

1 Expression of m⁶A RNA methylation markers in the hypothalamus 2 of Atlantic salmon

3

4 Authors:

5 Ehsan Pashay Ahi ¹

6 Email: ehsan.pashayahi@helsinki.fi

7

8 Morgane Frapin ¹

9 Email: morgane.frapin@helsinki.fi

10

11 Mikaela Hukkanen ^{1,2}

12 Email: mikaela.hukkanen@helsinki.fi

13

14 Craig R. Primmer ^{1,3}

15 Email: craig.primmer@helsinki.fi

16

17 1. Organismal and Evolutionary Biology Research Programme, Faculty of Biological and
18 Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland

19 2. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science
20 (HiLIFE), University of Helsinki, Helsinki, Finland

21 3. Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki,
22 Finland

23

24 *Corresponding Author:*

25 Ehsan Pashay Ahi ¹,

26 Email: ehsan.pashayahi@helsinki.fi

27

28 Abstract

29 Methylation at the N6-position of adenosine, m⁶A, is the most abundant mRNA modification in
30 eukaryotes. It is a highly conserved universal regulatory mechanism controlling gene expression
31 in a myriad of biological processes. The role of m⁶A methylation in sexual maturation, however,
32 has remained largely unexplored. While the maturation process is known to be affected by many

33 genetic and environmental factors, the molecular mechanisms causing variation in the timing of
34 maturation are still poorly understood. Hence, investigation of whether a widespread mechanism
35 like m⁶A methylation could be involved in controlling of the maturation timing is warranted. In
36 Atlantic salmon (*Salmo salar*), two genes associated with the age at maturity in human, *vgl3* and
37 *six6*, have been shown to play an important role in maturation timing. In this study, we
38 investigated the expression of 16 genes involved in the regulation of m⁶A RNA methylation in
39 the hypothalamus of Atlantic salmon with different homozygous combinations of *late* (L) and
40 *early* (E) alleles for *vgl3* and *six6* genes. We found differential expression of *ythdf2.2* which
41 encodes an m⁶A modification reader and promotes mRNA degradation. Its expression was
42 higher in *six6*LL* compared to other genotypes as well as immature males compared to matures.
43 In addition, we found that the expression levels of genes coding for an eraser, *alkbh5*, and for a
44 reader, *ythdf1*, were higher in the hypothalamus of females than in males across all the different
45 genotypes studied. Our results indicate a potential role of the m⁶A methylation process in sexual
46 maturation of Atlantic salmon, and therefore, provide the first evidence for such regulatory
47 mechanism in the hypothalamus of any vertebrate. Investigation of additional vertebrate species
48 is warranted in order to determine the generality of these findings.

49

50 **Keywords:**

51 Gene expression, m⁶A RNA methylation, Atlantic salmon, sexual maturation, *six6*, *vgl3*,

52

53 **Introduction**

54 Several post-transcriptional mechanisms allow cells to regulate gene expression by acting at the
55 level of transcription and/or translation, such as microRNAs, alternative splicing and RNA
56 methylation (Cai et al., 2009; Frye and Blanco, 2016; Singh and Ahi, 2022). These mechanisms
57 are essential to produce a vast cellular diversity from cells with an identical genome but also to
58 adapt to changing environments at the organismal level. Methylation at the N6 position of
59 adenosine (so called N6-Methyladenosine or m⁶A) is the most abundant and highly conserved
60 mRNA modification in eukaryotes, which has recently emerged as a universal regulatory
61 mechanism controlling gene expression in myriad of biological processes (Zaccara et al., 2019).
62 The N6-Methyladenosine, m⁶A, controls the fate of mRNAs within cells by acting on processes

63 such as mRNA stability, splicing and transport. These modifications are added by the m⁶A
64 methyltransferase complex, which includes proteins called writers (e.g. Mettl3, Mett14 and
65 Wtap), and can be removed by demethylases called erasers (e.g. Fto and Alkbh5) (Zaccara et al.,
66 2019). The RNA m⁶A modifications are recognized by proteins called readers (e.g. Ythdf1/2/3
67 and Ythdc1/2) that guide methylated mRNA towards specific fates such as degradation,
68 stabilization, transportation, and promotion or inhibition of translation (Liao et al., 2018).

69 The m⁶A RNA modification has been recently found to be crucially involved in reproduction,
70 and the tip of the iceberg has just started to be revealed by findings on the essential role of m⁶A
71 modification during gametogenesis (Lasman et al., 2020; Xia et al., 2018). However, there is no
72 knowledge on the potential role of m⁶A modification upstream of initiating and orchestrating
73 sexual maturation along hypothalamus-pituitary-gonadal (HPG) axis, and hence its possible role
74 in contributing to variation in maturation timing. The complex molecular mechanisms causing
75 variation in maturation timing are generally poorly understood (Howard and Dunkel, 2019;
76 Leka-Emiri et al., 2017; Mobley et al., 2021), which makes it even more tempting to investigate
77 whether a universal mechanism such as m⁶A RNA modification may contribute to maturation
78 timing variation.

79 Age at maturity, a critical trait directly determined by mechanisms controlling maturation timing,
80 affects fitness traits such as survival and reproductive success (Mobley et al., 2021). Particularly
81 when it comes to an economically important and ecologically vulnerable fish species such as
82 Atlantic salmon (*Salmo salar*), understanding the underlying biology of age at maturity is of
83 paramount importance. Interestingly, two genes that have been associated with age at maturity in
84 human, *VGLL3* and *SIX6* (Cousminer et al., 2016; Perry et al., 2014), also play a major role in
85 pubertal timing of Atlantic salmon (Barson et al., 2015; Sinclair-Waters et al., 2020). The gene
86 *vgl3* (the vestigial-like family member 3 gene) is strongly associated with maturation timing in
87 both sexes of wild Atlantic salmon but also exhibits sex-specific maturation effects (Barson et
88 al., 2015; Czorlich et al., 2018). This association between *vgl3* genotype and maturation
89 probability has been validated in one year-old male parr in common garden settings (Debes et al.,
90 2021; Sinclair-Waters et al., 2021; Verta et al., 2020). In our recent studies, we also showed that
91 *vgl3* strongly affects the expression of reproductive axis genes in one year-old male Atlantic
92 salmon (Ahi et al., 2022b), and its regulatory effects on transcription of the gonadotropin

93 encoding genes (*fshb* and *lhb*) are predicted to be mediated by the Hippo signaling pathway (Ahi
94 et al., 2022a). The molecular mechanism by which *six6* (sine oculis homeobox 6) regulates
95 pubertal timing is not known. However, it seems that *six6* transcriptional regulation is not linked
96 to *vgl3* function and it is independent of Hippo signaling (Kurko et al., 2020).

97 In this study, we investigate the expression of 16 genes that have been found to code proteins
98 associated with the regulation of m⁶A modifications including 3 writers; *mettl3*, *mettl14*, and
99 *wtap*, 4 erasers; *alkbh5-1*, *alkbh5-2*, *fto-1* and *fto-2*, and 9 readers; *ythdc1-1*, *ythdc1-2*, *ythdc2*,
100 *ythdf1-1*, *ythdf1-2*, *ythdf1-3*, *ythdf2-1*, *ythdf2-2* and *ythdf3*. We compare their mRNA expression
101 between different homozygous combinations of *late* (L) and *early* (E) alleles for *vgl3* and *six6*
102 genes in the hypothalamus of both sexes of one year old Atlantic salmon. In males, we also
103 compared the expression of m⁶A methylation markers between immature and mature individuals.
104 To our knowledge, this is the first study addressing differences in the expression of m⁶A
105 methylation markers in respect to sexual maturation in the hypothalamus. These findings provide
106 the foundation for future investigation of the role of m⁶A methylation in HPG axis control of
107 sexual maturation in fish and other vertebrates.

108

109 Materials and methods

110 Fish rearing, genotyping and tissue sampling

111 The Atlantic salmon used in this study were created using parental individuals from a 1st
112 generation hatchery broodstock originating from the Iijoki population that is maintained at the
113 Natural Resources Institute (Luke) Taivalkoski hatchery in northern Finland. Unrelated parents
114 were chosen from broodstock individuals that had earlier been genotyped for 177 SNPs on Ion
115 Torrent or Illumina (Miseq or Next-Seq) sequencing platforms as outlined in Aykanat et al.,
116 2016. These SNPs included SNPs linked to the *vgl3* and *six6* genes that were earlier shown to be
117 associated with age at maturity in salmon (Barson et al., 2015). We selected parents that were
118 heterozygotes for both *vgl3* and *six6* (*vgl3*EL* and *six6*EL*) in order for full-sib families to
119 contain offspring with all *vgl3* - *six6* genotype combinations. We avoided crossing closely
120 related individuals (those with grandparents in common) by using SNP-based pedigree
121 reconstruction as in Debes et al., 2021. From this point onwards, four character genotypes will be

122 used to describe an individual's genotype at the focal loci, *vgl3* and *six6*. The first two
123 characters indicate the genotype at the *vgl3* locus and the last two characters indicate the
124 genotype at the *six6* locus. The locus is indicated in subscript text after the genotype. In order to
125 minimize unwanted variation, all individuals in this study originate from a single full-sib family.
126 For simplicity, only the four homozygous genotype combinations (*vgl3*EE* or *vgl3*LL* and
127 *six6*EE* or *six6*LL*) were examined. This enabled the assessment of the expression patterns of
128 all the possible homozygous *vgl3* and *six6* genotypes within an otherwise similar genetic
129 background. Other rearing, tagging and genotyping details are as described in Sinclair-Waters et
130 al., 2021.

131 The fish were euthanized approximately one-year post-fertilization during the spawning season
132 in November with an overdose of the anesthetic buffered tricaine methane sulfonate (MS-222)
133 and dissected, and sex and maturation status were determined visually by observing the presence
134 of female or male gonads as outlined in Verta et al., 2020. The maturation status of males was
135 classified as immature (no phenotypic signs of gonad maturation) and mature (large gonads
136 leaking milt). The mature or immature status of male salmon was determined by respectively the
137 presence or the absence of sperm leakage. At this age all the females were immature. Whole
138 hypothalami of salmon with the genotypes of interest were dissected and snap-frozen in liquid
139 nitrogen before being stored at -80 °C.

