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Abstract 28 

Currently, the DFO chelator is commonly used to conjugate monoclonal antibodies 29 

(mAbs) and 89Zr, whereas the DOTA chelator is commonly used to conjugate mAbs and 30 

alpha- and beta-emitting metal radionuclides. However, if the degradation of [89Zr]Zr-31 

DFO-mAb is not negligible, the in vivo biodistribution of 89Zr might not reflect that of 32 

metal radionuclides conjugated with DOTA-mAb. We hypothesized that [89Zr]Zr-DOTA-33 

mAb as a new imaging counterpart would accurately predict the biodistribution of 34 

therapeutic metal radionuclides delivered by DOTA-mAb. In this study, we prepared 35 

[89Zr]Zr-DOTA-trastuzumab for the first time by a two-step reaction using click 36 
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chemistry and then investigated the differences in biodistribution profiles between two 37 

chelating approaches for 89Zr. 38 

Methods: We prepared [89Zr]Zr-DOTA-trastuzumab from DOTA-tetrazine conjugates 39 

(DOTA-Tz) and transcyclooctene-trastuzumab conjugates (TCO-trastuzumab). We first 40 

radiolabeled DOTA-Tz with 89Zr in a reaction solution of MeOH and HEPES buffer and 41 

then used a click reaction to obtain [89Zr]Zr-DOTA-Tz/TCO-trastuzumab. We performed 42 

biodistribution studies and PET imaging with [89Zr]Zr-DOTA-trastuzumab in a mouse 43 

model of HER2-positive ovarian cancer, SKOV3 xenograft mice at 24, 72, and 144 hours 44 

post-injection and compared these data with those of [89Zr]Zr-DFO-trastuzumab. 45 

Results: TCO-trastuzumab was radiolabeled with [89Zr]Zr-DOTA-Tz in the two-step 46 

reaction in good radiochemical yield (57.8 ± 17.6%). HER2-positive tumors were clearly 47 

visualized with [89Zr]Zr-DOTA-trastuzumab in PET imaging studies. The temporal 48 

profile changes of 89Zr radioactivity in SKOV3 tumors and bone marrow were sufficiently 49 

different between [89Zr]Zr-DOTA-trastuzumab and [89Zr]Zr-DFO-trastuzumab (P < 0.05). 50 

Conclusion: [89Zr]Zr-DOTA-trastuzumab can be produced by the two-step radiolabeling 51 

reaction based on the Tz/TCO click reaction. Presumably, 89Zr released from DFO is not 52 

negligible. In contrast, [89Zr]Zr-DOTA-mAb would better predict the biodistribution of 53 

[177Lu]Lu- or [225Ac]Ac-DOTA-mAb than [89Zr]Zr-DFO-mAb, thus avoiding the use of 54 
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different chelator for 89Zr at the expense of the click chemistry step. 55 

 56 

Keywords 57 

PET imaging, monoclonal antibody, click chemistry, theranostics, zirconium-89 58 

 59 

Introduction 60 

Monoclonal antibodies (mAbs) labeled with alpha and/or beta emitters are considered 61 

promising macromolecules for targeted radionuclide therapy (TRT) [1–3]. An imaging 62 

counterpart for TRT is also needed to visualize tumors [4,5]. Previous studies have used 63 

positron emitting 64Cu for tumor imaging [1–3]. However, the half-life of 64Cu (12.7 h) 64 

is not long enough to assess the in vivo distribution of long-circulating, slow-binding 65 

mAbs [1,6,7]. The half-life of positron emitting 89Zr (78.5 h) is suitable not only for 66 

visualization of tumors but also for assessment of cumulative radiation exposure to 67 

normal organs such as the bone marrow, liver, intestines and kidneys [1,5,7,8]. Currently, 68 

89Zr radiolabeling for mAbs is often achieved via the DFO chelator, which reacts readily 69 

at room temperature [9–13], despite its known shortcomings (e.g. non-specific 70 

accumulation of free 89Zr in bones). As a direct substitute for [177Lu]Lu-DOTA-mAbs and 71 

