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Core Ideas 

● Stability analysis was estimated using 13 faba bean genotypes over 15 site-years. 

● The different stability methods described genotypic performance in different ways. 

● The majority of stability models showed a strong rank correlation with grain yield. 

● AMMI and BLUP analyses revealed a highly significant G×E interaction, with BLUP 

outperforming AMMI. 

●  Overall, the employed stability statistics identified AO1155 as the highest yielding and 

most stable genotype. 
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Abstract  

Increasing faba bean production is indispensable to supply the growing demand for plant-based 

protein on the global scale. A thorough understanding of genotype (G) × environment (E) 

interaction (GEI) patterns is critical to developing high-yielding varieties with wider adaptation. 

Thirteen faba bean genotypes were evaluated in 15 environments during 2019–2020 in western 

Canada to estimate their yield stability using different stability statistics. The combined analysis 

of variance and additive main effects and multiplicative interaction (AMMI) analysis revealed that 

G, E, and GEI effects were highly significant (P<0.001), indicating differential responses of the 

genotypes across the environments, enabling the stability analysis. The result of the model 

comparison found the best linear unbiased prediction (BLUP) to outperform AMMI models. The 

BLUP-based biplot of the weighted average of absolute scores (WAASB) stability and mean grain 

yield identified AO1155 (Navi), 1089-1-2, 1310-5, DL Tesoro, and 1239-1 as high-yielding and 

stable genotypes. The correlation analysis revealed that most of the stability parameters had a 

strong association with grain yield and with each other, indicating that they should be used in 

combination with one another to select genotypes with high yield. Overall, the WAASB superiority 

index (WAASBY) and the average sum of ranks of all stability statistics identified the same 

genotypes in terms of high yielding and stability, and genotype AO1155 is considered the most 

stable and highest yielding among the tested genotypes. Genotypes with stable yields across 

environments would be beneficial for faba bean genetic improvement programs globally. 

Keywords: Yield stability, WAASB, AMMI model, BLUP, Stability analysis, Western Canada  
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1 INTRODUCTION 

Faba bean (Vicia faba L.) is an important cool-season grain legume crop cultivated worldwide for 

its high seed protein content and excellent biological nitrogen fixing ability. Its seed protein 

content is about 30% of the seed dry matter (Griffiths and Lawes, 1978; Khazaei and Vandenberg, 

2020), which is highly valuable for human consumption and animal feed (Stoddard et al., 2009; 

Crépon et al., 2010). It has great potential to contribute to fulfilling the increasing global demand 

for plant-based protein. The crop integrates well into sustainable agricultural systems due to its 

capacity to improve soil nitrogen fertility and break the cycle of biotic stress in cereal-based 

cropping systems (Köpke and Nemecek, 2010; Duc et al., 2015), and extend crop rotations that 

include other pulse crops that are susceptible to Aphanomyces root rot (Moussart et al., 2008). 

Faba bean can thrive in a wide range of soil types and climates, including cool, moist, and warm 

temperate and subtropical regions (Duc et al., 2015). Nevertheless, it is known for its unstable 

yield performance (e.g., Cernay et al., 2015; Reckling et al., 2018) due to its susceptibility to 

interannual fluctuations and environmental variations (Zong et al., 2019). The main goal of 

breeding programs is to increase and maintain the productivity of the crop by developing high-

yielding and stable varieties. For this reason, breeders test large numbers of genotypes in various 

environments to evaluate the yield stability and wide adaptability of the genotypes.  

Multi-environment trials (METs) have an important role in interpreting the genotype × 

environment interaction (GEI) effect and selecting superior genotypes at the end of the variety 

development pipeline. Modeling the GEI in METs can help in determining the adaptability and 

stability of genotypes across a wide range of environments. However, this concept has been 

defined in different ways in interpreting GEI (Gauch and Zobel, 1996), resulting in an increasing 

number of stability statistics (Pour-Aboughadareh et al., 2022a). Huehn (1996) classified stability 

statistics into parametric and non-parametric methods. The parametric methods, which include 

univariate and multivariate stability analysis, mainly rely on distributional assumptions about the 

environment, genotype, and their interaction effects. The non-parametric approaches are estimated 

based on the mean values of the response variable and ranking of genotypes without any primary 

distribution assumptions. Accordingly, a genotype is considered stable if its ranking remains 

largely constant across environments (Flores et al., 1998) and the addition or deletion of one or a 

few genotypes has no significant effect on the results (Huehn, 1990). Several parametric and non-
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parametric methods and models have been developed to analyze the extent of GEI and determine 

the yield performance and stability of genotypes (reviewed by Pour-Aboughadareh et al., 2022a). 

Each of these methods has its own set of strengths and weaknesses in describing the phenomenon 

of GEI, so a combination of statistics from both approaches may provide a better understanding of 

GEI (Becker and Leon, 1988). In faba bean, a similar strategy has been applied (e.g., Temesgen et 

al., 2015; Sheikh et al., 2021).  

The additive main effects and multiplicative interaction (AMMI model; Gauch, 1992) is a 

multivariate parametric approach that is widely used to analyse and interpret GEI in METs. The 

AMMI is a hybrid model that employs the analysis of variance for additive or main effects and 

principal component analysis (PCA) for the multiplicative effects to understand the patterns of 

GEI (Zobel et al., 1988). The graphical biplot tools of the AMMI model provide an easy 

interpretation of yield performance and stability simultaneously, as well as the identification of 

mega-environment (Zobel et al., 1988; Gauch, 1992; Gauch et al., 2008). Previous studies have 

demonstrated the usefulness of the AMMI model in identifying superior faba bean genotypes in 

terms of yield performance and stability, as well as its advantage in describing the GEI effect (e.g., 

Flores et al., 1996; Flores et al., 1998; Fikere et al., 2008; Tadesse et al., 2017). However, the 

AMMI model has a weakness in analysing the structure of the linear mixed-effect model (LMM). 

Alternatively, the best linear unbiased prediction (BLUP; Smith et al., 2005) methods were 

proposed to estimate GEI in METs based on the LMM, which is efficient in the estimation of 

random effects. In some cases, the BLUP was found to be more reliable than the AMMI model at 

making predictions (e.g., Piepho, 1994; Olivoto et al., 2019). Consequently, Olivoto et al. (2019) 

integrated the graphical tools of the AMMI model into the BLUP technique and developed a new 

stability statistic, WAASB (weighted average of absolute scores). The WAASB has been used to 

identify high-yielding stable genotypes in many crops (Koundinya et al., 2021; Nataraj et al., 2021; 

Pour-Aboughadareh et al., 2022b; Yue et al., 2022), but not in faba bean. 

Several faba bean cultivars have been developed in western Canada since the late 1970s (Khazaei 

et al., 2021). However, yield stability has not been studied on modern faba bean cultivars. Overall, 

to describe the extent of GEI and select high-yielding stable genotypes, a number of approaches, 

including those listed above, have been proposed. In the current study, a total of 20 stability 

statistics, including the newly introduced WAASB, were used to investigate the grain yield 
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performance and stability of 13 faba bean genotypes in METs, and the relationships between 

stability parameters were analyzed. Finally, the average sum rank of all the stability statistics was 

computed and compared with the WAASB superiority index (WAASBY) for simultaneous 

selection of grain yield performance and stability of faba bean genotypes. 

