig.**
12 **1d**). In contrast, the size distribution at 10 dpi was shifted significantly towards smaller fibers in
13 dyW mice. Immunostaining for embryonic myosin heavy chain (eMHC), a marker of newly
14 formed muscle fibers, showed that, following injury, tissue maturation in d16 and dyW mice was
15 delayed compared to wt controls and remained increased with respect to the baseline in
16 uninjured muscles (**Fig. 1e-i**). Moreover, d16 and dyW mice displayed an increased abundance
17 of the fibrosis marker fibronectin at both 5 and 10 dpi (**Fig. 1e, 1j-m**). Staining for the MuSC
18 marker Pax7 identified reduced stem cell numbers in all three MD models at 5 dpi, and in d16
19 and dyW mice at 10 dpi (**Fig. 1n-q**). Importantly, relative to pre-injury levels, MuSC numbers in
20 the dystrophic mouse models did not increase by the same magnitude as in wt mice (**Fig. 1r**).
21 The MuSC pool in dyW mice showed a particularly impaired expansion potential and did not
22 change significantly compared to pre-injury levels. Thus, a reduced capacity for mobilization of
23 the stem cell pool is a feature of multiple types of MD. Overall, the severity of the regenerative
24 phenotype increases in from mdx to d16 mice and is most pronounced in the dyW model (**Fig.**
25 **1s**).

26 **MD affects microvascular remodeling**

27 In order to study the cellular composition of the MuSC niche in the different types of MD, we
28 quantified the number of fibro–adipogenic progenitors (FAPs), macrophages, and ECs under
29 uninjured conditions, and at 5 and 10 dpi. Staining for Pdgfra revealed increased FAP numbers

1 at baseline in dyW mice (**Fig. 2a,b**). At 5 dpi, FAP numbers increased in mdx and dyW mice,
2 while they decreased in d16 muscles compared to wt controls (**Fig. 2c,e**). In dyW mice, FAP
3 numbers remained higher than in wt controls at 10 dpi (**Fig. 2d**). F4/80 positive macrophages
4 showed an increased abundance at baseline and following injury in all MD models (**Fig. 2f-j**).
5 Compared to wt mice, mdx mice showed a particularly pronounced macrophage response at 5
6 dpi. Notably, respective to wt control muscles, the number of ECs was lower in mdx and dyW
7 mice at baseline (**Fig. 2k,l**). Moreover, EC numbers were dramatically reduced at both 5 and 10
8 dpi in all three MD models (**Fig. 2k,m-o**). These results support the notion that impaired
9 microvascular remodeling is a pathologic hallmark of MD.

10 **Identification of AP-13 as a skeletal muscle EC stimulatory molecule**

11 In light of microvascular phenotype we observed in dystrophic muscles, we set out to identify
12 angiogenic factors with the potential to stimulate ECs. G protein-coupled receptors (GPCRs)
13 represent the largest family of druggable targets in the human genome²¹. Based on the single
14 cell atlas by De Micheli et al.²², we compiled a list of GPCRs expressed by skeletal muscle ECs
15 under uninjured conditions and at 5 dpi (**Fig. 3a,b**). We observed that APJ, the receptor for the
16 small peptidic hormone apelin, shows the second highest expression at 5 dpi. Mapping of APJ
17 to the whole single cell transcriptome of skeletal muscle showed that its expression is highly
18 specific to ECs and does not overlap with Pax7 positive MuSCs (**Fig. 3c**). APJ immunostaining
19 of skeletal muscle sections of wt mice at 5 dpi confirmed a distinct colocalization with ECs, while
20 MuSCs, macrophages, and FAPs did not express discernable levels of the receptor (**Fig. 3d,e**).

21 The APJ ligand apelin is naturally produced as a 77-amino-acid precursor that is
22 processed into active 36, 17, and 13 amino acid fragments found in the systemic circulation²³.
23 Apelin 13, the smallest active form of apelin, has a molecular weight of 1.5 kDa and is naturally
24 pyroglutamylated at its N-terminus (**Fig. 3f,g**). To investigate potential stimulatory effects on
25 ECs, we produced the pyroglutamylated apelin 13 (AP-13) fragment using solid phase peptide
26 synthesis (**Supplementary Fig. 1a**)²⁴. Purity of AP-13 was confirmed to be >95% using
27 analytical UPLC/MS (data not shown). *In vitro* experiments revealed that AP-13 elicits a dose
28 dependent proliferative response of ECs (**Fig. 3h**). In contrast, MuSC derived primary myoblasts
29 did not react with increased proliferation to AP-13 (**Fig. 3i**). Altogether, these results identify AP-
30 13 is a candidate for the targeted stimulation of ECs in dystrophic skeletal muscle.

1 **AP-13 mediated stimulation of the perivascular niche improves endogenous repair**

2 Since they display the most pronounced regenerative defects and microvascular phenotype, we
3 decided to assess the ability of AP-13 to stimulate skeletal muscle ECs in dyW mice. To this end
4 we implanted the dystrophic mice at the age of 14 days with osmotic pumps supplying AP-13 or
5 PBS vehicle (veh) for four weeks (**Fig. 4a**). As predicted by our *in vitro* results, we observed that
6 AP-13 treatment increased the number of ECs in dyW muscles by 59% when compared to the
7 veh condition (**Fig. 4b**). AP-13 caused a 14% reduction in the number of FAPs but did not affect
8 macrophages (**Fig. 4c,d**). No significant effect on fibrosis or fibers with membrane damage that
9 stain for intracellular IgG were observed as a consequence of AP-13 treatment (**Fig. 4e,f**).
10 Moreover, western blot for cleaved caspase 3 revealed that apoptotic processes were not
11 altered in the AP-13 group (**Supplementary Fig. 2a-c**). Interestingly, AP-13 mediated
12 stimulation of ECs was accompanied by a 58% increase in Pax7 positive MuSCs and an 80%
13 increase of differentiating myogenin (MyoG) positive cells (**Fig. 4g,h**). In agreement with
14 increased MuSC proliferation and differentiation, AP-13 treatment led to a 72% increase in newly
15 formed eMHC positive fibers (**Fig. 4i**). Thus, AP-13 stimulation of skeletal muscle ECs promotes
16 MuSC function and endogenous repair in dyW mice but does not affect fibrosis and the survival
17 or integrity of muscle fibers.

18 **Systemic AP-13 treatment slows disease progression in MD**

19 Cumulation over the four-week treatment course revealed that the AP-13 treated group of dyW
20 mice displayed a 12% higher average body weight (**Fig. 5a,b**). As opposed to veh treated dyW
21 mice, not a single animal in the AP-13 group died before the study endpoint (**Fig. 5c**). To
22 uncouple potential positive effects of AP-13 on skeletal muscle in dyW mice from effects on
23 secondary tissues, we performed *ex-vivo* and *in situ* muscle force measurements (**Fig. 5d,e**).
24 This revealed that *extensor digitorum longus* (EDL) muscles isolated from dyW mice that were
25 treated for 3 weeks with AP-13 were in average 109% stronger than muscles from the veh
26 control group (**Fig. 5f**). Similarly, *in situ* stimulation of the posterior muscle compartment of the
27 lower leg revealed a 69% increase in force production in the AP-13 group compared to the veh
28 condition (**Fig. 5g**).

29 To determine whether AP-13 treated dyW mice show a global amelioration of disease
30 progression compared to the veh group, we challenged them using a number of physical

1 performance tests. This revealed a 180%, 118% and 166% increase in the mean impulse in AP-
2 13 treated mice in the rotarod, single beam, and horizontal grid challenge respectively when
3 compared to veh treated animals (**Fig. 5h-k**). In summary, AP-13 mediated stimulation of
4 endogenous repair in dyW muscles is accompanied by dramatic gains in muscle force and
5 overall physical performance.

6 **AP-13 treatment causes no adverse cardiac effects**

7 MDs are frequently accompanied by cardiac dysfunction. Normalized to their body weight, dyW
8 mice in the veh group had 30% heavier hearts than wt mice (**Supplementary Fig. 3a,b**). This
9 suggests the presence of hypertrophic compensatory growth or fibrosis. Compared to veh, AP-
10 13 reversed this phenotype and the treated dyW mice had heart weights that were not different
11 from the untreated wt group. Moreover, echocardiography revealed that the cardiac index and
12 fractional shortening of hearts in the AP-13 treated group were similar to untreated wt hearts,
13 while they were increased by 76% and 20% respectively in the veh group (**Supplementary Fig.**
14 **3c,d**). Therefore, we conclude that AP-13 has no adverse effects on heart function.

15 **EC specific knockout of APJ phenocopies MD features**

16 Our results suggest that AP-13 not only holds therapeutic potential for MD but, given the high
17 expression of APJ in skeletal muscle ECs, is also an important endogenous regulator of
18 angiogenesis in this tissue. Indicative of an angiogenic response induced by the chronic de- and
19 regenerative processes in dystrophic muscle, we observed a 71% upregulation of APJ in the
20 microvasculature of uninjured dyW mice when compared to wt controls (**Supplementary Fig.**
21 **4a**). To address the role of endogenous APJ in ECs, we generated mice carrying a CreERT2
22 cassette under the Cdh5 promoter with floxed alleles of APJ (APJ^{EC}KO) and, following tamoxifen
23 mediated gene excision, analyzed them at 5 and 10 dpi (**Fig. 6a,b**). Loss of APJ led to a 37%
24 and 41% reduction in CD31 positive cells at 5 and 10 dpi respectively when compared to the wt
25 condition (**Fig. 6c-e**). Interestingly, hematoxylin and eosin staining of skeletal muscle cross
26 sections revealed that APJ^{EC}KO mice displayed an increase in mononuclear cells and interstitial
27 volume at both time-points after injury that resembles the regenerative phenotype observed in
28 severe MD (**Fig. 6f**). Compared to wt controls, fiber size was significantly reduced in APJ^{EC}KO
29 mice at 10 dpi (**Fig. 6g,h**). Indicating a delayed regenerative response in APJ^{EC}KO mice, staining
30 for eMHC showed a 6% decrease in eMHC positive fibers at 5 dpi and a 306% increase at 10

1 dpi (**Fig. 6i-k**). Fibronectin staining also revealed an 43% increase of the fibrotic area 5 dpi and
2 an increase of 53% at 10 dpi in APJ^{EC}KO mice (**Fig. 6l-n**). Supporting the notion that, similar to
3 MD, microvascular defects in skeletal muscle affect the stem cell pool in APJ^{EC}KO mice, the
4 number of Pax7 positive MuSCs was reduced by 50% at 5 dpi compared to wt controls (**Fig. 6o-**
5 **q**). Moreover, correlating with delayed tissue regeneration, APJ^{EC}KO mice showed a 30%
6 reduction of differentiating MyoG positive MuSCs at 5 dpi and a 52% increase at 10 dpi (**Fig. 6r-**
7 **t**). We conclude that EC specific loss of APJ leads to defective microvascular remodeling, an
8 impaired expansion capacity of the MuSC pool, and a myopathic phenotype reminiscent of MD.

