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Core Ideas
e Stability analysis was estimated using 13 faba bean genotypes over 15 site-years.
e The different stability methods described genotypic performance in different ways.
e The majority of stability models showed a strong rank correlation with grain yield.

e AMMI and BLUP analyses revealed a highly significant GXE interaction, with BLUP
outperforming AMMI.

e Overall, the employed stability statistics identified AO1155 as the highest yielding and

most stable genotype.
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Abstract

Increasing faba bean production is indispensable to supply the growing demand for plant-based
protein on the global scale. A thorough understanding of genotype (G) x environment (E)
interaction (GEI) patterns is critical to developing high-yielding varieties with wider adaptation.
Thirteen faba bean genotypes were evaluated in 15 environments during 2019-2020 in western
Canada to estimate their yield stability using different stability statistics. The combined analysis
of variance and additive main effects and multiplicative interaction (AMMI) analysis revealed that
G, E, and GEI effects were highly significant (P<0.001), indicating differential responses of the
genotypes across the environments, enabling the stability analysis. The result of the model
comparison found the best linear unbiased prediction (BLUP) to outperform AMMI models. The
BLUP-based biplot of the weighted average of absolute scores (WAASB) stability and mean grain
yield identified AO1155 (Navi), 1089-1-2, 1310-5, DL Tesoro, and 1239-1 as high-yielding and
stable genotypes. The correlation analysis revealed that most of the stability parameters had a
strong association with grain yield and with each other, indicating that they should be used in
combination with one another to select genotypes with high yield. Overall, the WAASB superiority
index (WAASBY) and the average sum of ranks of all stability statistics identified the same
genotypes in terms of high yielding and stability, and genotype AO1155 is considered the most
stable and highest yielding among the tested genotypes. Genotypes with stable yields across

environments would be beneficial for faba bean genetic improvement programs globally.
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1 INTRODUCTION

Faba bean (Vicia faba L.) is an important cool-season grain legume crop cultivated worldwide for
its high seed protein content and excellent biological nitrogen fixing ability. Its seed protein
content is about 30% of the seed dry matter (Griffiths and Lawes, 1978; Khazaei and Vandenberg,
2020), which is highly valuable for human consumption and animal feed (Stoddard et al., 2009;
Crépon et al., 2010). It has great potential to contribute to fulfilling the increasing global demand
for plant-based protein. The crop integrates well into sustainable agricultural systems due to its
capacity to improve soil nitrogen fertility and break the cycle of biotic stress in cereal-based
cropping systems (Kopke and Nemecek, 2010; Duc et al., 2015), and extend crop rotations that
include other pulse crops that are susceptible to Aphanomyces root rot (Moussart et al., 2008).
Faba bean can thrive in a wide range of soil types and climates, including cool, moist, and warm
temperate and subtropical regions (Duc et al., 2015). Nevertheless, it is known for its unstable
yield performance (e.g., Cernay et al., 2015; Reckling et al., 2018) due to its susceptibility to
interannual fluctuations and environmental variations (Zong et al., 2019). The main goal of
breeding programs is to increase and maintain the productivity of the crop by developing high-
yielding and stable varieties. For this reason, breeders test large numbers of genotypes in various

environments to evaluate the yield stability and wide adaptability of the genotypes.

Multi-environment trials (METs) have an important role in interpreting the genotype x
environment interaction (GEI) effect and selecting superior genotypes at the end of the variety
development pipeline. Modeling the GEI in METs can help in determining the adaptability and
stability of genotypes across a wide range of environments. However, this concept has been
defined in different ways in interpreting GEI (Gauch and Zobel, 1996), resulting in an increasing
number of stability statistics (Pour-Aboughadareh et al., 2022a). Huehn (1996) classified stability
statistics into parametric and non-parametric methods. The parametric methods, which include
univariate and multivariate stability analysis, mainly rely on distributional assumptions about the
environment, genotype, and their interaction effects. The non-parametric approaches are estimated
based on the mean values of the response variable and ranking of genotypes without any primary
distribution assumptions. Accordingly, a genotype is considered stable if its ranking remains
largely constant across environments (Flores et al., 1998) and the addition or deletion of one or a

few genotypes has no significant effect on the results (Huehn, 1990). Several parametric and non-
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parametric methods and models have been developed to analyze the extent of GEI and determine
the yield performance and stability of genotypes (reviewed by Pour-Aboughadareh et al., 2022a).
Each of these methods has its own set of strengths and weaknesses in describing the phenomenon
of GEI, so a combination of statistics from both approaches may provide a better understanding of
GEI (Becker and Leon, 1988). In faba bean, a similar strategy has been applied (e.g., Temesgen et
al., 2015; Sheikh et al., 2021).

The additive main effects and multiplicative interaction (AMMI model; Gauch, 1992) is a
multivariate parametric approach that is widely used to analyse and interpret GEI in METs. The
AMMI is a hybrid model that employs the analysis of variance for additive or main effects and
principal component analysis (PCA) for the multiplicative effects to understand the patterns of
GEI (Zobel et al., 1988). The graphical biplot tools of the AMMI model provide an easy
interpretation of yield performance and stability simultaneously, as well as the identification of
mega-environment (Zobel et al., 1988; Gauch, 1992; Gauch et al., 2008). Previous studies have
demonstrated the usefulness of the AMMI model in identifying superior faba bean genotypes in
terms of yield performance and stability, as well as its advantage in describing the GEI effect (e.g.,
Flores et al., 1996; Flores et al., 1998; Fikere et al., 2008; Tadesse et al., 2017). However, the
AMMI model has a weakness in analysing the structure of the linear mixed-effect model (LMM).
Alternatively, the best linear unbiased prediction (BLUP; Smith et al., 2005) methods were
proposed to estimate GEI in METs based on the LMM, which is efficient in the estimation of
random effects. In some cases, the BLUP was found to be more reliable than the AMMI model at
making predictions (e.g., Piepho, 1994; Olivoto et al., 2019). Consequently, Olivoto et al. (2019)
integrated the graphical tools of the AMMI model into the BLUP technique and developed a new
stability statistic, WAASB (weighted average of absolute scores). The WAASB has been used to
identify high-yielding stable genotypes in many crops (Koundinya et al., 2021; Nataraj et al., 2021;
Pour-Aboughadareh et al., 2022b; Yue et al., 2022), but not in faba bean.

Several faba bean cultivars have been developed in western Canada since the late 1970s (Khazaei
et al., 2021). However, yield stability has not been studied on modern faba bean cultivars. Overall,
to describe the extent of GEI and select high-yielding stable genotypes, a number of approaches,
including those listed above, have been proposed. In the current study, a total of 20 stability

statistics, including the newly introduced WAASB, were used to investigate the grain yield
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performance and stability of 13 faba bean genotypes in METs, and the relationships between
stability parameters were analyzed. Finally, the average sum rank of all the stability statistics was
computed and compared with the WAASB superiority index (WAASBY) for simultaneous

selection of grain yield performance and stability of faba bean genotypes.