2 MATERIALS AND METHODS 

2.1 Plant material and growing conditions 

A set of thirteen white-flowered (low tannin) faba bean genotypes, including ten advanced 

breeding lines and three check varieties (cv. Snowbird, DL Tesoro, and DL Rico), were grown at 

12 locations in western Canada during the 2019 and 2020 cropping seasons. The test genotypes 

originated from different major faba bean breeding programs in Europe and Canada (Table 1). The 

locations were representative of typical faba bean growing regions in the dark gray, black, and 

dark brown soil-climatic zones of western Canada. Each year and location was treated as a separate 

environment, making a total of 15 environments: seven in Manitoba, six in Saskatchewan, and two 

in Alberta, Canada. The trials were sown in May and harvested from September to November. 

Climatic information was retrieved from the Environment Canada database for the weather station 

nearest to the field site. Detailed characteristics of the test locations are presented in Table 2.  

2.2. Experimental design  

The field experiments were conducted in a randomized complete block design (RCBD) with three 

replications, each in a 1.2 m × 5 m plot. All necessary crop management practices such as nutrients, 

weed control, and pesticide applications were followed as per recommended practices at each 

location. These agronomic practices were applied uniformly to the entire experimental area and 

were treated as non-experimental variables. Plots were harvested with combine harvesters and 

seeds were cleaned to determine grain yield and seed weight at 10% standard grain moisture 

content for data analysis. 

2.3. Statistical analyses 

The analysis of variance (ANOVA) of grain yield data from each environment (combination of 

years and locations) was first analysed separately. The combined ANOVA was then performed to 
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determine the effects of genotype, environment, and genotype by environment interaction. 

Furthermore, the AMMI analysis was conducted to partition GEIs into different principal 

components. All these statistical analyses were performed in R software 4.0.3 (R Core Team, 

2020) using the package “metan” (Olivoto and Lucio, 2020). The combined and AMMI ANOVA 

was performed using a linear model with an interaction effect, whereas the variance components 

were estimated in a linear mixed-effect model using restricted maximum likelihood (REML) 

considering genotype and genotype-vs-environment as random effects.  

The AMMI family model and the BLUP model were tested for prediction accuracy by comparing 

their root mean square prediction difference (RMSPD) estimates (Piepho, 1994). Likewise, the 

WAASB (the weighted average of absolute scores from the singular value decomposition of the 

matrix of best linear unbiased predictions for the GEI effects generated by a linear mixed-effect 

model) statistics was employed to analyse the stability (Olivoto et al., 2019). This method 

integrates AMMI and BLUP model features for identifying highly productive and stable 

genotypes. Correspondingly, the superiority index of WAASB was calculated for simultaneous 

selection for yield and stability by weighting the WAASB stability value and mean yield 

performance (Y) (WAASBY, Olivoto et al., 2019). 

Additionally, eleven parametric and nine non-parametric common stability statistics were 

calculated (see Table 3), and furthermore, the investigated genotypes were ranked based on each 

statistic. All these stability statistics were estimated using a web-based STABILITYSOFT 

program (Pour-Aboughadareh et al., 2019) and the "metan" package in R. An overview of their 

equations and how they were used in the analysis of GEI effects is given in a recent review by 

Pour-Aboughadareh et al. (2022a). Spearman’s rank correlation was computed to detect the 

association between the calculated stability statistics using the "corrplot" package in R. To better 

understand the interrelationships among stability measures, PCA was performed using the 

“factoextra” package in R. Moreover, to group the investigated faba bean genotypes into similar 

mean yield and stability clusters, a hierarchical cluster analysis (HCA) was computed based on 

average sum of ranks (ASR) of all stability measures and mean yield through Ward’s method and 

Euclidean distance as a dissimilarity measure using the “ggdendro” packages in R. 
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3 RESULTS  

3.1 Analysis of variance and mean performances 

The analysis of variance of grain yield for the individual environments revealed significant 

differences for genotype effects (P<0.05), except for E5 (Roblin 2020) and E13 (Outlook 2019). 

The value for coefficient of variation ranged from 5.46 to 15.31 (Supplemental Table S1), 

indicating the suitability of the data for further analysis. The joint ANOVA across the 15 test 

environments showed the presence of highly significant variation (P<0.001) for the main effects 

due to genotype, environment, and their interaction (Table 4). The analysis reported that the 

highest proportion of variance was contributed by environment effect (76.6%), followed by 

genotype by environment interaction effect (9.5%) and genotype effect (4.2%). The mean grain 

yields of environments varied from 0.881 t ha-1 (E10, Pontage 2019) to 3.514 t ha-1 (E13, Outlook 

2019), with a grand mean of 2.301 t ha-1. The highest mean grain yield (2.534 t ha-1) was produced 

by G11 (1089-1-2) and the lowest (2.030 ha-1) was produced by G9 (DL 18.7603) with a grand 

mean of 2.301 t ha–1 (Supplemental Table S2). 

3.2 AMMI Analysis of variance  

The multivariate stability model, AMMI analysis for grain yield of the 13 faba bean genotypes 

tested in 15 environments is presented in Table 4. This analysis shows that the faba bean grain 

yield was significantly (P<0.001) affected by changes in environment, followed by G × E 

interaction and genotypic effects. The variance explained by the GEI effect was two times greater 

than the genotype effect. This demonstrates that the genotypes responded differently across 

environments and that additional stability analysis may be required to fully understand the 

magnitude of the GEI effect. The GEI effect was further partitioned into 12 interaction principal 

components (IPCs). The first five IPCs were found to be significant (P<0.001) and explained 

89.9% of the variation affected GEIs, with a proportion of 26.4, 24.7, 20.4, 9.9, and 8.5% for IPC1-

5, respectively (Table 4). The distribution of faba bean genotypes and test environments based on 

biplots of AMMI1 (mean grain yield × IPC1 scores) and AMMI2 (IPC1 × IPC2 scores) are found 

in Supplemental Figure S2 A and B. However, as IPC1 and IPC2 were unable to account for 48.9% 

of the GEI variance, using this information to interpret the GEI could be deceptive. So, to 
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thoroughly analyse the GEI effect, methodologies incorporating more than the first two IPC would 

be necessary. 

3.3 Model accuracy testing and predicted means 

The grain yield prediction accuracy of the BLUP and AMMI models is tested using RMSPD. The 

estimated values for each model member family are compared based on the mean of 1000 re-

sampling cycles of RMSPD for each model tested. The model with the smallest RMSPD value is 

regarded as the most accurate prediction, and vice versa. In the present study, compared to the 

AMMI family models, the BLUP had the smallest RMSPD followed by AMMI3 (Supplemental 

Figure S3). Therefore, the BLUP was found to be the most accurate predictive model for faba bean 

grain yield. The lowest predicted mean was estimated for G9 (2.074 t ha–1) and the highest 

predicted mean was for G11 (2.496 t ha–1), with a BLUP mean of 2.301 t ha–1 (Figure 1A and 

Supplemental Table S3). The observed and predicted mean for the genotypes are close to each 

other, as indicated by the higher value of the genotypic accuracy of selection (As = 0.915, Table 

5). Seven genotypes had a mean value greater than the grand mean, and the remaining six 

genotypes scored below the BLUP mean. 