140 **RNA extraction and cDNA synthesis**

141 RNA was isolated using NucleoSpin RNA kit (Macherey-Nagel GmbH & Co. KG). The
142 hypothalami were transferred to tubes with 1.4 mm ceramic beads (Omni International), Buffer
143 RA1 and DDT (350ul RA1 and 3,5ul DDT 1M) and homogenized using Bead Ruptor Elite
144 (Omni International) with tissue specific program (4m/s, 3x20s). Remaining steps of RNA
145 isolation were conducted as in the manufacturer's protocol. RNA was eluted in 40 µl of nuclease
146 free water. Quality and concentration of the samples were measured with NanoDrop ND-1000.
147 The extracted RNA (400ng for females, 500ng for males per sample) was subsequently reverse-
148 transcribed to cDNA using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.)

149 **Primer design and qPCR**

150 We used parologue-specific gene sequences obtained from the recently annotated *Salmo salar*
151 genome in the Ensembl database, <http://www.ensembl.org>. The parologue gene sequences were
152 aligned using CLC Genomic Workbench (CLC Bio, Denmark) in order to identify parologue
153 specific regions for designing the primers (Ahi et al., 2014). The steps of primer designing are as
154 described in Ahi et al., 2019, using two online tools: Primer Express 3.0 (Applied Biosystems,
155 CA, USA) and OligoAnalyzer 3.1 (Integrated DNA Technology) (Supplementary data). The
156 qPCR reactions were prepared as described in Ahi et al., 2018, using PowerUp SYBR Green
157 Master Mix (Thermo Fischer Scientific), and performed on a Bio-Rad CFX96 Touch Real Time
158 PCR Detection system (Bio-Rad, Hercules, CA, USA). The details of the qPCR program and
159 calculation of primer efficiencies are described in Ahi et al., 2019.

160 **Data analysis**

161 The Cq values of the target genes were normalized with the geometric mean of the Cq values of
162 two references genes, *elf1a* and *hprt1*, following the formula $\Delta Cq_{target} = Cq_{target} - Cq_{reference}$.
163 These ΔCq_{target} values have been adjusted for qPCR batch effect using ComBat (v3) (Johnson et
164 al., 2007) from sva R package (Surrogate Variable Analysis, v3.40.0) (Leek et al., 2012). The
165 following calculations have been made on the qPCR batch adjusted values. For each gene, a
166 biological replicate with the lowest expression level across all the used in each comparison
167 (calibrator sample) was selected to calculate $\Delta\Delta Cq$ values ($\Delta Cq_{target} - \Delta Cq_{calibrator}$). The relative
168 expression quantities (RQ values) were calculated as $2^{-\Delta\Delta Cq}$, and their fold changes (logarithmic
169 values of RQs) were used for statistical analysis (Pfaffl, 2001). The effects of genotype and
170 maturity status were modeled separately: the between- genotype effects were examined within
171 maturity stages, whereas the between-maturity stages were examined within each genotype. An
172 ANOVA (Analysis of variance) test was applied for the analysis between genotypes. Benjamini-
173 Hochberg method (Benjamini & Hochberg 1995) was used for multiple-comparison correction.
174 In cases where the variable of interest (genotype or maturity) explained variation significantly
175 ($p < 0.10$) after correcting for multiple comparisons, further post-hoc tests were conducted. Post-
176 hoc tests were calculated using Tukey's Honest Significant Difference test. Statistical analyses
177 were conducted using R software (version 4.1.1).

178

179 **Results**

180 **Expression levels of m⁶A methylation markers in hypothalamus of Atlantic salmon**

181 We first assessed the overall expression levels of genes encoding for proteins involved in the
182 regulation of m6A methylation in males (maturity status separately) and in females (Fig. 1).
183 Among the writers, *wtap* had the highest expression level (lowest dCq values), whereas *mettl3*
184 displayed the lowest expression level (highest dCq values) (Fig. 1A). The paralogous genes of
185 the two erasers showed different expression levels as well, i.e. *alkhb5-1* > *alkhb5-2* and *fto-1* >
186 *fto-2* (Fig. 1B). Similarly, the paralogous genes of three readers showed differences in their
187 expression level, i.e. *ythdc1-2* > *ythdc1-1*, *ythdf1-3* > *ythdf1-2* > *ythdf1-1*, and *ythdf2-1* > *ythdf2-2*
188 (Fig. 1C). However, the expression level difference between *ythdf2-1* and *ythdf2-2* appeared to
189 be minor compared to the differences between the paralogs of the other genes. Among the
190 readers, *ythdf1-3* had the highest expression level, whereas *ythdc2* exhibited the lowest
191 expression level (Fig. 1C). In general, the sex and maturity status did not seem to have any effect
192 on expression level differences between the paralogs.

193 **Expression differences of m⁶A methylation markers between the genotypes**

194 Next, we explored the expression differences of the m6A methylation regulators between the
195 genotypes within each sex and maturity status. In immature males, we found expression
196 differences between the genotypes for only one parologue of a reader gene, *ythdf2-2*, which
197 displayed higher expression in the genotype combinations with homozygous *late* allele of *six6*
198 (*six6*LL*) (Fig. 2). We did not observe any *vgl3* or *six6* genotype-specific expression difference
199 in the hypothalamus of either mature males or immature females (Fig. 3 and 4).

200 **Expression differences of m⁶A methylation markers between the maturity status in males**

201 The comparison between maturity stages was only possible within two genotype combinations
202 (*vgl3*EE/six6*LL* and *vgl3*LL/six6*EE*), as other genotype combinations did not have both
203 immature and mature males. Within *vgl3*EE/six6*LL* individuals, we observed higher
204 expression of *ythdf2-2* in the hypothalami of immature males compared to mature males (Fig. 5).
205 Whereas, within *vgl3*LL/six6*EE* genotype, we found a paralog of another reader gene, *ythdf1-2*,
206 showing similar expression pattern with higher expression in the hypothalami of immature
207 males compared to mature males (Fig. 6).

208 **Expression differences of m⁶A methylation markers between the sexes**

209 Finally, we compared the expression levels of the m⁶A methylation regulators between sexes
210 within the genotypes classes containing both immature males and females (Fig. 7). We found a
211 paralogous gene of an eraser *alkbh5-1* and a paralogous gene of a reader, *ythdf1-3*, to be
212 differentially expressed between the males and females in all the genotypes. Interestingly, the
213 direction of these expression pattern differences was always the same for both genes; showing
214 higher expression levels in the hypothalamus of females than males. Also, another paralogous
215 gene of the same reader, *ythdf1-2*, showed similar tendency of higher expression in females but
216 the differences were not statistically significant. These findings indicate sex-specific, but not
217 genotype-specific, expression level differences for both of these genes in the hypothalamus of
218 Atlantic salmon.

219

220 **Discussion**

221 The expression of the m⁶A RNA modification regulators in hypothalamus has never been the
222 focus of research in fish reproduction to date. This is somewhat surprising, not only because the
223 hypothalamus is an important upstream organ regulating sexual maturation (Kah et al., 1993),
224 but also due to the widespread roles of m⁶A RNA methylation, as the most abundant RNA
225 modification in eukaryotic cells, in regulation of numerous biological processes (Zaccara et al.,
226 2019). Particularly, m⁶A RNA modification has been described as an essential mechanism in
227 gonadal development and fertility (Mu et al., 2022). However, in the downstream sex organs, i.e.
228 gonads, the role and expression of some of the m⁶A RNA modification markers have been
229 recently studied in fish (L. Wang et al., 2020; Xia et al., 2018; Zhao et al., 2021). Thus, in this
230 study, we first set out to investigate, for the first time, whether the m⁶A RNA modification
231 regulators are expressed in hypothalamus of a fish species (Atlantic salmon). We found that at
232 least 16 genes encoding the m⁶A RNA modification regulators (writers, erasers and readers) are
233 expressed in the hypothalamus but in variable levels (Fig. 1). Importantly, it appeared that even
234 the paralogs of the same eraser and reader genes can have very variable expression levels in the
235 hypothalamus indicating potential differences in the functional importance of these genes at
236 parologue level.

237 The most important finding in this study was the differential expression of *ythdf2-2* in the
238 hypothalamus of male Atlantic salmon (Fig. 2), i.e. with reduced expression in mature compared
239 to immature individuals with the *vgl3*EE/six6*LL* genotype combination, as well as reduced
240 expression in *six6*EE* genotype within immature groups. In Atlantic salmon, there are two
241 paralogous genes (*ythdf2-1* and *ythdf2-2*) for *Ythdf2*, encoding a member of YT521-B homology
242 domain family (YTHDF) proteins, which acts as a reader of m⁶A and its binding to m⁶A-
243 containing RNA leads to degradation of the RNA (Du et al., 2016). In mice, *Ythdf2* deficiency
244 results in female infertility and has pivotal role in maternal RNA degradation during oocyte
245 maturation (Ivanova et al., 2017). Another study in zebrafish also reported the pivotal role of
246 *ythdf2* in the maternal-to-zygotic transition by orchestrating the clearance of almost one-third of
247 maternal mRNAs in zygote (Zhao et al., 2017). More recent studies in mice have revealed that
248 *Ythdf2*-mediated mRNA degradation on m⁶A-modified target transcripts is required for
249 spermatogenesis and fertility (Qi et al., 2022; Zhao et al., 2021). However, no study has
250 investigated the potential role of *Ythdf2* upstream of HPG axis (i.e. hypothalamus) during sexual
251 maturation. In mice, *Ythdf2* has been shown to be essential during embryonic neural
252 development by promoting m⁶A-dependent degradation of genes related to neuron differentiation
253 (Li et al., 2018). In chicken hypothalamus, RNA m⁶A modification seems to be involved in the
254 regulation of circadian rhythms under stressful conditions, and the expression m⁶A methylation
255 markers including *Ythdf2* show correlated oscillation with the clock genes (Y. Yang et al.,
256 2022a). Studies in chickens and rats have shown that the level of expression of *Ythdf2* is
257 modified by the environment (i.e. light exposure and maternal diet during gestation) in the
258 hypothalamus (Frapin et al., 2020; Y. Yang et al., 2022b). Interestingly, even though the direct
259 hypothalamic role of *Ythdf2* during sexual maturation has not been explored yet, a decrease in
260 the level of m⁶A methylation by increased hypothalamic expression of *Fto* (a m6A eraser) has
261 been shown to cause early onset of puberty in female rat (X. Yang et al., 2022). The opposite
262 effect of delayed puberty was also obtained by knockdown of *Fto* (X. Yang et al., 2022). The
263 result of the latter study on female rat together with our findings about *ythdf2* indicate that m⁶A
264 modification might be involved in mediated sexual maturation in vertebrates by fine tuning the
265 hypothalamic mRNA levels either through increased expression of a m⁶A eraser (e.g. *Fto* in rat)
266 or reduced expression of m⁶A reader (*ythdf2* in Atlantic salmon).