9 Altogether, our study identifies microvascular defects associated with regenerative
10 dysfunction as a major pathologic feature of MD. We identify APJ in ECs as a novel therapeutic
11 target for MD and demonstrate that AP-13 is a viable pharmacologic option for the systemic
12 stimulation of endogenous MuSC mediated repair.

Discussion

1 We observed that defective microvascular remodeling is a pathologic hallmark of multiple
2 types of MD that correlates with MuSC dysfunction. Stimulation of angiogenesis using AP-13 is
3 able to enhance MuSC function in dystrophic tissues and leads to a dramatic amelioration of
4 disease progression. Complementing our findings, it has been shown that EC specific knockout
5 of *Flt1* leads to a higher capillary density in skeletal muscle that goes along with improved
6 histological parameters and force generation in *mdx* mice²⁵. The microvasculature supplies
7 tissues with nutrients, circulating growth factors, gases, and electrolytes, and serves as a sink
8 for waste products. Ischemia, the reduction of blood flow to tissues, leads to hypoxia, increased
9 inflammation, adaptations in cellular metabolism that under extreme conditions cause cell death.
10 Ischemia is typically accompanied by an increase in the expression of angiogenic molecules
11 such as vascular endothelial growth factor (VEGF), which promotes the migration of ECs for
12 vascular sprouting²⁶. Suggesting an important role of APJ in angiogenesis, loss-of-function
13 models of this receptor show severe EC sprouting defects²⁷. Thus, it is conceivable that
14 increased levels of APJ in the vasculature in dystrophic skeletal muscles are part of an ischemic
15 angiogenic response.

16 Next to their role in providing access to the systemic circulation through the
17 microvasculature, ECs control MuSC function through diverse paracrine factors including IGF1
18 and angiopoietin 1¹². Vice-versa, MuSCs stimulate ECs through the release of VEGF²⁸. Using
19 elegant tissue clearing methods, Verma et al., have shown that ECs present Notch ligands
20 promoting MuSC self-renewal in the proximity of blood vessels²⁹. These data suggest that
21 stimulation of ECs by exogenously supplied AP-13 leads to a feed-forward loop in dystrophic
22 skeletal muscle that amplifies the supportive interplay of these two cell types and thereby boosts
23 the regenerative response.

24 The most abundant isoforms of apelin found in human plasma are apelin-13 and -17³⁰.
25 Plasma concentrations of AP-13 decrease during aging and constitutive global apelin knockout
26 mice display a sarcopenic phenotype³¹. Systemic supplementation of AP-13 reverses diverse
27 hallmarks of skeletal muscle aging including regenerative dysfunction. Interestingly, it has been
28 described that the skeletal muscle microvasculature in sedentary older adults is significantly
29 reduced³². These observations suggest that stimulation of the perivascular niche could also
30 contribute to the beneficial effects of AP-13 on endogenous repair and MuSC function in aging.

1 Moreover, physical exercise increases AP-13 plasma concentrations in humans³¹. Thus, the
2 reduced physical activity of dystrophic mice may lead to decreased endogenous levels of AP-
3 13 providing a therapeutic window for supplementation.

4 Several forms of MD are accompanied by cardiac complications³³. Our results
5 demonstrate that AP-13 does not negatively affect heart function. Moreover, we observed no
6 changes in histology in diverse organs of AP-13 treated mice (data not shown). Clinical trials
7 that addressed the effects of AP-13 on insulin sensitivity in humans have shown no adverse
8 cardiovascular events and safety reports did not show any other side effects related to the
9 treatment³⁴. Thus, AP-13 possesses a promising safety profile as a therapeutic molecule. The
10 half-life of AP-13 *in vivo* is <5 min^{35,36}. Importantly, our previous work has shown that
11 macrocyclization and other modifications of apelin 13 can prolong its half-life in plasma ex-vivo
12 by more than an order of magnitude and, at the same time, increase its binding affinity for the
13 APJ receptor³⁷. Moreover, we demonstrated that substitution of the C-terminal Phe(13) of AP-
14 13 with unnatural amino acids leads to a higher affinity to the APJ receptor and inhibits the
15 production of intracellular cAMP more potently²⁴. Thus, we conclude that AP-13 represents an
16 ideal candidate for hit-to-lead optimization of a pharmaceutical compound for the treatment of
17 MD.

18 Taken together, our study demonstrates that changes in the perivascular niche are
19 accompanied by MuSC dysfunction in MD. We identify and characterize the systemically
20 administrable AP-13 as a therapeutic molecule that is able to increase the EC content in
21 dystrophic muscles and thereby mobilizes endogenous MuSC mediated myofiber repair.

Acknowledgements

1 We thank Kristy Red-Horse (Stanford University) for providing the APJ flox mice. C.F.B. is
2 supported by the Canadian Institutes of Health Research (CIHR, PJT-162442), the Natural
3 Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2017-05490), the
4 Fonds de Recherche du Québec - Santé (FRQS, Dossiers 296357, 34813, and 36789), the
5 ThéCell Network (supported by the FRQS), the Canadian Stem Cell Network, and a research
6 chair of the Centre de Recherche Médicale de l'Université de Sherbrooke (CRMUS). E.M. was
7 supported by CIHR (PJT-376770 and PJT-399567), NSERC (RGPIN-1140468), and the
8 Canada foundation for innovation (CFI, 32000). M.A.M. is supported by CIHR (PJT-376770 and
9 PJT-399567), the FRQS (Dossiers 29255 and 284164), CFI (34568), and the Heart and Stroke
10 Foundation of Canada new investigator awards. J.B. is supported by NSERC (RGPIN-2017-
11 05988). P.S. holds the Canada Research Chair in Neurophysiopharmacology of Chronic Pain
12 and is supported by CIHR (FDN-148413). N.A.D is supported by FRQS (Dossiers 35015 and
13 296512), CIHR (PJT-156408 and PJT-155369), and NSERC (RGPIN-2018-05979). E.L.M. is
14 supported by a postdoctoral fellowship of the FRQS (Dossier 258477). J.C.T. is supported by a
15 Canada Graduate Scholarships-Master's (CGS M) fellowship and the FRQS (Dossier 254142).
16 H.G. is supported by a CIHR Frederick Banting and Charles Best graduate scholarship (CGS-
17 D).

Author contributions

18 C.F.B initiated and managed the project. E.L.M., J.C.T., Y.L., J.D., Z.O., J.M., J.B.D., A.D., and
19 H.G. designed and conducted experiments. S.D. and M.S.S. provided bioinformatic support and
20 J.B. managed the dyW mouse colony. K.T. synthesized AP-13. F.B., F.V., S.B., and C.R. provided
21 tissues for myoblast isolation that were used in early unpublished experiments contributing to
22 this study. C.F.B., E.L.M., P.S., N.A.D., J.N.F., E.M., and M.A.M. supervised students,
23 interpreted the results and/or edited to the manuscript.

Competing financial interests

24 J.M, J.N.F. and C.F.B are or were employees of Nestec S.A., Switzerland

Figure Legends

1 **Fig. 1: Muscular dystrophy (MD) affects the proliferative capacity of MuSCs.** **a**, Scheme
2 outlining the MD models used in our study and graphical overview of the experimental timeline.
3 d16 mice are a model for ColVI-related myopathy, mdx mice for Duchenne MD, and dyW mice
4 for LAMA2 MD. C57BL/6 mice were used as background matched wild-type (wt) controls. **b**,
5 Representative haematoxylin and eosin stained cross sections of the *tibialis anterior* (TA)
6 muscle from wt controls (ctrl), mdx, d16 and dyW mice under uninjured (uninj.) and at 5 and 10
7 days post cardiotoxin injury (dpi). **c,d**, Frequency distribution of minimal fiber feret classes in TA
8 muscles of ctrl, mdx, d16 and dyW muscles under uninjured conditions (c) and at 10 dpi (d). **e-**
9 **m**, Immunostaining and quantification of embryonic myosin heavy chain positive fibers (eMHC)
10 co-stained with fibronectin in TA muscle sections of ctrl, mdx, d16 and dyW mice under uninjured
11 conditions (f,j), and at 5 (g,k) and 10 (h,l) dpi. Kinetics of eMHC positive fibers (i) and fibronectin
12 expression over the regenerative time course (m). **n-r**, Immunostaining and quantification of
13 Pax7 positive cells in TA muscle sections in ctrl, mdx, d16 and dyW mice under uninjured
14 conditions (o), and at 5 (p) and 10 dpi (q). Kinetics of Pax7 positive cells over the regenerative
15 time course (r). **s**, Table summarizing the severity of endogenous repair defects in dystrophic
16 mouse models. - = decreased, - - strongly decreased, + = increased, + + strongly increased, √
17 = similar to ctrl. Results are expressed as means + sem. n ≥ 3 mice per condition. Scale bars =
18 50 µm (b) and 100 µm (e and n). P values were calculated using one and two-way ANOVA with
19 Tukey's post-hoc test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

20 **Fig. 2: MD affects microvascular remodeling.** **a-e**, Immunostaining and quantification of
21 Pdgfra positive cells in TA muscle sections in ctrl, mdx, d16 and dyW mice under uninjured
22 conditions (b), and at 5 (c) and 10 dpi (d). Kinetics of Pdgfra positive cells over the regenerative
23 time course (e). **f-j**, Immunostaining and quantification of F4/80 positive cells in TA muscle
24 sections in ctrl, mdx, d16 and dyW mice under uninjured conditions (g), and at 5 (h) and 10 dpi
25 (i). Kinetics of F4/80 positive cells over the regenerative time course (j). **k-o**, Immunostaining
26 and quantification of CD31 positive cells in TA muscle sections in ctrl, mdx, d16 and dyW mice
27 under uninjured conditions (l), and at 5 (m) and 10 dpi (n). Kinetics of CD31positive cells over
28 the regenerative time course (o). Results are expressed as means + sem. n ≥ 3 mice per

1 condition. Scale bars 100 μ m. P values were calculated using one and two-way ANOVA with
2 Tukey's post-hoc test. * $P<0.05$, ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$.

