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Abstract

According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the
environment given some biophysical constraints. Early sensory neurons modulate their average firing rates in response to
some features of the external stimulus, creating tuned responses. In early visual areas, these modulations (or tunings) are
predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase
in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the
time scale at which neurons encode information is imperative to understanding the relative advantages of single-peaked
and periodic tuning curves. Because, if decoding ability scales differently with time for the different shapes of tuning
curves, the time scale at which the neurons operate becomes critical. Here, we show that the possibility of catastrophic
(large) errors due to overlapping neural responses for distinct stimulus conditions creates a trade-off between decoding
time and decoding ability. Unfortunately, standard theoretical measures such as Fisher information do not capture these
errors. We investigate how (very) short decoding times and stimulus dimensionality affect the optimal shape of tuning
curves for stimuli with finite domains. In particular, we focus on the spatial periods of the tuning curves (or the number
of "peaks") for a class of circular tuning curves. We show a general trend for minimal decoding time, i.e., the shortest
decoding time required to produce a statistically reliable signal, to increase with increasing Fisher information implying a
trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high or there
is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of
single-peaked, rather than a periodic, tuning organization observed in early visual areas.

Introduction
One of the fundamental problems in systems neuroscience is understanding how sensory information can be represented in
the spiking activity of an ensemble of neurons. The problem is exacerbated by the fact that individual neurons are highly
noisy and variable in their responses, even to identical stimuli (Arieli et al., 1996). A common feature of early sensory
representation is that the neocortical neurons in primary sensory areas change their average responses only to a small range
of features of the sensory stimulus. For instance, some neurons in the primary visual cortex respond to moving bars oriented
at specific angles (Hubel and Wiesel, 1962). This observation has led to the notion of tuning curves. Together, a collection
of tuning curves provides a possible basis for a neural code.

A considerable emphasis has been put on understanding how the structure of noise and correlations affect stimulus rep-
resentation given a set of tuning curves (Shamir and Sompolinsky, 2004; Averbeck and Lee, 2006; Franke et al., 2016;
Zylberberg et al., 2016; Moreno-Bote et al., 2014; Kohn et al., 2016). More recently, the issue of local and catastrophic
errors, which dates back to the work of Shannon (Shannon, 1949), has been raised in the context of neuroscience (Xie, 2002;
Sreenivasan and Fiete, 2011). Intuitively, local errors are small estimation errors that depend on the trial-by-trial variability
of the neural responses and the local shapes of the tuning curves surrounding the true stimulus condition (Fig. 1a, see s1).
On the other hand, catastrophic errors are very large estimation errors that depend on the trial-by-trial variability and the
global shape of the tuning curves (Fig. 1a, see s2). While a significant effort has been put into studying how stimulus
tuning and different noise structures affect local errors, less is known about the interactions with catastrophic errors. For
example, Fisher information is a common measure of the accuracy of a neural code by providing a measure of the sensitivity
to local stimulus changes in the output responses of a given population (Brunel and Nadal, 1998; Abbott and Dayan, 1999;
Guigon, 2003; Moreno-Bote et al., 2014; Benichoux et al., 2017). Intuitively, if Fisher information is high, small changes in
the stimulus conditions produce large changes in the population’s spike count statistics. The use of Fisher information is
justified by the Cramér-Rao bound, by which it can be related to the minimal attainable mean squared error (MSE) for any
unbiased estimator. However, because Fisher information can only capture local errors, the true MSE of a system might be

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.505677doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.09.505677
http://creativecommons.org/licenses/by-nc-nd/4.0/


considerably larger in the presence of catastrophic errors (Xie, 2002; Kostal et al., 2015), especially if the available decoding
time is short (Bethge et al., 2002; Finkelstein et al., 2018).

A curious observation is that the tuning curves of early visual areas predominately use single firing fields, whereas grid
cells in the entorhinal cortex are known for their periodically distributed firing fields (Hafting et al., 2005). That is, in
the early visual areas tuning curves are mostly single-peaked while grid cells have numerous, periodically distributed peaks.
The multiple firing locations of grid cells increase the precision of the neural code compared to single-peaked tuning curves
(Sreenivasan and Fiete, 2011; Mathis et al., 2012; Wei et al., 2015). This raises the question of why periodic firing fields
are not a prominent organization of early visual processing, too?

The theoretical arguments in favor of periodic tuning curves have mostly focused on local errors under the assumption
that catastrophic errors are negligible (e.g., Sreenivasan and Fiete (2011)). However, given the response variability, it takes
a finite amount of time to accumulate a sufficient number of spikes to decode the stimulus. Given that fast processing speed
is a common feature of visual processing (Thorpe et al., 1996; Fabre-Thorpe et al., 2001; Rolls and Tovee, 1994; Resulaj
et al., 2018), it is crucial that each neural population in the processing chain can quickly produce a reliable stimulus-evoked
signal. Therefore, the time required to produce signals without catastrophic errors will likely put fundamental constraints
on any neural code, especially in early visual areas.

Here, we contrast Fisher information with the minimal decoding time required to remove catastrophic errors (i.e., be-
fore Fisher information becomes a valid descriptor of the MSE). We base the results on the maximum likelihood estimator
for uniformly distributed stimuli (i.e., the maximum a posteriori estimator) using populations of tuning curves with an in-
homogeneous number of firing fields (i.e., the number of "peaks"). We show that minimal required decoding time tends
to increase with increasing Fisher information. This suggests a trade-off between the accuracy of a neural signal and the
speed by which it can be reliably produced. Furthermore, we show that the difference in minimal decoding time grows with
the number of jointly encoded stimulus features and in the presence of spontaneous activity. Thus, single-peaked tuning
curves require shorter decoding times and are more robust to spontaneous activity than periodic tuning curves. Finally, we
exemplify the issue of large estimation errors and periodic tuning in simple spiking neural networks tracking either a step-like
stimulus change or a continuously time-varying stimulus.

Results
Shapes of tuning curves, Fisher information and catastrophic errors
To enable a comparison between single-peaked and periodic (multi-peaked) tuning curves, we consider circular tuning curves
responding to a D-dimensional stimulus s ∈ [0, R)D according to

fi(s) = ai

D∏
j=1

exp
(

1
w

(
cos
(

2π
1

λiR
(sj − s′

i,j)
)

− 1
))

+ b (1)

where ai is the peak amplitude of the stimulus-related tuning curve i, w is a width scaling parameter, λi defines the spatial
period (relative to the stimulus range, R) of neuron i, si,j determines the location of the firing field(s) in the j:th dimension,
D is the number of stimulus dimensions, and b determines the amount of spontaneous activity. The parameters are kept
fixed for each neuron, thus ignoring any effect of learning or plasticity. In simulations, the stimulus domain was set to [0, 1)D

for simplicity, although this choice does not qualitatively affect the results.

Throughout this paper, we assume that the stimulus is uniformly distributed and that its dimensions are independent
of each other. This can be seen as a worst-case scenario as it maximizes the entropy of the stimulus. In a single trial,
we assume that the number of emitted spikes for each neuron is conditionally independent and follows a Poisson distribu-
tion given some stimulus-dependent rate fi(s). Thus, the probability of observing a particular activity pattern given the
stimulus-dependent rates is

p(r|s, T ) =
N∏

i=1
p(ri|Tfi(s)) =

N∏
i=1

(Tfi(s))ri exp(−Tfi(s))
ri!