267 The genotype dependent expression difference of *ythdf2* was also observed within immature
268 individuals (Fig. 5). This expression difference was more likely to be linked to *six6* genotype
269 than *vgl3* genotype, since no difference was observed between *vgl3*LL* and *vgl3*EE* when
270 *six6* genotype remained the same (i.e. it was fixed on *six6*LL*). In respect to *six6* genotype,
271 however, *ythdf2* appeared to have higher expression in *six6*EE* than *six6*LL*. This can be
272 functionally explained, as mentioned above, by the fact that that puberty may favor reduced
273 expression of *ythdf2* and increased level of its mRNA targets in hypothalamus and since *six6*EE*
274 are more prone to enter puberty than *six6*LL*. But this does not explain why a similar pattern
275 was not observed between *vgl3*LL* and *vgl3*EE*, unless there might be an unknown regulatory
276 link only between *six6* and *ythdf2* and not between *vgl3* and *ythdf2*. In mammals, it has been
277 shown that *six6* is involved in development of hypothalamic GnRH neurons, which are essential
278 for the onset of puberty (Pandolfi et al., 2019). Moreover, Ythdf2-mediated mRNA clearance is
279 also demonstrated to be important for neuron maturation in the developing forebrain of mice (Li
280 et al., 2018). However, deeper understanding of the connection between *six6* genotypes and
281 *ythdf2* expression requires further investigations.

282 Since no direct regulatory link was identified between *six6* and *ythdf2*, one plausible scenario is
283 an indirect hierarchical regulatory connection between them (Ahi and Sefc, 2018). We have
284 recently described such an indirect hierarchical regulatory connection in the pituitary of Atlantic
285 salmon between *vgl3* and *jun*; an upstream regulator of sexual maturation (Ahi et al., 2022a). In
286 mammals, for instance, it is already known that *Six3* and *Six6* together induce the expression of
287 the *Hes5* transcription repressor (Diacou et al., 2018), a negative regulator of neurogenesis which
288 is highly expressed in the anterior part of developing hypothalamus (Aujla et al., 2015). A well-
289 known direct downstream target of *Hes5* in brain is a gene called *Fbw7* or *Fbxw7* (Sancho et al.,
290 2013), which encodes a member of the F-box protein family and controls neural stem cell
291 differentiation in various parts of the brain (Hoeck et al., 2010). The transcriptional repression of
292 *Fbw7* by *Hes5* is essential for the correct specification of neural cell fates (Sancho et al., 2013).
293 Interestingly, it has been recently shown that Ythdf2 is a direct substrate for *Fbw7* and their
294 interaction leads to proteolytic degradation of Ythdf2 (Xu et al., 2021). These findings in
295 mammals indicate a potential hierarchical regulatory axis consisting of *Six6/Hes5/Fbw7/Ythdf2*
296 which can explain a molecular link between *Six6* and *Ythdf2*. However, this model still does not

297 explain the differential transcriptional regulation of *ythdf2* by distinct *six6* genotypes in the
298 hypothalamus of Atlantic salmon.

299 Another interesting finding in this study was the sex-specific differential expression of *alkbh5-1*
300 with higher expression in the female hypothalamus (Fig. 7). The product of this gene is a well
301 known m⁶A demethylase which acts as an eraser of m⁶A on RNA and involved in a variety of
302 biological processes but has thus far mainly been studied in the context of human diseases (J.
303 Wang et al., 2020). *Alkbh5* deficient male mice, have significantly impaired fertility resulting
304 from apoptosis that affects meiotic metaphase-stage spermatocytes (Zheng et al., 2013). A later
305 study showed the broader role of *Alkbh5* in normal spermatogenesis and male fertility by
306 controlling splicing and stability of long 3'-UTR mRNAs in male germ cells (Tang et al., 2017).
307 During the oogenesis of *Xenopus laevis*, the expression level of *Alkbh5* was found to be very
308 high in the growing oocyte (Qi et al., 2016). But knowledge on potential role of *Alkbh5* in female
309 sexual maturation has remained limited. During mammalian neural development, *Alkbh5* is
310 highly expressed in different parts of brain including a dense expression in hypothalamus (Du et
311 al., 2020). Future studies are required to understand potential role of *alkbh5* in hypothalamus in
312 respect to sexual maturation. The higher hypothalamic expression of *alkhb5-1* in the
313 hypothalamus of female Atlantic salmon might indicate an overall lower level of m⁶A
314 methylation in females but the biological relevance of this sex-specific difference is unclear and
315 no prior evidence has been shown such a bias in other species.

316 A paralog of a reader gene, *ythdf1-3*, showed sex-specific differential expression, i.e. higher
317 expression in the female hypothalamus (Fig. 7). *Ythdf1* is a well-known m⁶A reader which
318 facilitates translation initiation through synergistic interactions with initiation factors and
319 promotion of ribosome loading on m⁶A-modified mRNAs (Wang et al., 2015). Although the
320 specific role(s) of *Ythdf1* has not been explored in the hypothalamus, *Ythdf1* has been shown to
321 play various roles in central nervous system such as hippocampus-dependent learning and
322 memory processing (Shi et al., 2018), spinal axon guidance (Zhuang et al., 2019), cerebellar fiber
323 growth (Yu et al., 2021), and nerve regeneration (Livneh et al., 2020). Interestingly, it is shown
324 in mice that *Ythdf1* is a direct post-transcriptional target for *Alkbh5* and its mRNA m⁶A
325 demethylation is mediated by eraser activity of *Alkbh5* which leads to increased expression level
326 of *Ythdf1* (Han et al., 2021). This is consistent with our findings, and the identical expression

327 patterns between *alkbh5-1* and *ythdf1-3*, both with higher expression in the hypothalamus of
328 females, suggests a regulatory connection between them in salmon similar to the one observed in
329 mice.

330

331 **Conclusions**

332 This study provides the first characterization of expression patterns in all types of m⁶A RNA
333 modification regulator genes, i.e. writers, erasers and readers, in fish hypothalamus. Moreover, it
334 demonstrates the existence of paralog-specific variation in expression of these genes in the
335 hypothalamus of Atlantic salmon indicating potential differences in their function in this organ.
336 On the other hand, both genotype- and maturity status-dependent expression differences were
337 detected for a well-known reader gene involved in mRNA degradation, *ythdf2-2*, i.e. higher
338 expression in immature and *late* (L) puberty allele of *six6* in the hypothalamus of male Atlantic
339 salmon. This suggests for the first time in a vertebrate species a potential role of *ythdf2-2* in
340 sexual maturation in hypothalamus. In addition to *ythdf2-2*, we also found sex-specific
341 expression (females > males) of an eraser gene, *alkbh5-1* and its downstream reader target,
342 *ythdf1-3*, which may implicate an unknown sex-dependent mechanism regulating m⁶A RNA
343 modification regulator genes in the hypothalamus of Atlantic. Further transcriptional and
344 functional investigations are required to understand the underlying regulatory mechanisms
345 linking genotype, maturity status and sex to these m⁶A RNA modification regulators.

346

347 **Acknowledgements**

348 We acknowledge Jaakko Erkinaro and staff at the Natural Resources Institute Finland (Luke)
349 hatchery in Laukaa and members of the Evolution, Conservation and Genomics research group
350 for their help in coordinating and collecting gametes for crosses. We thank Nikolai Pivchenko
351 and a number of other assistants for help with fish husbandry and Iikki Donner for dissection and
352 laboratory assistance.

353

354 **Author Contributions**

355 EP, MF, CRP conceived the study; EP and MF performed experiments; MH, MF and EP
356 developed methodology and analyzed the data; EP, MF and CRP interpreted results of the

357 experiments; EP, MF and CRP drafted the manuscript, with EP having the main contribution,
358 and all authors approved the final version of manuscript.

359

360 **Funding Source Declaration**

361 Funding was provided by Academy of Finland (grant numbers 307593, 302873, 327255 and
362 342851), and the European Research Council under the European Articles Union's Horizon 2020
363 research and innovation program (grant no. 742312).

364

365 **Competing financial interests**

366 Authors declare no competing interests

367

368 **Ethical approval**

369 Animal experimentation followed European Union Directive 2010/63/EU under license
370 ESAVI/35841/2020 granted by the Animal Experiment Board in Finland (ELLA).

