

1
2
3 **Neuronal mitochondrial morphology is significantly affected by both fixative**
4 **and oxygen level during perfusion**
5
6

7 Su Yeon Kim^{1,2,6}, Klaudia Strucinska^{3,6}, Bertha Osei^{3,6}, Kihoon Han², Seok-Kyu Kwon^{1,4*}, Tommy
8 L. Lewis Jr.^{3,5*}.
9

10 ¹Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792,
11 Republic of Korea

12 ²Department of Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of
13 Korea

14 ³Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City,
15 Oklahoma 73104

16 ⁴Division of Bio-Medical Science & Technology, KIST School, Korea University of Science &
17 Technology (UST), Daejeon, 34113, Republic of Korea

18 ⁵Departments of Biochemistry & Molecular Biology, Neuroscience and Physiology, Oklahoma
19 University Health Sciences Campus, Oklahoma City, Oklahoma 73104

20 ⁶These authors contributed equally to this work

21
22 *To whom correspondence should be addressed to Seok-Kyu Kwon at skkwon@kist.re.kr or
23 Tommy L. Lewis Jr. at tommy-lewis@omrf.org

24
25 ORCID ID SKK: 0000-0002-7280-9867

26
27 ORCID ID TLL: 0000-0001-7033-7010

28 Abbreviations: PN – pyramidal neurons, PFA – paraformaldehyde, GA – glutaraldehyde, ATP –
29 adenosine triphosphate, EM – electron microscopy, EUU – ex utero electroporation, IUE – in utero
30 electroporation
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1 **ABSTRACT**

2 Neurons in the brain have a uniquely polarized structure consisting of multiple dendrites and a
3 single axon generated from a cell body. Interestingly, intracellular mitochondria also show
4 strikingly polarized morphologies along the dendrites and axons: in cortical pyramidal neurons
5 (PNs) dendritic mitochondria have a long and tubular shape, while axonal mitochondria are small
6 and circular. Mitochondria play important roles in each compartment of the neuron by generating
7 ATP and buffering calcium, thereby affecting synaptic transmission and neuronal development.
8 In addition, mitochondrial shape, and thereby function, is dynamically altered by environmental
9 stresses such as oxidative stress, or in various neurodegenerative diseases including Alzheimer's
10 disease and Parkinson's disease. Although the importance of altered mitochondrial shape has
11 been claimed by multiple studies, methods for studying this stress-sensitive organelle have not
12 been standardized. Here we address the pertinent steps that influence mitochondrial morphology
13 during experimental processes. We demonstrate that fixative solutions containing only
14 paraformaldehyde (PFA), or that introduce hypoxic conditions during the procedure induce
15 dramatic fragmentation of mitochondria both *in vitro* and *in vivo*. This disruption was not observed
16 following the use of glutaraldehyde addition or oxygen supplementation, respectively. Finally,
17 using pre-formed fibril α -synuclein treated neurons, we show a difference between mitochondrial
18 morphology when samples were fixed with PFA/glutaraldehyde or PFA/sucrose containing
19 solutions, but not PFA alone. Our study provides optimized methods for examining mitochondrial
20 morphology in neurons, and demonstrates that fixation conditions are critical when investigating
21 the underlying cellular mechanisms involving mitochondria in physiological and
22 neurodegenerative disease models.

23

24 **INTRODUCTION**

25 Neurons are unique cells with distinct sizes, highly complex morphologies and the ability to
26 transmit and receive electro-chemical messages. The process of neurotransmission requires vast
27 amounts of energy in the form of ATP (Rolle and Brown 1997). While the respective contributions
28 of the various metabolic processes to supply this ATP are not fully understood in neurons,
29 mitochondria play a vital roles in the ability of neurons to properly regulate their energy needs, as
30 well as other critical processes including Ca^{2+} handling, lipid biogenesis and regulation of the
31 apoptotic pathway (Fox, Raichle et al. 1988, Belanger, Allaman et al. 2011, Chandel 2014, Diaz-
32 Garcia and Yellen 2019).

33 The recent explosion in techniques to label and visualize organelles with high spatial resolution
34 has revealed that excitatory PNs appear to contain distinct mitochondrial subpopulations within
35 their respective cellular compartments of the axon, soma and dendrites. Axonal mitochondria are
36 small, individual entities while dendrites contain mitochondria that are highly elongated and
37 overlapping each other (Popov, Medvedev et al. 2005, Chang and Reynolds 2006, Lewis, Kwon
38 et al. 2018, Rangaraju, Lauterbach et al. 2019). Mitochondria within the soma display intermediate
39 size and morphology between those found in the axons and dendrites (Faitg, Lacefield et al. 2021,
40 Turner, Macrina et al. 2022).

41 Although the majority of previous data meets this consensus, there are discrepancies in the range
42 of sizes. We reported that in mouse layer 2/3 cortical PNs dendritic mitochondrial length ranges
43 from 1.31 to 13.28 μm long, but only 0.45 to 1.13 μm in axons (Lewis, Kwon et al. 2018). However,
44 other studies observed both shorter dendritic mitochondria in cortical neurons (Kimura and
45 Murakami 2014), or longer dendritic mitochondria in live imaged cultured hippocampal neurons
46 (Rangaraju, Lauterbach et al. 2019). In addition, a recent study presented the length of dendritic
47 mitochondria as $4.7 \pm 0.9 \mu\text{m}$ by 3D electron microscopy (EM) imaging, but Ca^{2+} transients in the
48 mitochondrial matrix extended to 15 μm (Lin, Li et al. 2019). The reason for these gaps in size
49 have not yet been scrutinized.

1 Mitochondria are proposed to be critical sites of reduced efficiency and function during the
2 processes of normal aging and pathogenic neurodegeneration (Swerdlow, Burns et al. 2014, Azzu
3 and Valencak 2017). A common observation across many different forms of neurodegenerative
4 diseases (including Alzheimer's and Parkinson's diseases) suggests significant reduction in
5 mitochondria number and size as well as a loss of mitochondrial ultrastructure (Zhang, Trushin et
6 al. 2016, Gonzalez-Rodriguez, Zampese et al. 2021). In addition, fragmented mitochondria are
7 increased following cerebral ischemia (Owens, Park et al. 2015, Zhou, Chen et al. 2021).
8 Based on our own observations, and the large variance in the reported sizes of dendritic
9 mitochondria in excitatory pyramidal neurons and fixation conditions in the literature, we
10 hypothesized that standard fixation conditions may not faithfully capture the mitochondrial
11 structure present in living neurons. Thus, we rigorously tested the effects of multiple fixation
12 parameters on the morphology of mitochondria in both cultured primary PNs as well as PNs in
13 vivo. We find that a combination of direct fixation with a mixture of paraformaldehyde (2%) and
14 glutaraldehyde (0.075%) with the presence of sufficient oxygen are critical for maintaining
15 mitochondrial morphology during fixation *in vitro* and *in vivo*.
16

17 METHODS

18 Animals

19 Animals were handled according to Institutional Animal Care and Use Committee (IACUC)
20 approved protocols at the Oklahoma Medical Research Foundation (OMRF) and Korea Institute
21 of Science and Technology (KIST-2020-133). Time-pregnant females of CD-1 IGS strain (Strain
22 Code: 022) were purchased at Charles River Laboratories or Daehan Biolink (Eumseong, Korea)
23 and used for in utero electroporation experiments and primary neuronal cultures.
24

25 Plasmids

26 pCAG::mtYFP-P2A-tdTomato and pCAG::mt-YFP were previously published in (Lewis, Turi et al.
27 2016). pCAG::Cre and pCAG::HA-mCherry were previously used in (Kwon, Sando et al. 2016).
28 pAAV EF1 α ::Flex Venus-T2A-mito-mScarlet was created by replacing Synaptophysin-Venus to
29 Venus-T2A-mito-mScarlet in pAAV EF1 α ::Flex-Synaptophysin-Venus from (Kwon, Sando et al.
30 2016).
31

32 Cell Lines

33 Mouse Embryonic Fibroblast (NIH/3T3) were purchased from ATCC (CRL-1658). 1x10⁵ cells of
34 NIH/3T3 cells suspended in media (DMEM, gibco) with penicillin/streptomycin (0.5x; gibco) and
35 FBS (sigma) were seeded on coverslips (Collagen Type I, Corning) in 6 well dishes. Transfection
36 with plasmid DNA (1 mg/mL) using jetPRIME® reagent according to manufacturer protocol was
37 performed 24 hours after seeding. Half of the coverslips were fixed with 2% PFA/0.075% GA in
38 1x PBS and the other half with 4% PFA in PBS 24 hours after transfection for 7 minutes. Each
39 well with coverslip was washed three times with 1x PBS (sigma) for 10 minutes and mounted on
40 microscope slides with Aqua PolyMount (PolyMount Siccines, Inc) and kept at 4 °C after drying
41 overnight.
42

43 Ex utero electroporation

44 A mix of endotoxin-free plasmid preparation (2 mg/mL) and 0.5% Fast Green (Sigma) mixture
45 was injected using FemtoJet 4i (Eppendorf) into the lateral ventricles of isolated heads of E15.5
46 mouse embryos. Embryonic neural progenitor cells were electroporated using an electroporator
47 (ECM 830, BTX) and gold paddles with four pulses of 20 V for 50 ms with 500 ms interval and an
48 electrode gap of 1.0 mm. Dissociated primary neuron culture was performed after ex utero
49 electroporation.
50
51

1 **Primary neuronal culture**

2 Following ex utero electroporation, embryonic mouse cortices (E15.5) were dissected in Hank's
3 Balanced Salt Solution (HBSS) supplemented with HEPES (10 mM, pH 7.4), and incubated in
4 HBSS containing papain (Worthington; 14 U/mL) and DNase I (100 µg/mL) for 15 min at 37 °C
5 with a gentle flick between incubation. Samples were washed with HBSS three times, and
6 dissociated by pipetting on the fourth wash. Cells were counted using Countess™ (Invitrogen)
7 and cell suspension was plated on poly-D-lysine (1 mg/mL, Sigma)-coated glass bottom dishes
8 (MatTek) or poly-D-lysine/laminin coated coverslips (BD bioscience) in Neurobasal media (Gibco)
9 containing FBS (2.5%) (Sigma), B27 (1 X) (Gibco), and Glutamax (1 X) (Gibco). After 7 days,
10 media was changed with supplemented Neurobasal media without FBS.

11 **Fixation for primary neuron culture**

12 Half of the culture dishes were fixed with 2% paraformaldehyde (PFA) (PFA Alfa Aesar)/ 0.075%
13 glutaraldehyde (GA) (Electron Microscopy Science, EMS) in 1x PBS (Sigma) and the other half
14 was fixed with 4% PFA for 7 minutes. Dishes were washed three times with 1x PBS (sigma) for
15 10 minutes.

16 **In utero electroporation**

17 A mix of endotoxin-free plasmid preparation (0.5 mg/mL) and 0.5% Fast Green (Sigma) was
18 injected into one lateral hemisphere of E15.5 embryos using FemtoJet 4i (Eppendorf). Embryonic
19 neural progenitor cells were labelled using the electroporator (ECM 830, BTX) with gold paddles
20 at E15.5. Electroporation was performed by placing the anode (positively charged electrode) on
21 the side of DNA injection and the cathode on the other side of the head. Five pulses of 38 V for
22 50 ms with 500 ms interval and an electrode gap of 1.0mm were used for electroporation.

23 **Intracardial perfusion**

24 For direct and indirect perfusion experiments in Figure 2, animals were put to sleep using 5%
25 isoflurane mixed with air and exsanguinated 21 days after birth (P21) by terminal intracardial
26 perfusion. Pups were randomly divided in 4 groups, to test different perfusion conditions. 1x PBS
27 and fixatives were kept on ice during the entire procedure. Group 1 (indirect PFA/GA) was
28 perfused with 10 mL of 1x PBS followed by 30 mL of fixative 2% PFA/0.075% GA in PBS (32%
29 PFA Alfa Aesar, 3% GA Electron Microscopy Science). Group 2 (indirect PFA) with 10 mL of PBS
30 followed by 30 mL of 4% PFA in PBS. Group 3 (direct PFA/GA) by 30 mL of fixative 2%
31 PFA/0.075% GA in PBS. Group 4 (direct PFA) 30 mL of 4% PFA in PBS. Animals were then
32 dissected to isolate brains, that were later subjected to 20h post fixation in the same fixative that
33 was used for perfusion in each group.