(2)

where s denotes the stimulus vector, N the number of neurons in the population, and r a vector of spike counts (of length N).

Given a model of neural responses, e.g., Eq. 2, the Cramér-Rao bound provides a lower bound on the accuracy by which
the population can communicate a signal. The Cramér-Rao bound states that a lower limit of the MSE for any unbiased
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estimator is given by the inverse of Fisher information (Lehmann and Casella, 1998). Thus, increasing Fisher information
reduces the lower bound on the minimal attainable MSE. For this reason, Fisher information has been a popular measure
for studying population coding. For sufficiently large populations, using the population and spike count models in Eq. 1 and
Eq. 2, Fisher information is given by (see Sreenivasan and Fiete (2011) or Methods for details)

J(s) ≈ (2π)2a
TN

R2w
B0(1/w)D−1B1(1/w) exp(−D/w)λ−2 (3)

where λ−2 denotes the average of the squared inverse of the (relative) spatial periods across the population, and Bα(·)
denotes the modified Bessel function of the first kind. Eq. 3 (and similar expressions) suggests that populations consisting
of periodic tuning curves, for which λ−2 ≫ 1, are superior at communicating a stimulus signal than a population using
tuning curves with only single firing fields, where λ−2 = 1. However, (inverse) Fisher information only predicts the amount
of local errors for an efficient estimator. Hence, the presence of catastrophic errors (Fig. 1a) can be identified by large
deviations from the predicted MSE for an asymptotically efficient estimator. Therefore, we defined minimal decoding time
as the shortest time required to reach the Cramér-Rao bound.

Periodic tuning curves and stimulus ambiguity
To understand why the minimal decoding time can differ with different spatial periods, consider first the problem of stimulus
ambiguity that can arise with periodic tuning curves. If all tuning curves in the population share the same relative spatial
period, λ, then the stimulus-evoked responses can only provide unambiguous information about the stimulus in the range
[0, λR). Beyond this range, each stimulus condition has a statistically identical response distribution for a stimulus condition
λR away. Thus, single-peaked tuning curves (λ = 1) provide unambiguous information about the stimulus (Fig. 1b). Periodic
tuning curves (λ < 1), on the other hand, require the use of tuning curves with two or more distinct spatial periods to
resolve the stimulus ambiguity (Fiete et al., 2008; Mathis et al., 2012; Wei et al., 2015). In the following, we assume the
tuning curves are organized into discrete modules, where all tuning curves within a module share a spatial period (Fig. 1b)
mimicking the organization of grid cells (Stensola et al., 2012). For convenience, assume that λ1 > λ2 > ... > λL where L
is the number of modules. Thus, the first module provides the most coarse-grained resolution of the stimulus interval, and
each successive module provides an increasingly fine-grained resolution. It has been suggested that a geometric progression
of spatial periods, such that λi = cλi−1 for some spatial factor 0 < c ≤ 1, may be optimal for maximizing the resolution of
the stimulus while reducing the required number of neurons (Mathis et al., 2012; Wei et al., 2015). However, trial-by-trial
variability can still cause stimulus ambiguity and catastrophic errors - at least for short decoding times, as we show later,
even when using multiple modules with different spatial periods.

Minimal decoding times in two module populations
How does the choice of spatial periods impact the minimal decoding time? To get some intuition, we first consider the case
of using only two different spatial scales. From the perspective of a probabilistic decoder (Seung and Sompolinsky, 1993;
Deneve et al., 1999; Ma et al., 2006), assuming that the stimulus is uniformly distributed, the maximum likelihood (ML)
estimator is Bayesian optimal (and asymptotically efficient). The maximum likelihood estimator aims at finding the stimulus
condition which is the most likely cause of the observed activity, r, or

ŝML = arg max
s

p(r|s), (4)

where p(r|s) is called the likelihood function. The likelihood function equals the probability of observing the observed
neural activity, r, assuming that the stimulus condition was s. In the case of independent Poisson spike counts (or at least
independence across modules), each module contributes to the joint likelihood function p(r|s) with individual likelihood
functions, Q1 and Q2 (Wei et al., 2015). Thus, the joint likelihood function can be seen as the product of the two individual
likelihood functions, where each likelihood is λiR-periodic

p(r|s) = Q1(s)Q2(s). (5)

In this sense, each module provides its own ML-estimate of the stimulus, s
(1)
ML = arg maxs Q1(s) and s

(2)
ML = arg maxs Q2(s),

but because of the periodicity of the tuning curves there can be multiple modes for each of the likelihoods (e.g., Fig 1c and
d, top panels). For the largest mode of the joint likelihood function to be also centered close to the true stimulus condition,
the distance between s

(1)
ML and s

(2)
ML must be smaller than between any other pair of modes of Q1 and Q2. We assume that

the stimulus estimate from each module is efficient, that is, the difference δ in the modes closest to the true stimulus s0 is
a normally distributed random variable

δ = s
(1)
ML − s

(2)
ML ∼ 1

T 2 N (0, J̄−1
1 + J̄−1

2 ) (6)
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Figure 1: Minimal decoding times in two module populations. a) (top) A two-neuron system encoding a single variable using
tuning curves. (bottom) The tuning curves create a one-dimensional activity trajectory embedded in a two-dimensional neural
activity space (black trajectory). Decoding the two stimulus conditions, s1 and s2, illustrates the two types of estimation
errors that can occur due to trial-by-trial variability, local (ŝ1) and catastrophic (ŝ2). b) Illustration of the individual likelihood
functions formed by two-module systems. Below the likelihood functions, the stimulus interval has been partitioned and
color-coded according to the spatial period of the tuning curves. Note that a single module cannot differentiate stimulus
conditions across these partitions, i.e., the stimulus is only unambiguous within each color-coded spatial period. c) Using a
second module with a spatial period much smaller than the first module can introduce stimulus ambiguity both within the
correct mode of the first module’s likelihood and across the first module’s modes. In this illustration, the individual likelihoods
have been perturbed just enough around the correct stimulus s0 such that the joint likelihood function is ambiguous. Note
that the perturbations can be very small, especially if c ≫ 1. d) Same as in c) but for spatial periods that are similar but
not identical. In this case, catastrophic estimation errors only occur due to modes of the joint likelihood function far from
the true stimulus condition becoming larger than for the correct mode. e) The dependence of the scale factor c on the
minimal decoding time. The blue and red circles indicate the simulated minimal decoding times for populations with λ1 = 1
and λ1 = 1/2, respectively. The gray lines indicate the estimation of the minimal decoding times according to Eq. 8, with
perror = 10−3. The insets show 1) the predicted value of 1/δ∗, and 2) the inverse of the Fisher information. Note that the
color codes correspond to the color code of the circles in the main figure. See Table S1 in Methods for list of parameter
values.
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where J̄k refers to the time-normalized Fisher information of module k. Thus, as the decoding time T increases, the variance
in the distances between the "true" modes of Q1 and Q2 decreases. Hence, it is necessary for the decoding time T to be
large enough such that it is rare for δ not to be the smallest distance between any two modes of Q1(s) and Q2(s).

