

1

2

3

4 Evolutionary dynamics of dengue virus in India

5

6

7 Suraj Jagtap¹, Chitra Pattabiraman², Arun Sankaradoss³, Sudhir Krishna^{3,4}, Rahul Roy^{1,5*}

8

9

10 ¹Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India

11 ²Infectious Disease Research Foundation, Bengaluru, Karnataka, India

12 ³National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru,

13 Karnataka, India

14 ⁴School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India

15 ⁵Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka,
16 India

17

18

19 * Corresponding author

20 E-mail: rahulroy@iisc.ac.in (RR)

21

22 Abstract

23 More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the
24 country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the
25 selection pressures imposed by a multitude of factors that can lead to the emergence of new variants.
26 Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we
27 present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from
28 India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary
29 relationship with global and local dengue virus strains, interserotype dynamics and their divergence
30 from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with
31 cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV1, cosmopolitan genotype of
32 DENV2, genotype III of DENV3 and genotype I of DENV4 have been dominating across the country.
33 Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific
34 evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under
35 immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in
36 general, we find evidence for recurring interserotype drift towards each other, suggesting selection via
37 cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent
38 DENV4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites.
39 Moreover, the DENV4-Id is drifting towards DENV1 and DENV3 clades, suggesting the role of cross-
40 reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and
41 immunity-driven virus evolution in the country, ~50% of all E gene differences with the current
42 vaccines are focused on the antigenic sites. Our study shows how high incidence and pre-existing
43 population immunity are shaping dengue virus evolution in India.

44 Author summary

45 Dengue is a mosquito-borne disease with four closely related serotypes of the virus (DENV1-4).
46 Further, cross-reacting dengue antibodies from a previous infecting dengue serotype can protect or
47 enhance infection from other serotypes. This can force the emergence of new dengue variants that find

48 ways to escape the immune action or take advantage of it. In endemic countries like India, high rates of
49 previous dengue infection can drive the evolution of dengue serotypes in complex ways. We compare
50 all published dengue virus sequences to understand how new variants of dengue are emerging in India.
51 Dengue cases and corresponding viruses display triennial surges. Further, the dengue envelope protein
52 for each serotype shows recurring divergence and reversal towards its ancestral strain over a three-year
53 window. Such fluctuations are also correlated among the dengue serotypes in India and could arise from
54 the changing levels of cross-reactive antibodies. This, combined with the regional exchange of the virus
55 among Asia-Pacific countries, has led to the emergence of India-specific DENV lineages, including a
56 new DENV4 (Id) variant. This has also contributed to significant variations in the epitope regions of
57 the current dengue viruses in India compared to the vaccines with implications for their efficacy.

58 **Introduction**

59 Dengue infections have increased dramatically in the last two decades and are expected to rise further
60 as they spread to newer regions fuelled by urbanization and travel [1]. About half of the world
61 population is at risk of dengue infections [1,2]. Estimates from 2010 claim 390 million annual dengue
62 infections worldwide, of which only 96 million cases were reported clinically [3]. Around one-third of
63 these infections were estimated to be from India [3], though most of them go unreported [4]. Dengue is
64 endemic in almost all states in India [5,6]. All four antigenically distinct serotypes (DENV1-DENV4)
65 of the virus that display significant immunological cross-reactivity due to 65-70% homology have been
66 reported from various parts of the country [7–9]. Combined with a complex transmission cycle and high
67 dengue seroprevalence [5], dengue evolution in the country has been shaped in complex and unexpected
68 ways though this remains poorly understood.

69 Global dengue virus evolution is modulated by pathogen transmission bottlenecks and immunological
70 pressures [10,11]. An increase in globalization and human mobility can lead to the global spread of the
71 emerging dengue virus strains. On the other hand, the acute nature of the disease, limited travel range
72 and restriction to tropical regions of the vector can constrain the virus spread. Like other vector-borne
73 virus infections, the dengue virus switches its environment due to horizontal transmission, exerting a

74 strong purifying selection pressure [10,12,13]. In the human host as well as at the larger population
75 scale, pre-existing immunity can contribute to the emergence of immune escape variants. Heterotypic
76 immunity can also shape the co-evolution of dengue serotypes contingent on the level of cross-reactive
77 antibodies and the antigenic similarity between the infecting serotypes during primary and secondary
78 infection [11,14]. Further, antibody-dependent enhancement (ADE) under sub-optimal levels of cross-
79 reactive antibodies can confer a selective advantage to antigenically related serotypes [15–17].

80 Complex population immunity against the dengue virus can also modulate the levels of annual
81 infections and caseload. Cyclic dengue outbreaks in the endemic regions occur every 2–4 years, often
82 associated with serotype/genotype replacement [18–21]. This has been attributed to a combination of
83 long-term protection from homotypic dengue infection but only short-term protection (up to 2 years)
84 from the heterotypic secondary infection [22–24]. During serotype replacement, ADE can also play a
85 role in increasing dengue infections, depending on the level of cross-reactive immunity in the
86 population, thereby making the cyclic pattern of outbreaks more prominent. However, whether this
87 advantage also leads to the evolution of the virus, remains unknown. Therefore, knowledge of
88 longitudinal prevalence, serotype distributions, and prior serotype of infection can help us in
89 understanding the evolution of the dengue virus and predicting future outbreaks [25].

90 In spite of being a hotspot of dengue infections, the scarcity of dengue genomic data from India has
91 limited our understanding of dengue virus evolution. Previous dengue studies in India have focused on
92 regional outbreaks [7–9,26–28], which are dominated by single or closely related strains due to the
93 limitations of a short collection period. The persistence of all serotypes in a high seroprevalence
94 background has been shown to manifest in immunity-driven co-evolution of dengue virus strains at the
95 city-scale [11]. In absence of longitudinal analysis of dengue viral diversity, it remains unknown,
96 whether such selection pressures are shaping dengue virus divergence at a country-wide scale in India.

97 Large divergence of prevalent dengue genotypes can have significant implications for vaccine design
98 and development [29,30]. Multiple dengue vaccines targeting all four serotypes have been developed
99 and are currently at different stages of clinical trials [31]. These vaccines are based on the old dengue
100 isolates from outside South Asia. In the absence of efficacy studies in India, it remains unclear whether

101 they will induce optimal levels of neutralizing antibodies against the dengue viruses circulating in India.
102 Apart from not providing sufficient protection against dengue infection, some vaccine candidates can
103 even lead to enhanced disease through ADE upon subsequent infection, as seen in the case of the CYD-
104 TDV vaccine [32,33]. Yet, differences at the antigenic sites between vaccines and prevalent Indian
105 dengue strains have not been investigated to date.

106 Our group has recently published 119 whole-genome dengue sequences from clinical samples across
107 four different sites in India from 2012 to 2018 [34]. This effort has substantially increased the number
108 of whole-genome dengue sequences from India (from 65 to 184 genomes) that now allows careful
109 examination of the evolutionary dynamics of the dengue virus in the country. In this study, we compiled
110 all available whole dengue genomes ($n = 184$) and E gene ($n = 408$) sequences to generate the most
111 comprehensive dataset of dengue virus sequences to date from India. Analysis of this dataset confirms
112 the substantial co-circulation of DENV1, DENV2 and DENV3 in the country since 2000. Further, it
113 shows the re-emergence of DENV4 since 2007, followed by a rapid increase in South India since 2016.
114 The spatio-temporal analysis shows broad geographical restriction of the Indian genotypes to Asia.
115 DENV1 genotype III, DENV2 cosmopolitan genotype (genotype IV), DENV3 genotype III and
116 DENV4 genotype I are the dominant genotypes circulating in India. Further, the E proteins for all
117 serotypes in India display correlated temporal fluctuations in Hamming distances with respect to its
118 ancestors over a three-year period. Similar E gene dynamics is observed among the serotypes, pointing
119 to the role of cross-reactive population immunity and associated ADE influencing the co-evolution of
120 dengue serotypes. This has led to the emergence of a highly divergent DENV4 lineage in India, with
121 evidence of strong immune selection pressure on the E gene. Dissimilarity in the vaccine genotypes and
122 significant divergence driven by the pre-existing seropositivity also manifests in major differences in
123 the epitopic regions compared to the vaccine strains. Our work highlights how the evolutionary
124 dynamics of the dengue virus in India is shaped by immune selection pressure at the population level.

125 Methods

126 Data collection

127 **Dataset A.** All the published Indian dengue sequences were obtained from the ViPR database [35].
128 These sequences include both whole-genome sequences and gene segments. Only sequences with
129 location and collection date were used for the analysis (about 88.9% of all sequences). Samples for
130 these sequences were collected between 1956 and 2018 and represent DENV1 (n = 840), DENV2 (n =
131 877), DENV3 (n = 746) and DENV4 (n = 179) serotypes.

132 **Dataset B.** Global dengue protein-coding sequence records that contain sample collection dates were
133 obtained from the ViPR database [35]. After removal of identical sequences, this dataset included
134 DENV1 (n = 1800) from 1944-2018, DENV2 (n = 1395) from 1944-2018, DENV3 (n = 823) from
135 1956-2018, DENV4 (n = 220) from 1956-2018, representing a total of 4238 protein-coding sequences.

136 **Subset C:** For analysis of spatio-temporal dynamics, protein-coding sequences specific to the Indian
137 genotypes were selected from dataset B. We included all unique protein-coding sequences from India
138 and randomly sampled global sequences. This included a total of 522 sequences from DENV1 genotype
139 I (n = 142), DENV1 genotype III (n = 93), DENV2 genotype Cosmopolitan (n = 144), DENV3 genotype
140 III (n = 96), and DENV4 genotype I (n = 47).

141 **Dataset D.** All Indian E gene amino acid sequences collected since 2000 were obtained from the ViPR
142 database [35] which comprised of DENV1 (n = 113), DENV2 (n = 168), DENV3 (n = 88), and DENV4
143 (n = 39) E protein sequences.

144 State-wise number of dengue cases and deaths over the period 2001 to 2022 was retrieved from
145 <https://www.indiastat.com/>. The cases from 2019-2022 were excluded while considering the spikes due
146 to the effect of COVID-19-related disruptions [36].

147 **Sequence alignment and phylogenetic analysis**

148 Multiple sequence alignment was performed with protein-coding sequences from dataset B using
149 MUSCLE v3.8.425 [37] implemented in AliView v1.25 [38]. Alignments were manually checked for
150 insertion and deletion errors. Maximum likelihood trees were generated using IQ-TREE v1.6.10 [39]
151 with 1000 bootstraps. A general time-reversible substitution model with unequal base frequency and
152 gamma distribution for rate heterogeneity (GTR+F+I+G4) was selected out of 88 models available
153 using jModelTest [40] implemented in IQ-TREE v1.6.10 [39] based on the Bayesian information
154 criterion. Sylvatic strains EF457905 (DENV1), EF105379 (DENV2) and JF262779-80 (DENV4) were
155 used as outgroups to root the respective trees. The root for DENV3 was obtained using the best fitting
156 root by the correlation method in TempEst [41]. The maximum likelihood phylogenetic trees were used
157 to obtain the root-to-tip distances using TempEst. Trees were visualized using Figtree v1.4. We assigned
158 new lineages within a genotype if the difference between the sequences from each phylogenetic branch
159 is more than 3% at the nucleotide level and 1% at the amino acid level.

160 Bayesian analysis was performed with the E gene, NS5 gene and whole-genome sequences from subset
161 C using the BEAST v1.8.3 [42] to get the substitution rates for each gene. Five sets were generated for
162 each serotype by selecting 80% sequences randomly, the substitution rate was calculated for each run,
163 and the average substitution rate was reported. The constant rate clock model was selected based on the
164 AICM values of the Bayes factor and harmonic means (S1 Table). Markov Chain Monte Carlo (MCMC)
165 was run for 10^7 generations for each run, and the first 10% of samples were discarded as burn-in. The
166 phylogeographic movement of the virus across the countries was obtained using the Bayesian stochastic
167 search variable selection procedure implemented in BEAST v1.8.3 with whole genome sequences from
168 subset C (MCMC chain length $\sim 10^8$). SpreaD3 v0.9.7 [43] was used to visualize the spatio-temporal
169 dynamics of the virus. Tracer v1.6 was used to check the convergence of the chains. Effective sample
170 sizes for the parameters of interest were greater than 200.

171 Single-likelihood ancestral counting (SLAC) and fixed effects likelihood (FEL) methods were used to
172 identify the positions that are undergoing selection using the HyPhy package (v2.5.1) [44]. Sites with a
173 p-value <0.1 were considered significant only if they were detected by both methods.