[225Ac]Ac-DOTA-mAbs, 89Zr-labeled DOTA-mAbs would be preferable to replicate the 72 
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therapeutic dose distribution. However, to the best of our knowledge, there is no report 73 

on the synthesis of [89Zr]Zr-DOTA-mAbs [14]. 74 

Recently, we developed a method for radiolabeling PSMA-617 containing DOTA 75 

with 89Zr at 90°C for 30 min in a mixture of HEPES buffer and organic solvents [15]. 76 

However, such direct radiolabeling cannot be used to prepare [89Zr]Zr-DOTA-mAbs due 77 

to irreversible thermal denaturation of mAbs.  78 

To circumvent the denaturation of mAbs, we employed a two-step reaction with click 79 

chemistry [8]. Specifically, 89Zr was first coupled with DOTA at high temperature, 80 

followed by a click chemistry reaction in which [89Zr]Zr-DOTA was conjugated with 81 

trastuzumab at room temperature. We selected trastuzumab because it is one of the best 82 

studied mAbs for theranostic application. The aim of this study was to investigate in the 83 

delayed biodistribution of 89Zr between two chelating agents used for radiolabeling 84 

trastuzumab. There would be no measurable difference if the degradation products of 85 

[89Zr]Zr-DFO/DOTA-trastuzumab were similarly distributed in the organs. Therefore, we 86 

performed PET and ex vivo biodistribution studies in a mouse model of HER2-87 

overexpressing human ovarian adenocarcinoma (mice with SKOV3 xenografts), and then 88 

determined the difference in biodistribution profiles between [89Zr]Zr-DOTA-89 

trastuzumab and [89Zr]Zr-DFO-trastuzumab. Two-step reaction radiolabeling using click 90 
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chemistry could be versatile and practical, and the use of [89Zr]Zr-DOTA would be 91 

suitable for numerous applications of mAbs.  92 

 93 

Materials and Methods 94 

Materials 95 

   The following chelating agents and click chemistry reagents were used: NH2-DOTA-96 

GA (Chematech, France), tetrazine-PEG5-NHS ester (Click Chemistry Tools, USA), 97 

TCO-NHS ester (Click Chemistry Tools, USA), and p-SCN-Bn-deferoxamine 98 

(Macrocyclics, USA). SKOV3 cell line (ovarian cancer, ATCC HTB-77) was purchased 99 

from American Type Culture Collection (USA). Other reagents, buffers, or cell culture 100 

media were purchased from FUJIFILM Wako Pure Chemical (Japan), Dojindo 101 

Laboratories (Japan), or Sigma Aldrich (USA). 102 

 103 

Radiolabeling Experiments 104 

We prepared [89Zr]Zr-DOTA-trastuzumab through a two-step reaction using click 105 

chemistry. Due to the high reaction rate (k ~ 100–106 M-1 s-1) [16,17], we chose the inverse 106 

electron demand-Diels-Alder (IEDDA) cycloaddition between tetrazine (Tz) and 107 

transcyclooctene (TCO). The preparation and qualification of 89Zr followed a method 108 
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described in the literature [18]. Briefly, 89Zr was produced by proton irradiation to 89Y 109 

targets, and the irradiated targets were purified to [89Zr]ZrCl4. The precursors (DOTA-Tz 110 

and TCO-trastuzumab) were synthesized as described in the supplementary material 111 

(Figure S1).  112 

We first coupled DOTA-Tz with 89Zr and then conjugated TCO-trastuzumab with 113 

[89Zr]Zr-DOTA-Tz, as shown in Figure 1. In the first step, we added the following 114 

reagents to a 2-mL tube: 1 μL of DOTA-Tz solution (10-2 mol/L) in water, 499 μL of 115 

HEPES buffer (0.5 mol/L, pH 7.0), 1200 μL of methanol (MeOH), and 300 μL of purified 116 