2 MATERIALS AND METHODS

2.1 Plant material and growing conditions

A set of thirteen white-flowered (low tannin) faba bean genotypes, including ten advanced
breeding lines and three check varieties (cv. Snowbird, DL Tesoro, and DL Rico), were grown at
12 locations in western Canada during the 2019 and 2020 cropping seasons. The test genotypes
originated from different major faba bean breeding programs in Europe and Canada (Table 1). The
locations were representative of typical faba bean growing regions in the dark gray, black, and
dark brown soil-climatic zones of western Canada. Each year and location was treated as a separate
environment, making a total of 15 environments: seven in Manitoba, six in Saskatchewan, and two
in Alberta, Canada. The trials were sown in May and harvested from September to November.
Climatic information was retrieved from the Environment Canada database for the weather station

nearest to the field site. Detailed characteristics of the test locations are presented in Table 2.
2.2. Experimental design

The field experiments were conducted in a randomized complete block design (RCBD) with three
replications, each ina 1.2 m x 5 m plot. All necessary crop management practices such as nutrients,
weed control, and pesticide applications were followed as per recommended practices at each
location. These agronomic practices were applied uniformly to the entire experimental area and
were treated as non-experimental variables. Plots were harvested with combine harvesters and
seeds were cleaned to determine grain yield and seed weight at 10% standard grain moisture

content for data analysis.
2.3. Statistical analyses

The analysis of variance (ANOVA) of grain yield data from each environment (combination of

years and locations) was first analysed separately. The combined ANOVA was then performed to
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determine the effects of genotype, environment, and genotype by environment interaction.
Furthermore, the AMMI analysis was conducted to partition GEIs into different principal
components. All these statistical analyses were performed in R software 4.0.3 (R Core Team,
2020) using the package “metan” (Olivoto and Lucio, 2020). The combined and AMMI ANOVA
was performed using a linear model with an interaction effect, whereas the variance components
were estimated in a linear mixed-effect model using restricted maximum likelihood (REML)

considering genotype and genotype-vs-environment as random effects.

The AMMI family model and the BLUP model were tested for prediction accuracy by comparing
their root mean square prediction difference (RMSPD) estimates (Piepho, 1994). Likewise, the
WAASB (the weighted average of absolute scores from the singular value decomposition of the
matrix of best linear unbiased predictions for the GEI effects generated by a linear mixed-effect
model) statistics was employed to analyse the stability (Olivoto et al., 2019). This method
integrates AMMI and BLUP model features for identifying highly productive and stable
genotypes. Correspondingly, the superiority index of WAASB was calculated for simultaneous
selection for yield and stability by weighting the WAASB stability value and mean yield
performance (Y) (WAASBY, Olivoto et al., 2019).

Additionally, eleven parametric and nine non-parametric common stability statistics were
calculated (see Table 3), and furthermore, the investigated genotypes were ranked based on each
statistic. All these stability statistics were estimated using a web-based STABILITYSOFT
program (Pour-Aboughadareh et al., 2019) and the "metan" package in R. An overview of their
equations and how they were used in the analysis of GEI effects is given in a recent review by
Pour-Aboughadareh et al. (2022a). Spearman’s rank correlation was computed to detect the
association between the calculated stability statistics using the "corrplot" package in R. To better
understand the interrelationships among stability measures, PCA was performed using the
“factoextra” package in R. Moreover, to group the investigated faba bean genotypes into similar
mean yield and stability clusters, a hierarchical cluster analysis (HCA) was computed based on
average sum of ranks (ASR) of all stability measures and mean yield through Ward’s method and

Euclidean distance as a dissimilarity measure using the “ggdendro” packages in R.
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3 RESULTS
3.1 Analysis of variance and mean performances

The analysis of variance of grain yield for the individual environments revealed significant
differences for genotype effects (P<0.05), except for ES (Roblin 2020) and E13 (Outlook 2019).
The value for coefficient of variation ranged from 5.46 to 15.31 (Supplemental Table S1),
indicating the suitability of the data for further analysis. The joint ANOVA across the 15 test
environments showed the presence of highly significant variation (P<0.001) for the main effects
due to genotype, environment, and their interaction (Table 4). The analysis reported that the
highest proportion of variance was contributed by environment effect (76.6%), followed by
genotype by environment interaction effect (9.5%) and genotype effect (4.2%). The mean grain
yields of environments varied from 0.881 t ha! (E10, Pontage 2019) to 3.514 t ha'! (E13, Outlook
2019), with a grand mean of 2.301 t ha™!. The highest mean grain yield (2.534 t ha'!) was produced
by G11 (1089-1-2) and the lowest (2.030 ha™!) was produced by G9 (DL 18.7603) with a grand
mean of 2.301 t ha™! (Supplemental Table S2).

3.2 AMMI Analysis of variance

The multivariate stability model, AMMI analysis for grain yield of the 13 faba bean genotypes
tested in 15 environments is presented in Table 4. This analysis shows that the faba bean grain
yield was significantly (P<0.001) affected by changes in environment, followed by G x E
interaction and genotypic effects. The variance explained by the GEI effect was two times greater
than the genotype effect. This demonstrates that the genotypes responded differently across
environments and that additional stability analysis may be required to fully understand the
magnitude of the GEI effect. The GEI effect was further partitioned into 12 interaction principal
components (IPCs). The first five IPCs were found to be significant (P<0.001) and explained
89.9% of the variation affected GEIs, with a proportion of 26.4, 24.7, 20.4, 9.9, and 8.5% for IPC1-
5, respectively (Table 4). The distribution of faba bean genotypes and test environments based on
biplots of AMMII (mean grain yield x IPC1 scores) and AMMI2 (IPC1 x IPC2 scores) are found
in Supplemental Figure S2 A and B. However, as IPC1 and IPC2 were unable to account for 48.9%

of the GEI variance, using this information to interpret the GEI could be deceptive. So, to
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thoroughly analyse the GEI effect, methodologies incorporating more than the first two IPC would

be necessary.
3.3 Model accuracy testing and predicted means

The grain yield prediction accuracy of the BLUP and AMMI models is tested using RMSPD. The
estimated values for each model member family are compared based on the mean of 1000 re-
sampling cycles of RMSPD for each model tested. The model with the smallest RMSPD value is
regarded as the most accurate prediction, and vice versa. In the present study, compared to the
AMMI family models, the BLUP had the smallest RMSPD followed by AMMI3 (Supplemental
Figure S3). Therefore, the BLUP was found to be the most accurate predictive model for faba bean
grain yield. The lowest predicted mean was estimated for G9 (2.074 t ha™!) and the highest
predicted mean was for G11 (2.496 t ha™!), with a BLUP mean of 2.301 t ha™! (Figure 1A and
Supplemental Table S3). The observed and predicted mean for the genotypes are close to each
other, as indicated by the higher value of the genotypic accuracy of selection (As = 0.915, Table
5). Seven genotypes had a mean value greater than the grand mean, and the remaining six

genotypes scored below the BLUP mean.
3.4 Estimated variance components

Based on the mixed model likelihood ratio test, both genotype and genotype by environment
interactions had highly significant (P<0.001) effects (Table 5). As illustrated in Supplemental
Figure S1B, the GEI was a crossover type (qualitative) and the rank order of the genotypes changed
across the environments. Of the phenotypic variance (c?p) estimated, the residual variance (c2%)
accounted for 51.4%, the GEI (c?g.) for 31.7% and genotypic variance (c%,) for 16.8% (Table 5).
As a result, low broad-sense heritability (h> = 0.169) was observed. The correlation between
predicted and observed genotypic values was high (genotypic accuracy of selection, As = 0.915).
In contrast, the low correlation between genotypic values across environments (rge = 0.38) was
explained by the high residual coefficient of variation (CV:%) and residual variance (c2) relative

to genotypic variance.
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3.5 Integrating AMMI and BLUP models to understand the GEI