174 **Dynamics of amino acid variation in the envelope gene sequence**

175 Temporal dynamics of E gene amino acid variation was examined in the sequences from South India
176 due to the availability of a larger dataset (n = 164). Sequences with at least 50% coverage (mean
177 coverage of 93%) of the E gene were selected for the analysis. The Hamming distance between the pair
178 of sequences was divided by the length of the overlapping region between the pair. This was further
179 converted to the z-score using the mean and standard deviation to obtain the normalized distance. To
180 extract the dynamics within the serotype, we measured the normalized distance of new variants over
181 the years with respect to the ancestral sequences (sequences from 2007/08 were used as ancestors due
182 to a lack of sufficient sequences before that). The inter-serotype distance was calculated by selecting
183 the sequences from two different serotypes during a particular year. Sample bootstrapping (n = 100)
184 was used to determine the median and standard error of the normalized distances for each year. The
185 time period of oscillations was calculated using an autocorrelation function with different lags for each
186 trace. A lag with the maximum correlation coefficient was assigned as the period of oscillation for that
187 trace. Bootstrap replicates (n=100) were used to obtain the distribution of the time period.

188 Pearson's correlation coefficient was obtained between the serotype and inter-serotype distance
189 dynamics. The robustness of the correlations was checked by three methods. First, by randomly deleting
190 up to 3 data points from each dynamics (1000 bootstraps). Second, by estimating the cross-correlation
191 between individual traces from two comparing groups randomly with 1000 bootstraps. As a control, we
192 also checked correlations between the groups by randomly shuffling the time series of normalized
193 hamming distances (before correlating) to ensure that the correlations do not arise merely from the
194 yearly fluctuations (1000 bootstraps).

195 **Dominant epitope selection from the database**

196 Experimentally determined epitopes for all dengue serotypes were obtained from the Immunome
197 Browser tool available on the Immune Epitope Database [45]. B cell and T cell epitopes were selected
198 based on their response frequency (RF) score, calculated as reported earlier [46]. Epitopes having RF-
199 score > 0.25 were selected as dominant epitopes for further analysis. For the epitopes examined in
200 multiple studies, the RF-score was calculated by combining the number of subjects from all the studies.
201 Apart from these known epitopes, we also included 77 sites in which residue variation conferred
202 antigenic effects [47].

203 **Comparison with the vaccine strains**

204 All Indian DENV envelope sequences post-2000 from dataset D were compared with three vaccines:
205 CYD-TDV developed by Sanofi Pasteur, TV003 by NIH/Butantan and TAK-003 by Takeda.
206 Multidimensional scaling based on the Hamming distances between the sequences was used to visualize
207 and evaluate the differences between Indian and vaccine strains.

208 Homo-dimeric structures of the envelope proteins were obtained by homology modelling using the
209 SWISS-MODEL server [48]. Template PDB structures were selected based on global model quality
210 estimates and QMEAN statistics. Vaccine strain information and template selection for each serotype
211 is shown in the S2 Table. Sites with differences in >10% of sequences were mapped onto the envelope
212 protein structure using PyMOL (v2.4.1) [49].

213 **Results**

214 **Dengue serotype dynamics in India**

215 The reported dengue cases in 2018 have increased more than 25-fold (three year average) since 2002 in
216 India (S1A Fig). All four geographical regions, namely– North, East, South and West-Central India,
217 show periodic spikes in dengue cases as well as deaths over 2-4 years (S1B-D Fig). Comparing all
218 published dengue sequences till 2018 from India (dataset A), we find all four dengue serotypes co-

219 circulating in the country since 2000 (Fig 1). Although dengue sequence reporting from various parts
220 of the country is sporadic, the number of annual cases and deaths in the past two decades correlated
221 well with the number of available sequences each year (S1E Fig, Pearson's correlation coefficient ~
222 0.65). In particular, we noted the increase in DENV2 and DENV4 sequences since 2011 and 2014,
223 respectively (Fig 1A). Corresponding to the reported cases, we found periodic peaks in the number of
224 sequences reported from North and South India. Genomes reported from North India show a pattern of
225 serotype replacement in consecutive peaks (Fig 1B). Since most of the sequences from North India were
226 collected from Delhi (~80.5%), the spikes in the dengue sequences in 2006, 2010 and 2013 also
227 correspond well with the outbreaks in Delhi [26,50] (S1C-D Fig). Consistent with previous reports, we
228 find DENV3 dominated during the 2006 outbreak [51] while DENV1 and DENV2 serotypes dominated
229 during the outbreaks in 2010 and 2013, respectively [26,52]. Although dengue outbreaks have been
230 observed in East and West-Central India (S1C-D Fig), a relatively smaller number of sequences are
231 available from these regions, possibly due to poor genomic surveillance (Fig 1B). Nevertheless, DENV2
232 emerged as the dominant serotype in East India in 2016, while all serotypes were identified in West-
233 Central India from 2016 to 2018. In South India, three peaks are evident in the number of sequences
234 corresponding to 2009, 2013 and 2016 (Fig 1C) and correlated peaks in the number of cases/deaths
235 were observed in 2009-10, 2012-13 and 2017 (S1C-D Fig). DENV1 and DENV2 have been the
236 dominant serotypes over the last decade, but DENV4 has recently emerged as a major serotype in South
237 India. Similar periodic fluctuations in dengue incidence and replacement of dengue serotypes have been
238 proposed previously to be driven by population-level immunity [18,19], but whether high endemicity
239 and seropositivity are driving case incidences, serotype-specific dynamics and virus evolution in India
240 is not known. Overall, in India, DENV1 and DENV3 were the dominating serotypes till 2012. DENV2
241 has become the dominant serotype in most regions in India since then, and DENV4 is establishing itself
242 in South India.

243 Prevalence and spatio-temporal dynamics of Indian dengue 244 genotypes

245 Maximum likelihood trees and maximum clade credibility trees of complete genome coding sequences
246 suggest that dengue genotypes are constrained by geography exemplified by the poor intermixing of
247 the genotypes across continents (Fig 2, S2-4 Fig). Asian sequences consist of two dominant genotypes
248 for all the serotypes, while the recent Indian dengue sequences represent only one of those genotypes
249 (except for DENV1). Genotype III for DENV1, cosmopolitan genotype for DENV2, genotype III for
250 DENV3, and genotype I for DENV4 have been the dominating genotypes in the past two decades in
251 India. The Indian genotypes are remarkably divergent from dengue in other regions of the world beyond
252 Asia and merit further examination of their evolutionary dynamics (Fig 2A).

253 Interestingly, we find distinct temporally and spatially co-circulating lineages within the genotypes (Fig
254 2B-D), yet it remains unclear what factors contribute to their co-prevalence. Among the two DENV1
255 genotypes (I and III), genotype III has been dominant across India (S2 Fig). Within genotype III, two
256 dominant lineages (lineage I and II) are circulating simultaneously within the country. These lineages
257 differ at 39 positions across the genome (S5A Fig) and five positions in the immunologically dominant
258 E gene (T272M, I337F, T339I, V358A and I/V461I). Residues 272 and 337 are on the exposed part of
259 the E protein dimer, and position 272 is linked to having an antigenic effect suggesting differential
260 antigenicity. Even though the phylogenetic clustering did not include the untranslated regions, all the
261 sequences from lineage-I carry a deletion of 21 nucleotides in the hypervariable region of the 3'UTR
262 (nucleotide positions 10294-10314 with respect to the reference sequence NC_001477, S6 Fig). A
263 similar deletion has been reported previously from India [53], but the significance of such a large
264 deletion is unclear. This region is not involved in any stem-loop structures or the genome cyclization
265 region in the 3'UTR. *In vitro* studies have shown that a 19-nucleotide deletion (nucleotide positions
266 10289-10309) overlapping this region of 3'UTR did not affect the growth kinetics of the virus [54],
267 while larger deletions (nucleotide positions 10274-10728) in the 3'UTR variable region show growth
268 defects in human cell lines [55]. Therefore, it is likely that DENV1-III lineage-I can tolerate the 3'UTR

269 deletion without a significant fitness cost. On the other hand, a cluster of sequences in DENV1-III
270 lineage-II carry an insertion of two nucleotides in the hypervariable region of 3'UTR (C10274 and
271 A10297 with respect to NC_001477, S6 Fig) and is restricted to South India. This shows how at least
272 three sets of genotype III strains are co-circulating in the country. Spatio-temporal analysis reveals that
273 DENV1-III lineage-I is a relatively new lineage that emerged in 1992 (95% HPD: 1990-1995) and is
274 limited to India, Singapore, and China (Fig 2B, S3 Table, S7A Fig). Our analysis shows the early
275 emergence of this genotype in India, with subsequent spread to South Korea, Comoros, and Singapore
276 between 1990 and 2005 and multiple import-export events between India and Singapore post-2005
277 (S7A Fig). Apart from this, genotype I of DENV1, the primary genotype in most Asian countries (Fig
278 2A), has also been reported exclusively from South India since 2012, suggesting a more recent
279 introduction (S8 Fig).

280 The earliest DENV2 sequences from India belong to the American genotype. This genotype was
281 predominant in India before 1971 but was eventually replaced by the cosmopolitan genotype [56]. The
282 DENV2-cosmopolitan genotype was introduced to India and China in the early 1980s. From here, it has
283 spread to Southeast Asia, Australia, and East Africa (S7B Fig). DENV2 in India has two distinct co-
284 circulating lineages (lineage-I and III) that emerged in the 80s with a common ancestor that dates back
285 to 1979 (1977-1981) (Fig 2C, S3 Table and S3 Fig) [27,57]. While prevalent in the Indian subcontinent,
286 cosmopolitan lineage-III has been reported in East Africa, and spatio-temporal analysis suggests that
287 this lineage was most likely exported from India, in line with the study from Kenya [58]. These lineages
288 differ at 41 positions across the genome, including three positions in the envelope gene (S5B Fig), all
289 of which are in known epitopic regions or have antigenic effects (E protein residues 141, 162 and 322),
290 suggesting immune selection pressure playing a role in their divergence. Otherwise, the E gene did not
291 show significantly higher nonsynonymous mutation density compared to other genes (S5E Fig).
292 Similarly, these lineages do not differ in their *in-vitro* virus growth kinetics and disease severity [27].
293 This could explain how these two lineages are able to avoid replacement by the other since their
294 emergence.

295 All the Indian DENV3 genotype III sequences cluster along with other Asian countries (S4 Fig).
296 DENV3-III was first detected in Sri Lanka and disseminated to multiple countries over time (S7D Fig).
297 After its initial spread, it evolved into two distinct geographical clusters: lineages IIIA (Asian) and IIIB
298 (American). Most of the spread of genotype IIIB in the Americas was from 1990 to 2005 (S7D Fig). In
299 contrast, diffusion of genotype IIIA in Asia took place after 2005, yet these two lineages have not
300 intermixed (S7D Fig, Fig 2A). In the E gene, these lineages differ at positions 158 and 380, with position
301 158 being a part of a known B cell epitope. Within lineage IIIA, we found two dominating sub-lineages
302 co-circulating in India (IIIAa and IIIAb). These sub-lineages differ at 26 positions across the genome
303 and eight positions in the E gene (S5C Fig). Although the E gene displays a high density of mutations
304 (S5E Fig), most of these positions (7 of 8) carry the same amino acid in majority of sequences for both
305 the sub-lineages (S5C Fig).

306 The spatio-temporal reconstruction identifies the origin of DENV4-I in the Philippines (S7C Fig),
307 consistent with Sang *et al.* [59]. Most of the subsequent spread of DENV4-I was restricted to Southeast
308 Asian countries. Although it was introduced in India around 1945, there has been a significant increase
309 in reported DENV4-I sequences from 2015 onwards, especially in South India (Fig 1) [28,60]. It is
310 possible that it remained undetected due to underreporting of mild infections since the primary cases of
311 DENV4 have been reported to cause mild disease [61,62]. All Indian DENV4-I sequences cluster
312 separately from the other prevalent genotype I groups (Fig 2E). We identify two lineages in Indian
313 DENV4 sequences (Ic and Id); DENV4-Id lineage seems to be replacing DENV4-Ic since 2016 (Fig
314 2E, 3C). This novel lineage of DENV4 (Id) was reported in Pune in 2016 using the CprM sequences
315 [63]. We noticed remarkable differences in the E and NS2A genes between the two lineages (S5D Fig),
316 as discussed in detail in the next section. Overall, all prevalent DENV genotype lineages carry
317 signatures of immune selection contributing to their divergence.

318 **Emergence of DENV4-Id suggests dominant immune selection**
319 **pressure**

320 To examine the selection pressure on the dengue virus in India, we employed FEL (Fixed Effect
321 Likelihood) and SLAC (Single Likelihood Ancestral Counting) methods. Apart from DENV3, there
322 was no substantial evidence of positive selection, and most amino acid changes were deleterious and
323 negatively selected (S5, S6 Table). In DENV3-III genotype, we found a single position in NS5 protein
324 (50I/T) under positive selection, while this site is highly conserved in all other serotypes. Significant
325 negative selection in DENV is consistent with the requirement for horizontal transmission between
326 taxonomically diverse host species, which imposes a strong purifying immune pressure [10,12,13].