3 **Fig. 3: Identification of AP-13 as an EC stimulatory molecule.** **a,b**, Heat map of the top 20
4 most expressed GPCRs in ECs under uninjured conditions (a) and at 5 dpi (b) and their cognate
5 ligands based on single cell transcriptomics of TA muscles. UMI = Unique molecular identifiers
6 **c**, Uniform manifold approximation and projection (UMAP) representation of single cell
7 transcriptomes obtained from TA muscles. Expression of the apelin receptor APJ is shown next
8 to Pax7 to label MuSCs and CD31 to label endothelial cells (ECs). **d,e**, Immunostaining and
9 quantification of APJ levels co-stained with CD31, Pax7, F4/80, and PDGFR α in TA muscle
10 cross sections of wt mice at 5 dpi. **f,g**, Chemical structure (f) and amino acid profile of the pyr-
11 apelin-13 peptide (AP-13) (g). **h,i**, Proliferation of ECs (h) and MuSC derived myoblasts (i) in
12 response to increasing concentrations of AP-13. Results are expressed as means + sem. $n \geq 3$
13 mice per condition. Scale bars = 100 μ m. P values were calculated using one way ANOVA with
14 Tukey's post-hoc test (h,i). * $P<0.05$, ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$.

15 **Fig. 4 : AP-13 stimulates the perivascular MuSC niche and improves endogenous repair**
16 **in MD.** **a**, Scheme outlining the AP-13 treatment strategy of dyW mice. **b**, Immunostaining and
17 quantification of CD31 positive cells in TA muscle cross sections of dyW mice treated with
18 vehicle (veh) or AP-13. **c**, Immunostaining and quantification of Pdgfra positive cells in TA
19 muscle cross sections of dyW mice treated with veh or AP-13. **d**, Immunostaining and
20 quantification of F4/80 positive cells in TA muscle cross sections of dyW mice treated with veh
21 or AP-13. **e**, Immunostaining and quantification of IgG positive fibers in TA muscle cross sections
22 of dyW mice treated with veh or AP-13. **f**, Immunostaining and quantification of the fibronectin
23 positive area in TA muscle cross sections of dyW mice treated with veh or AP-13. **g**,
24 Immunostaining and quantification of Pax7 positive cells in TA muscle cross sections of dyW
25 mice treated with veh or AP-13. **h**, Immunostaining and quantification of Myogenin (MyoG)
26 positive cells in TA muscle cross sections of dyW mice treated with veh or AP-13. **i**,
27 Immunostaining and quantification of eMHC positive fibers in TA muscle cross sections of dyW
28 mice treated with veh or AP-13. Results are expressed as means + sem. $n \geq 3$ mice per
29 condition. Scale bars = 100 μ m. P values were calculated using students *t*-test. * $P<0.05$,
30 ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$.

1 **Fig. 5: Systemic AP-13 treatment slows disease progression in MD.** **a**, Body weight
2 evolution of dyW mice over the veh or AP-13 treatment time-course. **b**, Cumulative body weight
3 gain of veh and AP-13 treated dyW mice. **c**, Survival curve of veh or AP-13 treated dyW mice
4 over the treatment time-course. **d,e**, Scheme outlining the treatment strategy of dyW mice with
5 veh or AP-13 (d) and the set-up for *ex-vivo* and *in situ* muscle force measurements (e). **f**,
6 Quantification of normalized *ex-vivo* force of extensor digitorum longus muscles of dyW mice
7 treated with veh or AP-13. Black lines designate littermates. **g**, Quantification of normalized *in*
8 *situ* isometric torque force of posterior muscles of the lower leg of dyW mice treated with veh or
9 AP-13. Black lines designate littermates. **h**, Scheme depicting the rotarod, single beam
10 suspension, and grid suspension fitness tests. **i-k**, Quantification of the normalized mean
11 impulse (time to task failure x body mass) of dyW mice treated with veh or AP-13 in the rotarod
12 assay (i), single beam challenge (j) and horizontal grid test (k). Results are expressed as means
13 + sem. $n \geq 8$ (a-c), $n \geq 3$ (f-g), and $n \geq 5$ (i-k) mice per condition. P values were calculated using
14 students *t*-test. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

15 **Fig. 6: EC specific knockout of APJ phenocopies MD features.** **a,b**, Scheme outlining the
16 breeding strategy to generate APJ^{EC}KO mice and the muscle injury protocol. **c-e**,
17 Immunostaining and quantification of CD31 positive cells in TA muscle cross sections of wt
18 control (ctrl) and APJ^{EC}KO mice at 5 (d) and 10 dpi (e). **f**, Representative haematoxylin and
19 eosin-stained cross sections of the TA muscle of ctrl and APJ^{EC}KO mice at 5 and 10 dpi. **g,h**,
20 Frequency distribution of minimal fiber feret classes in TA muscles of ctrl and APJ^{EC}KO muscles
21 5 (g) and 10 dpi (h). **i-k**, Immunostaining and quantification of eMHC positive fibers in TA muscle
22 sections in ctrl and APJ^{EC}KO mice at 5 (j) and 10 dpi (k). **l-n**, Immunostaining and quantification
23 of the fibronectin positive area in TA muscle sections in ctrl and APJ^{EC}KO mice at 5 (m) and 10
24 dpi (n). **o-q**, Immunostaining and quantification of Pax7 positive cells in TA muscle sections in
25 ctrl and APJ^{EC}KO mice at 5 (p) and 10 dpi (q). **r-t**, Immunostaining and quantification of MyoG
26 positive cells in TA muscle sections in ctrl and APJ^{EC}KO mice at 5 (s) and 10 dpi (t). Results are
27 expressed as means + sem. $n \geq 3$ per condition. Scale bars = 100 μ m. P values were calculated
28 using student *t*-test (d,e,j,k,m,n,p,q,s,t) and two-way ANOVA with Tukey's post-hoc test (g,h).
29 * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

Materials and Methods

Mice and animal care

1 Husbandry and all experimental protocols using mice were performed in accordance with the
2 guidelines established by the animal committee of the Université de Sherbrooke and the Centre
3 Hospitalier Universitaire Sainte-Justine of the Université de Montréal, which are based on the
4 guidelines of the Canadian Council on Animal Care. mdx (Jackson Laboratory, Stock No:
5 013141), d16 (Jackson Laboratory, Stock No: 024972), and dyW mice (Jackson Laboratory,
6 Stock No: 013786) were generally analyzed at 6-8 weeks of age. Age matched C57BL/6 mice
7 (Charles River, strain 027) were used as wt ctrl animals. Physiological and functional testing of
8 veh or AP-13 treated dyW mice was performed at 5 weeks of age. Female and male mice were
9 included at equal proportions. To ensure optimal access to water and food, cages containing
10 dyW mice were supplied with long-necked water bottles and wet food. For AP-13 or veh
11 treatment, dyW mice were implanted with equilibrated osmotic minipumps (Alzet, model 1004)
12 at the age of 14 days through a small incision at the level of the scapula. Surgery was performed
13 under isoflurane anesthesia. Osmotic minipumps were loaded either with veh (100 μ l of 0.9%
14 NaCl) or AP-13 (1mg/kg/day). APJ^{EC}KO mice were generated by crossing Cdh5(PAC)CreERT2
15 (Taconic) and APJ flox mice³⁸. To trigger genetic recombination, mice were injected with
16 tamoxifen (Toronto Research Chemicals Inc, T006000-25) dissolved in corn oil (i.p., 2mg) during
17 five consecutive days.

Muscle regeneration and histology

18 Muscle injury was induced by injection of 50 μ l of 10 μ M cardiotoxin (CTX, Latoxan, L8102) from
19 Naja Mossambica into the *tibialis anterior* (TA) muscle of isoflurane-anesthetized animals that
20 were treated with a single dose of buprenorphine for pain management. Following euthanasia
21 by CO₂, TA muscles were harvested and embedded in gum tragacanth (Sigma, G1128), snap-
22 frozen in liquid nitrogen chilled isopentane, and stored at -80 °C. 10 μ m thick muscle
23 cryosections were stained using hematoxylin and eosin (Sigma, MHS16). Images have been
24 acquired using a Nanozoomer scanner (Hamamatsu, C10730-12). For immunostaining, muscle
25 cryosections were fixed with 4% paraformaldehyde (TCI America, P0018) for 10 min and then
26 permeabilized with 0.5% Triton-X (Sigma, T8787) for 10 min. Sections were blocked in 5%
27 bovine serum albumin (Thermo Fisher Scientific, BP9703100) for at least 1 h at room

1 temperature. Primary antibodies (eMHC, DSHB, F1.652; laminin, Sigma-Aldrich, L9393;
2 dystrophin, DSHB, MANDRA1-7A10; Pax7, DSHB; myogenin, Abcam, ab124800; CD31,
3 Thermo Fisher Scientific, 14-0311-082; fibronectin, Sigma-Aldrich F3648; PDGFR α , R&D
4 systems, AF1062; F4/80, Biorad, MCA497RT; and APJ, ProteinTech 20341-1-AP) were diluted
5 in blocking solution and incubated overnight at 4 °C in a wet chamber. Appropriate secondary
6 antibodies (Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scientific, 62249) were
7 applied for 2 h at room temperature, and mounted using Mowiol (Sigma, 81381) for image
8 acquisition. For Pax7 staining, antigen retrieval using hot 10 mM sodium citrate buffer (Sigma,
9 S4641) supplemented with 0.05% Tween 20 (Bio Basic Canada, TB0560) was performed for 20
10 min and Fab mouse antigen fragment (Jackson ImmunoResearch, 115-007-003) was added
11 during the blocking step. For visualization, an IgG1 specific secondary antibody was used. For
12 minimal fiber feret analysis, sections were stained with dystrophin and analyzed using the Open-
13 CSAM ImageJ macro³⁹.