In this study, the WAASB statistics were computed to better characterize ideal genotypes based
on both mean grain yield and stability. With this method, the stability of the genotypes can be
presented graphically using biplots of the WAASB scores. Figure 1B depicts the grain yield x
WAASB biplot with quadrants denoting the four classes of genotypes/environments that
simultaneously interpret productivity and stability along the environments. The perpendicular line
to the horizontal axis indicates the overall mean (2.301 t ha™") and discriminates the genotypes'
performance above and below the grand mean. The first quadrant represents the most unstable
genotypes that have the largest role in GEI and environments with high discrimination ability.
Low-yielding genotypes such as G9, G5, and G4 with mean grain yields of less than the overall
mean were included. However, no environments were placed in this quadrant. The second quadrant
is defined by its highly productive and unstable genotypes along with environments that have good
discrimination powers. It included G8, which had a higher grain yield than the overall mean yield,
as well as E2, E4, E11, E12, and E13. These environments require special consideration as they
discriminate against the high-yielding genotypes. The third quadrant included environments E1,
E3, E8, E9, E10, and E14, as well as genotype G7. The genotypes in this quadrant are considered
low-yielding and better stable (widely adapted) due to low WAASB scores. These environments
can also be regarded as less productive and having a lower ability for genotype differentiation. The
fourth part of the biplot comprised G2, G6, G11, G12, and G13, along with E5, E7, and E15. The
genotypes within this part have high yield performance, are widely adapted, and the most
stable, making them the most desirable genotypes. The environments included in this quadrant can
be considered the most productive but with low discrimination abilities. Moreover, genotype G1
(Snowbird) was placed on the frontier of the third and fourth quadrants and showed yield

performance equal to the overall mean and higher stability.
3.6 Assessment of yield performance stability

3.6.1 Parametric measures of stability

The first criterion for genotype evaluation was mean grain yield. Based on this parameter,
genotypes G11, G6, and G12 had the highest, while G4, G5, and G9 had the lowest mean grain
yield (Supplemental Table S2). The joint regression model assesses the stability of each genotype
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based on the bi and S74i, i.e., bi = 1 and low S%; scores are indicative of highly stable genotypes
(Table 6). Genotypes G6, G8, G11, and G13 with b; values > 1 and yield performance greater than
the overall mean were adapted to the favorable environments. Genotypes with b; values < 1 and
mean yields lower than the overall mean have poor adaptation and may have specific adaptation
for low-yielding environments. Genotypes G11, G6, and G12, with mean grain yield ranks of 1,
2, and 3, and S%; ranks of 3, 1, and 4, respectively, had a good combination of yield and stability
statistics (Table 7). Based on the W? and o?;, genotypes G6, G12, G11, and G2 had the lowest
values and were identified as the most stable. The CV statistics identified genotypes G2, G7, G11,
and G12 as the four best-ranked genotypes. Using ASV, the best-ranked genotypes with grain yield
mean performance G11, G6, and G12 had higher ASV values and were ranked 9, 7, and 8,
respectively. The other AMMI based stability statistics: the average of the squared EV, SIPC, and
Za identified genotype G6 as the most stable genotype, and a different rank order for other high-
yielding genotypes such as G11, G12, G2, and G13. Similarly, genotype G6 was found to be the
most stable by the WAASB stability score, followed by G2 and G13, whereas the lowest yielding
genotypes, G9, G5, and G4, were identified as the most unstable by WAASB. The BLUP-based
stability parameter that considers stability, adaptability, and mean performance (HMRPGV) found

a similar ranking of genotypes as mean grain yield (Tables 6 and 7).
3.6.2. Non-parametric measures of stability

According to stability statistics S1V, S@, S® and S©, genotypes G6, G11, and G12 had the lowest
value in rank and are deemed as the most stable genotypes, while genotypes G3, G8, and G9 had
relatively higher values of these statistics, indicating lower stability. The NP®, NP®), NP®), and
NP® considered genotypes G2, G6, G11, and G12 as more stable with a slight rank difference in
the range of 1 to 4. However, the NP placed genotype G6 on a rank of six. Similarly, the KR
stability index recognized genotypes G2, G6, G11, and G12 as the most stable. Overall, the results
of non-parametric statistics were comparable to each other and identified genotypes G2, G6, G11,

and G12 as stable genotypes.

10
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3.7 Association among stability statistics

A heatmap of the Spearman’s rank correlation coefficient between mean grain yield (GY) and
estimated stability parameters is displayed in Figure 2A. The results showed that GY was strongly
and positively correlated with all other parametric and non-parametric indices, with the exception
of bi, ASV, S®, and S@. Nevertheless, none of the estimated stability parameters were
significantly associated with b; and ASV, except for ASV with CV. The non-parametric stability
measures SV, and S@ were only correlated with S®, S© NP®, KR, W3, 6%, and EV. The CV
indicated an association with all of the other stability measures evaluated except S1), S, S® b;,
EV, and SIPC. However, the remaining stability parameters displayed a strong positive correlation

with each other.

The PCA based on the rank correlation matrix was performed to gain a better understanding of the
interrelationships among the stability parameters. As shown in Figure 2B, the first two axes (PC1
and PC2) explained 82.7% of the total variance. The vectors of all of the indices were close to the
edge of the circle, except bi, S1V, and S, indicating that they were well explained by the plane of
factors. The stability parameters were graphically classified into distinct groups, with the cosine
of the angle between their vectors approximating the association between each pair. The stability
indices b;, ASV, and CV are placed separately from other stability measures, and each of them
stands alone. The other remaining stability parameters were divided into three sub-groups (GI, GII,
and GIII). Group I included the WAASB, SIPC, Za, S%;i, NP() and NP®), and the second group
(IT) contained GY, HMRPGV, W2, 6%, EV, KR, NP@ NP®, and S, whereas the stability indices
SM, @ and S® were classified in group IIL.