34 For oxygen supplement related experiments in Figure 3, mice were randomly assigned to
35 anesthetize either with 2.5 vol% isoflurane with 2 ml/min oxygen or with isoflurane only. For the
36 group with oxygen inhalation, isoflurane was delivered with oxygen through an anesthesia
37 machine. A closed jar containing 1ml of isoflurane was used to anesthetize the group without
38 oxygen. Mice were perfused transcardially with 2% PFA (Alfa Aesar) and 0.075% GA (Sigma) in
39 PBS and brains were isolated for further experiments. During the perfusion, pulse and oxygen
40 concentration were measured with MouseSTAT® Jr. Pulse Oximeter & Heart Rate Monitor (Kent
41 Scientific). After 2 hours of post fixation in the same fixative used in perfusion, brains were washed
42 with PBS and sectioned using a vibratome (Leica VT1200) at 130 µm. Sections were then washed
43 3 times with PBS and mounted on slides with VECTASHIELD® Vibrance™ Antifade Mounting
44 Medium with DAPI (Vector laboratories).

45

46

47

48

49

50

51

1 **Imaging of cultured NIH3T3 cells and cultured neurons**

2 Cultured cells were imaged on a Nikon Ti2 widefield system equipped with a Hamamatsu Fusion
3 CMOS camera, standard cubes for FITC, TRITC and DAPI, and 60x (1.2NA) oil objective, and
4 live imaging chamber from OXO. The whole system is controlled by Nikon Elements. For cultured
5 NIH3T3 cells, cells were fixed as above and then imaged directly after fixation. For cultured
6 neurons, cells were imaged live first and then fixed as above and then the same cell reimaged
7 following fixation.

8

9 **Live imaging under hypoxic conditions**

10 Live cell imaging under hypoxic conditions was performed with the EVOS M7000 imaging system
11 (Thermo Scientific) equipped with an onstage incubator. Normal tyrode solution was used as a
12 bath solution and neurons were incubated in a humidified atmosphere containing 5% CO₂ at 37°C.
13 To induce the hypoxic condition, oxygen level was gradually decreased from 20% to 10%, 5%
14 and 0.1%. Samples were imaged for 10min with 1 min interval in each oxygen level. 1 image per
15 oxygen level was used to analyze the dendritic mitochondrial length in each condition.

16

17 **Imaging brain sections**

18 For direct and indirect perfusion experiments in Figure 2, fixed samples were imaged on a Zeiss
19 LSM 880 confocal microscope controlled by Zeiss Black software. Imaging required two lasers
20 488nm and 561nm together with Zeiss objectives 40x (1.2NA) with 2x zoom, or 100x oil (1.25NA)
21 with 3x zoom.

22 For oxygen supplement related experiments in Figure 3, fixed samples were imaged on a Nikon
23 A1R confocal microscope with a Nikon objective 60x (1.25NA). Samples were visualized by Z-
24 stacking that was later processed into Maximum Intensity Projection (MIP). MIP 2D images were
25 then used for analysis of mitochondrial length and occupancy using NIS Elements software
26 (Nikon) and Fiji (Image J).

27

28 **α-Synuclein treatment**

29 Active human recombinant α-synuclein preformed fibrils (PFF) were purchased from StreeMarq.
30 Before the treatment, α-synuclein PFF was diluted in PBS at 0.1mg/ml and sonicated for 30 sec.
31 α-Synuclein was added at 10 DIV in a concentration of 1μg/ml and incubated for 11 days.

32

33 **Immunohistochemistry**

34 Brains were washed 3 times for 15 minutes in 1x PBS and embedded in 3% low melt agarose
35 (RPI, A20070) in 1x PBS. Brains in agarose cubes were sectioned using a vibratome (Leica
36 VT1200) at 120 μm. Sections were then incubated with primary antibodies (chicken anti-GFP
37 Aves Lab 1:1000, rabbit anti-dsRed Abcam 1:1000) that were diluted in the Blocking buffer
38 (1%BSA, 0.2%TritonX-100, 5%NGS in PBS) at 4 °C for 48h. Subsequently sections were washed
39 6 times for 10 min in PBS and incubated with secondary antibodies (Alexa conjugated goat anti-
40 chicken488 and goat anti-rabbit568 1:1000) at 4 °C for 48h. The excess of secondary antibodies
41 was removed by six 10 minutes washes in 1x PBS. In the end sections were mounted on slides
42 and coversliped with Aqua PolyMount (PolyMount Siccences, Inc.) and kept at 4 °C.

43

44 **Immunocytochemistry**

45 Cultured neurons were fixed for 15 min at room temperature in either 4% PFA, 2% PFA with
46 0.075% GA, or 4% PFA with 4% sucrose and then washed with PBS. Cells were permeabilized
47 with 0.2% Triton X-100 in PBS and incubation in 0.1% BSA and 2.5% goat serum in PBS was
48 followed to block nonspecific signals. Primary and secondary antibodies were diluted in the
49 blocking buffer described above and incubated at 4°C overnight. Coverslips were mounted on
50 slides with VECTASHIELD® Vibrance™ Antifade Mounting Medium (Vector laboratories).
51 Primary antibodies used in this experiment were mouse anti-HA (Biolegend, 1:500) and rabbit

1 anti- α -Synuclein (pS129) (Abcam, 1:300), and all secondary antibodies were Alexa-conjugated
2 (Invitrogen) and used at 1:1000 dilution.

3

4 Quantification and statistical analysis

5 Statistical analysis was done in GraphPad's Prism 6. Statistical tests, p-values, and (n) numbers
6 are presented in the figure legends. Gaussian distribution was tested using D'Agostino &
7 Pearson's omnibus normality test. We applied non-parametric tests when data from groups tested
8 deviated significantly from normality. No blinding was performed. No sample size calculation was
9 performed. No exclusion criteria were pre-determined and no animals were excluded. All analyses
10 were performed on raw imaging data without any adjustments. Images in figures have been
11 adjusted for brightness and contrast (identical for control and experimental conditions in groups
12 compared), and images in Figure 2 have been processed with Nikon's proprietary denoise.ai for
13 visualization purposes only.

14

15

16 RESULTS

17 Fixation of cultured cells with a solution of PFA/GA better preserves mitochondrial 18 morphology

19 Based on our own observations and the high variation that has been reported in the literature for
20 mitochondrial morphology in neurons, we hypothesized that standard fixation conditions with 4%
21 paraformaldehyde (PFA) may not be optimal for maintaining mitochondrial structure. To test this
22 hypothesis, we performed ex utero electroporation (EUE) coupled with primary neuron culture to
23 visualize mitochondrial morphology at single cell resolution in culture. Following culture for 17
24 days to allow for neuronal maturation, we first imaged neurons live at 37°C (**Figure 1A** (top))
25 followed by immediate fixation with a 4%PFA solution in PBS and three PBS washes on the stage
26 allowing us to image the same neurons following fixation (**Figure 1A** (bottom)). As published
27 previously by multiple groups, dendritic mitochondria are highly elongated and tubular in cortical
28 PNs (Popov, Medvedev et al. 2005, Chang and Reynolds 2006, Lewis, Kwon et al. 2018,
29 Rangaraju, Lauterbach et al. 2019) and occupy a large portion of the dendritic arbor in living
30 neurons. However, upon fixation with 4% PFA, we observed a rapid fragmentation of dendritic
31 mitochondria leading to smaller mitochondria (live dendritic mitochondria mean length: $4.9 \pm$
32 $0.27\mu\text{m}$; after 4% PFA fixation: $2.3 \pm 0.14\mu\text{m}$). This result confirmed that fixation with only a
33 solution of 4% PFA is not optimal for maintaining the mitochondrial morphology observed in living
34 neurons. In an attempt to determine a perfusion solution that would better preserve mitochondrial
35 morphology during fixation, we searched the literature and observed that many groups performing
36 electron microscopy included glutaraldehyde (GA) in their fixation solution as it provides increased
37 cross-linking activity compared to PFA alone. To test if a solution of PFA/GA would achieve more
38 optimal preservation of mitochondrial morphology, we performed the same experiment as above
39 but used a fixative solution of 2%PFA/0.075%GA to fix the cultured neurons (**Figure 1B**). As
40 clearly observed and quantified (**Figure 1C-D**), a solution of 2%PFA/0.075%GA dramatically
41 reduced mitochondrial fragmentation during fixation (live dendritic mitochondria mean length: $5.2 \pm$
42 $0.29\mu\text{m}$; after PFA/GA: $4.2 \pm 0.23\mu\text{m}$). Finally, we asked if this was a result specific to the fixation
43 of neuronal mitochondria or if it would be conserved in other cell types. Using cultured NIH3T3
44 cells transfected to fluorescently labeled mitochondria, we compared fixation with either 4%PFA
45 or a solution of 2%PFA/0.075%GA (**Figure S1**). We observed very similar results to neurons with
46 4%PFA leading to a decrease in total mitochondrial area (4%PFA: $105.3\mu\text{m}^2$ vs $188.4\mu\text{m}^2$ for
47 2%PFA/0.075%GA) and increased circularity (4%PFA: $.78 \pm 0.01$ vs $.58 \pm 0.01$ for
48 2%PFA/0.075%GA).

49

50

51

1 **Direct perfusion results in the consistent preservation of mitochondrial morphology**

2 Following this observation in cultured neurons, we tested if it applies to preservation of
3 mitochondrial morphology in neurons *in vivo*. To test this, we performed *in utero* electroporation
4 (IUE) on E15.5 CD1 pups with a plasmid encoding a mitochondrial matrix-targeted yellow
5 fluorescent protein (mt-YFP). At postnatal day 21, when several aspects of neuronal
6 differentiation, including dendritic morphogenesis and synaptogenesis, are adult-like, mice were
7 anesthetized with isoflurane and intracardiac perfusion performed. Initial attempts resulted in a
8 significant degree of mitochondrial fragmentation or loss of elongated mitochondria in perfused
9 brains regardless of fixation solution (**Figure 2A-B, E-F**). We then tested various buffers, buffer
10 pH and buffer temperature but none preserved the elongated mitochondria observed in the
11 dendrites (data not shown). Finally, we attempted direct perfusion where instead of performing a
12 pre-flush with PBS or other buffer to remove blood we directly started the perfusion with the
13 fixative solution. Strikingly, this resulted in consistent preservation of the elongated mitochondria
14 morphology observed in living neuronal dendrites (**Figure 2C-D, E-F**). While PFA/GA still resulted
15 in the most elongated mitochondrial network, even with PFA 4% alone, direct perfusion led to a
16 more consistent preservation of mitochondria morphology *in vivo* (dendritic mitochondria mean
17 length: indirect PFA – $1.95 \pm 0.1\mu\text{m}$, direct PFA - $4.5 \pm 0.4\mu\text{m}$, indirect PFA/GA – $1.5 \pm 0.1\mu\text{m}$,
18 direct PFA/GA - $5.4 \pm 0.5\mu\text{m}$), and is clearly a critical step in capturing the *in vivo* structure of
19 mitochondria.