371

372 **Data availability**

373 All the gene expression data generated during this study are included in this article as supplementary file.

374

375 **References**

376 Ahi, E.P., Kapralova, K.H., Pálsson, A., Maier, V.H., Gudbrandsson, J., Snorrason, S.S.,
377 Jónsson, Z.O., Franzdóttir, S.R., 2014. Transcriptional dynamics of a conserved gene
378 expression network associated with craniofacial divergence in Arctic charr. *Evodevo* 5, 40.
379 <https://doi.org/10.1186/2041-9139-5-40>

380 Ahi, E.P., Richter, F., Lecaudey, L.A., Sefc, K.M., 2019. Gene expression profiling suggests
381 differences in molecular mechanisms of fin elongation between cichlid species. *Sci. Rep.* 9.
382 <https://doi.org/10.1038/s41598-019-45599-w>

383 Ahi, E.P., Sefc, K.M., 2018. Towards a gene regulatory network shaping the fins of the Princess
384 cichlid. *Sci. Rep.* 8, 9602. <https://doi.org/10.1038/s41598-018-27977-y>

385 Ahi, E.P., Sinclair-Waters, M., Donner, I., Primmer, C.R., 2022a. A pituitary gene network
386 linking *vgl13* to regulators of sexual maturation in male Atlantic salmon. *bioRxiv*
387 2022.06.20.496813. <https://doi.org/10.1101/2022.06.20.496813>

388 Ahi, E.P., Sinclair-Waters, M., Moustakas-Verho, J., Jansouz, S., Primmer, C.R., 2022b. Strong

389 regulatory effects of *vgl3* genotype on reproductive axis gene expression in juvenile male
390 Atlantic salmon. *Gen. Comp. Endocrinol.* 325, 114055.
391 <https://doi.org/10.1016/j.ygcen.2022.114055>

392 Ahi, E.P., Singh, P., Lecaudey, L.A., Gessl, W., Sturmbauer, C., 2018. Maternal mRNA input of
393 growth and stress-response-related genes in cichlids in relation to egg size and trophic
394 specialization. *Evodevo* 9. <https://doi.org/10.1186/s13227-018-0112-3>

395 Auja, P.K., Bogdanovic, V., Naratadam, G.T., Raetzman, L.T., 2015. Persistent expression of
396 activated notch in the developing hypothalamus affects survival of pituitary progenitors and
397 alters pituitary structure. *Dev. Dyn.* 244, 921–934. <https://doi.org/10.1002/dvdy.24283>

398 Aykanat, T., Lindqvist, M., Pritchard, V.L., Primmer, C.R., 2016. From population genomics to
399 conservation and management: a workflow for targeted analysis of markers identified using
400 genome-wide approaches in Atlantic salmon *Salmo salar*. *J. Fish Biol.* 89, 2658–2679.
401 <https://doi.org/10.1111/jfb.13149>

402 Ayllon, F., Solberg, M.F., Glover, K.A., Mohammadi, F., Kjærner-Semb, E., Fjelldal, P.G.,
403 Andersson, E., Hansen, T., Edvardsen, R.B., Wargelius, A., 2019. The influence of *vgl3*
404 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon. *BMC*
405 *Genet.* 20, 44. <https://doi.org/10.1186/s12863-019-0745-9>

406 Barson, N.J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G.H., Fiske, P., Jacq, C., Jensen,
407 A.J., Johnston, S.E., Karlsson, S., Kent, M., Moen, T., Niemelä, E., Nome, T., Næsje, T.F.,
408 Orell, P., Romakkaniemi, A., Sægrov, H., Urdal, K., Erkinaro, J., Lien, S., Primmer, C.R.,
409 2015. Sex-dependent dominance at a single locus maintains variation in age at maturity in
410 salmon. *Nature* 528, 405–408. <https://doi.org/10.1038/nature16062>

411 Cai, Y., Yu, X., Hu, S., Yu, J., 2009. A Brief Review on the Mechanisms of miRNA Regulation.
412 *Genomics, Proteomics Bioinforma.* [https://doi.org/10.1016/S1672-0229\(08\)60044-3](https://doi.org/10.1016/S1672-0229(08)60044-3)

413 Cousminer, D.L., Widén, E., Palmert, M.R., 2016. The genetics of pubertal timing in the general
414 population: Recent advances and evidence for sex-specificity. *Curr. Opin. Endocrinol.*
415 *Diabetes Obes.* 23, 57–65. <https://doi.org/10.1097/MED.0000000000000213>

416 Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P., Primmer, C.R., 2018. Rapid sex-specific
417 evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. *Nat. Ecol.*
418 *Evol.* 2, 1800–1807. <https://doi.org/10.1038/s41559-018-0681-5>

419 Debes, P. V, Piatchenko, N., Ruokolainen, A., Ovaskainen, O., Moustakas-Verho, J.E., Parre,
420 N., Aykanat, T., Erkinaro, J., Primmer, C.R., 2021. Polygenic and major-locus contributions
421 to sexual maturation timing in Atlantic salmon. *Mol. Ecol.*
422 <https://doi.org/10.1111/MEC.16062>

423 Diacou, R., Zhao, Y., Zheng, D., Cvekl, A., Liu, W., 2018. Six3 and Six6 Are Jointly Required
424 for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative
425 Regulation. *Cell Rep.* 25, 2510-2523.e4. <https://doi.org/10.1016/j.celrep.2018.10.106>

426 Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., Liu, M., Ma, J., Wu, L., 2016. YTHDF2 destabilizes

427 m 6 A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex.
428 *Nat. Commun.* 7, 1–11. <https://doi.org/10.1038/ncomms12626>

429 Du, T., Li, G., Yang, J., Ma, K., 2020. RNA demethylase Alkbh5 is widely expressed in neurons
430 and decreased during brain development. *Brain Res. Bull.* 163, 150–159.
431 <https://doi.org/10.1016/j.brainresbull.2020.07.018>

432 Frapin, M., Guignard, S., Meistermann, D., Grit, I., Mouillé, V.S., Paillé, V., Parnet, P., Amarger,
433 V., 2020. Maternal protein restriction in rats alters the expression of genes involved in
434 mitochondrial metabolism and epitranscriptomics in fetal hypothalamus. *Nutrients* 12.
435 <https://doi.org/10.3390/nu12051464>

436 Frye, M., Blanco, S., 2016. Post-transcriptional modifications in development and stem cells.
437 *Dev.* <https://doi.org/10.1242/dev.136556>

438 Han, Z., Wang, X., Xu, Z., Cao, Y., Gong, R., Yu, Yang, Yu, Ying, Guo, X., Liu, S., Yu, M.,
439 Ma, W., Zhao, Y., Xu, J., Li, X., Li, S., Xu, Y., Song, R., Xu, B., Yang, F., Bamba, D.,
440 Sukhareva, N., Lei, H., Gao, M., Zhang, W., Zagidullin, N., Zhang, Y., Yang, B., Pan, Z.,
441 Cai, B., 2021. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by
442 demethylating the mRNA of YTHDF1. *Theranostics* 11, 3000–3016.
443 <https://doi.org/10.7150/THNO.47354>

444 Hoeck, J.D., Jandke, A., Blake, S.M., Nye, E., Spencer-Dene, B., Brandner, S., Behrens, A.,
445 2010. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and
446 c-Jun. *Nat. Neurosci.* 13, 1365–1372. <https://doi.org/10.1038/nn.2644>

447 Howard, S.R., Dunkel, L., 2019. Delayed Puberty - Phenotypic Diversity, Molecular Genetic
448 Mechanisms, and Recent Discoveries. *Endocr. Rev.* <https://doi.org/10.1210/er.2018-00248>

449 Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., Moreira, P.N., Monahan, J.,
450 Carrieri, C., Enright, A.J., O'Carroll, D., 2017. The RNA m6A Reader YTHDF2 Is
451 Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte
452 Competence. *Mol. Cell* 67, 1059–1067.e4. <https://doi.org/10.1016/j.molcel.2017.08.003>

453 Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray expression
454 data using empirical Bayes methods. *Biostatistics* 8, 118–127.
455 <https://doi.org/10.1093/biostatistics/kxj037>

456 Kah, O., Anglade, I., Leprêtre, E., Dubourg, P., de Monbrison, D., 1993. The reproductive brain
457 in fish. *Fish Physiol. Biochem.* 11, 85–98. <https://doi.org/10.1007/BF00004554>

458 Kurko, J., Debes, P. V, House, A.H., Aykanat, T., Erkinaro, J., Primmer, C.R., 2020.
459 Transcription Profiles of Age-at-Maturity-Associated Genes Suggest Cell Fate Commitment
460 Regulation as a Key Factor in the Atlantic Salmon Maturation Process. *G3*
461 *Genes|Genomes|Genetics* 10, 235–246. <https://doi.org/10.1534/g3.119.400882>

462 Lasman, L., Hanna, J.H., Novershtern, N., 2020. Role of m6A in Embryonic Stem Cell
463 Differentiation and in Gametogenesis. *Epigenomes* 4, 5.
464 <https://doi.org/10.3390/epigenomes4010005>

465 Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., Storey, J.D., 2012. The SVA package for
466 removing batch effects and other unwanted variation in high-throughput experiments.
467 *Bioinformatics* 28, 882–883. <https://doi.org/10.1093/bioinformatics/bts034>

468 Leka-Emiri, S., Chrouzos, G.P., Kanaka-Gantenbein, C., 2017. The mystery of puberty initiation:
469 genetics and epigenetics of idiopathic central precocious puberty (ICPP). *J. Endocrinol.*
470 *Invest.* <https://doi.org/10.1007/s40618-017-0627-9>

471 Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S.P., Suganthan, R., He, C., Bjørås,
472 M., Klungland, A., 2018. Ythdf2-mediated m6A mRNA clearance modulates neural
473 development in mice. *Genome Biol.* 19, 1–16. <https://doi.org/10.1186/s13059-018-1436-y>

474 Liao, S., Sun, H., Xu, C., 2018. YTH Domain: A Family of N6-methyladenosine (m6A) Readers.
475 *Genomics, Proteomics Bioinforma.* <https://doi.org/10.1016/j.gpb.2018.04.002>

476 Livneh, I., Moshitch-Moshkovitz, S., Amariglio, N., Rechavi, G., Dominissini, D., 2020. The
477 m6A epitranscriptome: transcriptome plasticity in brain development and function. *Nat.*
478 *Rev. Neurosci.* <https://doi.org/10.1038/s41583-019-0244-z>

479 Mobley, K.B., Aykanat, T., Czorlich, Y., House, A., Kurko, J., Miettinen, A., Moustakas-Verho,
480 J., Salgado, A., Sinclair-Waters, M., Verta, J.P., Primmer, C.R., 2021. Maturation in
481 Atlantic salmon (*Salmo salar*, Salmonidae): a synthesis of ecological, genetic, and
482 molecular processes. *Rev. Fish Biol. Fish.* <https://doi.org/10.1007/s11160-021-09656-w>

