

1 **Polycomb repressive complex 1.1 coordinates homeostatic and emergency**
2 **myelopoiesis**

3

4 Yaeko Nakajima-Takagi¹, Motohiko Oshima¹, Junichiro Takano², Shuhei Koide¹, Naoki
5 Itokawa¹, Shun Uemura¹, Masayuki Yamashita¹, Shohei Andoh¹, Kazumasa Aoyama¹,
6 Yusuke Isshiki⁴, Daisuke Shinoda¹, Atsunori Saraya⁴, Fumio Arai⁵, Kiyoshi Yamaguchi⁶,
7 Yoichi Furukawa⁶, Haruhiko Koseki², Tomokatsu Ikawa³, and Atsushi Iwama^{1,7,8}

8

9 ¹Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and
10 Regenerative Medicine, The Institute of Medical Science, The University of Tokyo,
11 Tokyo 108-8639, Japan.

12 ²Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical
13 Sciences, Yokohama, Japan.

14 ³Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo
15 University of Science, Chiba 278-0022, Japan

16 ⁴Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba
17 University, Chiba 260-8670, Japan

18 ⁵Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences,
19 Kyushu University, Fukuoka 812-8582, Japan

20 ⁶Division of Clinical Genome Research, Advanced Clinical Research Center, The
21 Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

22 ⁷Laboratory of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical
23 Sciences, The University of Tokyo, Tokyo, Japan

24 ⁸Lead Contact

25

26 Running title: PRC1.1 regulates myelopoiesis

27

28 Correspondence:

29 Atsushi Iwama, M.D. Ph.D.

30 Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and
31 Regenerative Medicine, The Institute of Medical Science, The University of Tokyo

32 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan

33 Phone: +81-3-6409-2180, Fax: +81-3-6409-2182

34 E-mail: 03aiwama@ims.u-tokyo.ac.jp

35 **SUMMARY**

36 Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-
37 ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for
38 hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical
39 PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of
40 PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency
41 induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and
42 promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1
43 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis.
44 PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBP α -
45 dependent precocious myeloid differentiation of HSPCs and the HOXA9- and β -catenin-
46 driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is
47 transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP)
48 clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation
49 of PRC1.1 results in unchecked expansion of GMPs and eventual transformation.
50 Collectively, our results define PRC1.1 as a novel critical regulator of emergency
51 myelopoiesis, dysregulation of which leads to myeloid transformation.

52

53 **Keywords:** Granulocyte-macrophage progenitor, hematopoietic stem and progenitor cell,
54 homeostatic and emergency myelopoiesis, malignant transformation, polycomb
55 repressive complex 1.1

56

57 **INTRODUCTION**

58 While lifelong hematopoiesis is considered driven by hematopoietic stem cells
59 (HSCs)(Sawai et al., 2016; Säwen et al., 2018), recent evidence pointed out a major role
60 for multipotent progenitors (MPPs) and lineage-committed progenitors in hematopoiesis
61 (Busch et al., 2015; Sun et al., 2014). Hematopoietic stem and progenitor cells (HSPCs)
62 are highly responsive to various stresses such as infection, inflammation, and
63 myeloablation (Trumpp et al., 2010; Zhao & Baltimore, 2015), which facilitate
64 myelopoiesis by activating HSPCs to undergo precocious myeloid differentiation and
65 transiently amplifying myeloid progenitors that rapidly differentiate into mature myeloid
66 cells (Hérault et al., 2017; Pietras et al., 2016). This reprogramming of HSPCs, termed
67 “emergency myelopoiesis”, serves to immediately replenish mature myeloid cells to
68 control infection and regeneration (Manz & Boettcher, 2014). Recent evidence further
69 suggested that uncontrolled activation of the myeloid regeneration programs results in the
70 development of chronic inflammatory diseases and hematological malignancies (Chiba
71 et al., 2018; Zhao & Baltimore, 2015). Emergency myelopoiesis is driven via activation
72 of key myeloid transcriptional networks at the HSPC and myeloid progenitor cell levels
73 (Rosenbauer & Tenen, 2007). However, the epigenetic regulatory mechanisms governing
74 emergency myelopoiesis remained largely unknown.

75 Polycomb group (PcG) proteins are the key epigenetic regulators of a variety of
76 biological processes (Piunti & Shilatifard, 2021). They comprise the multiprotein
77 complexes, polycomb repressive complex (PRC) 1 and PRC2, which establish and
78 maintain the transcriptional repression through histone modifications. PRC1 and PRC2
79 add mono-ubiquitination at lysine 119 of histone H2A (H2AK119ub) and mono-, di-, and
80 tri-methylation at lysine 27 of histone H3 (H3K27me1/me2/me3), respectively, and

81 cooperatively repress transcription (Blackledge et al., 2015; Iwama, 2017). PRC1
82 complexes are divided into subgroups (PRC1.1 to PRC1.6) according to the subtype of
83 the Polycomb group ring finger (PCGF) subunits (PCGF1-6). PCGF2/MEL18 and
84 PCGF4/BMI1 act as components of canonical PRC1 (PRC1.2 and 1.4, respectively) that
85 are recruited to its target sites in a manner dependent on H3K27me3, whereas the others
86 (PCGF1, 3, 5, and 6) constitute non-canonical PRC1 (PRC1.1, PRC1.3, PRC1.5, and
87 PRC1.6, respectively) that are recruited independently of H3K27me3 (Blackledge et al.,
88 2014; Gao et al., 2012; Wang et al., 2004).

89 PCGF4/BMI1-containing canonical PRC1 (PRC1.4) has been characterized for its role
90 in maintaining self-renewal capacity and multipotency of HSCs (Sashida & Iwama, 2012).
91 We and others have reported that BMI1 transcriptionally represses the loci for *CDKN2A*
92 and developmental regulator genes (e.g., B cell regulators) to maintain self-renewal
93 capacity and multipotency of HSPCs (Iwama et al., 2004; Oguro et al., 2010; Park et al.,
94 2003). We also reported that PCGF5-containing PRC1.5 regulates global levels of
95 H2AK119ub, but is dispensable for HSPC function (Si et al., 2016). On the other hand,
96 we and others recently showed that PRC1.1 components, PCGF1, KDM2B, and BCOR,
97 maintain normal hematopoiesis and suppress malignant transformation of hematopoietic
98 cells (Andricovich et al., 2016; Isshiki et al., 2019; Tara et al., 2018). PRC1.1 consists of
99 PCGF1, RING1A/B, KDM2B, and BCOR or BCLRL1. KDM2B binds to non-methylated
100 CpG islands through its DNA-binding domain, thereby recruiting other PRC1.1
101 components (Farcas et al., 2012; He et al., 2013). PCGF1 was found to restrict the
102 proliferative capacity of myeloid progenitor cells by down-regulating *Hoxa* family genes
103 in *in vitro* knockdown experiments (Ross et al., 2012). Correspondingly, we demonstrated
104 that *Pcgf1* loss induces myeloid-biased hematopoiesis and promotes JAK2V617F-

105 induced myelofibrosis in mice (Shinoda *et al*, 2022). Bcor loss also showed myeloid-
106 biased hematopoiesis and promoted the initiation and progression of myelodysplastic
107 syndrome in collaboration with Tet2 loss (Tara *et al*, 2018). However, detailed analysis
108 of the role for PRC1.1 in hematopoiesis, especially in the context of hematopoietic
109 regeneration and emergency myelopoiesis, have not yet been reported.