Analysis of single-cell RNA-sequencing data

14 A gene expression matrix of RNA-seq data in FPKM (GEO, GSE143437) from tissue resident
15 endothelial cells was used to generate a gene list with the gene ontology tag GO: 0004930 “G
16 protein-coupled receptor activity” using the Biomart mining tool of Ensembl. From the curated
17 expression matrix containing only G protein-coupled receptor (GPCR) activity-related genes,
18 log2 expression of the top expressed GPCRs with cognate ligands was extracted manually
19 and mapped using GraphPad Prism. Colored Uniform Manifold and Projection (UMAP) plots
20 were generated using Seurat version 4.04 based on single cell sequencing data of TA muscles
21 at 5 dpi^{22,40,41} (GEO: GSE143437). Individual cells were colored based on their expression
22 levels of genes APJ, Pax7 and CD31.

Apelin-13 Synthesis

23 Pyr-apelin-13 (AP-13) was synthesized using Fmoc chemistry on solid support as previously
24 described (**Figure S1A**)²⁴. Briefly, 2-chloro trityl chloride resin (2-CTC, Matrix Innovation, 2-401-
25 1310) was mixed with a solution of amino acid (Fmoc-L-Phe-OH, 1.2 equiv, Chem-Impex
26 International, 02443), *N,N*-diisopropylethylamine (DIPEA, 2.5 equiv, Chem-Impex International,
27 00141) in dichloromethane (DCM, Thermo Fisher Scientific, D37-20) overnight at room
28 temperature. After removing excess reagents by filtration, the resin was washed consecutively

1 with DCM, isopropanol (Thermo Fisher Scientific, A416-20), DCM, isopropanol, and DCM for 3
2 min for each solvent. This washing sequence was used to rinse the resin after every reaction
3 (i.e. capping, deprotection or amino acid coupling). Unreacted groups were capped with a
4 mixture of DCM, Methanol (Thermo Fisher Scientific, A412-20), and DIPEA (3.5:1:0.5) for 1 h.
5 The next amino acid was added to the peptide sequence in two steps: Fmoc deprotection and
6 amino acid coupling. The Fmoc protecting group was removed by treating resin twice with 20%
7 piperidine (Chem Impex International, 02351) in *N,N*-dimethylformamide (DMF, Thermo Fisher
8 Scientific, D119-20) for 10 min. The coupling step was carried out using O-(7-Azabenzotriazol-
9 1-yl)-*N,N,N',N'*-tetramethyluronium hexafluorophosphate (HATU, 5 equiv, Matrix Innovation, 1-
10 063-0001), amino acid (5 equiv), and DIPEA (5 equiv) in DMF at room temperature for 30 min.
11 These steps were repeated to build the full sequence of Pyr-apelin-13. Cleavage of the peptide
12 from the resin and amino acid sidechain deprotection was carried out using a mixture of
13 trifluoroacetic acid (TFA, Chem Impex International, 00289), triisopropylsilane (TIPS, Oakwook
14 Chemical, S17975), ethanedithiol (EDT, Sigma, 8.00795), and water (92.5:2.5:2.5:2.5). The
15 crude peptide was precipitated in tert-butyl methyl ether (TBME, ACROS Organics,
16 AC378720025). After the supernatant was removed by centrifugation, the peptide was dissolved
17 in 10% acetic acid and the aqueous layer was extracted, filtered, and purified by preparative
18 HPLC (ACE5 C18 column 250 × 21.2 mm, 5 µm spherical particle size). The purity (> 95%) and
19 authenticity of the peptide were confirmed by UPLC-MS Waters (Milford, USA, column Acuity
20 UPLC CSH C18, 2.1 x 50 mm packed with 1.7 µm particles) and high resolution mass
21 spectrometry (electrospray infusion on a maXis ESI-Q-ToF apparatus from Bruker, Billerica,
22 USA).

Apelin-13 proliferation assay

23 Cells were maintained in at 37°C in a 5% CO₂ incubator. ECs (ATCC, CRL-1730) were cultured
24 in endothelial cell growth medium MV2 (PromoCell, C-22022), MV2 supplement mix (PromoCell,
25 C-39226), and 1% Penicillin-Streptomycin solution (Wisent, 450-201-EL). MuSC-derived
26 myoblast were maintained in growth media containing Ham's F10 (Wisent, 318-050-CL), 20%
27 FBS (Wisent, 2300040033), 1% Penicillin-Streptomycin solution (Wisent, 450-201-EL), and 2,5
28 ng/mL bFGF (R&D systems, 3139-FB-025). To assess effects of AP-13 on proliferation, media
29 were replaced by endothelial cell growth medium MV2 (PromoCell, C-22022) without
30 supplement or myoblast growth medium without bFGF. Media were exchanged daily. After 3

1 days of treatment, cells were fixed with 4% paraformaldehyde (TCI America, P0018) for 10 min
2 and then permeabilized with 0.5% Triton X-100 (Sigma, T8787) for 10 min and stained with
3 Hoechst (Thermo Fisher Scientific, 62249). Images were acquired using a high-throughput
4 Operetta microscope (Perkin Elmer). For each AP-13 concentration, 12 pictures of at least 3
5 biological replicates were quantified using the Harmony high-content imaging and analysis
6 software (Perkin Elmer).

Skeletal muscle force measurements

7 Veh controls and AP-13 treated mice were anaesthetised with an intraperitoneal injection of
8 pentobarbital (30 mg / kg). The *in situ* isometric torque tension was measured on the right
9 hindlimb of anaesthetized mice placed on a 37°C preheated platform of the 1300A whole animal
10 system (Aurora Scientific, Canada). The right hindlimb was first shaved, cleaned with 70%
11 ethanol and fixed above the knee joint with a cone point set screw. Then, the foot was positioned
12 at a 90° angle (neutral position) and stabilized with adhesive onto a footplate attached to a 300C-
13 LR dual-mode lever arm (Aurora Scientific, Canada), allowing the mice to push or pull under
14 stimulation. Once the hindlimb was fixed, two sterile needle electrodes were subcutaneously
15 inserted at either side of the tibial nerve to stimulate the posterior muscles of the lower leg, such
16 as the gastrocnemius and the soleus, which are responsible of ankle plantar flexion. The
17 stimulation current was tuned up to achieve a maximum twitch response, and then the leg was
18 stimulated at different frequencies with a 2-min rest between each stimulation, until reaching the
19 maximum torque tension (mN). For *ex vivo* measurements, EDL muscles were isolated by
20 cutting the proximal and distal tendons, and were placed in an organ bath, maintained at 25°C,
21 and filled with Krebs-Ringer's solution (137 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 24.7 mM
22 NaHCO₃, 2 mM MgSO₄, 1.75 mM NaH₂PO₄, and 2 g/l dextrose, pH 7.4) bubbled with carbogen
23 (95% O₂, 5% CO₂). The proximal tendon was fixed in a stationary clamp with a 3-0 suture
24 (Harvard Apparatus, St. Laurent, Canada), and the distal tendon was connected to a dual-mode
25 level arm system 300C-LR (Aurora Scientific, Inc., Aurora, ON, Canada) that provided control of
26 force and positioning of the motor arm. First, the muscle was initially set at a resting tension of
27 10 mN for 10 min. Then, the stimulation was delivered by a pair of platinum electrodes located
28 on either side of the muscle using supramaximal 0.2 ms square wave pulses. Muscles were
29 stimulated at different frequencies with 2 min rest between contraction to reach maximum
30 isometric tetanic force (P₀). The force generated by the muscle was measured and analyzed

1 with a LabView-based DMC program (Dynamic Muscle Control and Data Acquisition; Aurora
2 Scientific, Inc.). Optimal muscle length (L_0) was defined as the muscle length at which the
3 maximal twitch force was elicited. The optimum fibre length (Lf) was determined by multiplying
4 L_0 by predetermined Lf/ L_0 ratios: 0.44 for EDL. The cross-sectional area (CSA) of muscle
5 samples was then determined by dividing muscle mass (mg) by the product of Lf and 1.06 mg /
6 mm³, the density of mammalian muscle. P_0 values were normalized to the muscle cross-
7 sectional area.

Fitness tests

8 Mice were tested using rotarod (Bioseb, LE8505) at a speed of 15 rounds per min. Grip tests
9 were performed using a horizontal single beam and a grid engineered in-house. In order to
10 calculate the normalized mean impulse, the time until task failure was measured and multiplied
11 by the animals body mass. For each test, three measurements have been recorded and the
12 animals were rested for 5 min between each measurement.

Apoptosis assay

13 TA muscles were harvested and snap frozen in liquid nitrogen. Frozen samples were thawed on
14 ice, weighted, and homogenized using a Potter-Elvehjem tissue grinder on ice in ice-cold
15 incomplete radioimmunoprecipitation assay buffer (RIPA) containing 50 mM Tris-HCl pH 7.4
16 (Sigma-Aldrich, T1503) and 100 mM NaCl (Millipore, SX0420) supplemented with 1 mM 1,10-
17 ortho-phenanthroline (Sigma, P9375), 10 μ M 3,4-dichloroisocoumarin (Sigma, D7910), 10 μ M
18 leupeptin (Sigma, L8511), and 10 μ M E-64 (Sigma, E3132) for protease inhibition. 20 μ l RIPA
19 buffer was used per mg of tissue and the RIPA buffer was completed by addition of 0.1% sodium
20 dodecyl sulfate (Thermo Fisher Scientific, BP166), 0.5% sodium deoxycholate (Sigma, D6750),
21 and 1% Nonidet P-40 (Roche, 11754599001) to obtain a final volume of 30 μ l. After lysis on ice
22 for 1 h, cellular extracts were centrifuged at 18,000g for 15 min and the supernatants were
23 recovered. 90 μ g of protein was used for western blotting with cleaved caspase-3 (Cell Signaling
24 Technologies, 9661), actin (Sigma, A3853), HRP-conjugated anti-mouse (Cell Signaling
25 Technologies, 7076), and HRP-conjugated anti-rat (Cell Signaling Technologies, 7074)
26 antibodies. Chemiluminescence was acquired with a VersaDoc 4000mp imaging system
27 (BioRad) using the Immobilon Crescendo Western HRP substrate (Millipore, WBLUR0500) or
28 Clarity Max Western ECL Substrate (BioRad, 1705062).

