

Use of the particle agglutination/particle agglutination-inhibition test for antigenic analysis of SARS-CoV-2

Jun Kobayashi¹, Shutoku Matsuyama¹, Masayuki Shirakura², Tomoko Arita³, Yasushi Suzuki³, Hideki Asanuma³, Shinji Watanabe², Hideki Hasegawa^{1,2,3}
and Kazuya Nakamura^{2*}

Affiliations: ¹Laboratory of Acute Respiratory Virus, Research Center for Influenza

9 and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen,
10 Musashimurayama, Tokyo, 208-0011, Japan

11 ²Laboratory of Influenza Virus Surveillance, Research Center for Influenza and

12 Respiratory Viruses, National Institute of Infectious Diseases 4-7-1 Gakuen,
13 Musashimurayama, Tokyo, 208-0011, Japan

14 ³ Laboratory of Vaccine Seed Virus Development, Research Center for Influenza and

15 Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen,
16 Musashimurayama, Tokyo, 208-0011, Japan

*Correspondence: Katsuwa Nakamura, kazuwan@nii.ac.jp

23 **Abstract**

24 The antigenicity of SARS-CoV-2 is a critical issue for the effectiveness of the vaccine,
25 and thus it should be phenotypically evaluated by serological assays as new field isolates
26 emerge. The hemagglutination/hemagglutination-inhibition (HA/HI) tests are well-
27 known as a representative method for antigenic analysis of influenza viruses, but SARS-
28 CoV-2 is unlikely to agglutinate to human or guinea pig red blood cells. Therefore, the
29 antigenic analysis requires complicated enzyme-linked immunosorbent assay (ELISA) or
30 cell-based assays such as the microneutralization assay. In this study, we developed the
31 particle agglutination/particle agglutination-inhibition (PA/PAI) test to easily and rapidly
32 quantify the virus and antibody using human angiotensin-converting enzyme 2 (hACE2)-
33 bound latex beads. The PA titer was positively correlated with the plaque-forming units.
34 The PAI titer using post-infection Syrian hamster antisera clearly revealed the antigenic
35 difference between the omicron and previous variants. The results show the PAI test is
36 useful for easy and rapid antigenic analysis of SARS-CoV-2.

37

38

39

40 **Introduction**

41 SARS-CoV-2, which causes COVID-19, has infected over 500 million people
42 and killed over 6 million, despite the production of over 11 billion doses of vaccine as of
43 April 2022 (WHO COVID-19 Dashboard, <https://covid19.who.int/>). The pandemic of
44 SARS-CoV-2, with its continuously evolving viral properties, has become a major public
45 health concern that adds to the existing concern regarding influenza virus
46 pandemics/epidemics. In particular, the omicron variants that emerged in November 2021
47 have a higher number of mutations than the previous variants and are considered to have
48 relatively mild symptoms, but to be highly infectious. Furthermore, the omicron variants
49 are resistant to immunity raised by previous variants^{1,2}, and thus have caused the largest
50 number of infections.

51 To predict the antigenicity and other viral properties of each isolate, a large
52 number of the viral genomes have been sequenced using next-generation sequencers and
53 registered (GISAID; <https://www.gisaid.org/>)³. However, the antigenicity of each variant
54 must also be phenotypically evaluated by serological studies. The neutralization assay⁴ is
55 one of the methods to analyze the antigenicity of SARS-CoV-2 isolates, but it is a time-
56 consuming and complicated cell-based assay. A simpler enzyme-linked immunosorbent
57 assay (ELISA) method without cells has also been reported⁵, but it requires artificially
58 modified/purified proteins, such as the human angiotensin-converting enzyme 2 (hACE2)
59 and the receptor binding domain of the SARS-CoV-2 spike protein, and a plate reader.

60 The antigenicity of influenza virus has been easily and rapidly analyzed by
61 means of hemagglutination (HA)/hemagglutination-inhibition (HI) tests⁶. SARS-CoV-2
62 shows the hemadsorption activity with human erythrocytes on the virus-infected Vero
63 cells, but does not exhibit direct HA activity using human and guinea pig erythrocytes⁷.
64 In addition, there are increasing limitations on the use of blood cells due to various issues,
65 such as animal ethics⁸. Therefore, the HA/HI tests are not applicable for SARS-CoV-2,
66 and a surrogate for blood cells is required.

67 In this study, we established particle agglutination (PA)/particle agglutination-
68 inhibition (PAI) methods using hACE2-bound latex beads as a surrogate for blood cells,
69 utilizing the phenomenon that SARS-CoV-2 interacts with hACE2 *via* its spike protein⁹.
70 These methods enable easy and rapid measurement of SARS-CoV-2 titer and antibody
71 titer against the virus as well as antigenic analysis without special equipment.

