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Abstract

Experiments under controlled conditions have established that ecosystem functioning is
generally positively related to levels of biodiversity, but it is unclear how widespread these
effects are in real-world settings and whether they can be harnessed for ecosystem
restoration. We used a long-term, field-scale tropical restoration experiment to test how the
diversity of planted trees affected recovery measured across a 500 ha area of selectively

logged forest using multiple sources of satellite data. Replanting with species rich mixtures
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of tree seedlings that had higher phylogenetic and functional diversity accelerated
restoration rates. Our results are consistent with a positive relationship between biodiversity
and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and

demonstrate that using diverse mixtures of species can enhance initial recovery after

logging.

Main Text

A quarter century of ecological experimentation has demonstrated that when other factors
are held constant, ecosystem functions like biomass production are generally positively
related to levels of biodiversity (1-4). However, for practical reasons the first generation of
biodiversity manipulation experiments were conducted with systems that are relatively
quick to respond, particularly communities of grassland plants (5-8). More recent
biodiversity experiments suggest that similar diversity function relationships are present in
many plantations and some forests (9), although there has been little research in tropical
systems, particularly outside of the new world (10-15). It is also not clear to what degree
the results of biodiversity experiments will extend to more natural settings, nor whether
they can be harnessed as a nature-based solution to forest restoration and carbon capture.
Here, we report early results from a field-scale experiment that tests different approaches
to the restoration of lowland tropical rainforests in SE Asia, focusing in particular on the
role of the diversity of tree species used for replanting. Recent results from our lowland
tropical forest study system in Sabah, Malaysian Borneo, show that active restoration,
including enrichment tree planting, can accelerate recovery (16)—here we go further in

demonstrating that recovery can be enhanced by replanting with ecologically diverse
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mixtures of tree species.

Sabah Biodiversity Experiment (17-19) is designed to simultaneously test the applied
question of whether increasing tree diversity in replanting schemes enhances restoration
and the ecological hypothesis of whether there is a positive relationship between tree
diversity and ecosystem functioning in tropical forests. There is ongoing debate over the
importance of diversity for the functioning of tropical forests with some predictions of no
or small ecological differences among tree species in tropical forests, and therefore an

absent or weak link between diversity and functioning (20-23).

To be relevant to forestry and forest restoration, the Sabah Biodiversity Experiment was
designed to be field-scale and covers 500 ha of selectively logged tropical forest in Malua
forest reserve. The experimental treatments are applied to 4 ha plots and comprise different
restoration approaches including liana removal (‘climber cutting’) and enrichment line
planting where seedlings of the harvested native trees are planted into the resulting selectively
logged vegetation (Fig. S1). Over 100,000 seedlings of 16 different species of the dominant
dipterocarp trees (Table S1) have been planted along lines cut into the residual background
vegetation left after selective logging in the 1980s and monitored periodically for survival
and growth since 2002. The treatments include: unplanted controls, single-species plots
enrichment planted with seedlings of one of sixteen different species of dipterocarp;
polycultures planted with mixtures of 4 or 16 species; sixteen species mixtures with
additional liana removal; and manipulations (within the 4-species treatment) of generic
diversity and predicted canopy complexity (Table 1). To gain an overview of the effects of
the experimental treatments on the whole 500 ha area of the experiment over time we used

multiple sources of satellite remote sensing data including RapidEye estimates of vegetation
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92 cover, aboveground biomass and Leaf Area Index in 2012 and estimates of cover from
93 Landsat from 1999 (prior to enrichment planting) to 2012 (24).

94 Analysis of estimates of vegetation cover, aboveground biomass and Leaf Area Index derived
95 from RapidEye satellite data in 2012 revealed several differences among the restoration
96 treatments a decade after initial planting (Fig. 1, Table S2). Comparison of unplanted controls
97 with enrichment planted plots revealed that active restoration increased levels of estimated

98 biomass (Mean + SE: 182.67 +4.27 vs 264.17 + 3.883 Mg ha*), cover (62.05 + 2.28 vs 69.31
99 + 2.23 %) and Leaf Area Index 4.57+ 0.25 vs 5.64 + 0.24 m? m™) relative to unrestored

100 controls (Fig. 1, Table S3).