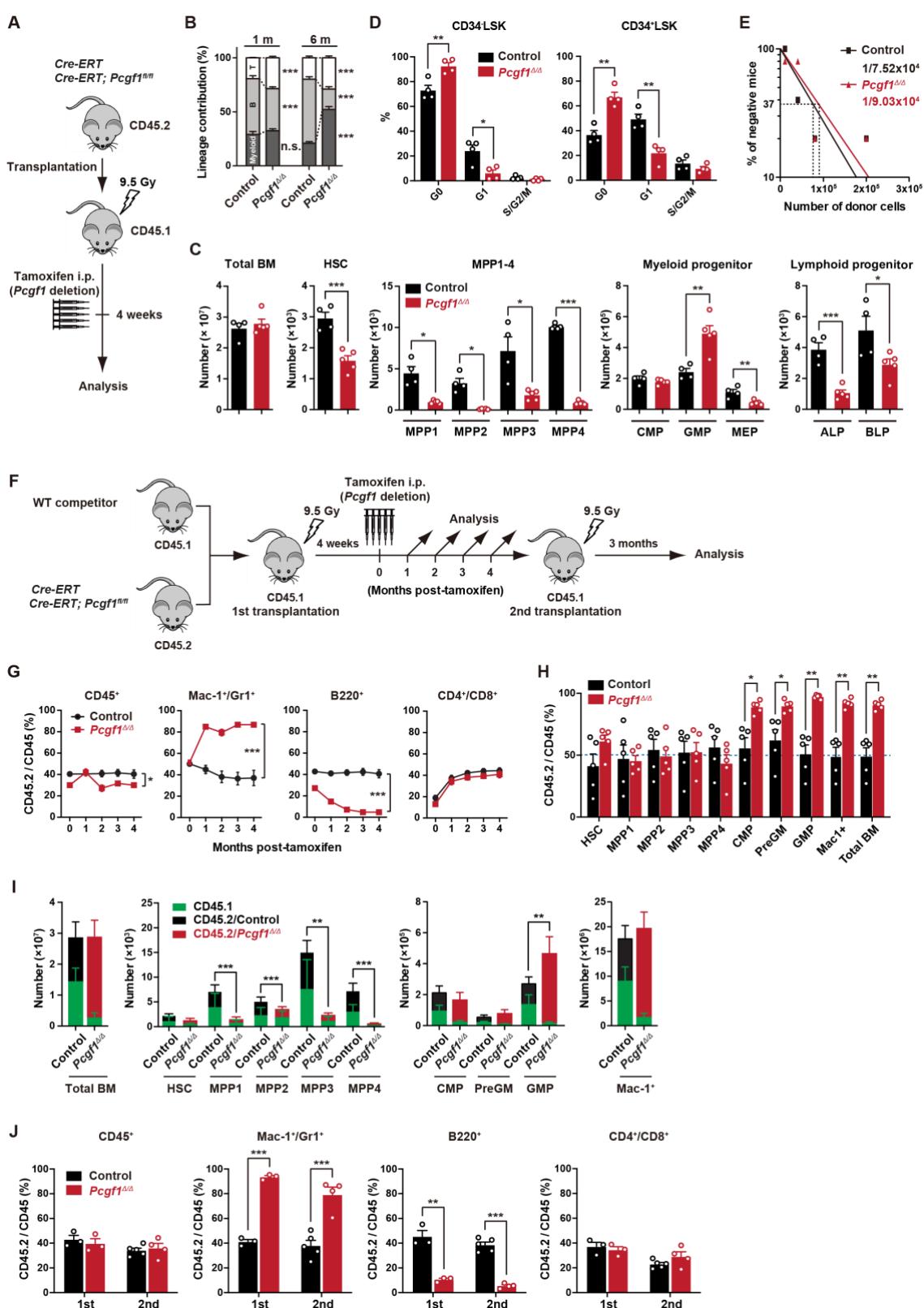
110 Here, we analyzed the murine hematopoiesis in the absence of PCGF1 and uncovered
111 critical roles of PCGF1-containing PRC1.1 in homeostatic, emergency, and malignant
112 hematopoiesis.

113 **RESULTS**

114

115 **PCGF1 restricts myeloid commitment of HSPCs**

116 To understand the function of PCGF1 in hematopoiesis, we crossed *Pcgf1*^{fl} mice, in which
117 exons 2 to 7 are floxed (Fig S1A), with *Rosa26::Cre-ERT2* (*Cre-ERT*) mice (*Cre-*
118 *ERT;Pcgf1*^{fl/fl}). To delete *Pcgf1* specifically in hematopoietic cells, we transplanted bone
119 marrow (BM) cells from *Cre-ERT* control and *Cre-ERT;Pcgf1*^{fl/fl} CD45.2 mice into
120 lethally irradiated CD45.1 recipient mice and deleted *Pcgf1* by intraperitoneal injection
121 of tamoxifen (Figs 1A and S1B). We confirmed the efficient deletion of *Pcgf1* in donor-
122 derived hematopoietic cells from the peripheral blood (PB) by genomic PCR (Fig S1C).
123 RT-qPCR confirmed the significant reduction of *Pcgf1* mRNA lacking exons 2 to 7 in
124 donor-derived BM Lineage marker Sca-1⁺c-Kit⁺ (LSK) HSPCs (Fig S1D). We hereafter
125 refer to the recipient mice reconstituted with *Cre-ERT* control and *Cre-ERT;Pcgf1*^{fl/fl} cells
126 treated with tamoxifen as control and *Pcgf1*^{Δ/Δ} mice, respectively.


127 *Pcgf1*^{Δ/Δ} mice exhibited mild anemia and leukopenia, which was mainly attributed to
128 the reduction in B-cell numbers (Fig 1B). Myeloid cell numbers in PB were relatively
129 maintained and their proportion increased over time in *Pcgf1*^{Δ/Δ} mice (Figs 1B and S2A).
130 While BM cellularity was comparable between control and *Pcgf1*^{Δ/Δ} mice, mature
131 myeloid cells were increased at the expense of B cells in *Pcgf1*^{Δ/Δ} BM (Figs 1C, S2B and
132 C). Among the committed progenitor cells, the numbers of granulocyte-macrophage
133 progenitors (GMPs) were significantly increased in *Pcgf1*^{Δ/Δ} BM, whereas those of
134 megakaryocyte-erythroid progenitors (MEPs), pre- and pro-B cells, all-lymphoid
135 progenitors (ALPs) and B-cell-biased lymphoid progenitors (BLPs) were decreased (Figs
136 1C, S2B and 3B). Of interest, *Pcgf1*^{Δ/Δ} mice showed reduction in the numbers of HSCs

137 and all subsets of MPPs in BM (Figs 1C and S3A). The reduction in the HSPC pool size
138 was accompanied by decreased cells in cycling phases in *Pcgf1*^{Δ/Δ} HSPCs (CD34⁻ and
139 CD34⁺ LSK cells) (Fig 1D). Despite the reduction in phenotypic HSPCs, limiting dilution
140 assays with competitive BM transplantation revealed that the numbers of HSPCs that
141 established long-term repopulation of myeloid and T cells (B cells were excluded due to
142 the low contribution of *Pcgf1*^{Δ/Δ} HSPCs to B cells, see below) were comparable between
143 control and *Pcgf1*^{Δ/Δ} BM (Fig. 1E). Extramedullary hematopoiesis was evident in the
144 *Pcgf1*^{Δ/Δ} spleen, as the absolute numbers of HSPCs, GMPs, and mature myeloid cells were
145 markedly increased (Figs S2B, D and S3C). Differentiation of thymocytes in the *Pcgf1*^{Δ/Δ}
146 thymus was largely normal (Fig S2B).