72

73 **Results**

74 **Establishment of a particle agglutination (PA) test**

75 First, we aimed to establish a PA test as a virus titration method using hACE2-

76 bound latex beads (hACE2-beads) as a surrogate for the blood cells used in the HA test
77 of influenza viruses. The hACE2-beads were prepared based on the method used for
78 SARS-CoV-2 antigen-coated latex beads¹⁰ (see the Online Methods). A suspension of the
79 prepared beads showed a clear sedimentation pattern after overnight settling at a final
80 concentration of 0.03% (Fig. 1a), which was used as the initial condition of the
81 preliminary PA test.

82 To confirm the specific binding of hACE2-beads to SARS-CoV-2, 50 μ L of QH-
83 329-037 isolate was mixed with 50 μ L of 0.06% hACE2-beads (0.03% final
84 concentration) and settled at room temperature. As a control, hACE2-unbound beads
85 (BSA-beads) were prepared and tested in the same way as the hACE2-beads (Fig. 1b). A
86 mixture of slight sedimentation and slight agglutination patterns was observed in the
87 virus/hACE2-beads mixture after 6 h of settling, and the sedimentation and agglutination
88 patterns could be clearly differentiated after overnight settling, whereas only a
89 sedimentation pattern was observed in the virus/BSA-beads mixture. This suggests that
90 SARS-CoV-2 can bind to hACE2-beads specifically and can be detected by observing the
91 beads. To reduce the settling time required for the assay, another type of manufactured
92 beads with a larger diameter (9.8 μ m) were similarly prepared, and the PA test was carried
93 out. However, although the settling time was reduced to <5 h, the 9.8 μ m beads showed
94 only a sedimentation pattern. Therefore, the 0.8 μ m beads were used for the following
95 assays. We also found that the sedimentation patterns were slightly harder to visualize on
96 a V-bottom microtiter plate compared to a U-bottom plate, although the settling times on
97 the two plates were almost the same. Therefore, a U-bottom plate was used for the
98 subsequent assays. Thus, the tentative condition for the PA test was set as follows: mixing
99 50 μ L of virus solution and 50 μ L of 0.06% hACE2-beads (0.03% final concentration),
100 followed by overnight settling at room temperature using a U-bottom plate. The results
101 did not change when the beads were stored at 4°C for 1 month after preparation.

102 The PA test was performed on representative SARS-CoV-2 isolates under the
103 tentative condition. Agglutination patterns were observed in all tested isolates, and the PA
104 titer of the isolate was defined as the highest dilution factor at which complete
105 agglutination was observed (Fig. S1a). However, the BA.2 omicron variant, TY40-385
106 isolate, showed the lowest PA titer (2PA unit/50 μ L), which was inadequate to perform
107 the following PAI test. To improve the PA titer, the concentration of hACE2-beads was
108 re-examined. The final beads concentration was reduced from 0.03% to 0.005% and
109 0.0025%, and then the PA titers of three isolates (WK-521, TY11-927, and TY40-385)
110 were compared among the three beads concentrations (Fig. S1b). All PA titers increased
111 with declining hACE2-beads concentrations, and the final concentration of 0.005% was

112 newly set as the standard condition based on the PA titer and visibility of
113 sedimentation/agglutination patterns. Although sedimentation was not seen even at a final
114 concentration of 0.01% in Fig. 1a, this was because the concentration of BSA was
115 different between Fig. 1a and Fig. S1b. The retest with a 0.005% beads concentration
116 resulted in an 8-fold increase in the PA titers of all isolates (Fig. 1c). The PA titers of
117 isolates showed a strong positive correlation ($r=0.85$) with plaque-forming units
118 measured by a plaque assay (Fig. S2), indicating that the PA titer reflects the amount of
119 virus in the sample. However, the PA test showed different sensitivities among the
120 variants and was the most sensitive to the omicron variants. This probably indicates that
121 the omicron variants have a higher affinity for ACE2 than the previous variants¹¹, and
122 thus that they have a higher agglutination activity.