483 Mu, H., Li, H., Liu, Y., Wang, X., Mei, Q., Xiang, W., 2022. N6-Methyladenosine Modifications
484 in the Female Reproductive System: Roles in Gonad Development and Diseases. *Int. J.*
485 *Biol. Sci.* <https://doi.org/10.7150/ijbs.66218>

486 Pandolfi, E.C., Tonsfeldt, K.J., Hoffmann, H.M., Mellon, P.L., 2019. Deletion of the
487 Homeodomain Protein Six6 From GnRH Neurons Decreases GnRH Gene Expression,
488 Resulting in Infertility. *Endocrinology* 160, 2151–2164. <https://doi.org/10.1210/en.2019-00113>

490 Perry, J.R.B., Day, F., Elks, C.E., Sulem, P., Thompson, D.J., Ferreira, T., He, C., Chasman,
491 D.I., Esko, T., Thorleifsson, G., Albrecht, E., Ang, W.Q., Corre, T., Cousminer, D.L.,
492 Feenstra, B., Franceschini, N., Ganna, A., Johnson, A.D., Kjellqvist, S., Lunetta, K.L.,
493 McMahon, G., Nolte, I.M., Paternoster, L., Porcu, E., Smith, A. V., Stolk, L., Teumer, A.,
494 Tšernikova, N., Tikkanen, E., Ulivi, S., Wagner, E.K., Amin, N., Bierut, L.J., Byrne, E.M.,
495 Hottenga, J.J., Koller, D.L., Mangino, M., Pers, T.H., Yerges-Armstrong, L.M., Zhao, J.H.,
496 Andrulis, I.L., Anton-Culver, H., Atsma, F., Bandinelli, S., Beckmann, M.W., Benitez, J.,
497 Blomqvist, C., Bojesen, S.E., Bolla, M.K., Bonanni, B., Brauch, H., Brenner, H., Buring,
498 J.E., Chang-Claude, J., Chanock, S., Chen, J., Chenevix-Trench, G., Collée, J.M., Couch,
499 F.J., Couper, D., Coviello, A.D., Cox, A., Czene, K., D'adamo, A.P., Smith, G.D., De Vivo,
500 I., Demerath, E.W., Dennis, J., Devilee, P., Dieffenbach, A.K., Dunning, A.M., Eiriksdottir,
501 G., Eriksson, J.G., Fasching, P.A., Ferrucci, L., Flesch-Janys, D., Flyger, H., Foroud, T.,
502 Franke, L., Garcia, M.E., García-Closas, M., Geller, F., De Geus, E.E.J., Giles, G.G.,
503 Gudbjartsson, D.F., Gudnason, V., Guénel, P., Guo, S., Hall, P., Hamann, U., Haring, R.,
504 Hartman, C.A., Heath, A.C., Hofman, A., Hooning, M.J., Hopper, J.L., Hu, F.B., Hunter,
505 D.J., Karasik, D., Kiel, D.P., Knight, J.A., Kosma, V.M., Kutalik, Z., Lai, S., Lambrechts,

506 D., Lindblom, A., Mägi, R., Magnusson, P.K., Mannermaa, A., Martin, N.G., Masson, G.,
507 McArdle, P.F., McArdle, W.L., Melbye, M., Michailidou, K., Mihailov, E., Milani, L.,
508 Milne, R.L., Nevanlinna, H., Neven, P., Nohr, E.A., Oldehinkel, A.J., Oostra, B.A., Palotie,
509 A., Peacock, M., Pedersen, N.L., Peterlongo, P., Peto, J., Pharoah, P.D.P., Postma, D.S.,
510 Pouta, A., Pylkäs, K., Radice, P., Ring, S., Rivadeneira, F., Robino, A., Rose, L.M.,
511 Rudolph, A., Salomaa, V., Sanna, S., Schlessinger, D., Schmidt, M.K., Southey, M.C.,
512 Sovio, U., Stampfer, M.J., Stöckl, D., Storniolo, A.M., Timpson, N.J., Tyrer, J., Visser,
513 J.A., Vollenweider, P., Völzke, H., Waeber, G., Waldenberger, M., Wallaschofski, H.,
514 Wang, Q., Willemsen, G., Winqvist, R., Wolffensuttel, B.H.R., Wright, M.J., Boomsma,
515 D.I., Econs, M.J., Khaw, K.T., Loos, R.J.F., McCarthy, M.I., Montgomery, G.W., Rice,
516 J.P., Streeten, E.A., Thorsteinsdottir, U., Van Duijn, C.M., Alizadeh, B.Z., Bergmann, S.,
517 Boerwinkle, E., Boyd, H.A., Crisponi, L., Gasparini, P., Gieger, C., Harris, T.B., Ingelsson,
518 E., Järvelin, M.R., Kraft, P., Lawlor, D., Metspalu, A., Pennell, C.E., Ridker, P.M., Snieder,
519 H., Sørensen, T.I.A., Spector, T.D., Strachan, D.P., Uitterlinden, A.G., Wareham, N.J.,
520 Widen, E., Zygmunt, M., Murray, A., Easton, D.F., Stefansson, K., Murabito, J.M., Ong,
521 K.K., 2014. Parent-of-origin-specific allelic associations among 106 genomic loci for age at
522 menarche. *Nature* 514, 92–97. <https://doi.org/10.1038/nature13545>

523 Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR.
524 *Nucleic Acids Res.* 29, e45.

525 Qi, M., Sun, H., Guo, Y., Zhou, Y., Gu, X., Jin, J., Chen, X., Wang, F., Ma, H., Guo, X., Chen,
526 H., Shen, B., 2022. m⁶A reader protein YTHDF2 regulates spermatogenesis by timely
527 clearance of phase-specific transcripts. *Cell Prolif.* 55, e13164.
528 <https://doi.org/10.1111/cpr.13164>

529 Qi, S.T., Ma, J.Y., Wang, Z.B., Guo, L., Hou, Y., Sun, Q.Y., 2016. N6 -methyladenosine
530 sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation
531 and embryo development by regulating translation in *xenopus laevis*. *J. Biol. Chem.* 291,
532 23020–23026. <https://doi.org/10.1074/jbc.M116.74889>

533 Sancho, R., Blake, S.M., Tendeng, C., Clurman, B.E., Lewis, J., Behrens, A., 2013. Fbw7
534 Repression by Hes5 Creates a Feedback Loop That Modulates Notch-Mediated Intestinal
535 and Neural Stem Cell Fate Decisions. *PLoS Biol.* 11, e1001586.
536 <https://doi.org/10.1371/journal.pbio.1001586>

537 Shi, H., Zhang, X., Weng, Y.L., Lu, Zongyang, Liu, Y., Lu, Zhike, Li, J., Hao, P., Zhang, Y.,
538 Zhang, F., Wu, Y., Delgado, J.Y., Su, Y., Patel, M.J., Cao, X., Shen, B., Huang, X., Ming,
539 G. li, Zhuang, X., Song, H., He, C., Zhou, T., 2018. m6A facilitates hippocampus-
540 dependent learning and memory through YTHDF1. *Nature* 563, 249–253.
541 <https://doi.org/10.1038/s41586-018-0666-1>

542 Sinclair-Waters, M., Ødegård, J., Korsvoll, S.A., Moen, T., Lien, S., Primmer, C.R., Barson,
543 N.J., 2020. Beyond large-effect loci: Large-scale GWAS reveals a mixed large-effect and
544 polygenic architecture for age at maturity of Atlantic salmon. *Genet. Sel. Evol.* 52, 9.
545 <https://doi.org/10.1186/s12711-020-0529-8>

546 Sinclair-Waters, M., Piavchenko, N., Ruokolainen, A., Aykanat, T., Erkinaro, J., Primmer, C.R.,

547 2021. Refining the genomic location of single nucleotide polymorphism variation affecting
548 Atlantic salmon maturation timing at a key large-effect locus. *Mol. Ecol.*
549 <https://doi.org/10.1111/mec.16256>

550 Singh, P., Ahi, E.P., 2022. The importance of alternative splicing in adaptive evolution. *Mol.*
551 *Ecol.* 31, 1928–1938. <https://doi.org/10.1111/mec.16377>

552 Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., Zheng, H., Klungland, A., Yan,
553 W., 2017. ALKBH5-dependent m6A demethylation controls splicing and stability of long
554 3'-UTR mRNAs in male germ cells. *Proc. Natl. Acad. Sci. U. S. A.* 115, E325–E333.
555 <https://doi.org/10.1073/pnas.1717794115>

556 Verta, J.P., Debes, P.V., Pivchenko, N., Ruokolainen, A., Ovaskainen, O., MoustakasVerho,
557 J.E., Tillanen, S., Parre, N., Aykanat, T., Erkinaro, J., Primmer, C.R., 2020. Cis-regulatory
558 differences in isoform expression associate with life history strategy variation in Atlantic
559 salmon. *PLoS Genet.* 16, e1009055. <https://doi.org/10.1371/journal.pgen.1009055>

560 Wang, J., Wang, Jinqiu, Gu, Q., Ma, Y., Yang, Y., Zhu, J., Zhang, Q., 2020. The biological
561 function of m6A demethylase ALKBH5 and its role in human disease. *Cancer Cell Int.*
562 <https://doi.org/10.1186/s12935-020-01450-1>

563 Wang, L., Wu, Z., Zou, C., Liang, S., Zou, Y., Liu, Y., You, F., 2020. Sex-Dependent RNA
564 Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive
565 Flounder (*Paralichthys olivaceus*). *Front. Cell Dev. Biol.* 8, 751.
566 <https://doi.org/10.3389/fcell.2020.00751>

567 Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., He,
568 C., 2015. N6-methyladenosine modulates messenger RNA translation efficiency. *Cell* 161,
569 1388–1399. <https://doi.org/10.1016/j.cell.2015.05.014>