147 To further evaluate the role of PCGF1 in hematopoiesis, we transplanted BM cells with
148 the same number of CD45.1 wild-type (WT) competitor cells (Fig 1F). In this competitive
149 setting, only a mild decrease was detected in the overall chimerism of CD45.2⁺ *Pcgf1*^{Δ/Δ}
150 cells in PB (Fig 1G). In contrast, the chimerism of *Pcgf1*^{Δ/Δ} cells in myeloid cells (Mac-
151 1⁺ and/or Gr1⁺) was markedly increased while that in B cell lineage (B220⁺) was
152 decreased. (Fig 1G). In BM, *Pcgf1*^{Δ/Δ} cells outcompeted the competitor cells in the
153 myeloid lineage compartments from the common myeloid progenitor (CMP) stage (Fig
154 1H). Since *Pcgf1*^{Δ/Δ} cell showed reductions in the numbers of HSCs and MPPs in a non-
155 competitive setting (Fig 1C), we examined the absolute numbers of test and competitor
156 cells in this competitive repopulation. Of interest, the competitive *Pcgf1*^{Δ/Δ} recipients also
157 exhibit similar changes in BM hematopoietic cell numbers. Both CD45.2⁺ *Pcgf1*^{Δ/Δ} and
158 CD45.1⁺ WT cells were depleted in HSPC fractions in *Pcgf1*^{Δ/Δ} recipients, while the total
159 numbers of myeloid progenitors and mature myeloid cells were maintained or rather
160 increased (Fig. 1I). These findings suggest that *Pcgf1*^{Δ/Δ} hematopoietic cells suppress

161 hematopoiesis driven by co-existing WT HSPCs through non-autonomous mechanisms.
162 To evaluate the impact of PCGF1 loss on long-term hematopoiesis, we harvested BM
163 cells from primary recipient mice 4 months after tamoxifen injection and transplanted
164 them into secondary recipients. *Pcgf1^{Δ/Δ}* cells reproduced the myeloid-biased
165 hematopoiesis in secondary recipients (Fig. 1J).

166 We next evaluated the capacity of *Pcgf1^{Δ/Δ}* HSCs to differentiate to myeloid and
167 lymphoid cells in culture. *Pcgf1^{Δ/Δ}* HSCs displayed slower growth under HSPC-
168 expanding culture conditions (Fig S4A), which is in good agreement with fewer cycling
169 *Pcgf1^{Δ/Δ}* HSPCs (Fig 1D). Nevertheless, *Pcgf1^{Δ/Δ}* HSCs showed better growth than control
170 cells under myeloid culture conditions (Fig S4A). On the other hand, limiting dilution
171 assays using a co-culture system with TSt-4 stromal cells (Masuda et al., 2005) revealed
172 that the capacity of *Pcgf1^{Δ/Δ}* HSCs to produce B and T cells was declined by 2- and 5-
173 fold, respectively, compared to the control (Fig S4B). The discrepancy in T cell
174 production between *in vitro* and *in vivo* may be due to the compensatory expansion of T
175 cells in the thymus. These results indicate that PCGF1 loss enhances myelopoiesis at the
176 expense of lymphopoiesis. These phenotypes were similar to those of mice expressing a
177 carboxyl-terminal truncated BCOR that cannot interact with PCGF1 (Tara et al., 2018).

178

179 **Figure 1. PCGF1 regulates myelopoiesis but not self-renewal of HSPCs**

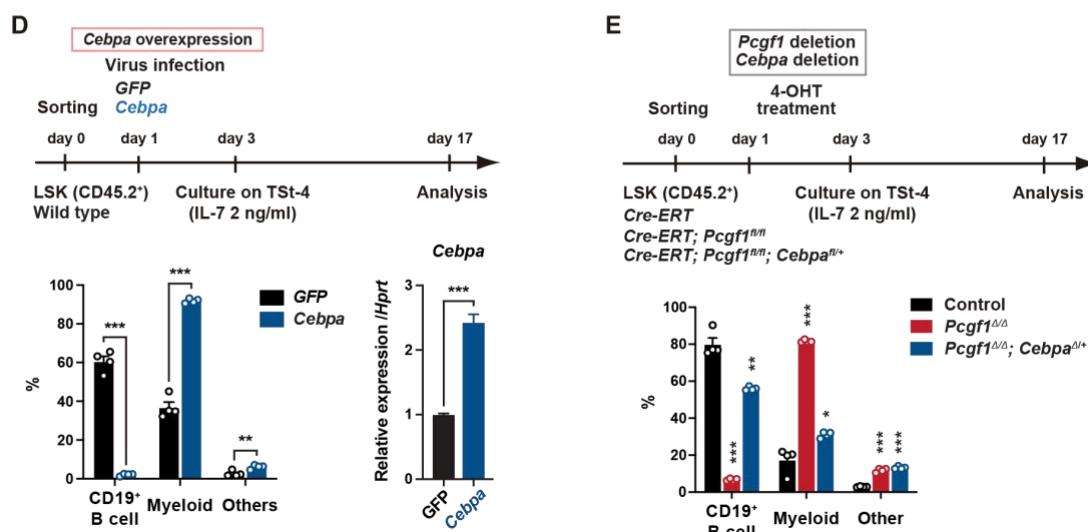
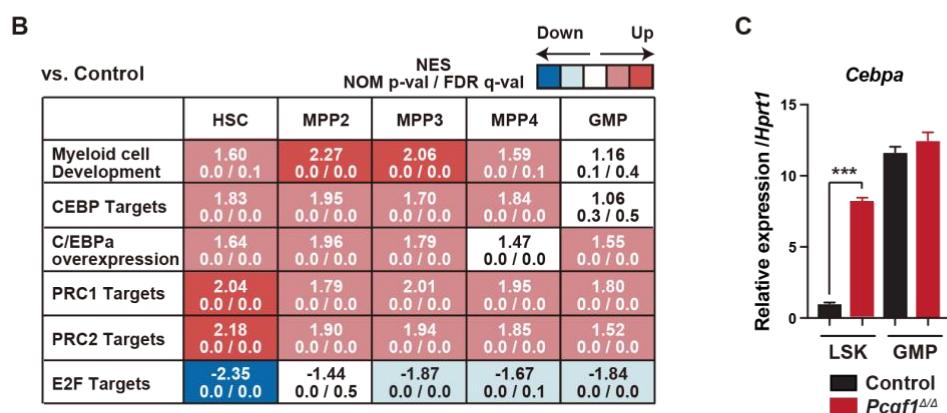
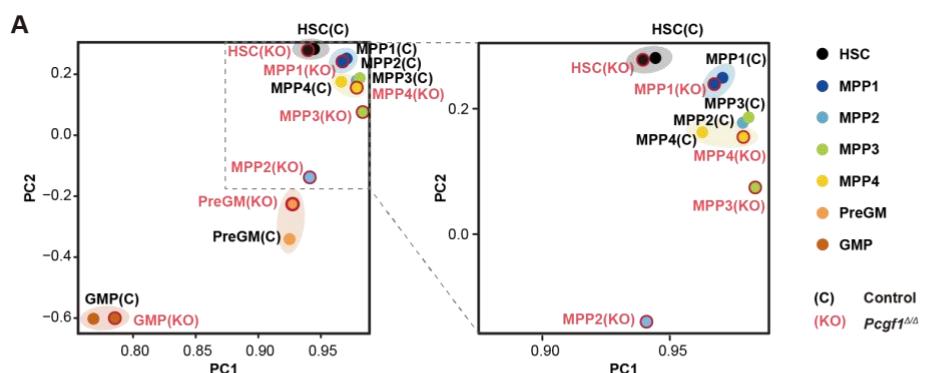
180 (A) Strategy for analyzing *Pcgf1*^{Δ/Δ} hematopoietic cells. Total BM cells (5×10⁶) from *Cre-ERT* and
181 *Cre-ERT;Pcgf1*^{fl/fl} were transplanted into lethally irradiated CD45.1 recipient mice. *Pcgf1* was deleted
182 by intraperitoneal injections of tamoxifen at 4 weeks post-transplantation. (B) The proportions of Mac-
1⁺ and/or Gr-1⁺ myeloid cells, B220⁺ B cells, and CD4⁺ or CD8⁺ T cells among CD45.2⁺ donor-
183 derived hematopoietic cells in the PB from control (n=9) and *Pcgf1*^{Δ/Δ} (n=14) mice. (C) Absolute
184 numbers of total BM cells, HSCs, MPPs, myeloid progenitors, and CLPs (ALP and BLP) in a
185 unilateral pair of femur and tibia 4 weeks after the tamoxifen injection (n=4-5). (D) Cell cycle status
186 of CD34-LSK HSCs and CD34⁺LSK MPPs assessed by Ki67 and 7-AAD staining 4 weeks after the
187 tamoxifen injection. (E) *In vivo* limiting dilution assay. Limiting numbers of BM cells (1×10⁴, 4×10⁴,
188 8×10⁴, and 2×10⁵) isolated from BM of primary recipients (control and *Pcgf1*^{Δ/Δ} mice after
189 transplantation) were transplanted into sublethally irradiated secondary recipient mice with 2×10⁵ of
190 competitor CD45.1 BM cells (n=5 each). Due to the low contribution of *Pcgf1*^{Δ/Δ} HSPCs to B cells,
191 mice with chimerism of donor myeloid and T cells more than 1% in the PB at 16 weeks after
192 transplantation were considered to be engrafted successfully, and the others were defined as non-
193 engrafted mice. The frequencies of HSPCs that contributed to both myeloid and T cells are indicated.
194 (F) Strategy for analyzing *Pcgf1*^{Δ/Δ} hematopoietic cells. Total BM cells (2×10⁶) from *Cre-ERT* and
195 *Cre-ERT;Pcgf1*^{fl/fl} CD45.2 mice were transplanted into lethally irradiated CD45.1 recipient mice with
196 the same number of competitor CD45.1 BM cells. *Pcgf1* was deleted by intraperitoneal injections of
197 tamoxifen at 4 weeks post-transplantation. Secondary transplantation was performed using 5×10⁶ total
198 BM cells from primary recipients at 4 months post intraperitoneal injections of tamoxifen. (G) The
199 chimerism of CD45.2 donor cells in PB CD45⁺ leukocytes, Mac-1⁺ and/or Gr1⁺ myeloid cells, B220⁺
200 B cells, and CD4⁺ or CD8⁺ T cells in control and *Pcgf1*^{Δ/Δ} mice (n=6 each) after the tamoxifen injection.
201 (H) The chimerism of CD45.2 donor-derived cells in BM 4 weeks after the tamoxifen injection (n=5).
202 (I) Absolute numbers of CD45.1 and CD45.2 total BM cells, HSCs, MPPs, myeloid progenitors, and
203 Mac-1⁺ mature myeloid cells in a unilateral pair of femur and tibia 4 weeks after the tamoxifen
204 injection (n=5). (J) The chimerism of CD45.2 donor-derived cells in PB in primary (n=3 each) and
205 secondary (n=4-5) transplantation. Data are shown as the mean ± SEM. *p<0.05, **p<0.01,
206 ***p<0.001 by the Student's *t*-test. Each symbol is derived from an individual mouse. A representative
207 of more than two independent experiments is shown.
208

