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Abstract (200 words) 

Hosts can often evolve resistance to parasites (and other stressors), but such resistance is 

generally thought to be constrained by trade-offs with other traits. These trade-offs determine 
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the host’s optimal resistance strategy and whether resistance cycles, diversifies, and/or is 

maintained in the absence of parasite. However, trade-offs are often inconsistently measured 

across experiments and can depend on environmental conditions. Here, we extend a selection 

experiment evolving resistance to viral infection under variable resource quality in the Plodia 

interpunctella model system to explore the evolutionary conditions leading to an incongruent 

earlier measurement of costless resistance. We find that environmental resource quality, historical 

contingency, and the time scale of selection all affect trade-offs in our long-term selection 

experiment. Specifically, populations selected for resistance with the dual stressor of low resource 

quality are slowed, but not prevented, from evolving resistance. Second, variation in starting 

populations or early sampled adaptations led to contingency towards context-dependent 

resistance. Finally, some costs to resistance observed at early time points were compensated over 

longer evolutionary time scales. Our work therefore informs perspectives for the predictability of 

adaptation and how variation in specific evolutionary conditions can alter the evolutionary 

trajectories of a population towards costly or costless resistance strategies.  

 

Introduction 

Trade-offs between life-history characteristics are critical to evolutionary outcomes and are 

central to many of our theories for adaptation and diversification (Ackermann and Doebeli, 2004; 

Agrawal and Lively, 2002; Darwin, 1859; Garland et al., 2022; Levins, 1968). In the case of a host 

evolving resistance to a pathogen (or other stressor), trade-offs between resistance and other 

fitness-relevant traits can lead to the evolution of: (1) intermediate (optimal) resistance strategies, 

(2) diversification through negative frequency dependent selection from ecological feedbacks, (3) 
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resistance cycling, and/or (4) the loss of resistance in the absence of the stressor (Andersson and 

Hughes, 2010; Best et al., 2010; Boots et al., 2014, 2009; Boots and Haraguchi, 1999; Cotter et al., 

2004; Fuxa and Richter, 1989; Graham et al., 2005; Moret and Schmid-Hempel, 2000). More 

broadly, understanding the costs of resistance is essential to predicting when resistance has a high 

potential to evolve and persist in scenarios ranging from antibiotic resistance of pathogens (Herren 

and Baym, 2022), resistance management  in the control of invasive species and pests (Kerr et al., 

2017), and coevolutionary arms races (Brodie et al., 2002). There are therefore both fundamental 

and applied reasons to measure both the strength and shape of trade-off relationships (de 

Mazancourt and Dieckmann, 2004; Ehrlich et al., 2020; Farahpour et al., 2018; Hoyle et al., 2008; 

Jessup and Bohannan, 2008; Kamo et al., 2007; Kasada et al., 2014; Maharjan et al., 2013; Mealor 

and Boots, 2006). 

 

Despite the central importance of trade-offs, evolutionary biology has consistently been plagued 

by the issue that trade-offs are difficult to measure and inconsistently observed (Bono et al., 2017; 

Cressler et al., 2015; Fry, 1996; Visher and Boots, 2020). This has led to a rich body of empirical 

work that attempts to discern factors that influence when trade-offs are observed (ex. Bono et al., 

2017; Fry, 2003; Stearns, 1989). When trade-offs are not observed, this can sometimes be due to 

measurement error where costs to some adaptive phenotype exist in fitness dimensions that are 

not measured (Kawecki, 2020; Kinsler et al., 2020). In other cases, high environmental quality may 

obscure trade-offs as the organism can allocate resources to buffer costs (Jessup and Bohannan, 

2008; Kraaijeveld and Godfray, 1997; Luong and Polak, 2007; McKean et al., 2008). In yet other 

cases, the likelihood of a population evolving costly (or costless) strategies may be influenced by 
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its specific evolutionary conditions including the environment that it is adapting to, the time scale 

of selection, the heterogeneity (spatial or temporal) of the environment, and the starting 

genotypes in the population (Bono et al., 2017; Card et al., 2019; Remold et al., 2008).  A better 

understanding of how these processes define both the nature and our potential to measure trade-

offs requires the detailed analysis of well described trade-off relationships.  