3.8 Clustering and ranking of genotypes

Hierarchical cluster analysis based on average sum rank (ASR) of stability measures and mean
grain yield was computed to classify genotypes with similar performance regarding stability and
productivity. The analysis grouped the 13 faba bean genotypes into two main clusters (Figure 3B).
The first cluster was further subdivided into two subclusters, including genotypes G3, G10, G5,
G4, and G9 in the first subcluster. This subgroup had a lower average grain yield (2.121 vs. 2.301
t ha'!) and the highest ASR values (Table 7). The second subcluster comprised three genotypes,
G7, G1, and G8, and had an average grain yield equal to the overall mean (2.301 t ha'!) and higher

11
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ASR values for stability parameters. The other main cluster contains G2, G12, G13, G16, and G11,
which had a higher average grain yield than the overall mean (2.480 vs. 2.301 t ha!) and the lowest
ASR values for stability parameters. This result was compared with the WA ASB superiority index,
WAASBY. The WAASBY values were calculated by considering the weights of 65 for grain yield
and 35 for stability (WAASB). The genotypes with the highest WAASBY scores were G6 (99.11),
followed by G11 (89.32), G12 (88.30), G2 (87.84) and G13 (81.16) (Figure 3A; Supplemental
Table S4). The genotype with the lowest WAASBY score was G9 (0), followed by G5 (19.43),
G4 (32.11), G10 (46.73), and G3 (50.14). These genotypes had the highest ASR values and the

lowest average mean grain yield.

4. DISCUSSION

World faba bean production has decreased by 56% over the past 50 years (FAOSTAT, 2021). In
some aspects, the decline in production might be related to interannual yield instability (Cernay et
al., 2015), the genotypes' poor environmental adaptation (Zong et al., 2019), susceptibility to biotic
stresses (Rubiales and Khazaei, 2022), the extensive practice of cereal monoculture in many
countries and the use of chemical fertilizers (Jensen et al., 2010), and, of course, the crop’s
antinutritional factors (Khazaei et al., 2019). So far, progressive efforts have been made to improve
the nutritional quality; these traits have been incorporated into elite breeding lines, and the release
of improved varieties has recently started in western Canada. Thus, it is essential to understand the
magnitude of the GEI, one of the contributing factors to yield instability, before recommending
new varieties for cultivation. In the present study, we employed multiple statistical models to

investigate the grain yield performance and stability of faba bean genotypes.

The current study found highly significant differences between genotypes, environments, and GEI
effects. Our results revealed that environmental changes had the largest effect on grain yield,
resulting in lower heritability. The result is consistent with previous research showing that the
environment has a significant impact on faba bean grain production (Fikere et al., 2008; Flores et
al., 2012; Temesgen et al., 2015; Skovbjerg et al., 2020; Papastylianou et al., 2021). As shown in
Supplemental Figure 1A, the productivity of the environment was highly variable, ranging from
0.881 to 3.514 t ha'!, with a difference greater than the grand mean. The predominant

environmental effects on faba bean grain yield are attributed to the prevalence of abiotic and biotic
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factors due to climatic and edaphic variation (Table 2). These factors, especially if they occur
during the reproductive stage of the crop, i.e., flowering, podding, and grain filling, can
significantly reduce grain yield (e.g., Link et al., 1999; Mwanamwenge et al., 1999; Katerji et al.,
2011; Ammar et al., 2015). Significant GEI effects that are greater than those contributed by
genotype also imply that genotype responses differ across test environments, which in turn
suggests a significant difference in genotypic performances and their rank orders. Likewise, Link
et al. (1996), Annicchiarico and Iannucci (2008), and Papastylianou et al. (2021) reported a large
crossover GEI in faba bean METs. This phenomenon could reduce the accuracy of selection for
grain yield and obstruct the development of new cultivars due to the masking effects of variable
environments (Kang and Pham, 1991). Therefore, accurate prediction models must be used to
correctly analyze and interpret the yield performance, adaptability patterns, and stability of

genotypes in METs (Gauch and Zobel, 1988).

The AMMI is the most frequently used model in the partitioning of GEI into IPCs in METs. The
AMMI analysis of this study showed that the first five IPCs are significant, and the first two IPCs
accounted for over half of the total GEI. The interpretation of the AMMI analysis based on the
first two components could be biased as only half of the variation is exploited. In this situation,
employing model diagnosis holds the highest importance for choosing the best model for the data
set (Gauch, 2013). Importantly, the AMMI is not just one model; it is rather a series of models,
ranging from AMMIO to AMMIF. Consequently, we evaluated the AMMI family and BLUP
models, and the BLUP methods were found to outperform the AMMI models in predicting
genotypic response. Our findings are consistent with the results of Piepho (1994), who
demonstrated that the BLUP performs better than any member of the AMMI family in predicting
faba bean yield in MET. Similar results are also reported for other crops (van Eeuwijk et al., 2016;
Olivoto et al., 2019; Huang et al., 2021; Nataraj et al., 2021). Nevertheless, there are many cases
where the AMMI model has been used even though the proportion of GEI explained by the first
two IPCs was low (Tigabu et al., 2017; Bocianowski et al., 2019; Pour-Aboughadareh et al.,
2022b). In the current study, to leverage the advantages of both models, we used the WAASB,
which incorporates all IPCs from the AMMI into BLUP methods to properly quantify the
genotypic stability. The WAASB biplot is a useful tool for simultaneously examining yield
performance and stability as it provides important details regarding the distribution of genotypes

and environments. The results revealed genotypes G6 (AO1155), G11 (1089-1-2), G12 (1310-5),
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G13 (1239-1), and G2 (DL Tesoro) as stable and high-yielding genotypes. Furthermore, the
environments E5 (Roblin 2020), E7 (Stonewall 2020), and E15 (Melfort 2019) were identified as
having good genotype discrimination ability. Many studies used the WAASB to identify genotypes
that are highly productive and widely adaptable in various crops (Huang et al., 2021; Nataraj et
al., 2021; Koundinya et al., 2021; Pour-Aboughadareh et al., 2022b).

Numerous stability statistics and models have been presented for assessing the stability of the
tested genotypes in METs. In this study, we used several parametric and non-parametric stability
statistics to better understand the stability of faba bean genotypes. Stability methods are commonly
classified as static or dynamic concepts, depending on their relationship with yield performance
(Leon, 1985). The static stability or biological concepts state that a stable genotype maintains a
constant yield regardless of diverse environments and its yield performance has an environmental
variance near to zero (Becker and Leon, 1988). The dynamic stability, or agronomic concepts,
implies that a genotype's performance responds consistently to environmental changes with the
same trend as the mean response of the tested genotypes, i.e., no GEI. In contrast to the static
stability measure, the dynamic stability measure is dependent on a specific set of genotypes that
have been evaluated (Lin et al., 1986). Moreover, the classification of stability parameters into
static and dynamic concepts depends on the nature of the data and test environments that determine
their association with yield performance (Pour-Aboughadareh et al., 2022a). In this regard, we
performed Spearman’s rank correlation and PCA (see Figure 2 A & B) for further dissection of

the relationships among stability statistics and the stability concepts.