209

210 **PCGF1 inhibits precocious myeloid commitment of HSPCs through repression of
211 C/EBP α , which is critical for balanced output of HSPCs**

212 To clarify the molecular mechanisms underlying myeloid-biased differentiation of
213 *Pcgf1*^{Δ/Δ} HSPCs, we performed RNA sequence (RNA-seq) analysis of HSPCs from mice
214 4 weeks after the tamoxifen injection. Principal component analysis (PCA) showed shifts
215 of the transcriptomic profiles of *Pcgf1*^{Δ/Δ} MPP2 and MPP3 toward pre-GMs (Fig 2A).
216 Gene set enrichment analysis (GSEA) revealed up-regulation of genes involved in
217 myeloid cell development (Brown et al., 2006), CEBP targets (Gery et al., 2005), and

218 genes up-regulated upon C/EBP α overexpression (Loke et al., 2018) in *Pcgf1*^{Δ/Δ} HSPCs
219 compared to controls (Fig 2B and Table S1). C/EBP family are master transcription
220 factors for myeloid differentiation (Avellino & Delwel, 2017; Rosenbauer & Tenen,
221 2007). RT-PCR analysis demonstrated a significant up-regulation of *Cebpa* in HSPCs,
222 but not in GMPs (Fig 2C). C/EBP α drives myelopoiesis and antagonizes lymphoid
223 differentiation (Fukuchi et al., 2006; Rosenbauer & Tenen, 2007; Xie et al., 2004).
224 Disruption of *Cebpa* blocks the transition from common myeloid progenitors (CMPs) to
225 GMPs (Zhang et al., 1997). So, we evaluated the contribution of de-repressed *Cebpa* in
226 *Pcgf1*^{Δ/Δ} HSPCs. First, we overexpressed *Cebpa* in WT LSK cells and cultured them on
227 TSt-4 stromal cells. Only two-fold upregulation of *Cebpa* was sufficient to enhance
228 myeloid differentiation and suppress B cell differentiation of HSPCs (Fig 2D).
229 Conversely, the reduction of the levels of *Cebpa* expression by introducing a *Cebpa*^{f/+}
230 allele in *Pcgf1*^{Δ/Δ} LSK cells was sufficient to restore balanced production of myeloid and
231 B cells by *Pcgf1*^{Δ/Δ} HSPCs (Fig 2E). These results demonstrate that de-repression of
232 *Cebpa* largely accounts for the myeloid-biased differentiation of *Pcgf1*^{Δ/Δ} HSPCs.
233 We next attempted to rescue the myeloid-biased differentiation of *Pcgf1*^{Δ/Δ} HSPCs by
234 exogenous *Pcgf1* or a canonical PRC1 gene *Bmi1/Pcgf4*. We transduced *Cre-*
235 *ERT;Pcgf1*^{f/f} HSPCs to induce *Pcgf1* or *Bmi1* expression, transplanted them into lethally
236 irradiated mice, and deleted endogenous *Pcgf1* (Fig S5B). The myeloid skew in *Pcgf1*^{Δ/Δ}
237 PB leukocytes was completely prevented by ectopic expression of *Pcgf1* but not of *Bmi1*
238 (Fig S5B), highlighting distinct roles of non-canonical PRC1.1 and canonical PRC1 in
239 hematopoietic differentiation.
240 We also noticed that the E2F targets (Ishida et al., 2001) were downregulated in *Pcgf1*^{Δ/Δ}
241 HSPCs (Fig 2B), which may underlie the disturbed cell cycle progression and delayed




242 proliferation observed in *Pcgf1*^{Δ/Δ} HSPCs (Figs S3D and S4A). C/EBPα represses E2F-
243 mediated transcription (D'Alo' et al., 2003; Slomiany et al., 2000), inhibits HSC cell cycle
244 entry (Ye et al., 2013; Zhang et al., 2004), and promotes precocious IL-1β-driven

245 emergency myelopoiesis (Higa et al., 2021). Thus, up-regulated *Cebpa* upon PCGF1 loss
 246 may inhibit cell cycle and promote myeloid commitment of HSPCs.

