

1 **Genome analysis of *Parmales*, a sister group of diatoms, reveals the**
2 **evolutionary specialization of diatoms from phago-mixotrophs to**
3 **photoautotrophs**

4
5 Hiroki Ban¹, Shinya Sato², Shinya Yoshikawa², Kazumasa Yamada², Yoji Nakamura³, Mutsuo
6 Ichinomiya⁴, Naoki Sato⁵, Romain Blanc-Mathieu^{1,6}, Hisashi Endo¹, *Akira Kuwata⁷, *Hiroyuki
7 Ogata¹

8
9 **Affiliations:**
10 1. Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji,
11 Kyoto, 611-0011, Japan
12 2. Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-
13 cho, Obama City, Fukui 917-0003, Japan
14 3. Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries
15 Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-ura,
16 Kanazawa, Yokohama, Kanagawa 236-8648, Japan
17 4. Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan
18 5. Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-
19 8902, Japan
20 6. Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA,
21 IRIG, Grenoble, France
22 7. Shiogama field station, Fisheries Resources Institute, Japan Fisheries Research and Education
23 Agency, 3-27-5 Shinhamama-cho, Shiogama, Miyagi, Japan

24
25 ***Corresponding author:**
26 A. Kuwata, E-mail: akuwata@affrc.go.jp, Phone: +81-22-365-9929
27 H. Ogata, E-mail: ogata@kuicr.kyoto-u.ac.jp, Phone: +81-774-38-3270
28

29 **Abstract**

30 The order Parmales (Bolidophyceae) is a minor group of pico-sized eukaryotic marine
31 phytoplankton that contains species with cells surrounded by silica plates. Previous studies
32 revealed that Parmales is a member of ochrophytes and sister to diatoms (Bacillariophyta), the
33 most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can
34 serve as a reference to elucidate both the evolutionary events that differentiated these two lineages
35 and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of
36 parmaleans. Here, we compared the genomes of eight parmaleans and five diatoms to explore their
37 physiological and evolutionary differences. Parmaleans were predicted to be phago-mixotrophs.
38 By contrast, diatoms have undergone loss of genes related to phagocytosis, indicating the
39 ecological specialization from phago-mixotroph to photoautotroph in the early evolution of
40 diatoms. Furthermore, diatoms showed significant enrichment in gene sets involved in silica
41 metabolism, nutrient uptake capacity, carbon concentrating mechanisms, and iron uptake in
42 comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the
43 loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in
44 diatom evolution after diverging from the Parmales lineage.

45 Introduction

46 Parmales is a group of pico-sized (2–5 μm) eukaryotic marine phytoplankton with cells
47 surrounded by silicified plates¹. Parmaleans are widespread in the ocean, from polar to subtropical
48 regions, and are relatively abundant in polar and subarctic regions. Parmalean sequences are most
49 abundant in the picoplanktonic fraction (0.8–5 μm) of the global ocean metabarcoding data from
50 *Tara* Oceans and represent at most 4% of the sequences of photosynthetic organisms and less than
51 1% on average². Currently, only 17 taxa of parmaleans have been described^{3,4}. SEM and TEM
52 observations, molecular phylogenetics, and photosynthetic pigment analyses indicated that
53 Parmales belongs to ochrophytes (class Bolidophyceae)⁵ and is the sister taxon of diatoms (phylum
54 Bacillariophyta). Bolidophyceae also contains pico-sized photosynthetic naked flagellates (called
55 bolidomonads) that mainly inhabit subtropical waters⁶. Recent phylogenetic analyses using several
56 newly isolated strains revealed that flagellated bolidomonad species belong to the silicified and
57 non-flagellated parmalean genus *Triparma* within Bolidophyceae, suggesting that the *Triparma*
58 life cycle switches between silicified/non-flagellated and naked/flagellated stages².

59 Diatoms are the most successful phytoplankton group in the modern ocean; they have high
60 diversity (ca. 10^5 species⁷) and high primary productivity, contributing an estimated 20% of
61 photosynthesis on Earth. Diatoms are thought to be particularly successful in dynamic
62 environments such as upwelling areas, and it has been suggested that their ecological success is
63 supported by traits such as silicified cell wall defense⁸ and luxury nutrient uptake⁹. However,
64 despite advances in understanding diatom genomes during the last two decades, the reasons
65 underlying the success of diatoms in modern oceans remain poorly understood. To understand the
66 ecological success of diatoms, characterization of the evolution of physiology-related genes in this
67 taxon is necessary.

68 Although parmaleans are the closest relatives of diatoms, they show much lower biomass,
69 species diversity, and ecological impact than their sister taxon. The proposed parmalean life cycle,
70 which switches between silicified/non-flagellated and naked/flagellated stages, is similar to the
71 proposed origin of diatoms². Ancestral diatoms were possibly haploid flagellates that formed
72 silicified diploid zygotes¹⁰. The mitotic division of the zygote might have taken place preferentially
73 to give rise to centric diatoms¹¹, which is the most ancient diatom group with a diploid vegetative
74 stage producing naked flagellated haploid male gametes for sexual reproduction¹². Thus, a
75 comparison of parmaleans and diatoms is expected to provide important clues on differences in

76 their ecological strategies and evolutionary paths. To date, only limited genomic data on
77 parmaleans have been available¹³, and the genomic features and evolutionary events that led to
78 differences between them and diatoms have remained unstudied. In this study, we generated seven
79 novel parmalean genome assemblies. These seven draft genomes, one previously determined
80 parmalean genome, and five publicly available diatom genomes were used to perform a
81 comparative genome analysis. Our results delineate the evolutionary trajectories of these two
82 lineages after their divergence and correlate their differential ecological features with their
83 genomic functions.

84 **Results and Discussion**

85 **General genomic features**

86 In this study, we obtained whole-genome sequences of seven parmaleans, including six
87 strains from two genera (*Triparma* and *Tetraparma*) that are frequently observed in the subarctic
88 Pacific Ocean^{4,14}, as well as one strain from an undescribed taxon that is phylogenetically and
89 morphologically distinct from known parmaleans (hereafter referred to as ‘Scaly parma’, Sato et
90 al. in prep.). Together with the previously sequenced *Triparma laevis* f. *inornata* genome¹³, we
91 built a database of eight parmalean strain genomes. The parmalean genomes were similar in size,
92 ranging from 31.0 Mb for ‘Scaly parma’ to 43.6 Mb for *Tetraparma gracilis* (Table 1). The
93 predicted numbers of genes ranged from 12,177 for ‘Scaly parma’ to 16,002 for *Triparma laevis*
94 f. *longispina* (Table 1). These genome sizes are relatively constant compared to diatom genomes
95 and similar to those of *Thalassiosira pseudonana* (32.4 Mb)¹⁵ and *Phaeodactylum tricornutum*
96 (27.4 Mb)¹⁶, which have rather small genomes among diatoms.

97 Analysis of orthologous groups (OGs) revealed 62,363 OGs among the parmaleans (8
98 strains), diatoms (5 strains), and other stramenopiles (5 strains). Phylogenomic analysis based on
99 164 single-copy OGs clearly shows parmaleans are monophyletic and sister to diatoms (Fig. 1a).
100 34,292 OGs were present only in diatoms or parmaleans and not in other stramenopiles (Fig. 1b:
101 yellow + orange + purple + green in diatoms and Parmales). Of those, only 1,448 OGs were shared
102 by diatoms and parmaleans (Fig. 1b: yellow). 20,974 OGs were specific to diatoms (diatom-
103 specific OGs, Fig. 1b: orange + green in diatoms), and 11,870 OGs were specific to parmaleans
104 (Parmales-specific OGs, Fig. 1b: purple and green in Parmales). 99.7% of the genes in the core
105 OGs conserved in all analysed strains (1,153 OGs, Fig. 1b: red) had InterPro domains, and 77.1%
106 of the genes in the OGs shared only by diatoms and parmaleans (1,448 OGs, Fig. 1b: yellow) had
107 InterPro domains. By contrast, only 24.9% of genes in diatom-specific OGs (20,974 OGs, Fig. 1b:
108 orange + green in diatoms) and 55.1% of genes in parmalean-specific OGs (11,870 OGs, Fig. 1b:
109 purple and green in Parmales) had InterPro domains. These results reveal that many lineage-
110 specific genes are functionally unknown.

111

112 **Differentially enriched protein domains**

113 By comparing the eight parmalean and five diatom genomes, we found 64 and 315 InterPro
114 domains in which the diatom and Parmales lineages, respectively, were significantly enriched.
115 Cyclin domains and heat-shock transcription factor domains in which diatoms are enriched have
116 been known to exhibit expanded gene families compared with other eukaryotes^{16,17} (Fig. 2a). In
117 addition, diatoms were enriched in protease domains and sulfotransferase domains. Serine
118 proteases and metalloproteases are known to be induced by limitations of nitrogen, iron, silicon,
119 and light^{18,19}. Sulfotransferase is an enzyme that catalyses sulfonation and is thought to be related
120 to programmed cell death in *Skeletonema marinoi*, a bloom-forming marine diatom²⁰. These gene
121 families are thought to be related to the stress response process in diatoms.

122 InterPro domains in which parmaleans were enriched included those involved in
123 intracellular signalling pathways, such as the G protein signalling, cyclic nucleotide signalling,
124 calcium signalling, and action potential pathways (Fig. 2a). G protein-coupled receptors were
125 involved in responses to sexual cues in the planktonic diatom *Pseudo-nitzschia multiseries*¹⁷, and
126 to colonization in *Phaeodactylum tricornutum*, a planktonic diatom that also has a benthic
127 morphotype²¹. Diatoms also exhibit action potential signalling to modulate their cellular
128 motility^{22,23}. Furthermore, parmaleans encode a strikingly greater number of calcium-binding
129 proteins (up to 300) that could act as messenger molecules²⁴ (Fig. 2b). Enrichment of intracellular
130 signalling pathways in parmaleans may be associated with their putative alternating life cycle
131 stages (i.e., silicified/non-flagellated and naked/flagellated cell stages²).

132 Parmalean genomes were notably enriched in domains associated with lipids and fatty
133 acids (Fig. 2a). For example, diacylglycerol acyltransferase is an enzyme for the terminal step in
134 the production of triacylglycerol, the main component of stored lipids²⁵. The steroidogenic acute
135 regulatory protein-related lipid transfer (START) domain that binds to lipids and sterols²⁶ is one
136 of the domains in which parmalean genomes are most enriched, with up to 174 domains in
137 *Tetraparma gracilis*. This domain sometimes consists of multi-domain proteins and works in lipid
138 trafficking, lipid metabolism, and cell signalling in animals and land plants²⁶. START domain-
139 containing proteins in parmaleans also contain other functional domains, such as lipid metabolism
140 enzymes, transporters, kinases, and transcription factors (Fig. 2c). These results suggest diverse
141 lipid-related physiological processes in parmaleans.