123

124 **Establishment of a particle agglutination inhibition (PAI) test**

125 Next, the inhibitory effect of antibodies against SARS-CoV-2 on viral binding
126 to hACE2-beads was evaluated based on the HI test for influenza virus⁶. We used antisera
127 obtained from SARS-CoV-2-infected Syrian hamsters because these animals have been
128 shown to be useful as a pathological model of SARS-CoV-2 infection, and the antibody
129 titers against SARS-CoV-2 were increased in the infected hamsters¹². Four hamsters per
130 isolate were inoculated with the isolate (seven isolates in total), and the antisera were
131 prepared. Elevation of antibody titer against the inoculated strain was confirmed by a cell-
132 based micro-neutralizing test. As reported in the HI test for influenza virus⁶, nonspecific
133 aggregation factor(s) that interfere with the inhibitory effect of antibodies were observed
134 in some antisera at low dilution factors (Fig. 2a, sample 2). Therefore, prior to the use of
135 such antisera, the factor(s) were removed by pre-adsorption treatment (see the Online
136 Methods). The removal of the factor(s) from the antisera was confirmed by mixing the
137 beads (Fig. 2a, sample 3).

138 The specificity of the binding inhibition was confirmed using a commercially
139 available antibody, HL1004, which does not bind to the omicron variant BA.1 (GeneTex;
140 catalog no. GTx635793: https://www.genetex.com/MarketingMaterial/Index/recombinant_antibodies_for_sars-cov-2_research; the web page does not list the
141 reactivity for BA.1, but the same region as for the spike protein B.1.1.529 is used for the
142 reactivity check). A normal (non-infected) Syrian hamster serum (Fujifilm Wako; catalog
143 no. 569-76331) was also used a non-inhibitory control (Fig. 2b). Four PA units/25 μ L of
144 the isolates (WK-521 isolate; the ancestor, QHN001 isolate; the alpha variant, TY11-927
145 isolate; the delta variant and TY38-873 isolate; the omicron variant BA.1) was added to
146 25 μ L of a 2-fold dilution series (from 40- to 5120-fold dilution) of the normal serum or
147 25 μ L of a 2-fold dilution series (from 40- to 5120-fold dilution) of the normal serum or

148 the HL1004 antibody, and allowed to react for 60 min at room temperature. Then, 50 μ L
149 of 0.01% hACE2-beads was added (final concentration 0.005%) and settled overnight at
150 room temperature. For the sedimentation or agglutination control, PBS was added in place
151 of the antibody/serum or the isolates. PAI was not observed (all particles were
152 agglutinated) with the normal hamster serum, whereas it was observed with the HL1004
153 antibody in the WK-521 isolate, the alpha and delta variants, and not in the omicron
154 variant BA.1 as expected. The PAI titer was defined as the highest dilution factor of the
155 serum/antibody for which complete agglutination inhibition was observed. The titers for
156 the WK-521 isolate and the alpha, delta and omicron variants were 320, 320, 320 and <40,
157 respectively. This suggests that hACE2-beads can be used for the PAI test under the
158 following standard condition: mixing of 25 μ L of serum and 25 μ L of virus solution (4PA
159 unit/25 μ L) for 60 min, followed by mixing of 50 μ L of 0.01% hACE2-beads, and
160 overnight settling at room temperature.

161 The PAI test was then performed under the standard condition as defined above
162 (Fig. 2c). Agglutination/agglutination-inhibition patterns were observed, reflecting the
163 reactivity of the antiserum with the virus. The obtained PAI titers of each antiserum to the
164 tested isolates are summarized in Table 1. The homologous PAI titer was defined as the
165 titer against the same isolate/the same lineage of isolate used to prepare an antiserum as
166 shown in Table 1 (highlighted in red). Anti-WK-521 serum showed a homologous PAI
167 titer of 640, whereas the PAI titer was <10 against TY38-873 and *vice versa*: the
168 homologous PAI titer and PAI titer were 160 and 10 against WK-521 in anti-TY38-873
169 serum. In the HI test for influenza viruses, antigenicity has generally been judged to be
170 different when an HI titer is 8-fold or more different from a homologous HI titer. Based
171 on this criterion, we defined an 8-fold or greater difference between the PAI titer and
172 homologous PAI titer as an antigenic difference in our PAI test. Our results revealed that
173 WK-521 (Lineage: A) was antigenically different from the beta (B.1.351) and omicron
174 variants (BA.1 and BA.2). Similarly, QH-329-037 (B.1) and QHN002 (alpha, B.1.1.7)
175 were antigenically different from the omicron variants (BA.1 and BA.2). The delta
176 variants (TY11-927 and TY11-908, B.1.617.2) were antigenically different from the beta
177 (B.1.351) and omicron variants (BA.1 and BA.2). The omicron variants were also
178 antigenically different from the previous variants. This clearly showed that the
179 antigenicity of the omicron and the previous variants/isolates are different. Antigenic
180 differences between the D614G variant (QH-329-037 in this study) and the omicron
181 variants (TY38-873, TY38-871 and TY40-385) have been reported in human¹³ or guinea
182 pig¹⁴ convalescent and vaccinated sera by SARS-CoV-2 pseudo-virus neutralizing assay.
183 Furthermore, the results of the PAI test also suggested antigenic differences between the

184 WK-521 isolate and the beta variant (TY8-612), and between the beta and delta variants
185 (TY11-927 and TY11-908). The antigenic difference of the beta variant has been reported
186 by a structure–function analysis of the monoclonal antibodies from beta-variant-infected
187 individuals¹⁵. Collectively, our findings indicate that the PAI test is a useful method for
188 the antigenic analysis of SARS-CoV-2, and is easier than the previously available
189 methods.