Echocardiography

1 Morphological and functional heart parameters have been assessed using a Vevo3100
2 echocardiography system equipped with a MX400 ultrasound probe (FUJIFILM VisualSonics).
3 Animals were anesthetized using isoflurane and parameters have been recorded at a heart rate
4 near to 450 beats per minute. Cardiac function measurements were acquired in M-mode from a
5 parasternal short-axis view of the left ventricle and analysed using Vevo LAB 3.1.1 (FUJIFILM
6 VisualSonics).

Quantification and statistical analysis

7 Except for animals that died a natural death during the course of the experiments, no mice were
8 excluded from the study. Sample size determination was based on the expected effect size and
9 variability that was previously observed for similar readouts in the investigators laboratories. *In*
10 *vivo* treatments were not blinded, but imaging readouts were analyzed in a blinded manner.
11 Stained samples were analyzed using $n \geq 3$ images per biological replicate. Statistical analysis
12 was performed using GraphPad Prism (GraphPad Software). Statistical significance for binary
13 comparisons was assessed by a student's t-test after verification that variances do not differ
14 between groups or by a Welch correction when variance was observed. For comparison of more
15 than two groups, one-way or two-way ANOVAs were used, according to the experimental
16 design, and followed by Tukey or Dunnett's post-hoc test. All data are expressed as means +
17 sem.

References

- 1 McDonald, C. M. *et al.* Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. *Lancet* **391**, 451-461, doi:10.1016/S0140-6736(17)32160-8 (2018).
- 2 Gawlik, K. I. At the Crossroads of Clinical and Preclinical Research for Muscular Dystrophy-Are We Closer to Effective Treatment for Patients? *Int J Mol Sci* **19**, doi:10.3390/ijms19051490 (2018).
- 3 Girgenrath, M., Beermann, M. L., Vishnudas, V. K., Homma, S. & Miller, J. B. Pathology is alleviated by doxycycline in a laminin-alpha2-null model of congenital muscular dystrophy. *Ann Neurol* **65**, 47-56, doi:10.1002/ana.21523 (2009).
- 4 Erb, M. *et al.* Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency. *J Pharmacol Exp Ther* **331**, 787-795 (2009).
- 5 Wang, Y. X., Bentzinger, C. F. & Rudnicki, M. A. Treating muscular dystrophy by stimulating intrinsic repair. *Regen Med* **8**, 237-240, doi:10.2217/rme.13.27 (2013).
- 6 Blau, H. M., Webster, C. & Pavlath, G. K. Defective myoblasts identified in Duchenne muscular dystrophy. *Proc Natl Acad Sci U S A* **80**, 4856-4860, doi:10.1073/pnas.80.15.4856 (1983).
- 7 Webster, C. & Blau, H. M. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. *Somat Cell Mol Genet* **16**, 557-565, doi:10.1007/bf01233096 (1990).
- 8 Mazala, D. A. *et al.* TGF-beta-driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model. *JCI Insight* **5**, doi:10.1172/jci.insight.135703 (2020).
- 9 Wang, Y. X. *et al.* EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. *Cell Stem Cell* **24**, 419-432 e416, doi:10.1016/j.stem.2019.01.002 (2019).

10 Rozo, M., Li, L. & Fan, C. M. Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. *Nat Med* **22**, 889-896, doi:10.1038/nm.4116 (2016).

11 Fontelonga, T. M. *et al.* Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. *Hum Mol Genet* **28**, 2120-2132, doi:10.1093/hmg/ddz044 (2019).

12 Mashinchian, O., Pisconti, A., Le Moal, E. & Bentzinger, C. F. The Muscle Stem Cell Niche in Health and Disease. *Curr Top Dev Biol* **126**, 23-65, doi:10.1016/bs.ctdb.2017.08.003 (2018).

13 Dort, J. *et al.* Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy. *Nat Commun* **12**, 6264, doi:10.1038/s41467-021-26516-0 (2021).

14 Mendell, J. R., Boue, D. R. & Martin, P. T. The congenital muscular dystrophies: recent advances and molecular insights. *Pediatr Dev Pathol* **9**, 427-443, doi:10.2350/06-07-0127.1 (2006).

15 Bentzinger, C. F., Barzaghi, P., Lin, S. & Ruegg, M. A. Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-alpha2-deficient mice. *FASEB J* **19**, 934-942, doi:10.1096/fj.04-3376com (2005).

16 Urciuolo, A. *et al.* Collagen VI regulates satellite cell self-renewal and muscle regeneration. *Nat Commun* **4**, 1964, doi:10.1038/ncomms2964 (2013).

17 Moll, J. *et al.* An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. *Nature* **413**, 302-307 (2001).

18 Pan, T. C. *et al.* A mouse model for dominant collagen VI disorders: heterozygous deletion of Col6a3 Exon 16. *J Biol Chem* **289**, 10293-10307, doi:10.1074/jbc.M114.549311 (2014).

19 Accorsi, A., Cramer, M. L. & Girgenrath, M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. *Front Mol Neurosci* **13**, 3, doi:10.3389/fnmol.2020.00003 (2020).

20 Paco, S. *et al.* Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets. *PLoS One* **8**, e77430, doi:10.1371/journal.pone.0077430 (2013).

21 Wacker, D., Stevens, R. C. & Roth, B. L. How Ligands Illuminate GPCR Molecular Pharmacology. *Cell* **170**, 414-427, doi:10.1016/j.cell.2017.07.009 (2017).

22 De Micheli, A. J. *et al.* Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. *Cell Rep* **30**, 3583-3595 e3585, doi:10.1016/j.celrep.2020.02.067 (2020).

23 Marsault, E. *et al.* The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. *Ann N Y Acad Sci* **1455**, 12-33, doi:10.1111/nyas.14123 (2019).

24 Murza, A. *et al.* C-Terminal modifications of apelin-13 significantly change ligand binding, receptor signaling, and hypotensive action. *J Med Chem* **58**, 2431-2440, doi:10.1021/jm501916k (2015).

25 Verma, M. *et al.* Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy. *PLoS Genet* **15**, e1008468, doi:10.1371/journal.pgen.1008468 (2019).

26 Carmeliet, P. & Collen, D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. *Ann N Y Acad Sci* **902**, 249-262; discussion 262-244, doi:10.1111/j.1749-6632.2000.tb06320.x (2000).

27 Helker, C. S. *et al.* Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. *eLife* **9**, doi:10.7554/eLife.55589 (2020).

28 Christov, C. *et al.* Muscle satellite cells and endothelial cells: close neighbors and privileged partners. *Mol Biol Cell* **18**, 1397-1409 (2007).

29 Verma, M. *et al.* Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch Signaling. *Cell Stem Cell* **23**, 530-543 e539, doi:10.1016/j.stem.2018.09.007 (2018).

30 Azizi, M. *et al.* Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. *J Am Soc Nephrol* **19**, 1015-1024, doi:10.1681/ASN.2007070816 (2008).

31 Vinel, C. *et al.* The exerkine apelin reverses age-associated sarcopenia. *Nat Med* **24**, 1360-1371, doi:10.1038/s41591-018-0131-6 (2018).

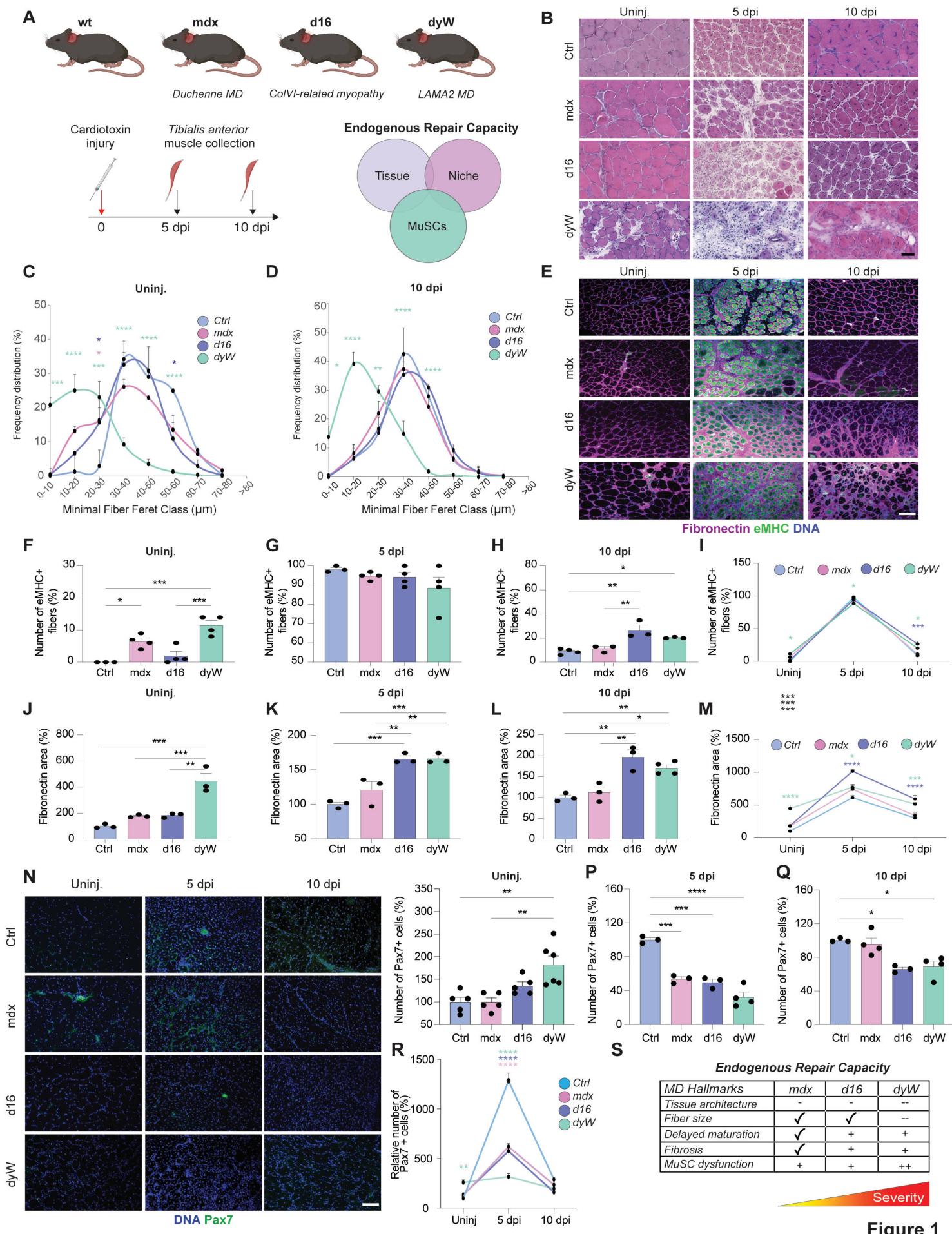
32 Landers-Ramos, R. Q. & Prior, S. J. The Microvasculature and Skeletal Muscle Health in Aging. *Exerc Sport Sci Rev* **46**, 172-179, doi:10.1249/JES.0000000000000151 (2018).