To limit the probability of the decoder experiencing catastrophic errors to some small error probability perror, we impose
that

Pr(|δ| > δ∗) < perror, (7)

where δ∗ is the largest allowed distance of δ before a catastrophic error occurs (see Methods for calculation of δ∗). Assuming
that the estimation of each module becomes efficient before the joint estimation, Eq. 7 can be reinterpreted as a lower bound
on the required decoding time before the estimation based on the joint likelihood function becomes efficient

Tth > 2
(

erfinv(1 − perror)
δ∗

)2( 1
J̄1

+ 1
J̄2

)
, (8)

where erfinv(·) is the inverse of the error function and J̄i is the time-normalized Fisher information of module i (see Methods
for derivation). Thus, the spatial periods of the modules influence the minimal decoding time by determining: (1) the largest
allowed distance δ∗ between the estimates of the modules, and (2) the variance of the estimations by the inverse of their
respective Fisher information.

For example, if the spatial periods of the modules are very different, λ2 ≪ λ1, then there exist many peaks of Q2 around
the correct peak of Q1 (Fig. 1c, top panel). More damaging still is the chance of having other modes of Q1 and Q2 close
together. Thus, λ2 ≪ λ1 can create a highly multi-modal joint likelihood function (Wei et al. (2015) or Fig. 1c) where
small deviations in s

(1)
ML and s

(2)
ML can cause a shift, or a change, of the maximal mode of the joint likelihood. To avoid this,

|δ| < δ∗ must be small leading to longer decoding times by Eq. 6. If, instead, the two modules have similar spatial periods
λ2 ∼ λ1, or λ1 is close to a multiple of λ2, then the distance between the peaks some period away are also close together
(Fig. 1d) again leading to small δ∗ and longer decoding time. Thus, assuming λ1 < 1, both small and large scale factors c
can lead to long decoding times. In other words, periodic tuning suffers from the dilemma that small shifts in the individual
stimulus estimates can cause catastrophic shifts in the joint likelihood function. For single-peaked tuning curves (λ1 = 1),
however, only small scale factors c can pose such problems.

To test the approximation, we simulated a set of populations (N = 600 neurons) with different spatial periods. The
populations were created using identical tuning parameters except for the spatial periods, whose distribution varied across
the populations, and the amplitudes, which were adjusted to ensure an equal average firing rate (across all stimulus con-
ditions) for all neurons (see Method for details on simulations and SI for the amplitudes). As described above, the spatial
periods were related by a scaling factor c. Different values of c were tested for the largest period being either λ1 = 1 or
λ1 = 1/2. Furthermore, only populations with unambiguous codes over the stimulus interval were included (Mathis et al.,
2012). The minimal decoding time was found for each population by gradually increasing the decoding time until the empir-
ical MSE was within two times the predicted lower bound (see Methods for details). Limiting the probability of catastrophic
errors to perror = 10−3, Eq. 8 was found to be a good predictor of of the minimal decoding time (Fig. 1e, R2 = 0.89 and
R2 = 0.95 for λ1 = 1 and λ1 = 1/2, respectively). In the case of λ1 = 1, the minimal decoding time is monotonically
increasing with decreasing spatial periods (scale factor c) of module 2 (Fig. 1e, blue). For λ1 = 1/2, minimal decoding
time is higher than that required for λ1 = 1. For λ1 = 1/2, the minimal decoding time increase with decreasing spatial
periods. However, this trend is interrupted by large peaks (Fig. 1e, red line). The irregular trend is explained by the irregular
behavior of δ∗ (Fig. 1e top-left inset), whenever λ1 = 1/2 is close to a multiple of λ2, the smallest allowed deviation δ∗ is
also determined by the distance between peaks far away from the stimulus condition (Fig. 1c-d). Thus, whenever c is close
to 1, 1/2, 1/3, etc., small displacements of the peaks of Q1 and Q2 can cause catastrophic shifts in the estimation of s0.
Fig. 1 suggests that single-peaked tuning curves could remove catastrophic errors faster than any multi-peaked population.

Minimal decoding times for more than two module populations
From the two-module case above, it is clear that the minimal decoding time becomes large whenever c << 1 or additionally,
in the case of λ1 < 1, when the scale factor c is approximately 1, 1/2, 1/3, etc. However, Eq. 8 is difficult to analyse w.r.t.
the scale factor c and is only valid for two module systems (L = 2). To approximate how the minimal decoding time scales
with the distribution of spatial periods in populations with more than two modules, we extended the approximation method
first introduced by Xie (2002). The method was originally used to assess the number of neurons required to reach the
Cramér-Rao bound for single-peaked tuning curves with additive Gaussian noise for the ML-estimator. In addition, it only
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Figure 2: Minimal decoding times beyond two module populations. a) Illustration of the likelihood functions (for a single
trial) of a population with L = 5 modules, where the spatial scale of each module relates to the previous module’s scale using
a scale factor c. The code provides precise information about the stimulus (given sufficient decoding time) if c ̸= 1, 1/2, 1/3,
etc. b) The peak amplitudes of each neuron (left column) were selected such that all neurons shared the same expected
firing rate for a given stimulus condition (right column). Note that the reduction in average firing rates (across the stimulus
domain) for D = 2 is not due to a reduction in peak amplitudes. c) Inset: Plot of average Fisher information as a function
of the scale factor c. As before, smaller spatial scales imply larger Fisher information. Increasing stimulus dimensionality
decreases information. The colored lines correspond to the estimated Fisher information in simulations, and the black dashed
lines the theoretical predictions. Main plot: Plot of minimal decoding time as a function of scale factor c. Minimal decoding
time tends to increase with decreasing grid scales (colored lines show the estimated minimal decoding time from simulations
and the black lines show the fitted theoretical predictions). The gray color corresponds to points with large discrepancies
between the predicted and the simulated minimal decoding times, likely a consequence of c being close to 1 (see Fig. 1c).
d) Plot of the average Fisher information against the minimal decoding time. Shows a correlation between high Fisher
information and long minimal decoding times (note the log-log scale). Points colored in gray are the same as in panel c).
A list of all tuning parameters is given in Table S2.
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considered encoding a one-dimensional stimulus variable. We adapted this method to approximate the required decoding
time for stimuli with an arbitrary number of dimensions, Poisson distributed spike counts, and tuning curves with arbitrary
spatial periods. In this setting, the minimum decoding time can be approximated as (see Methods for derivation):

Tth ≈ K1A(w) 1
aN

exp(D/w)
B0(1/w)(D−1)