327 Further, the substitution rates of dengue genotypes in India are comparable (7.59E-4, 6.31E-4, 7.83E-
328 4, 6.50E-4 and 6.26E-4 substitutions/site/year for DENV1-I, DENV1-III, DENV2-cosmopolitan,
329 DENV3-III and DENV4-I, respectively) (S3 Table) and similar to earlier reported rates [7,57,64].
330 Although 95% highest posterior density (HPD) intervals for all the genotypes overlap, the largest
331 substitution rate is observed for the DENV2-cosmopolitan genotype. However, the substitution rates
332 obtained for the E gene were about 26% (11.5% to 44.2%) higher than those for the whole genome (Fig
333 3A). Interestingly, the substitution rate was 44% larger for the DENV4-I E gene compared to the whole
334 genome, suggesting high immunological pressure driving the divergence of the DENV4 E gene. This
335 is consistent with previous reports for the HIV envelope gene and spike protein of the SARS-CoV-2
336 virus [65,66].

337 Root-to-tip distance analysis showed that most Indian dengue viruses follow the molecular clock similar
338 to that observed in other parts of the world (Fig 3B). However, Indian DENV4 lineage Id is highly
339 divergent with residuals larger than three times the interquartile range and displays the most extended
340 branch in the phylogenetic tree (Fig 3B-C). Indeed, when we compare dN/dS ratios between branches
341 within the DENV4 phylogenetic tree (Fig 3C), we found significantly higher dN/dS values for the E
342 gene for the DENV4-Ic/d pair compared to other DENV4 clade pairs (Fig 3D). Besides the E gene,
343 NS2A also showed a relatively higher dN/dS ratio and nonsynonymous mutation density (Fig 3D and

344 S5D-E Fig). This suggests a role of immune selection pressure in DENV4-Id evolution consistent with
345 co-evolution of E and NS2A genes correlating with virus antigenicity [47]. On the other hand, NS1 and
346 NS5 genes showed significantly lower dN/dS ratios for the same pair. In fact, 10 out of 34 mutations in
347 DENV4-Id (with respect to DENV4-Ic) are present in the E gene (S5D Fig). The E gene variant
348 positions 132, 174, 200, 202 and 351 are also in the known epitopic regions and/or have antigenic
349 effects pointing to the immune escape-driven divergence of DENV4-Id. Intriguingly, five of the
350 acquired E gene mutations (I130V, K200T, N202K/E, A221T, H494Q) in DENV4-Id are similar to the
351 DENV1 and DENV3 E genes (Fig 3E). This was unexpected since the prior prevalence of DENV1 and
352 DENV3 in the country should have forced the DENV4 to drift away from them. On the other hand,
353 antibody-dependent enhancement may confer some fitness advantage to the DENV4-Id clade due to
354 shared antigenic features with DENV1 and DENV3. Such movement towards other serotypes is not
355 evident in the phylogenetically related DENV4-Ia/b pair (Fig 3E), suggesting a unique signature of the
356 Indian DENV4-Id lineage.

357 **Dynamics of E gene evolution displays recurring variation**

358 Taking a cue from the divergence of DENV4-Id, we examined whether the high seroprevalence can
359 play a role in the evolution of dengue in India. Dengue cross-reactive immunity has been shown to
360 shape the antigenic evolution of dengue for the E gene at a city level [11]. Since serotype replacements
361 in the different regions of the country display temporal fluctuations (Fig 1C), we asked whether there
362 are signatures of immunity-driven evolution of dengue serotypes across large endemic areas. In absence
363 of antigenicity data, we evaluated the variation in amino acid sequences of the E gene longitudinally.
364 In South India, we find that, in general, the E gene diverges from the ancestral sequence for all serotypes,
365 but this divergence fluctuates over time (Fig 4A). Overall, in our dataset, the E gene sequences drift
366 away from their respective ancestral sequences, evolve to be similar and then diverge repeatedly. This
367 behaviour was pronounced in DENV2-4 with an estimated time period (peak-to-peak) of about three
368 years (2.92 ± 0.58 years for DENV2, 3.55 ± 0.9 years for DENV3 and 2.99 ± 0.64 years for DENV4).
369 While we could not estimate a time period for a similar E gene dynamic in the case of DENV1, we did

370 note a peak in divergence in 2012-13 arising from a singular genotype I outbreak during a period of
371 genotype III prevalence.

372 Interestingly, the observed dynamics of the E gene amino acid variations were also correlated among
373 the serotypes (Fig 4C). The high correlation suggests that the divergence in each serotype was
374 synchronous, i.e., when DENV1 drift away (or converges) from its ancestral sequences, a similar
375 dynamics is observed for DENV2-4 with respect to their ancestral sequences (Fig 4C). To understand
376 whether the evolution of the dengue virus is shaped by the interserotype cross-reactive immunity in the
377 population, we examined the dynamics of interserotype distance D_{ij} (year-wise hamming distance
378 between DENV*i* and DENV*j*) (Fig 4B). We observe that the interserotype distances also displayed
379 fluctuations over a similar time period of 2-4 years (2.54 ± 0.5 years for D_{12} , 4.13 ± 1.18 years for D_{13}
380 and 3.11 ± 0.58 years for D_{23}), suggesting an interplay between the serotypes at the population level.
381 We also checked whether the serotype sequences became similar to each other or drifted apart based on
382 the correlations between the serotype and interserotype evolutionary dynamics. For instance, when
383 DENV1 and DENV2 display divergence (or convergence) with respect to their ancestral sequences (Fig
384 4A), the distance between the DENV1 and DENV2 (D_{12}) also increase (or decrease). While DENV1
385 dynamics did not correlate with D_{13} and D_{14} dynamics, DENV2 strongly correlated with all other
386 interserotypic dynamics. In contrast, DENV3 showed a negative correlation with D_{13} and D_{34} dynamics
387 suggesting that as DENV3 diverges, it moves closer to the circulating DENV1 and DENV4 strains (Fig
388 4C). These signatures are specific to the immunologically dominant E gene. For example, when we
389 compare the CprM gene sequences from South India, the fluctuations were not significant in any case
390 apart from D_1 dynamics but that is linked to the introduction of genotype I in 2012 (S10A Fig).
391 Consistent with this, we found no significant correlations between the within or inter-serotypic viral
392 dynamics, except for DENV4 (S10B-C Fig). Due to the availability of only 21 sequences for DENV4
393 (and n=3 between 2008-2015), we do not consider these correlations as significant.
394 We interpret these coupled fluctuations between dengue serotypes in light of population-level cross-
395 reactive immunity and antibody-dependent enhancement. When homotypic immunity is present in the

396 population, the serotypes drift apart, manifesting in positive correlations between serotype divergence
397 and interserotype dynamics, as observed for DENV1 and DENV2. However, when population
398 immunity is poor against a particular serotype (as with a new introduction or waning levels), similarity
399 to that serotype confers an advantage due to the presence of cross-reactive antibodies and associated
400 ADE [14,15]. This is consistent with the negative correlation observed between DENV3 and
401 interserotype dynamics D_{13} and D_{34} with dropping DENV3 prevalence and its replacement by DENV1
402 and DENV4 in South India (Fig 1C). Indeed, recent reports have argued the interserotypic convergence
403 of dengue antigenicity to be correlated to the outbreaks [11].

404 **Divergence of Indian dengue virus from vaccine strains**

405 All the vaccine strains used by tetravalent vaccines are based on the strains isolated between 1964 and
406 1988. As the prevalent Indian dengue viruses are evolving under high population seropositivity, they
407 might be diverging antigenically from the vaccine strains as well. Additionally, genotypes used in the
408 vaccine strains are not observed in India (S2 Table). Therefore, we examined the E protein differences
409 between the vaccine and the circulating dengue virus in India. Dimensionality reduction analysis of
410 amino acid differences between the virus strains shows that dengue E gene sequences from India cluster
411 together but are removed from the vaccine strains for all serotypes (Fig 5A). Only the DENV1 and
412 DENV2 strains of CYD-TDV are close to the DENV1-I and DENV2-cosmopolitan clusters present in
413 India. Mapping of dominant amino acid differences (present in >10% sequences) on the envelope
414 structures shows that $\geq 50\%$ of the differences (50% DENV1, 68% DENV2, 92% DENV3 and 50%
415 DENV4) lie on the exposed surface of the envelope protein on the virus, which is accessible to the
416 majority of the antibodies (Fig 5B, S11 Fig, S6 Table). Overall, $\sim 6\%$ (2.7-13.5%) of all known epitopic
417 regions are different in Indian dengue sequences compared to the vaccine strains (S7 Table). Further,
418 almost half (34.6-66.7%) of all the E protein variations lie either in known epitopic regions or have a
419 positive antigenic effect. This is in line with our assertion that the dengue virus in India has evolved
420 under immunological selection pressures. It also implies that current vaccines will likely evoke poor
421 neutralization and display limited efficacy against dengue viruses circulating in India.

422 Indian variants of DENV1 and DENV4 are distinct from all the vaccines compared to DENV2 and
423 DENV3 (Fig 5C). Among the E protein domains, EDIII, a known antigenic domain and target of recent
424 Indian dengue vaccine efforts [34,67], carry the largest density of variations, further confirming the
425 immune escape-driven evolution of the protein. Apart from EDIII, the transmembrane region of the
426 vaccines (especially for TAK-003) is distinctly different from the Indian variants (S6 Table). This
427 region has been reported to be highly antigenic in DENV2 [68,69]. Consistent with the role of the stem
428 region in the viral membrane fusion process, it is highly conserved. Therefore, antigenic differences of
429 Indian dengue viruses with respect to the vaccines define the majority of E protein differences. This can
430 have important implications for vaccine efficacy. Monoclonal antibodies targeting the EDIII region of
431 dengue display a 100-fold variation in neutralization titer across different genotypes [70,71]. Similarly,
432 challenge studies (in humans, ClinicalTrials.gov Identifier: NCT03416036 and Cynomolgus Macaques)
433 show complete protection against vaccine genotypes but confer only partial protection against other
434 genotypes [72,73]. For the DENV4-II based CYD-TDV vaccine, efficacy in young children against
435 DENV4-I is only 23.9%, which has been attributed to eight specific residues in the E/prM gene [33].
436 Four of these (T46I, L120S, F461L, and T478S) dramatically reduce vaccine efficacy (from as high as
437 ~75% to less than 20%) [33]. DENV4 in TV003 and TAK-003 vaccines also share three of these residue
438 variations, implying potentially lower vaccine efficacy against the DENV4-I genotype prevalent in
439 India.

440 **Discussion**

441 Due to the immense public health burden from dengue infections in India, it is important to understand
442 the genetic diversity, spatial incidence, effectiveness of vaccines and the potential emergence of new
443 variants of the dengue virus in the region. It is expected that a combination of high seroprevalence and
444 co-circulation of all dengue serotypes shapes the evolution of the dengue virus in the country, but the
445 outcome of the interplay between direct and indirect factors has been unclear. Consistent with immune
446 evasion, we find that the highly immunogenic dengue E gene gradually diverges for all serotypes from
447 their ancestral sequences over time. However, these E gene differences within each serotype were

448 superimposed with recurrent fluctuations with a period of about three years. It is possible that opposing
449 evolutionary constraints imparted by immune selection on one hand and E protein functional fitness on
450 the other could manifest such fluctuations. Similar fluctuations in dengue antigenicity have been
451 reported from Bangkok, Thailand [11], suggesting that immune selection pressure is a prominent driver
452 for such fluctuations during virus divergence in endemic regions.

453 Interestingly, dengue virus interserotypic evolution is also intricately coupled to each other and displays
454 temporally correlated fluctuations. We argue that the correlation between the intraserotype and
455 interserotype evolutionary dynamics arises from the interplay of multiple serotypes with the pre-
456 existing heterotypic immunity levels in India (Fig 6). Among the serotypes, antigenically related
457 serotypes display larger cross-reactivity. The level of pre-existing cross-reactive antibodies can
458 modulate the viral load and severity of the disease during the secondary infection [15,16]. Despite long-
459 term protection from homotypic secondary infection, protection from reinfection with the other
460 serotypes is transient (Fig 6A). As this cross-reactive immunity wanes, the chance of ADE increases at
461 intermediate levels of the antibodies [15]. With further reduction in antibody titers, antibody-mediated
462 enhancement or protection no longer contributes to the risk of infection. Therefore, high antibody titers
463 confer protection, but intermediate levels can increase viral load and severity [15,16]. For closely related
464 serotypes, more cross-reactive antibodies can lead to a broader ADE window without effective
465 neutralization (Fig 6B). This can contribute to a larger viral load, longer duration of infection, higher
466 risk of transmission and increased severity. Thus, pre-existing immunity can provide an evolutionary
467 advantage to an antigenically ‘similar’ virus and promote convergence towards related serotypes. This
468 could contribute to the co-evolution of ‘antigenic cousins’ as detected in our analysis of Indian dengue
469 genotypes. When this selection pressure no longer constrains the virus (e.g., due to a reduction in cross-
470 reactive antibodies), it is free to diverge away from the ancestral strains. Comparable time scales for
471 observed E gene variations and the decay dynamics of interserotypic cross-reactive antibodies [22–24]
472 suggest that such an interplay between the immune selection of dengue serotypes might be at play.