20 **Anesthesia without oxygen supply during perfusion induces mitochondrial fragmentation**

21 We confirmed that direct perfusion could preserve mitochondrial morphology during perfusion.
22 However, variance in dendritic mitochondrial length is still observed in previous studies, and also
23 in our experiments while using direct perfusion. This suggested that there could be another
24 important factor affecting mitochondrial morphology. Because oxygen levels in mice may change
25 depending on the oxygen supply during anesthesia, and it has been reported that oxygen
26 deprivation can induce mitochondrial fragmentation in several cell types, we examined if
27 anesthesia with and without oxygen supply would result in differences in mitochondrial
28 morphology. In order to study mitochondrial morphology after perfusion, we sparsely labeled
29 mouse cortical neurons using IUE with a Cre-dependent plasmid containing a mitochondrial-
30 targeted fluorescent protein and low concentration of a Cre recombinase expressing plasmid
31 (**Figure S2**). At postnatal day (P)21, mice were anesthetized either with an anesthesia machine,
32 which delivers isoflurane with oxygen, or with a closed jar containing isoflurane and directly
33 perfused with 2% PFA/0.075% GA. Oxygen concentration and pulse rate were monitored with a
34 pulse oximeter during perfusion. Anesthesia without oxygen supplement showed significantly
35 decreased oxygen concentration ($86.78\% \pm 1.00\%$ with oxygen vs $55.68\% \pm 1.93\%$ without
36 oxygen) and increased pulse rate compared to the with oxygen condition (337.1 ± 5.89 pulses/min
37 with oxygen vs 459.5 ± 3.36 pulses/min without oxygen, **Figure 3D-E**). Next, we compared the
38 length of dendritic mitochondria in each condition. Strikingly, mice anesthetized without oxygen
39 showed significantly shortened dendritic mitochondria after perfusion ($2.30 \pm 0.20\mu\text{m}$ without
40 oxygen vs $6.74 \pm 0.51\mu\text{m}$ with oxygen, **Figure 3A-C**). These results suggest that avoidance of
41 hypoxic condition is critical for preserving mitochondrial morphology of neurons *in vivo*.
42

43 **Reduced oxygen level causes changes of mitochondrial morphology *in vitro***

44 To ascertain what level of hypoxia can result in mitochondrial fragmentation, we next tested if
45 gradual changes in oxygen level could directly affect mitochondrial morphology. Live imaging of
46 fluorescently mitochondria-labeled cortical neurons *in vitro* allowed us to observe the changes in
47 mitochondrial morphology in real-time. We incubated neurons under normoxic (20% oxygen) and
48 hypoxic conditions (10%, 5%, 0.1% oxygen). As oxygen level dropped, the length of dendritic
49 mitochondria gradually decreased (from $10.21 \pm 0.64\mu\text{m}$ in 20% oxygen to $6.96 \pm 0.46\mu\text{m}$ in 0.1%
50 oxygen, **Figure 4**). Coupled with our previous *in vivo* perfusion observations, these results
51

1 emphasize the importance of oxygen concentration for maintaining mitochondrial morphology
2 during fixation.
3

4 **Fixation protocol affects the outcome of mitochondrial analysis in neurodegenerative
5 disease models**

6 Mitochondrial dysfunction is a hallmark of neurodegeneration. Fragmentation of dendritic
7 mitochondria is observed in many neurodegenerative diseases including Alzheimer's disease and
8 Parkinson's diseases (Wang, Su et al. 2009, Matheoud, Sugiura et al. 2016, Zhang, Trushin et
9 al. 2016, Burbulla, Song et al. 2017, Lee, Hirabayashi et al. 2018). As shown in **Figures 1-2**,
10 fixation with 4% PFA resulted in fragmentation of mitochondria, while 2% PFA with 0.075% GA
11 showed intact morphology. Because different compositions of fixative could alter mitochondrial
12 morphology, we assumed that this could influence the analysis of mitochondria in models of
13 neurodegenerative disease. To test this, we investigated the effect of three different fixation
14 solutions using an α -synuclein preformed fibril (PFF)-induced synucleinopathy model. Neurons
15 were incubated with α -synuclein for 11 days starting from 10 DIV and then fixed with 3 different
16 fixatives; 4% PFA, 2% PFA with 0.075% GA, or 4% PFA with 4% sucrose. α -synuclein fibril
17 accumulation was confirmed with phosphorylated α -synuclein staining, which is a marker for
18 accumulated α -synuclein in cells (**Figure S3**). To determine if the fixation solution could affect the
19 analysis outcome of mitochondrial morphology, we compared the differences in dendritic
20 mitochondrial length between control and α -synuclein treated samples in each fixation condition.
21 With 2% PFA/0.075% GA, control mitochondrial morphology was consistent with the results
22 presented above, while α -synuclein treated samples showed a significant decrease in average
23 dendritic mitochondrial length ($2.80 \pm 0.09\mu\text{m}$ vs $3.35 \pm 0.13\mu\text{m}$ in control, **Figure 5**). However,
24 fixation with only 4% PFA abolished the differences observed in dendritic mitochondrial length
25 following α -synuclein treatment ($2.26 \pm 0.07\mu\text{m}$ vs $2.17 \pm 0.06\mu\text{m}$ in control, **Figure 5**) as control
26 mitochondria were much shorter than with PFA/GA. Although PFA/GA fixation was ideal for
27 preserving mitochondrial morphology, there were high background autofluorescence signals
28 following immunocytochemistry. Thus, we also tested 4% PFA/4% sucrose as an alternative
29 solution, which is known to be cryoprotective. Compared with PFA only, PFA with sucrose
30 preserved mitochondrial morphology closer to PFA/GA fixation but with lower background signals
31 (**Figures 5B, S3**). Overall, these results suggest that fixation solutions could affect the results of
32 mitochondrial morphology analysis, and that this parameter should be carefully weighed during
33 the experimental design phase.
34

35 **DISCUSSION**

36 Our results clearly demonstrate that the method of fixation is critical for preserving the
37 mitochondria morphology observed in living mammalian neurons. Our findings can be broken
38 down into three main observations: (1) direct fixation is critical both in cultured neurons and in
39 vivo. Any condition which included significant pre-washing with PBS or other saline solutions to
40 remove culture medium or blood resulted in fragmentation of the mitochondria. (2) preventing
41 hypoxia is required to maintain mitochondrial structure. Conditions that resulted in low oxygen
42 were sufficient to induce mitochondrial fragmentation both in vitro and in vivo. (3) a mixture of
43 PFA/GA most faithfully preserved the mitochondrial morphologies and sizes observed in living
44 neurons. This appears especially true with cultured neurons as even direct fixation with 4% PFA
45 resulted in fragmented mitochondria. However in vivo, if conditions one and two are met we
46 observed only a small decrease in mitochondrial length with 4% PFA compared to 2%
47 PFA/0.075% GA. Together, our results establish that it is critical for the fixation process to occur
48 as rapidly as possible in order to maintain the mitochondria structure observed in living neurons,
49 and if this is not carefully considered the fixative conditions may result in incorrect conclusions as
50 we have shown with α -synuclein treatment.
51

1 Surprisingly, “standard” published protocols for the perfusion of rodents and other small animals
2 show considerable variability (Buffalo , Montana , Gage, Kipke et al. 2012, Uhlig, Krause et al.
3 2015, Wu, Cai et al. 2021, Chu 2022). This variability mainly comes in two forms: the anesthesia
4 used to prepare the animal for the procedure, and the buffers and/or fixatives used during the
5 procedure. It is clear that the choices made at each of these steps will have important ramifications
6 on the outcome of the procedure, and the decision should depend on the ultimate focus of the
7 investigator. For instance, in our hands overall neuronal cell structure (i.e. dendrites, axons,
8 spines) appeared to be well preserved with all the anesthetics and fixatives we tested, even
9 though mitochondrial structure showed the striking differences detailed above (data not shown).
10
11 While future work is still required to fully understand the mechanism, we found that exposing
12 mitochondria to a short-term hypoxic environment is sufficient to induce mitochondrial
13 fragmentation. Molecularly this could be through mTOR-Drp1 mediated activation or by increased
14 FUNDC1-Drp1 interaction (Wu, Lin et al. 2016, Zheng, Qian et al. 2019). Interestingly, *in vivo*
15 hypoxic conditions triggered more significant mitochondrial fragmentation (less than 2 min) than
16 in cultured neurons, which might be caused by the fast delivery of low oxygen blood and/or
17 solutions. Both the mode of anesthesia and the mode of perfusion likely play a role in the induction
18 of this hypoxic state. Our results argue that when studying mitochondria, methods of anesthesia
19 resulting in low oxygen levels should be avoided (i.e. CO₂, drop isoflurane). Recent work
20 demonstrates that oxygen supplementation is required to prevent hypoxia with both inhaled and
21 injected anesthetics (Blevins, Celeste et al. 2021). One step that is preserved across the majority
22 of published perfusion protocols is a saline based flush (Buffalo , Montana , Gage, Kipke et al.
23 2012, Wu, Cai et al. 2021, Chu 2022). While this step removes blood, it likely exacerbates the
24 hypoxia in the sample and should clearly be avoided when downstream analysis of mitochondria
25 morphology will be performed.
26
27 Two recent papers (Qin, Jiang et al. 2021, Hinton, Katti et al. 2022) have independently come to
28 some of the same conclusions about the role of fixation on mitochondria structure; nonetheless,
29 key differences exist between in our findings. Hinton et al used electron microscopy to show that
30 anesthesia with an isoflurane/oxygen mixture provided better preservation of mitochondrial
31 structure than CO₂-based methods. In addition, direct perfusion of 4% PFA compared to PBS
32 flushing conditions after injectable anesthesia (ketamine/xylazine) maintained mitochondrial
33 shape. However, both the oxygen supplement and direct perfusion method were followed by
34 strong fixative (Trump’s solution; 4% formaldehyde/1% GA) immersion, and actual oxygen level
35 was not monitored. Our study combined the oxygen supplementation and direct perfusion of
36 fixative, and also checked and manipulated oxygen level *in vivo* and *in vitro*. Therefore, we could
37 unambiguously conclude that the hypoxic condition caused the fragmentation of mitochondria.
38 While Qin et al show that PFA/GA mixtures preserve mitochondria structure better via
39 fluorescence imaging, much higher concentrations of GA were tested (2.5%-1.5%) and the
40 experiments were performed in MEFs not neurons. High concentrations of GA cause strong
41 background signals during immunocytochemistry, thus we find that the combination of low GA
42 concentration coupled with the oxygenated/direct perfusion allows for both the preservation of
43 mitochondria structure and for immunocytochemistry in the same brain samples.
44
45 Our results also argue that we should carefully consider the role that the method of fixation may
46 have played in findings about mitochondrial morphology or structure. This may impact the
47 outcome in a few different ways. One situation would be an incorrect negative result where
48 incorrect perfusion leads to all conditions giving rise to similarly highly fragmented mitochondria
49 as a result of a slow fixation process (**Figure 5**). In another situation, sub-optimal fixation
50 conditions could give rise to a false positive result. For instance, under a pathogenic situation,
51 stressed mitochondria could be structurally similar in the living cells but are more sensitive to the

1 fixation process leading to fixation induced fragmentation only in the stressed mitochondria.
2 Clearly the gold standard would be to visualize mitochondrial structure under living conditions
3 which would remove the potential for fixation artifacts.
4

5 A potential confounding factor in the variation observed in the literature regarding mitochondrial
6 length is recent data reporting differential mitochondria morphologies in different brain regions. It
7 is now clear that both distinct neuron types and even the compartments within the same neuron
8 (soma, dendrites, axon) regulate mitochondria morphology to different levels (Fait, Zhang et al.
9 2016, Lewis, Kwon et al. 2018, Chandra, Calarco et al. 2019, Janickova, Rechberger et al. 2020,
10 Faitg, Lacefield et al. 2021, Lee, Kondapalli et al. 2022). However, it is unclear if or how these
11 different mitochondrial populations would be affected by the different fixatives and perfusion
12 methods.
13

14 In each condition that we tested, a fixative solution of PFA/GA maintained mitochondrial
15 morphology closer to those observed in living neurons. However, fixing with PFA/GA does have
16 potential drawbacks that may limit its usefulness based on the context of the experiment. First,
17 PFA/GA fixation causes increased background fluorescence across the visible wavelengths.
18 Therefore, if trying to visualize a lowly expressed protein the high background may reduce the
19 signal to noise ratio to a level that is unacceptable. Finally for antibodies that still work after
20 PFA/GA fixation, incubation times need to be significantly increased presumably because of the
21 increased crosslinking that occurs with the PFA/GA fixation. We routinely had to double our
22 antibody incubation times for 100 μ m thick brain sections from 16-24hrs with PFA only to 32-48hrs
23 following PFA/GA fixation. In addition, the use of a 4% PFA/4% sucrose fixative solution showed
24 less background signal without affecting dendritic mitochondrial length in vitro (**Figures 5, S3**);
25 therefore, this may also be considered for immunocytochemistry experiments.
26

27 Taken together, our results provide standard anesthesia and fixation methods for the study of
28 neuronal mitochondrial morphology both in vitro and in vivo. These results can also serve as a
29 starting point when investigating other cellular mechanisms that are vulnerable to environmental
30 stress.
31
32

33 **Conflict of interests**

34 The authors declare no competing financial interests
35

36 **Acknowledgements**

37 We thank Drs. Julien Courchet, Yusuke Hirabayashi and Franck Polleux for discussions and
38 critical feedback on the manuscript. We also thank all members of the Kwon and Lewis labs for
39 feedback and discussion along the way. This research was supported by the National Research
40 Foundation (NRF) funded by the Korean government (MSIT) (2019M3E5D2A01063794,
41 2020R1C1C1006386, 2022M3E5E8017395), and KIST Program (2E31511) to SK Kwon, and
42 OMRF startup funds and support from the Presbyterian Health Foundation to TL Lewis.
43

44 **Author Contributions**

45 Conceptualization: SKK & TL. Formal analysis: SYK, KS, BO, SKK, TL. Funding acquisition: SKK,
46 TL. Investigation: SYK, KS, BO, SKK, TL. Methodology: SYK, KS, BO, SKK, TL. Project
47 administration: KH, SKK, TL. Resources: SKK, TL. Supervision: KH, SKK, TL. Visualization: SYK,
48 KS, BO, SKK, TL. Writing – original draft: SYK, SKK, TL. Writing – review & editing: SYK, KS,
49 BO, KH, SKK, TL.
50
51

1 **References**

2 Azzu, V. and T. G. Valencak (2017). "Energy Metabolism and Ageing in the Mouse: A Mini-
3 Review." Gerontology **63**(4): 327-336.