142

143 **Phagotrophy**

144 Some InterPro domains in which parmaleans are enriched are known to be involved in
145 phagotrophy²⁷, including cell adhesion²⁸, intercellular signalling (e.g., small GTP-binding proteins
146 such as Rho)²⁹, cytoskeleton³⁰, lysosome³¹, and WASH³² (WASP and SCAR homolog) complex
147 proteins (Fig. 2d). Specific genetic markers of phagotrophy are not known, but parmaleans were
148 predicted as phago-mixotrophs (high scores > 0.98) according to a gene-based phago-mixotrophy
149 prediction model²⁷, whereas diatoms were not (low scores < 0.07) (Fig. 2e). This result suggests
150 that parmaleans are capable of phagocytosis. We also applied this prediction model to the
151 bolidomonads (naked/flagellated parmaleans) transcriptomes, and bolidomonads were also
152 predicted as phago-mixotrophs (high scores > 0.98, Fig. 2e). Although there is no experimental
153 evidence of phagocytosis in silicified parmaleans, a field study demonstrated that bolidomonads
154 feed on cyanobacteria^{33,34}. As transcriptome data reflect gene repertoires expressed under specific
155 physiological conditions, bolidomonads might be phagotrophic. It remains unclear which life cycle
156 stages of the parmaleans that we analysed are phagotrophic. However, assuming that
157 bolidomonads indeed represent a part of the parmalean life cycle³, and a possibility that the
158 silicified parmalean cell wall could physically interfere with feeding bacteria, it is likely that
159 parmaleans perform phagocytosis in their putative naked/flagellated stage (Fig. 2f).

160

161 In the following sections, we move from the analysis of enriched domains to more focused
162 investigation of genes in specific pathways and functions.

163

164 **Flagellum**

165 To investigate the possibility that parmaleans can produce a flagellated cell², we searched
166 for genes responsible for flagellar motility (i.e., intraflagellar transport (IFT) subunit genes³⁵ [IFT-
167 A complex (6 genes), IFT-B complex (15 genes), BBSome (7 genes)]) in the parmalean and diatom
168 genomes and bolidomonad transcriptomes. Flagellum structural genes for tubulin, radial spokes,
169 dynein arms, and the central pair complex were excluded from analysis because these genes are
170 also involved in other processes/structures (such as the centriole in *Triparma laevis*³⁶) and are not
171 unique to the flagellum. For this analysis, bolidomonad transcriptomes and centric diatom
172 genomes were considered as positive controls because of the presence of the flagellar structure⁶
173 and the presence of flagellated sperm in their life cycle³⁷, respectively. Similarly, pennate diatom

174 genomes were considered as negative controls because flagellar structures have never been
175 observed in this group, despite the accumulated knowledge concerning sexual reproduction³⁸.

176 A nearly-full set of the flagellar genes were found in parmalean genomes and bolidomonad
177 transcriptomes, whereas IFT-A and BBsome were completely absent in both types of diatoms (Fig.
178 2g). IFT-B was partially lost in centric diatoms and completely lost in pennate diatoms. These
179 results suggest that parmaleans have a flagellated stage in their life cycle and are consistent with
180 the idea that parmaleans are phago-mixotrophic in their putative naked/flagellated stage. Jensen et
181 al.³⁹ speculated that the two central microtubules were dispensed with in sperms of centric diatoms.
182 Given the detection of the nearly-full set of flagellar genes in the parmaleans vs. the complete lack
183 of IFT-A and BBSome and partial loss of IFT-B in the centric diatoms, it is possible that
184 evolutionary pressure to maintain the flagellated stage is higher in parmaleans than in centric
185 diatoms (e.g., because of the presence of a frequent or prolonged flagellated stage in parmaleans,
186 which is not expected for sperms of centric diatoms).

187

188 **Nitrogen metabolism**

189 The number of transporter genes involved in the uptake of nitrogen sources differed greatly
190 between diatoms and parmaleans (Fig. 3a). Parmaleans had 1–3 nitrate/nitrite transporter genes,
191 whereas diatoms had 4–9. Only one urea transporter gene was present in each parmalean, whereas
192 3–6 genes were present in each diatom. Diatoms tended to have more ammonia transporter genes
193 than parmaleans, although the difference was not as obvious as for the other transporters (1–4
194 genes for parmaleans vs. 3–8 for diatoms). Genes for the vacuolar nitrate transporter, which stores
195 nitrogen sources in the vacuole⁴⁰, were absent from parmalean genomes. This suggests that
196 parmaleans may be less competent to store nitrogen sources than diatoms, although the possibility
197 that parmaleans encode another non-homologous vacuolar nitrate transporter is not excluded.

198 Parmaleans had all of the ornithine–urea cycle genes, as with diatoms¹⁵ and other
199 stramenopiles⁴¹ (Fig. 3b, Supplementary Fig. 2). Other involved genes (i.e., those encoding
200 NAD(P)H nitrite reductase, carbamate kinase, formamidase, cyanate lyase, and hydroxylamine
201 reductase) were present in diatoms but absent from parmaleans. NAD(P)H nitrite reductase is a
202 major enzyme in nitrogen metabolism that catalyses production of ammonia from nitrite.
203 Carbamate kinase is a major enzyme that produces carbamoyl phosphate, which is a precursor of
204 the urea cycle. In contrast to this difference, both parmaleans and diatoms encode alternative

205 enzymes for these proteins, namely ferredoxin-nitrite reductase and carbamoyl phosphate
206 synthetase, having the same functions as NAD(P)H nitrite reductase and carbamate kinase,
207 respectively. Therefore, parmalean nitrogen metabolism likely relies on the latter set of enzymes,
208 while diatoms may have more efficient nitrogen metabolism by possessing multiple sets of
209 enzymes. Formamidase, cyanate lyase, and hydroxylamine reductase function around the main
210 pathway of nitrogen metabolism. Previous studies showed that formamidase and cyanate lyase are
211 upregulated under N-limited conditions in *Aureococcus anophagefferens*⁴² and *P. tricornutum*⁴³.
212 Diatoms encoding these enzymes may have the ability to obtain ammonia from intercellular
213 nitrogen compounds even when they cannot obtain extracellular nitrogen^{42,43}. By contrast,
214 parmaleans lacking these enzymes may not have this capacity.

215

216 **Iron metabolism**

217 Iron acts as an electron carrier in the photosynthesis system and various metabolic
218 processes in phototrophs. In marine ecosystems, iron is one of the prime limiting elements for
219 phototrophs because of high demand⁴⁴. Therefore, iron uptake ability is an important factor for
220 competition in marine environments. We searched for iron metabolism-related genes in diatom
221 and parmalean genomes. Ferric reductase (FRE), a high-affinity reductive iron uptake system
222 component, was found in all diatoms and parmaleans investigated (Fig. 3c), but parmaleans
223 completely lacked Fe³⁺ permease (FTR) genes (Fig. 3c). Parmalean genomes encoded genes with
224 high sequence similarity to diatom FTR genes, but the parmalean sequences lacked the [REXXE]
225 motif, which is important for iron permeation⁴⁵. This indicates that the diatom/Parmales common
226 ancestor possessed FTR but parmalean FTR homologs may have lost their ability to enable iron
227 permeation during evolution. As for the genes involved in the non-reductive iron uptake system,
228 iron starvation-induced protein 2 (ISIP2)⁴⁶ was widely distributed in parmaleans, whereas ISIP1
229 was not present (Fig. 3c). ISIP1 plays an important role in siderophore uptake in diatoms and is
230 considered a highly efficient iron uptake gene⁴⁷. Our results support the idea that ISIP1 is a diatom-
231 specific gene⁴⁷ and its presence may underlie diatoms' high iron uptake capacity.

232 Most parmaleans encode genes for plastocyanin, a copper-containing redox protein that
233 can substitute for cytochrome *c*₆, which is a redox protein that requires iron and transfers electrons
234 from the cytochrome *b*₆-*f* complex to photosystem I during photosynthesis. It was generally
235 thought that chlorophyll *c*-containing algae lack plastocyanin, but several pelagic diatoms from

236 different genera (including *Thalassiosira oceanica*) encode plastocyanin and are thought to be
237 adapted to iron-deficient pelagic regions^{48,49}. Parmaleans may also have an environment-
238 dependent adaptive strategy to differentially use cytochrome *c*₆ and plastocyanin. Phylogenetic
239 analysis revealed that the plastocyanin genes from diatoms and parmaleans were monophyletic
240 (with dictyochophytes and others), except for *Fragilariopsis kerguelensis*, which was grouped
241 with bacteria (Supplementary Fig. 3). This result is inconsistent with the previously proposed
242 horizontal acquisition of plastocyanin genes in pelagic diatoms⁴⁸. The diatom/Parmales common
243 ancestor likely possessed both cytochrome *c*₆ and plastocyanin, and some diatoms (mostly coastal
244 ones) lost their plastocyanin (Fig. 3d).

245

246 **Silicate metabolism**

247 Each parmalean genome contained at most one silicic acid transporter (SIT) gene, whereas
248 diatom genomes contained multiple SIT genes (Fig. 3a). Most SIT genes of diatoms and ‘Scaly
249 parma’ encode a 10-fold transmembrane type (i.e., single SIT domain), whereas the SIT genes of
250 the other parmaleans encode a 20-fold transmembrane type (i.e., two SIT domains). Phylogenetic
251 analysis of SIT domains indicated that parmalean SIT genes belong to the most basal clade of
252 diatom SITs (clade B)⁵⁰, and that the 20-fold transmembrane-type SITs of Parmales are the result
253 of multiple (likely two times) domain duplications in the *Triparma* lineage (Fig. 4). A large number
254 of paralogous SITs (at least five clades) in diatoms was generated through multiple gene
255 duplications in the diatom lineage after it diverged from the Parmales lineage.

256 Silicanin homologs, some of which are biosilica-associated proteins⁵¹, were found in
257 Parmales. The parmalean genomes encoded 1–2 silicanin homologs, whereas the diatom genomes
258 encoded 7–14 homologs. Parmalean silicanin homologs have the RXL domain, which is typical of
259 many diatom biosilica-associated proteins^{52–55} but lack the NQ-rich domain that is found in Sin1
260 and Sin2 of *Thalassiosira pseudonana*⁵¹. Silicanin homologs are not known in other stramenopiles,
261 but have been reported in transcriptome data of other non-diatom eukaryotes such as the ciliate
262 *Tiarina fusus* and the dinoflagellate *Rhizochromulina marina*⁵¹. These silicanin homologs were
263 found to be highly similar to those of the diatoms *Synedropsis recta* and *Thalassiosira weissflogii*,
264 respectively (blastp search against the MMETSP database; identities are 68.3% and 100%,
265 respectively, and e-values are both 0.0), implying that these genes from non-diatom eukaryotes
266 originated from diatoms (either through HGT or contamination). Thus, the silicanin homologs

267 found in parmaleans are the first examples of non-horizontally transferred silicanin homologs in
268 non-diatom species, implying that the silicanin gene was already present in the diatom/Parmales
269 common ancestor. Silicanins, like SITs, have undergone multiple gene duplications within the
270 diatom lineage after the diatom/Parmales divergence. Interestingly, SIT and silicanin proteins were
271 not found in any bolidomonad transcriptomes, consistent with their lack of silica plates.