473 Another implication of waning protection against heterotypic infection and robust homotypic immunity
474 contributes to serotype replacement events [19–21]. We speculate that the serotype with the cross-

475 reactive antibody levels that manifest in strong ADE effects would have a distinctive advantage in
476 secondary infections. This can explain how major outbreaks coincide with serotype or lineage shifts
477 [20,21]. It also explains the close match between cross-reactive protection decay and the time interval
478 between the heterotypic outbreak cycles in India (Fig 1, S1 Fig). Understanding the interplay of
479 population-level immunity with dengue virus evolutionary dynamics may allow the prediction of future
480 outbreak serotypes and genotypes.

481 DENV4 is emerging as one of the dominant serotypes in South India (Fig 1B) [28,60]. High divergence
482 in the DENV4-Id lineage in India is largely restricted to immunodominant E and NS2A proteins, again
483 pointing to immune evasion driving its emergence. Consistent with our observation of interserotype
484 correlations, this lineage is moving towards DENV1 and DENV3 serotypes, and this enhanced
485 similarity might contribute to ADE during the secondary infection in the Indian population. Although
486 DENV4 was traditionally considered less virulent, it has previously replaced circulating serotypes and
487 caused epidemics in the Pacific region[74,75]. More interestingly, a strong association of DENV4 with
488 secondary infections (97%) observed in Thailand suggests that DENV4 can co-opt immunity-driven
489 factors to overcome fitness limitations [76]. High seroprevalence and identification of the fast evolving
490 ‘antigenically related’ DENV4 genotype in South India augurs an increased frequency of DENV4
491 outbreaks in other parts of the country and possible association with increased severity.

492 While the evolution of the dengue virus in India is driven by pre-existing immunity, phylogenetics also
493 highlights the geographical restriction of dengue viral diversity (Fig 2, S7 Fig). Despite globalization
494 and increased human mobility, dengue genotypes are contained within broad geographical boundaries,
495 albeit with prominent intermixing between neighbouring countries [77]. This could arise from the
496 limited lifecycle of the virus in the host and vector, climate and biodiversity. As a consequence, Indian
497 genotypes are highly divergent from the genotypes in other continents as well as the current vaccine
498 strains. Moreover, most of the variations from vaccine strains are concentrated on the exposed regions
499 of the E protein, including the EDIII region, which plays a significant role in defining the antigenicity
500 [78] and is the primary target of the neutralizing antibodies [79,80]. Therefore, an in-depth
501 characterization of the effect of the reported differences on the antibody titers is required to assess the

502 efficacy of prospective dengue vaccines for India. One can argue that regionally tailored vaccines would
503 be more efficacious due to the geographical restriction of dengue [77]. However, our evolutionary
504 analysis suggests that the immunity developed by vaccination can also impact the future course of
505 dengue virus evolution. Further, the evolution of dengue serotypes (and other flaviviruses [81])
506 mediated by heterotypic immunity argues that their dynamics is intertwined that cannot be inferred fully
507 by studying them separately. As the incidences of dengue virus continue to increase worldwide, the host
508 immunity-driven virus evolution would need to be considered carefully to devise interventions.

509 **Acknowledgements**

510 We would like to thank Mary Dias, Guruprasad Madigeshi, Jayanthi Shastri, Ravisekhar Gadepalli, and
511 Saranya Marimuthu for their help and valuable feedback on this work.

512 **Figure captions**

513 **Fig 1. Year-wise dengue sequences reported from India.**

514 (A) Dengue serotype sequences available from India till 2018. (B) Distribution of dengue serotypes in
515 different regions of India. DENV1: blue, DENV2: orange, DENV3: green, DENV4: red. Arrows
516 indicate the peaks in the number of sequences.

517 **Fig 2. Dengue genotype distribution and phylogeny.**

518 (A) Heatmap of the number of whole-genome sequences from different geographical regions and India.
519 (B-E) Time-dated phylogenetic trees for all serotypes with the circulating genotypes in India (DENV1-
520 I, DENV2-cosmopolitan, DENV3-III, DENV4-I). The colour of the rectangle at the tip of the branches
521 represents the region of the sample collection. The estimated time of the common ancestors is denoted
522 for the important nodes along with the 95% highest posterior density (HPD) intervals. Asterisk (*)
523 denotes posterior probability support of ≥ 0.95 .

524 **Fig 3. Substitution rates for Indian genotypes and DENV4-I lineage.**

525 (A) Comparison of the substitution rates (substitutions per site per year) for different segments of
526 dengue virus for Indian genotypes. The p-values were obtained using Welch's t-test (unpaired, two-
527 tailed, unequal variance). (B) Root-to-tip-distance of global dengue whole-genome nucleotide
528 sequences. The Indian sequences are highlighted in red, and the R^2 value for the linear fit is shown. (C)
529 The maximum-likelihood phylogenetic tree for complete coding sequences of DENV4. Distinct
530 branches (corresponding to Ia/b/c/d, IIAa/b and IIBa/b) used for the dN/dS analysis are colour coded.
531 Indian DENV4 cluster is shown in the inset. (D) dN/dS values for the consensus sequences generated
532 from the branches in (C) are represented as a box plot for each gene. Whiskers denote the 5th and 95th
533 percentile. The dN/dS values for Ic/d pair are marked in red. The generalized extreme Studentized
534 deviate test was performed to find the outliers, and p-values are reported. (E) Sequence logo showing
535 the amino acid variations between pairs Ic/d and Ia/b. The amino acids at these locations for DENV1-3
536 are shown at the bottom. Highlighted colour depicts the DENV4 branch with the same amino acid
537 residue.

538 **Fig 4. Dynamics of E gene amino acid variation in South India between 2007 and 2016.**

539 (A) Normalized amino acid distances from the strains isolated in 2007/2008. Hamming distances were
540 normalized with the sequence length and converted to a z-score. Distances were bootstrap sampled (n
541 = 100) to calculate the reported median. Error bars represent standard error. The blue line represents a
542 linear regression fit to the data with 80% confidence interval(B) Year-wise normalised interserotype
543 distances (as z-score) are reported as calculated by randomly selecting the sequences from each serotype
544 every year (100 bootstraps). The inset heatmap depicts the time period of oscillation binned yearly
545 (range: 0 to 5 years). The mean and standard deviation of the time period distribution is denoted next
546 to the heatmap. (C) Distribution of correlation coefficients for within-serotype dynamics (highlighted
547 in yellow) and inter-serotype distance dynamics. Histograms were obtained by deleting up to 3 data
548 points randomly (1000 bootstraps). D_i indicates the distance dynamics between DENV i and its ancestral
549 sequence. D_{ij} indicates the interserotype distance dynamics between i -th and j -th serotype. Green and
550 red indicate positive ($\rho > 0.4$) and negative correlation ($\rho < -0.4$), respectively, while grey indicates
551 weak or no correlation.

552 **Fig 5. Comparison of Indian envelope protein sequences with vaccine strains.**

553 (A) Relative amino acid differences between Indian envelope sequences (post-2000) and vaccine strains
554 (CYD-TDV, TV003 and TAK-003). The multidimensional scaling was used to reduce the dimensions
555 of the data using the hamming distance matrix. Genotype cluster boundaries are indicated with dotted
556 lines for visual clarity. Indian sequences are shown in grey; vaccine strains are shown with empty
557 circles. (B) Amino acid differences at a frequency >10% with respect to the CYD-TDV vaccine are
558 shown on the envelope protein dimer structure. Different positions in the known epitopic regions are
559 shown in red. Variable residues within the predicted antigenic effect positions are shown in black.
560 Residues present in epitopic regions with predicted antigenic effects are highlighted with a box. Venn
561 diagram shows the total number of differences in the full E protein (including the stem and
562 transmembrane region), epitopic sites and antigenic sites. The circle size represents the number of
563 differences category-wise. (C) The density of differences (number of differences/ length of the domain)
564 is shown for different domains of the envelope protein (envelope domains EDI-III, stem and
565 transmembrane (TM) region). The error bars represent the standard deviation across the three vaccine
566 strains.

567 **Fig 6. Schematic for antibody-mediated protection from secondary dengue infection.**

568 (A) Antibody decay dynamics and (B) corresponding level of protection during the secondary infection.
569 Homotypic antibodies and protection from homotypic infection wane slowly (green). Cross-reactive
570 antibodies to heterotypic dengue and protection wane faster (purple). Sequence similarity between the
571 primary and secondary infecting serotypes is shown by shades of purple. The red shaded area represents
572 the window of the antibody titer in which ADE is in effect. The dotted purple line represents protection
573 response in the absence of ADE.

574

575 **References**

576 1. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and
577 future global distribution and population at risk of dengue. *Nat Microbiol.* 2019;4: 1508–1515.
578 doi:10.1038/s41564-019-0476-8

579 2. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the Global
580 Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. *PLoS Negl Trop*
581 *Dis.* 2012;6: e1760. doi:10.1371/journal.pntd.0001760

582 3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global
583 distribution and burden of dengue. *Nature.* 2013;496: 504–507. doi:10.1038/nature12060

584 4. Shepard DS, Halasa YA, Tyagi BK, Adhish SV, Nandan D, Karthiga KS, et al. Economic and
585 disease burden of dengue illness in India. *Am J Trop Med Hyg.* 2014/10/06. 2014;91: 1235–
586 1242. doi:10.4269/ajtmh.14-0002

587 5. Murhekar M v., Kamaraj P, Kumar MS, Khan SA, Allam RR, Barde P, et al. Burden of dengue
588 infection in India, 2017: a cross-sectional population based serosurvey. *Lancet Glob Health.*
589 2019;7. doi:10.1016/S2214-109X(19)30250-5

590 6. Ganeshkumar P, Murhekar M v., Poornima V, Saravanakumar V, Sukumaran K,
591 Anandaselvasankar A, et al. Dengue infection in India: A systematic review and meta-analysis.
592 *PLoS Negl Trop Dis.* 2018;12. doi:10.1371/journal.pntd.0006618

593 7. Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and molecular clock analysis
594 of dengue serotype 1 and 3 from New Delhi, India. *PLoS One.* 2015;10.
595 doi:10.1371/journal.pone.0141628

596 8. Zala DB, Khan V, Kakadiya M, Sanghai AA, Das VK. Circulation of dengue serotypes in the
597 Union Territory of Dadra & Nagar Haveli (India). *Parasite Epidemiol Control.* 2018;3.
598 doi:10.1016/j.PAREPI.2018.e00069

599 9. VinodKumar CS, Kalapannavar NK, Basavarajappa KG, Sanjay D, Gowli C, Nadig NG, et al.
600 Episode of coexisting infections with multiple dengue virus serotypes in central Karnataka,
601 India. *J Infect Public Health.* 2013;6: 302–306. doi:10.1016/j.jiph.2013.01.004

602 10. Dolan PT, Taguwa S, Rangel MA, Acevedo A, Hagai T, Andino R, et al. Principles of dengue
603 virus evolvability derived from genotype-fitness maps in human and mosquito cells. Wittkopp
604 PJ, Sanjuan R, Illingworth CJR, editors. *Elife.* 2021;10: e61921. doi:10.7554/eLife.61921

605 11. Katzelnick LC, Coello Escoto A, Huang AT, Garcia-Carreras B, Chowdhury N, Maljkovic Berry
606 I, et al. Antigenic evolution of dengue viruses over 20 years. *Science (1979).* 2021;374: 999–
607 1004. doi:10.1126/science.abk0058

608 12. Holmes EC. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying
609 selection in dengue virus. *J Virol.* 2003;77: 11296–11298. doi:10.1128/JVI.77.20.11296–
610 11298.2003

611 13. Woelk CH, Holmes EC. Reduced positive selection in vector-borne RNA viruses. *Mol Biol*
612 *Evol.* 2002;19: 2333–2336. doi:10.1093/oxfordjournals.molbev.a004059

613 14. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. Unifying the
614 epidemiological and evolutionary dynamics of pathogens. *Science (1979).* 2004;303: 327–332.
615 doi:10.1126/science.1090727

616 15. Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, et al. Antibody-
617 dependent enhancement of severe dengue disease in humans. *Science (1979).* 2017;358: 929–
618 932. doi:10.1126/science.aan6836

619 16. Tsang TK, Ghebremariam SL, Gresh L, Gordon A, Halloran ME, Katzelnick LC, et al. Effects
620 of infection history on dengue virus infection and pathogenicity. *Nat Commun.* 2019;10: 1246.
621 doi:10.1038/s41467-019-09193-y