Our findings revealed that the GY was strongly and positively correlated with all stability statistics,
with the exception of bi, ASV, SV, and S®. None of the estimated stability parameters were
significantly associated with b; and ASV, except for ASV with CV. However, the majority of the
stability parameters calculated in this study displayed a strong positive correlation with each other.
Our results also showed that the PCA biplot depicts the bi, ASV, and CV separated from the other
groups, and each stand alone, representing the measure of stability in a static sense. These statistics
were not significantly correlated with mean grain yield, except CV, and they might be applied to
identify genotypes adapted to environments with unfavourable growing conditions. Group I
included WAASB, SIPC, Za, S%i, NP, and NP® that were influenced simultaneously by both
grain yield and stability. It was found that genotypes identified using these methods had average
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stability. However, these genotypes could not perform as good as the responsive ones in a
favourable environment. Group II consisted of the GY with HMRPGV, NP®), NP®, 2, W2, KR,
EV, and S©. These statistics correspond to the dynamic concept of stability and favour selection
based on grain yield (Becker and Leon, 1988), and can be used to identify genotypes that are
adapted to favorable conditions. The high-yielding genotypes G11, G6, G12, and G2 had a rank in
the range of 1 to 4 with these stability statistics, showing that the grain yield had a main influence
on the rankings of genotypes. Our results also showed that S1V, S@, and S® were included in group
II1. Like group I stability parameters, they are related to the static concept. All the stability methods
included in groups I and II had a strong positive association with each other and mean grain yield,

although there is inconsistency in ranking patterns in the selection of stable genotypes.

Our findings also showed that some lines exhibited remarkable stable yield performance for some
stability parameters and instability for others. This is one of the problems that has been identified
in GE interaction studies (Khalili and Pour-Aboughadareh, 2016). This problem could be solved
using the ASR values of the calculated stability statistics (Alizadeh et al., 2022; Pour-
Aboughadareh et al., 2022b). The low ASR value indicates a high level of stability; therefore,
genotypes G6, G12, G2, G11, and G13 are identified as the most stable genotypes in this study.
Furthermore, HCA based on the ASR values and mean grain yield was used to cluster the
genotypes into qualitatively homogeneous high-yielding and stable subsets (Lin et al., 1986;
Becker and Leon, 1988). Accordingly, the 13 faba bean test genotypes were divided into two main
clusters. The first cluster was further subdivided into two subclusters, with the first subcluster
consisting of genotypes that had a mean grain yield lower than the overall mean and the highest
ASR values. The other subcluster included genotypes that had a mean grain yield above the overall
mean as well as relatively higher ASR values for stability parameters. Some of the genotypes in
this subcluster may have specific adaptations to some of the environments, as shown in Figure 2.
The second main cluster comprised high-yielding genotypes with a low ASR value of stability

parameters (ranked from 1 to 5), identified as high-yielding and more stable genotypes.

Finally, we compared the results of ASR values of the stability parameters with WAASBY in
identifying high-yielding stable genotypes of faba bean. To determine the efficiency and suitability
of the WAASB statistics in identifying the ideal faba bean genotypes, as previously stated in the
objectives. Like the ASR values, the WAASBY index identified genotype G6 as the most high-
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yielding and stable, followed by G11, G12, G2, and G13. The superiority index, WAASBY, may
be more advantageous as it allows weighting between performance of response variables and the
WAASB stability score for simultaneous selection of stability and productivity under a mixed
effect model (Olivoto et al., 2019). Therefore, breeders can prioritize weights for mean grain yield
and stability as per their breeding objectives and cultivar recommendations. High stability is only
advantageous when associated with high yielding performance, and it is the least desirable when
combined with low performance (Yan et al., 2007). In the current study, the WAASBY index was
computed by assigning weights of 65 and 35, respectively, for grain yield and stability. Hence, the
genotype G6 was found to have the highest superiority index, with a grain yield greater than the
overall mean, and can be used for the improvement of adaptation in faba bean breeding programs.
In Europe, faba bean synthetic lines have shown to have better yield stability than lines developed
by recurrent/mass selection or pedigree selection (e.g., Stelling et al., 1994; Skovbjerg et al., 2020).
However, in our study, this was not the case. The main reason is that most synthetic lines used in
this study were bred by NPZ (Norddeutsche Pflanzenziicht, Germany) and may have less

adaptability to the western Canada climate.

5 CONCLUSIONS

In the current study, 13 faba bean genotypes were tested across 15 environments in western Canada
to exploit the effects of GE interaction and simultaneous selection of the best genotypes for mean
grain yield and stability. The AMMI model and BLUP method demonstrated that the grain yield
was highly affected by the genotype, environment, and their interaction. The combination of the
AMMI and BLUP methods made it possible to dissect GEI effects more accurately and the
suitability of the WAASB in multi-environment experiments in faba bean. Fifteen of the 20
stability statistics revealed a significant positive correlation with grain yield, and most of the
statistics were found to be positively and significantly correlated with each other. This result
indicated that non-parametric statistics seem to be useful alternatives to complement parametric
methods for identifying the most stable genotypes. Both univariate and multivariate statistical
groups identified genotypes G6 (AO1155), G11 (1089-1-2) and G12 (1310-5) as more high-
yielding and stable genotypes than the best check G2 (DL Tesoro). This result is confirmed with
the WAASBY index, indicating the efficiency of the WAASBY statistics in selecting superior faba
bean genotypes. Overall, the genotype G6 (AO1155) with the highest yielding and stable
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performance could be the most promising genetic resource for improving and stabilising faba bean

grain yield in western Canada.
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Tables

Table 1. Information on the tested faba bean genotypes tested in this study

Genotype code Name Vicin-convicine  Breeder \ Origin

Gl Snowbird High Limagrain Advanta, The Netherlands
G2 DL Tesoro High NPZ, Germany

G3 DL Rico Low NPZ, Germany

G4 NPZ 16.7610 Low NPZ, Germany

G5 NPZ 16.7601 Low NPZ, Germany

G6 AO1155% Low Agri Obtentions, France
G7 951-1-11 Low CDC, Usask, Canada
G8 DL 18.7602 Low NPZ, Germany

G9 DL 18.7603 Low NPZ, Germany

G10 DL 18.7604 Low NPZ, Germany

Gl11 1089-1-2 Low CDC, Usask, Canada
G12 1310-5 Low CDC, Usask, Canada
G13 1239-1 Low CDC, Usask, Canada

CDC, Crop Development Center; Usask, University of Saskatchewan; NPZ,
Norddeutsche Pflanzenziicht, Germany. AO1155 is registered as “Navi” in western Canada
(https://inspection.canada.ca/english/plaveg/pbrpov/cropreport/faba/app00012063e.shtml)
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Table 2. Field plot locations, soil classification and rainfall over the growing season 2019-2020

Rainfall ENYV.