190

191 **Discussion**

192 In this study, we established the PA/PAI test using hACE2-coated beads. The PA
193 titers were correlated with the amount of SARS-CoV-2. The PAI titers clearly showed the
194 antigenic differences between the omicron and the previous variants. Furthermore, the
195 titers also suggested antigenic differences of the beta variant from the WK-521 (original
196 Wuhan strain) isolate and the delta variant. These antigenic differences were supported
197 by the results shown in previous reports^{13–15}.

198 The PA/PAI methods allow titration of SARS-CoV-2 and antibodies to the virus
199 *via* a much simpler process than traditional cell-based assays, such as plaque assay or
200 neutralization assay. This is beneficial for the continuous monitoring of antigenicity of
201 field isolates in SARS-CoV-2 surveillance. In addition, the PAI assay could be used for
202 the evaluation of antibody titers in individuals.

203 Current vaccines of SARS-CoV-2 using the spike protein or its gene are based
204 on the Wuhan-Hu-1 strain. However, this study showed that the omicron variants possess
205 different antigenic properties. Continuous monitoring of the viral antigenicity of field
206 isolates and the holding status of protective antibodies in certain populations will be a
207 crucial component of SARS-CoV-2 surveillance. A review of vaccine strains will also be
208 necessary. The PA/PAI method for SARS-CoV-2 established in this study should be a
209 useful tool to obtain informative data for such discussions.

210 As shown above, the PA/PAI assay is an easier method, but its cost might be a
211 concern. This assay can be performed for ~US \$30 per 96-well plate. This study used
212 commercially available hACE2 to save the time to prepare the protein, which was the
213 most expensive (~US\$800/100 µg). If hACE2 can be prepared in-house, the cost can be
214 further reduced to ~US \$1 per 96-well plate. Finally, we note that a PA/PAI test using
215 inactivated SARS-CoV-2 was not performed in this study. If the PA/PAI test were to be
216 validated with inactivated SARS-CoV-2, the assay could be used without any restriction
217 due to the biosafety level.

218

219 **Author contributions**

220 H.H., S.W. and K.N. conceived the project. J.K., S.M. and K.N. designed the study. J.K.
221 performed the beads preparation, PA/PAI tests and SARS-CoV-2 culture. S.M. performed
222 the SARS-CoV-2 culture, the first PA test and the plaque assay. Y.S., T.A. M.S., H.A. and
223 S.W. prepared the hamster sera. J.K., S.M., S.W and K.N. wrote the manuscript. All the
224 authors commented on the manuscript.

225

226 **Acknowledgments**

227 We are grateful to Hiyori Okura for excellent technical assistance. This work was partially
228 supported by a Grant-in-Aid for Emerging and Reemerging Infectious Diseases from the
229 Ministry of Health, Labor, and Welfare of Japan (no. 20HA2007), AMED Grants (no.
230 21nf0101626j0102) to H.H., and AMED Grants (no. 21fk0108104k0003), a JSPS grant
231 (no. 20K07519) and a Uehara Memorial Foundation grant (no. 202120234) to S.M.

232

233 **Competing interests**

234 J.K., S.M. and K.N are listed as inventors on patent application covering the use of the
235 PA/PAI test submitted by the National Institute of Infectious Diseases on
236 September 6, 2022.

237

238 **Online Methods**

239 **SARS-CoV-2 culture**

240 80~95% confluent Vero E6 cells expressing transmembrane protease serine 2
241 (TMPRSS2)¹⁶ were infected with SARS-CoV-2 strains using DMEM supplemented with
242 5% fetal bovine serum and penicillin/streptomycin, and then cultured at 37°C under 5%
243 CO₂. WK-521 (Pango lineage: A), DP15-037 (Pango lineage: A), QH-329-037 (Pango
244 lineage: B.1), QHN001 (alpha variant, Pango lineage: B.1.1.7), TY8-612 (beta variant,
245 Pango lineage: B.1.351), TY11-927 (delta variant, Pango lineage: B.1.617.2), TY29-009
246 (delta variant, Pango lineage: B.1.617.2) and TY11-330 (kappa variant, Pango lineage:
247 B.1.617.1) isolates were harvested 24 h after infection by centrifugation at 1000 rpm for
248 5 min at room temperature. TY38-873 (omicron variant, Pango lineage: BA.1), TY38-
249 871 (omicron variant, Pango lineage: BA.1) and TY40-385 (omicron variant, Pango
250 lineage: BA.2) isolates were harvested 48 h after infection by centrifugation. The
251 harvested viruses were stored at -80°C until use.