622 17. Clapham HE, Tricou V, van Vinh Chau N, Simmons CP, Ferguson NM. Within-host viral
623 dynamics of dengue serotype 1 infection. *J R Soc Interface*. 2014;11: 20140094.
624 doi:10.1098/rsif.2014.0094

625 18. Adams B, Holmes EC, Zhang C, Mammen MP, Nimmannitya S, Kalayanarooj S, et al. Cross-
626 protective immunity can account for the alternating epidemic pattern of dengue virus serotypes
627 circulating in Bangkok. *Proceedings of the National Academy of Sciences*. 2006;103: 14234–
628 14239. doi:10.1073/pnas.0602768103

629 19. Zhang C, Mammen MPJ, Chinnawirotisan P, Klungthong C, Rodpradit P, Monkongdee P, et
630 al. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype
631 prevalence. *J Virol*. 2005;79: 15123–15130. doi:10.1128/JVI.79.24.15123-15130.2005

632 20. Aquino JDJD, Tang W-F, Ishii R, Ono T, Eshita Y, Aono H, et al. Molecular epidemiology of
633 dengue virus serotypes 2 and 3 in Paraguay during 2001–2006: The association of viral clade
634 introductions with shifting serotype dominance. *Virus Res*. 2008;137: 266–270.
635 doi:10.1016/j.virusres.2008.07.011

636 21. Balmaseda A, Standish K, Mercado JC, Matute JC, Tellez Y, Saborío S, et al. Trends in patterns
637 of dengue transmission over 4 years in a pediatric cohort study in Nicaragua. *J Infect Dis*.
638 2010;201: 5–14. doi:10.1086/648592

639 22. Sabin AB. Research on dengue during World War II. *Am J Trop Med Hyg*. 1952;1: 30–50.
640 doi:10.4269/ajtmh.1952.1.30

641 23. Anderson KB, Gibbons R v, Cummings DAT, Nisalak A, Green S, Libratty DH, et al. A shorter
642 time interval between first and second dengue infections is associated with protection from
643 clinical illness in a school-based cohort in Thailand. *J Infect Dis*. 2014;209: 360–368.
644 doi:10.1093/infdis/jit436

645 24. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between
646 serotypes of dengue highlight epidemiological impact of cross-immunity. *J R Soc Interface*.
647 2013;10: 20130414. doi:10.1098/rsif.2013.0414

648 25. Bell SM, Katzelnick L, Bedford T. Dengue genetic divergence generates within-serotype
649 antigenic variation, but serotypes dominate evolutionary dynamics. Ferguson NM, Tautz D,
650 Lourenço J, editors. *Elife*. 2019;8: e42496. doi:10.7554/eLife.42496

651 26. Afreen N, Deeba F, Naqvi I, Shareef M, Ahmed A, Broor S, et al. Molecular investigation of
652 2013 dengue Fever outbreak from Delhi, India. *PLoS Curr.* 2014;6.
653 doi:10.1371/currents.outbreaks.0411252a8b82aa933f6540abb54a855f

654 27. Kar M, Nisheetha A, Kumar A, Jagtap S, Shinde J, Singla M, et al. Isolation and molecular
655 characterization of dengue virus clinical isolates from pediatric patients in New Delhi.
656 *International Journal of Infectious Diseases*. 2019;84: 25–33. doi:10.1016/j.ijid.2018.12.003

657 28. Rai P, Kille S, Kotian A, Kumar BK, Deekshit VK, Ramakrishna MS, et al. Molecular
658 investigation of the dengue outbreak in Karnataka, South India, reveals co-circulation of all four
659 dengue virus serotypes. *Infection, Genetics and Evolution*. 2021;92: 104880.
660 doi:10.1016/j.meegid.2021.104880

661 29. Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future
662 perspectives. *Expert Opin Drug Discov*. 2021;16: 47–58. doi:10.1080/17460441.2020.1811675

663 30. de Silva AM, Harris E. Which dengue vaccine approach is the most promising, and should we
664 be concerned about enhanced disease after vaccination? The path to a dengue vaccine: Learning
665 from human natural dengue infection studies and vaccine trials. *Cold Spring Harb Perspect Biol*.
666 2018;10: a029371. doi:10.1101/cshperspect.a029371

667 31. Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in dengue vaccines
668 development: Pre-existing infections and cross-reactivity. *Front Immunol*. 2020;11: 1055.
669 doi:10.3389/fimmu.2020.01055

670 32. Dengue vaccine: WHO position paper, September 2018 – Recommendations. *Vaccine*. 2019;37:
671 4848–4849. doi:10.1016/j.vaccine.2018.09.063

672 33. Juraska M, Magaret CA, Shao J, Carpp LN, Fiore-Gartland AJ, Benkeser D, et al. Viral genetic
673 diversity and protective efficacy of a tetravalent dengue vaccine in two phase 3 trials.
674 *Proceedings of the National Academy of Sciences*. 2018;115: E8378–E8387.
675 doi:10.1073/pnas.1714250115

676 34. Sankaradoss A, Jagtap S, Nazir J, Moula SE, Modak A, Fialho J, et al. Immune profile and
677 responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on
678 Indo-African sequences. *Molecular Therapy*. 2022;30: 2058–2077.
679 doi:10.1016/j.ymthe.2022.01.013

680 35. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, et al. ViPR: An open
681 bioinformatics database and analysis resource for virology research. *Nucleic Acids Res.*
682 2011/10/17. 2012;40: 593–598. doi:10.1093/nar/gkr859

683 36. Chen Y, Li N, Lourenço J, Wang L, Cazelles B, Dong L, et al. Measuring the effects of COVID-
684 19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical
685 modelling study. *Lancet Infect Dis*. 2022;22: 657–667. doi:10.1016/S1473-3099(22)00025-1

686 37. Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space
687 complexity. *BMC Bioinformatics*. 2004;5: 113. doi:10.1186/1471-2105-5-113

688 38. Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets.
689 *Bioinformatics*. 2014;30: 3276–3278. doi:10.1093/bioinformatics/btu531

690 39. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic
691 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*. 2015;32: 268–274.
692 doi:10.1093/molbev/msu300

693 40. Posada D. jModelTest: Phylogenetic model averaging. *Mol Biol Evol*. 2008;25: 1253–1256.
694 doi:10.1093/molbev/msn083

695 41. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of
696 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol.* 2016;2: vew007.
697 doi:10.1093/ve/vew007

698 42. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC*
699 *Evol Biol.* 2007;7: 214. doi:10.1186/1471-2148-7-214

700 43. Bielejec F, Baele G, Vrancken B, Suchard MA, Rambaut A, Lemey P. SpreaD3: interactive
701 visualization of spatiotemporal history and trait evolutionary processes. *Mol Biol Evol.* 2016;33:
702 2167–2169. doi:10.1093/molbev/msw082

703 44. Pond SLK, Frost SDW, Muse S v. HyPhy: hypothesis testing using phylogenies. *Bioinformatics.*
704 2005;21: 676–679. doi:10.1093/bioinformatics/bti079

705 45. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune Epitope
706 Database (IEDB): 2018 update. *Nucleic Acids Res.* 2019;47: 339–343.
707 doi:10.1093/nar/gky1006

708 46. Carrasco Pro S, Sidney J, Paul S, Arlehamn CL, Weiskopf D, Peters B, et al. Automatic
709 generation of validated specific epitope sets. Reche PA, editor. *J Immunol Res.* 2015;2015.
710 doi:10.1155/2015/763461

711 47. Huang AT, Salje H, Escoto AC, Chowdhury N, Chávez C, Garcia-Carreras B, et al. Beneath the
712 surface: Amino acid variation underlying two decades of dengue virus antigenic dynamics in
713 Bangkok, Thailand. *PLoS Pathog.* 2022;18: e1010500. doi:10.1371/journal.ppat.1010500

714 48. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-
715 MODEL: Homology modelling of protein structures and complexes. *Nucleic Acids Res.*
716 2018;46: 296–303. doi:10.1093/nar/gky427

717 49. Schrödinger L. The PyMOL Molecular Graphics System, Version~2.4. 2020. Available:
718 <http://www.pymol.org/pymol>

719 50. Pandey A, Diddi K, Dar L, Bharaj P, Chahar HS, Guleria R, et al. The evolution of dengue over
720 a decade in Delhi, India. *Journal of Clinical Virology*. 2007;40: 87–88.
721 doi:10.1016/j.jcv.2007.05.011

722 51. Bharaj P, Chahar HS, Pandey A, Diddi K, Dar L, Guleria R, et al. Concurrent infections by all
723 four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India. *Virol J*.
724 2008;5: 1. doi:10.1186/1743-422X-5-1

725 52. Singh P, Mittal V, Rizvi MMA, Chhabra M, Sharma P, Rawat DS, et al. The first dominant co-
726 circulation of both dengue and chikungunya viruses during the post-monsoon period of 2010 in
727 Delhi, India. *Epidemiol Infect*. 2012;140: 1337–1342. doi:10.1017/S0950268811001671

728 53. Dash PK, Sharma S, Soni M, Agarwal A, Sahni AK, Parida M. Complete genome sequencing
729 and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1. *Virus Res*.
730 2015;195: 124–134. doi:10.1016/j.virusres.2014.08.018

731 54. Tajima S, Nukui Y, Ito M, Takasaki T, Kurane I. Nineteen nucleotides in the variable region of
732 3' non-translated region are dispensable for the replication of dengue type 1 virus in vitro. *Virus*
733 *Res*. 2006;116: 38–44. doi:10.1016/j.virusres.2005.08.015

734 55. Alvarez DE, de Lella Ezcurra AL, Fucito S, Gamarnik A v. Role of RNA structures present at
735 the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. *Virology*.
736 2005;339: 200–212. doi:10.1016/j.virol.2005.06.009

737 56. Kumar SRP, Patil JA, Cecilia D, Cherian SS, Barde P v, Walimbe AM, et al. Evolution, dispersal
738 and replacement of American genotype dengue type 2 viruses in India (1956–2005): selection
739 pressure and molecular clock analyses. *Journal of General Virology*. 2010;91: 707–720.
740 doi:10.1099/vir.0.017954-0

741 57. Afreen N, Naqvi IH, Broor S, Ahmed A, Kazim SN, Dohare R, et al. Evolutionary Analysis of
742 Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.
743 *PLoS Negl Trop Dis*. 2016;10: e0004511. doi:10.1371/journal.pntd.0004511

744 58. Masika MM, Korhonen EM, Smura T, Uusitalo R, Vapalahti K, Mwaengo D, et al. Detection of
745 dengue virus type 2 of Indian origin in acute febrile patients in rural Kenya. *PLoS Negl Trop*
746 *Dis.* 2020;14. doi:10.1371/journal.pntd.0008099

747 59. Sang S, Liu-Helmersson J, Quam MBM, Zhou H, Guo X, Wu H, et al. The evolutionary
748 dynamics of DENV 4 genotype I over a 60-year period. *PLoS Negl Trop Dis.* 2019;13.
749 doi:10.1371/journal.pntd.0007592

750 60. Gowri Sankar S, Mowna Sundari T, Alwin Prem Anand A. Emergence of dengue 4 as dominant
751 serotype during 2017 outbreak in South India and associated cytokine expression profile. *Front*
752 *Cell Infect Microbiol.* 2021;11: 681937. doi:10.3389/fcimb.2021.681937

753 61. Anantapreecha S, Chanama S, A-nuegoonpipat A, Naemkhunthot S, Sa-Ngasang A,
754 Sawanpanyalert P, et al. Serological and virological features of dengue fever and dengue
755 haemorrhagic fever in Thailand from 1999 to 2002. *Epidemiol Infect.* 2005;133: 503–507.
756 doi:10.1017/s0950268804003541

757 62. Fried JR, Gibbons R v., Kalayanarooj S, Thomas SJ, Sriiatkhachorn A, Yoon IK, et al.
758 Serotype-specific differences in the risk of dengue hemorrhagic fever: An analysis of data
759 collected in Bangkok, Thailand from 1994 to 2006. *PLoS Negl Trop Dis.* 2010;4: e617–e617.
760 doi:10.1371/journal.pntd.0000617

761 63. Shrivastava S, Tiraki D, Diwan A, Lalwani SK, Modak M, Mishra AC, et al. Co-circulation of
762 all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus
763 in Pune, India during 2016 season. *PLoS One.* 2018;13: e0192672.
764 doi:10.1371/journal.pone.0192672

765 64. Costa RL, Voloch CM, Schrago CG. Comparative evolutionary epidemiology of dengue virus
766 serotypes. *Infection, Genetics and Evolution.* 2012;12: 309–314.
767 doi:10.1016/j.meegid.2011.12.011