Location Province Latitude and Longitude Soil classification Year
(mm) code
Saskatoon g 4 tchewan  52°0823"N 106°41'10mw Caicareous black 2020 2974  El
(SPG) chernozem
Riverhurst Saskatchewan 50.5500°N 106.5100°W ~ C2icarcous brown 2020 2330 E2
chernozem
Redvers Saskatchewan 49°34'18"N 101°41'57"W Rego black chernozem 2020  488.2 E3

Morden Manitoba 49°11'31”"N 98°06'02"W  Orthic black chernozem 2020 2934 E4

2020 3124 ES
2019 3344 E6

2020 3265 E7
Stonewall ~Manitoba 50°08'04"N 97°19'34"W  Orthic dark gray chernozem
2019 5419  E8

2020  304.5 E9
2019 4024 EI10

Roblin Manitoba 51°13'48"N 101°2120"W Humic luvic gleysol

Portage Manitoba 49°5822"N 98°17'31"W  Rego gleysol

Namao Alberta 53°42'58"N 113°29'32"W Black chernozem 2020 442.5 El1l
Edmonton 02 QI (W 09919
(CDCN) Alberta 53°38'10"N 113°22"29"W Black chernozem 2020 356.8 EIlI2

Gleyed calcareous dark

Outlook Saskatchewan 51°30'N 107°03'W 2019 2877 EI3

brown
Kamsack  Saskatchewan 51°33'54"N 101°53'41"W Rego black chernozem 2019  259.7 El4
Melfort Saskatchewan 52°51'23"N 104°36'36"W Orthic back chernozem 2019 3124  EI5

SPG, Saskatchewan Pulse Growers; CDCN, Crop Diversification Center North; ENV. code, Environment code
Weather data source: https://www.gov.mb.ca/agriculture/soil/soil-survey/importance-of-soil-survey-mb.html

Soil data source: https://open.alberta.ca/dataset/499bla7d-8dca-496e-a5ee-208b61599cal/resource/0a799be0-b668-
4db0-87b8-8fe8d1705¢83/download/cr-5-soils-and-terrain.pdf
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Table 3. List of parametric and non-parametric stability statistics computed in this study

Statistics Symbol References

Parametric

Wricke’s ecovalence W3 Wricke (1962)

Regression coefficient bi Finlay and Wilkinson (1963)
Deviation from regression S%ai Eberhart and Russell (1966)
Shukla’s stability variance o4 Shukla (1972)

Coefficient of variance Ccv Francis and Kannenberg (1978)
Average of the squared eigenvector values EV Sneller et al. (1997)

AMMI stability value ASV Purchase et al. (2000)

Sum of the absolute value of the [IPCA scores SIPC Purchase et al. (2000)
Harmonic mean of relative performance of HMRPGV Resende (2007)

genotypic values

Absolute value of the relative contribution of Za Zali et al. (2012)

IPCAs to the interaction

Weighted average of absolute scores WAASB Olivoto et al. (2019)
Non-parametric

Huehn’s and Nassar and Huehn’s statistics S:2.3.6 Huehn (1990); Nassar and Huehn (1987)
Thennarasu’s statistics NP Thennarasu (1995)

Kang’s rank-sum KR Kang (1988)

IPCA, interaction Principal Component Axes
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Table 4. Analysis of variance for combined and AMMI analysis for grain yield of 13 faba bean
genotypes evaluated at 15 environments during 2019-2020 cropping seasons

Sources of variation DF Sum square Mean square TSS (%) GEI expl. (%) Cumulative (%)

Combined analysis

Environment (E) 14 288.91 20.64%** 76.58

Replication/ E 30 9.64 0.32%#* 2.56

Genotype (G) 12 15.73 1.31%** 4.17

GE interaction 168 35.75 0.27%*** 9.48

Residuals 355 27.22 0.08

CV (%) 12.07

AMMI analysis

Environment (E) 14 288.91 20.64%**

Replication/ E 30 9.64 0.32%#*

Genotype (G) 12 15.73 1.31%**

GE interaction 168 35.75 0.27%***

IPC1 25 9.65 0.39%** 2.33 26.40 26.4
IPC2 23 9.03 0.39%** 2.18 24.70 51.1
IPC3 21 7.45 0.35%** 1.80 20.40 71.5
IPC4 19 3.601 0.19%** 0.87 9.90 81.3
IPCS 17 3.12 0.18%* 0.75 8.50 89.9
IPC6 15 1.31 0.09" 0.32 3.60 93.5
IPC7 13 1.20 0.09 0.29 3.30 96.7
IPC8 11 0.44 0.04" 0.11 1.20 98.0
IPC9 9 0.33 0.04" 0.08 0.90 98.9
IPC10 7 0.24 0.03 0.06 0.70 99.5
IPC11 5 0.16 0.03 0.04 0.40 100
IPC12 3 0.01745 0.00582 0 0.05 100
Residuals 355 27.22 0.08

** and ***, significant at the 0.01 and 0.001 probability levels, respectively; ns, non-significant; TSS, total sum of
squares; GEI expl., genotype x environment interaction explained; CV, coefficient of variation; DF, degrees of
freedom
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Table 5. Estimated variance components and genetic parameters for grain yield of 13 faba bean
genotypes evaluated in 15 environments

Likelihood ratio test

Statistics
G GEI
%2 31.525 68.490
p-value 1.97E-08 1.28E-16
REML> Variance components
Estimates
o2 0.025 (16.85%)%
Ogei 0.047 (31.74%)
o% 0.076 (51.42%)
% 0.148
h? 0.169
R2gi 0.317
hmg 0.838
AS 0.915
Tee 0.382
CV¢ (%) 6.877
CV: (%) 12.008
CVg/ CV: ratio 0.573
SD 0.810
SE 0.030

G, genotype; GEI, genotype by environment interaction; "REML, restricted maximum likelihood; 6%, genotypic
variance; 6%, genotype by environment interaction variance; o, residual variance; 2, phenotypic variance; h?,
broad-sense heritability; R2%i, coefficient of determination of the interaction effects; h’mg, heritability of the genotypic
mean; As, accuracy of selection; rg, genotype —environment correlation; CV¢%, genotypic coefficient of variation;
CV:%, residual coefficient of variation; CV ratio, ratio between genotypic and residual coefficient of variation; SD,
standard deviation; SE, standard error. ¢ Parenthetical values indicate the percentage of the observed phenotypic
variance (o%)

27


https://doi.org/10.1101/2022.09.08.507215
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.08.507215; this version posted September 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Table 6. The mean grain yield (GY) and stability statistics values for 13 faba bean genotypes
across 15 environments