89Zr solution. The mixture was allowed to react at 90°C for 30 min. We evaluated the 117 

radiochemical yield by instant thin-layer chromatography (ITLC-SG, Agilent, USA) 118 

using 1 mol/L ammonium acetate and MeOH (1:1) as the mobile phase. We then removed 119 

the MeOH by nitrogen bubbling at 60°C for 10 min. In the second step, we allowed the 120 

TCO-trastuzumab (400 μg, 200 μL, 2000 μg/mL) to react in the [89Zr]Zr-DOTA-Tz 121 

solution at room temperature for 15 min. Then, the buffer of [89Zr]Zr-DOTA-trastuzumab 122 

was replaced with phosphate-buffered saline (PBS) using centrifugal filter units (Amicon 123 

Ultra 4, 50,000-Dalton molecular weight cutoff; Millipore, USA). 124 

We also prepared [89Zr]Zr-DFO-trastuzumab according to the literature [13,19] to 125 

perform comparisons with [89Zr]Zr-DOTA-trastuzumab. We prepared [89Zr]Zr-oxalate in 126 
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1 mol/L oxalic acid solution according to previous methods [11]. We added 100 μL of 127 

[89Zr]Zr-oxalate, 45 μL of 2 mol/L sodium carbonate solution, 655 μL of 0.5 mol/L 128 

HEPES buffer, and 200 μL of DFO-trastuzumab solution (2 mg/mL) to a microtube. The 129 

mixture was reacted at 25°C for 30 min (see the supplementary material for details).  130 

 131 

Cell Culture 132 

We used the SKOV3 cell line, which highly expresses human epidermal growth factor 133 

receptor 2 (HER2), for in vitro assays and to create the mouse model for in vivo 134 

experiments. The SKOV3 cell line was cultured in Dulbecco's modified Eagle medium 135 

(DMEM) supplemented with heat-inactivated 10% fetal calf serum. Cell culture was 136 

performed at 37°C in an atmosphere of 5% CO2. Cells were harvested with trypsin-137 

ethylenediaminetetraacetic acid (trypsin-EDTA; 0.25% trypsin, 0.02% EDTA). 138 

 139 

Quality Control and In Vitro Assays 140 

   We performed the quality control of [89Zr]Zr-DOTA-trastuzumab and [89Zr]Zr-DFO-141 

trastuzumab by size-exclusion chromatography (Figure S3). The in vitro stability of both 142 

radioligands was determined by EDTA challenge assays (Table S1). The 143 

immunoreactivity fractions of both radioligands were also examined by Lindmo assay 144 
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(Figure S4) [20]. Experimental details of the size-exclusion chromatography, stability 145 

assays, and Lindmo assays can be found in the Supplementary Materials.  146 

 147 

Mouse Tumor Model 148 

This study was approved by the Animal Experimentation Committee of the Isotope 149 

Science Center, the University of Tokyo. We performed all animal experiments in 150 

accordance with the University Animal Experimentation Regulations and the guidelines 151 

of ARRIVE. 152 

Seven-week-old female nude mice (BALB/c nu/nu) were purchased from Japan SLC 153 

Inc. The mice received a subcutaneous injection of SKOV3 cells (5 × 106 cells, 100 μL) 154 

suspended in 50% Matrigel (Corning, USA) into the right shoulder. We used this mouse 155 

tumor model for biodistribution and PET imaging studies. 156 

 157 

Biodistribution Studies 158 

To examine the ex vivo biodistribution of [89Zr]Zr-DFO-trastuzumab and [89Zr]Zr-159 