272

273 **Ecological strategies and evolutionary scenarios**

274 By comparing the genomes of eight parmaleans and five diatoms, we were able to delineate
275 differences and similarities in gene content between these two taxa (Fig. 5). Based on the gene-
276 based trophic model, our analysis suggests that parmaleans are phago-mixotrophs that can acquire
277 nutritional resources such as carbon, nitrogen, phosphorus, vitamins, and trace elements (e.g., iron)
278 by grazing other organisms, such as bacteria. Although phago-mixotrophs would be less dependent
279 on inorganic nutrient resources, this advantage is traded off with an associated increase in
280 metabolic costs for incorporating and maintaining the cellular components required for both
281 autotrophy and phagotrophy. In addition, since phagotrophy reduces the cell surface area for
282 transporter sites, phago-mixotrophs are thought to have lower growth efficiency relative to
283 photoautotrophic specialists^{56,57}. According to a theoretical study, mixotrophy is beneficial
284 especially in oligotrophic water, whereas autotrophy is advantageous in eutrophic
285 environments^{58,59}.

286 Previous studies suggested that some mixotrophs can widen their niche by alternating their
287 trophic strategies^{60,61}. For example, several cocolithophores (Haptophyta) are known to alternate
288 between a motile phago-mixotrophic haploid stage and a non-motile autotrophic diploid stage
289 based on nutrient condition⁶². Based on these facts and other field data, it has been previously
290 hypothesized that parmaleans have a similar life stage alternation³. Namely, parmaleans may live
291 as silicified photoautotrophs during winter (the cold mixing season) when nutrients are rich, while
292 they may feed on bacteria through phagocytosis as naked flagellates during summer (the warm
293 stratified season) when nutrients are depleted. Our study reinforces the possibility of such a life
294 cycle in Parmales, by detecting the genes for phagocytosis which has a potential association with
295 the naked-flagellate stage.

296 In addition to the absence of phagotrophy in diatoms, our analysis revealed a marked
297 contrast in the gene repertoires between diatoms and parmaleans, with all indicating the

298 autotrophic adaptations of diatoms. For example, there is a large difference in the number of
299 nutrient transporter genes between diatoms and parmaleans (Fig. 3a), clearly representing an
300 adaptation of diatoms to eutrophic environments, although it is not clear whether these paralogous
301 genes have different functions (e.g., affinity, transport rates, and subcellular localization) or a
302 dosage effect⁶³. In addition, there are differences in the number of genes involved in biophysical
303 CCMs (Supplementary Fig. 4; See Supplementary Note). Diatoms possess higher CO₂ fixation
304 capacity relative to other phytoplankton groups⁶⁴, and these gene repertoires may support this trait.
305 We also revealed the expansion of protease and sulfotransferase genes in diatoms in addition to
306 the previously described expansion of cyclin and heat-shock protein genes^{16,17} (Fig. 2a). These
307 genes are likely involved in stress response and population control, which support the
308 extraordinary growth capacity of diatoms.

309 Most diatoms are photoautotrophs, and all diatoms that we studied were predicted as such
310 (Fig. 2d, e). However, phagotrophy must have existed for the ancestor of diatoms to take up red
311 algae as endosymbionts (i.e., secondary plastids). Some members of ochrophyte, such as
312 chrysophytes and dictyochophytes⁶⁵, are known to be phago-mixotrophic. Our results suggest that
313 Parmales, which is the closest group to diatoms, is also phago-mixotrophic. Thus, the
314 diatom/Parmales common ancestor was firmly inferred as phago-mixotrophic, and there were
315 massive serial gene loss events related to phagocytosis loss and specialization to photoautotrophy
316 in the early evolution of diatoms after diverging from Parmales (ca. 180–240 million years ago⁶⁶).

317 Diatoms always have silicified cell walls in the vegetative stage, whereas parmaleans
318 putatively switch between two life stages, silicified/non-flagellated and naked/flagellated stages.
319 The silicified cell wall provides a barrier against grazers, parasites, and pathogens⁶⁷, but is
320 obviously incompatible with phagocytosis as it completely covers the cell. Thus, there is a trade-
321 off between silicification/autotrophy and phagocytosis, and the loss of phagotrophy in diatoms
322 may have been related to benefits from the silicified cell wall. To reveal why photoautotrophic
323 diatoms diverged from the phago-mixotrophic lineage and specialized to the silicified life stage, it
324 is necessary to understand not only the costs and benefits associated with mixotrophy but also
325 those of defence by silicified cell walls.

326 The next possible step in the evolution of diatoms after specialization to silicification and
327 photoautotrophy might have been to thicken their silicified cell wall and increase their cell size⁸.
328 Diatoms tend to have larger cell sizes than parmaleans, and the evolution of these traits has the

329 great advantage of increasing resistance to grazers. The evolution of silicic acid transporter genes
330 (Fig. 4) may have supported the evolution of silicified cell walls because diatoms with thick walls
331 and large cells require large amounts of silicate. It is also known that nutrient metabolism,
332 especially nitrogen metabolism, is closely related to silica deposition in diatoms⁶⁸. Thus, the ability
333 of diatoms to take up nutrients may also be related to the evolution of their silicified cell wall.
334 Silicanin, which diversified in diatoms, may have been important in the precise control of the
335 formation of thick cell walls. It has been also pointed out that vacuoles play a major role in cell
336 size expansion⁸. However, there is little evidence of differences in vacuole-related genes between
337 parmaleans and diatoms (e.g., lack of a vacuolar nitrate transporter homolog in parmaleans), so
338 further discovery and analysis of the relevant genes are needed to address this issue.

339 Diatoms are also an important group in iron usage in the ocean, often dominating iron-
340 stimulated blooms⁶⁹. Analyses of iron utilization strategies revealed that the ISIP1 gene, which is
341 involved in siderophore-mediated iron acquisition, is absent in parmaleans and unique to diatoms
342 (Fig. 3c). Siderophores are thought to be major components of microbial iron cycling in the ocean⁷⁰.
343 The lack of the ISIP1 gene in parmaleans supports the idea that this gene underlies the high iron
344 uptake capacity of diatoms and supports their photoautotrophic lifestyle. We also found that
345 plastocyanin, which is an alternative for iron-requiring proteins in photosynthesis, is widely
346 distributed in parmaleans. Phylogenetic analysis suggests that each lineage of diatoms lost their
347 plastocyanin genes independently, and that pelagic diatoms and parmaleans conserved
348 plastocyanin genes from their common ancestor (Fig. 3d). Parmaleans retained plastocyanin to
349 balance their restricted capacity for iron uptake in iron-limited environments; diatoms increased
350 their iron uptake capacity (e.g., ISIP1), while several lineages have specialized to coastal eutrophic
351 environments and lost plastocyanin.

352 Our analysis also revealed that the ornithine–urea cycle, the mitochondrial pay-off phase
353 of the glycolytic pathway, and the Entner–Doudoroff pathway, which have been cited as unique
354 features of diatoms, were substantially conserved from common ancestor of Parmales and diatoms
355 (Fig. 3b, Fig. 5, Supplementary Fig. 2, Supplementary Fig. 5: see Supplementary Note). We also
356 found the expansion of genes related to lipid metabolism and intracellular signalling, and the
357 degenerative evolution of several genes related to iron uptake and ornithine–urea metabolism in
358 Parmales (see Supplementary Note). However, their physiological functions and evolutionary

359 significances remain unclear. Future studies based on a larger set of genomic data will further
360 enhance understanding of the physiology, ecology, and evolution of these fascinating organisms.

361 **Methods**

362 **Culture**

363 We used strains of the parmaleans *Triparma laevis* f. *inornata* (NEIS-2656), *Triparma*
364 *laevis* f. *longispina* (NIES-3700), *Triparma verrucosa* (NIES-3699), and *Triparma strigata*
365 (NIES-3701), isolated from the Oyashio region of the western North Pacific. For the other strains,
366 water samples were collected at 10 m in the Notoro-ko lagoon (44°3'2.1" N, 144°9'38.8" E,
367 December 2015) for *Triparma retinervis*, at 10 m in the Sea of Okhotsk (45°25'0" N, 145°10'0"
368 E, June 2017) for *Tetraparma gracilis* and *Triparma columacea*, and at 30 m in the Sea of Okhotsk
369 (44°30'0" N, 144°20'0" E, June 2014) for the uncharacterized 'Scaly parma'. The strains were
370 isolated by serial dilution with siliceous cell wall labelling techniques described previously⁵. The
371 strains were cultured in f/2 medium⁷¹ at 5 °C under a light intensity of ca. 30 µmol photons m⁻²
372 s⁻¹ (14:10 L:D cycle).

373

374 **Genomic DNA, RNA extraction and sequencing**

375 Cells grown under exponential growth phase were harvested by centrifugation, and either
376 DNA (all strains, except *Triparma laevis* f. *inornata*) or RNA (for *Triparma laevis* f. *inornata*,
377 *Triparma strigata*, *Triparma retinervis* and 'Scaly parma') was extracted using the DNeasy Plant
378 Mini Kit or RNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands), respectively. Libraries were
379 generated using the Illumina TruSeq DNA/RNA sample preparation kit (Illumina, Inc., San Diego,
380 USA). Sequencing of whole genomes or transcriptomes was performed on an Illumina HiSeq X
381 (150 bp, paired-end) or HiSeq 2000 (100 bp, paired-end), respectively. Exceptionally, the genome
382 of *Triparma laevis* f. *longispina* and 'Scaly parma' was sequenced with an Illumina HiSeq 2500
383 (150 bp, paired-end). DNA extraction and sequencing methods for *Triparma laevis* f. *inornata*
384 were already reported in Kuwata et al¹³.