 

One of the better characterized trade-offs in evolutionary ecology has been the trade-off between 

resistance to viral infection and development time in the Plodia interpunctella (Indian Meal Moth) 

(Hübner) and Plodia interpunctella granulosis virus (PiGV) model system (Boots and Begon, 1993). 

The trade-off that increased resistance comes at a cost of longer development time has been 

established repeatedly by laboratory experimental evolution selecting for resistance (Boots, 2011; 

Boots and Begon, 1993), by assaying natural populations with phenotypic variation (Boots and 

Begon, 1995), and by assaying inbred genotypes with phenotypic variation in the absence of 

infection (Bartlett et al., 2018). It has also been established that costs to resistance can be 

mediated by the quality of resources provided to the population during evolution so that 

populations evolving with low-quality resources evolve lower, more costly resistance (Boots, 

2011).  However, this trade-off has recently proven breakable because laboratory experimental 

evolution selecting on development time (rather than resistance) results in fast development 

selected populations actually having higher resistance than their slow development selected 

counterparts (Bartlett et al., 2020). Additionally, a second laboratory evolution experiment re-

evolved resistance under high and low resource quality, as in (Boots, 2011), to explore the genetic 

basis of resistance (Roberts et al., 2020).  In this experiment, the authors saw inconsistent, context-
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dependent resistance evolution and did not find trade-offs between resistance and growth rate in 

virus-selected populations evolved in high-quality resources. Furthermore, virus-selected 

populations evolved in low-quality resources did not significantly evolve resistance and what 

resistance they do evolve only showed trade-offs in the low-quality, but not common garden, 

environment.   These results therefore provide an exciting opportunity to explore how variation in 

specific ecological and evolutionary conditions can alter the evolutionary trajectories of a 

population towards costly or costless resistance strategies.  

 

Compared to (Boots, 2011), (Roberts et al., 2020) use the same selection conditions of constant 

PiGV-exposure and different resource qualities, but, in contrast, they selected from a genetically 

distinct starting population. The variation in evolution outcomes may be explained by this 

difference in starting population genetics. However, the fact that the populations in (Roberts et 

al., 2020) inconsistently evolve resistance also suggests that the lack of trade-offs could be 

because these populations are evolutionarily ‘behind’ (despite the (Roberts et al., 2020) lines being 

assayed after 14 generations of selection, compared to the 10 in (Boots, 2011)) and not yet 

running into evolutionary costs.  In this paper, we examine the repeatability of trade-off 

observation by testing the hypothesis that differences in evolved resistance and its costs are simply 

due to slower evolution in the second experiment (Roberts et al., 2020). To do this, we extend the 

time scale of selection on a subset of the (Roberts et al., 2020) populations and re-assay resistance 

and development time in common garden and home quality environments. Extending the time 

scale of selection also allows us to test additional questions about the temporal dynamics of costs 

and whether they can be compensated over longer time scales (Andersson and Hughes, 2010) and 
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about the longer-term dynamics of evolution under dual stressors (in this case virus infection and 

low resource quality) (Hiltunen et al., 2018). We therefore explore whether: 1) resistance will 

evolve if given more time under selection, 2) if the lack of trade-offs in these populations can be 

explained by them being ‘behind’ in evolution and therefore not at Pareto fronts where resistance 

phenotypes are constrained (Li et al., 2019; Shoval et al., 2012), and 3) whether longer 

evolutionary time scales will allow populations evolving under low resource quality to ‘catch-up’ 

to those evolving in high resources. By exploring these questions, we gain insight into the historical 

contingency of resistance evolution and its trade-offs. 