247

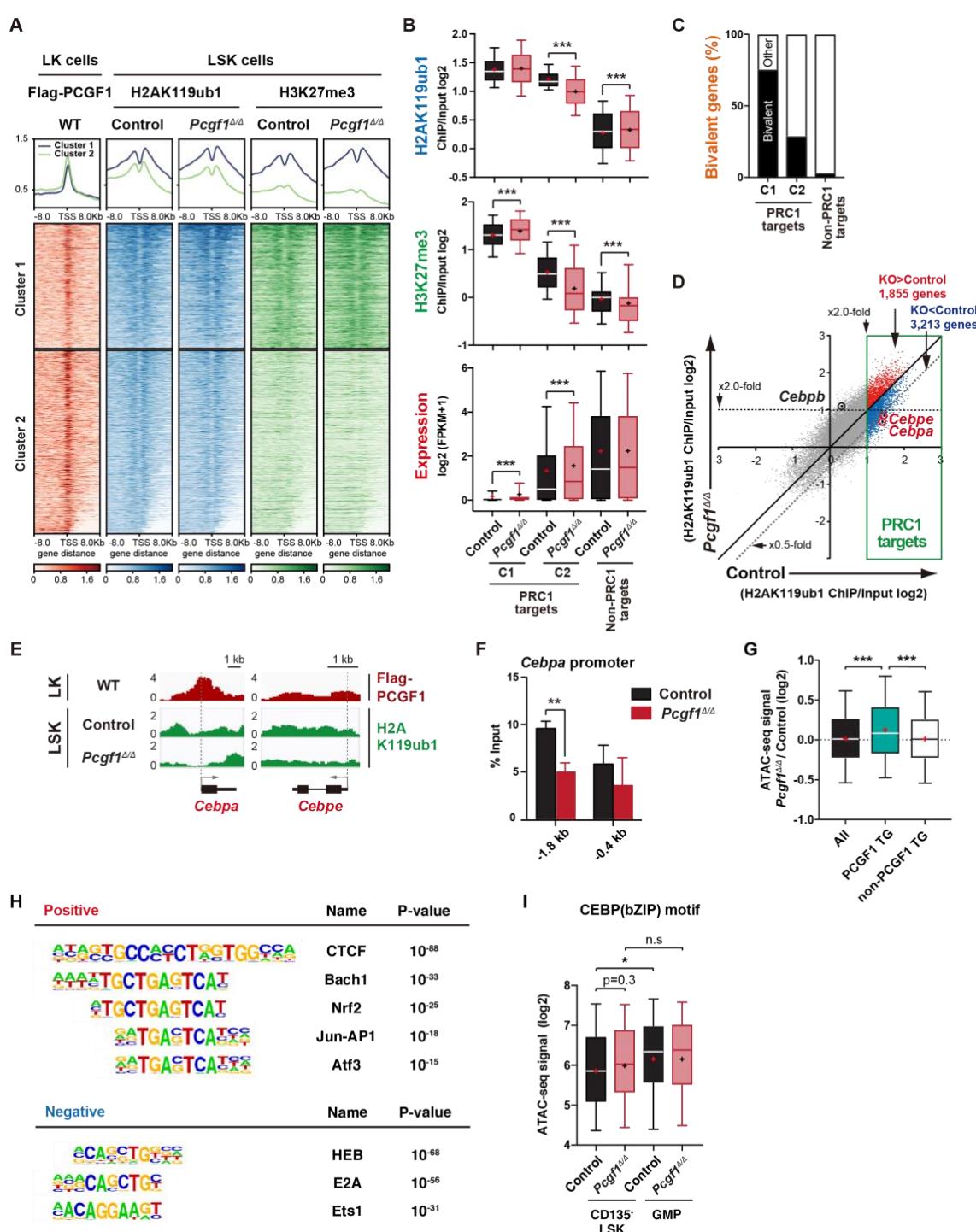
248 **Figure 2. *Pcgf1*-deficient HSPCs undergo myeloid reprogramming**

249 (A) Principal component (PC) analyses based on total gene expression obtained by RNA-seq of HSCs,
 250 MPPs, pre-GM, and GMPs from control and *Pcgf1*^{Δ/Δ} mice. Magnified view of the boxed part is

251 depicted on the right. (B) GSEA using RNA-seq data. Summary of GSEA data of representative gene
252 sets is shown. Normalized enrichment scores (NES), nominal p values (NOM), and false discovery
253 rates (FDR) are indicated. The gene sets used are indicated in Supplementary Table 1. (C) Quantitative
254 RT-PCR analysis of *Cebpa* in LSK cells and GMPs. *Hprt1* was used to normalize the amount of input
255 RNA. Data are shown as the mean \pm SEM (n=3). (D) Effects of *Cebpa* overexpression on HSPC
256 differentiation *in vitro*. LSK cells were transduced with either Control (*GFP*) or *Cebpa* retrovirus, then
257 cultured on TSt-4 stromal cells in the presence of IL-7 (upper). The proportions of myeloid (Mac1⁺
258 and /or Gr-1⁺), B cells (CD19⁺), and others (Mac1⁻Gr-1⁻CD19⁻) among CD45.2⁺GFP⁺ hematopoietic
259 cells on day17 of culture are indicated (lower left; n=4 each). RT-qPCR analysis of *Cebpa* in LSK
260 cells transduced with control or *Cebpa* retrovirus on day 14 of culture (n=3). *Hprt1* was used to
261 normalize the amount of input RNA (lower right). Each symbol is derived from an individual culture.
262 (E) Impact of *Cebpa* haploinsufficiency on myeloid-biased differentiation of *Pcgf1*^{+/+} HSPCs. LSK
263 cells from *Cre-ERT*, *Cre-ERT;Pcgf1*^{fl/fl} and *Cre-ERT;Pcgf1*^{fl/fl}; *Cebpa*^{fl/+} mice were treated with 4-
264 OHT (200 nM) for 2 days in culture to delete *Pcgf1* and *Cebpa*. Cells were further cultured on TSt-4
265 stromal cells in the presence of IL-7 (upper). The proportions of myeloid (Mac1⁺ and /or Gr-1⁺), B
266 cells (CD19⁺), and others (Mac1⁻Gr-1⁻CD19⁻) among CD45.2⁺GFP⁺ hematopoietic cells on day17 of
267 culture are indicated (lower; n=4 each ; *, versus control). Each symbol is derived from an individual
268 culture. *p<0.05, **p<0.01, ***p<0.001 by the Student's *t*-test.

269

270 **Deletion of *Pcgf1* affects levels of H2AK119ub1**


271 To understand how PCGF1 loss affects H2AK119ub1 status in HSPCs, we performed
272 chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis using
273 control and *Pcgf1*^{+/+} HSPCs. Since none of the anti-PCGF1 antibodies were suitable for
274 ChIP analysis, we used 3×Flag-PCGF1-expressing BM LK cells obtained by retrovirally
275 transducing LSK cells and transplanting them to lethally irradiated mice. We defined
276 “PRC1 targets” and “PRC2 targets” as genes with H2AK119ub1 and H3K27me3
277 enrichment greater than twofold over the input signals in control LSK cells at promoter
278 regions [transcription start site (TSS) \pm 2.0 kb], respectively (Table S2). GSEA revealed
279 that both PRC1 and PRC2 targets were upregulated in *Pcgf1*^{+/+} HSPCs and GMPs (Fig
280 2B). K-means clustering divided PRC1 targets into 2 clusters depending on the levels of
281 H2AK119ub1 and H3K27me3. Cluster 1 genes (1835 RefSeq ID genes) were marked
282 with high levels of H2AK119ub1 and H3K27me3 at promoter regions, while cluster 2
283 genes (2691 RefSeq ID genes) showed moderate levels of H2AK119ub1 and H3K27me3

284 (Fig 3A). PCGF1 showed stronger binding to the promoters of cluster 2 genes than cluster
285 1 genes (Fig 3A). Interestingly, only cluster 2 genes showed moderate but significant
286 reductions in H2AK119ub1 and H3K27me3 levels in *Pcgf1*^{Δ/Δ} HSPCs (Fig 3B). The loss
287 of PCGF1 was also significantly associated with de-repression of PRC1 target genes in
288 clusters 1 and 2 (Fig 3B). These results suggest that cluster 2 genes are the major targets
289 of PCGF1-containing PRC1.1 and *Cebpa* was included in cluster 2 genes. Bivalent genes,
290 which are enriched for developmental regulator genes marked with both active and
291 repressive histone marks (H3K4me3 and H3K27me3, respectively, mostly with
292 H2AK119ub1), are classical targets of canonical PRC1 and PRC2 (Bernstein et al., 2006;
293 Ku et al., 2008) and are implicated in multipotency of HSPCs (Oguro et al., 2010). Of
294 note, bivalent genes defined by our previous ChIP-seq data of HSPCs (Aoyama et al.,
295 2018) (Table S2) were more enriched in cluster 1 genes than cluster 2 genes (Fig 3C).