λ−32

λ−23 + K2, (9)

where the bars indicate the average w.r.t. the spatial periods in the population, A(w) is a function of w (see Method for
detailed expression), and K1 and K2 are some unknown constants. Thus, Eq. 9 approximates how the minimal decoding
time depends on the distribution of spatial periods. The derivation was carried out assuming the absence of spontaneous
activity and that the amplitudes within each population are similar, a1 ≈ ... ≈ aN . Importantly, the approximation assumes
the existence of a unique solution to the maximum likelihood equations. It is therefore ill-equipped to predict the issues of
stimulus ambiguity. Thus, it cannot capture the additional effects of λ2 ≪ λ1 or when λ1 is close to a multiple of λ2, as in
Fig. 1c-d. On the other hand, complementing the theory presented in Eq. 8, Eq. 9 provides a more interpretable expression
of the scaling of minimal decoding time. Assuming an equal number of neurons per module (and thus per spatial period),
we can rewrite Eq. 9 in terms of c as

Tth ≈ K1A(w) 1
aM

exp(D/w)
B0(1/w)(D−1)

(∑L
j=1 c−3j

)2(∑L
j=1 c−2j

)3 + K2, (10)

where M is the number of neurons in each module. Thus, for 0 < c ≤ 1, the minimal decoding time, Tth, is expected to
increase roughly linearly with decreasing scale factor, c. It also suggests that the scaling of the minimal decoding time with
the scale factor should be similar for different choices of λ1. Furthermore, keeping the amplitudes fixed and increasing the
stimulus dimensionality, D, should dramatically increase the minimal decoding time. Assuming all other parameters except
D are constant, the minimal decoding time should grow roughly exponentially with the number of stimulus dimensions (see
Eq. 9).

To confirm the validity of Eq. 10 we simulated populations of N = 600 tuning curves across L = 5 modules, where the
spatial periods were again defined using a scale factor c and the largest period, λ1 (Fig. 2a). To avoid the effects of c ≪ 1,
we limited the range of the scale factor to 0.3 ≤ c ≤ 1. The upper bound on c was kept to include entirely single-peaked
populations, even though Eq. 10 might be a poor approximation for λ1 < 1 and c ≈ 1. Again, the assumption of homoge-
neous amplitudes in Eq. 10 was dropped in simulations (Fig. 2b, left column) to ensure that the average firing rate across
the stimulus domain is equal for all neurons (Fig. 2b, right column). This had little effect on Fisher information, where the
theoretical prediction was based on the average amplitudes across all populations with the same λ1 and stimulus dimen-
sionality D (Fig. 2c inset, coloured lines are estimated Fisher information based on simulations and dashed black lines are
the theoretical predictions using homogeneous amplitudes). As before, Fisher information grows with decreasing scale factor
c and with decreasing spatial period λ1 (Fig. 2c, inset). However, increasing the stimulus dimensionality decreases Fisher
information if all other parameters are kept constant. On the other hand, the minimal decoding time also increases with
decreasing spatial periods (Fig. 2c). Furthermore, increasing stimulus dimensionality also increased the minimal decoding
time. Using Eq. 10, the constants K1 and K2 were fitted using least square regression across populations sharing the same
largest period, λ1, and stimulus dimensionality, D. Within this range of scale factors, Eq. 10 provides reasonable fits for the
populations with λ1 = 1 (Fig. 2c, R2 ≈ 0.89 and R2 ≈ 0.90 for D = 1 and D = 2, respectively). For the populations with
λ1 = 1/2, Eq. 10 becomes increasingly unable to predict the behavior of the minimal decoding time as c approaches 1 (see
the red and yellow lines). On the other hand, as was suggested above, the scaling of the minimal decoding time with c is in
fact similar for λ1 = 1 and λ1 = 1/2 whenever the scaling factor is less than ≈ 0.9 (Fig. 2c, compare the blue / red lines or
the green / yellow lines). As suggested by Fig. 2d, there is also a strong correlation between Fisher information and minimal
decoding time again indicating a speed-accuracy trade-off. As we will argue in the Discussion, the correlation between
minimal decoding time and Fisher information is not simply due to a tougher requirement on MSE (from the Cramér-Rao
bound) but reflects an important trade-off between accuracy and speed.

Thus, while periodic tuning curves provide lower estimation errors for long decoding times by minimizing local errors (Fig. 2c,
inset), a population of single-peaked tuning curves is faster at producing a statistically reliable signal by removing catastrophic
errors (see Eq. 9 and Fig. 2c). Generalizing minimal decoding times to an arbitrary number of stimulus dimensions reveals
that the minimal decoding time also depends on the stimulus dimensionality (see Fig. 2c, compare lines for D = 1 and
D = 2). Interestingly, however, the approximation predicts that although minimal decoding time grows with increasing
stimulus dimensionality, the minimal required spike count might be independent of stimulus dimensionality, at least for
populations with integer spatial frequencies, i.e., integer number of peaks (see SI). The populations simulated here have
non-integer spatial frequencies, but the trend of changes in mean spike count is still just slightly below 1 (indicating that
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Figure 3: Effect of spontaneous activity. a) The case of encoding a one-dimensional stimulus (D = 1) with or without
spontaneous activity at 2 spikes/second (diamond and circles shapes, respectively). b) The case of a two-dimensional
stimulus (D = 2) under the same conditions as for a). Spontaneous activity increases the time required for all populations
to produce reliable signals, but the effect is strongest for c ≪ 1. All other tuning curve parameters are set according to
Table S2.

slightly fewer spikes across the population were needed with increasing D, see Fig. S1). Thus, as the average firing rate
decreases with the number of encoded features D (Fig. 2b), the increase in minimal decoding time with D can be largely
explained by requiring a longer time to accumulate the sufficient number of spikes across the population.

Effect of spontaneous activity
Many cortical areas exhibit spontaneous activity, i.e., activity that is not stimulus-specific (Snodderly and Gur, 1995; Barth
and Poulet, 2012). Thus, it is important to understand the impact of spontaneous activity on minimal decoding time, too.
Unfortunately, because our approximation of minimal decoding times did not include spontaneous activity, we relied on
simulations to study the effect of such non-specific activity.

When including independent ongoing spontaneous activity at 2 spikes/second to all neurons for the same populations
as above, minimal decoding times were elevated across all populations (Fig. 3). Furthermore, the minimal decoding time
increased faster with decreasing c in the presence of spontaneous activity compared to the case without spontaneous activity
(ratios of fitted K1 in Eq. 10 were approximately 1.69 and 1.72 for D = 1 and D = 2, respectively). Thus, spontaneous
activity can have a substantial impact on the time required to produce reliable signals. Fig. 3 also suggests that areas with
spontaneous activity are less suited for periodic tuning curves. Especially, the combination of multidimensional stimuli and
spontaneous activity leads to much longer minimal decoding times for tuning curves with small spatial periods (c < 1 or
λ1 < 1). For example, when encoding a two-dimensional stimulus, only the populations with (λ1 = 1, c = 1) and (λ1 = 1,
c = 0.95) could remove catastrophic errors in less than 40 ms when spontaneous activity at 2 spikes/second was present.
Thus, the ability to produce reliable signals at high speeds severely deteriorates for periodic tuning curves in the presence of
non-specific spontaneous activity.