385

386 **Genome assembly and microbial sequence contamination removal**

387 Genome assembly and contamination removal methods for *Triparma laevis* f. *inornata*
388 were already reported in Kuwata et al¹³. For the other strains, the Illumina reads were trimmed
389 with Trimmomatic (v.0.38)⁷² using the following parameters: LEADING:20 TRAILING:20
390 SLIDINGWINDOW:4:15 MINLEN:36 TOPHRED33. The filtered reads were assembled by

391 Platanus (v.1.2.4)⁷³ with default options. To remove bacterial contamination from contigs,
392 clustering of contigs was performed based on the coverage calculated by read mapping, GC
393 frequency, and k-mer frequency. In addition, the phylogenetic classification of the genes in the
394 contigs was estimated using lowest common ancestor analysis. The results were used to determine
395 the clusters composed of bacterial contigs. Read mapping to assembled contigs with the filtered
396 reads was performed with BWA (v.0.7.17)⁷⁴. The coverage was calculated from the resulting .sam
397 file using a custom-written Perl script, which was also used to determine the GC content. The
398 tetramer frequency of contigs was calculated using cgat (v.0.2.6)⁷⁵. Open reading frames (ORFs)
399 were predicted using GeneMarkS (v.4.30)⁷⁶ and their taxonomy was annotated with a last common
400 ancestor strategy as in Carradec et al⁷⁷. ORFs were searched against a database composed of
401 UniRef 90⁷⁸, MMETSP database⁷⁹, and Virus-Host DB⁸⁰ using DIAMOND (v.0.9.18)⁸¹. Selected
402 hits were then used to derive the last common ancestor of the query ORFs with the NCBI taxonomy
403 database. Clustering of contigs was performed using the R script provided in the CoMet
404 workflow⁸² with coverage, GC content, and k-mer frequency as information sources. The organism
405 from which each cluster originated was determined from the estimated phylogeny of the genes in
406 the contigs belonging to the cluster. Contigs belonging to bacterial-derived clusters were excluded
407 from the datasets and not used in downstream analyses.

408 We also performed a blastn (v.2.11.0) search against the organelle genomes of *Triparma*
409 *laevis* f. *inornata*⁸³ to remove the organelle genome from assembled contigs. Contigs that hit the
410 organelle genome of *T. laevis* f. *inornata* with E-values < 1e-40 were excluded from our dataset
411 as organelle genomes.

412

413 **Genome annotations**

414 For *T. laevis* f. *inornata* genome¹³, rRNA and tRNA genes were predicted by Barrnap
415 (v.0.6, <http://www.vicbioinformatics.com/software.barrnap.shtml>) and tRNA-scan-SE (v.1.23)⁸⁴,
416 respectively. The protein coding-genes were predicted by AUGUSTUS (v.3.2.2)⁸⁵ with the RNA-
417 seq data mentioned above. First, the RNA-seq reads processed by fastx-toolkit (v.0.0.13,
418 http://hannonlab.cshl.edu/fastx_toolkit/) were mapped to the contig of *T. laevis* f. *inornata* nuclear
419 genome and assembled into transcript contigs using Tophat (v.2.1.1)⁸⁶, Cufflinks (v.2.2.1)⁸⁷ and
420 Trinity (v.2.0.6)⁸⁸, respectively. The diatom protein sequences from *Thalassiosira pseudonana*¹⁵
421 and *Phaeodactylum tricornutum*¹⁶ were subsequently aligned to the transcript contigs using tblastn

422 search (v.2.2.29) and Exonerate (v.2.4.0)⁸⁹ for detecting CDS regions in the *T. laevis* f. *inornata* genome. Finally, a total of 687 loci on the *T. laevis* f. *inornata* contigs were selected as those carrying full-length CDSs and used for parameter fitting in training hidden Markov models in AUGUSTUS. In gene prediction, the mapping data from both RNA-seq reads and diatom protein sequences were utilized as hints in AUGUSTUS.

427 For other genomes, tRNA genes were predicted using tRNAscan-SE (v.2.0.7)⁹⁰. Non-
428 coding RNAs excluding tRNAs but including rRNAs were predicted with the Rfam database using
429 infernal (v.1.1.3)⁹¹. Repeats and transposable elements were annotated and soft-masked using
430 RepeatModeler (v.2.0.1)⁹² and RepeatMasker (v.4.1.0)⁹³. For *Triparma strigata*, *Triparma*
431 *retinervis* and ‘Scaly parma’, the protein-coding genes were predicted by BRAKER2⁹⁴ with the
432 RNA-seq data mentioned above and a reference protein sequence database. We generated a
433 reference protein sequence database for BRAKER2 from OrthoDB⁹⁵, MMETSP database⁷⁹ and *T.*
434 *laevis* f. *inornata* protein sequences predicted previously. Firstly, RNA-seq data were mapped to
435 the contigs by STAR (v.2.7.3a)⁹⁶, generating a .bam file. Secondly, BRAKER2 was run in –
436 etpmode mode with the generated .bam file and the reference protein sequence database as the
437 protein hints. For *Triparma laevis* f. *longispina*, *Triparma verrucosa*, *Triparma columacea* and
438 *Tetraparma gracilis*, the protein-coding genes were predicted by BRAKER2 only with a reference
439 protein sequence database. We updated the mentioned reference protein sequence database with
440 the predicted protein sequences from *Triparma strigata*, *Triparma retinervis*, and ‘Scaly parma’,
441 and generated a new database. Finally, BRAKER2 was run in -epmode using the newly generated
442 reference protein sequence database as the protein hints.

443

444 **Functional Annotation**

445 For methodological consistency, we applied the same annotation pipelines for our novel
446 genomes and the genomes downloaded from public databases. Genes were functionally annotated
447 by InterProScan (v.5.26-65.0)⁹⁷ and eggNOG-Mapper (v.2.0.1)⁹⁸ with the eggNOG database
448 (v.5.0)⁹⁹. Protein localization was predicted using MitoFates (v.1.1)¹⁰⁰, TargetP (v.2.0)¹⁰¹, SignalP
449 (v.4.1)¹⁰², and ASAFLIND (v.1.1.7)¹⁰³. Protein functions and localizations were manually curated
450 for detailed analyses.

451

452 **Phylogenomic analysis**

453 Orthologous genes (OGs) were determined by OrthoFinder (v.2.3.7)¹⁰⁴ with protein
454 sequences of paramecan genomes, other available stramenopile genomes, and ochrophyte
455 transcriptomes (Supplementary Data 11) from the MMETSP database⁷⁹. Only single-copy genes
456 in each OG and genes that were found in the 18 stramenopile species were retained for downstream
457 phylogenomic analysis, resulting in 164 OGs. Gene sequences within each OG were aligned using
458 MAFFT (v.7.453)¹⁰⁵ in the linsi mode, and poorly aligned regions from the multiple sequence
459 alignment were removed by trimAl (v.1.4.1)¹⁰⁶ in the automated1 mode. The resulting supermatrix
460 contained 50,707 amino acid positions for 18 species, with 5.85% missing data. A maximum
461 likelihood tree was inferred by RAxML (v.8.2.12)¹⁰⁷ with the partition information of each gene
462 and the LG + F model. We performed 1,000 bootstrap replicates and all bootstrap values were 100,
463 indicating full support.

464

465 **Gene family and protein domain analysis**

466 Significant differences in protein domain content annotated by InterProScan between the
467 compared genomes were identified using Fisher's exact test to calculate the *p-value* for the
468 difference in the number of InterPro domains between paramecan and diatom genomes. The *p-*
469 *values* were corrected for multiple comparisons using Bonferroni correction. For each genome,
470 protein sequences with 100% similarity to other genes were removed using CD-HIT (v.4.8.1)¹⁰⁸
471 with the parameters -c 1 -aS 1.

472

473 **Predictions of phago-mixotrophy using a gene-based model**

474 Predicted protein data from eight paramecan genomes and five diatom genomes were tested
475 for phagocytotic potential using a gene-based model described by Burns et al²⁷. To determine the
476 phagocytotic potential of paramecans, we also tested the five transcriptomes of the naked flagellate
477 (bolidomonads) from the MMETSP database⁷⁹ and Kessenich et al. (2014)¹⁰⁹. Gene annotation
478 was not available for the data from Kessenich et al. (2014)¹⁰⁹; therefore, coding sequences were
479 annotated using TransDecoder (v.5.5.0) (<https://github.com/TransDecoder/TransDecoder>).

480

481 **Phylogenetic analysis of silicon transporter domains**

482 We used the sequence data of SIT proteins of diatoms and ochrophytes provided by Durkin
483 et al. (2016)⁵⁰ in addition to those of parmaleans determined in this study. Diatom and parmalean
484 SIT proteins are usually composed of a single SIT domain, but some contain more than two
485 domains. To analyse multiple domains at once, SIT domain regions were determined using
486 HMMER (v.3.3.2) with PF03842 from using the profile's GA gathering cutoff (--cut_ga mode)
487 and selected for downstream analysis. Each SIT domain sequence was aligned using MAFFT
488 (v.7.453) in the linsi mode and unreliable sequences were manually removed. A maximum
489 likelihood phylogenetic tree was inferred from this multiple alignment using RAxML (v.8.2.12).
490 The amino acid substitution model was automatically determined to be the LG model by the
491 software. Bootstrap values were obtained based on 100 bootstrap replicates.

492

493 **Phylogenetic analysis of plastocyanin**

494 We used HmmerSearch (v.3.3) with TIGR02656.1 from TIGERFAMs using the profile's
495 GA gathering cutoff (--cut_ga mode) to find plastocyanin genes in Uniref 90⁷⁸, MMETSP⁷⁹, and
496 our genomes. The genes from MMETSP clustered with 97% similarity using CD-HIT (v.4.8.1).
497 Unreliable sequences were removed manually. We next obtained 716 plastocyanin genes of
498 photosynthetic eukaryotes, cyanobacteria, and cyanophages. Because of the large divergence of
499 the sequences and small number of alignable regions, we used gs2, a software to conduct the Graph
500 Splitting (GS) method¹¹⁰, which can resolve the early evolution of protein families using a graph-
501 based approach, to estimate the phylogenetic tree of plastocyanin. We ran the GS method with 100
502 replicates using the Edge Perturbation method for statistically evaluating branch reliability.

503

504 **Data availability**

505 Sequence data generated during the current study are available in DDBJ bioprojects,
506 under accession number PRJDB14101 (RNA reads for *Triparma laevis* f. *inornata*),
507 PRJDB13844 (DNA reads for the other seven strains), and PRJDB13933 (RNA reads for the
508 other seven strains). The assembly data analysed during the current study are also available in the
509 DDBJ repository, under accession numbers BLQM01000001-BLQM01000902 (*Triparma laevis*
510 f. *inornata*), BRXW01000001-BRXW01001055 (*Triparma laevis* f. *longispina*),

511 BRXX01000001-BRXX01000659 (*Triparma verrucosa*), BRXY01000001-BRXY01000634
512 (*Triparma strigata*), BRXZ01000001-BRXZ01008760 (*Triparma retinervis*), BRYA01000001-
513 BRYA01001858 (*Triparma colmacea*), BRYB01000001-BRYB01007082 (*Tetraparma*
514 *gracilis*), and BRYC01000001-BRYC01001921 ('Scaly parma'). Data underlying Figs. and
515 Supplementary Figs. are provided as Supplementary Data files.