 

Methods 

Study system 

Plodia interpunctella (Hübner), the Indian meal moth, is a stored grain pest with cyclical population 

dynamics in the lab. During their five larval instar stages, P. interpunctella live at high population 

densities within the food that they were laid into and consume. After the fifth instar, P. 

interpunctella pupate and eclose. P. Interpunctella adult moths do not eat and primarily disperse, 

mate, and reproduce (Gage, 1995; Mohandass et al., 2007; Silhacek and Miller, 1972).  Plodia 

interpunctella granulosis virus (PiGV) is an obligately lethal, dsDNA baculovirus (Harrison et al., 

2016) that infects P. interpunctella. Larvae orally ingest PiGV occlusion bodies that have been 

released into environment or during the process of larval cadaver cannibalism. For successful 

infection to occur, the virus must shed its protein coat in the gut and infect gut epithelial cells in 

the budded virus form, cross the gut membrane to establish systemic infection though the larval 

fat body, and then package into the infectious, protein-coated occlusion body form, at which point 
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the infection kills the larvae. Infection can be cleared before the host is fully infected through 

various resistance mechanisms including gut ecdysis during molting stages, freeing the host to 

carry out its natural life cycle and pupate into an adult moth (Boots and Begon, 1993; Engelhard 

and Volkman, 1995). 

 

Host line selection and maintenance 

Populations of P. interpunctella were initially established from an outcrossed P. interpunctella 

population by (Roberts et al., 2020) and selected under 4 treatment conditions: high-quality food 

with virus (VHF), low-quality food with virus (VLF), high-quality food without virus (CHF), and low-

quality food without virus (CLF). Food quality was manipulated by replacing a portion of the cereal 

mix (50% Ready Brek ©, 30% wheat bran, and 20% ground rice by weight) with either 10% (high-

quality food) or 55% (low-quality food) methyl cellulose, a non-digestible fibrous bulking agent, by 

weight. This alters the amount of nutrition available to the larvae without altering feeding rates 

(Boots, 2011; Boots and Begon, 1994; Boots and Roberts, 2012). These dry cereal mixtures were 

then mixed with brewer’s yeast (100g per 500g dry mix), sorbic acid (2.2g per 500g dry mix), 

methyl paraben (2.2g per 500g dry mix), honey (125mL per 500g dry mix), and glycerol (125mL 

per 500g dry mix) to form the control (CHF and CLF) food types. For virus food types (VHF and 

VLF), virus from a stock solution of PiGV was also mixed into the food at a dose corresponding to 

LD20 for the ancestral P. interpunctella population (see (Roberts et al., 2020)).  

 

For our experiment, we maintained 5 replicate selection lines per treatment (20 lines total) from 

the populations established by (Roberts et al., 2020) based upon their history of population 
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bottlenecking and health, but not due to their resistance or development time. We continued 

selection of these lines for >36 generations past their initial 14, so that each line had a cumulative 

selection time of >50 generations (corresponding to ~4 years). Note that differences in generation 

time compounded over the years so the generation numbers of selection lines at the second (final) 

set of assays varied up to 10 generations.  

 

To continue selection, populations were reared under the same conditions as in (Roberts et al., 

2020): 1000mL straight-side wide-mouth Nalgene pots (ThermoFisher Scientific, U.K.) with 200g 

of their appropriate food medium in separate virus and control incubators set at 27±2 °C and 

35±5% humidity, with 16:8hr light: dark cycles. Each generation (~1 month), we recorded the day 

of first adult emergence for each selection line, cleared the pot of all adult moths 2 days later (to 

prevent selection for early emergence), and then moved 50 newly emerged adult moths onto a 

new pot of the appropriate food medium 2 days after that to establish the next generation.  

 

Resistance and development time assays 

For each selection line, we measured resistance (proportion infected) and development time (days 

until pupation and mass at pupation) on both a common garden (standard food: 0% methyl 

cellulose) and virus-free home (CLF or CHF) environment at both the early and final time point 

(Boots, 2011). To prepare for assay, selection was relaxed, and populations were spilt by 

approximate next emergence date into 5 batches with 1 selection line from each of the 4 

treatments. Once each line in the batch had enough adult moths, 50 adults from each line in the 

batch were moved onto new pots containing virus-free food of the appropriate quality for each 
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set of assays. For common garden assays, all treatments were moved onto standard food. For 

home environment assays, VLF and CLF lines were moved onto virus-free low-quality (CLF) food 

and VHF and CHF lines were moved onto virus-free high-quality (CHF) food. This ‘relaxation’ step 

prevent maternal effects from confounding our assays (Boots and Roberts, 2012). When adult 

moths emerged in parental pot, 80 adult moths were moved onto a new pot of the same food 

type to set up an assay pot. 11 days after setting up this pot, third instar larvae were collected for 

resistance and development time assays.  