4 Belanger, M., I. Allaman and P. J. Magistretti (2011). "Brain energy metabolism: focus on
5 astrocyte-neuron metabolic cooperation." Cell Metab **14**(6): 724-738.

6 Blevins, C. E., N. A. Celeste and J. O. Marx (2021). "Effects of Oxygen Supplementation on
7 Injectable and Inhalant Anesthesia in C57BL/6 Mice." J Am Assoc Lab Anim Sci **60**(3): 289-297.

8 Buffalo, U. o. "Standard Operating Procedures For Whole Body Perfusion Fixation Of Mice."
9 Retrieved 09/02/22, from
10 <https://www.buffalo.edu/content/dam/www/research/pdf/laf/sop/2A12.pdf>.

11 Burbulla, L. F., P. Song, J. R. Mazzulli, E. Zampese, Y. C. Wong, S. Jeon, D. P. Santos, J.
12 Blanz, C. D. Obermaier, C. Strojny, J. N. Savas, E. Kiskinis, X. Zhuang, R. Kruger, D. J.
13 Surmeier and D. Krainc (2017). "Dopamine oxidation mediates mitochondrial and lysosomal
14 dysfunction in Parkinson's disease." Science **357**(6357): 1255-1261.

15 Chandel, N. S. (2014). "Mitochondria as signaling organelles." BMC Biol **12**: 34.

16 Chandra, R., C. A. Calarco and M. K. Lobo (2019). "Differential mitochondrial morphology in
17 ventral striatal projection neuron subtypes." J Neurosci Res **97**(12): 1579-1589.

18 Chang, D. T. W. and I. J. Reynolds (2006). "Differences in mitochondrial movement and
19 morphology in young and mature primary cortical neurons in culture." Neuroscience **141**(2):
20 727-736.

21 Chu, H. Y. (2022). "Standard Operating Procedure: Mouse transcardiac perfusion protocol."
22 protocols.io.

23 Diaz-Garcia, C. M. and G. Yellen (2019). "Neurons rely on glucose rather than astrocytic lactate
24 during stimulation." J Neurosci Res **97**(8): 883-889.

25 Faitg, J., C. Lacefield, T. Davey, K. White, R. Laws, S. Kosmidis, A. K. Reeve, E. R. Kandel, A.
26 E. Vincent and M. Picard (2021). "3D neuronal mitochondrial morphology in axons, dendrites,
27 and somata of the aging mouse hippocampus." Cell Rep **36**(6): 109509.

28 Faits, M. C., C. Zhang, F. Soto and D. Kerschensteiner (2016). "Dendritic mitochondria reach
29 stable positions during circuit development." Elife **5**: e11583.

30 Fox, P. T., M. E. Raichle, M. A. Mintun and C. Dence (1988). "Nonoxidative glucose
31 consumption during focal physiologic neural activity." Science **241**(4864): 462-464.

32 Gage, G. J., D. R. Kipke and W. Shain (2012). "Whole animal perfusion fixation for rodents." J
33 Vis Exp(65).

34 Gonzalez-Rodriguez, P., E. Zampese, K. A. Stout, J. N. Guzman, E. Ilijic, B. Yang, T. Tkatch, M.
35 A. Stavarache, D. L. Wokosin, L. Gao, M. G. Kaplitt, J. Lopez-Barneo, P. T. Schumacker and D.
36 J. Surmeier (2021). "Disruption of mitochondrial complex I induces progressive parkinsonism."
37 Nature **599**(7886): 650-656.

1 Hinton, A., P. Katti, T. A. Christensen, M. Mungai, J. Shao, L. Zhang, S. Trushin, A. Alghanem,
2 A. Jaspersen, R. E. Geroux, K. Neikirk, M. Biete, E. G. Lopez, Z. Vue, H. K. Beasley, A. G.
3 Marshall, J. Ponce, C. K. E. Bleck, I. Hicsasmaz, S. A. Murray, R. A. C. Edmonds, A. Dajles, Y.
4 D. Koo, S. Bacevac, J. L. Salisbury, R. O. Pereira, B. Glancy, E. Trushina and E. D. Abel
5 (2022). "A comprehensive approach to artifact-free sample preparation and the assessment of
6 mitochondrial morphology in tissue and cultured cells." [bioRxiv](https://doi.org/10.1101/2022.09.08.507147): 2021.2006.2027.450055.

7 Janickova, L., K. F. Rechberger, L. Wey and B. Schwaller (2020). "Absence of parvalbumin
8 increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a
9 point of convergence of autism spectrum disorder (ASD) risk gene phenotypes." [Mol Autism](https://doi.org/10.1007/s13239-020-01007-0)
10 **11**(1): 47.

11 Kimura, T. and F. Murakami (2014). "Evidence that dendritic mitochondria negatively regulate
12 dendritic branching in pyramidal neurons in the neocortex." [J Neurosci](https://doi.org/10.1523/JNEUROSCI.3401-14.2014) **34**(20): 6938-6951.

13 Kwon, S. K., R. Sando, 3rd, T. L. Lewis, Y. Hirabayashi, A. Maximov and F. Polleux (2016).
14 "LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and
15 Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons." [PLoS Biol](https://doi.org/10.1371/journal.pbio.1002516)
16 **17** [14](https://doi.org/10.1371/journal.pbio.1002516)(7): e1002516.

17 Lee, A., Y. Hirabayashi, S. K. Kwon, T. L. Lewis, Jr. and F. Polleux (2018). "Emerging roles of
18 mitochondria in synaptic transmission and neurodegeneration." [Curr Opin Physiol](https://doi.org/10.1016/j.cophys.2018.02.003) **3**: 82-93.

19 Lee, A., C. Kondapalli, D. M. Virga, T. L. Lewis, Jr., S. Y. Koo, A. Ashok, G. Mairet-Coello, S.
20 Herzig, M. Foretz, B. Viollet, R. Shaw, A. Sproul and F. Polleux (2022). "Abeta42 oligomers
21 trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial
22 fission and mitophagy." [Nat Commun](https://doi.org/10.1038/s41467-022-12500-0) **13**(1): 4444.

23 Lewis, T. L., Jr., S. K. Kwon, A. Lee, R. Shaw and F. Polleux (2018). "MFF-dependent
24 mitochondrial fission regulates presynaptic release and axon branching by limiting axonal
25 mitochondria size." [Nat Commun](https://doi.org/10.1038/s41467-018-05008-0) **9**(1): 5008.

26 Lewis, T. L., Jr., G. F. Turi, S. K. Kwon, A. Losonczy and F. Polleux (2016). "Progressive
27 Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo." [Curr
28 Biol](https://doi.org/10.1016/j.cobi.2016.07.010) **26**(19): 2602-2608.

29 Lin, Y., L. L. Li, W. Nie, X. Liu, A. Adler, C. Xiao, F. Lu, L. Wang, H. Han, X. Wang, W. B. Gan
30 and H. Cheng (2019). "Brain activity regulates loose coupling between mitochondrial and
31 cytosolic Ca(2+) transients." [Nat Commun](https://doi.org/10.1038/s41467-019-10270-0) **10**(1): 5277.

32 Matheoud, D., A. Sugiura, A. Bellemare-Pelletier, A. Laplante, C. Rondeau, M. Chemali, A.
33 Fazel, J. J. Bergeron, L. E. Trudeau, Y. Burelle, E. Gagnon, H. M. McBride and M. Desjardins
34 (2016). "Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial
35 Antigen Presentation." [Cell](https://doi.org/10.1016/j.cell.2016.05.037) **166**(2): 314-327.

36 Montana, U. o. "Rodent Brain Perfusion." Retrieved 09/02/2022, from
37 <https://www.umt.edu/research/LAR/sops/sop-perfusion.php>.

38 Owens, K., J. H. Park, S. Gourley, H. Jones and T. Kristian (2015). "Mitochondrial dynamics:
39 cell-type and hippocampal region specific changes following global cerebral ischemia." [J
40 Bioenerg Biomembr](https://doi.org/10.1007/s00357-015-1900-0) **47**(1-2): 13-31.

1 Popov, V., N. I. Medvedev, H. A. Davies and M. G. Stewart (2005). "Mitochondria form a
2 filamentous reticular network in hippocampal dendrites but are present as discrete bodies in
3 axons: a three-dimensional ultrastructural study." *J Comp Neurol* **492**(1): 50-65.

4 Qin, Y., W. Jiang, A. Li, M. Gao, H. Liu, Y. Gao, X. Tian and G. Gong (2021). "The Combination
5 of Paraformaldehyde and Glutaraldehyde Is a Potential Fixative for Mitochondria." *Biomolecules*
6 **11**(5).

7 Rangaraju, V., M. Lauterbach and E. M. Schuman (2019). "Spatially Stable Mitochondrial
8 Compartments Fuel Local Translation during Plasticity." *Cell* **176**(1-2): 73-84 e15.

9 Rolfe, D. F. and G. C. Brown (1997). "Cellular energy utilization and molecular origin of standard
10 metabolic rate in mammals." *Physiol Rev* **77**(3): 731-758.

11 Swerdlow, R. H., J. M. Burns and S. M. Khan (2014). "The Alzheimer's disease mitochondrial
12 cascade hypothesis: progress and perspectives." *Biochim Biophys Acta* **1842**(8): 1219-1231.

13 Turner, N. L., T. Macrina, J. A. Bae, R. Yang, A. M. Wilson, C. Schneider-Mizell, K. Lee, R. Lu,
14 J. Wu, A. L. Bodor, A. A. Bleckert, D. Brittain, E. Froudarakis, S. Dorkenwald, F. Collman, N.
15 Kemnitz, D. Ih, W. M. Silversmith, J. Zung, A. Zlateski, I. Tartavull, S. C. Yu, S. Popovych, S.
16 Mu, W. Wong, C. S. Jordan, M. Castro, J. Buchanan, D. J. Bumbarger, M. Takeno, R. Torres,
17 G. Mahalingam, L. Elabbady, Y. Li, E. Cobos, P. Zhou, S. Suckow, L. Becker, L. Paninski, F.
18 Polleux, J. Reimer, A. S. Tolias, R. C. Reid, N. M. da Costa and H. S. Seung (2022).
19 "Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity." *Cell*
20 **185**(6): 1082-1100 e1024.

21 Uhlig, C., H. Krause, T. Koch, M. Gama de Abreu and P. M. Spieth (2015). "Anesthesia and
22 Monitoring in Small Laboratory Mammals Used in Anesthesiology, Respiratory and Critical Care
23 Research: A Systematic Review on the Current Reporting in Top-10 Impact Factor Ranked
24 Journals." *PLoS One* **10**(8): e0134205.

25 Wang, X., B. Su, H. G. Lee, X. Li, G. Perry, M. A. Smith and X. Zhu (2009). "Impaired balance of
26 mitochondrial fission and fusion in Alzheimer's disease." *J Neurosci* **29**(28): 9090-9103.

27 Wu, J., Y. Cai, X. Wu, Y. Ying, Y. Tai and M. He (2021). "Transcardiac Perfusion of the Mouse
28 for Brain Tissue Dissection and Fixation." *Bio Protoc* **11**(5): e3988.

29 Wu, W., C. Lin, K. Wu, L. Jiang, X. Wang, W. Li, H. Zhuang, X. Zhang, H. Chen, S. Li, Y. Yang,
30 Y. Lu, J. Wang, R. Zhu, L. Zhang, S. Sui, N. Tan, B. Zhao, J. Zhang, L. Li and D. Feng (2016).
31 "FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic
32 conditions." *EMBO J* **35**(13): 1368-1384.

33 Zhang, L., S. Trushin, T. A. Christensen, B. V. Bachmeier, B. Gateno, A. Schroeder, J. Yao, K.
34 Itoh, H. Sesaki, W. W. Poon, K. H. Gylys, E. R. Patterson, J. E. Parisi, R. Diaz Brinton, J. L.
35 Salisbury and E. Trushina (2016). "Altered brain energetics induces mitochondrial fission arrest
36 in Alzheimer's Disease." *Sci Rep* **6**: 18725.