252

253 **Beads (particle) preparation**

254 Deep blue-dyed latex beads, 0.8 μ m in average diameter, were purchased from
255 Sigma-Aldrich (catalog no. L1398). 0.5 mL of 2.5% (w/v) beads was centrifuged at 2400g
256 for 10 min at room temperature, and the beads were recovered as precipitates. The beads
257 were washed twice with 1 mL PBS (Takara; catalog no. T900) using centrifugation. The beads
258 were centrifuged and resuspended in 0.25 mL of 25 mM MES-NaOH, pH
259 6.0. The resuspended beads were centrifuged and mixed with 2.5 mL of 25 mM MES-
260 NaOH, pH 6.0 containing 100 μ g hACE2 (GeneTex; catalog no. GTX01550-pro) for 24
261 h at 4°C using a rotator. The hACE2-bound beads were centrifuged at 2400g for 10 min
262 at 4°C, and washed twice with 1 mL PBS. The OD₂₈₀ of the hACE2 solution was measured
263 before and after mixing of hACE2 solution and the beads. The beads were blocked with
264 0.75 mL of PBS with 3% bovine serum albumin (BSA, Sigma-Aldrich; catalog no.
265 A9418) for 30 min at room temperature. The blocked beads were stored in 0.5 mL of PBS
266 with 1% BSA (final 2.5% (w/v) beads concentration) at 4°C until use.

267

268 **PA test**

269 2.5% (w/v) hACE2-beads were diluted to 0.01% (w/v) with PBS supplemented
270 with 1% BSA. 50 μ L aliquots of a 2-fold dilution series of SARS-CoV-2 variants were
271 prepared in a 96-well plate with PBS. 50 μ L of 0.01% (w/v) hACE2-beads was added to
272 each well. After overnight settling at room temperature, sedimentation/agglutination
273 patterns were observed. A mixture of 50 μ L of PBS and 50 μ L of the beads was used as
274 the sedimentation (no-agglutination) control.

275

276 **Titration of SARS-CoV-2**

277 The titers of SARS-CoV-2 used in this study were determined either by plaque
278 assay or by 50% tissue culture infectious dose (TCID₅₀). For the plaque assay, monolayers
279 of VeroE6/TMPRSS2 cells grown in a 96-well plate were infected with serially diluted
280 culture supernatants of SARS-CoV-2, cultured in high-glucose Dulbecco's modified
281 Eagle's medium (DMEM; Sigma-Aldrich) containing 2.5% carboxymethyl cellulose at
282 37°C under 5% CO₂ for 3 days, and then fixed with 4% paraformaldehyde and stained
283 with crystal violet. Emergent plaques were counted using an optical microscope. For
284 TCID₅₀, 10-fold serially diluted viruses were mixed with VeroE6/TMPRSS2 cells (2-3 x
285 10⁴ cells/well) in a 96-well plate and incubated at 37°C under 5% CO₂ for 5 days. Five
286 days later, the cytopathic effect in each well was checked and the TCID₅₀ was determined
287 by the Kärber method¹⁷.

288

289 **Preparation of hamster antisera and micro-neutralizing test**

290 The five-week-old female Syrian hamsters were intranasally inoculated with 50
291 μ L of 10^3 TCID₅₀ of each SARS-CoV-2 strain (WK-521, QH-329-037, QHN002, TY11-
292 927, TY11-908, TY38-873 and TY40-385). The whole blood was collected by cardiac
293 puncture under deep terminal anesthesia 14-16 days after infection and sera were prepared
294 by centrifugation. The sera were inactivated at 56°C for 30 min to use for the
295 microneutralization and the PAI test.

296 Two-fold serial dilutions of sera were mixed with 10^2 TCID₅₀ of the SARS-CoV-
297 2 strain and pre-incubated in 96-well plates at 37°C for 60 min. After pre-incubation,
298 VeroE6/TMPRSS2 cells were added to the virus-serum mixture and incubated at 37°C
299 under 5% CO₂ for 5 days. Five days later, the cytopathic effect in each well was checked
300 and the microneutralization titers of sera were determined as the reciprocal of the highest
301 dilution that did not display the cytopathic effect.