3.4 Estimated variance components  

Based on the mixed model likelihood ratio test, both genotype and genotype by environment 

interactions had highly significant (P<0.001) effects (Table 5). As illustrated in Supplemental 

Figure S1B, the GEI was a crossover type (qualitative) and the rank order of the genotypes changed 

across the environments. Of the phenotypic variance (σ2p) estimated, the residual variance (σ2ε) 

accounted for 51.4%, the GEI (σ2ge) for 31.7% and genotypic variance (σ2g) for 16.8% (Table 5). 

As a result, low broad-sense heritability (h2 = 0.169) was observed. The correlation between 

predicted and observed genotypic values was high (genotypic accuracy of selection, As = 0.915). 

In contrast, the low correlation between genotypic values across environments (rge = 0.38) was 

explained by the high residual coefficient of variation (CVr%) and residual variance (σ2ε) relative 

to genotypic variance.  
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3.5 Integrating AMMI and BLUP models to understand the GEI 

In this study, the WAASB statistics were computed to better characterize ideal genotypes based 

on both mean grain yield and stability. With this method, the stability of the genotypes can be 

presented graphically using biplots of the WAASB scores. Figure 1B depicts the grain yield × 

WAASB biplot with quadrants denoting the four classes of genotypes/environments that 

simultaneously interpret productivity and stability along the environments. The perpendicular line 

to the horizontal axis indicates the overall mean (2.301 t ha−1) and discriminates the genotypes' 

performance above and below the grand mean. The first quadrant represents the most unstable 

genotypes that have the largest role in GEI and environments with high discrimination ability. 

Low-yielding genotypes such as G9, G5, and G4 with mean grain yields of less than the overall 

mean were included. However, no environments were placed in this quadrant. The second quadrant 

is defined by its highly productive and unstable genotypes along with environments that have good 

discrimination powers. It included G8, which had a higher grain yield than the overall mean yield, 

as well as E2, E4, E11, E12, and E13. These environments require special consideration as they 

discriminate against the high-yielding genotypes. The third quadrant included environments E1, 

E3, E8, E9, E10, and E14, as well as genotype G7. The genotypes in this quadrant are considered 

low-yielding and better stable (widely adapted) due to low WAASB scores. These environments 

can also be regarded as less productive and having a lower ability for genotype differentiation. The 

fourth part of the biplot comprised G2, G6, G11, G12, and G13, along with E5, E7, and E15. The 

genotypes within this part have high yield performance, are widely adapted, and the most 

stable, making them the most desirable genotypes. The environments included in this quadrant can 

be considered the most productive but with low discrimination abilities. Moreover, genotype G1 

(Snowbird) was placed on the frontier of the third and fourth quadrants and showed yield 

performance equal to the overall mean and higher stability. 

3.6 Assessment of yield performance stability 

3.6.1 Parametric measures of stability 

The first criterion for genotype evaluation was mean grain yield. Based on this parameter, 

genotypes G11, G6, and G12 had the highest, while G4, G5, and G9 had the lowest mean grain 

yield (Supplemental Table S2). The joint regression model assesses the stability of each genotype 
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based on the bi and S2di, i.e., bi = 1 and low S2di scores are indicative of highly stable genotypes 

(Table 6). Genotypes G6, G8, G11, and G13 with bi values > 1 and yield performance greater than 

the overall mean were adapted to the favorable environments. Genotypes with bi values < 1 and 

mean yields lower than the overall mean have poor adaptation and may have specific adaptation 

for low-yielding environments. Genotypes G11, G6, and G12, with mean grain yield ranks of 1, 

2, and 3, and S2di ranks of 3, 1, and 4, respectively, had a good combination of yield and stability 

statistics (Table 7). Based on the W2i  and σ2i, genotypes G6, G12, G11, and G2 had the lowest 

values and were identified as the most stable. The CV statistics identified genotypes G2, G7, G11, 

and G12 as the four best-ranked genotypes. Using ASV, the best-ranked genotypes with grain yield 

mean performance G11, G6, and G12 had higher ASV values and were ranked 9, 7, and 8, 

respectively. The other AMMI based stability statistics: the average of the squared EV, SIPC, and 

Za identified genotype G6 as the most stable genotype, and a different rank order for other high-

yielding genotypes such as G11, G12, G2, and G13. Similarly, genotype G6 was found to be the 

most stable by the WAASB stability score, followed by G2 and G13, whereas the lowest yielding 

genotypes, G9, G5, and G4, were identified as the most unstable by WAASB. The BLUP-based 

stability parameter that considers stability, adaptability, and mean performance (HMRPGV) found 

a similar ranking of genotypes as mean grain yield (Tables 6 and 7).  

3.6.2. Non-parametric measures of stability  

According to stability statistics S(1), S(2), S(3), and S(6), genotypes G6, G11, and G12 had the lowest 

value in rank and are deemed as the most stable genotypes, while genotypes G3, G8, and G9 had 

relatively higher values of these statistics, indicating lower stability. The NP(1), NP(2), NP(3), and 

NP(4) considered genotypes G2, G6, G11, and G12 as more stable with a slight rank difference in 

the range of 1 to 4. However, the NP(1) placed genotype G6 on a rank of six. Similarly, the KR 

stability index recognized genotypes G2, G6, G11, and G12 as the most stable. Overall, the results 

of non-parametric statistics were comparable to each other and identified genotypes G2, G6, G11, 

and G12 as stable genotypes. 
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3.7 Association among stability statistics  

A heatmap of the Spearman’s rank correlation coefficient between mean grain yield (GY) and 

estimated stability parameters is displayed in Figure 2A. The results showed that GY was strongly 

and positively correlated with all other parametric and non-parametric indices, with the exception 

of bi, ASV, S(1), and S(2). Nevertheless, none of the estimated stability parameters were 

significantly associated with bi and ASV, except for ASV with CV. The non-parametric stability 

measures S(1), and S(2 were only correlated with S(3), S(6), NP(4), KR, W2i, σ2i, and EV. The CV 

indicated an association with all of the other stability measures evaluated except S(1), S(2), S(3), bi, 

EV, and SIPC. However, the remaining stability parameters displayed a strong positive correlation 

with each other.  

The PCA based on the rank correlation matrix was performed to gain a better understanding of the 

interrelationships among the stability parameters. As shown in Figure 2B, the first two axes (PC1 

and PC2) explained 82.7% of the total variance. The vectors of all of the indices were close to the 

edge of the circle, except bi, S(1), and S(2), indicating that they were well explained by the plane of 

factors. The stability parameters were graphically classified into distinct groups, with the cosine 

of the angle between their vectors approximating the association between each pair. The stability 

indices bi, ASV, and CV are placed separately from other stability measures, and each of them 

stands alone. The other remaining stability parameters were divided into three sub-groups (GI, GII, 

and GIII). Group I included the WAASB, SIPC, Za, S2di, NP(1) and NP(3), and the second group 

(II) contained GY, HMRPGV, W2i, σ2i, EV, KR, NP(2), NP(4), and S(6), whereas the stability indices 

S(1), S(2), and S(3) were classified in group III.   