37 Zheng, X., Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen, Y. Shen, H. Zhang, R. Sun, Z. Tian and H.
38 Wei (2019). "Mitochondrial fragmentation limits NK cell-based tumor immuno-surveillance." *Nat*
39 *Immunol* **20**(12): 1656-1667.

1 Zhou, X., H. Chen, L. Wang, C. Lenahan, L. Lian, Y. Ou and Y. He (2021). "Mitochondrial
2 Dynamics: A Potential Therapeutic Target for Ischemic Stroke." *Front Aging Neurosci* **13**:
3 721428.

4

5

6 **Figure Legends**

7

8 **Figure 1: A combination of paraformaldehyde and glutaraldehyde maintains mitochondria**
9 **morphology better than paraformaldehyde alone in cultured cortical neurons**

10 A) A representative neuron labeled with mitochondrial matrix targeted YFP (mt-YFP) imaged live
11 before fixation (top) and after fixation with 4% PFA in PBS (bottom). B) A representative neuron
12 labeled with mt-YFP imaged live before fixation (top) and after fixation with 2% PFA/0.075% GA
13 in PBS (bottom). C) Cumulative frequencies of dendritic mitochondrial length showing that fixation
14 with PFA only results in fragmentation of mitochondria. D) Quantification of dendritic mitochondrial
15 lengths shown as Mean +/- 95% CI before and after fixation with the indicated fixative solution.
16 Kruskal–Wallis test with Dunn's multiple comparisons test. $n_{4\%PFA\text{before}} = 2$ cultures, 16 dendrites,
17 225 mitochondria, $n_{4\%PFA\text{after}} = 2$ cultures, 16 dendrites, 227 mitochondria, $n_{PFA/GA\text{before}} = 2$ cultures,
18 16 dendrites, 222 mitochondria, $n_{PFA/GA\text{after}} = 2$ cultures, 16 dendrites, 238 mitochondria. ** $p < 0.01$,
19 *** $p < 0.001$, **** $p < 0.0001$. Scale bar = 30 μ m

20

21 **Figure S-1: A combination of paraformaldehyde and glutaraldehyde maintains**
22 **mitochondria morphology better than paraformaldehyde alone in cultured NIH3T3 cells**

23 A) Representative NIH3T3 cells labeled with mitochondrial matrix targeted YFP (mt-YFP, green)
24 and tdTomato (purple) imaged after fixation with 4% PFA in PBS. B) Representative NIH3T3 cells
25 labeled with mt-YFP (green) and tdTomato (purple) imaged after fixation with 2% PFA/0.075%
26 GA in PBS. C) Quantification of total mitochondrial area per cell showing that fixation with PFA
27 along causes mitochondrial fragmentation (mean +/- 95% CI). D) Quantification of individual
28 mitochondria for circularity shown as mean +/- 95% CI before and after fixation with the indicated
29 fixative solution. Mann-Whitney test. $n_{4\%PFA\text{cells}} = 19$ cells, $n_{PFA/GA\text{cells}} = 18$ cells, $n_{4\%PFA\text{circularity}} = 1347$
30 mitochondria, $n_{PFA/GA\text{circularity}} = 1400$ mitochondria. *** $p < 0.001$, **** $p < 0.0001$. Scale bar = 25 μ m

31

32 **Figure 2: Direct perfusion is necessary for preserving mitochondrial morphology in vivo**

33 A) Low magnification representative neuron following indirect perfusion with PFA/GA solution. B) High
34 magnification of a dendrite segment following indirect perfusion with PFA/GA. C) Low
35 magnification representative neuron following direct perfusion with PFA/GA solution. B) High
36 magnification of a dendrite segment following direct perfusion with PFA/GA. C) Cumulative
37 frequencies of dendritic mitochondrial length showing that indirect perfusion results in
38 fragmentation of mitochondria. D) Quantification of dendritic mitochondrial lengths shown as
39 Mean +/- 95% CI before and after fixation with the indicated fixative solution. Kruskal–Wallis test
40 with Dunn's multiple comparisons test. $n_{\text{indirectPFA}} = 15$ dendrites, 150 mitochondria, $n_{\text{directPFA}} = 11$
41 dendrites, 88 mitochondria, $n_{\text{indirectPFA/GA}} = 13$ dendrites, 158 mitochondria, $n_{\text{directPFA/GA}} = 14$
42 dendrites, 88 mitochondria. ns – not significant, **** $p < 0.0001$. Scale bar = 50 μ m for A and C,
43 5 μ m for B and D

44

45 **Figure 3: Oxygen supply is necessary for preserving mitochondrial morphology during**
46 **anesthesia and perfusion**

47 A) Representative images of mitochondria after perfusion. B) Cumulative frequencies of dendritic
48 mitochondrial length showing that perfusion without oxygen supplement results in fragmentation
49 of mitochondria. $n_{\text{with oxygen}} = 627$ mitochondria, $n_{\text{without oxygen}} = 1061$ mitochondria. Kolmogorov–
50 Smirnov test, **** $p < 0.001$ C) Quantification of dendritic mitochondria in each perfusion condition

1 confirmed shorter mitochondria in perfusion without oxygen compared to perfusion with oxygen.
2 $n_{\text{with oxygen}} = 42$ dendrites, $n_{\text{without oxygen}} = 36$ dendrites. unpaired t-test, **** p<0.0001 D & E) Oxygen
3 concentration and pulse were measured during perfusion procedure. $N_{\text{with oxygen}} = 7$ mice, N_{without}
4 oxygen = 6 mice. Mann-Whitney test, *** p=0.0004. Scale bar = 50 μ m.

5
6 **Figure S2: In utero electroporation strategy for sparse labeling of cortical neurons in vivo.**
7 A "DIO" plasmid encoding mitochondrial targeted mScarlet and cytoplasmic Venus was mixed
8 with a low concentration of a second plasmid encoding Cre and then electroporated in E15.5 pups
9 to give sparse labeling of cortical neurons in vivo.

10
11 **Figure 4: Low oxygen level induces mitochondrial fragmentation in vitro**
12 A) Schematic diagram of live imaging. Live imaging of mitochondria-labeled cortical neurons was
13 done in 4 different oxygen levels; 20%, 10%, 5%, 0.1%. B) Representative images of mitochondria
14 in 20% and 0.1% oxygen level. C) Quantification of dendritic mitochondrial length showed gradual
15 decrease as oxygen level drops. D) Cumulative frequencies of dendritic mitochondrial length also
16 showed shorter mitochondria in low oxygen level, compared to normal oxygen level. $n_{20\% \text{ oxygen}} =$
17 2 cultures, 26 dendrites, 316 mitochondria, $n_{10\% \text{ oxygen}} =$ 2 cultures, 26 dendrites, 323 mitochondria,
18 $n_{5\% \text{ oxygen}} =$ 2 cultures, 26 dendrites, 330 mitochondria, $n_{0.1\% \text{ oxygen}} =$ 2 cultures, 26 dendrites, 346
19 mitochondria. Kruskal-Wallis test with Dunn's multiple comparisons test. length: *** p=0.0007 for
20 20% oxygen vs 5% oxygen, **** p<0.0001 for 20% oxygen vs 0.1% oxygen. Scale bar = 20 μ m

21
22 **Figure 5: Fixative affects mitochondrial morphology analysis of a neurodegenerative**
23 **disease model**

24 A) Images of control and α -Syn-treated neurons, which were fixed with three different fixation
25 solutions (4% PFA, 2% PFA/0.075% GA, 4% PFA/4% sucrose) for 15 min at DIV19 B)
26 Quantification of dendritic mitochondrial length confirmed 2% PFA/0.075% GA and 4% PFA/4%
27 sucrose fixed samples showed differences between α -Syn-treated neurons and control neurons.
28 In contrast, there were no differences in 4% PFA fixed samples. $n_{\text{Con w/ 4\%PFA}} = 3$ cultures, 34
29 dendrites, 510 mitochondria, $n_{\text{Con w/ PFA/GA}} = 3$ cultures, 32 dendrites, 442 mitochondria, $n_{\text{Con w/}}$
30 PFA/Sucrose = 3 cultures, 32 dendrites, 625 mitochondria, $n_{\alpha\text{-syn w/ 4\%PFA}} = 3$ cultures, 32 dendrites, 587
31 mitochondria, $n_{\alpha\text{-syn w/ PFA/GA}} = 3$ cultures, 34 dendrites, 642 mitochondria, $n_{\alpha\text{-syn w/ PFA/Sucrose}} = 3$
32 cultures, 36 dendrites, 629 mitochondria. Kruskal-Wallis test with Dunn's multiple comparisons
33 test, * p=0.03 for control vs α -Syn in 2% PFA/0.075% GA, **** p<0.0001 for control vs α -Syn in
34 4% PFA/4% Sucrose. C) Cumulative frequencies of dendritic mitochondrial length in 4% PFA
35 showing no differences in dendritic mitochondria. D) Cumulative frequencies of dendritic
36 mitochondrial length in 2% PFA/0.075% GA fixation.

37
38 **Figure S3: p- α -synuclein staining in different fixation solutions**

39 α -Syn accumulation was confirmed with p- α -Syn staining. Both in control and α -Syn treated
40 samples, 2% PFA/0.075% GA-fixed images showed higher background signals compared to 4%
41 PFA or 4% PFA/4% sucrose fixatives. Scale bar = 20 μ m