296 We then defined “PCGF1 targets” whose H2AK119ub1 levels were decreased by
297 *Pcgf1* deletion greater than twofold at promoter regions in HSPCs (997 RefSeq ID genes;
298 Table S2). We found that *Cebpa* and *Cebpe* were included in PCGF1 targets, showed
299 reductions in H2AK119ub1 levels, and were de-repressed in expression in *Pcgf1*^{Δ/Δ} LSK
300 cells (Fig 3D and E, 2C and S5C). ChIP-qPCR confirmed a significant reduction of
301 H2AK119ub1 levels at the promoter region of *Cebpa* in *Pcgf1*^{Δ/Δ} HSPCs (Fig 3F). These
302 results indicate that the deletion of *Pcgf1* compromises PRC1.1 function and causes
303 precocious activation of key myeloid regulator genes in HSPCs.

304 To clarify whether the *Pcgf1* deletion has any impact on the chromatin accessibility in
305 HSPCs, we performed an assay for transposase accessible chromatin with high-
306 throughput sequencing (ATAC-seq) analysis using CD135⁺LSK HSPCs, which include
307 HSCs and MPP1-3 but not lymphoid-primed MPP4. ATAC-seq profiles open chromatin

308 regions enriched for transcriptional regulatory regions, such as promoters and enhancers.
309 ATAC peaks were significantly enriched at the promoter regions of PCGF1 target genes,
310 but not of PCGF1 non-target genes, in *Pcgf1*^{Δ/Δ} HSPCs compared to the corresponding
311 controls (Fig 3D), further validating derepression of PCGF1 targets upon the deletion of
312 *Pcgf1*. Motif analysis of ATAC peaks in the proximal promoter regions (TSS±2 kb)
313 revealed that the CTCF motif, which has been reported to be associated with
314 differentiation of HSCs (Buenrostro et al., 2018; Takayama et al., 2021), was highly
315 enriched in *Pcgf1*^{Δ/Δ} HSPCs (Fig 3H). Interestingly, the other top-ranked motifs were
316 related to stress response transcription factors, such as Bach family (Bach1 and 2), CNC
317 family (Nrf2 and NF-E2), AP1 family, and Atf3 (Fig 3H and Table S3). In contrast, the
318 binding motifs for transcription factors essential for T and B-cell commitment, including
319 HEB and E2A (de Pooter & Kee, 2010), were negatively enriched in *Pcgf1*^{Δ/Δ} HSPCs (Fig
320 3H). Moreover, ATAC-seq analyses also revealed trend toward enrichment of ATAC
321 peaks containing CEBP motif in *Pcgf1*^{Δ/Δ} HSPCs compared to the control, suggesting that
322 chromatin regions containing CEBP motif tended to open in *Pcgf1*^{Δ/Δ} HSPCs (Fig 3I).
323 Together with the significant up-regulation of *Cebpa* and *Cebpe* in *Pcgf1*^{Δ/Δ} HSPCs (Figs.
324 2C and S5C), these results further support the notion that PRC1.1 deficiency caused
325 precocious activation of myeloid differentiation program at the expense of lymphoid
326 differentiation program in HSPCs.

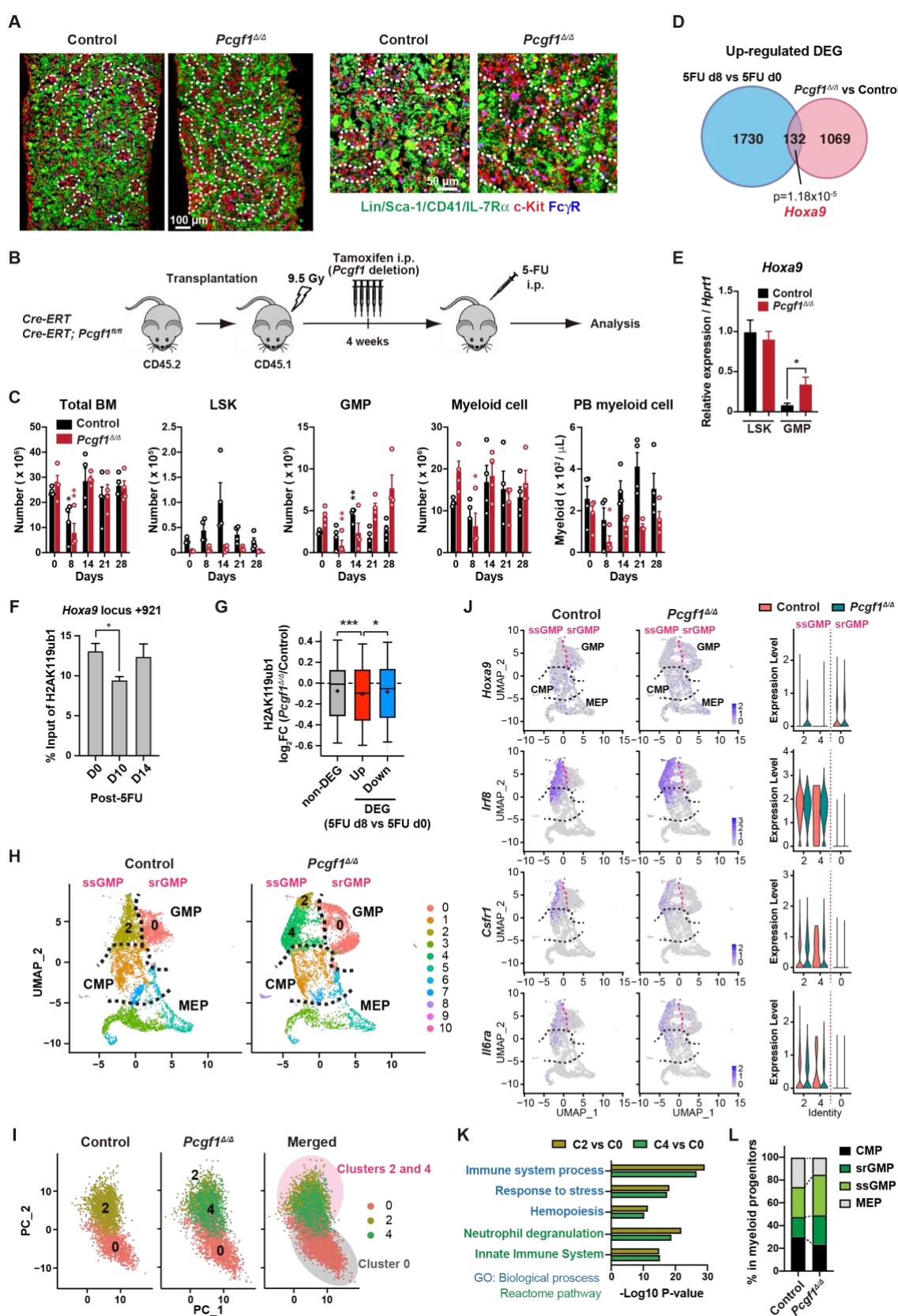
327

328

329 **Figure 3. PCGF1 regulates local H2AK119ub1 levels in HSPCs**

330 (A) K-means clustering of 3×FLAG-PCGF1, H2AK119ub1, and H3K27me3 ChIP peaks around TSS
 331 (± 8.0 kb) of PRC1 target genes. The average levels of ChIP peaks in each cluster are plotted in upper
 332 columns. (B) Box-and-whisker plots showing H2AK119ub1, H3K27me3, and transcription levels of
 333 genes in PRC1 targets (clusters 1 and 2) and non-PRC1 targets in control and *Pcgf1*^{Δ/Δ} LSK cells.
 334 Boxes represent 25–75 percentile ranges. The whiskers represent 10–90 percentile ranges. Horizontal
 335 bars represent medians. Mean values are indicated by “+”. (C) Proportion of bivalent genes in PRC1