3.8 Clustering and ranking of genotypes  

Hierarchical cluster analysis based on average sum rank (ASR) of stability measures and mean 

grain yield was computed to classify genotypes with similar performance regarding stability and 

productivity. The analysis grouped the 13 faba bean genotypes into two main clusters (Figure 3B). 

The first cluster was further subdivided into two subclusters, including genotypes G3, G10, G5, 

G4, and G9 in the first subcluster. This subgroup had a lower average grain yield (2.121 vs. 2.301 

t ha-1) and the highest ASR values (Table 7). The second subcluster comprised three genotypes, 

G7, G1, and G8, and had an average grain yield equal to the overall mean (2.301 t ha-1) and higher 
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ASR values for stability parameters. The other main cluster contains G2, G12, G13, G16, and G11, 

which had a higher average grain yield than the overall mean (2.480 vs. 2.301 t ha-1) and the lowest 

ASR values for stability parameters. This result was compared with the WAASB superiority index, 

WAASBY. The WAASBY values were calculated by considering the weights of 65 for grain yield 

and 35 for stability (WAASB). The genotypes with the highest WAASBY scores were G6 (99.11), 

followed by G11 (89.32), G12 (88.30), G2 (87.84) and G13 (81.16) (Figure 3A; Supplemental 

Table S4). The genotype with the lowest WAASBY score was G9 (0), followed by G5 (19.43), 

G4 (32.11), G10 (46.73), and G3 (50.14). These genotypes had the highest ASR values and the 

lowest average mean grain yield.  

4. DISCUSSION  

World faba bean production has decreased by 56% over the past 50 years (FAOSTAT, 2021). In 

some aspects, the decline in production might be related to interannual yield instability (Cernay et 

al., 2015), the genotypes' poor environmental adaptation (Zong et al., 2019), susceptibility to biotic 

stresses (Rubiales and Khazaei, 2022), the extensive practice of cereal monoculture in many 

countries and the use of chemical fertilizers (Jensen et al., 2010), and, of course, the crop’s 

antinutritional factors (Khazaei et al., 2019). So far, progressive efforts have been made to improve 

the nutritional quality; these traits have been incorporated into elite breeding lines, and the release 

of improved varieties has recently started in western Canada. Thus, it is essential to understand the 

magnitude of the GEI, one of the contributing factors to yield instability, before recommending 

new varieties for cultivation. In the present study, we employed multiple statistical models to 

investigate the grain yield performance and stability of faba bean genotypes. 

The current study found highly significant differences between genotypes, environments, and GEI 

effects. Our results revealed that environmental changes had the largest effect on grain yield, 

resulting in lower heritability. The result is consistent with previous research showing that the 

environment has a significant impact on faba bean grain production (Fikere et al., 2008; Flores et 

al., 2012; Temesgen et al., 2015; Skovbjerg et al., 2020; Papastylianou et al., 2021). As shown in 

Supplemental Figure 1A, the productivity of the environment was highly variable, ranging from 

0.881 to 3.514 t ha-1, with a difference greater than the grand mean. The predominant 

environmental effects on faba bean grain yield are attributed to the prevalence of abiotic and biotic 
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factors due to climatic and edaphic variation (Table 2). These factors, especially if they occur 

during the reproductive stage of the crop, i.e., flowering, podding, and grain filling, can 

significantly reduce grain yield (e.g., Link et al., 1999; Mwanamwenge et al., 1999; Katerji et al., 

2011; Ammar et al., 2015). Significant GEI effects that are greater than those contributed by 

genotype also imply that genotype responses differ across test environments, which in turn 

suggests a significant difference in genotypic performances and their rank orders. Likewise, Link 

et al. (1996), Annicchiarico and Iannucci (2008), and Papastylianou et al. (2021) reported a large 

crossover GEI in faba bean METs. This phenomenon could reduce the accuracy of selection for 

grain yield and obstruct the development of new cultivars due to the masking effects of variable 

environments (Kang and Pham, 1991). Therefore, accurate prediction models must be used to 

correctly analyze and interpret the yield performance, adaptability patterns, and stability of 

genotypes in METs (Gauch and Zobel, 1988). 

The AMMI is the most frequently used model in the partitioning of GEI into IPCs in METs. The 

AMMI analysis of this study showed that the first five IPCs are significant, and the first two IPCs 

accounted for over half of the total GEI. The interpretation of the AMMI analysis based on the 

first two components could be biased as only half of the variation is exploited. In this situation, 

employing model diagnosis holds the highest importance for choosing the best model for the data 

set (Gauch, 2013). Importantly, the AMMI is not just one model; it is rather a series of models, 

ranging from AMMI0 to AMMIF. Consequently, we evaluated the AMMI family and BLUP 

models, and the BLUP methods were found to outperform the AMMI models in predicting 

genotypic response. Our findings are consistent with the results of Piepho (1994), who 

demonstrated that the BLUP performs better than any member of the AMMI family in predicting 

faba bean yield in MET. Similar results are also reported for other crops (van Eeuwijk et al., 2016; 

Olivoto et al., 2019; Huang et al., 2021; Nataraj et al., 2021). Nevertheless, there are many cases 

where the AMMI model has been used even though the proportion of GEI explained by the first 

two IPCs was low (Tigabu et al., 2017; Bocianowski et al., 2019; Pour-Aboughadareh et al., 

2022b). In the current study, to leverage the advantages of both models, we used the WAASB, 

which incorporates all IPCs from the AMMI into BLUP methods to properly quantify the 

genotypic stability. The WAASB biplot is a useful tool for simultaneously examining yield 

performance and stability as it provides important details regarding the distribution of genotypes 

and environments. The results revealed genotypes G6 (AO1155), G11 (1089-1-2), G12 (1310-5), 
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G13 (1239-1), and G2 (DL Tesoro) as stable and high-yielding genotypes. Furthermore, the 

environments E5 (Roblin 2020), E7 (Stonewall 2020), and E15 (Melfort 2019) were identified as 

having good genotype discrimination ability. Many studies used the WAASB to identify genotypes 

that are highly productive and widely adaptable in various crops (Huang et al., 2021; Nataraj et 

al., 2021; Koundinya et al., 2021; Pour-Aboughadareh et al., 2022b). 

Numerous stability statistics and models have been presented for assessing the stability of the 

tested genotypes in METs. In this study, we used several parametric and non-parametric stability 

statistics to better understand the stability of faba bean genotypes. Stability methods are commonly 

classified as static or dynamic concepts, depending on their relationship with yield performance 

(Leon, 1985). The static stability or biological concepts state that a stable genotype maintains a 

constant yield regardless of diverse environments and its yield performance has an environmental 

variance near to zero (Becker and Leon, 1988). The dynamic stability, or agronomic concepts, 

implies that a genotype's performance responds consistently to environmental changes with the 

same trend as the mean response of the tested genotypes, i.e., no GEI. In contrast to the static 

stability measure, the dynamic stability measure is dependent on a specific set of genotypes that 

have been evaluated (Lin et al., 1986). Moreover, the classification of stability parameters into 

static and dynamic concepts depends on the nature of the data and test environments that determine 

their association with yield performance (Pour-Aboughadareh et al., 2022a). In this regard, we 

performed Spearman’s rank correlation and PCA (see Figure 2 A & B) for further dissection of 

the relationships among stability statistics and the stability concepts.  