42

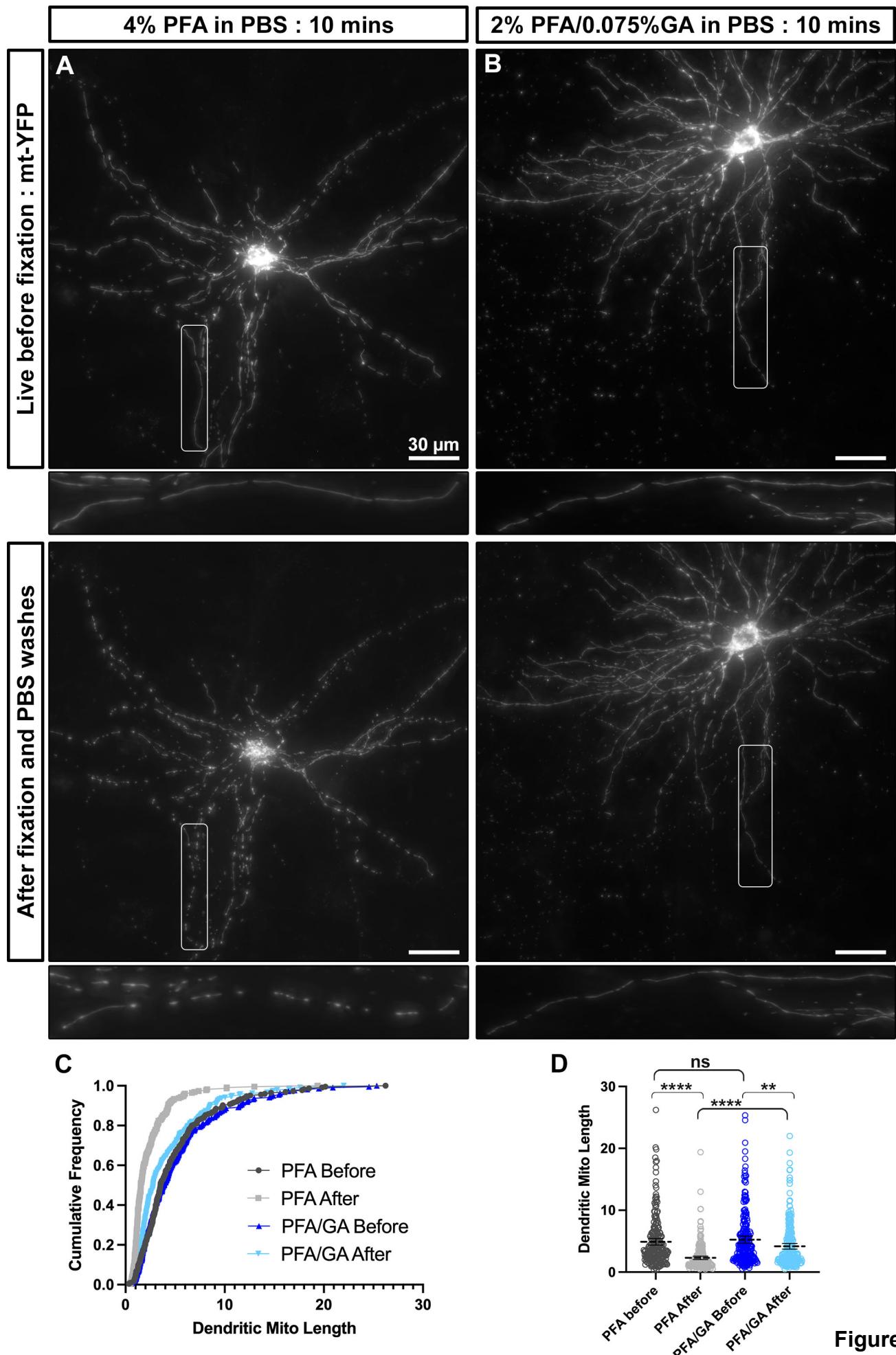
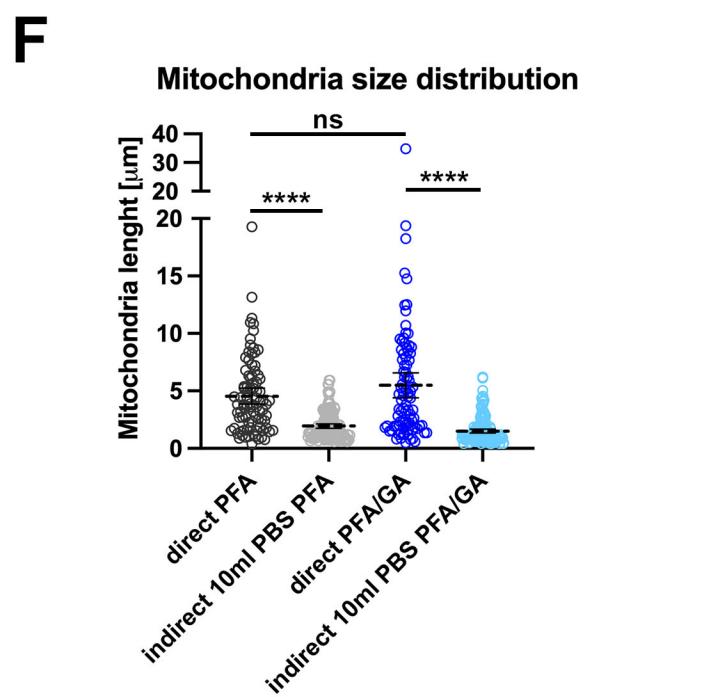
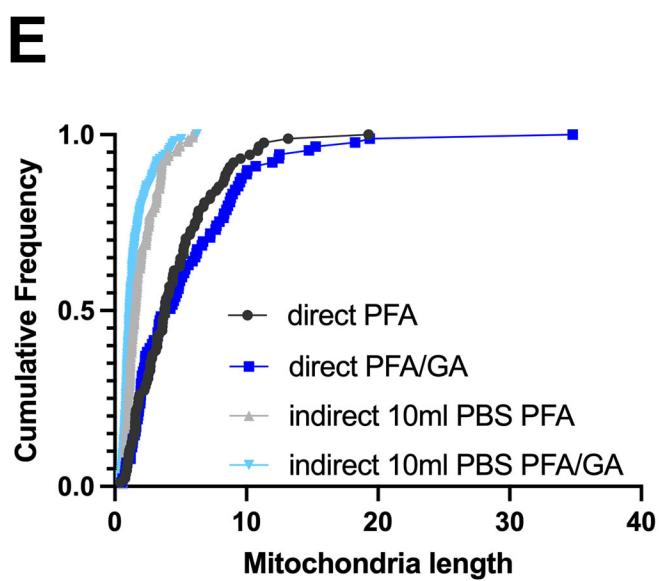
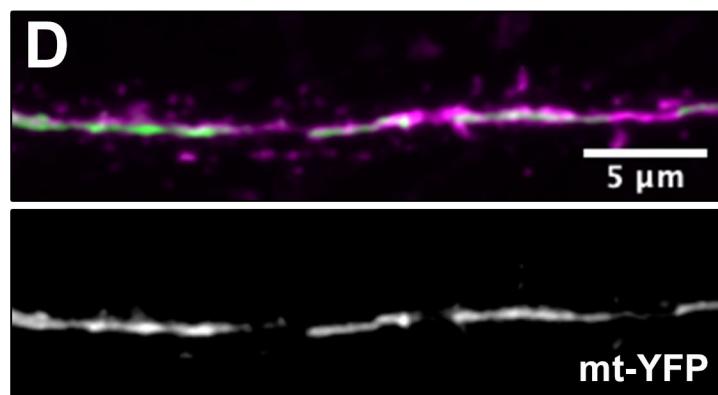
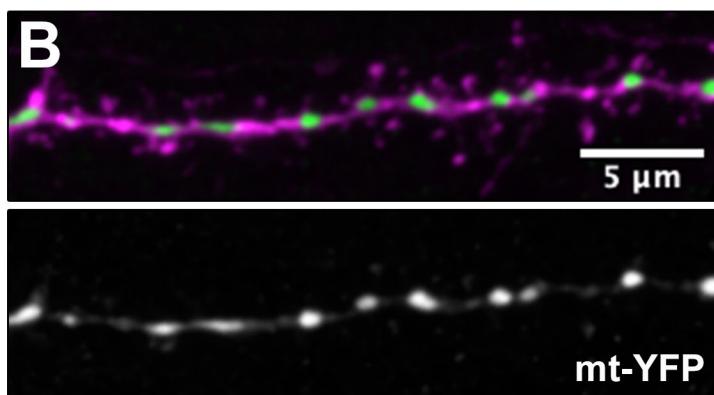
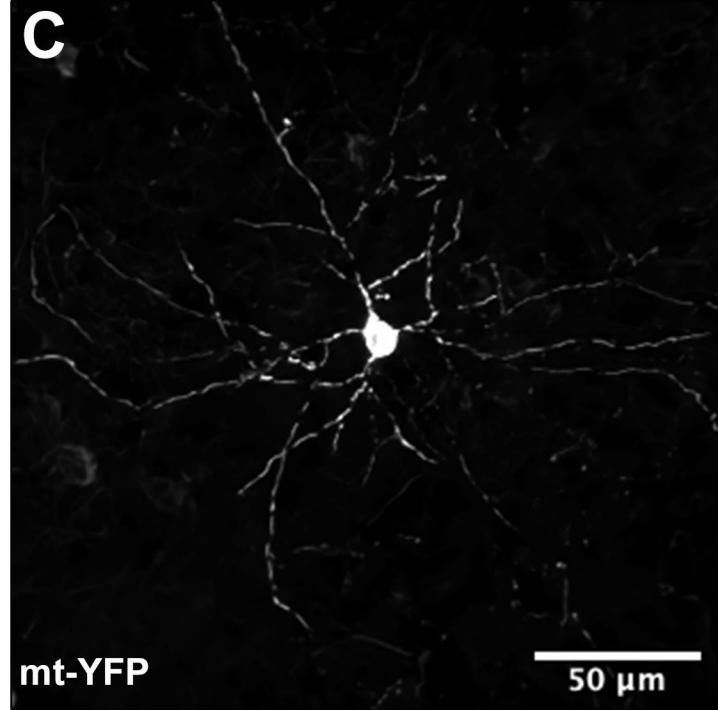
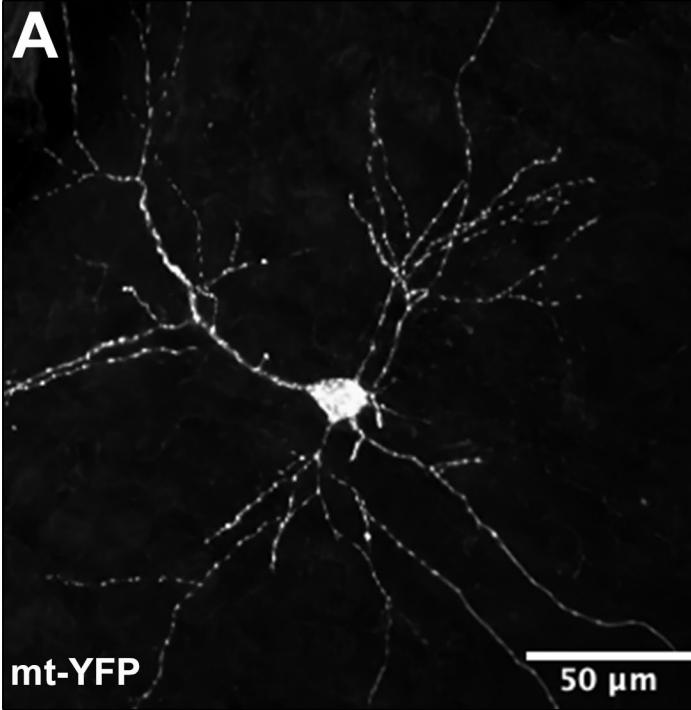
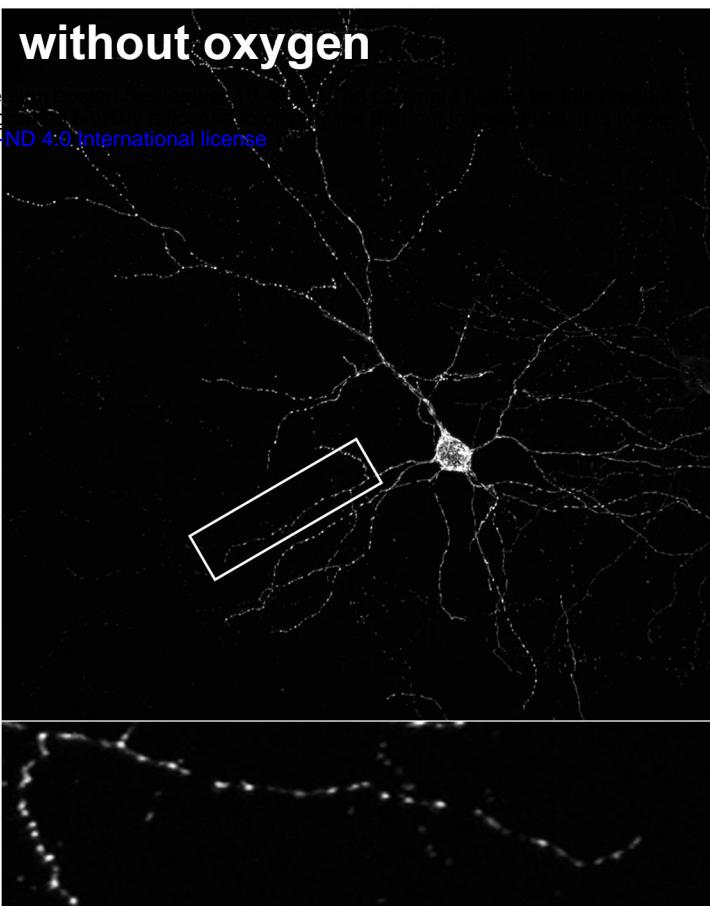
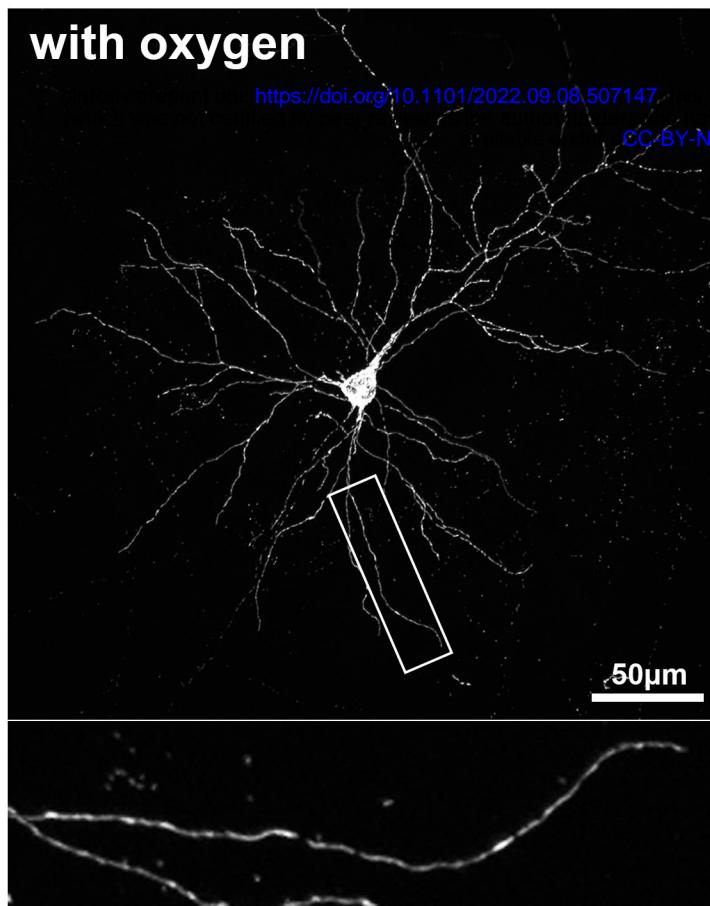
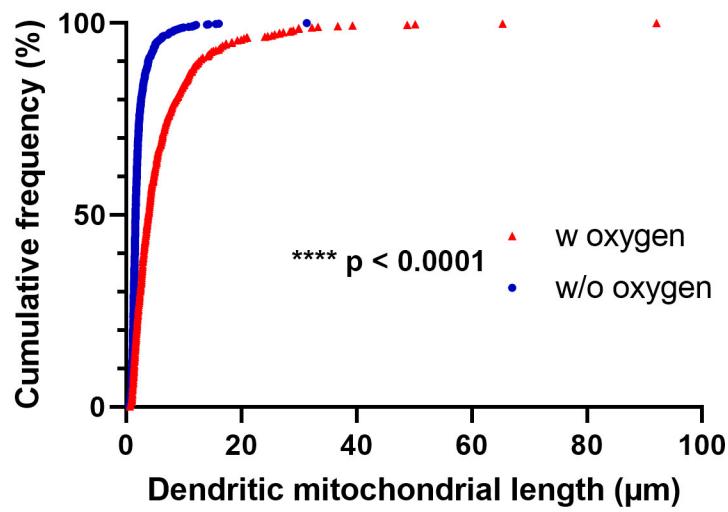
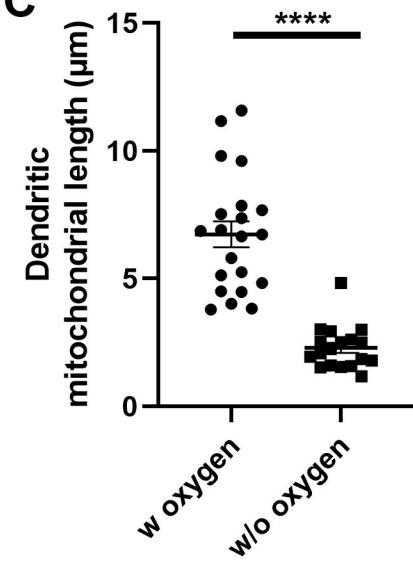
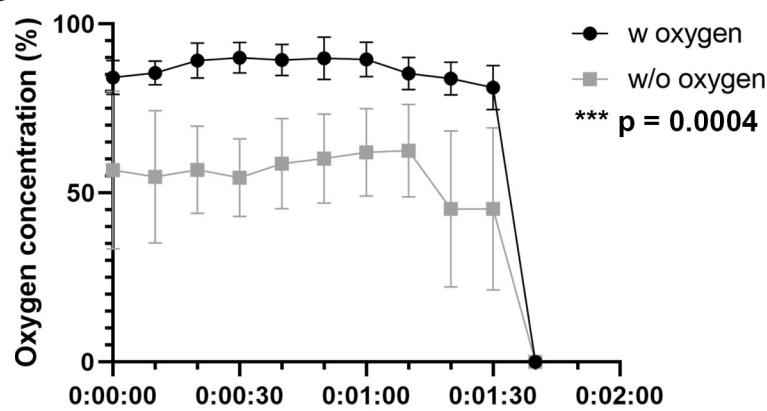
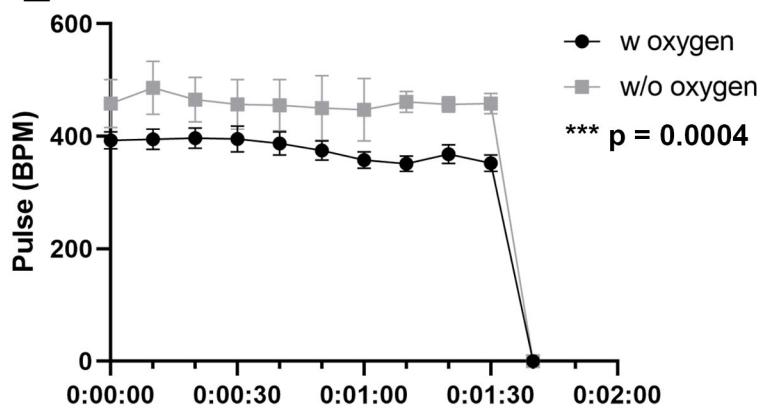
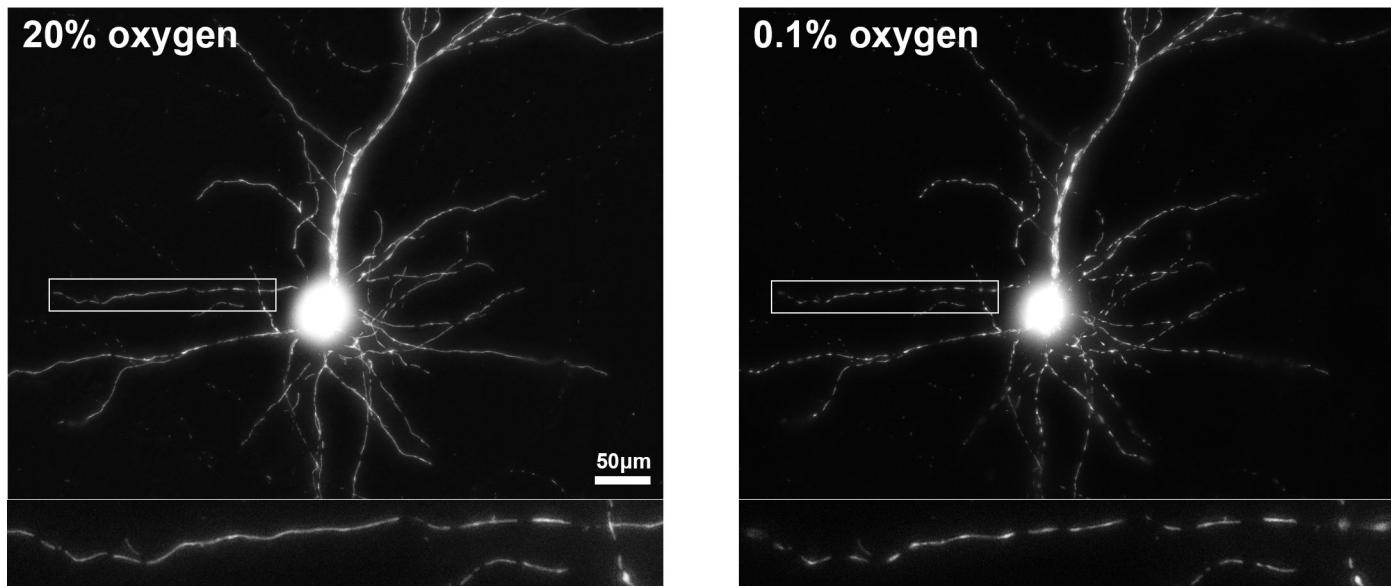
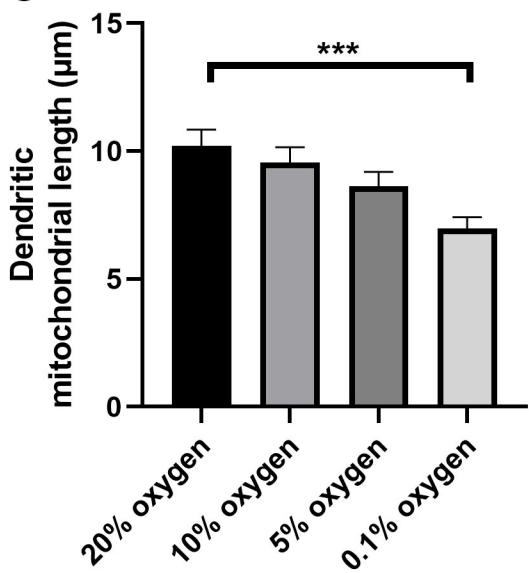
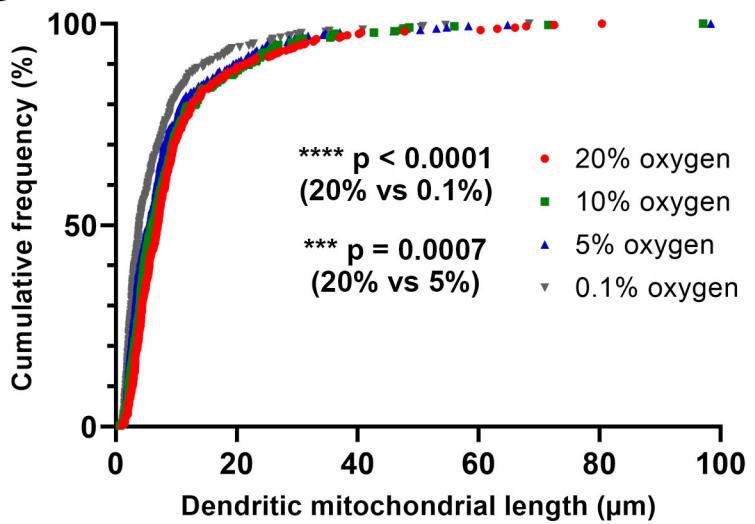