DOTA-trastuzumab, mice were injected with each radioligand (∼5 μg, ~0.1 MBq per 160 

mouse) via the tail vein and were sacrificed at 24, 72, or 144 h after injection (N = 4 at 161 

each time point and for each ligand). Organs of interest (blood, liver, spleen, kidney, 162 
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stomach, large intestine, small intestine, heart, lung, tumor, muscle, bone, and skin) were 163 

dissected and weighed. The radioactivity of each organ was immediately measured with 164 

a gamma counter (Cobra Quantum, Perkin Elmer) and calculated as %ID/g. 165 

 166 

Statistical Analysis 167 

All data were expressed as mean and standard deviation. To analyze the 168 

biodistribution profiles of each radioligand, we compared the data of [89Zr]Zr-DFO-169 

trastuzumab and [89Zr]Zr-DOTA-trastuzumab for each organ at each time point (24, 72, 170 

and 144 h after injection) using two-way analysis of variance (ANOVA) of GraphPad 171 

Prism 7.  In the two-way ANOVA, we examined the effects of chelators, time, and their 172 

interaction on the radioactivity accumulation in the organs (%ID/g). P values less than 173 

0.05 were considered statistically significant.  174 

 175 

PET Imaging Studies 176 

To identify unfavorable accumulation in the organs, PET imaging studies with 177 

[89Zr]Zr-DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab were performed 24, 72, and 178 

144 h after the dose injection (∼50 μg, ~ 3 MBq per mouse) via the tail vein. We used a 179 

Clairvivo PET scanner (Shimadzu, Japan) and SKOV3 tumor mice (N = 4 for each 180 
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chelator group), which were not used in the biodistribution studies. The mice were under 181 

isoflurane anesthesia during the 30 min PET scans. 182 

 183 

Results 184 

Radiolabeling Experiments 185 

We successfully prepared [89Zr]Zr-DOTA-trastuzumab for the first time by a two-step 186 

reaction. Mass spectrometry confirmed the successful synthesis of the precursors TCO-187 

trastuzumab (Figure S2) and DOTA-Tz (Supplementary Material 1.2). The radiochemical 188 

yield (RCY) of [89Zr]Zr-DOTA-Tz was 59.3 ± 14.9% and that of [89Zr]Zr-DOTA-189 

trastuzumab was 57.8 ± 17.6%. The results of size-exclusion chromatography (Figure S3) 190 

showed that the high radiochemical purity of [89Zr]Zr-DOTA-trastuzumab (> 95%) was 191 

achieved. The results of the EDTA challenge assays (Table S1) showed that [89Zr]Zr-192 

DOTA-trastuzumab was stable even in excess amount of EDTA (> 90%). The percentage 193 

of immunoreactivity determined by the Lindmo assay was 95% (Figure S4(b)). 194 

Likewise, high radiochemical purity over 95% (Figure S3), high stability in excess 195 

EDTA (> 90%, Table S1), and high immunoreactivity (98%, Figure S4(b)) were 196 

confirmed in the preparation of [89Zr]Zr-DFO-trastuzumab. 197 

 198 
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Biodistribution Studies 199 

[89Zr]Zr-DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab were then used for 200 

biodistribution studies SKOV3 tumor-bearing mice, with timepoints of 24, 72, and 144 h 201 

after injection (N = 4 at each time point). The accumulation of [89Zr]Zr-DFO-trastuzumab 202 

in the tumor increased over time, and the highest accumulation (31.1 ± 12.3%ID/g) was 203 

observed 144 h after injection, which was 2.1 times higher than that at 72 h (14.7 ± 2.3% 204 

ID/g). In contrast, the accumulation of [89Zr]Zr-DOTA-trastuzumab in the tumor peaked 205 

72 h after injection (30.8 ± 7.3%ID/g) and then decreased at 144 h after injection (24.5 ± 206 

8.3%ID/g). Notably, the accumulation of [89Zr]Zr-DOTA-trastuzumab in the bone 207 

decreased over time, whereas that of [89Zr]Zr-DFO-trastuzumab increased.  208 

Using the two-way ANOVA, we found that the radioactivity uptake in kidney, bone, 209 

and skin differed significantly depending on the chelators (DFO versus DOTA); [89Zr]Zr-210 