516 **Author Contributions**

517 H.B. performed most of the bioinformatics analyses presented in this work and wrote
518 initial version of the manuscript. R.B.-M., H.E., and H.O. supervised the bioinformatics part of
519 the study. Y.N. performed genome assembly and gene prediction for *Triparma laevis* f. *inornata*.
520 A.K. coordinated the genome sequencing part of the study. S.S., S.Y., K.Y., M.I., and A.K.
521 contributed to culture and DNA/RNA sequencing. N.S. contributed to functional interpretation of
522 the genomes. All authors contributed to the interpretation of the results and the finalization of the
523 manuscript.

524 **Competing interests statement**

525 The authors declare no competing interests.

526 **Acknowledgements**

527 This work was supported by JSPS/KAKENHI (No. 22657027, 23370046, 26291085,
528 221S0002, 16K07489, 16H06279, 17H03724), the Canon Foundation, the Collaborative Research
529 Program of Institute for Chemical Research, Kyoto University (No. 2016-30, 2015-39), and the
530 JST "Establishment of University Fellowships Towards The Creation of Science Technology
531 Innovation" Grant Number JPMJFS2123. Computational time was provided by the
532 SuperComputer System, Institute for Chemical Research, Kyoto University. We thank Gabe Yedid,
533 Ph.D., from Edanz (<https://jp.edanz.com/english-editing-b>) for editing a draft of this manuscript.

534

535 1. Booth, B. C. & Marchant, H. J. PARMALES, A NEW ORDER OF MARINE

536 CHRYSTOPHYTES, WITH DESCRIPTIONS OF THREE NEW GENERA AND SEVEN

537 NEW SPECIES. *J. Phycol.* **23**, 245–260 (1987).

538 2. Ichinomiya, M. *et al.* Diversity and oceanic distribution of the Parmales (Bolidophyceae), a

539 picoplanktonic group closely related to diatoms. *ISME J.* **10**, 2419–2434 (2016).

540 3. Kuwata, A. *et al.* Bolidophyceae, a Sister Picoplanktonic Group of Diatoms – A Review.

541 *Front. Mar. Sci.* **5**, 370 (2018).

542 4. Hoshina, K., Uezato, Y. & Jordan, R. W. Parmales (Bolidophyceae) assemblages in the

543 subarctic Pacific Ocean during the mid-1960s. *Phycologia* **60**, 35–47 (2021).

544 5. Ichinomiya, M. *et al.* ISOLATION AND CHARACTERIZATION OF PARMALES

545 (HETEROKONTA/HETEROKONTOPHYTA/STRAMENOPILES) FROM THE

546 OYASHIO REGION, WESTERN NORTH PACIFIC1: FIRST CHARACTERIZATION OF

547 PARMALES. *J. Phycol.* **47**, 144–151 (2011).

548 6. Guillou, L. *et al.* BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING

549 TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA). *J. Phycol.* **35**,

550 368–381 (1999).

551 7. Mann, D. G. & Vanormelingen, P. An Inordinate Fondness? The Number, Distributions, and

552 Origins of Diatom Species. *J. Eukaryot. Microbiol.* **60**, 414–420 (2013).

553 8. Behrenfeld, M. J. *et al.* Thoughts on the evolution and ecological niche of diatoms. *Ecol.*

554 *Monogr.* **91**, (2021).

555 9. Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional

556 traits and trade-offs in structuring phytoplankton communities: scaling from cellular to

557 ecosystem level. *Ecol. Lett.* **10**, 1170–1181 (2007).

558 10. Mann, D. & Marchant, H. *The origins of the diatom and its life cycle*. vol. 38 (Clarendon
559 Press, 1989).

560 11. Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. The Origin and Evolution
561 of the Diatoms: Their Adaptation to a Planktonic Existence. in *Evolution of Primary*
562 *Producers in the Sea* 207–249 (Elsevier, 2007). doi:10.1016/B978-012370518-1/50012-6.

563 12. Drebes, G. Sexuality. *Sexuality*. 250–283 (1977).

564 13. Kuwata, A., Saitoh, K., Nakamura, Y., Ichinomiya, M. & Sato, N. Draft Whole-Genome
565 Sequence of *Triparma laevis* f. *inornata* (Parmales, Bolidophyceae), Isolated from the
566 Oyashio Region, Western North Pacific Ocean. *Microbiol. Resour. Announc.* **9**, (2020).

567 14. Konno, S., Ohira, R., Komuro, C., Harada, N. & Jordan, R. W. Six new taxa of subarctic
568 Parmales (Chrysophyceae). *J. Nannoplankton Res.* **29**, 108–128 (2007).

569 15. Armbrust, E. V. *et al.* The Genome of the Diatom *Thalassiosira Pseudonana* : Ecology,
570 Evolution, and Metabolism. *Science* **306**, 79–86 (2004).

571 16. Bowler, C. *et al.* The Phaeodactylum genome reveals the evolutionary history of diatom
572 genomes. *Nature* **456**, 239–244 (2008).

573 17. Basu, S. *et al.* Finding a partner in the ocean: molecular and evolutionary bases of the
574 response to sexual cues in a planktonic diatom. *New Phytol.* **215**, 140–156 (2017).

575 18. Berge, J. A. & Falkowski, P. G. Physiological stress and cell death in marine
576 phytoplankton: Induction of proteases in response to nitrogen or light limitation. *Limnol.*
577 *Oceanogr.* **43**, 129–135 (1998).

578 19. Allen, A. E. *et al.* Whole-cell response of the pennate diatom Phaeodactylum tricornutum to
579 iron starvation. *Proc. Natl. Acad. Sci.* **105**, 10438–10443 (2008).

580 20. Gallo, C., d'Ippolito, G., Nuzzo, G., Sardo, A. & Fontana, A. Autoinhibitory sterol sulfates
581 mediate programmed cell death in a bloom-forming marine diatom. *Nat. Commun.* **8**, 1292
582 (2017).

583 21. Fu, W. *et al.* GPCR Genes as Activators of Surface Colonization Pathways in a Model
584 Marine Diatom. *iScience* **23**, 101424 (2020).

585 22. Taylor, A. R. A Fast Na⁺/Ca²⁺-Based Action Potential in a Marine Diatom. *PLoS ONE* **4**,
586 e4966 (2009).

587 23. Helliwell, K. E. *et al.* Alternative Mechanisms for Fast Na⁺/Ca²⁺ Signaling in Eukaryotes
588 via a Novel Class of Single-Domain Voltage-Gated Channels. *Curr. Biol.* **29**, 1503-1511.e6
589 (2019).

590 24. Helliwell, K. E. *et al.* Spatiotemporal patterns of intracellular Ca²⁺ signalling govern hypo-
591 osmotic stress resilience in marine diatoms. *New Phytol.* **230**, 155–170 (2021).

592 25. Lung, S.-C. & Weselake, R. J. Diacylglycerol acyltransferase: A key mediator of plant
593 triacylglycerol synthesis. *Lipids* **41**, 1073–1088 (2006).

594 26. Alpy, F. & Tomasetto, C. Give lipids a START: the StAR-related lipid transfer (START)
595 domain in mammals. *J. Cell Sci.* **118**, 2791–2801 (2005).

596 27. Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest
597 Asgard archaea are not phagocytotic. *Nat. Ecol. Evol.* **2**, 697–704 (2018).

598 28. Cougoule, C., Wiedemann, A., Lim, J. & Caron, E. Phagocytosis, an alternative model
599 system for the study of cell adhesion. *Semin. Cell Dev. Biol.* **15**, 679–689 (2004).

600 29. Groves, E., Dart, A. E., Covarelli, V. & Caron, E. Molecular mechanisms of phagocytic
601 uptake in mammalian cells. *Cell. Mol. Life Sci.* **65**, 1957–1976 (2008).

602 30. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. *J. Cell Sci.* **114**,
603 1061–1077 (2001).

604 31. Zimmerli, S. *et al.* Phagosome-lysosome fusion is a calcium-independent event in
605 macrophages. *J. Cell Biol.* **132**, 49–61 (1996).

606 32. Buckley, C. M. *et al.* WASH drives early recycling from macropinosomes and phagosomes
607 to maintain surface phagocytic receptors. *Proc. Natl. Acad. Sci.* **113**, E5906–E5915 (2016).

608 33. Frias-Lopez, J., Thompson, A., Waldbauer, J. & Chisholm, S. W. Use of stable isotope-
609 labelled cells to identify active grazers of picocyanobacteria in ocean surface waters.
610 *Environ. Microbiol.* **11**, 512–525 (2009).

611 34. Li, Q., Edwards, K. F., Schvarcz, C. R. & Steward, G. F. Broad phylogenetic and functional
612 diversity among mixotrophic consumers of Prochlorococcus. *ISME J.* **16**, 1557–1569 (2022).

613 35. van Dam, T. J. P. *et al.* Evolution of modular intraflagellar transport from a coatomer-like
614 progenitor. *Proc. Natl. Acad. Sci.* **110**, 6943–6948 (2013).

615 36. Yamada, K. *et al.* Mitotic spindle formation in *Triparma laevis* NIES-2565 (Parmales,
616 Heterokontophyta). *Protoplasma* **254**, 461–471 (2017).

617 37. Moore, E. R. *et al.* Morphological and transcriptomic evidence for ammonium induction of
618 sexual reproduction in *Thalassiosira pseudonana* and other centric diatoms. *PLOS ONE* **12**,
619 e0181098 (2017).

620 38. Chepurnov, V. A., Mann, D. G., Sabbe, K. & Vyverman, W. Experimental Studies on Sexual
621 Reproduction in Diatoms. in *International Review of Cytology* vol. 237 91–154 (Elsevier,
622 2004).

623 39. Jensen, K. G., Moestrup, Ø. & Schmid, A.-M. M. Ultrastructure of the male gametes from
624 two centric diatoms, *Chaetoceros laciniatus* and *Coscinodiscus wailesii* (Bacillariophyceae).
625 *Phycologia* **42**, 98–105 (2003).

626 40. Schreiber, V. *et al.* The Central Vacuole of the Diatom *Phaeodactylum tricornutum* :
627 Identification of New Vacuolar Membrane Proteins and of a Functional Di-leucine-based
628 Targeting Motif. *Protist* **168**, 271–282 (2017).

629 41. Horák, A., Allen, A. E. & Oborník, M. Common origin of ornithine–urea cycle in
630 opistokonts and stramenopiles. *Sci. Rep.* **10**, 16687 (2020).

631 42. Dong, H.-P. *et al.* Understanding Strategy of Nitrate and Urea Assimilation in a Chinese
632 Strain of *Aureococcus anophagefferens* through RNA-Seq Analysis. *PLoS ONE* **9**, e111069
633 (2014).