This result has an intuitive explanation. The amount of catastrophic errors depends on the probability that the trial
variability reshapes the neural activity to resemble the possible activities for a distinct stimulus condition (see Fig. 1a). From
the analysis presented above, periodic tuning curves have been suggested to be more susceptible to such errors. Adding
spontaneous activity does not reshape the tuning curves themselves but only increases the trial-by-trial variability. Thus,
by this reasoning, it is not surprising that the systems which already were more susceptible suffered more strongly from the
increased variability induced by spontaneous activity. The importance of Fig. 3 is that even spontaneous activity as low as
2 sp/s can have a clearly visible effect on minimal decoding time.

Implications for a simple spiking neural network with sub-optimal readout
To further illustrate the relationship between the shape of tuning curves and minimum decoding time, we simulated simple
two-layer feed-forward spiking neural networks to decode time-varying stimulus signals. The first layer corresponds to the
tuning curves, and the neurons were kept unconnected. The stimulus-specific tuning of the inputs to these neurons is either
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Figure 4: a) Illustration of the spiking neural networks (SNNs). b) Two example trials for step-like change in stimulus (blue
line). The left and right plots show the readout activity (red) for the single-peaked and periodic SSNs, respectively. Note
that the variance around true stimulus is larger for the single-peaked SNN (i.e., larger local errors) but that there are fewer
catastrophic errors than for the periodic SNN. c) Same as for b) but with a continuously time-varying stimulus. d) Main
panel: The median RMSE (thick lines) over all trials in a sliding window (length 50 ms) for the single-peaked (blue) and
periodic (orange) SNNs. The shadings correspond to the regions between the 5th and 95th percentiles. Top panel: The
instantaneous population firing rates of the readout layers and the standard deviations (the color code is same as in main
panel). e) The median estimated stimulus over all trials in a sliding window (length 10 ms) for the single-peaked (blue)
and periodic (orange) SNNs. Shaded areas again correspond to the regions between the 5th and 95th percentiles. The true
stimulus is shown in green.
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Figure 5: a) Statistical comparison between the distributions of cumulative RMSEs at different decoding times (p-values 0.4,
9.0 · 10−4, and 8.7 · 10−5, respectively). b) The distributions of RMSE across trials for the two SNNs (p-value = 4.3 · 10−8).

fully single-peaked, creating a population of single-peaked tuning curves, or periodic with different spatial periods, creating a
population of periodic tuning curves (Fig. 4a). Given their tuning preferences, neurons in the first layer responded with rate
modulated Poisson type spike trains. The modulation strengths of the inputs were chosen to ensure that the average input
to each neuron was equal. The second layer instead acted as a readout layer. This layer received both stimulus-specific exci-
tatory input from the first layer and external non-specific excitation (corresponding to background activity). The connection
strength between the first and second layers depended on the difference in preferred stimulus conditions between the pre-
and post-synaptic neurons. Such connectivity could, for example, be obtained by unsupervised Hebbian learning. Because
the tuning curves in the first layer can be periodic, they can connect strongly to several readout neurons. We introduced
lateral inhibition among the readout neurons (without explicitly modeling inhibitory neurons) to create a winner-take-all
style of dynamics, where the readout neurons with large differences in preferred stimulus inhibit each other more strongly.
Decoding is assumed to be instantaneous and based on the preferred stimulus condition of the spiking neuron in the readout
layer. We tested two different types of time-varying stimuli: (1) a step-like change from s = 0.25 to s = 0.75 (Fig. 4b,
blue trace) and (2) a continuously time-varying stimulus drawn from an Ornstein–Uhlenbeck process (Fig. 4c blue trace; see
Methods). The stimulus was instantaneously decoded whenever a readout neuron spikes, and the estimate was compared
to the current true stimulus value (see Fig.4b-c for individual trials).

In the case of a step-like stimulus change, the readout layer for the single-peaked population required a shorter time to
switch states than the periodic network (see Fig. 4d). The shorter switching time is consistent with the hypothesis that
single-peaked tuning curves have shorter minimal decoding times than periodic tuning curves. In these simulations, the
difference is mainly due to some neurons in the first layer of the periodic network responding both before and after the step
change. Thus, the correct readout neurons (after the change) must compensate for the hyper-polarization built up before
the change and the continuing inhibitory input from the previously correct readout neurons (which still get excitatory inputs,
too). Note that there are only minor differences in the population firing rates between the readout layers, suggesting that
this is not a consequence of different excitation levels but rather of the structures of excitation.

The continuously time-varying stimulus could be tracked fairly well by the network with single-peak or periodic tuning
curves. However, averaging across trials showed that SNNs with periodic tuning curves have larger sporadic fluctuations
(Fig. 4e). This suggests that decoding with periodic tuning curves has difficulties in accurately estimating the stimulus
without causing sudden, brief periods of large errors. To make a statistical comparison between the populations, we
investigated the distributions of root mean squared error (RMSE) across trials. In both stimulus cases, there is a clear
difference between the network with single-peaked tuning curves and the network with periodic. For the step-like change in
stimulus condition, a significant difference in RMSE arise roughly 100 ms after the stimulus change (Fig. 5a, using two-sample
Kolmogorov–Smirnov (KS) test based on 30 trials per network). For the time-varying stimulus, using single-peaked tuning
curves also results in significantly lower RMSE compared to a population of periodic tuning curves (Fig. 5b, p-value < 0.001
using a two-sample KS test based on 30 trials per network, RMSE calculated across the entire trial).

Discussion
Several studies have suggested that periodic tuning creates an unparalleled precise neural code by minimizing local errors
(Sreenivasan and Fiete, 2011; Mathis et al., 2012; Wei et al., 2015). Nevertheless, despite this advantages of periodic tuning,
single-peaked tuning curves are widespread in early sensory areas especially in the early visual system. Is the single-peaked
tuning simply sub-optimal, or are there other factors that can favor the ubiquity of single-peaked tuning in early sensory
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processing? Despite a long history of studying information representation using rate-based tuning curves, the effect of spatial
periodicity and catastrophic errors on the required decoding time has not been addressed. Here, we show that the possibility
of catastrophic estimation errors (Fig. 1a) introduces the possibility that different shapes of tuning curves can have different
minimal decoding times.

But why study the minimal decoding time and not simply compare the time-evolution of the MSE directly instead? How-
ever, comparing MSE directly between populations can be a misleading measure of reliability if the distributions of errors
are qualitatively different. That is, if the amounts of local errors are different, lower amounts of catastrophic errors do not
necessarily imply lower MSE (see Fig. S2 for an example). Thus, a comparison of MSE only becomes valid once the minimal
decoding times have been met. Here we assume that catastrophic errors should strongly affect the usability of a neural code.
Therefore, we argue that the first criterion for any rate-based neural code should be to satisfy its constraint on decoding
time. This led to the following question: is there a trade-off between the accuracy (i.e., Fisher information) of a neural code
and the minimal required decoding time for single-peaked and periodic tuning?