33 Beynon, R. P. & Ray, S. G. Cardiac involvement in muscular dystrophies. *QJM* **101**, 337-344, doi:10.1093/qjmed/hcm124 (2008).

34 Gourdy, P. *et al.* Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp. *Diabetes Obes Metab* **20**, 157-164, doi:10.1111/dom.13055 (2018).

35 Wang, W. *et al.* Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17: Physiological Effects in the Cardiovascular System. *Hypertension* **68**, 365-377, doi:10.1161/HYPERTENSIONAHA.115.06892 (2016).

36 Murza, A., Belleville, K., Longpre, J. M., Sarret, P. & Marsault, E. Stability and degradation patterns of chemically modified analogs of apelin-13 in plasma and cerebrospinal fluid. *Biopolymers* **102**, 297-303, doi:10.1002/bip.22498 (2014).


37 Tran, K. *et al.* A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects. *J Med Chem* **61**, 2266-2277, doi:10.1021/acs.jmedchem.7b01353 (2018).

38 Charo, D. N. *et al.* Endogenous regulation of cardiovascular function by apelin-APJ. *Am J Physiol Heart Circ Physiol* **297**, H1904-1913, doi:10.1152/ajpheart.00686.2009 (2009).

39 Desgeorges, T. *et al.* Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. *Skelet Muscle* **9**, 2, doi:10.1186/s13395-018-0186-6 (2019).

40 Butler, A., Hoffman, P., Smibert, P., Papalex, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* **36**, 411-420, doi:10.1038/nbt.4096 (2018).

41 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529, doi:10.1016/j.cell.2021.04.048 (2021).