570 Xia, H., Zhong, C., Wu, X., Chen, J., Tao, B., Xia, X., Shi, M., Zhu, Z., Trudeau, V.L., Hu, W.,
571 2018. Mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish.
572 *Genetics* 208, 729–743. <https://doi.org/10.1534/genetics.117.300574>

573 Xu, F., Li, J., Ni, M., Cheng, J., Zhao, H., Wang, S., Zhou, X., Wu, X., 2021. FBW7 suppresses
574 ovarian cancer development by targeting the N6-methyladenosine binding protein
575 YTHDF2. *Mol. Cancer* 20, 1–16. <https://doi.org/10.1186/s12943-021-01340-8>

576 Yang, X., Qi, Z., Yang, H., Li, J., Liu, Y., Sang, Y., Li, M., Du, X., Wang, H., Liu, B., Xu, B.,
577 Liu, W., Xu, Z., Deng, Y., 2022. The m6A mRNA demethylase FTO regulates GnRH
578 secretion in Mn-induced precocious puberty. *Mol. Cell. Endocrinol.* 542, 111523.
579 <https://doi.org/10.1016/j.mce.2021.111523>

580 Yang, Y., Han, W., Zhang, A., Zhao, M., Cong, W., Jia, Y., Wang, D., Zhao, R., 2022a. Chronic
581 corticosterone disrupts the circadian rhythm of CRH expression and m6A RNA methylation
582 in the chicken hypothalamus. *J. Anim. Sci. Biotechnol.* 13, 1–13.
583 <https://doi.org/10.1186/s40104-022-00677-4>

584 Yang, Y., Xu, P., Liu, J., Zhao, M., Cong, W., Han, W., Wang, D., Zhao, R., 2022b. Constant

585 light exposure in early life induces m6A-mediated inhibition of IGF gene family in the
586 chicken. *J. Anim. Sci.* 100. <https://doi.org/10.1093/jas/skac199>

587 Yu, J., She, Y., Yang, L., Zhuang, M., Han, P., Liu, J., Lin, X., Wang, N., Chen, M., Jiang, C.,
588 Zhang, Y., Yuan, Y., Ji, S., 2021. The m⁶ A Readers YTHDF1 and YTHDF2
589 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of
590 the Key Wnt5a Signaling Components in Axons. *Adv. Sci.* 8, 2101329.
591 <https://doi.org/10.1002/advs.202101329>

592 Zaccara, S., Ries, R.J., Jaffrey, S.R., 2019. Reading, writing and erasing mRNA methylation.
593 *Nat. Rev. Mol. Cell Biol.* <https://doi.org/10.1038/s41580-019-0168-5>

594 Zhao, B.S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R.K., He, C., 2017. M6
595 A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition.
596 *Nature* 542, 475–478. <https://doi.org/10.1038/nature21355>

597 Zhao, X., Lin, Z., Fan, Y., Li, W., Zhang, Y., Li, F., Hong, T., Feng, H., Tong, M., Wang, N.,
598 Kuang, Y., Lyu, Q., 2021. YTHDF2 is essential for spermatogenesis and fertility by
599 mediating a wave of transcriptional transition in spermatogenic cells. *Acta Biochim.
600 Biophys. Sin. (Shanghai)*. 53, 1702–1712. <https://doi.org/10.1093/abbs/gmab148>

601 Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y.,
602 Wang, W.L., Song, S.H., Lu, Z., Bosmans, R.P.G., Dai, Q., Hao, Y.J., Yang, X., Zhao,
603 W.M., Tong, W.M., Wang, X.J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J.,
604 Krokan, H.E., Klungland, A., Yang, Y.G., He, C., 2013. ALKBH5 Is a Mammalian RNA
605 Demethylase that Impacts RNA Metabolism and Mouse Fertility. *Mol. Cell* 49, 18–29.
606 <https://doi.org/10.1016/j.molcel.2012.10.015>

607 Zhuang, M., Li, X., Zhu, J., Zhang, J., Niu, F., Liang, F., Chen, M., Li, D., Han, P., Ji, S.J., 2019.
608 The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1
609 expression. *Nucleic Acids Res.* 47, 4765–4777. <https://doi.org/10.1093/nar/gkz157>