768 65. Alizon S, Fraser C. Within-host and between-host evolutionary rates across the HIV-1 genome.
769 Retrovirology. 2013;10: 49. doi:10.1186/1742-4690-10-49

770 66. Wang S, Xu X, Wei C, Li S, Zhao J, Zheng Y, et al. Molecular evolutionary characteristics of
771 SARS-CoV-2 emerging in the United States. J Med Virol. 2022;94: 310–317.
772 doi:10.1002/jmv.27331

773 67. Shukla R, Rajpoot RK, Arora U, Poddar A, Swaminathan S, Khanna N. Pichia pastoris-
774 expressed bivalent virus-like particulate vaccine induces domain III-focused bivalent
775 neutralizing antibodies without antibody-dependent enhancement in Vivo. Front Microbiol.
776 2017;8: 2644. doi:10.3389/fmicb.2017.02644

777 68. Innis BL, Thirawuth V, Hemachudha C. Identification of continuous epitopes of the envelope
778 glycoprotein of dengue type 2 virus. Am J Trop Med Hyg. 1989;40: 676–687.
779 doi:10.4269/ajtmh.1989.40.676

780 69. Ramanathan B, Poh CL, Kirk K, McBride WJH, Aaskov J, Grollo L. Synthetic B-Cell epitopes
781 eliciting cross-neutralizing antibodies: Strategies for future dengue vaccine. PLoS One. 2016;11:
782 e0155900. doi:10.1371/journal.pone.0155900

783 70. Martinez DR, Yount B, Nivarthi U, Munt JE, Delacruz MJ, Whitehead SS, et al. Antigenic
784 variation of the dengue virus 2 genotypes impacts the neutralization activity of human antibodies
785 in vaccinees. Cell Rep. 2020;33: 108226. doi:10.1016/j.celrep.2020.108226

786 71. D. BJ, Kyle AS, Soila S-P, M. OK, Syd J, H. FD, et al. Genotype-specific neutralization and
787 protection by antibodies against dengue virus type 3. J Virol. 2010;84: 10630–10643.
788 doi:10.1128/JVI.01190-10

789 72. Kirkpatrick BD, Whitehead SS, Pierce KK, Tibery CM, Grier PL, Hynes NA, et al. The live
790 attenuated dengue vaccine TV003 elicits complete protection against dengue in a human
791 challenge model. Sci Transl Med. 2016;8: 330ra36-330ra36. doi:10.1126/scitranslmed.aaf1517

792 73. Osorio JE, Brewoo JN, Silengo SJ, Arguello J, Moldovan IR, Tary-Lehmann M, et al. Efficacy
793 of a tetravalent chimeric dengue vaccine (DENNVax) in Cynomolgus Macaques. The American