336 targets (clusters 1 and 2) and non-PRC1 targets in LSK cells. Bivalent genes were defined using our
337 previous ChIP-seq data of wild-type LSK cells (Aoyama et al., 2018). (D) Scatter plots showing the
338 correlation of the fold enrichment values against the input signals (ChIP/Input) (TSS±2 kb) of
339 H2AK119ub1 between control and *Pcgf1*^{Δ/Δ} LSK cells. PRC1 targets are indicated in a green box. (E)
340 Snapshots of Flag-PCGF1 and H2AK119ub1 ChIP signals at the *Cebpa* and *Cebpe* gene loci. (F) ChIP
341 qPCR assays for H2AK119ub1 at the *Cebpa* promoter in control and *Pcgf1*^{Δ/Δ} LSK cells. The relative
342 amounts of immunoprecipitated DNA are depicted as a percentage of input DNA. Data are shown as
343 the mean ± SEM (n=3). (G) Box-and-whisker plots showing ATAC signal levels at proximal
344 promoters (TSS ± 2kb) in *Pcgf1*^{Δ/Δ} CD135⁺LSK cells relative to those in control cells. The data of all
345 ATAC peaks (n=18,417), PCGF1 target genes (TG) (n=670), and non-PCGF1 TG (n=17,747) are
346 shown. Boxes represent 25-75 percentile ranges. The whiskers represent 10-90 percentile ranges.
347 Horizontal bars represent medians. Mean values are indicated by red crosses. (H) Top DNA motifs
348 identified in ATAC peaks at proximal promoters (TSS ± 2kb) positively or negatively enriched in
349 *Pcgf1*^{Δ/Δ} CD135⁺LSK cells compared to corresponding controls. (I) The ATAC signal levels of peaks
350 containing CEBP binding motif (GSE21512, n=233) in CD135⁺LSK cells from control and
351 *Pcgf1*^{Δ/Δ} mice. *p<0.05; **p<0.01; ***p<0.001; n.s., not significant by the Student's *t*-test.
352


353 **PCGF1 inhibition facilitates emergency myelopoiesis**

354 Myeloid-biased hematopoiesis in *Pcgf1*-deficient mice reminded us of the
355 myeloproliferative reactions caused by emergencies such as regeneration (Manz &
356 Boettcher, 2014). Individual GMPs scatter throughout the BM in the steady state, while
357 expanding GMPs evolve into GMP clusters during regeneration, which, in turn,
358 differentiate into granulocytes. Inducible activation of β-catenin and *Irf8* controls the
359 formation and differentiation of GMP clusters, respectively (Héault et al., 2017).
360 Immunofluorescence analyses of BM sections readily detected GMP clusters in steady-
361 state *Pcgf1*^{Δ/Δ} BM (Fig 4A), which was reminiscent of those observed during regeneration
362 after 5-fluorouracil (5-FU) treatment (Fig S6A). To address if PCGF1 also regulates
363 myelopoiesis at the GMP level during regeneration, we challenged control and *Pcgf1*^{Δ/Δ}
364 mice with a single dose of 5-FU (Fig 4B). Consistent with the previous report (Héault et
365 al., 2017), control mice showed transient expansion of BM HSPCs and GMPs around day
366 14 and subsequent burst of circulating PB myeloid cells around day 21. In sharp contrast,

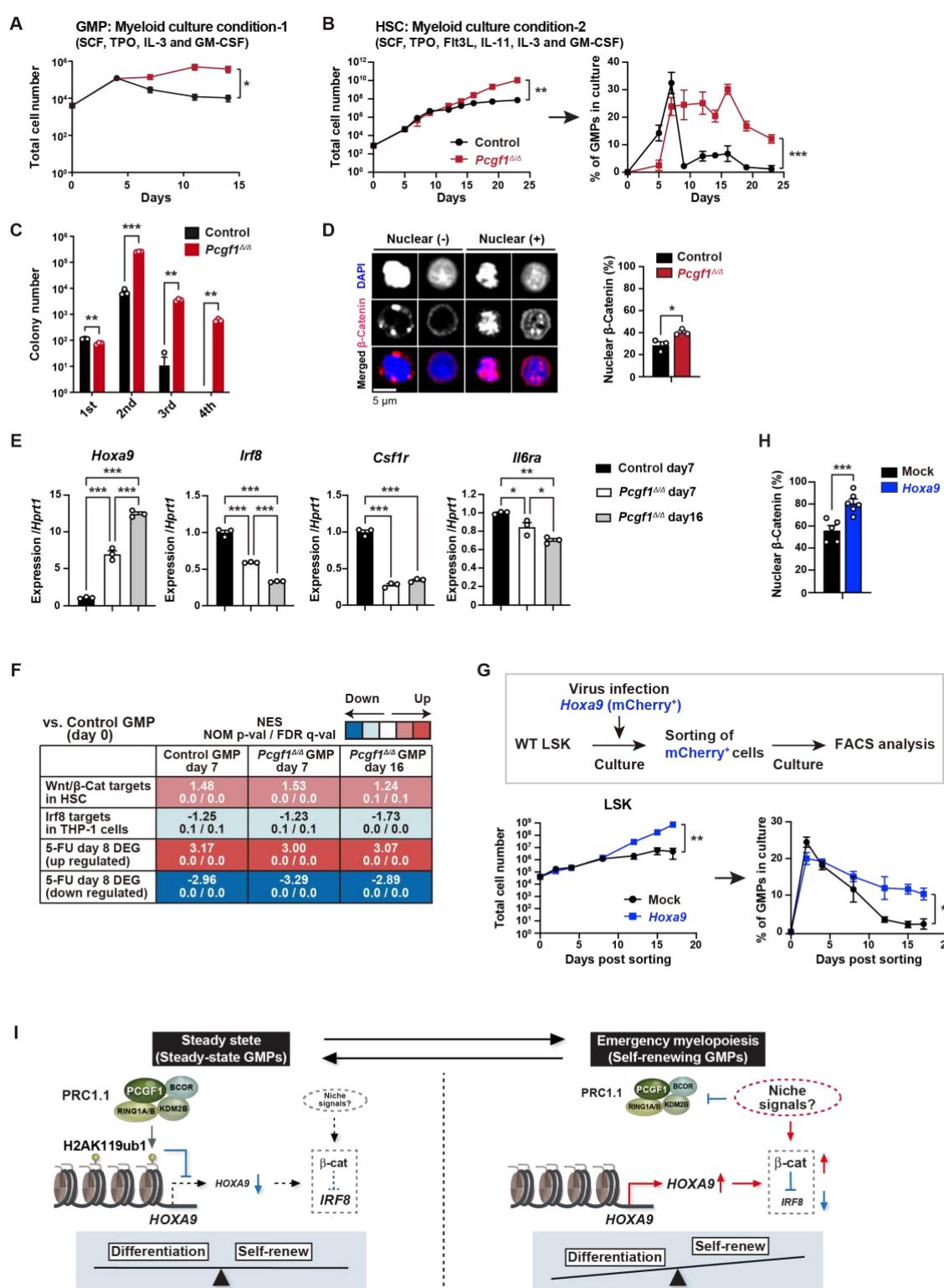
367 *Pcgf1*^{Δ/Δ} mice displayed sustained GMP expansion until day 28 without efficient
368 production of PB myeloid cells, leading to the accumulation of excess GMPs (Fig 4C).
369 GMPs can be divided into steady-state GMPs (ssGMP) and self-renewing GMPs
370 (srGMP), the latter of which transiently increase during regeneration (Héault et al., 2017).
371 We performed RNA-seq analysis of GMPs isolated from 5-FU-treated WT mice at
372 various time points (Fig S6B and C), and defined differentially expressed genes (DEGs)
373 on day 8 after 5-FU treatment, since srGMPs reportedly most expand on that day (Fig
374 S6B and C; and Table S4) (Héault et al., 2017). Of note, a significant portion of
375 upregulated DEGs in day 8 5-FU-treated GMPs were also upregulated in *Pcgf1*^{Δ/Δ} GMPs
376 (Fig 4D and Table S4). These overlapping genes included *Hoxa9*, a PRC1.1 target (Fig
377 S6D) (Ross et al., 2012; Shinoda et al., 2022; Tara et al., 2018), which is highly expressed
378 in srGMPs (Héault et al., 2017). RT-qPCR confirmed significantly higher expression of
379 *Hoxa9* in *Pcgf1*^{Δ/Δ} GMPs than control GMPs (Fig 4E). Correspondingly, 5-FU treatment
380 transiently decreased H2AK119ub1 levels at *Hoxa9* locus around day 10 (Fig 4F). ChIP-
381 seq analysis also revealed significant reductions in H2AK119ub1 levels at promoters of
382 upregulated DEGs in day 8 5-FU-treated GMPs in *Pcgf1*^{Δ/Δ} GMPs (Fig 4G). These results
383 suggest that transient inhibition of PRC1.1 de-represses genes critical to expand srGMP
384 during myeloid regeneration, although the expression of PRC1.1 genes remained largely
385 unchanged during regeneration (Fig S6E).