302

303 **PAI test**

304 Prior to performing the PAI test, the nonspecific agglutination factor(s) in
305 antisera was removed if antiserum samples showed nonspecific agglutination as follows.
306 500 μ L of 2.5% hACE2-beads was centrifuged and the supernatant was removed. 1 mL
307 of 10-fold diluted antiserum with PBS was added to the precipitated beads, and then
308 mixed by a rotator for 60 min at room temperature. The treated antiserum was centrifuged
309 at 2400g for 10 min at 4°C and the collected supernatant was used for the following PAI
310 test.

311 25 μ L aliquots of 2-fold dilution series (from 10- to 1280-fold) of each antiserum
312 were prepared in 96-well plates with PBS. 4PA units/25 μ L of SARS-CoV-2 isolates were
313 added to the diluted antisera and incubated for 60 min at room temperature. The accuracy
314 of the PA titer of the added viruses was confirmed by another PA test (back titration). 50
315 μ L of 0.01% (w/v) hACE2-beads were added to each well. After overnight settling at
316 room temperature, the agglutination/agglutination-inhibition patterns were observed. For
317 the sedimentation or agglutination control wells, 25 μ L PBS was used in place of antisera
318 or virus, respectively.

319

320 **References**

- 321 1. Planas, D. *et al.* Considerable escape of SARS-CoV-2 Omicron to antibody
322 neutralization. *Nature* **602**, 671–675 (2022).
- 323 2. Liu, L. *et al.* Striking antibody evasion manifested by the Omicron variant of SARS-
324 CoV-2. *Nature* **602**, 676–681 (2022).

325 3. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data – from
326 vision to reality. *Eurosurveillance* **22**, (2017).

327 4. Bewley, K. R. *et al.* Quantification of SARS-CoV-2 neutralizing antibody by wild-type
328 plaque reduction neutralization, microneutralization and pseudotyped virus
329 neutralization assays. *Nature Protocols* **16**, 3114–3140 (2021).

330 5. Tan, C. W. *et al.* A SARS-CoV-2 surrogate virus neutralization test based on antibody-
331 mediated blockage of ACE2–spike protein–protein interaction. *Nature Biotechnology*
332 **38**, 1073–1078 (2020).

333 6. World Health Organization. *Manual for the Laboratory Diagnosis and Virological
334 Surveillance of Influenza*. World Health Organization. (World Health Organization,
335 2011).

336 7. Modrof, J. *et al.* SARS-CoV-2 and the safety margins of cell-based biological medicinal
337 products. *Biologicals* **68**, 122–124 (2020).

338 8. Kode, S. S., Pawar, S. D., Tare, D. S. & Mullick, J. Application of frozen and stored
339 glutaraldehyde-fixed turkey red blood cells for hemagglutination and
340 hemagglutination inhibition assays for the detection and identification of influenza
341 viruses. *Journal of Virological Methods* **289**, 114046 (2021).

342 9. Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to
343 the ACE2 receptor. *Nature* **581**, 215–220 (2020).

344 10. Esmail, S. *et al.* Rapid and accurate agglutination-based testing for SARS-CoV-2
345 antibodies. *Cell Reports Methods* **1**, 100011 (2021).

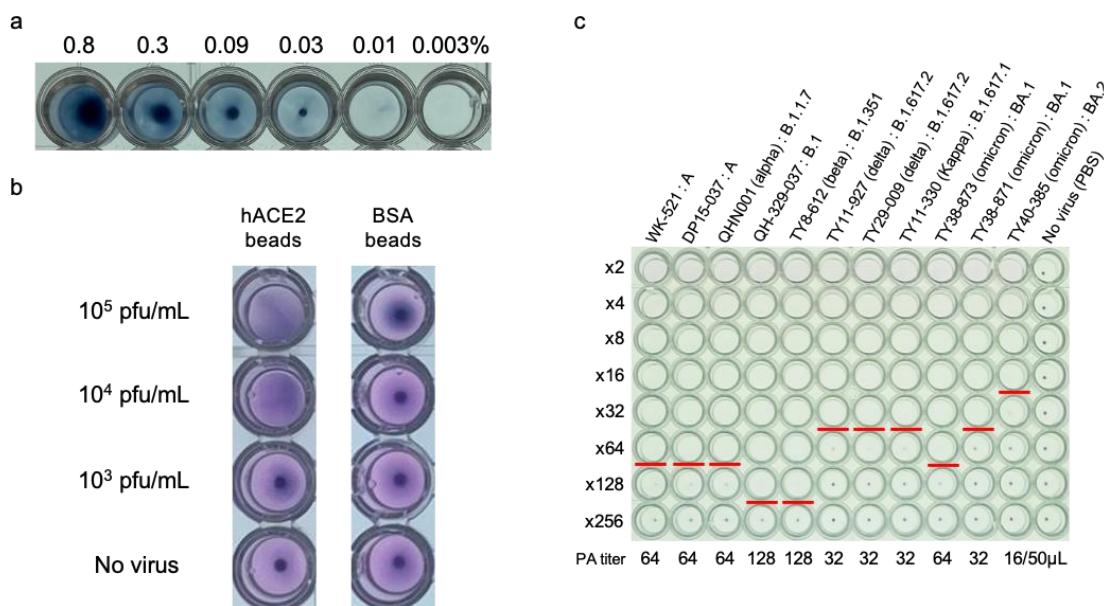
346 11. Meng, B. *et al.* Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity
347 and fusogenicity. *Nature* **603**, 706–714 (2022).