101 While enrichment planting had a general positive effect on restoration its effectiveness was
102 positively related to the diversity of species used. The relationship was positive and
103 approximately linear with the logarithm of the number of enrichment-planted species: each
104 doubling in tree species richness increased estimated biomass by 13.2 Mg ha (+ 1.5, Fig. 2,

105 top), cover by 1.14 % (+ 0.39; Fig. S2) and Leaf Area Index by 0.21 m? m (+ 0.04, Fig. S3).

106 These treatment differences from 2012 were supported by estimates of changes in vegetation
107 cover across three LANDSAT monitoring periods covering the preceding decade which show
108 the absence of treatment differences prior to restoration (1999-2002), the emergence of
109 positive effects of enrichment planting (2003-2008) and the subsequent divergence of
110 treatments (2008-2012) with those planted with a greater diversity of tree species showing
111 stronger recovery of vegetation cover (Fig. 2; Table S4).

112 Our experimental design also contains a factorial manipulation of two other aspects of
113 diversity within the four species treatment level. Half of the four-species plots were enrichment

5
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114 planted with four species from four different genera and half with species from only two
115 genera. This manipulation of generic diversity is crossed orthogonally with a treatment that
116 compares mixtures of four species with a lower or higher diversity of predicted mature tree
117 height that is intended to produce canopies that are thinner and simpler or thicker and more
118 complex (Table S5). Both manipulations produced only slight increases in estimated mean
119 aboveground biomass with enhanced generic diversity and canopy complexity (Fig. 1; Table
120 S6) that were statistically indistinguishable between treatments (cover and leaf area index
121 showed qualitatively similar results: Fig. S4, Table S6).

122 A subset of the plots planted with 16-species were also subjected to an additional treatment:
123 reduction of lianas in the tree canopy by stem cutting (‘climber cutting’), reflecting typical
124 Bornean forest management practice (17). At the time of the RapidEye data snapshot the liana
125 removal treatment had only been applied to the southern block and the treatment had no
126 statistically detectable effects on the satellite remote sensing estimates of biomass (Fig. 1),
127 cover and Leaf Area Index (Fig. S4, Table S7). Previous analysis of longer-term field data (17)
128 has demonstrated positive effects of liana removal on the growth and survival of trees,
129 particularly seedlings and saplings in the understory, most likely due to increased light
130 availability (although with potential increased seedling mortality if cutting is followed by
131 drought). A more complete test of the liana removal treatment will require a longer series of
132 more detailed field and remote sensing data that can discriminate between vegetation cover
133 comprised of dipterocarp tree canopies versus lianas.

134 To understand why the manipulation of diversity from 1-16 species had detectible impacts on
135 multiple measures of restoration while increasing generic diversity of the 4-species mixtures
136 from 2 to 4 genera did not, we calculated estimates of functional and phylogenetic diversity

6
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137 (FD and PD) for our species mixtures (25). Levels of biomass were positively related to levels
138 of FD and PD across the full species richness gradient from 1 to 16 enrichment planted species
139 but showed only small, statistically indistinguishable increases from the two to four genera
140 treatments and in relation to the manipulation of canopy complexity (Fig. 3). The explanation
141 for the lack of effect of our manipulation of generic diversity probably involves both the small
142 increase in diversity from two to four genera relative to the increase across the whole gradient
143 from 1 to 16 species and the fact that dipterocarp taxonomy when the experiment was designed
144 did not accurately reflect the underlying evolutionary relationships (the genus Shorea is now
145 thought to be polyphyletic for example, although dipterocarp taxonomy is still
146 unresolved).The analyses of functional diversity (FD) and phylogenetic diversity (PD) support
147 this interpretation showing much smaller increases in diversity within the subset of treatments
148 applied to the four species mixtures than across the entire gradient from 1 to 16 species (Fig.
149 3). These results suggest that the benefits of low levels of diversification in enrichment
150 planting can be increased by the use of more species rich mixtures (at least up to the 16 species
151 used here).

152 Our results suggest that the positive relationship between biodiversity and ecosystem

153 functioning observed in experiments in other ecosystems, including some forests, also applies
154 to the lowland tropical rainforests of SE Asia. While our remote sensing data has limitations
155 (see supplementary information: Study limitations) the results reported here appear robust
156 since the same qualitative patterns are evident in two different sources of satellite data.