Genotypes
Statistics

G1 G2 G3 G4 G5 G6 G7 G8 G9 G100 Gl11 Gl12 GI13
GY 2.31 244 220 212 211 2.53 2.23 236  2.03 2.16  2.53 2.50 241
W3 0.65 0.62 1.01 1.10 1.99 0.58 0.69  0.96 1.98 0.76  0.61 0.58 0.65
o4 0.05 0.05  0.08 0.09 0.16 0.04 0.05 0.07 016 0.06 0.05 004 0.05
S 009 009 014 014 028 0.06 0.07 0.11 027  0.11 0.09  0.08 0.09
bi 1.00 1.00 091 0.88 0.96 1.14  0.85 1.15 1.11 0.95 1.03 0.98 1.03

cv 33.08 31.16 32.61 3282 37.78 33.83 29.14 37.04 4378 33.89 30.88 29.88 32.39
ASV 0.55 0.17 017 034 1.05 034 020 0.59 1.02  0.28 054 050 025
EV 0.04 005 0.14 009 0.14 0.03 0.05 0.09 014 0.09 004 004 0.04
SIPC 096 095 1.75 1.43 1.88  0.73 1.14 144 2.06 1.57 1.10 1.00 095
Za 0.164 0.143 0.207 0.228 0309 0.104 0.150 0.199 0340 0.203 0.175 0.157 0.150
WAASB 017 0.16 0.21 024 028 0.15 0.17  0.23 0.33 0.21 0.19  0.18 0.17
HMRPGV  1.00 1.06 09 092 091 1.09 098 1.01 0.85 0.94 1.10 1.09 1.04
S 3.90 343 438 3.60 3.43 232 3.71 413  4.29 326 236 267 411
S@ 11.07 9.00 14.43 11.70 874 398 1212 1270  6.07 8.83 427 555 1221
S® 23.01 14.00 33.67 36.12 2354 5.65 27.67 2748 5531 2687 5.71 7.88  21.55
S® 5.98 3.78 7.00 8.09 6.77  2.62 6.67 7.03 13.08 739 245 2.0 5.43
Np® 3.13 2.13 3.53 3.07 3.33 3.00 287 333 473 3.33 2.73 287 287
NP® 0.41 025 0.78 0.95 082 029 0.63 042 273 1.20  0.33 024 036
NP® 0.54 028 0.66 0.78 0.81 037 057  0.63 1.20  0.81 0.31 0.35 0.41
NP® 0.58 038 0.73 0.79 066 024  0.61 0.64 1.05 0.71 0.23 027  0.52

KR 12 8 19 22 25 3 15 15 25 18 4 5 11

See Tables 1 and 3 for genotypes and statistics names
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Table 7. Rank of mean grain yield (GY), stability statistics and average sum of ranks (ASR) of all
stability statistics for 13 faba bean genotypes tested from 15 environments

Genotypes

Statistics

G1 G2 G3 G4 G5 G6 G7 G8 GY9Y G100 G111 G12 G13
GY 7 4 9 11 12 2 8 6 13 10 1 3 5
W3 5 4 10 11 13 1 7 9 12 8 3 2 6
o’ 5 4 10 11 13 1 7 9 12 8 3 2 6
bi 8 7 3 2 5 12 1 13 11 4 10 6 9
S 7 5 10 11 13 1 2 9 12 8 4 3 6
(0% 8 4 6 7 12 9 1 11 13 10 3 2 5
ASV 10 2 1 6 13 7 3 11 12 5 9 8 4
EV 2 6 12 8 11 1 7 9 13 10 4 3 5
SIPC 4 3 11 8 12 1 7 9 13 10 6 5 2
Za 6 2 10 11 12 1 4 8 13 9 7 5 3
WAASB 5 2 9 11 12 1 4 10 13 8 7 6 3
HMRPGV 7 4 9 11 12 2 8 6 13 10 1 3 5
S 9 5 13 7 5 1 8 11 12 4 2 3 10
S@ 7 6 12 8 4 1 9 11 13 5 2 3 10
S® 6 4 11 12 7 1 10 9 13 8 2 3 5
S® 6 4 9 12 8 2 7 10 13 11 1 3 5
NP® 8 1 12 7 9 6 3 9 13 9 2 3 3
NP®@ 6 2 9 11 10 3 8 7 13 12 4 1 5
NP® 6 1 9 10 12 4 7 8 13 11 2 3 5
NP® 6 4 11 12 9 2 7 8 13 10 1 3 5
KR 6 4 10 11 12 1 7 7 12 9 2 3 5
ASR 635 37 935 935 102 29 585 92 126 845 375 35 535
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Figure 1. (A) the predicted grain yield performance of 13 faba bean genotypes estimated using
BLUP (best linear unbiased prediction). The vertical dotted line indicates the grand mean and the
horizontal error bars indicate the 95% confidence interval when considering the two-tailed t-test.
(B) biplot of mean grain yield and weighted average of absolute scores for the best linear unbiased
predictions of the genotype vs. environment interaction (WAASB). See Tables 1 and 2 for

genotypes and environments’ legends
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Figure 2. Heatmap of Spearman's rank correlation (A) and biplot of principal component analysis
(B) of mean yield (GY) and 20 stability statistics. *, **, and *** in the heatmap indicate significant

at 0.05, 0.01, and 0.001 probability levels, respectively
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Figure 3. Estimated values of the weighted average of the stability (WAASB) and mean grain
yield (WAASBY) (A), and a dendrogram showing the hierarchical classification of 13 evaluated
faba bean genotypes based on ranks of mean grain yield and the average sum of ranks of all
stability statistics (B). The WAASBY was computed considering the weights of 65 and 35 for
yielding and stability, respectively. See Table 1 for genotype names.
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Supplemental materials

Supplemental Table S1. Analysis of variance of grain yield for individual environments.

Mean Square

Environment Block Genotype Error l;’ileela:ln(;g/;'::)n CV(%) h? AS

El 0.02s 0.07* 0.02 1.62 9.66  0.65 0.80
E2 1.11%* 0.47* 0.16 2.59 1521 0.67 0.82
E3 0.04m 0.12%%% 0.01 1.48 8.10  0.88 0.94
E4 0.07m 0.62%*%* 0.07 2.48 10.50  0.89 0.94
E5 0.21m 0.22m 0.17 3.04 13.40  0.26 0.51
E6 1.08%* 0.48%* 0.12 2.29 1531 0.74 0.86
E7 0.17%* 0.39%%* 0.03 2.98 546 093 0.97
E8 0.02m 0.11%*% 0.01 1.56 7.63 087 0.93
E9 0.38%*%* 0.25%*%* 0.03 1.80 8.85  0.90 0.95
E10 0.01"s 0.05%* 0.01 0.88 1337 0.75 0.86
Ell 0.62* 0.43%* 0.13 2.93 1239 0.70 0.83
El12 0.19m 0.75%* 0.16 2.79 1424 0.79 0.89
El3 0.53s 0.21m 0.16 3.51 1125 027 0.52
El4 0.01m 0.12%* 0.03 1.91 9.18  0.74 0.86
El5 0.25%* 0.09* 0.04 2.64 723 0.60 0.77
DF 2 12 24