610

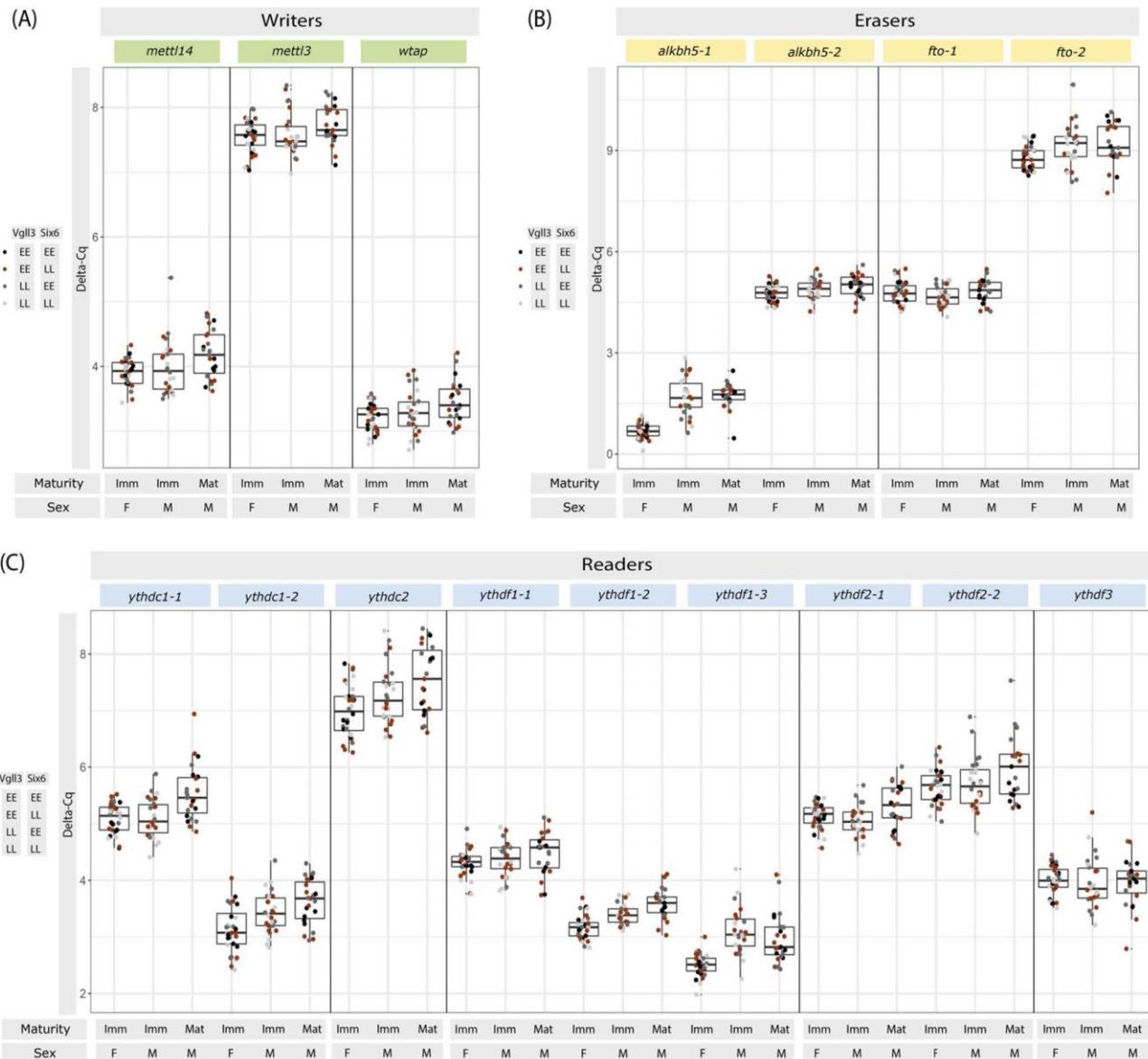
611

612

613

614

615


616

617

618

619

620

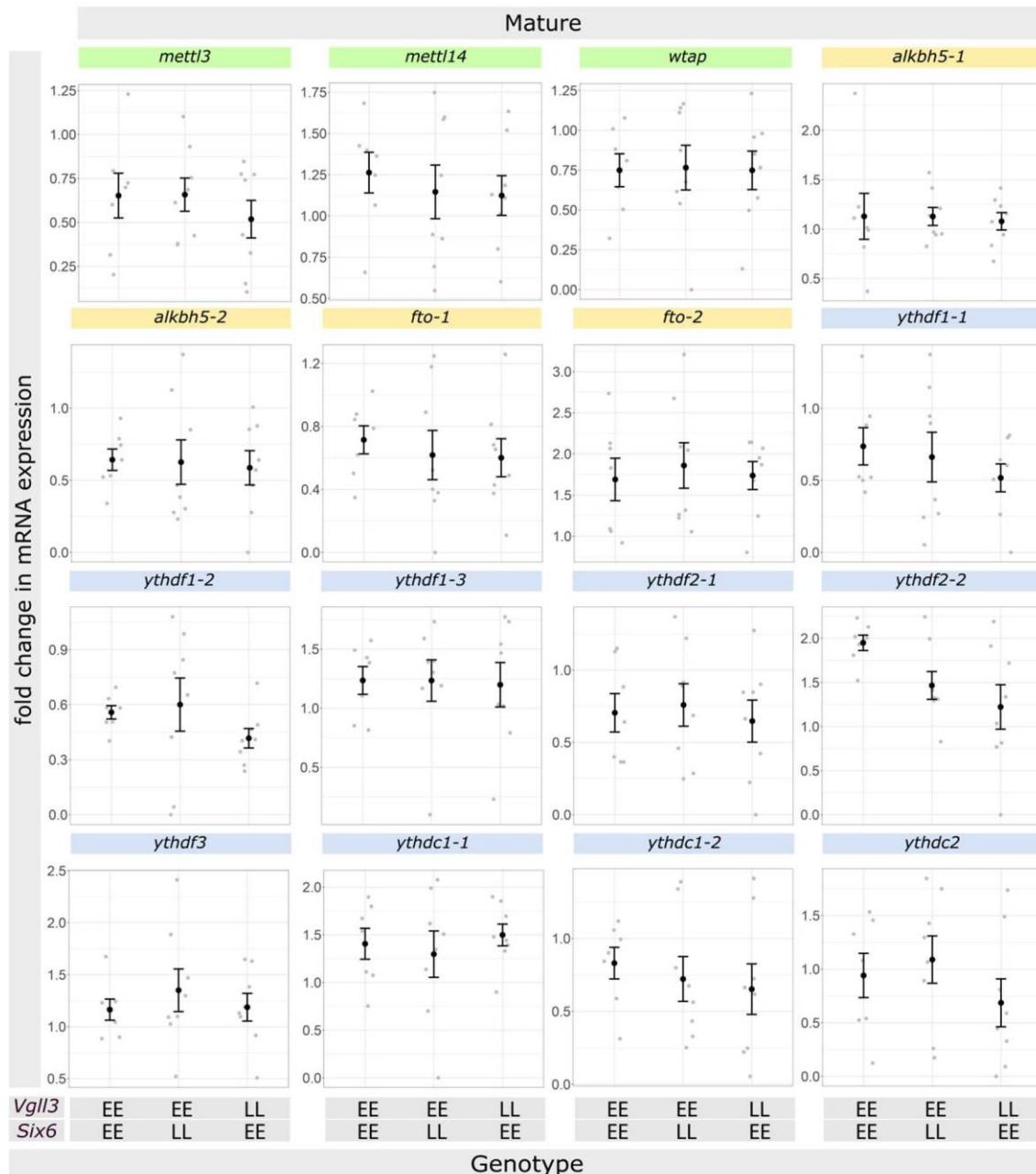
621

622 **Figure 1: Overall mRNA expression level of the m⁶A RNA modification regulators.** qPCR
 623 batch adjusted Delta-Cq of the genes coding for writers (A), erasers (B) and readers (C). The
 624 boxplots represent the median, first and third quartiles of all the genotypes within the group. (F:
 625 Females, M: Males, Imm: Immature, Mat: Mature).

626

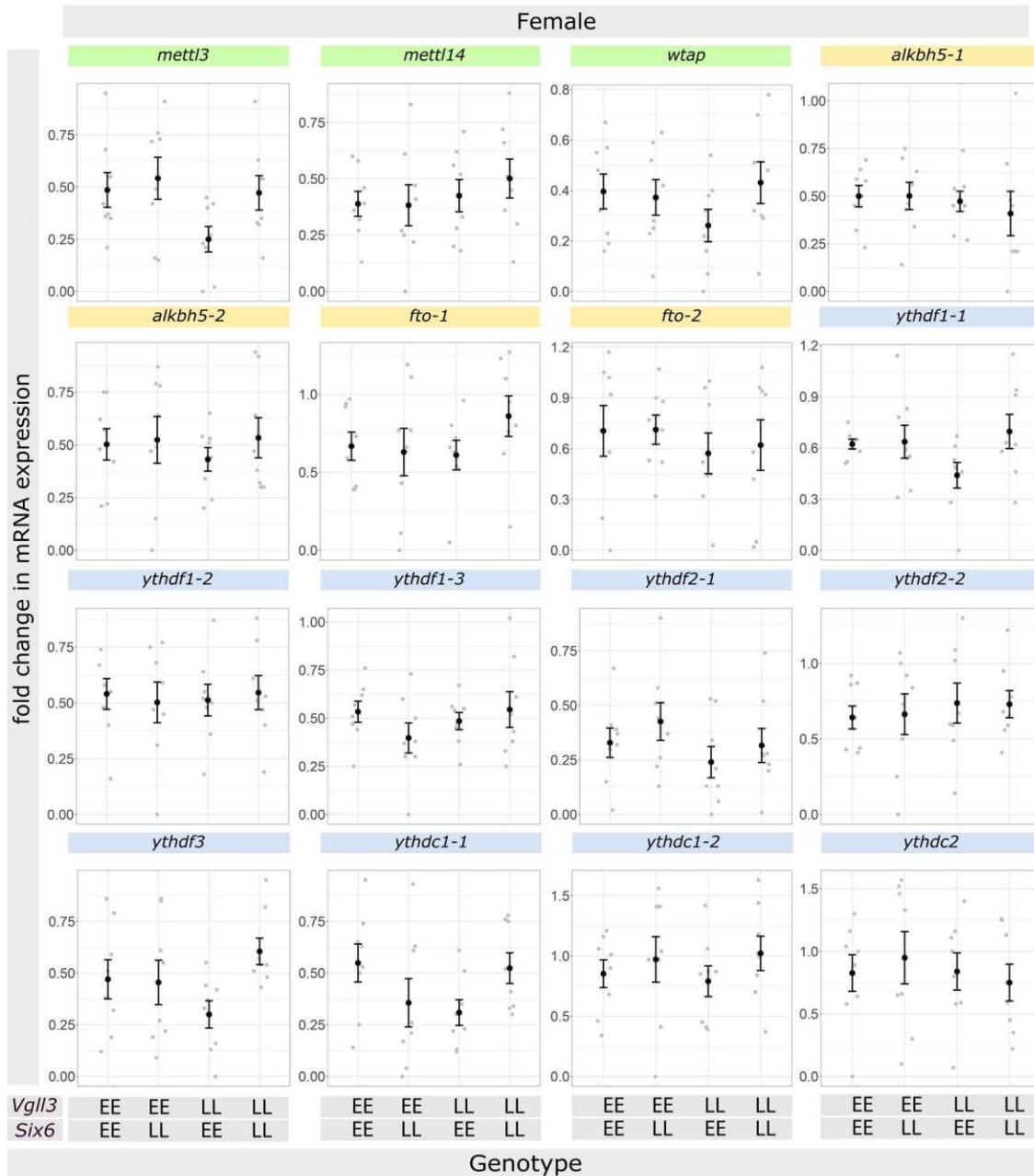
627

628



629

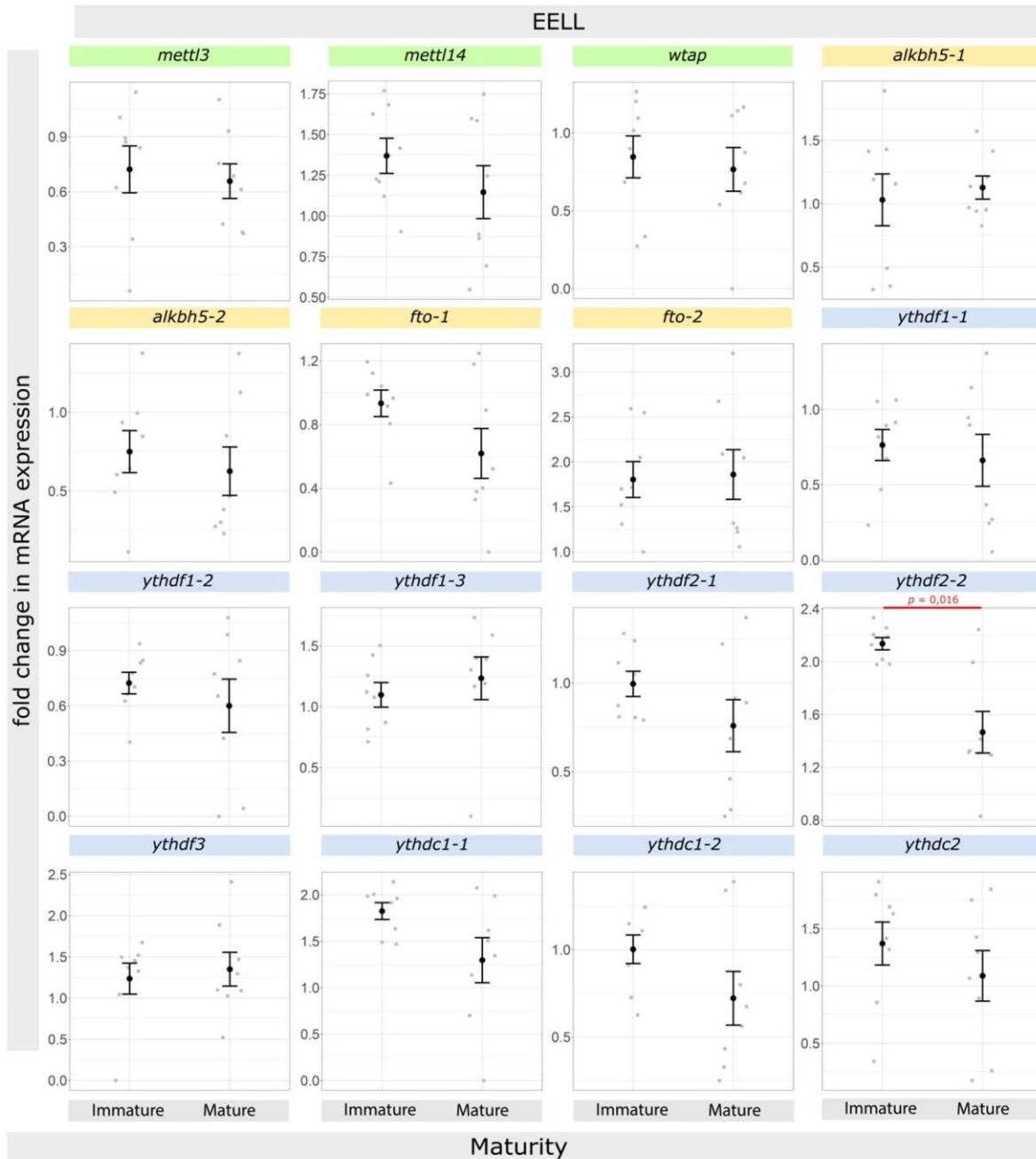
630 **Figure 2: Comparison of the m⁶A RNA modification regulators mRNA expression level**
 631 **between the genotypes in immature males.** For each gene, values were Log2 Fold-Change of
 632 the mRNA expression for each sample (grey dot) and mean \pm SEM (black dot and bar). The
 633 mRNA level expression differences between the genotypes were analyzed with ANOVA
 634 followed by Tukey HSD (Honest Significant Difference) post-hoc tests.