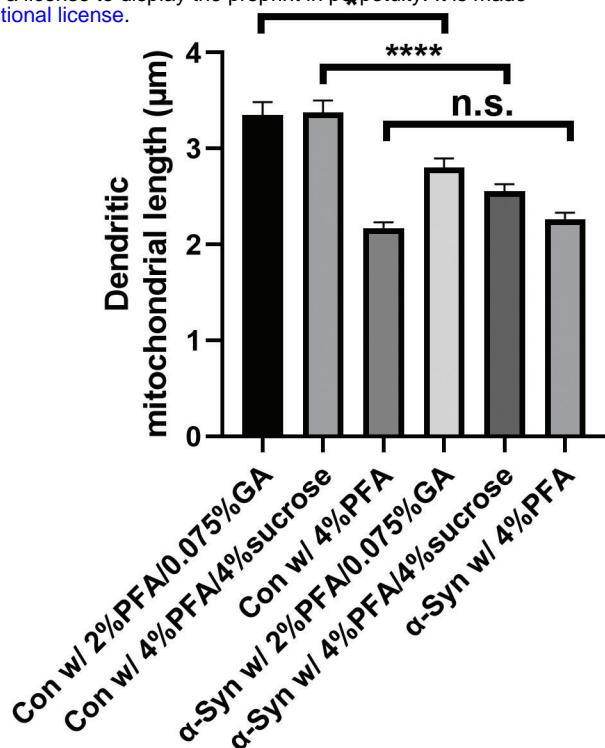
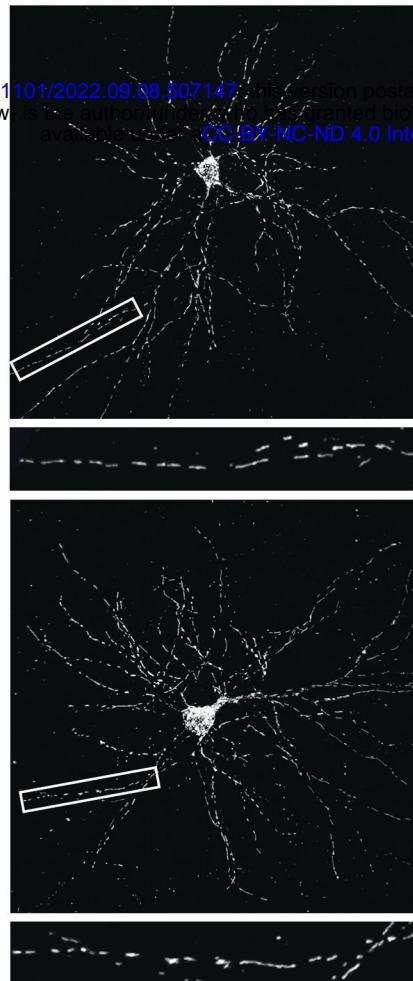
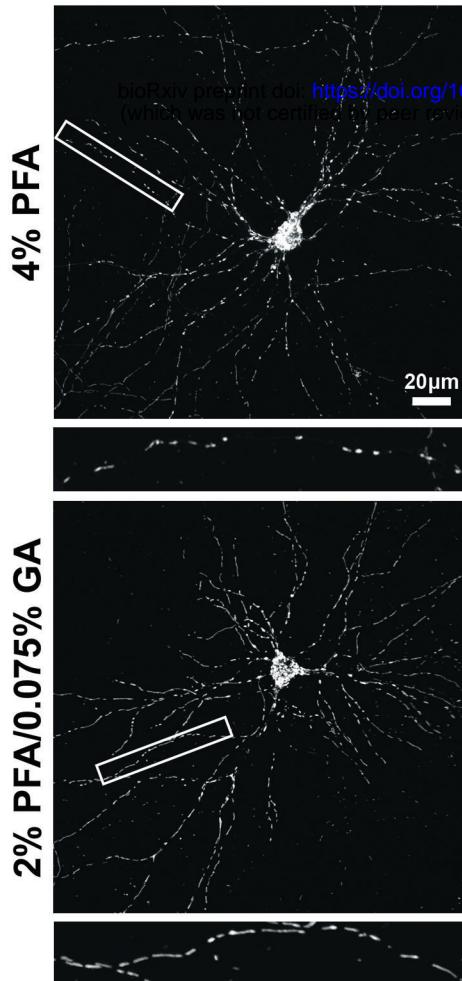
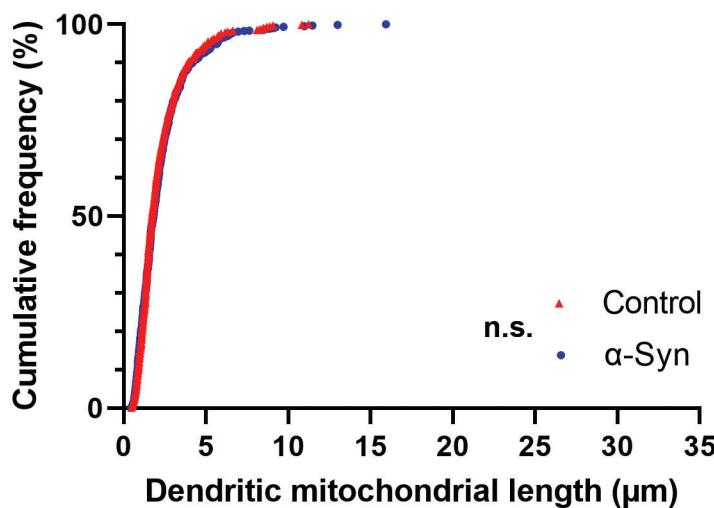
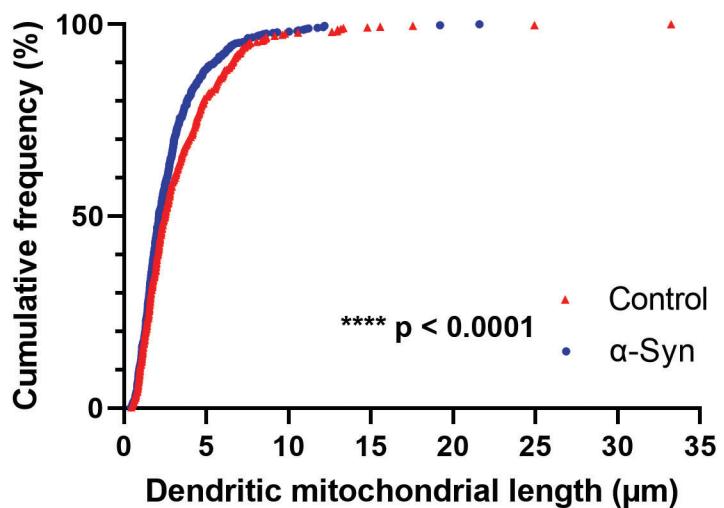
Figure 1