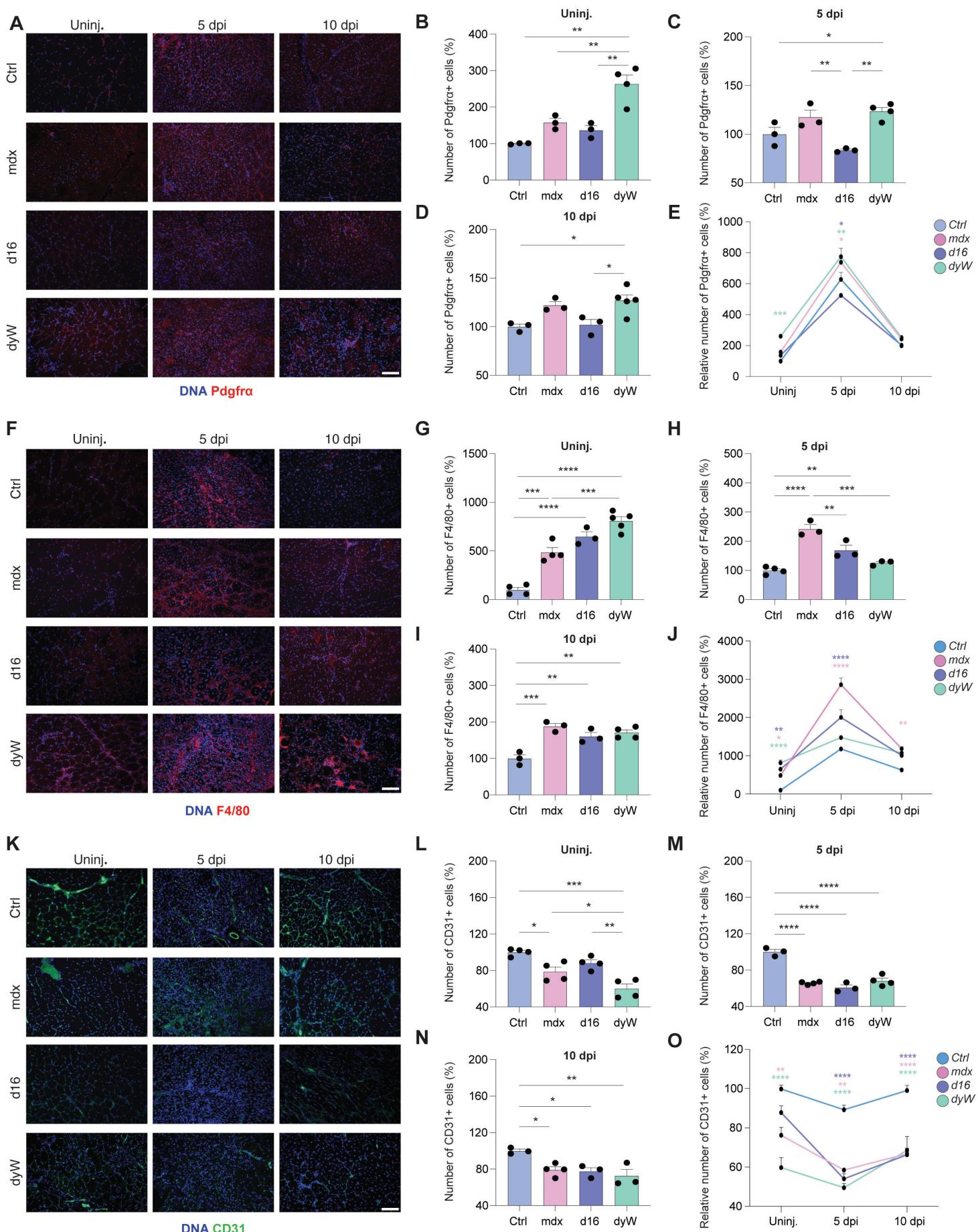


Figure 2

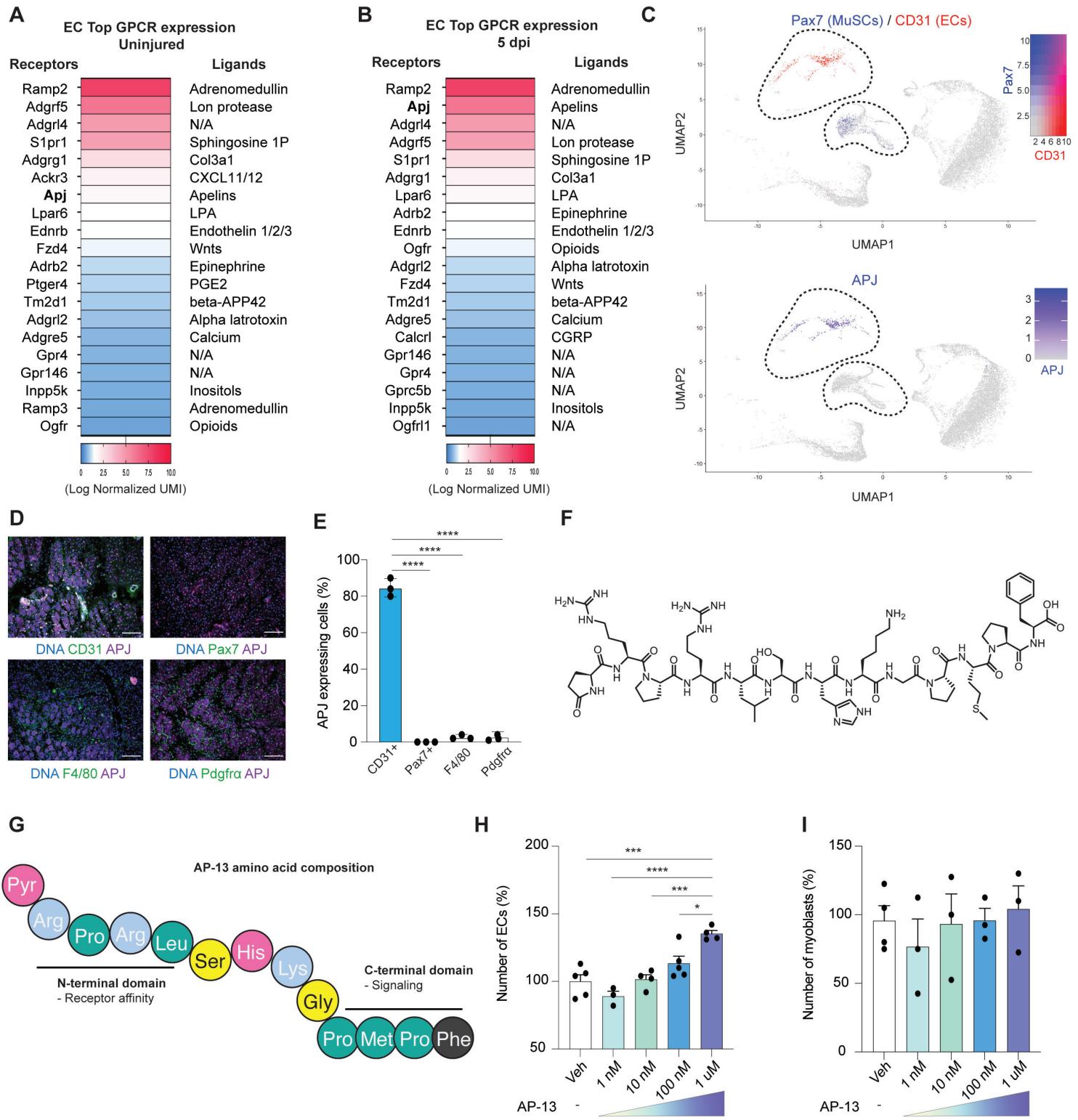


Figure 3

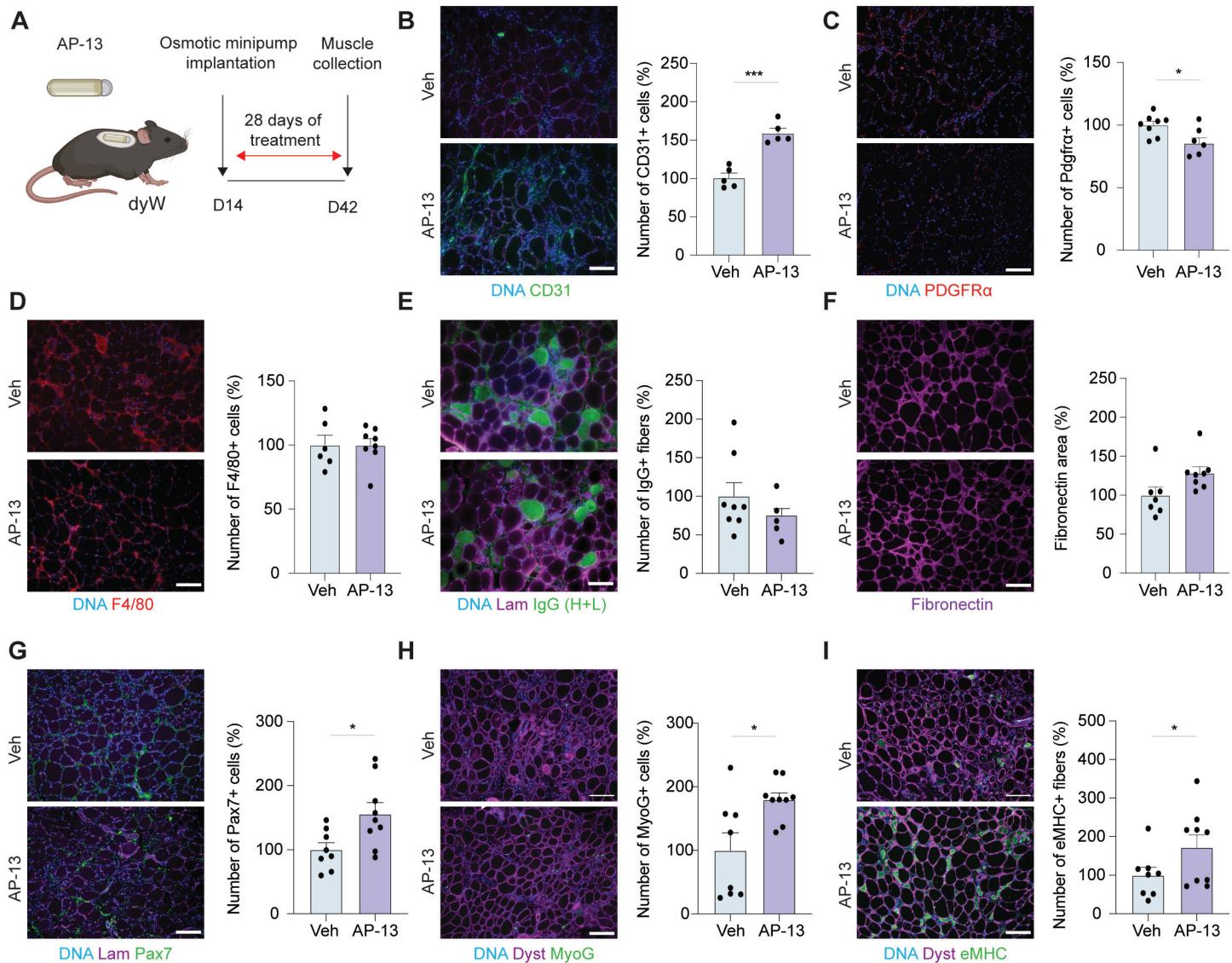


Figure 4

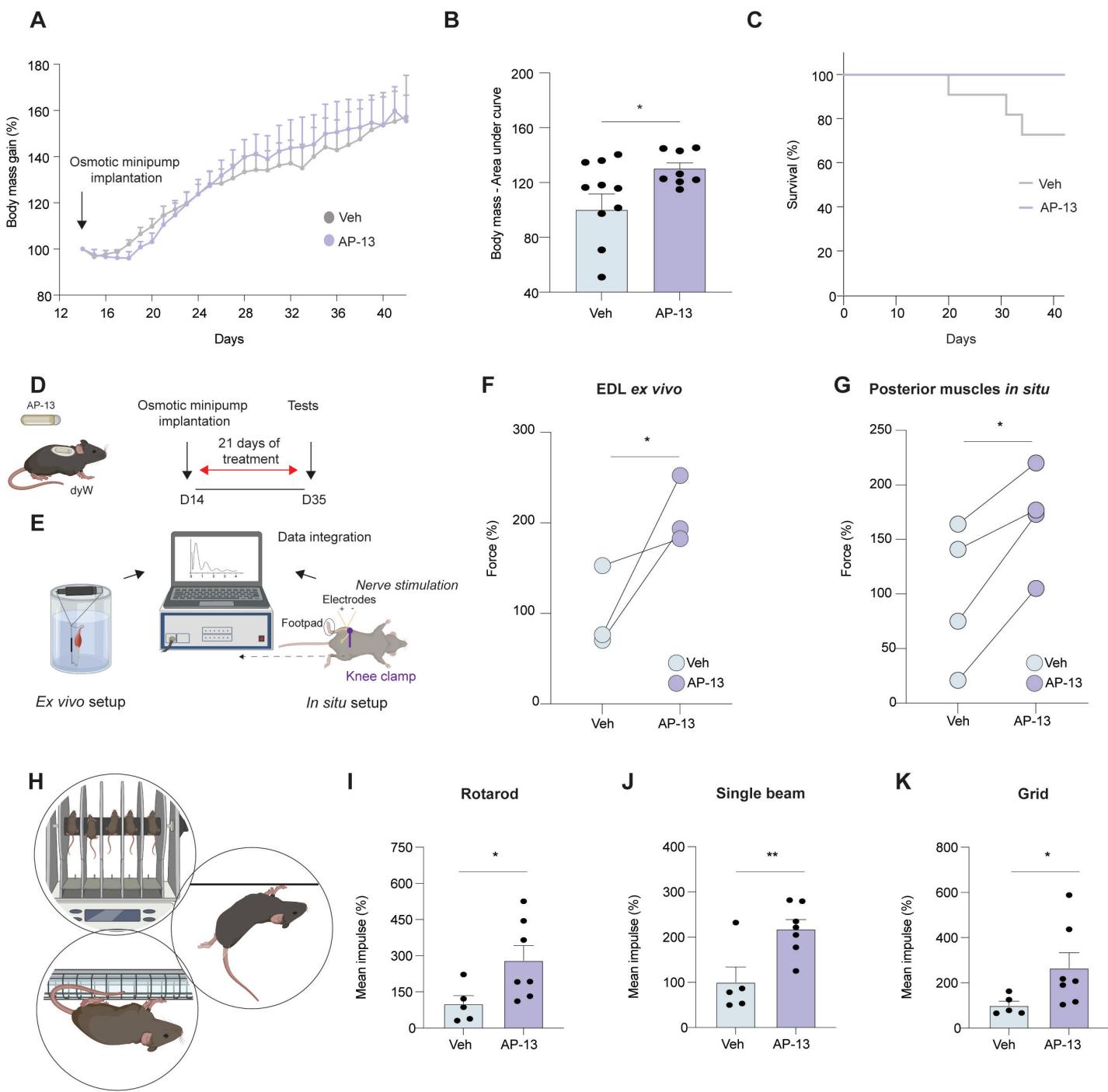


Figure 5

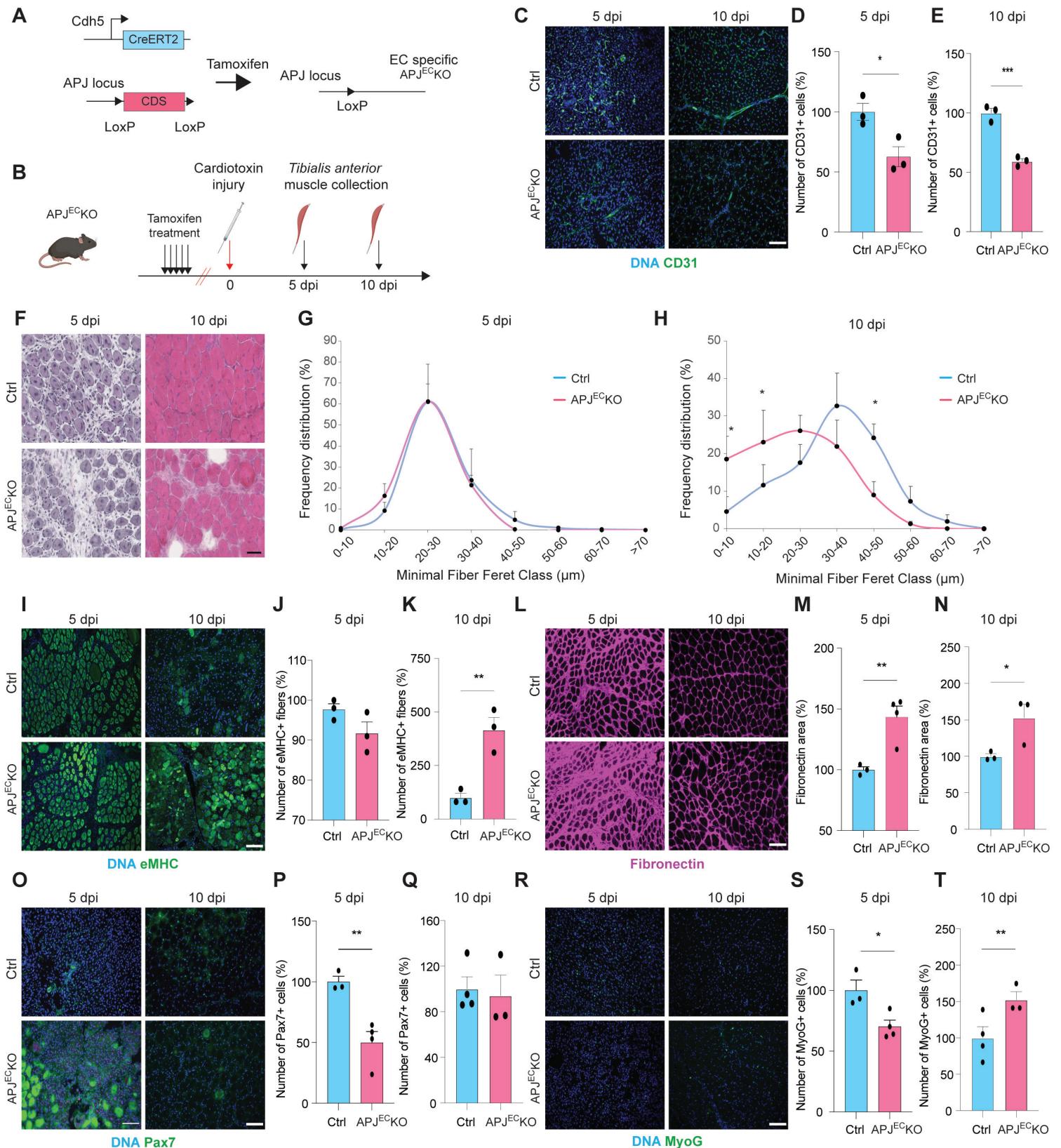
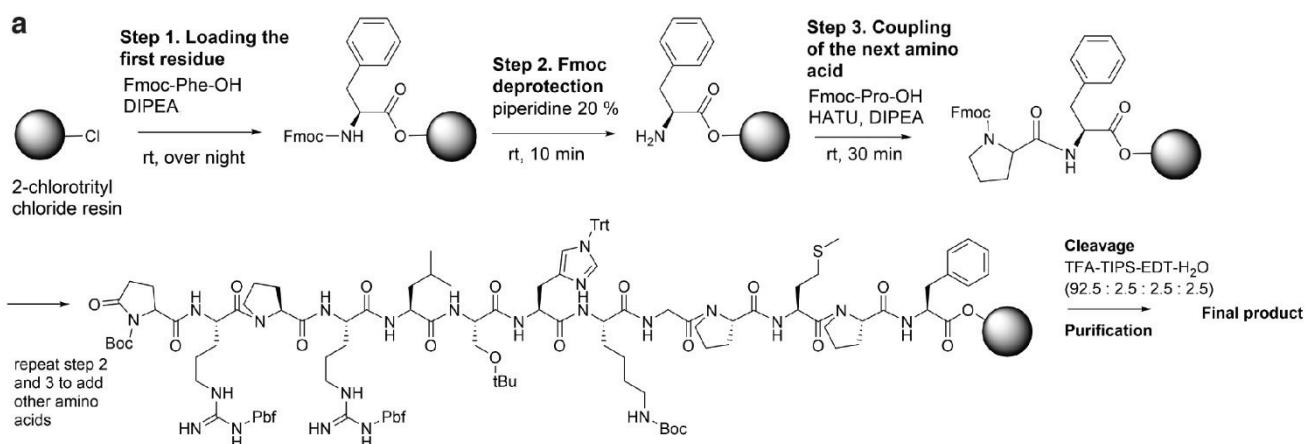


Figure 6

Le Moal et al. 2022 - Supplementary data

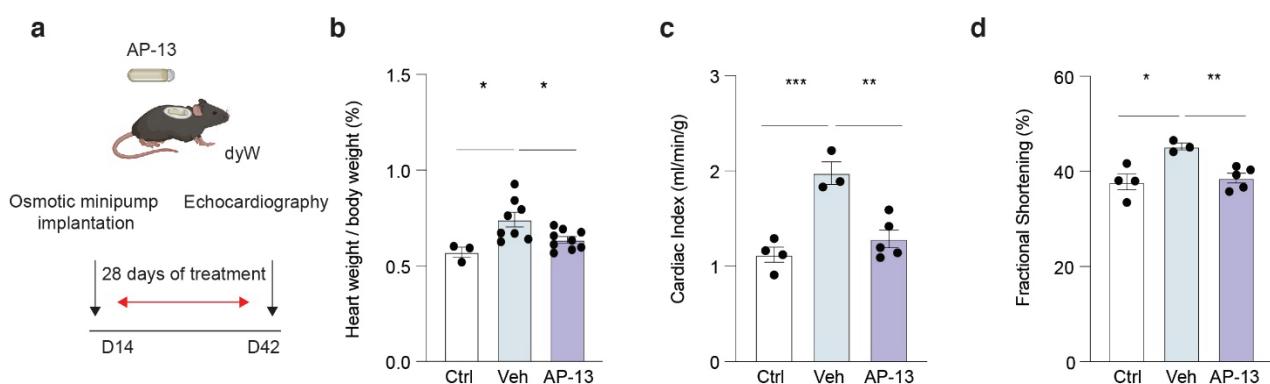

Apelin Stimulation of the Perivascular MuSC Niche Enhances Endogenous Repair in Muscular Dystrophy

Emmeran Le Moal, Yuguo Liu, Jasmin Collerette-Tremblay, Simon Dumontier, Joël Boutin, Junio Dort, Zakaria Orfi, Joris Michaud, Hugo Giguère, Alexandre Desroches, Kien Trân, François Vézina, Sonia Bedard, Catherine Raynaud, Frederic Balg, Philippe Sarret, Michelle S. Scott, Jerome N. Feige, Jean-Bernard Denault, Nicolas A. Dumont, Eric Marsault, Mannix Auger-Messier, C. Florian Bentzinger

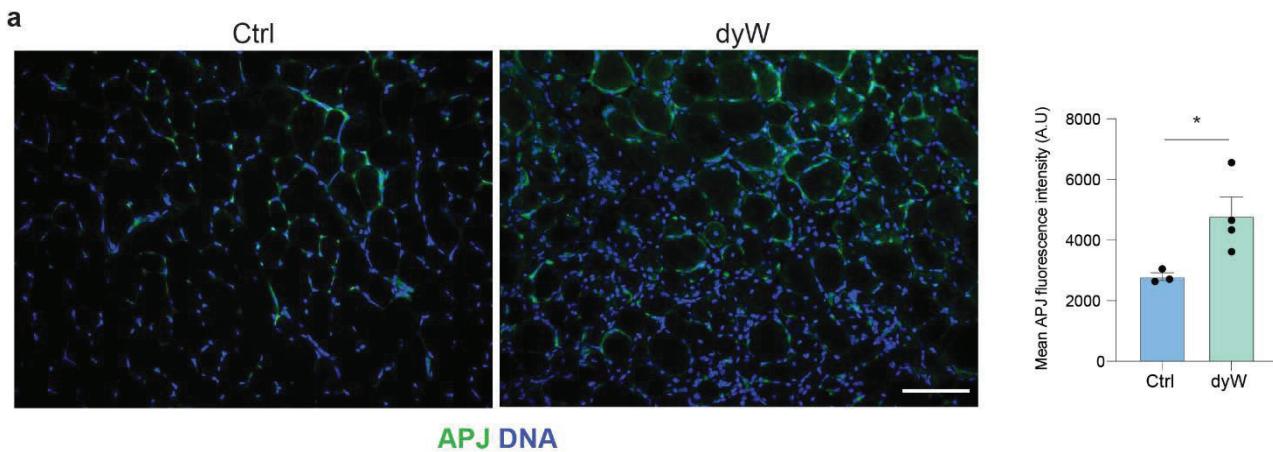
Supplementary Information

Supplementary Figures 1-4

Le Moal et al. 2022 - Supplementary data


Supplementary Fig. 1: AP-13 synthesis. **a**, Experimental scheme depicting the chemical synthesis of AP-13. rt = room temperature, Fmoc = 9-Fluorenylmethoxycarbonyl, DIPEA = *N,N*-diisopropylethylamine, HATU = O-(7-Azabenzotriazol-1-yl)-*N,N,N',N'*-tetramethyluronium hexafluorophosphate, TFA = Trifluoroacetic acid, TIPS = triisopropylsilane, EDT = ethanedithiol.

Le Moal et al. 2022 - Supplementary data