DOTA-trastuzumab accumulated less in kidney, bone, and skin than [89Zr]Zr-DFO-211 

trastuzumab at each time point (24, 72, and 144 h after injection). We combined the ex 212 

vivo biodistribution data of Figures 2a and 2b, and then reorganized them to show the 213 

time-%ID/g curves of two chelators for each organ, as shown in Figure S5. We also found 214 

a significant interaction in tumor (P = 0.0239) and bone (P = 0.0104) uptake between the 215 

radioligands ([89Zr]Zr-DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab). [89Zr]Zr-216 
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DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab showed different temporal changes 217 

in the tumor and bone. We found no significant interactions in the uptake between the two 218 

radioligands at the three time points assessed in the other tissues (P > 0.05). All P values 219 

obtained in the two-way ANOVA are shown in Table S3. 220 

 221 

PET Imaging Studies 222 

Using mice bearing HER2 positive tumors, we compared PET images of [89Zr]Zr-223 

DOTA-trastuzumab with that of [89Zr]Zr-DFO-trastuzumab. Figure 3 shows 224 

representative maximum intensity projection (MIP) PET images up to six days (144 h) 225 

postinjection. No noticeable differences in tumor accumulation was observed. No 226 

unexpected accumulation was observed in the organs. [89Zr]Zr-DOTA-trastuzumab was 227 

useful for PET imaging to clearly identify tumor size and location. 228 

 229 

Discussion 230 

   Monoclonal antibodies labeled with radionuclides through DOTA provide numerous 231 

theranostic options. To radiolabel trastuzumab for small animal PET imaging of HER2-232 

expressing xenografts, we used the novel combination of 89Zr and DOTA and compared 233 

it with the combination of 89Zr and DFO. The long half-life (3.2 d) of 89Zr is attractive for 234 
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PET imaging of trastuzumab, creating the ideal companion diagnostic agent to be used 235 

prior to TRT with 177Lu and 225Ac. However, the incorporation of 89Zr with DOTA 236 

requires heating, which can denature trastuzumab. In this study, we circumvented this 237 

problem by introducing a two-step reaction using click chemistry (inverse electron 238 

demand-Diels-Alder reaction), established a radiolabeling method, and obtained a high 239 

yield of [89Zr]Zr-DOTA-trastuzumab (RCY of [89Zr]Zr-DOTA-Tz: 59.3 ± 14.9%, RCY 240 

of [89Zr]Zr-DOTA-trastuzumab: 57.8 ± 17.6%). Although tetrazine is known to degrade 241 

in FBS at 37°C [21], we have demonstrated that [89Zr]Zr-DOTA-Tz reacted well with 242 

TCO-trastuzumab after the radiolabeling reaction of 90°C for 30 min in HEPES buffer 243 

and MeOH. By establishing the method to prepare [89Zr]Zr-DOTA-Tz, we have 244 

synthesized [89Zr]Zr-DOTA-trastuzumab for the first time. 245 

Our small animal PET experiments successfully visualized HER2-expressing SKOV3 246 

tumors. Having compared DOTA with DFO, we showed the different temporal changes 247 

in 89Zr radioactivity of the tumor and bone between the two chelators. The tumor 248 

accumulation of [89Zr]Zr-DFO-trastuzumab continued to increase until the end of the 249 

biodistribution experiments (Figure 2 and Figure S5(l)), while that of DOTA-conjugated 250 

trastuzumab increased to a peak at 72 h postinjection (Figure 2 and Figure S5(j)). This 251 

peak at 72 h agrees with the previously reported peak of [177Lu]Lu-DOTA-trastuzumab 252 
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[22]. This notable difference could be explained by two putative factors. First, the 253 

degradation of [89Zr]Zr-DFO-trastuzumab released free 89Zr, which ultimately 254 

accumulated in the bone marrow [23,24]. Second, the degradation of [89Zr]Zr-DOTA-255 

trastuzumab generated [89Zr]Zr-DOTA, which did not release free 89Zr. This phenomenon 256 

was probably due to the strong DOTA incorporation of 89Zr ions as well as the rapid renal 257 

clearance of plasma [89Zr]Zr-DOTA into urine [25]. Thus, the postdegradation forms of 258 