634 43. Smith, S. R. *et al.* Evolution and regulation of nitrogen flux through compartmentalized
635 metabolic networks in a marine diatom. *Nat. Commun.* **10**, 4552 (2019).

636 44. Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J. & Falkowski, P. G. Confirmation of
637 iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. *Nature* **383**,
638 508–511 (1996).

639 45. Severance, S., Chakraborty, S. & Kosman, D. J. The Ftr1p iron permease in the yeast plasma
640 membrane: orientation, topology and structure-function relationships. *Biochem. J.* **380**, 487–
641 496 (2004).

642 46. Morrissey, J. *et al.* A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron
643 at the Cell Surface and Facilitates Uptake. *Curr. Biol.* **25**, 364–371 (2015).

644 47. Kazamia, E. *et al.* Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition
645 in diatoms. *Sci. Adv.* **4**, eaar4536 (2018).

646 48. Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an
647 oceanic diatom. *Nature* **441**, 341–344 (2006).

648 49. Groussman, R. D., Parker, M. S. & Armbrust, E. V. Diversity and Evolutionary History of
649 Iron Metabolism Genes in Diatoms. *PLOS ONE* **10**, e0129081 (2015).

650 50. Durkin, C. A., Koester, J. A., Bender, S. J. & Armbrust, E. V. The evolution of silicon
651 transporters in diatoms. *J. Phycol.* **52**, 716–731 (2016).

652 51. Kotzsch, A. *et al.* Silicanin-1 is a conserved diatom membrane protein involved in silica
653 biomineralization. *BMC Biol.* **15**, 65 (2017).

654 52. Poulsen, N. & Kröger, N. Silica Morphogenesis by Alternative Processing of Silaffins in the
655 Diatom Thalassiosira pseudonana. *J. Biol. Chem.* **279**, 42993–42999 (2004).

656 53. Wenzl, S., Hett, R., Richthammer, P. & Sumper, M. Silacidins: Highly Acidic
657 Phosphopeptides from Diatom Shells Assist in Silica Precipitation In Vitro. *Angew. Chem.*
658 *Int. Ed.* **47**, 1729–1732 (2008).

659 54. Scheffel, A., Poulsen, N., Shian, S. & Kroger, N. Nanopatterned protein microrings from a
660 diatom that direct silica morphogenesis. *Proc. Natl. Acad. Sci.* **108**, 3175–3180 (2011).

661 55. Kotzsch, A. *et al.* Biochemical Composition and Assembly of Biosilica-associated Insoluble
662 Organic Matrices from the Diatom Thalassiosira pseudonana. *J. Biol. Chem.* **291**, 4982–4997
663 (2016).

664 56. Flynn, K. J. & Mitra, A. Building the ‘perfect beast’: modelling mixotrophic plankton. *J.*
665 *Plankton Res.* **31**, 965–992 (2009).

666 57. Ward, B. A., Dutkiewicz, S., Barton, A. D. & Follows, M. J. Biophysical Aspects of
667 Resource Acquisition and Competition in Algal Mixotrophs. *Am. Nat.* **178**, 98–112 (2011).

668 58. Troost, T. A., Kooi, B. W. & Kooijman, S. A. L. M. When do mixotrophs specialize?
669 Adaptive dynamics theory applied to a dynamic energy budget model. *Math. Biosci.* **193**,
670 159–182 (2005).

671 59. Troost, T. A., Kooi, B. W. & Kooijman, S. A. L. M. Ecological Specialization of
672 Mixotrophic Plankton in a Mixed Water Column. *Am. Nat.* **166**, E45–E61 (2005).

673 60. Endo, H., Ogata, H. & Suzuki, K. Contrasting biogeography and diversity patterns between
674 diatoms and haptophytes in the central Pacific Ocean. *Sci. Rep.* **8**, 10916 (2018).

675 61. Xu, Z. *et al.* Disentangling the Ecological Processes Shaping the Latitudinal Pattern of
676 Phytoplankton Communities in the Pacific Ocean. *mSystems* **7**, e01203-21 (2022).

677 62. Houdan, A., Probert, I., Zatylny, C., Véron, B. & Billard, C. Ecology of oceanic
678 coccolithophores. I. Nutritional preferences of the two stages in the life cycle of *Coccolithus*
679 *braarudii* and *Calcidiscus leptopus*. *Aquat. Microb. Ecol.* **44**, 291–301 (2006).

680 63. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and
681 distinguishing between models. *Nat. Rev. Genet.* **11**, 97–108 (2010).

682 64. Reinfelder, J. R. Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton.
683 *Annu. Rev. Mar. Sci.* **3**, 291–315 (2011).

684 65. Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the Marine Plankton.
685 *Annu. Rev. Mar. Sci.* **9**, 311–335 (2017).

686 66. Medlin, L. K. A Review of the Evolution of the Diatoms from the Origin of the Lineage to
687 Their Populations. in *The Diatom World* (eds. Seckbach, J. & Kociolek, P.) vol. 19 93–118
688 (Springer Netherlands, 2011).

689 67. Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-Offs between
690 Competition and Defense Specialists among Unicellular Planktonic Organisms: the “Killing
691 the Winner” Hypothesis Revisited. *Microbiol. Mol. Biol. Rev.* **74**, 42–57 (2010).

692 68. Kröger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. Species-specific polyamines from
693 diatoms control silica morphology. *Proc. Natl. Acad. Sci.* **97**, 14133–14138 (2000).

694 69. Boyd, P. W. *et al.* Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis and Future
695 Directions. *Science* **315**, 612–617 (2007).

696 70. Boiteau, R. M. *et al.* Siderophore-based microbial adaptations to iron scarcity across the
697 eastern Pacific Ocean. *Proc. Natl. Acad. Sci.* **113**, 14237–14242 (2016).

698 71. Guillard, R. R. L. & Ryther, J. H. STUDIES OF MARINE PLANKTONIC DIATOMS: I.
699 CYCLOTELLA NANA HUSTEDT, AND DETONULA CONFERVACEA (CLEVE)
700 GRAN. *Can. J. Microbiol.* **8**, 229–239 (1962).

701 72. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
702 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

703 73. Kajitani, R. *et al.* Efficient de novo assembly of highly heterozygous genomes from whole-
704 genome shotgun short reads. *Genome Res.* **24**, 1384–1395 (2014).

705 74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
706 *Bioinformatics* **25**, 1754–1760 (2009).

707 75. Sims, D. *et al.* CGAT: computational genomics analysis toolkit. *Bioinformatics* **30**, 1290–
708 1291 (2014).

709 76. Besemer, J. GeneMarkS: a self-training method for prediction of gene starts in microbial
710 genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res.*
711 **29**, 2607–2618 (2001).

712 77. Carradec, Q. *et al.* A global ocean atlas of eukaryotic genes. *Nat. Commun.* **9**, 373 (2018).

713 78. Suzek, B. E. *et al.* UniRef clusters: a comprehensive and scalable alternative for improving
714 sequence similarity searches. *Bioinformatics* **31**, 926–932 (2015).

715 79. Keeling, P. J. *et al.* The Marine Microbial Eukaryote Transcriptome Sequencing Project
716 (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through
717 Transcriptome Sequencing. *PLoS Biol.* **12**, e1001889 (2014).

718 80. Mihara, T. *et al.* Linking Virus Genomes with Host Taxonomy. *Viruses* **8**, 66 (2016).

719 81. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using
720 DIAMOND. *Nat. Methods* **12**, 59–60 (2015).

721 82. Herath, D., Tang, S.-L., Tandon, K., Ackland, D. & Halgamuge, S. K. CoMet: a workflow
722 using contig coverage and composition for binning a metagenomic sample with high
723 precision. *BMC Bioinformatics* **18**, 571 (2017).

724 83. Tajima, N. *et al.* Sequencing and analysis of the complete organellar genomes of Parmales, a
725 closely related group to Bacillariophyta (diatoms). *Curr. Genet.* **62**, 887–896 (2016).

726 84. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A Program for Improved Detection of Transfer
727 RNA Genes in Genomic Sequence. *Nucleic Acids Res.* **25**, 955–964 (1997).

728 85. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically
729 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* **24**, 637–644
730 (2008).

731 86. Kim, D. *et al.* TopHat2: accurate alignment of transcriptomes in the presence of insertions,
732 deletions and gene fusions. *Genome Biol.* **14**, R36 (2013).

733 87. Trapnell, C. *et al.* Transcript assembly and quantification by RNA-Seq reveals unannotated
734 transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.* **28**, 511–515
735 (2010).

736 88. Haas, B. J. *et al.* De novo transcript sequence reconstruction from RNA-seq using the Trinity
737 platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494–1512 (2013).

738 89. Slater, G. & Birney, E. Automated generation of heuristics for biological sequence
739 comparison. *BMC Bioinformatics* **6**, 31 (2005).

740 90. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. *tRNAscan-SE 2.0: Improved Detection*
741 *and Functional Classification of Transfer RNA Genes.*
742 <http://biorxiv.org/lookup/doi/10.1101/614032> (2019) doi:10.1101/614032.

743 91. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches.
744 *Bioinformatics* **29**, 2933–2935 (2013).

745 92. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable
746 element families. *Proc. Natl. Acad. Sci.* **117**, 9451–9457 (2020).

747 93. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to Identify Repetitive Elements in
748 Genomic Sequences. *Curr. Protoc. Bioinforma.* **25**, (2009).

749 94. Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic
750 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein
751 database. *NAR Genomics Bioinforma.* **3**, lqaa108 (2021).

752 95. Kriventseva, E. V. *et al.* OrthoDB v10: sampling the diversity of animal, plant, fungal,
753 protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs.
754 *Nucleic Acids Res.* **47**, D807–D811 (2019).

755 96. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
756 (2013).

757 97. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification. *Bioinformatics*
758 **30**, 1236–1240 (2014).

759 98. Huerta-Cepas, J. *et al.* Fast Genome-Wide Functional Annotation through Orthology
760 Assignment by eggNOG-Mapper. *Mol. Biol. Evol.* **34**, 2115–2122 (2017).

761 99. Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically
762 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.*
763 **47**, D309–D314 (2019).

764 100. Fukasawa, Y. *et al.* MitoFates: Improved Prediction of Mitochondrial Targeting
765 Sequences and Their Cleavage Sites*. *Mol. Cell. Proteomics* **14**, 1113–1126 (2015).

766 101. Almagro Armenteros, J. J. *et al.* Detecting sequence signals in targeting peptides using
767 deep learning. *Life Sci. Alliance* **2**, e201900429 (2019).

768 102. Nielsen, H. Predicting Secretory Proteins with SignalP. in *Protein Function Prediction*
769 (ed. Kihara, D.) vol. 1611 59–73 (Springer New York, 2017).