Our findings revealed that the GY was strongly and positively correlated with all stability statistics, 

with the exception of bi, ASV, S(1), and S(2). None of the estimated stability parameters were 

significantly associated with bi and ASV, except for ASV with CV. However, the majority of the 

stability parameters calculated in this study displayed a strong positive correlation with each other. 

Our results also showed that the PCA biplot depicts the bi, ASV, and CV separated from the other 

groups, and each stand alone, representing the measure of stability in a static sense. These statistics 

were not significantly correlated with mean grain yield, except CV, and they might be applied to 

identify genotypes adapted to environments with unfavourable growing conditions. Group I 

included WAASB, SIPC, Za, S2di, NP(1), and NP(3) that were influenced simultaneously by both 

grain yield and stability. It was found that genotypes identified using these methods had average 
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stability. However, these genotypes could not perform as good as the responsive ones in a 

favourable environment. Group II consisted of the GY with HMRPGV, NP(2), NP(4), σ2i, W2i, KR, 

EV, and S(6). These statistics correspond to the dynamic concept of stability and favour selection 

based on grain yield (Becker and Leon, 1988), and can be used to identify genotypes that are 

adapted to favorable conditions. The high-yielding genotypes G11, G6, G12, and G2 had a rank in 

the range of 1 to 4 with these stability statistics, showing that the grain yield had a main influence 

on the rankings of genotypes. Our results also showed that S(1), S(2), and S(3) were included in group 

III. Like group I stability parameters, they are related to the static concept. All the stability methods 

included in groups I and II had a strong positive association with each other and mean grain yield, 

although there is inconsistency in ranking patterns in the selection of stable genotypes.  

Our findings also showed that some lines exhibited remarkable stable yield performance for some 

stability parameters and instability for others. This is one of the problems that has been identified 

in GE interaction studies (Khalili and Pour-Aboughadareh, 2016). This problem could be solved 

using the ASR values of the calculated stability statistics (Alizadeh et al., 2022; Pour-

Aboughadareh et al., 2022b). The low ASR value indicates a high level of stability; therefore, 

genotypes G6, G12, G2, G11, and G13 are identified as the most stable genotypes in this study. 

Furthermore, HCA based on the ASR values and mean grain yield was used to cluster the 

genotypes into qualitatively homogeneous high-yielding and stable subsets (Lin et al., 1986; 

Becker and Leon, 1988). Accordingly, the 13 faba bean test genotypes were divided into two main 

clusters. The first cluster was further subdivided into two subclusters, with the first subcluster 

consisting of genotypes that had a mean grain yield lower than the overall mean and the highest 

ASR values. The other subcluster included genotypes that had a mean grain yield above the overall 

mean as well as relatively higher ASR values for stability parameters. Some of the genotypes in 

this subcluster may have specific adaptations to some of the environments, as shown in Figure 2. 

The second main cluster comprised high-yielding genotypes with a low ASR value of stability 

parameters (ranked from 1 to 5), identified as high-yielding and more stable genotypes. 

Finally, we compared the results of ASR values of the stability parameters with WAASBY in 

identifying high-yielding stable genotypes of faba bean. To determine the efficiency and suitability 

of the WAASB statistics in identifying the ideal faba bean genotypes, as previously stated in the 

objectives. Like the ASR values, the WAASBY index identified genotype G6 as the most high-
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yielding and stable, followed by G11, G12, G2, and G13. The superiority index, WAASBY, may 

be more advantageous as it allows weighting between performance of response variables and the 

WAASB stability score for simultaneous selection of stability and productivity under a mixed 

effect model (Olivoto et al., 2019). Therefore, breeders can prioritize weights for mean grain yield 

and stability as per their breeding objectives and cultivar recommendations. High stability is only 

advantageous when associated with high yielding performance, and it is the least desirable when 

combined with low performance (Yan et al., 2007). In the current study, the WAASBY index was 

computed by assigning weights of 65 and 35, respectively, for grain yield and stability. Hence, the 

genotype G6 was found to have the highest superiority index, with a grain yield greater than the 

overall mean, and can be used for the improvement of adaptation in faba bean breeding programs. 

In Europe, faba bean synthetic lines have shown to have better yield stability than lines developed 

by recurrent/mass selection or pedigree selection (e.g., Stelling et al., 1994; Skovbjerg et al., 2020). 

However, in our study, this was not the case. The main reason is that most synthetic lines used in 

this study were bred by NPZ (Norddeutsche Pflanzenzücht, Germany) and may have less 

adaptability to the western Canada climate. 

5 CONCLUSIONS 
 
In the current study, 13 faba bean genotypes were tested across 15 environments in western Canada 

to exploit the effects of GE interaction and simultaneous selection of the best genotypes for mean 

grain yield and stability. The AMMI model and BLUP method demonstrated that the grain yield 

was highly affected by the genotype, environment, and their interaction. The combination of the 

AMMI and BLUP methods made it possible to dissect GEI effects more accurately and the 

suitability of the WAASB in multi-environment experiments in faba bean. Fifteen of the 20 

stability statistics revealed a significant positive correlation with grain yield, and most of the 

statistics were found to be positively and significantly correlated with each other. This result 

indicated that non-parametric statistics seem to be useful alternatives to complement parametric 

methods for identifying the most stable genotypes. Both univariate and multivariate statistical 

groups identified genotypes G6 (AO1155), G11 (1089-1-2) and G12 (1310-5) as more high-

yielding and stable genotypes than the best check G2 (DL Tesoro). This result is confirmed with 

the WAASBY index, indicating the efficiency of the WAASBY statistics in selecting superior faba 

bean genotypes. Overall, the genotype G6 (AO1155) with the highest yielding and stable 
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performance could be the most promising genetic resource for improving and stabilising faba bean 

grain yield in western Canada. 
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Tables  

 

Table 1. Information on the tested faba bean genotypes tested in this study 

Genotype code Name Vicin-convicine Breeder \ Origin 

G1 Snowbird High Limagrain Advanta, The Netherlands 

G2 DL Tesoro High NPZ, Germany 

G3 DL Rico Low NPZ, Germany 

G4 NPZ 16.7610 Low NPZ, Germany 

G5 NPZ 16.7601 Low NPZ, Germany 

G6 AO1155* Low Agri Obtentions, France 

G7 951-1-11 Low CDC, Usask, Canada 

G8 DL 18.7602 Low NPZ, Germany 

G9 DL 18.7603 Low NPZ, Germany 

G10 DL 18.7604 Low NPZ, Germany 

G11 1089-1-2 Low CDC, Usask, Canada 

G12 1310-5 Low CDC, Usask, Canada 

G13 1239-1 Low CDC, Usask, Canada 
CDC, Crop Development Center; Usask, University of Saskatchewan; NPZ,  
Norddeutsche Pflanzenzücht, Germany. AO1155 is registered as “Navi” in western Canada 
(https://inspection.canada.ca/english/plaveg/pbrpov/cropreport/faba/app00012063e.shtml)  
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Table 2. Field plot locations, soil classification and rainfall over the growing season 2019-2020 

Location Province  Latitude and Longitude Soil classification Year  
Rainfall 

(mm)  

ENV. 