* ¥ and *** significant at the 0.05, 0.01 and 0.001 probability levels, respectively; ns, non-significant, CV,
coefficient of variation; h?, broad-sense heritability; As, accuracy of selection; DF, degrees of freedom.
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Supplemental Table S2. Mean grain yield (GY; t ha™!) of 13 faba bean genotypes tested in 15 environments during the 2019-2020
cropping season

Environments Mean
Genotypes GY
El E2 E3 E4 E5 E6 E7 ES E9 E10 EI1 E12 EI13 El4 E15 (ha")

Snowbird 1.579 3.011 1.397 2.743 3250 2242 3.039 1.592 1.913 0.835 3.091 2.403 3.181 1.716  2.687 2312
DL Tesoro 1.762 2.632 1.560 2.777 3.141 2.365 3.150 1.583 1.963 1.030 2.529  2.743 3.955 2.343 3.015 2.436
DL Rico 1.662 2.060 1.437  2.447 2.817 1.571 2.858 1.709 1.810 1.067 3.083 3.006 3418 1.582 2414 2.196
NPZ 16.7610 1.373 2.162 1413 2.337 2.741 2.069  2.776 1.550 1.617 0.827 2.076  2.276 3.494 2.098  2.936 2.116
NPZ 16.7601 1.603 2.473 1.230  1.670 3.035 1.643 2.738 1.540 1.733 0.892 3.208 1.675 3.657 1.882  2.600 2.105
AO1155 1.641 2.875 1.580 2.873 3460  2.683 3.726 1.617 1.957 0.953 3248  2.856 3.743 2.058  2.608 2.525
951-1-11 1.527 2.422 1.677 2.583 2.873 2722 2.826 1.758 1.677 0.889 2.538  2.420 3.341 1.774 2458 2.232
DL 18.7602 1.488 2.992 1.403 2.363 2.752 2453 3.168 1.534 1.853 0.724 2.793 3.447 3.955 1.890  2.564 2.359
DL 18.7603 1.413 1.997 1.023  1.650 2.574 2.283 2.350 0.994 1.127 0.575 2.855 3.315 3.557 2.090  2.649 2.030
DL 18.7604 1.526 2.175 1.470 2.150 3416  2.074  2.505 1.431 1.463 0.936 3.083 2.725 3.107 1.754  2.560 2.158
1089-1-2 1.818 3.001 1.740  3.227 3.102  2.568 3.211 1.620  2.103 0.987 3.016 3.362 3.617 1.899  2.740 2.534
1310-5 1.780 2.929 1.630 2.797 3266  2.948 3.327 1.692 2217 0.960 3.024 3.072 3.353 1.911 2.585 2.499
1239-1 1.838 2.994 1.640 2.563 3.084 2208 3.103 1.631 1.980 0.772 3.561 2.995 3.310 1.887  2.509 2.405

Mean 1.616 2.594 1.477 2475 3.039 2.295 2.983 1.558 1.801 0.881 2.931 2.792 3.514 1.914 2.640 2.301
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Supplemental Table S3. Predicted grain yield, best linear unbiased prediction (BLUP) values,
and rank for 13 faba bean genotypes evaluated. The lower and upper limits represent the 95%
confidence interval of prediction considering a two-tailed t-test

Genotype Predicted Rank of

Genotype code BLUP value mean genotype Lower limit  Upper limit
Snowbird Gl 0.009 2.310 7 2.164 2.457
DL Tesoro G2 0.114 2.415 4 2.268 2.561
DL Rico G3 -0.088 2213 9 2.067 2.359
NPZ 16.7610 G4 -0.155 2.146 11 2.000 2.293
NPZ 16.7601 G5 -0.164 2.137 12 1.991 2.283
AO1155 G6 0.188 2.489 2 2.342 2.635
951-1-11 G7 -0.057 2.243 8 2.097 2.390
DL 18.7602 G8 0.049 2.349 6 2.203 2.496
DL 18.7603 G9 -0.227 2.074 13 1.927 2.220
DL 18.7604 G10 -0.119 2.181 10 2.035 2.328
1089-1-2 Gl11 0.196 2.496 1 2.350 2.643
1310-5 G12 0.166 2.467 3 2.321 2.614
1239-1 G13 0.087 2.388 5 2.242 2.535
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Supplemental Table S4. Results for WAASB estimation and ranks of the 13 faba bean genotypes evaluated in 15 environments

Grain

Significant principal components (PC) Ranks of genotypes
Code yield WAASB WAASBY
(GY) PC1 PC2 PC3 PC4 PC5S GY PC1 WAASB WAASBY

Gl 2.312 0.110 0.416 0.050 -0.066 -0.071 0.172 71.269 7 6 5 6
G10 2.158 0.199 -0.109 0.262 0.321 -0.365 0.205 46.726 10 9 8 10
Gl1 2.534 -0.381 0.184 -0.004 0.136 0.159 0.187 89.322 1 11 7 2
Gl12 2.499 -0.280 0.280 -0.011 -0.024 -0.222 0.178 88.299 3 10 6 3
G13 2.405 -0.037 0.201 0.422 -0.078 0.044 0.170 81.164 5 2 3 5
G2 2.436 0.044 -0.115 -0.434 -0.039 0.156 0.158 87.838 4 3 2 4
G3 2.196 0.102 -0.100 0.300 0.472 0.450 0.206 50.140 9 5 9 9
G4 2.116 0.195 -0.186 -0.585 0.134 0.071 0.242 32.109 11 7 11 11
G5 2.105 0.791 -0.019 0.114 -0.340 0.077 0.283 19.430 12 13 12 12
G6 2.525 -0.101 0.269 -0.001 -0.238 -0.056 0.149 99.114 2 4 1 1
G7 2.232 -0.035 0.147 -0.323 0.185 -0.267 0.172 63.377 8 1 4

G8 2.359 -0.408 -0.183 0.020 -0.344 0.273 0.225 60.874 6 12 10

G9 2.030 -0.198 -0.786 0.189 -0.120 -0.248 0.325 0.000 13 8 13 13
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Supplemental Figures
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Supplemental Figure S1. The mean grain yield (GY) variation of 13 faba bean genotypes across 15 environments (A) and a nominal
grain yield describing the "which-won-where" view for the 13 faba bean genotypes as a function of the environment scores of the first
interaction principal component axis (IPCA1) (B)
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(A) AMMI1 Biplot (B) AmMMI2 Biplot
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Supplemental Figure S2. The AMMII (A) and AMMI2 (B) biplots indicate genotype by environment interaction for 13 faba bean
genotypes evaluated in 15 environments. The genotype and environment codes are represented with blue and red icons, respectively.

The Names of genotypes and environments are as defined in Table 1 and 2
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Supplemental Figure S3. The boxplots display the distribution of the root mean square prediction
difference (RMSPD) estimates used to assess the predictive accuracy of the additive main effects
and multiplicative interaction (AMMI) family and best linear unbiased prediction (BLUP) for 13
faba bean genotypes evaluated in 15 environments. The RMSPD data was generated with 1000
bootstrapping
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