770 103. Gruber, A., Rocap, G., Kroth, P. G., Armbrust, E. V. & Mock, T. Plastid proteome
771 prediction for diatoms and other algae with secondary plastids of the red lineage. *Plant J.* **81**,
772 519–528 (2015).

773 104. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
774 comparative genomics. *Genome Biol.* **20**, 238 (2019).

775 105. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version
776 7: Improvements in Performance and Usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

777 106. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated
778 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973
779 (2009).

780 107. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
781 large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

782 108. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of
783 protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

784 109. Kessenich, C. R., Ruck, E. C., Schurko, A. M., Wickett, N. J. & Alverson, A. J.
785 Transcriptomic Insights into the Life History of Bolidophytes, the Sister Lineage to Diatoms.
786 *J. Phycol.* **50**, 977–983 (2014).

787 110. Matsui, M. & Iwasaki, W. Graph Splitting: A Graph-Based Approach for Superfamily-
788 Scale Phylogenetic Tree Reconstruction. *Syst. Biol.* syz049 (2019)
789 doi:10.1093/sysbio/syz049.

790 111. Jensen, E. L., Maberly, S. C. & Gontero, B. Insights on the Functions and
791 Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. *Int. J. Mol.*
792 *Sci.* **21**, 2922 (2020).

793

794 Table 1 Assembly and annotation results and statistics

795

	<i>Triparma</i> <i>laevis</i> f. <i>inornata</i>	<i>Triparma</i> <i>laevis</i> f. <i>longispina</i>	<i>Triparma</i> <i>verrucosa</i>	<i>Triparma</i> <i>strigata</i>	<i>Triparma</i> <i>retinervis</i>	<i>Triparma</i> <i>colmacea</i>	<i>Tetraparma</i> <i>gracilis</i>	Scaly parma
Genome size (Mbp)	42.6	41.4	35.5	35.2	36.5	43.0	43.6	31.0
No. of scaffolds	902	1,055	659	634	8,760	1,858	7,082	1,921
N50 (kbp)	83.2	77.9	74.0	73.4	8.2	63.5	10.7	51.7
GC (%)	51.3	51.1	52.1	52.2	52.4	51.0	64.8	51.0
No. of predicted protein-coding genes	13,396	16,002	14,488	14,364	13,636	13,919	15,310	12,177
BUSCO Complete genes (%)	74	93	94	94	70	92	65	93

796

Figure legends

797

Fig. 1 | Phylogenetic relationships of diatoms, parmaleans (Parmales), and stramenopiles, and number of shared genes in OGs.

799

(a) Maximum likelihood tree estimated by RAxML with 164 single-copy OGs. Blue and purple branches are diatom and Parmales clades, respectively. The numbers on the branches represent bootstrap values. The coloured bars indicate the group where each taxon belongs (black: outgroup, light blue: pennate diatoms, deep blue: centric diatoms, purple: Parmales). (b) The barplot represents the groups genes inferred through orthologous gene clustering.

804

805

Fig. 2

806

(a) Diatom and Parmales genomes enriched in InterPro domains. We manually clustered and selected the domains that appear to be involved in a specific process. The colours are scaled in ascending order from blue to red by the z-value in each row. (b) Number of genes annotated with GO:0005516 (calcium ion binding) by InterProScan. (c) An example of InterPro domains composed of multi-domain proteins including START domains. (d) Parmalean genomes enriched in InterPro domains thought to be related to phagocytosis. The colours are scaled in ascending order from blue to red by the z-value in each row. InterPro domains that were not statistically significant but were considered important are marked with an asterisk (*). (e) Probability of phagotrophy predicted by the Burns et al. (2019) tool. (f) Schematic view of hypothesized parmalean life cycle. (g) Presence (filled square) or absence (or loss: grey square) of genes/transcripts related to intraflagellar transport (IFT) subunits.

817

818

Fig. 3 | Ecophysiology of diatoms and parmaleans.

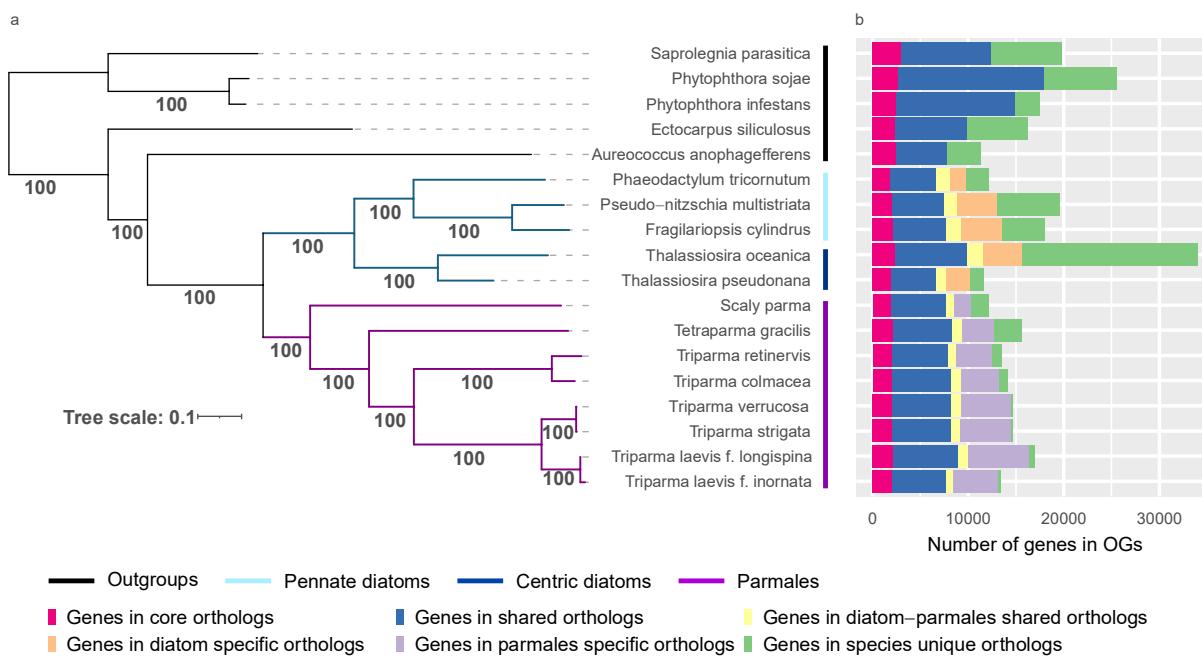
819

(a) Distribution of nutrient transporter genes. Each axis represents the number of nitrate/nitrite transporter, ammonia transporter, urea transporter, phosphate transporter, or silicic acid (Si) transporter genes. (b) Genes involved in nitrogen assimilation (including ornithine–urea cycle). The colours are scaled in ascending order from blue to red by the z-value in each row; a grey square indicates absence of the gene. (c) Presence (filled square) or absence/loss (grey square) of iron uptake system genes. Gene names are abbreviated; full names and accessions can be found

825 in Supplementary Data 4. (d) Schematic view of the evolutionary pattern of plastocyanin genes. A
826 whole phylogenetic tree is shown in Supplementary Fig. 3.

827

828 Fig. 4 | Phylogenetic tree of SIT domains.


829 Maximum likelihood phylogenetic tree of the SIT domains of diatoms, Parmales, and
830 ochrophytes (outgroup). Sequences with more than two SIT domains were separated to each
831 domain and aligned. Grouping of paralogues from diatoms is based on the classification of Durkin
832 et al. (2016). Only important bootstrap values are noted.