348 12. Imai, M. *et al.* Syrian hamsters as a small animal model for SARS-CoV-2 infection and
349 countermeasure development. *Proceedings of the National Academy of Sciences* **117**,
350 16587–16595 (2020).

351 13. Iketani, S. *et al.* Antibody evasion properties of SARS-CoV-2 Omicron sublineages.
352 *Nature* **604**, 553–556 (2022).

353 14. Li, Q. *et al.* Antigenicity comparison of SARS - CoV - 2 Omicron sublineages with
354 other variants contained multiple mutations in RBD. *MedComm (Beijing)* **3**, (2022).

355 15. Liu, C. *et al.* The antibody response to SARS-CoV-2 Beta underscores the antigenic
356 distance to other variants. *Cell Host & Microbe* **30**, 53-68.e12 (2022).


357 16. Matsuyama, S. *et al.* Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells.
358 *Proceedings of the National Academy of Sciences* **117**, 7001–7003 (2020).

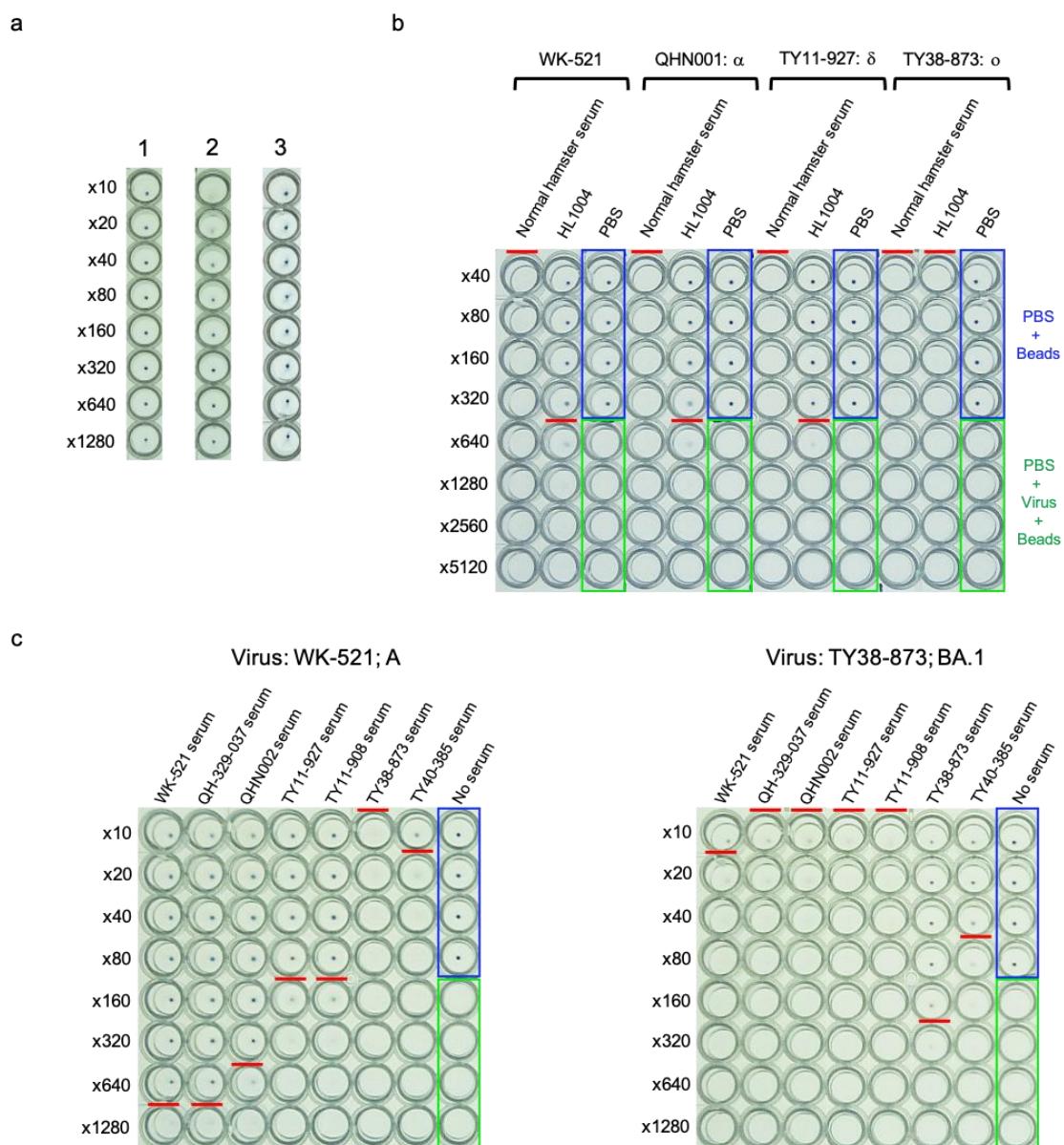
359 17. Sun, R. Y. A practical combined method for computing the median lethal dose (LD50).
360 *Acta Pharmaceutica Sinica* **10**, 65–74 (1963).