The answer is yes. We found that minimal decoding time increased with with decreasing the spatial periods of tuning curves
(Fig. 2c), suggesting a trade-off between accuracy and speed for populations of tuning curves. Experimental data suggest
that minimal decoding times can be very short, of the order of tens of milliseconds, reflecting that a considerable part of the
information contained in firing rates over long periods is present in short sample periods, too (Tovee et al., 1993). Moreover,
the first few spikes have been shown to carry significant amounts of task information in both visual (Resulaj et al., 2018)
and olfactory areas (Resulaj and Rinberg, 2015). In our simulations, tens of spikes carry enough information to produce a
reliable estimate of the stimulus free of catastrophic errors. As with decoding time, single-peaked tuning curves also need
fewer spikes to produce reliable signals. Thus, the speed-accuracy trade-off can be reinterpreted as a trade-off between
being accurate or efficient. In simulated networks with spiking neurons, we showed that the use of periodic tuning curves
increased the chances of large instantaneous estimation errors, leading to longer times before switching "states" (Fig. 4d)
and difficulties tracking a time-varying stimulus (Fig. 4e).

The notion of speed-accuracy trade-off is further strengthened for high-dimensional stimuli in the sense that, when en-
coding a high-dimensional stimulus, using the same distribution of spatial periods leads to an increase in minimal decoding
time. Natural stimuli have higher dimensions than typically used in animal experiments. Many sensory neurons are tuned
to multiple features of the external stimulus, creating such mixed selectivity of features (e.g., Garg et al. (2019)). For
neurons responding to task-related variables, mixed selectivity has been shown to enable linear separability and to improve
discriminability (Rigotti et al., 2013; Fusi et al., 2016; Jeffrey Johnston et al., 2020). For continuous stimulus estimations,
mixed selectivity has also been proposed to decrease MSE when decoding time is limited (Finkelstein et al., 2018). However,
to remove catastrophic errors, which as we have argues is not necessarily synonymous with lower MSE, the exponential
increase in minimal decoding time could easily lead to very long decoding times, on the order of seconds, even for stimulus
with dimensionality not higher than 4 or 5. Thus, minimal decoding time should set a bound on the number of features a
population can jointly encode reliably. In addition, neurons in sensory areas often exhibit a degree of non-specific activity
(Snodderly and Gur, 1995; Barth and Poulet, 2012). Introducing spontaneous activity to the populations in our simulations
further amplified the differences in minimal decoding times (Fig. 3). Thus, for jointly encoded stimuli, especially in areas with
high degrees of spontaneous activity, a population of single-peaked tuning curves might be the optimal encoding strategy
for rapid and reliable communication.

To conclude, we provide normative arguments for the single-peaked tuning of early visual areas. Rapid decoding of stimulus
is crucial for the survival of the animals. Consistent with this, animals and humans can process sensory information at
impressive speeds. For example, the human brain can generate differentiating event-related potentials to go/no-go catego-
rization tasks using novel complex visual stimuli in as little as 150 milliseconds (Thorpe et al., 1996). These "decoding" times
do not decrease for highly familiar objects, suggesting that visual processing is a highly automatized feed-forward process
operating at speeds that cannot be reduced (Fabre-Thorpe et al., 2001). Given constraints on low latency communication,
it is crucial that each population can produce a reliable signal fast. In this regard, single-peaked tuning curves are indeed
superior compared to periodic. Thus, if the available decoding time is short, it is preferable to lower the accuracy over
long sample periods in exchange for a signal which can be reliably produced within the desired time window. The fact that
early visual areas exhibit spontaneous activity and encode multi-dimensional stimuli further strengthens the relevance of the
differences in minimal decoding times. We note that these results might extend beyond the visual areas, too. For example,
hippocampal place cells involved in spatial navigation (O’Keefe and Dostrovsky, 1971; Wilson and McNaughton, 1993) are
known for their single-peaked tuning (but see Eliav et al. (2021)). The interesting observation in this context is that place
cells produce more reliable signals than their input signals from the medial entorhinal cortex with a combination of single-
and multi-peaked tuning (Cholvin et al., 2021).
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In general, our work highlights that minimum decoding time is an important attribute of a neural code and should be
considered while evaluating candidate neural codes. Our analysis suggests that decoding of high dimensional stimuli can
be prohibitively slow with rate-based tuning curves. Experimental data on the representation of high-dimensional stimuli
is rather scant as relatively low-dimensional stimuli are typically used in experiments (e.g., oriented bars). Our work gives
a compelling reasons to understand whether and how biological brains can reliably encode high-dimensional stimuli at
behaviorally relevant time scales.

Methods
Minimal decoding times - Simulation protocols
To study the dependence of decoding time T on MSE for populations with different distribution of spatial frequencies, we
simulated populations of synthetic tuning curves (Eq. S.1). The stimulus was chosen to be circular with range [0, 1)D to
avoid boundary effects and the parameters of the tuning curves are given in Table S1-S2. The preferred stimulus conditions
s′ were sampled independently from a random uniform distribution over [0, 1) (independently and uniformly for each stim-
ulus dimension). The preferred locations s′ were shared across all populations to ensure equal comparison. In each trial, a
stimulus s ∈ [0, 1)D was also independently sampled from a uniform distribution over [0, 1)D. The spike counts for each
neuron were then sampled according to Eq. S.3.

Minimal decoding time was defined as the minimal decoding time for which the neural population approximately reaches
the Cramér-Rao bound. To estimate the reaction time in simulations, we incrementally increased decoding time T (using 1
ms increments, starting at T = 1 ms) until

MSE(T, λ) ≤ 2 · diag((J(T, λ))−1). (11)

Note that the mean here refers to the mean across stimulus dimensions (for multi-dimensional stimuli) and that diag(·) refers
to taking the diagonal elements from the inverse of the Fisher information matrix, (J(T, λ))−1. For a given decoding time
T , the estimation of MSE was done by continually sample random stimulus conditions (from a uniform distribution), sample
a noisy response to the stimulus (Poisson distributed spike counts) and then apply maximum likelihood estimation (see
section ’Implementation of maximum likelihood estimator’ for details on implementation). This was repeated until the first
two non-zero digits of the MSE had been stable for 1000 consecutive random stimulus samples (see Alg. S1 in SI). Because
the Fisher information matrix J was estimated only in the special case without spontaneous activity, it was in simulations
approximated by the element-wise average across 10000 randomly sampled stimulus conditions (sampled according to the
uniform distribution over the stimulus domain), where each element was calculated according to Eq. S.18 or Eq. S.19 given
a random stimulus trial. A high-level view of the simulation of minimal decoding times is given in Alg. S2 (SI).