Indirect perfusion (10ml PBS before)

Direct perfusion




Figure 2






A**B****C****D****E****Figure 3**

A

DIV17

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.08.507147>; this version posted September 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B**C****D****Figure 4**

A**Control** **α -synuclein****B****C****4% PFA****2% PFA/0.075% GA****Figure 5**

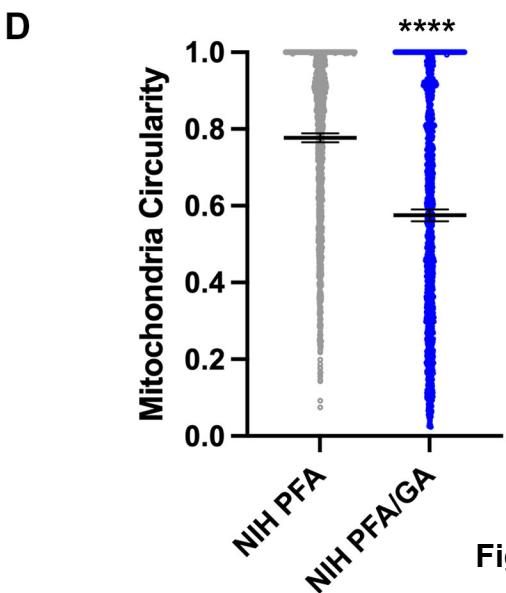
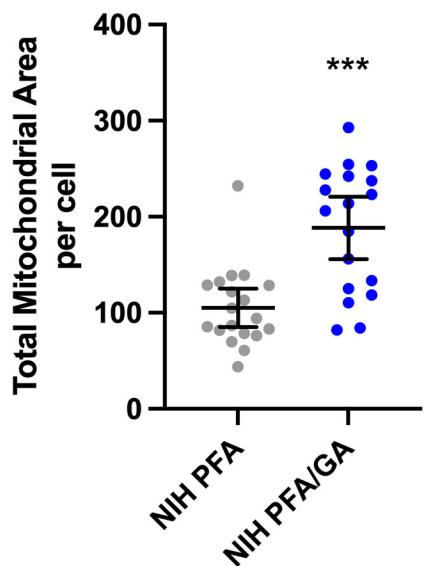
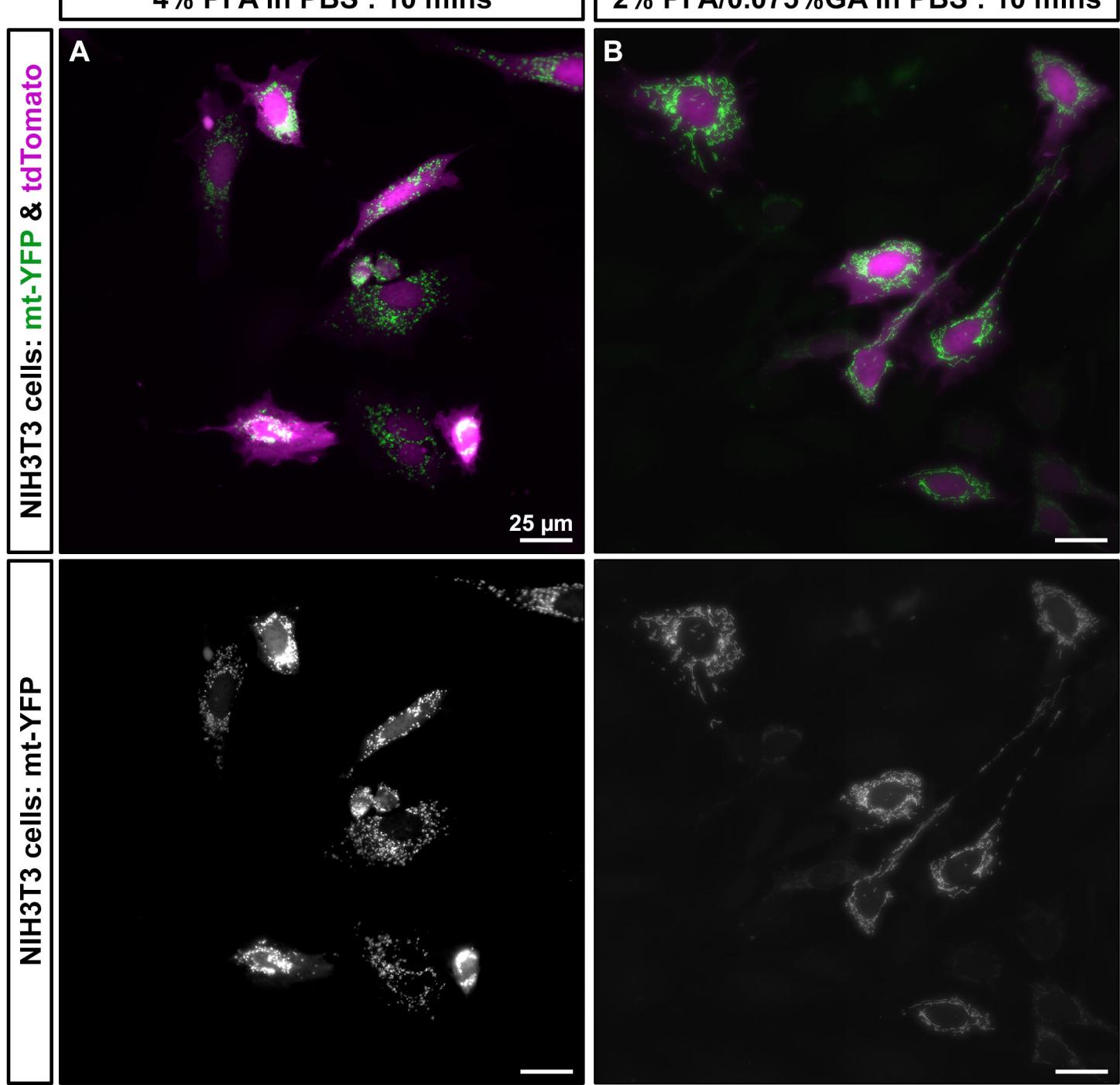
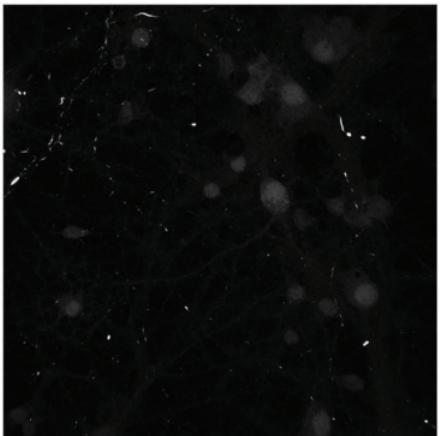
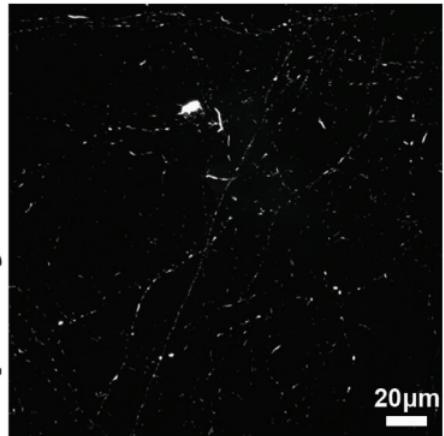





Figure S1



Figure S2

p- α -synuclein

PFA

PFA/GA

PFA/Sucrose

Control

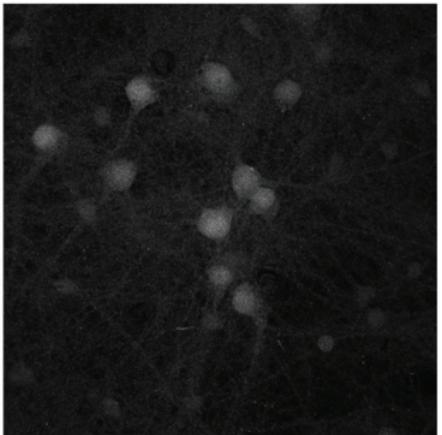
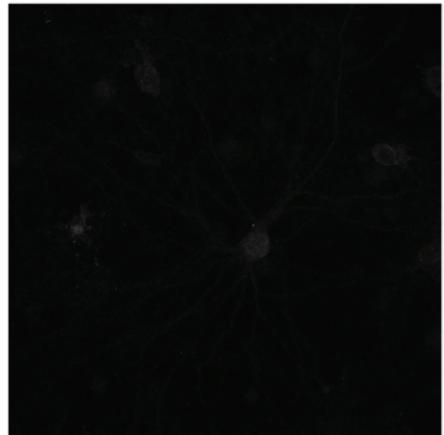



Figure S3