code 

Saskatoon 
(SPG) Saskatchewan 52°08′23″N 106°41′10″W Calcareous black 

chernozem 2020 297.4 E1 

Riverhurst Saskatchewan 50.5500°N 106.5100°W Calcareous brown 
chernozem 2020 233.0 E2 

Redvers Saskatchewan 49°34′18″N 101°41′57″W Rego black chernozem 2020 488.2 E3 

Morden Manitoba 49°11′31″N 98°06′02″W Orthic black chernozem 2020 293.4 E4 

Roblin Manitoba 51°13′48″N 101°21′20″W Humic luvic gleysol 2020 312.4 E5 
2019 334.4 E6 

Stonewall Manitoba 50°08′04″N 97°19′34″W Orthic dark gray chernozem 
2020 326.5 E7 

2019 541.9 E8 

Portage Manitoba 49°58′22″N 98°17′31″W Rego gleysol 2020 304.5 E9 
2019 402.4 E10 

Namao Alberta 53°42′58″N 113°29′32″W Black chernozem 2020 442.5 E11 
Edmonton 
(CDCN) Alberta 53°38′10″N 113°22′29″W Black chernozem 2020 356.8 E12 

Outlook Saskatchewan 51°30′N 107°03′W Gleyed calcareous dark 
brown 2019 287.7 E13 

Kamsack Saskatchewan 51°33′54″N 101°53′41″W Rego black chernozem 2019 259.7 E14 

Melfort Saskatchewan 52°51′23″N 104°36′36″W Orthic back chernozem 2019 312.4 E15 
SPG, Saskatchewan Pulse Growers; CDCN, Crop Diversification Center North; ENV. code, Environment code 
Weather data source: https://www.gov.mb.ca/agriculture/soil/soil-survey/importance-of-soil-survey-mb.html 
Soil data source: https://open.alberta.ca/dataset/499b1a7d-8dca-496e-a5ee-208b61599ca1/resource/0a799be0-b668-
4db0-87b8-8fe8d1705c83/download/cr-5-soils-and-terrain.pdf  
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Table 3. List of parametric and non-parametric stability statistics computed in this study 

Statistics  Symbol References 

Parametric 

Wricke’s ecovalence W2i Wricke (1962) 

Regression coefficient bi Finlay and Wilkinson (1963) 

Deviation from regression S2di Eberhart and Russell (1966) 

Shukla’s stability variance σ2i Shukla (1972) 

Coefficient of variance CV Francis and Kannenberg (1978) 

Average of the squared eigenvector values EV Sneller et al. (1997) 

AMMI stability value ASV Purchase et al. (2000) 

Sum of the absolute value of the IPCA scores SIPC Purchase et al. (2000) 

Harmonic mean of relative performance of 
genotypic values 

HMRPGV Resende (2007) 

Absolute value of the relative contribution of 

IPCAs to the interaction 

Za Zali et al. (2012) 

Weighted average of absolute scores  WAASB Olivoto et al. (2019) 

Non-parametric 

Huehn’s and Nassar and Huehn’s statistics S(1, 2, 3, 6) Huehn (1990); Nassar and Huehn (1987) 

Thennarasu’s statistics NP(1-4) Thennarasu (1995) 

Kang’s rank-sum KR Kang (1988) 

IPCA, interaction Principal Component Axes  
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Table 4. Analysis of variance for combined and AMMI analysis for grain yield of 13 faba bean 
genotypes evaluated at 15 environments during 2019–2020 cropping seasons 

Sources of variation DF Sum square Mean square TSS (%) GEI expl. (%) Cumulative (%) 

Combined analysis             

Environment (E) 14 288.91 20.64*** 76.58     

Replication / E 30 9.64 0.32*** 2.56     

Genotype (G) 12 15.73 1.31*** 4.17     

GE interaction 168 35.75 0.21*** 9.48     

Residuals 355 27.22    0.08      

CV (%)                 12.07 

AMMI analysis             

Environment (E) 14 288.91 20.64***      

Replication / E 30 9.64 0.32***      

Genotype (G) 12 15.73 1.31***      

GE interaction 168 35.75 0.21***      

IPC1 25 9.65 0.39*** 2.33 26.40 26.4 

IPC2 23 9.03 0.39*** 2.18 24.70 51.1 

IPC3 21 7.45 0.35*** 1.80 20.40 71.5 

IPC4 19 3.61 0.19*** 0.87 9.90 81.3 

IPC5 17 3.12 0.18** 0.75 8.50 89.9 

IPC6 15 1.31 0.09ns 0.32 3.60 93.5 

IPC7 13 1.20 0.09 ns 0.29 3.30 96.7 

IPC8 11 0.44 0.04 ns 0.11 1.20 98.0 

IPC9 9 0.33 0.04 ns 0.08 0.90 98.9 

IPC10 7 0.24 0.03 ns 0.06 0.70 99.5 

IPC11 5 0.16 0.03 ns 0.04 0.40 100 

IPC12 3 0.01745 0.00582 0 0.05 100 

Residuals 355 27.22     0.08       

** and ***, significant at the 0.01 and 0.001 probability levels, respectively; ns, non-significant; TSS, total sum of 
squares; GEI expl., genotype × environment interaction explained; CV, coefficient of variation; DF, degrees of 
freedom 
! !
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Table 5. Estimated variance components and genetic parameters for grain yield of 13 faba bean 
genotypes evaluated in 15 environments 

Statistics  
Likelihood ratio test 

G GEI 
χ2 31.525 68.490 
p-value 1.97E-08 1.28E-16 

REMLλ 
Variance components 

Estimates 

σ2g 0.025 (16.85%)Ω 

σ2gei 0.047 (31.74%) 

σ2ε 0.076 (51.42%) 

σ2p 0.148 

h2 0.169 

R2gei 0.317 

h2mg 0.838 

AS 0.915 

rge 0.382 

CVg (%) 6.877 

CVr (%) 12.008 

CVg/ CVr ratio 0.573 

SD 0.810 

SE 0.030 

G, genotype; GEI, genotype by environment interaction; λREML, restricted maximum likelihood; σ2g, genotypic 
variance; σ2gei, genotype by environment interaction variance; σ2ε, residual variance; σ2p, phenotypic variance; h2, 
broad-sense heritability; R2gei, coefficient of determination of the interaction effects; h2mg, heritability of the genotypic 
mean; As, accuracy of selection; rge, genotype –environment correlation; CVg%, genotypic coefficient of variation; 
CVr%, residual coefficient of variation; CV ratio, ratio between genotypic and residual coefficient of variation; SD, 
standard deviation; SE, standard error. Ω Parenthetical values indicate the percentage of the observed phenotypic 
variance (σ2p)  
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Table 6. The mean grain yield (GY) and stability statistics values for 13 faba bean genotypes 
across 15 environments 