361

362

363 **Figure legends**

364


365 Figure 1. Establishment of the PA test.

366 **a**, Optimization of hACE2-beads concentration. 2.5% hACE2-beads were diluted from
367 0.8~0.003% by PBS, and settled overnight at room temperature. **b**, Specificity of the PA
368 test. SARS-CoV-2, QH-329-037 strain (50 μ L), and 0.06% hACE2-beads/BSA-beads (50
369 μ L) were mixed and settled overnight at room temperature. **c**, The PA test of the SARS-
370 CoV-2 variants. A 2-fold dilution series of the variants (50 μ L) was mixed with 0.01%
371 hACE2-beads (50 μ L), and then settled overnight at room temperature. The PA titer was
372 defined as the highest dilution factor at which complete agglutination was observed (red
373 line).

374

375

376

377

378 Figure 2. Establishment of the PAI test.

379 **a**, The confirmation and removal of nonspecific agglutination factor(s). The serially
380 diluted antisera (25 μ L) were mixed with 0.01% hACE2-beads (25 μ L), and then settled
381 overnight at room temperature. 1: Antiserum without the factor(s); 2: antiserum with the
382 factor(s); 3: antiserum after removal of the factor(s). **b**, Specificity of the PAI test. The
383 serially diluted serum or antibody (25 μ L) was mixed with the isolates (4PA/25 μ L) and
384 allowed to react for 60 min at room temperature. 0.01% hACE2-beads (50 μ L) were
385 added, and then settled overnight at room temperature. The wells framed in blue are the
386 sedimentation controls with PBS instead of serum and virus. The wells framed in green
387 are the agglutination controls with PBS instead of serum/antibody. The PAI titer is defined

388 as the highest dilution factor at which complete agglutination inhibition was observed
389 (red line). **c**, The PAI test of the SARS-CoV-2-infected antisera. Representative results
390 are shown. The results for WK-521 (Pango Lineage: A) are shown at left, and the results
391 for TY38-873 (BA.1) are shown at right.

392

393

394

395 Table 1. The PAI titers of SARS-CoV-2-infected hamster antisera.

	WK-521 A Serum	QH-329-037 B.1 Serum	QHN002 Alpha : B.1.1.7 Serum	TY11-927 Delta : B.1.617.2 Serum	TY11-908 Delta : B.1.617.2 Serum	TY38-873 Omicron : BA.1 Serum	TY40-385 Omicron : BA.2 Serum
WK-521 A	640	640	320	80	80	< 10	10
DP15-037 A	640	640	320	80	80	<10	10
QH-329-037 B.1	640	640	640	160	160	< 10	10
QHN001 Alpha : B.1.1.7	640	640	640	80	80	<10	10
TY8-612 Beta : B.1.351	80	320	320	< 10	20	< 10	10
TY11-927 Delta : B.1.617.2	320	320	160	160	160	< 10	< 10
TY29-009 Delta : B.1.617.2	160	160	160	80	80	< 10	< 10
TY11-330 Kappa : B.1.617.1	320	320	160	80	40	< 10	< 10
TY38-873 Omicron : BA.1	10	< 10	< 10	< 10	< 10	160	40
TY38-871 Omicron : BA.1	< 10	< 10	< 10	< 10	< 10	80	40
TY40-385 Omicron : BA.2	20	40	40	< 10	< 10	10	160

396

397 The homologous PAI titers are shown in red.