 

For resistance assays, 200 third instar larvae from each selection line were exposed to four 10-fold 

dilutions of virus (50 larvae dosed per dilution) corresponding to LD0-LD60. The 50 third instar 

larvae for each selection line x dose x assay combination were collected in separate petri dishes 

and then starved under a damp paper towel for 1 hour. Tiny droplets of virus solutions containing 

the appropriate dilution, 2% sucrose, and 0.2% Coomassie Brilliant Blue R-250 dye (ThermoFisher 

Scientific, U.S.A.)  were placed into each dish using a syringe. The sucrose entices the larvae to 

consume the virus and the dye allows for confirmation that larvae have ingested half their body 

length of solution. These larvae were considered successfully exposed and used to fill 25-cell 

compartmentalized square petri dishes (ThermoFisher Scientific, U.S.A.) filled with the appropriate 

food type (standard for common garden assays, high or low-quality for home environment assays) 

with 1 grid plate per selection line x dose x assay (home or common garden) combination and 1 

exposed larva per cell. Assay grids were then placed into a single incubator at the same conditions 

that populations were reared and allowed to develop. After 21 days, grids were frozen and 

destructively sampled to measure the proportion of larvae infected and uninfected. Infected 
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larvae were distinguishable as a successful PiGV infection turns the larvae opaque, chalky white, 

while non-infected larvae will continue their life history as normal to pupate. 

 

For development time assays, 100 3rd instar larvae from each selection line were placed 

individually into four 25-cell compartmentalized square petri dishes containing either common 

garden or home food with 1 larva per cell and 2 grids for each of the assay environments. Grids 

were then moved to a single incubator at the same conditions that populations were reared in and 

checked every other day. Day of pupation was recorded for each larva and then each pupa was 

weighed 2 days later. Mass at pupation was then divided by days to pupation to calculate growth 

rate. 

 

Statistical analysis 

Analyses were conducted using a generalized linear mixed modeling approach in R ("R version 

4.1.2 (2021-11-01)”) (R Core Team 2021) using packages ‘lme4’(Bates et al. 2015) and ‘glmmTMB’ 

(Brooks et al., 2017) to build models; ‘DHARMa’ (Hartig and Lohse, 2021) to check residuals; ‘afex’ 

(Singmann et al., 2019) and ‘car’ (Fox and Weisberg, 2019) to determine significant model terms; 

‘emmeans’ (Lenth, 2019) to extract effects; ‘tidyverse’ (Wickham et al., 2019) to manipulate data; 

and ‘ggplot2’, ‘ggforce’, and ‘patchwork’ to plot results (Pedersen, 2020; Pedersen and RStudio, 

2021; Wickham, 2009). For all response variables, we determine error structures for models 

iteratively by testing fitted model residuals with ‘DHARMa’ and then adjusting error structures to 

best match model assumptions. We corrected residual distributions by sequentially testing models 

with observation level random effects (Harrison, 2014), negative binomial distributions, then zero-
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inflated negative binomial or quasi-Poisson distributions as needed. Once model fits were 

satisfactory, we tested for significance of predictor terms. Models of resistance used a binomial 

error structure to account for the binary outcome of ‘Infected/uninfected’. Growth rate models 

used gaussian, Poisson, negative binomial, or generalized Poisson error structures as required (See 

Supplementary model tables). Annotated R code and model output tables are attached in the 

supplement (note that models are named (M1-22) and that the model name that estimates and 

p-values are drawn from are included alongside these numbers). 