833

834 Fig. 5 | Schematic view of diatoms and parmales evolution.

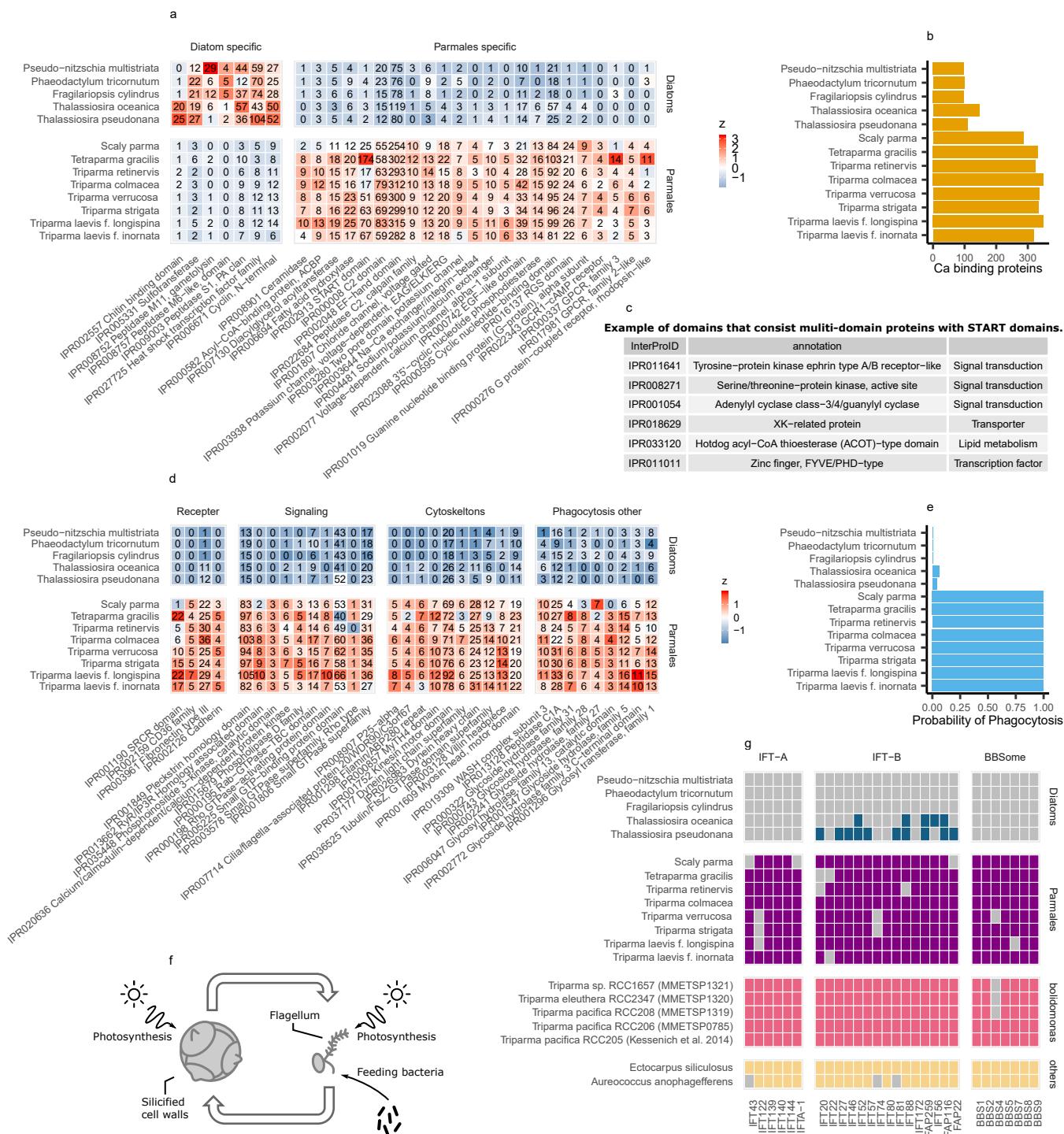
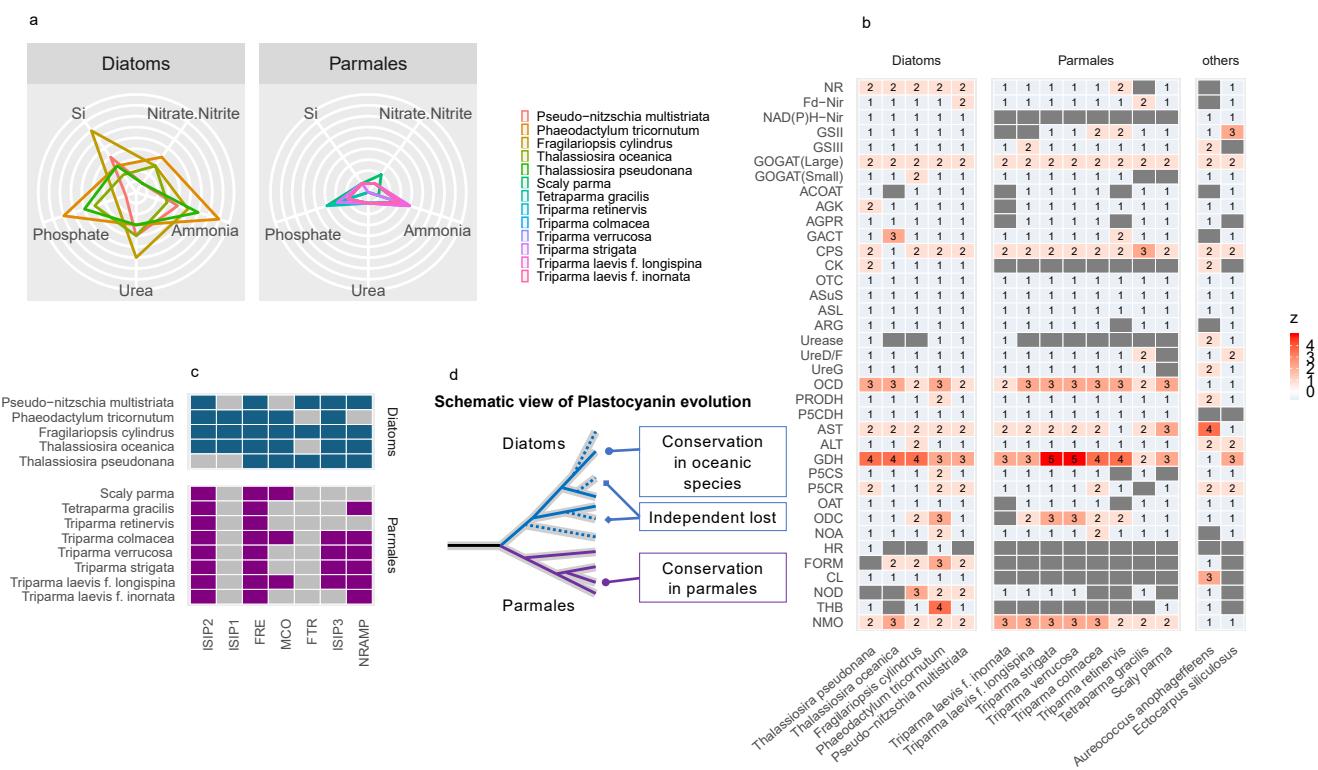
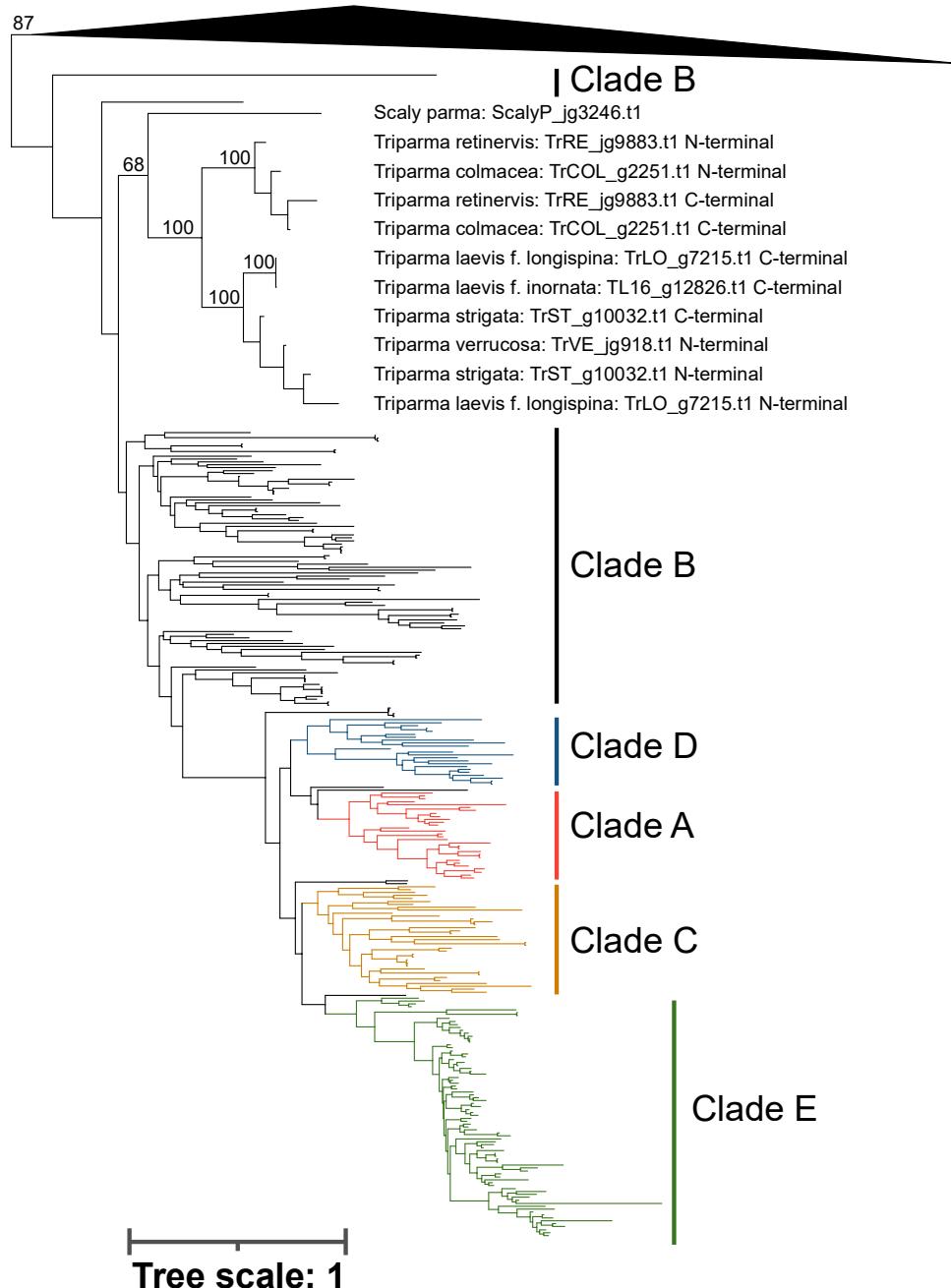

835

Figure 1

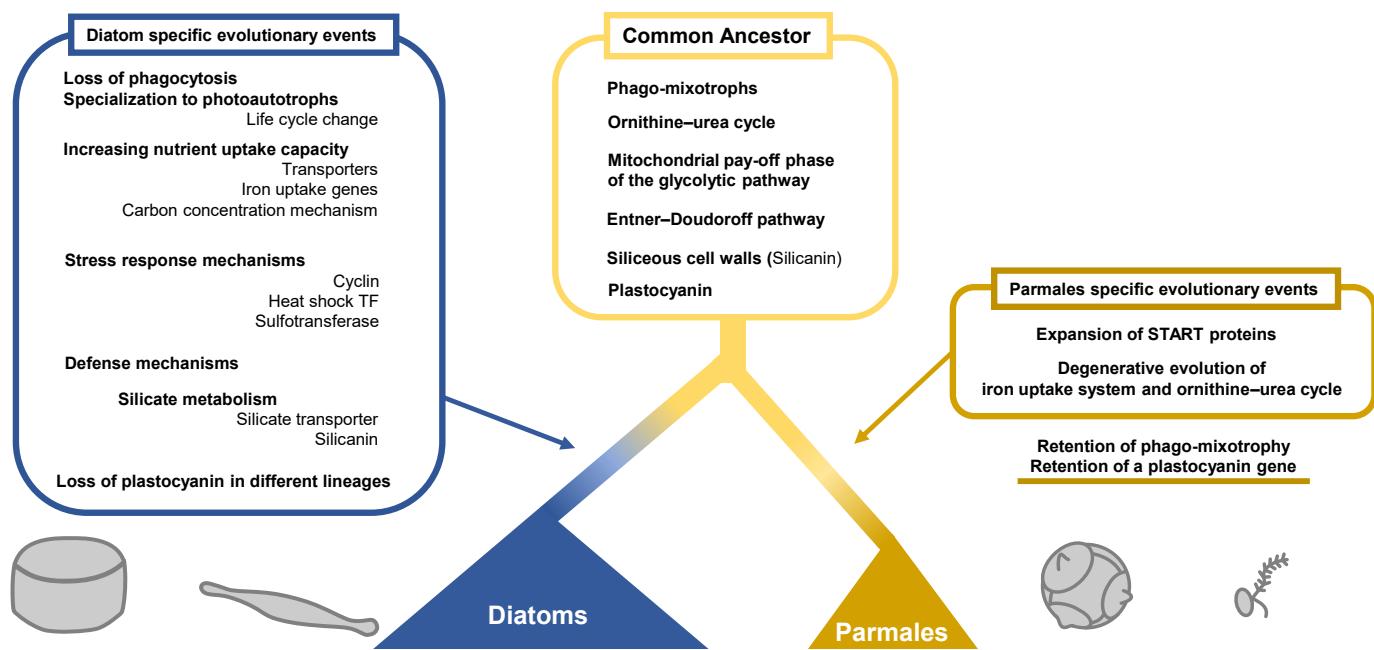


836

Figure. 2


Figure. 3

841


Figure 4

Outgroup (25 sequences)

842

Figure. 5