Statistics 
Genotypes 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 

GY 2.31 2.44 2.20 2.12 2.11 2.53 2.23 2.36 2.03 2.16 2.53 2.50 2.41 

W2i 0.65 0.62 1.01 1.10 1.99 0.58 0.69 0.96 1.98 0.76 0.61 0.58 0.65 

σ2i  0.05 0.05 0.08 0.09 0.16 0.04 0.05 0.07 0.16 0.06 0.05 0.04 0.05 

S2di 0.09 0.09 0.14 0.14 0.28 0.06 0.07 0.11 0.27 0.11 0.09 0.08 0.09 

bi 1.00 1.00 0.91 0.88 0.96 1.14 0.85 1.15 1.11 0.95 1.03 0.98 1.03 

CV 33.08 31.16 32.61 32.82 37.78 33.83 29.14 37.04 43.78 33.89 30.88 29.88 32.39 

ASV 0.55 0.17 0.17 0.34 1.05 0.34 0.20 0.59 1.02 0.28 0.54 0.50 0.25 

EV 0.04 0.05 0.14 0.09 0.14 0.03 0.05 0.09 0.14 0.09 0.04 0.04 0.04 

SIPC 0.96 0.95 1.75 1.43 1.88 0.73 1.14 1.44 2.06 1.57 1.10 1.00 0.95 

Za 0.164 0.143 0.207 0.228 0.309 0.104 0.150 0.199 0.340 0.203 0.175 0.157 0.150 

WAASB 0.17 0.16 0.21 0.24 0.28 0.15 0.17 0.23 0.33 0.21 0.19 0.18 0.17 

HMRPGV 1.00 1.06 0.96 0.92 0.91 1.09 0.98 1.01 0.85 0.94 1.10 1.09 1.04 

S(1) 3.90 3.43 4.38 3.60 3.43 2.32 3.71 4.13 4.29 3.26 2.36 2.67 4.11 

S(2) 11.07 9.00 14.43 11.70 8.74 3.98 12.12 12.70 6.07 8.83 4.27 5.55 12.21 

S(3) 23.01 14.00 33.67 36.12 23.54 5.65 27.67 27.48 55.31 26.87 5.71 7.88 21.55 

S(6) 5.98 3.78 7.00 8.09 6.77 2.62 6.67 7.03 13.08 7.39 2.45 2.70 5.43 

NP(1) 3.13 2.13 3.53 3.07 3.33 3.00 2.87 3.33 4.73 3.33 2.73 2.87 2.87 

NP(2) 0.41 0.25 0.78 0.95 0.82 0.29 0.63 0.42 2.73 1.20 0.33 0.24 0.36 

NP(3) 0.54 0.28 0.66 0.78 0.81 0.37 0.57 0.63 1.20 0.81 0.31 0.35 0.41 

NP(4) 0.58 0.38 0.73 0.79 0.66 0.24 0.61 0.64 1.05 0.71 0.23 0.27 0.52 

KR 12 8 19 22 25 3 15 15 25 18 4 5 11 

See Tables 1 and 3 for genotypes and statistics names  
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Table 7. Rank of mean grain yield (GY), stability statistics and average sum of ranks (ASR) of all 
stability statistics for 13 faba bean genotypes tested from 15 environments 

Statistics  
Genotypes 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 
GY 7 4 9 11 12 2 8 6 13 10 1 3 5 

W2i 5 4 10 11 13 1 7 9 12 8 3 2 6 

σ2i  5 4 10 11 13 1 7 9 12 8 3 2 6 

bi 8 7 3 2 5 12 1 13 11 4 10 6 9 

S2di 7 5 10 11 13 1 2 9 12 8 4 3 6 

CV 8 4 6 7 12 9 1 11 13 10 3 2 5 

ASV 10 2 1 6 13 7 3 11 12 5 9 8 4 

EV 2 6 12 8 11 1 7 9 13 10 4 3 5 

SIPC 4 3 11 8 12 1 7 9 13 10 6 5 2 

Za 6 2 10 11 12 1 4 8 13 9 7 5 3 

WAASB 5 2 9 11 12 1 4 10 13 8 7 6 3 

HMRPGV 7 4 9 11 12 2 8 6 13 10 1 3 5 

S(1) 9 5 13 7 5 1 8 11 12 4 2 3 10 

S(2) 7 6 12 8 4 1 9 11 13 5 2 3 10 

S(3) 6 4 11 12 7 1 10 9 13 8 2 3 5 

S(6) 6 4 9 12 8 2 7 10 13 11 1 3 5 

NP(1) 8 1 12 7 9 6 3 9 13 9 2 3 3 

NP(2) 6 2 9 11 10 3 8 7 13 12 4 1 5 

NP(3) 6 1 9 10 12 4 7 8 13 11 2 3 5 

NP(4) 6 4 11 12 9 2 7 8 13 10 1 3 5 

KR 6 4 10 11 12 1 7 7 12 9 2 3 5 

ASR 6.35 3.7 9.35 9.35 10.2 2.9 5.85 9.2 12.6 8.45 3.75 3.5 5.35 
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Figures  

 

Figure 1. (A) the predicted grain yield performance of 13 faba bean genotypes estimated using 

BLUP (best linear unbiased prediction). The vertical dotted line indicates the grand mean and the 

horizontal error bars indicate the 95% confidence interval when considering the two-tailed t-test. 

(B) biplot of mean grain yield and weighted average of absolute scores for the best linear unbiased 

predictions of the genotype vs. environment interaction (WAASB). See Tables 1 and 2 for 

genotypes and environments’ legends  
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Figure 2. Heatmap of Spearman's rank correlation (A) and biplot of principal component analysis 

(B) of mean yield (GY) and 20 stability statistics. *, **, and *** in the heatmap indicate significant 

at 0.05, 0.01, and 0.001 probability levels, respectively 
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Figure 3. Estimated values of the weighted average of the stability (WAASB) and mean grain 

yield (WAASBY) (A), and a dendrogram showing the hierarchical classification of 13 evaluated 

faba bean genotypes based on ranks of mean grain yield and the average sum of ranks of all 

stability statistics (B). The WAASBY was computed considering the weights of 65 and 35 for 

yielding and stability, respectively. See Table 1 for genotype names. 
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Supplemental materials  

Supplemental Table S1. Analysis of variance of grain yield for individual environments. 

Environment 
Mean Square  Mean grain   

yield (t/ha) 
CV(%) h2 AS 

Block Genotype Error 

E1 0.02ns 0.07* 0.02 1.62 9.66 0.65 0.80 

E2 1.11** 0.47* 0.16 2.59 15.21 0.67 0.82 

E3 0.04 ns 0.12*** 0.01 1.48 8.10 0.88 0.94 

E4 0.07 ns 0.62*** 0.07 2.48 10.50 0.89 0.94 

E5 0.21 ns 0.22 ns 0.17 3.04 13.40 0.26 0.51 

E6 1.08** 0.48** 0.12 2.29 15.31 0.74 0.86 

E7 0.17** 0.39*** 0.03 2.98 5.46 0.93 0.97 

E8 0.02 ns 0.11*** 0.01 1.56 7.63 0.87 0.93 

E9 0.38*** 0.25*** 0.03 1.80 8.85 0.90 0.95 

E10 0.01 ns 0.05** 0.01 0.88 13.37 0.75 0.86 

E11 0.62* 0.43** 0.13 2.93 12.39 0.70 0.83 

E12 0.19 ns 0.75** 0.16 2.79 14.24 0.79 0.89 

E13 0.53 ns 0.21 ns 0.16 3.51 11.25 0.27 0.52 

E14 0.01 ns 0.12** 0.03 1.91 9.18 0.74 0.86 

E15 0.25** 0.09* 0.04 2.64 7.23 0.60 0.77 

DF 2 12 24 ! ! ! ! 
*, ** and ***, significant at the 0.05, 0.01 and 0.001 probability levels, respectively; ns, non-significant, CV, 
coefficient of variation; h2, broad-sense heritability; As, accuracy of selection; DF, degrees of freedom. 
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Supplemental Table S2. Mean grain yield (GY; t ha−1) of 13 faba bean genotypes tested in 15 environments during the 2019–2020 
cropping season 