 

For the first part of our analysis, we re-analyze the early time point (generation 14) data from 

(Roberts et al., 2020) for our subset of populations to see if the lineages we selected varied in their 

susceptibilities and growth rates in these initial assays and newly analyze the final time point 

(generation 50+) data to ask whether treatment affects susceptibility and growth rate after further 

generations of selection. For each of these time points, we separately analyze common garden 

assay and home food assay data sets to see if differences in a population’s conditions 

(virus/control and high-quality/low-quality food) led to evolved differences in resistance or growth 

rate. For each response variable for each data set, we ran two models to test the effects of 

treatment on our response variables. The first model included treatment as an interaction 

between ‘evolution resource environment’ and ‘virus exposed/control’ and the second model 

included ‘treatment’ directly. This allowed us to explore the interacting effects of our two 

experimental manipulations as well see the differences between individual treatments. All models 

include a resistance (‘proportion infected’) or life history (‘growth rate’) metric as the response 

variable with ‘replicate line’ nested under ‘treatment’ as random effects to account for our 
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experimental structure. For final time point data, we include an additional random effect of ‘batch’ 

to account for the batched assay structure. For resistance models, ‘dose’ was included in the 

model as a fixed effect. 

 

For the second part of our analysis, we ask whether the different evolution treatments lead to 

differences in the change in resistance or growth rate between the early and final time points.  For 

each selection line, we calculate the change in both growth rate and resistance effect size 

estimates between the early and final time points. We then use the same linear modelling 

framework as above to determine whether ‘treatment’ informatively predicts the change in 

resistance or growth rate for each line in the common garden and home assay conditions between 

generation 14 (early) and the end of the experiment (final). 

 

For the final part of our analysis, we test whether a given line’s growth rate is significantly 

predicted by its measured degree of resistance to infection, and whether this changes over time. 

We again analyze common garden and home assay data separately using the same linear 

modelling framework as above with ‘growth rate’ as the response variable and ‘susceptibility 

estimate’, ‘treatment’, and ‘time point’ as fixed effects with potential interactions. 

 

Results 

Selection Line Resistance 

For the subset of lines that we further select, lines from virus selected conditions have significantly 

lower (estimate = -0.75, p = 0.02, Supplementary Model Tables M4) susceptibility to infection 
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when assayed on home food at the early time point. This effect is primarily driven by the decreased 

susceptibility of populations from the virus high-quality (VHF) treatment (estimate   =   -0.75, p  =  

0.03, M3), as the virus low-quality (VLF) populations do not have significantly lower (estimate  =  -

0.19, p  =  0.57) susceptibility than control lines. However, this effect does not hold when lines are 

assayed in the common garden environment as neither ‘treatment’ (p  =  0.15, M1) nor 

‘virus/control’ (p  =  0.95, M2) significantly affects proportion infected in these models. Across all 

models at the early time point, assay virus ‘dose’ significantly affects proportion infected (p < 

0.001, M1-4) and neither ‘evolution food type’ (common garden: p  =  0.09, M2; home: p  =  0.081, 

M4) nor the interaction effect between ‘evolution food type’ and ‘control/virus’ (common garden: 

p  =  0.95, M2; home: p  =  0.59, M4) have significant effects. Therefore, selection from virus led 

to lower proportions infected at this early time point when populations were assayed in the home 

food environment, but not when assayed in the common garden environment (Fig 1 A-B, E-F). We 

did not, however, see a significant effect resource quality on evolved resistance at the early time 

point (Fig 1 A-B, E-F). 

 

After additional generations of selection, lines from virus selected conditions continue to have 

significantly lower susceptibility to infection in the home food assays (estimate  =  -0.83, p  =  0.03, 

M8). In this case, neither ‘evolution food type’ nor the interaction between ‘evolution food type’ 

and ‘virus/control’ is significant (evolution food type: p  =  0.84, M8 ; interaction: p  =  0.227, M8) 

and the effect is driven by both virus high-quality (estimate  =  -0.83, p  =  0.01) and virus low-

quality (estimate  =  -0.59, p  =  0.06) selected treatments, though only the virus high-quality 

treatment is statistically significant on its own. However, in the common garden assays, there is a 
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strong interaction effect between ‘evolution food type’ and ‘virus/control’ (p  =  .009, M6) so that 

only control low selected populations significantly differ in their susceptibility to virus infection 