Implementation of maximum likelihood estimator

Given some noisy neural responses, r, the maximum likelihood estimator (MLE) chooses the stimulus condition which
maximizes the likelihood function, ŝML = arg maxs L(r, s) = arg maxs

∏N
i=1 p(ri|s). A common approach is to instead

search for the maximum of the log-likelihood function (the logarithm is a monotonic function and therefore preserves any
maxima/minima). The stimulus-dependent terms of the log-likelihood can then be expressed as

log p(r|s) ∝ V(r; s) =
N∑

i=1
ri log(Tfi(s)) − Tfi(s). (12)

Unfortunately, the log-likelihood function is not guaranteed to be concave, and finding the stimulus condition ŝML which
maximizes the log-likelihood function is not trivial (a non-convex optimization problem). To overcome this difficulty,
we combined grid-search with the Nelder–Mead method, an unconstrained non-linear program solver (implemented using
MATLAB’s built-in function fminsearch, https://www.mathworks.com/help/matlab/ref/fminsearch.html). Grid search was
used to find a small set of starting points with the largest log-likelihood values (in simulations, the four stimulus conditions
with the largest log-likelihood values were used). The true stimulus condition s∗ was always added into the set of starting
points regardless of the log-likelihood value of that condition (yielding a total of 5 starting points). Then the Nelder–Mead
method was used with these starting points to find a set of (possibly local) maxima. Thus, this approach does not
overestimate the amount of threshold distortion but can potentially miss some global estimation errors instead. Given a
estimated stimulus ŝML, the error was then evaluated along each stimulus dimension independently

ϵ2 = ((s1 − ŝML,1)2, ..., (sD − ŝML,D)2). (13)
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Spiking network model
Stimuli

As in the previous simulations, we assumed that the stimulus domain was a circular stimulus defined between [0, 1). We
simulated the responses to two different types of stimuli, (1) a step-like change in stimulus condition from s = 0.25 to
s = 0.75 and (2) a stimulus drawn from a modified Ornstein–Uhlenbeck process

dst

dt
= − st

τs
+

√
2σ2

s

τs
ξs (mod 1). (14)

For parameter values, see Table S4.

Network model

The spiking networks were implemented as two-layer, feed-forward networks using LIF neurons (see Tab. S5 for parameter
values). The neurons in the first layer were constructed to correspond to either single-peaked or periodic tuning curves. Two
networks were tested, one network where the first layer corresponds to single-peaked tuning curves and a second network
corresponding to periodic tuning curves (with L = 4 modules). For each neuron i in module j in the first layer, the input
to was drawn from independent Poisson point processes with stimulus dependent rates f

(j)
i (s(t))

f
(j)
i (s(t)) = a exp

(
1
w

(
cos(2π

λj
(s(t) − s

(j)
i )) − 1

))
+ b (15)

Here, the constants a and b were chosen such that the baseline firing rate was slightly above zero and the maximal firing rate
was slightly below 20 sp/s (see Tab. S6 for all network related parameter values). Each pre-synaptic spike caused an EPSP
of size JE in the first layer. For each module in the first layer, the preferred locations s

(j)
i were equidistantly placed across

[0, λj). The neurons in the second layer were only tuned to a single preferred stimulus location each, equidistantly placed
across [0, 1). Whenever a spike occurred in the first layer, it elicited EPSPs with a delay of 1.5 ms in all neurons in the
second layer. The size of the EPSPs depended on the difference in preferred tuning (∆) between the pre- and post-synaptic
neurons

EPSP (∆) = exp( 1
wro

(cos(2π∆) − 1))JEE (16)

Here JEE determines the maximal EPSP (mV) and the constant wro was chosen such that the full width at half maximum
of the EPSP kernels tiled the stimulus domain without overlap. Note that for periodically tuned neurons (i.e., with multiple
preferred locations) in the first layer, the smallest difference in preferred tuning was chosen for each neuron in the second layer.

As for the excitatory neurons in the first layer, whenever a spike occurred in the second layer, it elicited IPSPs with a
delay of 1.5 ms in all other neurons in the second layer. Again, the size of the IPSPs depended on the difference in preferred
tuning (∆) between the two neurons, but this time according to

IPSP (∆) = −| sin(π∆)|JI . (17)

Thus, the range of inhibition was much broader compared to the excitation.

Evaluating decoding performance

We assumed that the decoder was instantaneously based on the neuron index of the firing neuron in the readout layer. Given
that Φ(tk) is a function that provides the index of the neuron firing at time tk, the stimulus is instantaneously decoded to

ŝ(tk) = Φ(tk)
N2

, (18)

where N2 is the number of neurons in the readout layer. For both stimulus cases, the decoding performance was evaluated
using (1) the distribution of RMSE (Fig. 4d) or estimated stimulus conditions (Fig. 4e) in a sliding window or (2) the
distributions of accumulated RMSE (Fig. 5).

Simulation tools
All the simulation were done using code written in MATLAB and Python (using Brian2 simulator (Stimberg et al., 2019)).
The simulation code will be made available on Github upon publication of the manuscript.
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Approximating minimal decoding time in 2-module systems
To gain understanding of the interaction of two modules with different spatial periods, consider the likelihood function as a
product of the likelihood functions of the two modules individually

p(r|s) = Q1(s)Q2(s). (19)

Using the Laplace approximation, each of these functions can be approximated as a periodic sum of Gaussians (Wei et al.,
2015)

Qi(r(i)|s) ∝
Ki∑

ni=−Ki

exp
(

− Σi

2
(
s − s

(i)
ML − niλiR

)2
)

(20)

where s
(i)
ML denotes the peak closes to the true stimulus condition s0 and Ki = ⌈ R/2

λi
⌉ (note that for λ1 = 1, we set

K1 = 0 to avoid repeating the same mode). Assuming that each module is efficient, the width of the Gaussians as can be
approximated as

Σi = − d2

ds2 log Qi(r(i)|s) ≈ Ji(s) (21)

where Ji(s) ≈ Ji is the Fisher information of module i. The joint likelihood function can thus be approximated as

p(r|s) ≈ Q1(r(1)|s)Q2(r(2)|s) ∝ (22)

∝
K1∑

n1=−K1

exp
(

− J1

2
(
s − s

(1)
ML − n1λ1R

)2
) K2∑

n2=−K2

exp
(

− J2

2
(
s − s

(2)
ML − n2λ2R

)2
)

. (23)

As the likelihood functions depend on the particular realization of the spike counts, the distance between the modes of the
respective likelihoods closest to the true stimulus condition s0, δ0,0 = s

(1)
ML − s

(2)
ML, is a random variable. Note that in the

result section, δ0,0 is simply referred to as δ for clarity.

The joint likelihood distribution p(r|s) has its maximal peak close to the true stimulus condition s0 if δ0,0 is the smallest
distance between any pairs of peaks of Q1 and Q2. Assuming that both modules provide efficient estimates, the distance
δ0,0 can be approximated as a normally distributed random variable

δ0,0 = s
(1)
ML − s

(2)
ML = (s(1)

ML − s0) − (s(2)
ML − s0) ∼ N (0, J−1

1 + J−1
2 ). (24)

The distance between any pair of peaks in Q1 and Q2 within the stimulus range becomes

δn1,n2 = (s(1)
ML − n1λ1R) − (s(2)

ML − n2λ2R) =
= δ0,0 + R(n2λ2 − n1λ1)

(25)

where n1 ∈ {−K1, ..., K1} and n2 ∈ {−K2, ..., K2} are indexing the different Gaussians as before. Thus, the threshold
point for catastrophic error is if there is another pair of modes with same distance between them, i.e.,

|δ0,0| = |δn1,n2 | = |δ0,0 + R(n1λ2 − n2λ1)|, (26)

for some n1 and n2 belonging to the index sets as above. Thus, to avoid catastrophic errors, it is necessary that

|δ0,0| ≤
∣∣δ0,0 + R(n2λ2 − n1λ1)

∣∣, (27)

for all n1 ∈ {−K1, ..., K1} and n2 ∈ {−K2, ..., K2}. By solving Eq. 27, and taking into account that R(n2λ2 − n1λ1) can
be either positive or negative, we get

|δ0,0| ≤ min
n1,n2:(n1,n2) ̸=(0,0),n1∈{−K1,...,K1},n2∈{−K2,...,K2}

1
2
∣∣R(n2λ2 − n1λ1)

∣∣. (28)

Assuming that the period of the second module is a scaling of the first module, λ2 = cλ1, the above equation becomes

δ∗ = min
n1,n2:(n1,n2) ̸=(0,0)

1
2
∣∣Rλ1(n2c − n1)

∣∣. (29)
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Note that stimulus ambiguity can never be resolved if δn1,n2 = δ0,0 for some pair (n1, n2) ̸= (0, 0), which is analogous to
the condition in (Mathis et al., 2012).