635

636

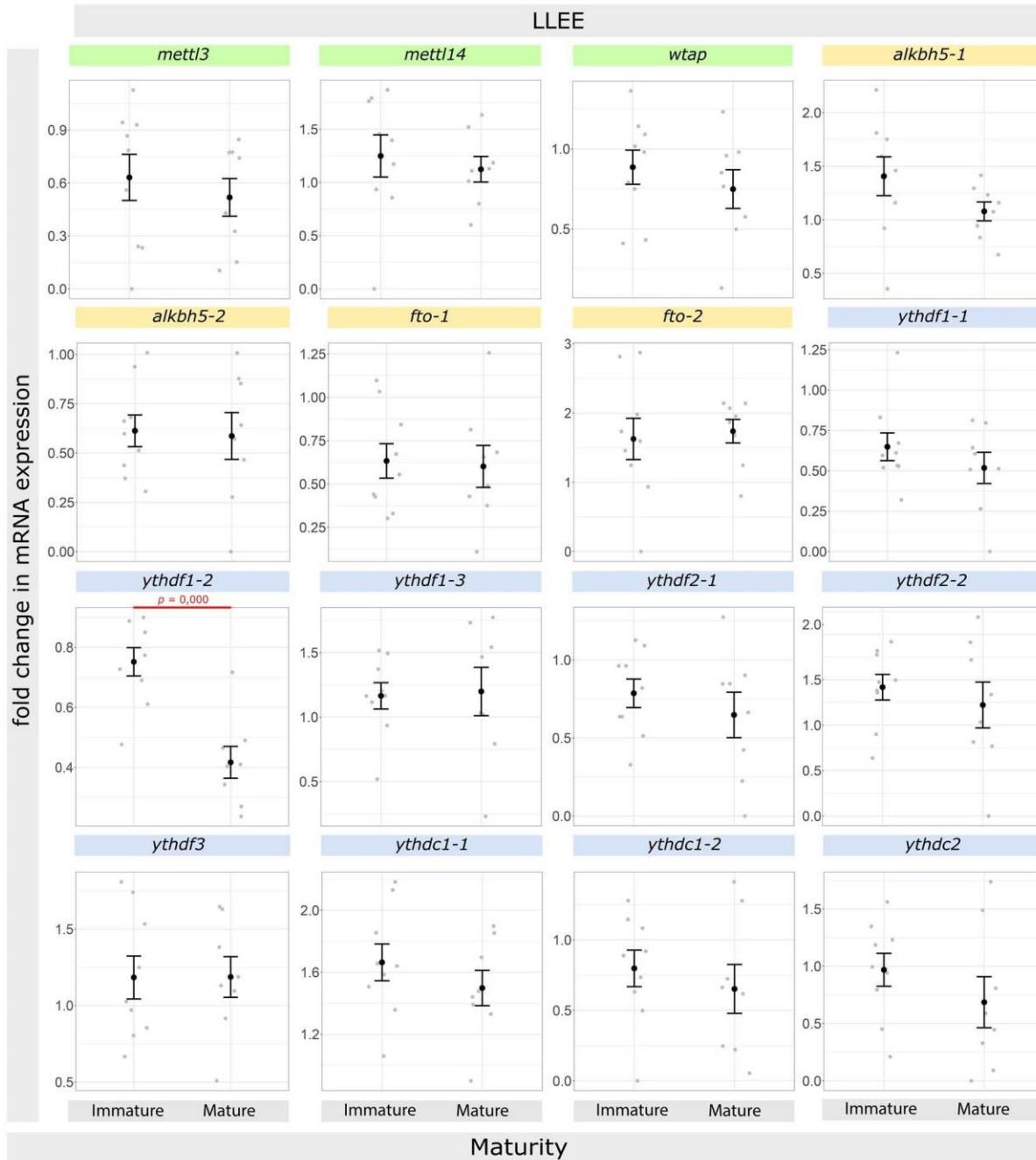
637

638 **Figure 3: Comparison of the m⁶A RNA modification regulators mRNA expression level**
 639 **between the genotypes in mature males.** For each gene, values were Log2 Fold-Change of the
 640 mRNA expression for each sample (grey dot) and mean \pm SEM (black dot and bar). The mRNA
 641 level expression differences between the genotypes were analyzed with ANOVA followed by
 642 Tukey HSD (Honest Significant Difference) post-hoc tests.



643

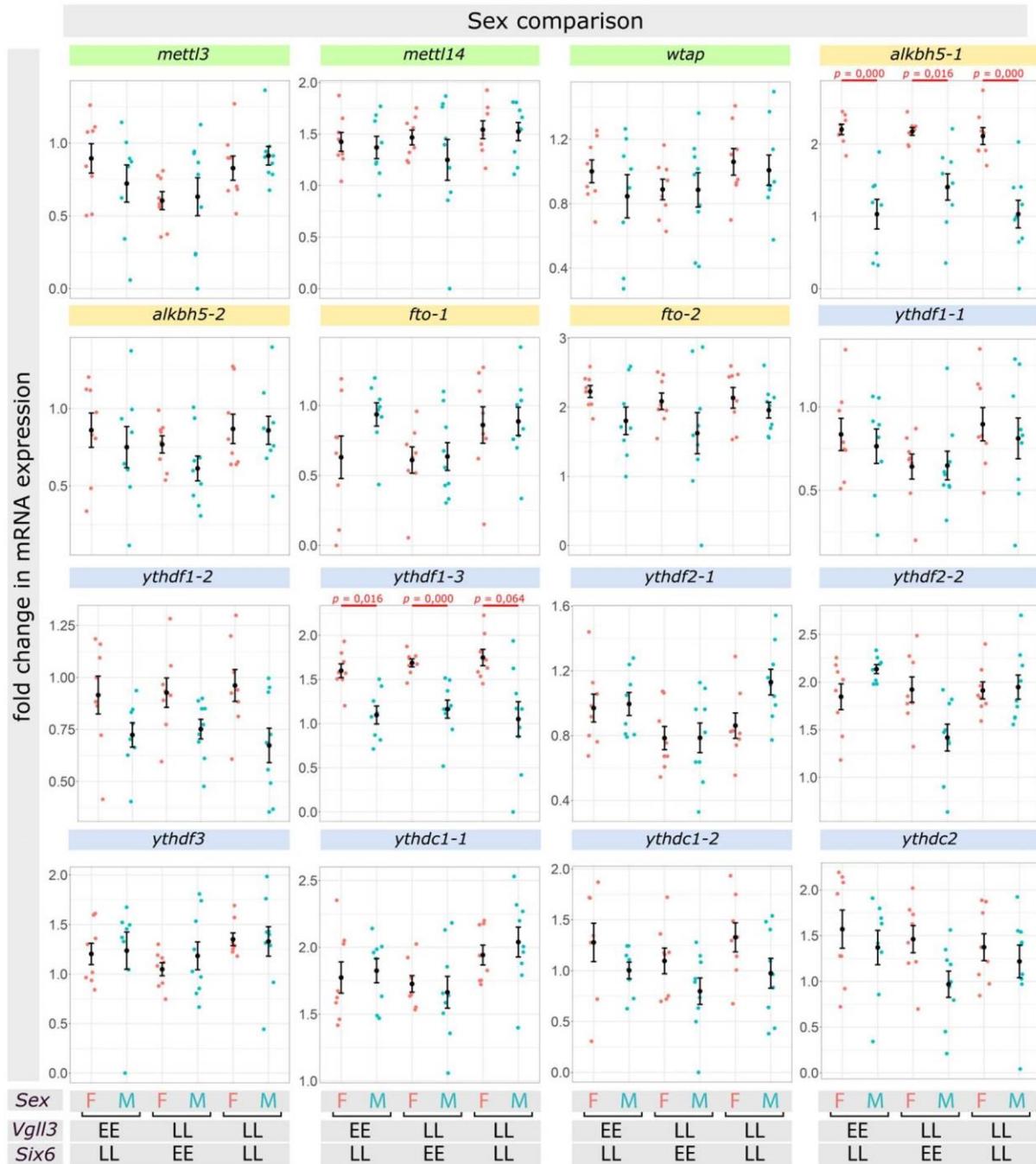
644 **Figure 4: Comparison of the m⁶A RNA modification regulators mRNA expression level**
 645 **between the genotypes in females.** For each gene, values were Log2 Fold-Change of the mRNA
 646 expression for each sample (grey dot) and mean \pm SEM (black dot and bar). The mRNA level
 647 expression differences between the genotypes were analyzed with ANOVA followed by Tukey
 648 HSD (Honest Significant Difference) post-hoc tests.


649

650

652 **Figure 5: Comparison of the m⁶A RNA modification regulators mRNA expression level**
653 **between maturity stages in individuals with EE LL genotypes.** For each gene, values were
654 Log2 Fold-Change of the mRNA expression for each sample (grey dot) and mean \pm SEM (black
655 dot and bar). The mRNA level expression differences between the genotypes were analyzed with
656 ANOVA followed by Tukey HSD (Honest Significant Difference) post-hoc tests.

657



658

659 **Figure 6: Comparison of the m⁶A RNA modification regulators mRNA expression level**
660 **between maturity stages in individuals with LL EE genotypes.** For each gene, values were
661 Log₂ Fold-Change of the mRNA expression for each sample (grey dot) and mean \pm SEM (black
662 dot and bar). The mRNA level expression differences between the genotypes were analyzed with
663 ANOVA followed by Tukey HSD (Honest Significant Difference) post-hoc tests.

664

665

666

667 **Figure 7: Comparison of the m⁶A RNA modification regulators mRNA expression level**
 668 **between sexes.** For each gene, values were Log2 Fold-Change of the mRNA expression for each
 669 sample (red and blue dots) and mean \pm SEM (black dot and bar). The mRNA level expression
 670 differences between the genotypes were analyzed with ANOVA followed by Tukey HSD
 671 (Honest Significant Difference) post-hoc tests.

672