(estimate  =  0.66, p  =  0.003, M5). In these common garden assays, virus low-quality and virus 

high-quality lines are no more resistant than the control high-quality lines. Across all models at the 

final time point, the virus dose assayed at significantly affects proportion infected (p < 0.001, M5-

8). Therefore, further selection from virus continues to result in lower susceptibility to infection 

when assayed on home food conditions, but not common garden conditions (Fig 1 C-D, G-H). After 

additional evolution, however, this result is not as independently driven by the lower susceptibility 

of virus high-quality lines, as virus low-quality lines have gotten closer to the virus high-quality 

lines in resistance, though still not ‘caught up’. This suggests that the context dependent resistance 

seen at the earlier time point is not a transient evolutionary strategy and that the dual stressor 

effect of low-quality resources preventing the evolution of resistance diminishes over time. 

 

Finally, ‘treatment’ does not predict a selection line’s change in susceptibility between the early 

and final time points in either the common garden (p  =  0.5) or home (p  =  0.5) assays (Figure S1). 
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Figure 1: Resistance of selection lines after 14 (A-B, E-F) and 50+ (C-D, G-H) generations of section when assayed in common 

garden (A-D) and home food (E-H) environments. Panels A, C, E, F show smooths of the raw proportions infected at each dose, 

with dose log transformed on the x-axis. Panels B, D, F, G present model estimates for each treatment’s effect on proportion 

infected across doses from models M1, M3, M5, M7 (See Supplementary Model Tables). 

 

Selection Line Life Histories 

 For the subset of lines that we further evolve, lines from virus selected conditions do not have 

differences in growth rate when assayed in common garden (p  =  0.4, M11) or home quality food 

(p  =  0.4, M13) at the early time point. There are no differences between treatments in the 

common garden assays (p  =  0.8, M12), but treatments do significantly vary in the home assays (p  

=  0.007, M14). This is driven by lines evolved and therefore assayed on low-quality food 

developing more slowly (estimate  =   -0.75, p < 0.001, M13). Therefore, the only factor affecting 
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growth rate at the early time point is whether the line is being assayed on low-quality or high-

quality food, and the evolved resistance of virus high-quality lines in the home assays (Fig 1E-F) 

does not seem to come at a treatment-level cost of slower growth rate (Fig 2A). 

 

After additional generations of selection, lines from virus selected conditions continue to show no 

differences in growth rate when assayed in common garden (p  =  0.89, M15) or home quality food 

(p  =  0.77, M17) at the final time point. There also continue to be no differences between 

treatments in the common garden assays (p  =  0.45, M16), and treatment is no longer significant 

in the home assays at the final time point (p  =  0.179, M18). However, lines evolved and therefore 

assayed on low-quality food still develop more significantly more slowly when considered together 

(estimate  =   -0.27, p  =  0.03, M17). Therefore, growth rate is still affected by whether the line is 

being assayed on low-quality or high-quality food at the final time point, and the evolved 

resistance of VHF lines, and now VLF lines, in the home assays (Fig 1G-H) continues to not be 

associated with a treatment-level cost of slower growth rate (Fig 2B). 

 

Finally, treatment does not affect the change in growth rate between early and final time points 

in common garden assays (p  =  0.8, M20, Fig S3C-D). In home assays, treatment does not have an 

overall significant effect on growth rate (p = 0.13, M19), but CLF lines have a borderline significant 

increase in growth rate (estimate = 0.52, p = 0.059, M19, Fig S3A-B). 
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Figure 2: Growth rates for lines at early (A) and final (B) time points in standard and home food assays. Growth rate is the mass 

at pupation divided by the days until pupation. Violins represent raw growth rate data separated by treatment, assay condition, 

and assay time point. Gray dots represent means. 