To limit the probability of catastrophic estimation errors from the joint distribution to some small error probability perror,
the following should hold

Pr(|δ0,0| > δ∗) < perror (30)

Because δ0,0 ∼ N (0, J−1
1 + J−1

2 ), we have

Pr(|δ0,0| > δ∗) = 1 − erf
(

δ∗
√

2σ

)
< perror (31)

where erf(·) is the error-function and σ =
√

J−1
1 + J−1

2 . By rearranging the terms and using Eq. S.14, we can obtain a
lower bound on the required decoding time

Tth > 2
(

erf−1(1 − perror)
δ∗

)2( 1
J̄1

+ 1
J̄2

)
(32)

where J̄i is the time-normalized Fisher information of module i. Note that δ∗ can easily be found using an exhaustive search
according to Eq. 28 or Eq. 29.

Approximating minimal decoding time
To approximate the order by which the population reaction time scales with the distribution of spatial frequencies and the
stimulus dimensionality, we extended the approximation method introduced by Xie (2002). The key part of the approxima-
tion method is to use a Taylor series to reason about which conditions must hold for the distribution of errors to be normally
distributed with a covariance equal to the inverse of the Fisher information matrix. Note that this approximation assumes
the existence of a unique solution to the maximum likelihood equations, thus it is not applicable to ambiguous neural codes
(e.g., c = 1/2, 1/3, 1/4, ... etc).

First, let’s recollect the Taylor series with Lagrangian reminder for a general function g

g(x + δ) = g(x) + g′(x)δ + 1
2g′′(x∗)δ2 (33)

where x∗ is somewhere on the interval [x, x + δ). Thus, in the multivariate case, the derivative in the j:th direction of the
log-likelihood function for stimulus condition ŝML = ŝ can be rewritten using a Taylor series with Lagrangian reminder as

∂

∂sk
log p(r|̂s) = ∂

∂sk
log p(r|s◦) +

D∑
l=1

∂2

∂sl∂sk
log p(r|s◦)(ŝl − s◦

l )+

+ 1
2

D∑
l=1

D∑
m=1

∂3

∂sm∂sl∂sk
log p(r|s∗)(ŝl − s◦

l )(ŝm − s◦
m)

(34)

for all k ∈ {1, ..., D} where s◦ is the true stimulus condition and s∗ is a stimulus point between s◦ and ŝ.

If the estimated stimulus is close to the true stimulus then the quadratic order terms are small. If so, the variance of
(̂s − s◦) converges towards N (0, J−1) (in distribution), where J is the Fisher information matrix (Lehmann and Casella,
1998). However, if the estimated stimulus in not close to the true stimulus, then the quadratic terms are not negligible.
Therefore, when T is sufficiently large and the variance of the estimation follows the Cramér-Rao bound, the following
should hold for all k ∈ {1, ..., D}∣∣∣∣ D∑

l=1

∂2

∂sl∂sk
log p(r|s◦)(ŝl − s◦

l )
∣∣∣∣ ≫

∣∣∣∣12
D∑

l=1

D∑
m=1

∂3

∂sm∂sl∂sk
log p(r|s∗)(ŝl − s◦

l )(ŝm − s◦
m)
∣∣∣∣ (35)

In this regime, we do the following term-wise approximations

∂2

∂sl∂sk
log p(r|s◦) ≈ E

[
∂2

∂sl∂sk
log p(r|s◦)

]
= −Jk,l(s◦) = −Jk,l (36)
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and

∂3

∂sm∂sl∂sk
log p(r|s∗) ≈ E

[
∂3

∂sm∂sl∂sk
log p(r|s∗)

]
= Mk,l,m(s∗) (37)

which gives ∣∣∣∣ D∑
l=1

Jk,l(ŝl − s◦
l )
∣∣∣∣ ≫

∣∣∣∣12
D∑

l=1

D∑
m=1

Mk,l,m(s∗)(ŝl − s◦
l )(ŝm − s◦

m)
∣∣∣∣. (38)

Because Mk,l,m ≈ 0 unless k = l = m (see SI) and using an upper bound for Mk,k,k(s∗) ≤ M∗
k for all s∗, Eq. 38 simplifies

to ∣∣∣∣ D∑
l=1

Jk,l(ŝl − s◦
l )
∣∣∣∣ ≫

∣∣∣∣12M∗(ŝk − s◦
k)2
∣∣∣∣. (39)

Furthermore, because J(s) is a diagonal matrix (see SI), we have∣∣∣∣Jk,k(ŝk − s◦
k)
∣∣∣∣ ≫

∣∣∣∣12M∗(ŝk − s◦
k)2
∣∣∣∣. (40)

Next, by taking the square of the absolute values, we obtain

J2
k,k(ŝk − s◦

k)2 ≫ 1
4M̄∗2

(
(ŝk − s◦

k)2
)2

. (41)

Because we assumed that N and T are sufficiently large to meet the Cramér-Rao bound, we have that

(ŝk − s◦
k)(ŝl − s◦

l ) ∼ {J̄−1}k,l. (42)

Inserting Eq. 42 into Eq. 41 gives

J2
k,k{J−1}k,k ≫ 1

4Mk
∗2
(

{J−1}k,k

)2
(43)

or, equivalently,

1 ≫ 1
4M∗

k
2{J−1}3

k,k = 1
4

M∗
k

2

{J}3
k,k

. (44)

By approximating the term M∗
k (see SI) and using the expression for Fisher information (Eq. S.14), the expression for

population reaction times can be obtained as

1 ≫ 1
4

M∗
k

2

{J}3
k,k

= ... = 1
2π2

w

TaN
B0

(
1
w

)−(D−1)
exp

(
D

w

)
B1

(
1
w

)−3
C∗(w)2 λ−32

λ−23 . (45)

Where C∗(w) is a undetermined function of the width parameter w. By reorganizing the expression, one obtains

T ≫ 1
2π2

w

aN
B0

(
1
w

)−(D−1)
exp

(
D

w

)
B1

(
1
w

)−3
C∗(w)2 λ−32

λ−23 . (46)

As the validity of the approximation decreases with w (see SI), we only collect the terms which includes D, ξ, a and N ,
and approximate the population reaction time as

Tth ≈ K1A(w) 1
aN

B0

(
1
w

)−(D−1)
exp

(
D

w

)
λ−32

λ−23 + K2 (47)

where A(w) is some unknown function of w and K1 and K2 are constants.
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