Genotypes 
Environments Mean 

GY  
(ha-1) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 

Snowbird 1.579 3.011 1.397 2.743 3.250 2.242 3.039 1.592 1.913 0.835 3.091 2.403 3.181 1.716 2.687 2.312 

DL Tesoro 1.762 2.632 1.560 2.777 3.141 2.365 3.150 1.583 1.963 1.030 2.529 2.743 3.955 2.343 3.015 2.436 

DL Rico 1.662 2.060 1.437 2.447 2.817 1.571 2.858 1.709 1.810 1.067 3.083 3.006 3.418 1.582 2.414 2.196 

NPZ 16.7610 1.373 2.162 1.413 2.337 2.741 2.069 2.776 1.550 1.617 0.827 2.076 2.276 3.494 2.098 2.936 2.116 

NPZ 16.7601 1.603 2.473 1.230 1.670 3.035 1.643 2.738 1.540 1.733 0.892 3.208 1.675 3.657 1.882 2.600 2.105 

AO1155 1.641 2.875 1.580 2.873 3.460 2.683 3.726 1.617 1.957 0.953 3.248 2.856 3.743 2.058 2.608 2.525 

951-1-11 1.527 2.422 1.677 2.583 2.873 2.722 2.826 1.758 1.677 0.889 2.538 2.420 3.341 1.774 2.458 2.232 

DL 18.7602 1.488 2.992 1.403 2.363 2.752 2.453 3.168 1.534 1.853 0.724 2.793 3.447 3.955 1.890 2.564 2.359 

DL 18.7603 1.413 1.997 1.023 1.650 2.574 2.283 2.350 0.994 1.127 0.575 2.855 3.315 3.557 2.090 2.649 2.030 

DL 18.7604 1.526 2.175 1.470 2.150 3.416 2.074 2.505 1.431 1.463 0.936 3.083 2.725 3.107 1.754 2.560 2.158 

1089-1-2 1.818 3.001 1.740 3.227 3.102 2.568 3.211 1.620 2.103 0.987 3.016 3.362 3.617 1.899 2.740 2.534 

1310-5 1.780 2.929 1.630 2.797 3.266 2.948 3.327 1.692 2.217 0.960 3.024 3.072 3.353 1.911 2.585 2.499 

1239-1 1.838 2.994 1.640 2.563 3.084 2.208 3.103 1.631 1.980 0.772 3.561 2.995 3.310 1.887 2.509 2.405 

Mean 1.616 2.594 1.477 2.475 3.039 2.295 2.983 1.558 1.801 0.881 2.931 2.792 3.514 1.914 2.640 2.301 
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Supplemental Table S3. Predicted grain yield, best linear unbiased prediction (BLUP) values, 
and rank for 13 faba bean genotypes evaluated. The lower and upper limits represent the 95% 
confidence interval of prediction considering a two-tailed t-test 
 

Genotype Genotype 
code BLUP value Predicted 

mean 
Rank of 
genotype Lower limit Upper limit 

Snowbird G1 0.009 2.310 7 2.164 2.457 
DL Tesoro G2 0.114 2.415 4 2.268 2.561 
DL Rico G3 -0.088 2.213 9 2.067 2.359 
NPZ 16.7610 G4 -0.155 2.146 11 2.000 2.293 
NPZ 16.7601 G5 -0.164 2.137 12 1.991 2.283 
AO1155 G6 0.188 2.489 2 2.342 2.635 
951-1-11 G7 -0.057 2.243 8 2.097 2.390 
DL 18.7602 G8 0.049 2.349 6 2.203 2.496 
DL 18.7603 G9 -0.227 2.074 13 1.927 2.220 
DL 18.7604 G10 -0.119 2.181 10 2.035 2.328 
1089-1-2 G11 0.196 2.496 1 2.350 2.643 
1310-5 G12 0.166 2.467 3 2.321 2.614 
1239-1 G13 0.087 2.388 5 2.242 2.535 

 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.507215doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507215
http://creativecommons.org/licenses/by-nc/4.0/


 

 36 

Supplemental Table S4. Results for WAASB estimation and ranks of the 13 faba bean genotypes evaluated in 15 environments 

Code 
Grain 
yield 
(GY) 

Significant principal components (PC) 
WAASB WAASBY 

Ranks of genotypes 

PC1 PC2 PC3 PC4 PC5 GY PC1 WAASB WAASBY 

G1 2.312 0.110 0.416 0.050 -0.066 -0.071 0.172 71.269 7 6 5 6 
G10 2.158 0.199 -0.109 0.262 0.321 -0.365 0.205 46.726 10 9 8 10 
G11 2.534 -0.381 0.184 -0.004 0.136 0.159 0.187 89.322 1 11 7 2 
G12 2.499 -0.280 0.280 -0.011 -0.024 -0.222 0.178 88.299 3 10 6 3 
G13 2.405 -0.037 0.201 0.422 -0.078 0.044 0.170 81.164 5 2 3 5 
G2 2.436 0.044 -0.115 -0.434 -0.039 0.156 0.158 87.838 4 3 2 4 
G3 2.196 0.102 -0.100 0.300 0.472 0.450 0.206 50.140 9 5 9 9 
G4 2.116 0.195 -0.186 -0.585 0.134 0.071 0.242 32.109 11 7 11 11 
G5 2.105 0.791 -0.019 0.114 -0.340 0.077 0.283 19.430 12 13 12 12 
G6 2.525 -0.101 0.269 -0.001 -0.238 -0.056 0.149 99.114 2 4 1 1 
G7 2.232 -0.035 0.147 -0.323 0.185 -0.267 0.172 63.377 8 1 4 7 
G8 2.359 -0.408 -0.183 0.020 -0.344 0.273 0.225 60.874 6 12 10 8 
G9 2.030 -0.198 -0.786 0.189 -0.120 -0.248 0.325 0.000 13 8 13 13 
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Supplemental Figures 

 

 

Supplemental Figure S1. The mean grain yield (GY) variation of 13 faba bean genotypes across 15 environments (A) and a nominal 
grain yield describing the "which-won-where" view for the 13 faba bean genotypes as a function of the environment scores of the first 
interaction principal component axis (IPCA1) (B) 
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Supplemental Figure S2. The AMMI1 (A) and AMMI2 (B) biplots indicate genotype by environment interaction for 13 faba bean 
genotypes evaluated in 15 environments. The genotype and environment codes are represented with blue and red icons, respectively. 
The Names of genotypes and environments are as defined in Table 1 and 2
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Supplemental Figure S3. The boxplots display the distribution of the root mean square prediction 
difference (RMSPD) estimates used to assess the predictive accuracy of the additive main effects 
and multiplicative interaction (AMMI) family and best linear unbiased prediction (BLUP) for 13 
faba bean genotypes evaluated in 15 environments. The RMSPD data was generated with 1000 
bootstrapping 
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