89Zr are also important in understanding the difference in 89Zr biodistribution and its 259 

temporal changes. Larger 89Zr uptake in kidney and skin for [89Zr]Zr-DOTA-trastuzumab 260 

compared with that for [89Zr]Zr-DFO-trastuzumab might be due to non-specific 261 

accumulation of free 89Zr. 262 

The difference in the temporal profile changes of HER2-expressing SKOV3 tumors 263 

could also be explained by the differences in the degradation processes between [89Zr]Zr-264 

DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab. Due to the weak metal ion 265 

incorporation of DFO, free 89Zr released in plasma might have been captured by 266 

intratumoral proteins in a manner similar to the accumulation mechanism of [67Ga]Ga 267 

citrate. [26,27]. For this reason, the tumor accumulation of [89Zr]Zr-DFO-trastuzumab 268 

might continue to increase, while that of [89Zr]Zr-DOTA-trastuzumab continued to 269 

decrease. 270 
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The limitation of this study is that our [89Zr]Zr-DOTA-trastuzumab contains the 271 

Tz/TCO structure, which is presumably not degradable in vivo, while [177Lu]Lu-DOTA-272 

mAb generally does not contain this structure [22]. The effects of the Tz/TCO structure 273 

on biodistribution must be investigated in future research using metal radionuclides other 274 

than 89Zr. Alternatively, this two-step radiolabeling method could be extended to label 275 

mAbs with alpha and beta emitters since a preparation method of M-DOTA-Tz (M = 90Y, 276 

177Lu, 225Ac) has already been established [28–30].  277 

 278 

Conclusion 279 

This study established a preparation method for [89Zr]Zr-DOTA-trastuzumab and 280 

performed PET imaging studies for the first time. We showed that [89Zr]Zr-DOTA-281 

trastuzumab can be used to visualize HER2-positive tumors in small animals and may be 282 

a better imaging agent for [177Lu]Lu- or [225Ac]Ac-DOTA-mAb than [89Zr]Zr-DFO-283 

trastuzumab because of the use of a common chelator.  284 

 285 

Abbreviations 286 

DOTA: 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid 287 

DFO: deferoxamine B 288 
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 387 

Figure 1. The novel two-step radiolabeling of [89Zr]Zr-DOTA-trastuzumab. 89Zr was first 388 

coupled with DOTA-Tz at 90°C for 30 min. TCO-trastuzumab was then conjugated at 389 

room temperature to give the final product [89Zr]Zr-DOTA-Tz/TCO-trastuzumab. It 390 

should be noted that trastuzumab was not heated at 90°C for 30 min.  391 

 392 
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 393 

Figure 2. Biodistribution profiles in SKOV3 tumor-bearing mice at 24, 72, and 144 h 394 

postinjection for (a) [89Zr]Zr-DFO-trastuzumab (N = 4 at each time point) and (b) 395 

[89Zr]Zr-DOTA-trastuzumab (N = 4 at each time point). Error bars indicate standard 396 

deviations. Each dose per mouse was ∼5 μg (~0.1 MBq). Organs of interest were 397 

dissected and weighed to calculate %ID/g.  398 

 399 
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 400 

Figure 3. Representative maximum intensity projection (MIP) PET images of [89Zr]Zr-401 

DFO-trastuzumab and [89Zr]Zr-DOTA-trastuzumab using SKOV3 tumor-bearing mice at 402 

24, 72, and 144 h postinjection. Each dose per mouse was ∼50 μg (~3 MBq), and the 403 

mice were under isoflurane anesthesia for 30 min PET scanning. 404 

 405 
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