157 Comparing these satellite data with field data for a similar period (18) suggests that during the
158 first decade of the experiment, the effects of diversity do not come primarily through higher
159 survival or greater trunk diameter. Instead, we hypothesize that the differences detected by
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satellite remote sensing are due to the development of different canopy architectures in
monospecific and multi-species mixtures that we were unable to monitor in the field.
Diversity-dependent growth forms have previously been shown to play a role in generating
biodiversity effects in the Wageningen biodiversity experiment (26). Testing this hypothesis,
and whether differences in canopy responses subsequently feed back to improve survival and
DBH growth in mixtures, will require continued long-term monitoring and, ideally,
coordinated combination of field and remote sensing data, including more detailed

measurements of canopy growth.

A recent analysis of secondary succession and recovery after deforestation at sites in West
Africa and Central and South America suggests forests in these areas are resilient, recovering
old growth characteristic for some properties in as little as two decades (although >120 years
for others) as long as land-use intensity after deforestation was low (27). Our results suggest
the recovery of lowland forests in aseasonal SE Asia can be accelerated by active restoration
through enrichment planting, especially with diverse mixtures of complementary tree species.
Differences between the forests of SE Asia and other parts of the tropics are possible due to
characteristics of the dominant dipterocarp species that may slow the recovery of these forests
including the absence of a seedbank, intermittent mast fruiting and low dispersal ability of
many species (28-30). Our results suggest that conservation of the diversity of tree species in
these forests is needed to support the ecosystem functions and services that they provide—a
matter of urgency given the recent estimate that 70% of Bornean dipterocarp species are
threatened with extinction (31). Our results also suggest that replanting of these secondary
forests with diverse mixtures of the native species removed by selective logging may provide

a nature-based solution for their accelerated restoration.
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Fig. 1. RapidEye satellite remote sensing estimates as a function of restoration treatment

a decade after initial planting. (A to C) Data points for experimental plots overlaid on violin

plots showing (left to right) aboveground biomass, percent vegetation cover and Leaf Area

Index (LAI) in relation to enrichment planting with seedlings of 0, 1, 4, or 16 species of

dipterocarp tree species (16*: enrichment planting with sixteen species plus liana cutting). (D
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422 to F) Treatment means (with 95% confidence intervals) for unplanted controls versus
423 enrichment planted plots (panels as in top row). (G to 1) Aboveground biomass as a function
424 of (left to right) generic diversity of plots enrichment planted with four-species (2 genera vs
425 4 genera); canopy complexity (low vs high); and liana removal (‘climber cutting’).

426
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427
428 Fig. 2. Effects of the diversity of enrichment planted trees on aboveground biomass and
429 vegetation cover. (A) Estimated aboveground biomass (RapidEye) as a function of the
430 number of enrichment-planted tree species a decade after initial planting. The line is the
431 regression slope with the log2 number of tree species from the mixed-effects model analysis
432 (points jittered to reduce overlap). (B) Changes in vegetation cover over time as a function
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433 of the number of enrichment-planted tree species. Estimates of mean cover (with 95%
434 confidence intervals) for the LANDSAT monitoring periods 1999-2002 (prior to planting),
435 2003-2008 and 2008-2012 for plots enrichment planted with seedlings of 0, 1, 4, or 16
436 species. Individual species richness treatment levels staggered for clarity.

437
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439 Fig. 3. Estimated biomass as a function of phylogenetic and functional diversity.

440 Measures of phylogenetic diversity (Faith's PD, (A)) and functional diversity (FD, (B))

441 increase across the full diversity gradient from 1 to 16 species but not in relation to the
442 treatments applied to the subset of four-species plots that manipulate generic diversity (2 vs
443 4 genera) and canopy complexity (lower vs higher). Solid blue lines show the positive
444 relationship between estimated aboveground biomass and PD and FD across the full gradient
445 from 1 to 16 species and dashed lines show the weaker, non-significant relationships for the
446 subset of plots enrichment planted with four-species only.
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Table 1. Sabah Biodiversity Experiment treatments. Treatments include number of
species and genera of enrichment planted trees, predicted resulting canopy complexity,
whether lianas are removed and the number of replicate plots.

Number of Number of Canopy Liana Number of

species genera complexity removal? replicate plots

0 0 N/A No 12

1 1 Low No 32

4 2 Low No 8

4 2 High No 8

4 4 Low No 8

4 4 High No 8

16 5 High No 32

16 5 High Yes 16
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