794 Society of Tropical Medicine and Hygiene. 2011;84: 978–987. doi:10.4269/ajtmh.2011.10-0592

795 74. Li D, Liu W, Guigon A, Mostyn C, Grant R, Aaskov J. Rapid displacement of dengue virus type
796 1 by type 4, Pacific region, 2007-2009. Emerg Infect Dis. 2010;16: 123–125.
797 doi:10.3201/eid1601.091275

798 75. Forshey BM, Morrison AC, Cruz C, Rocha C, Vilcarromero S, Guevara C, et al. Dengue virus
799 serotype 4, northeastern Peru, 2008. Emerg Infect Dis. 2009;15: 1815–1818.
800 doi:10.3201/eid1511.090663

801 76. Nisalak A, Endy TP, Nimmannitya S, Kalayanaroon S, Thisayakorn U, Scott RM, et al. Serotype-
802 specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999.
803 Am J Trop Med Hyg. 2003;68: 191–202. doi:10.4269/ajtmh.2003.68.191

804 77. Usme-Ciro JA, Méndez JA, Laiton KD, Páez A. The relevance of dengue virus genotypes
805 surveillance at country level before vaccine approval. Hum Vaccin Immunother. 2014;10: 2674–
806 2678. doi:10.4161/hv.29563

807 78. Young E, Carnahan RH, Andrade D v, Kose N, Nargi RS, Fritch EJ, et al. Identification of
808 dengue virus serotype 3 specific antigenic sites targeted by neutralizing human antibodies. Cell
809 Host Microbe. 2020;27: 710-724.e7. doi:10.1016/j.chom.2020.04.007

810 79. Chen S, Yu M, Jiang T, Deng Y, Qin C, Qin E. Induction of tetravalent protective immunity
811 against four dengue serotypes by the tandem domain III of the envelope protein. DNA Cell Biol.
812 2007;26: 361–367. doi:10.1089/dna.2006.0547

813 80. Leng C-H, Liu S-J, Tsai J-P, Li Y-S, Chen M-Y, Liu H-H, et al. A novel dengue vaccine
814 candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect.
815 2009;11: 288–295. doi:10.1016/j.micinf.2008.12.004

816 81. Bardina S v, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, et al. Enhancement of Zika
817 virus pathogenesis by preexisting antiflavivirus immunity. *Science* (1979). 2017;356: 175–180.
818 doi:10.1126/science.aal4365

819

Fig 1

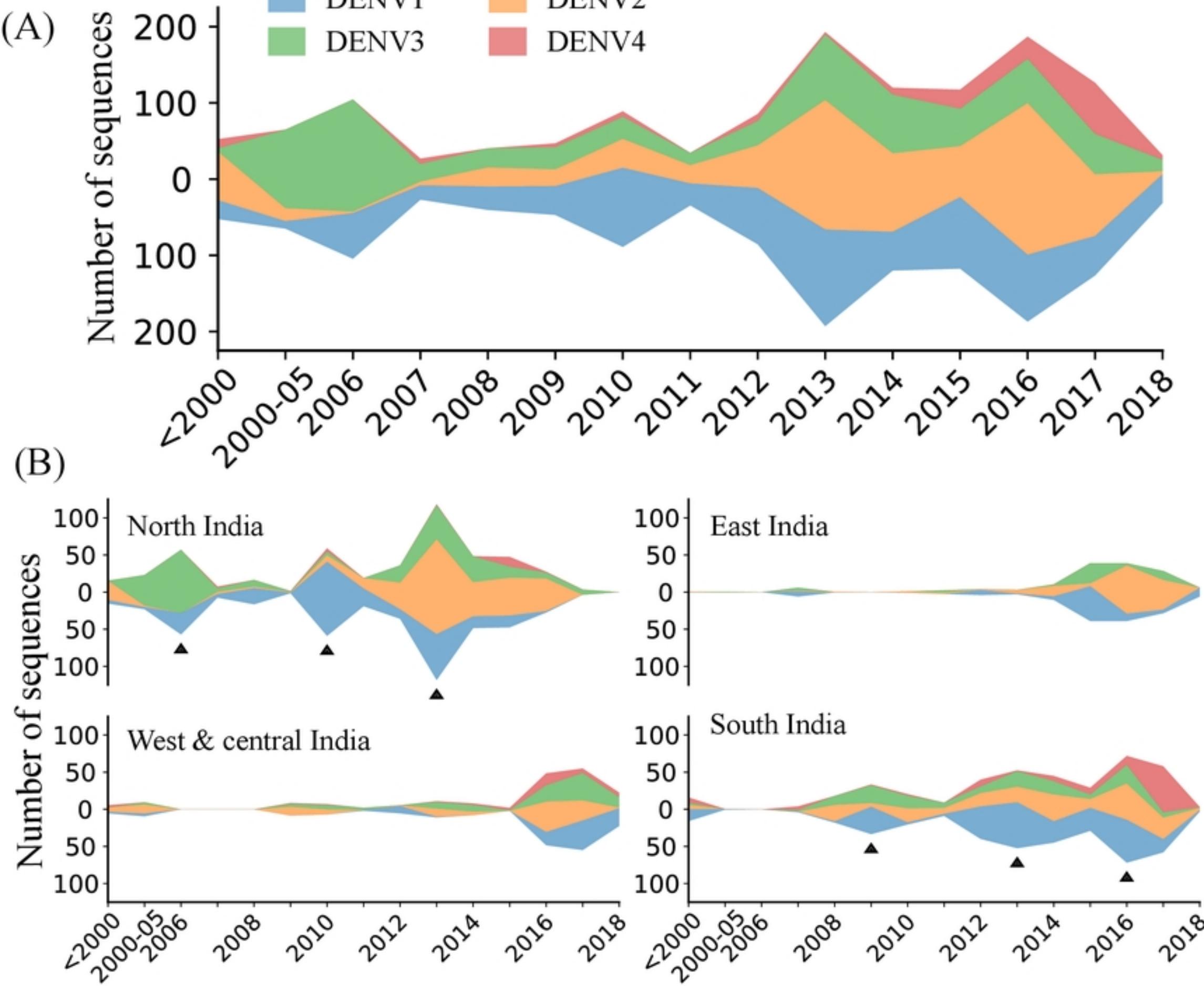
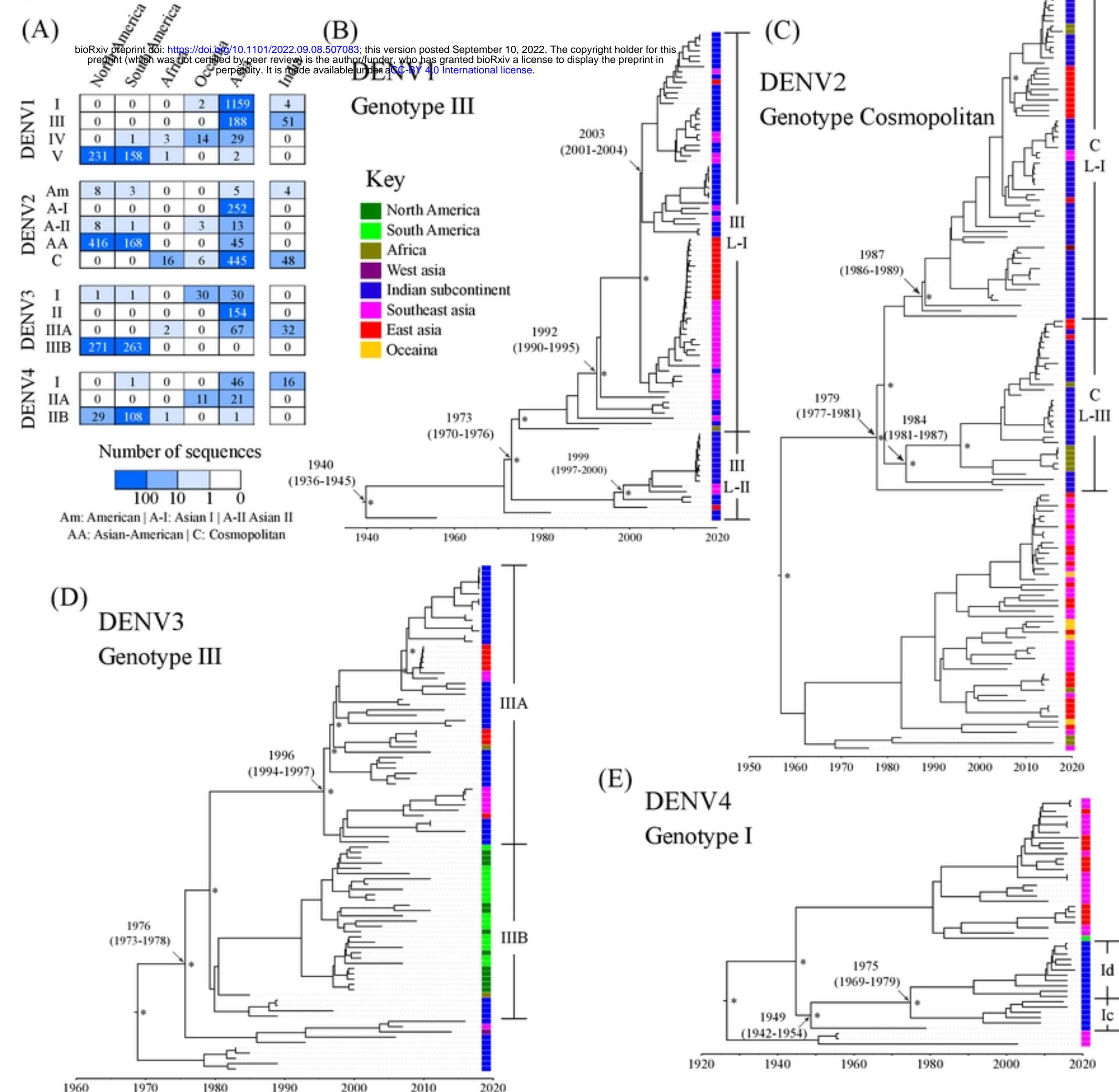
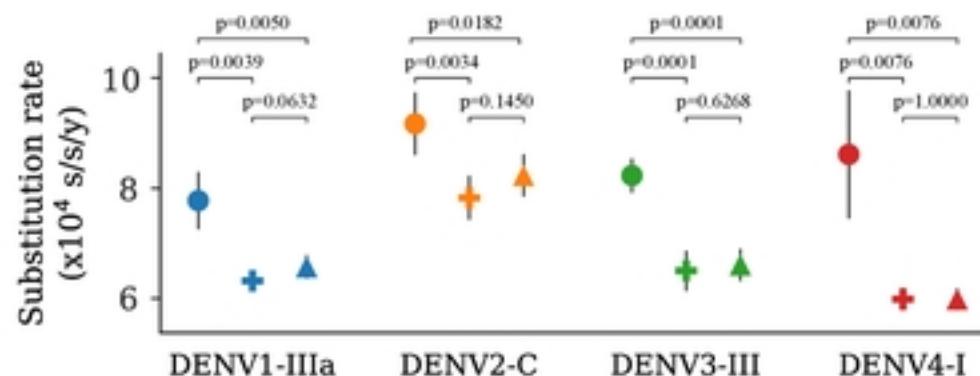
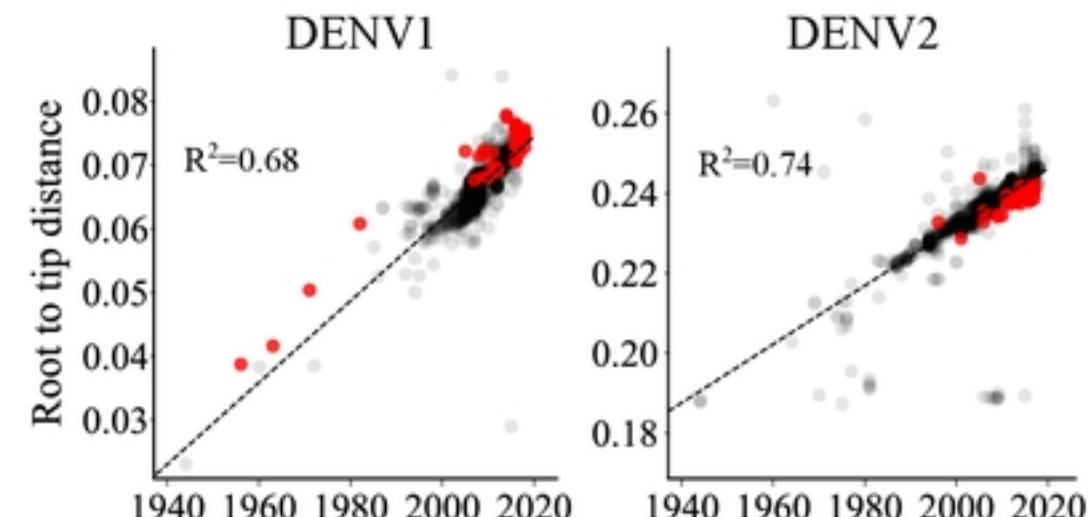
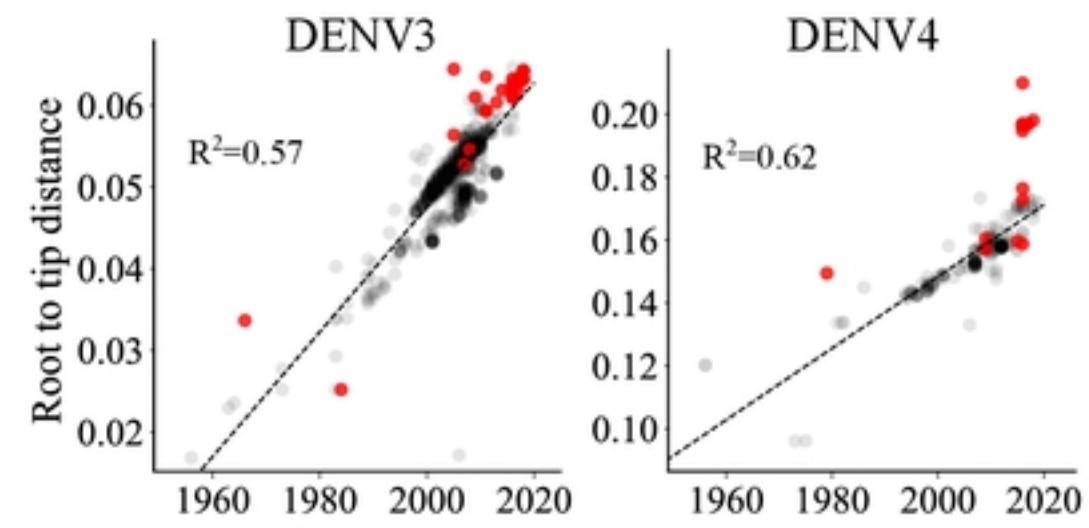
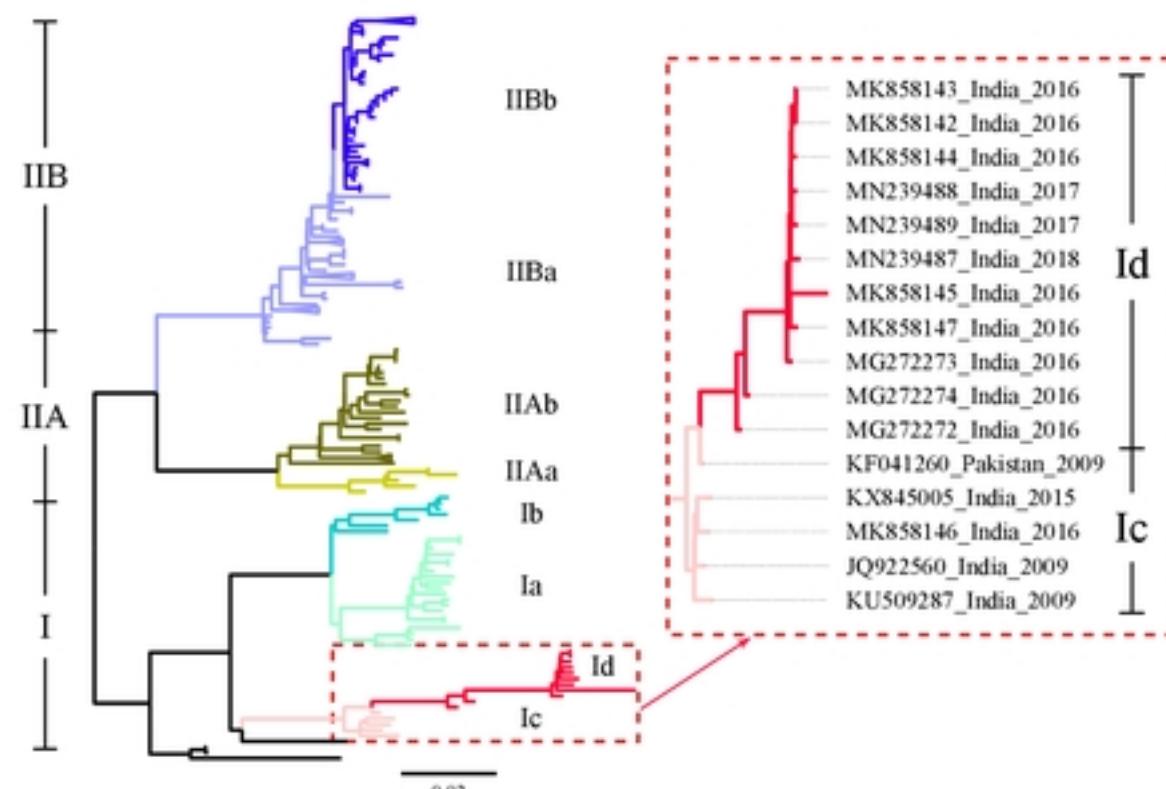