 
Correlations between Resistance and Growth Rate 

In common garden assays, neither susceptibility (p = 0.15), treatment (p = 0.34), time point (p = 

0.98), nor any interaction term therewithin have significant relationships with growth rate (M22, 

Fig3A). The sole significant single term is the interaction between susceptibility and the VLF 

treatment where the relationship between growth rate and susceptibility is significantly positive 

(estimate = 0.0005, p = 0.03) so that the fastest growers are the most susceptible.  

 

In home assays, however, susceptibility (p = 0.005), treatment (p = 0.007), time point (p = 0.037), 

susceptibility: treatment (p < 0.001), susceptibility: time point (p = 0.02), and susceptibility: 

treatment: time point (p = 0.038) all have significant effects on growth rate (M21, Fig3B). The only 

non-significant model term is the interaction between treatment and time point (p = 0.11). 
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Notably, the relationship between susceptibility and growth rate becomes significantly more 

negative at the final time point (estimate = -0.005, p = 0.02). From Figure 3B, we can see that this 

is largely because low-quality food lines shift from a positive relationship between growth rate and 

susceptibility in the early assays where the fastest growers are the most susceptible to a negative 

relationship in the final assays where the fastest growers are the most resistant.  At the same time, 

VHF lines shift from a negative relationship between susceptibility and growth rate (fastest 

growers are most resistant) to a positive one (fastest growers are least resistant). We can also see 

that, for the same growth rate, virus selected lines from both low-quality and high-quality 

backgrounds are less susceptible than their control counterparts at the early time point. At the 

final time point this effect holds for VHF and CHF lines, but an unusually fast-growing, high-

resistance CLF 5.1 means that the trend reverses for the VLF and CLF lines. Therefore, there are 

within-treatment level trade-offs between resistance and development time in the VLF (but not 

VHF) lines in the early assays, but these not only disappear, but reverse, after additional evolution. 
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Figure 3: Correlations between growth rate and susceptibility in (A) common garden and (B) home environment assays at early 

and final time point. 

 

Discussion 

One key result is that virus-selected lines show evidence of evolved resistance when assayed on 

their home food quality environment (the one in which selection occurred), but not in the common 

garden standard food environment. This is found at both the earlier and final time points, pointing 

towards a consistent effect of context-dependent resistance where selection lines’ resistance 

mechanisms depend on their assay environment.   
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Additionally, while the resistance of virus-selected lines in the home environment at the earlier 

time point is primarily driven by lines that were selected in the high-quality environment, after 

36+ additional generations of selection, lines selected for resistance in the low-quality 

environment partially caught up to lines selected in the high-quality environment. Therefore, the 

dual evolutionary stressors of low resource quality and exposure to virus slows, rather than 

completely restricts, the evolution of resistance to infection. This suggests that management 

strategies aiming to control resistance evolution through imposing dual evolutionary stressors may 

only temporarily impede resistance. 

 

Another key result is that the treatment-level pattern of costless resistance in the home 

environment observed in the early time point (Roberts et al., 2020) does not disappear after 

further generations of selection and increased resistance in the home environment. This is in 

contrast to previous results from the Plodia interpunctella and PiGV system where resistance has 

shown to be associated with slower growth rates (Bartlett et al., 2018; Boots, 2011; Boots and 

Begon, 1995, 1993). It also doesn’t follow general trends where trade-offs are more likely to be 

observed in longer selection experiments (Bono et al., 2017), though these trends are from 

microbial experiments where the number of generations is much higher. This result would suggest 

that the lack of detected costs was not caused by a transient effect where initial costless resistance 

alleles can be fixed early on, but only costly alleles remain as the population approaches the Pareto 

front (Li et al., 2019; Shoval et al., 2012; Visher et al., 2021). However, it is alternatively possible 

that our selection lines’ relatively small, bottlenecked effective population sizes mean that drift is 
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preventing them from reaching the Pareto front and accessing costly resistance strategies (White 

et al., 2021). It is also possible that, since we did not sequentially increase the concentration of 

virus that populations were exposed to, virus-selected lines evolved ‘enough’ resistance with 

costless strategies and did not explore more costly resistance strategies. Still, our result that 

treatment-level costs to resistance don’t increase after further selection suggests that costless 

resistance might be a somewhat stable potential evolutionary outcome in our system and may not 

always be replaced by costly higher resistance strategies. 