Supplementary Fig. 2: Apoptotic profiling following AP-13 treatment. **a**, Scheme outlining the treatment strategy of dyW mice with vehicle (veh) or AP-13. **b,c**, Western blot (b) and gray value quantification (c) of cleaved caspase-3 (top) and actin (bottom) proteins from skeletal muscle tissues treated with veh or AP-13. +Ctrl = positive control using regenerating C57BL/6N wild-type skeletal muscle tissue at 2 dpi. Bars represent means \pm sem. n=4 mice per condition. A student *t*-test was used to determine statistical differences.

Le Moal et al. 2022 - Supplementary data

Supplementary Fig. 3: AP-13 does not cause adverse effects on heart function. **a**, Scheme outlining the treatment strategy of dyW mice with veh or AP-13. **b**, Quantification of heart weight normalized to body mass of wt controls (ctrl), veh and AP-13 treated dyW mice. **c**, Quantification of the cardiac index (cardiac output / body mass) of ctrl, and veh and AP-13 treated dyW mice. **d**, Quantification of the heart fractional shortening of ctrl, and veh and AP-13 treated dyW mice. Results are expressed as means \pm sem. $n \geq 3$ per condition. P values were calculated using one-way ANOVA with Tukey post-hoc test. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

Supplementary Fig. 4: APJ expression in dyW skeletal muscle tissue. **a**, Immunostaining and quantification of APJ expression in TA muscle sections in 6 week old ctrl and dyW mice under uninjured conditions. Results are expressed as means + sem. $n \geq 3$ mice per condition. Scale bar = 100 μ m. P values were calculated using student *t*-test. $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$.