Fig 2



Fig 3

(B)

(C)

(E)

DENV1	V	Y	Q	T	K	T	T	L	N	Q
DENV2	V	P	E	Q	E	L	T	L	N	Q
DENV3	V	Y	I	T	K	T	T	L	N	Q

F	T	S	E
M	E	Q	P
Y	K	P	A

Fig 4

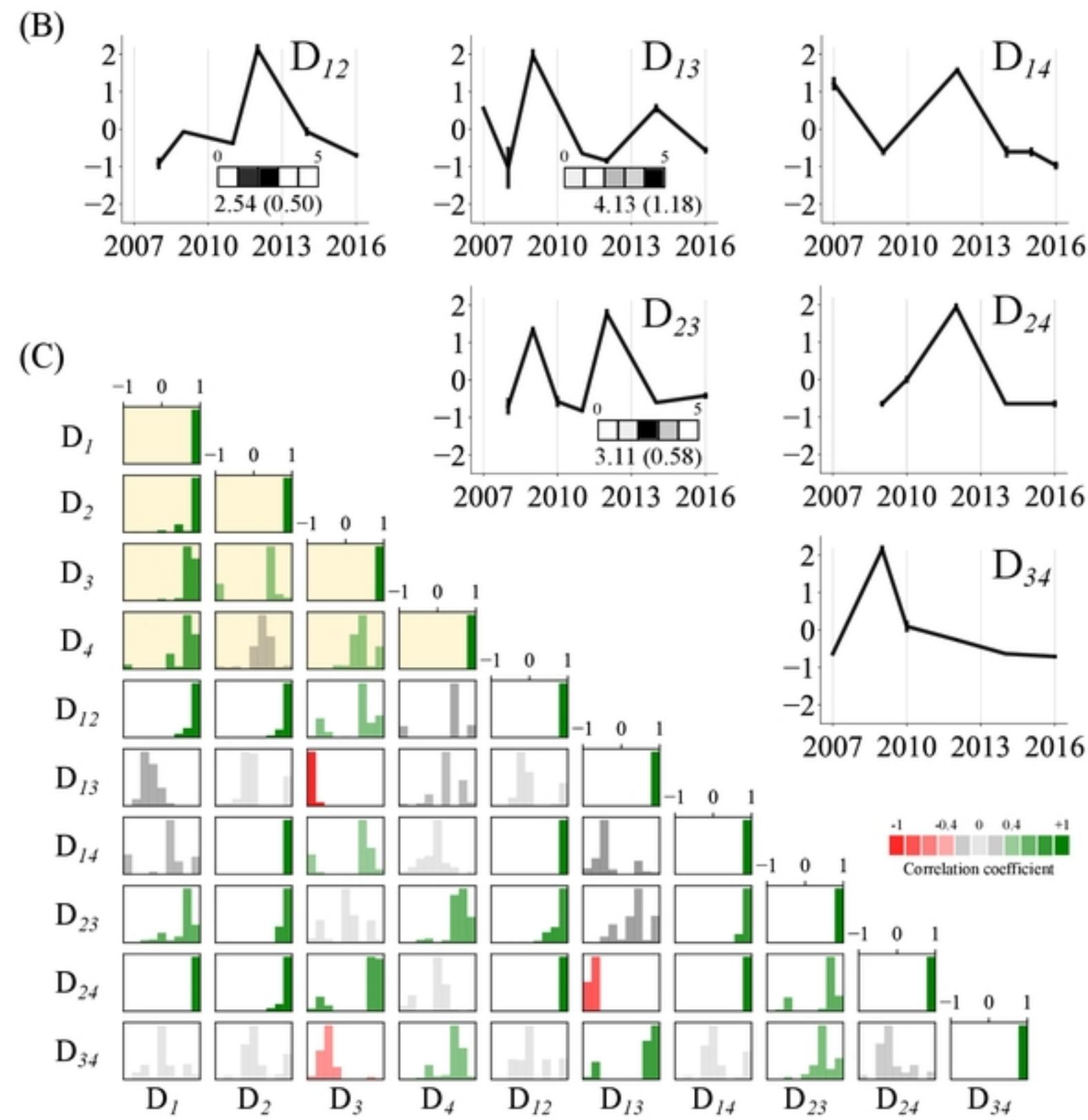
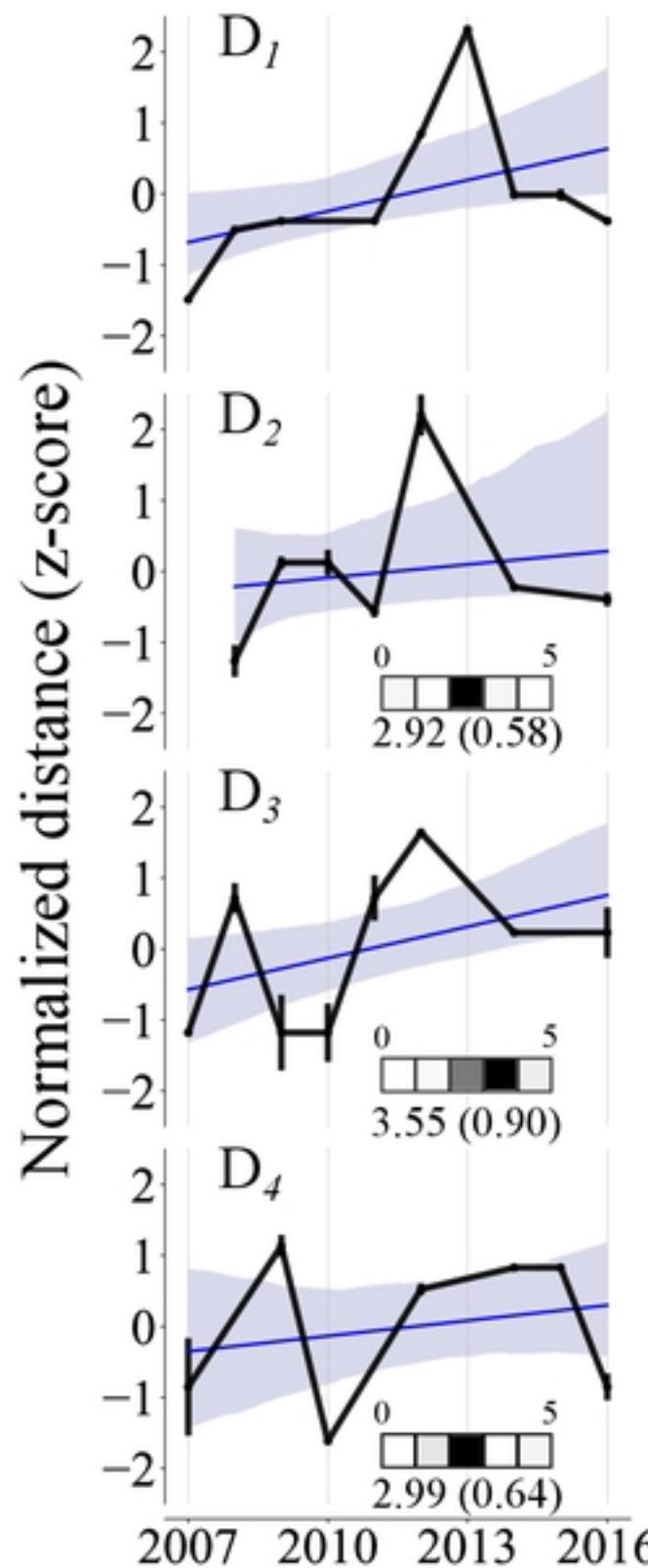
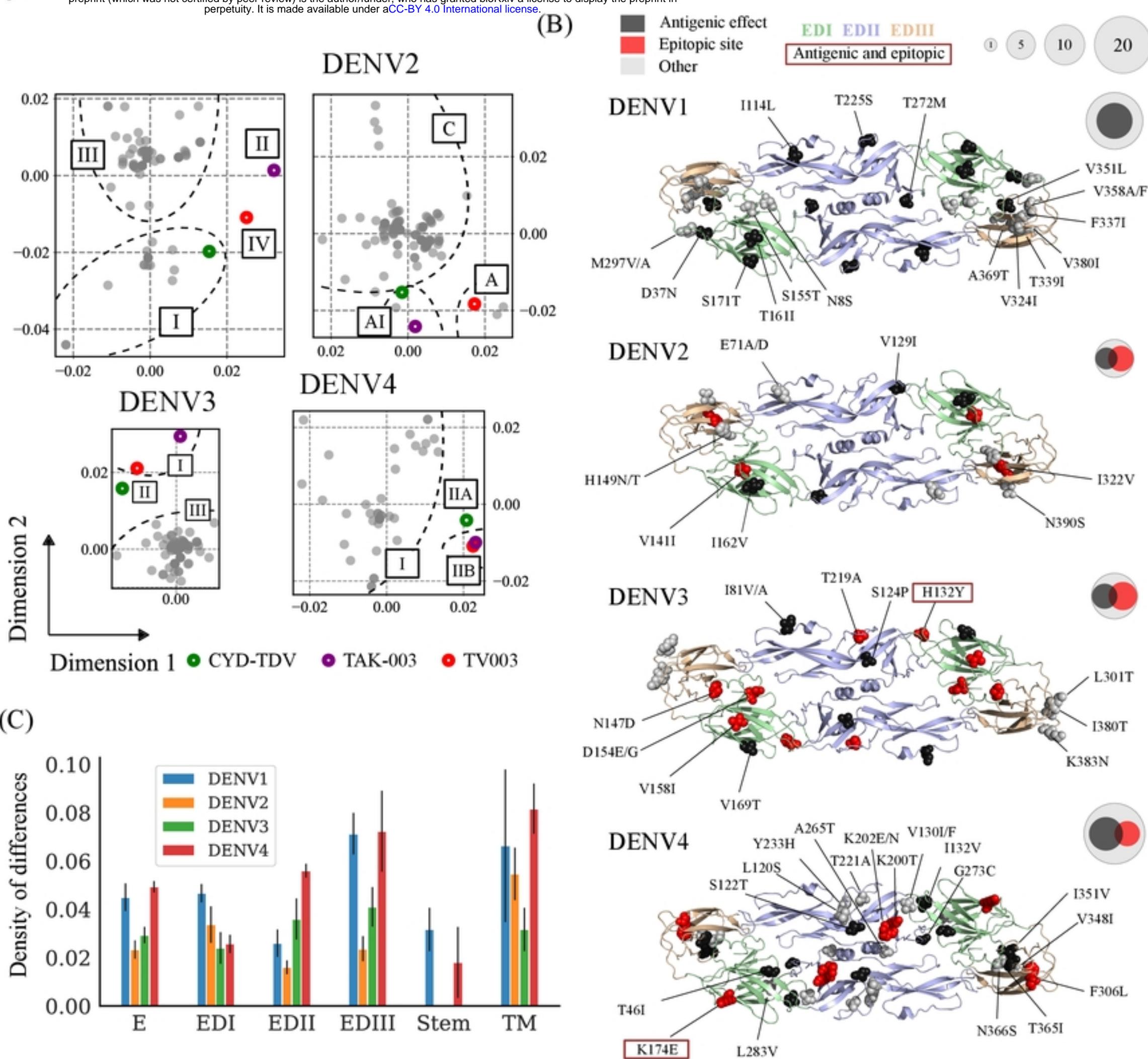
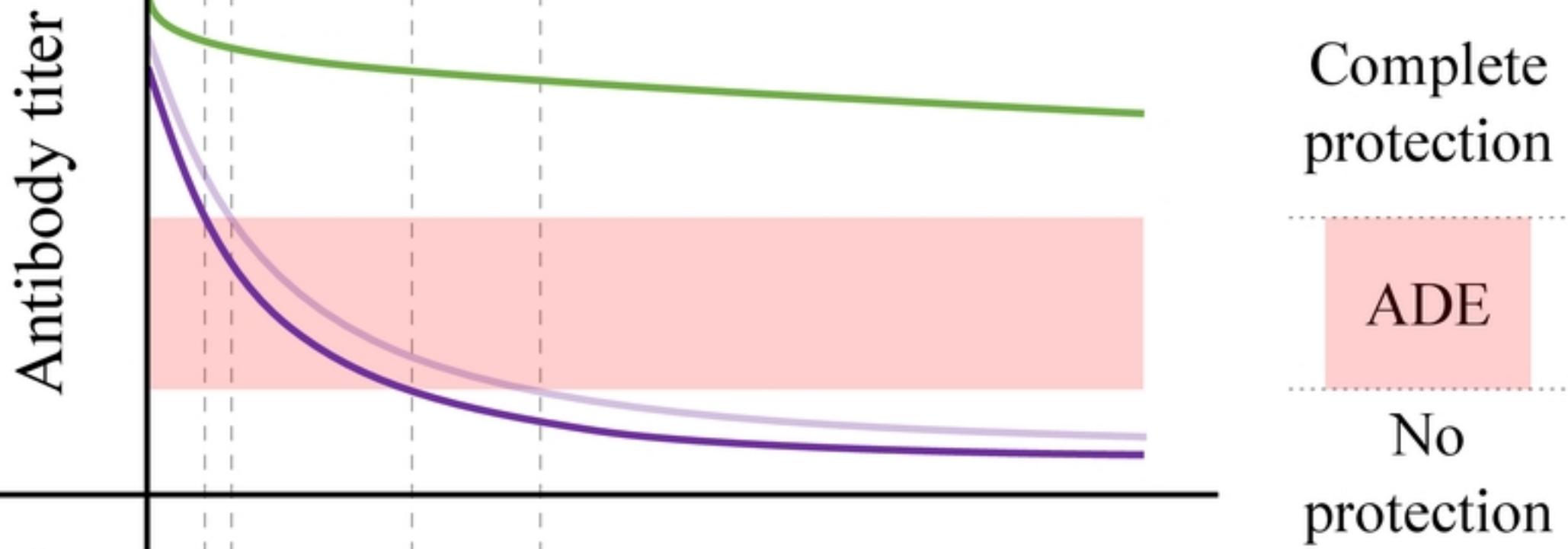
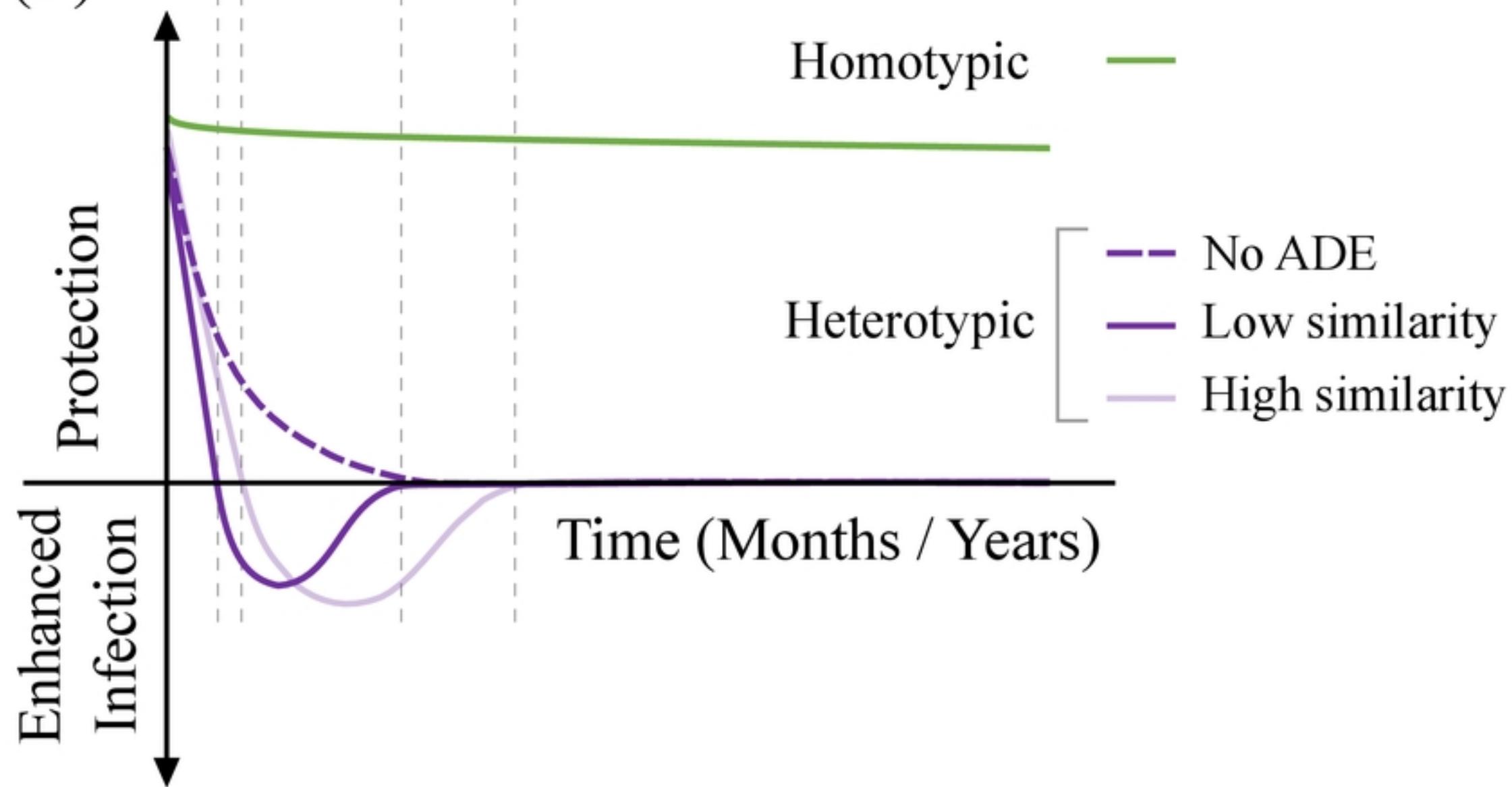



Fig 5

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.08.507083>; this version posted September 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Fig 6

(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.08.507083>; this version posted September 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(B)