 

Finally, when we look at the correlations between resistance and development time within each 

treatment, we see that these traits can be either negatively or positively correlated depending on 

the time point and assay conditions. At the early time point, the selection lines evolved in the low-

quality environments had positive correlations between growth rate and susceptibility in the home 

environment, indicating that there was a cost to resistance where the most resistant lines were 

the slowest developers. By the end of the experiment, however, the selection lines evolved in the 

low-quality environments had negative correlations between growth rate and susceptibility in the 

home environment, indicating costless resistance (at least in the phenotypes measured). This 

suggests that earlier costs to resistance were either compensated or that the low-quality selected 

lines started exploring different resistance mechanisms with different cost structures. 

 

We do know that there are multiple resistance mechanisms in the Plodia interpunctella and PiGV 

system that differ in their relationships with development time (Bartlett et al., 2020; Boots and 

Begon, 1993). Some resistance mechanisms that involve processes like reallocating resources to 
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increase immune investment or decreasing gut permeability come at the cost of slower 

development time, but faster growth rates themselves can increase resistance by shortening the 

time window for infection (Bartlett et al., 2020; Boots and Begon, 1993). This is because infection 

must establish before the gut epithelia is shed during larval molting, so shorter intervals between 

molts can confer higher resistance (Bartlett et al., 2020; Engelhard and Volkman, 1995; Hochberg 

et al., 1992). Developmental resistance mechanisms could be responsible for the negative 

correlations between growth rate and susceptibility in the home environment for the low-quality 

selected lines at the end of the experiment. Because these lines are assayed on low-quality food 

in home assays, they have slower growth rates that might challenge to their ability to effectively 

resist infection. The context dependency of evolved resistance prevents us from making good 

comparisons across common garden and home assays, but it is notable that the correlation 

between susceptibility and growth rate is significantly positive for VLF in the common garden at 

the end time point.  Growing on standard quality food moves them higher on the growth rate axis 

and therefore could move them out of the region where infection interval length is very important. 

These results suggests that the resistance of the low-quality food selected lines in the home 

environment assays both quantitatively and qualitatively changes between the early and final time 

points.  

 

As a whole, our results emphasize the influences of time scale, resources, and context dependency 

on trade-offs between life-history traits. We show that the nature and, in particular, the costs of 

resistance in this long-term experiment (Roberts et al., 2020) differ from previous results in the 

system that found consistent costs to resistance with development time (Bartlett et al., 2018; 
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Boots, 2011; Boots and Begon, 1995, 1993). This could be explained by there being differences in 

the starting populations such that different resistance conferring variants existed in the standing 

genetic variation of the ancestral population for each experiment. Furthermore, even if the 

starting variation was identical, different sampling of early adaptive alleles could have led towards 

different historically contingent evolutionary trajectories. Finally, it does seem that selected lines 

were able to evolve qualitatively and quantitatively different resistance when given a longer time 

scale of selection. Thus, it is clear that trade-offs to resistance in our experiment are historically 

contingent and depended on evolutionary conditions and the time scale of selection. Therefore, 

it is also clear that trade-offs do not consistently evolve even over extended timescales and that 

more work is therefore needed to better understand their conditionality to better predict the 

evolution of resistance. 
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Supplementary Figures 

 
Figure S1: Change in resistance between Early and Final time points in Home (A-B) and Common Garden (C-D) assays. Panels A, 
C link resistance estimates for each line across the Early and Final time points. Panels B, D present the delta resistance values for 
each treatment. 
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Figure S2: Days until pupation (A-B) and mass at pupation (C-D) for the different treatments in Home and Standard (Common 
Garden) assays at Early (A, C) and Final (B, D) time points. 

 

 
Figure S3: Change in growth rate between Early and Final time points in Home (A-B) and Common Garden (C-D) assays. Panels 
A, C link growth rate estimates for each line across the Early and Final time points. Panels B, D present the delta growth rate 
values for each treatment. 
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