386 To better understand the role of PRC1.1 in myeloid progenitors, we performed single
387 cell RNA-seq (scRNA-seq) of Lin⁻Sca-1⁻c-Kit⁺ myeloid progenitors from control and
388 *Pcgf1*^{Δ/Δ} mice at steady state. We used data from 6,171 control and 6,198 *Pcgf1*^{Δ/Δ} single
389 cells and identified 10 major clusters based on dimension reduction by UMAP (Fig 4H).
390 Functional annotation of respective UMAP clusters using previously reported myeloid

391 progenitor cell gene expression profiles (Nestorowa et al., 2016) assigned clusters 0, 2
392 and 4 to GMPs (Fig 4H). PCA analysis subdivided GMPs into two major groups (Fig 4I).
393 These two groups exhibited distinct expression profiles of *Hoxa9*, *Irf8*, *Csf1r*, and *Il6ra*,
394 key genes differentially expressed between ssGMPs (*Hoxa9*^{lo}, *Irf8*^{hi}, *Csf1r*^{hi}, *Il6ra*^{hi}) and
395 srGMPs (*Hoxa9*^{hi}, *Irf8*^{lo}, *Csf1r*^{lo}, *Il6ra*^{lo}) (Hérault et al., 2017), and we classified clusters
396 2 and 4 as ssGMPs and cluster 0 as srGMPs (Fig 4J). Gene Ontology and pathway
397 enrichment analyses using DEGs (cluster 2 or 4 versus cluster 0) revealed that clusters 2
398 and 4 represented more mature myeloid cell populations than cluster 0 (Fig 4K). As
399 expected, *Pcgf1*^{Δ/Δ} myeloid progenitors had a greater proportion of total GMPs including
400 srGMPs than controls (Fig 4L). Of note, the frequency of srGMPs was also increased in
401 *Pcgf1*^{Δ/Δ} myeloid progenitors (Fig 4L). These results indicate that PRC1.1 restricts
402 expansion of self-renewing GMPs and suggest that transient PRC1.1 inhibition allows for
403 temporal amplification of GMPs and their subsequent differentiation to mature myeloid
404 cells.

406 **Figure 4. PCGF1 negatively regulates GMP self-renewal**

407 (A) Immunofluorescence staining of BM sections from control and *Pcgf1*^{Δ/Δ} mice. Magnified images
408 are depicted in the right panels. Dotted lines denote clusters of GMP (Lin⁻Sca-1⁻CD41⁻IL-7R α ⁻c-
409 Kit⁺Fc γ R⁺) (c-Kit, red; Fc γ R, blue; merged, purple). (B) Strategy to analyze emergency myelopoiesis
410 induced by one shot of 5-FU (150 mg/kg). (C) Absolute numbers of total BM cells, LSK cells, GMPs,
411 and Mac-1⁺ myeloid cells in a unilateral pair of femur and tibia and Mac-1⁺ myeloid cells in PB at the
412 indicated time points post-5-FU injection). Data are shown as the mean \pm SEM (n=4). Each symbol is
413 derived from an individual culture. (D) A venn diagram showing the overlap between up-regulated
414 DEGs in 5-FU treated GMPs on day 8 and up-regulated DEGs in *Pcgf1*^{Δ/Δ} GMPs. (E) Quantitative
415 RT-PCR analysis of *Hoxa9* in LSK cells and GMPs. *Hprt1* was used to normalize the amount of input
416 RNA. Data are shown as the mean \pm SEM (n=3). (F) CHIP qPCR assays for H2AK119ub1 at the
417 *Hoxa9* locus in GMPs from WT mice on days 0, 10, and 14 post-5-FU treatment. The relative amounts
418 of immunoprecipitated DNA are depicted as a percentage of input DNA. Data are shown as the mean
419 \pm SEM (n=3). (G) Fold changes in H2AK119ub1 levels in *Pcgf1*^{Δ/Δ} GMPs relative to control GMPs at
420 the promoters of non-DEGs and DEGs up- and down-regulated in day 8 GMPs compared to day 0
421 GMPs post-5-FU treatment. (H) UMAP plots illustrating the identification of cell clusters based on
422 single cell transcriptomic profiling of control and *Pcgf1*^{Δ/Δ} myeloid progenitors (Lin⁻Sca-1⁻c-Kit⁺). (I)
423 PCA plots of control and *Pcgf1*^{Δ/Δ} GMPs individually and in combination. (J) UMAP and violin plots
424 showing expression of *Hoxa9*, *Irf8*, *Csf1r*, and *Il-6ra* in control and *Pcgf1*^{Δ/Δ} myeloid progenitors. (K)
425 Gene Ontology and pathway enrichment analyses using DEGs in the indicated clusters. (L) Proportion
426 of CMPs, MEPs, ssGMPs and srGMPs in control and *Pcgf1*^{Δ/Δ} myeloid progenitors. *p<0.05;
427 **p<0.01; ***p<0.001 by the Student's *t*-test.


428

429 **PCGF1 restricts GMP self-renewal network**

430 To further investigate the mechanism by which PCGF1 regulates GMPs, we took
431 advantage of *in vitro* culture experiments. Remarkably, while control GMPs stopped
432 proliferation on day 4, *Pcgf1*^{Δ/Δ} GMPs kept growing until day 11 (Fig 5A). Moreover,
433 while comparable numbers of GMPs (CD34⁺Fc γ R⁺c-Kit⁺Sca-1⁻Lineage⁻) were produced
434 by control and *Pcgf1*^{Δ/Δ} HSCs on day 7 of culture, control HSCs showed a rapid decline
435 in GMP production afterward but *Pcgf1*^{Δ/Δ} HSCs persistently produced GMPs until day
436 23 (Fig 5B). Of interest, differentiation of the expanded *Pcgf1*^{Δ/Δ} GMPs was largely
437 blocked, as indicated by reduced Mac1⁺ differentiated myeloid cells/GMP ratios until day
438 19 (Fig S6F), suggesting *Pcgf1*^{Δ/Δ} GMPs underwent enhanced self-renewal rather than
439 differentiation. Furthermore, *Pcgf1*^{Δ/Δ} HSPCs showed remarkably sustained colony

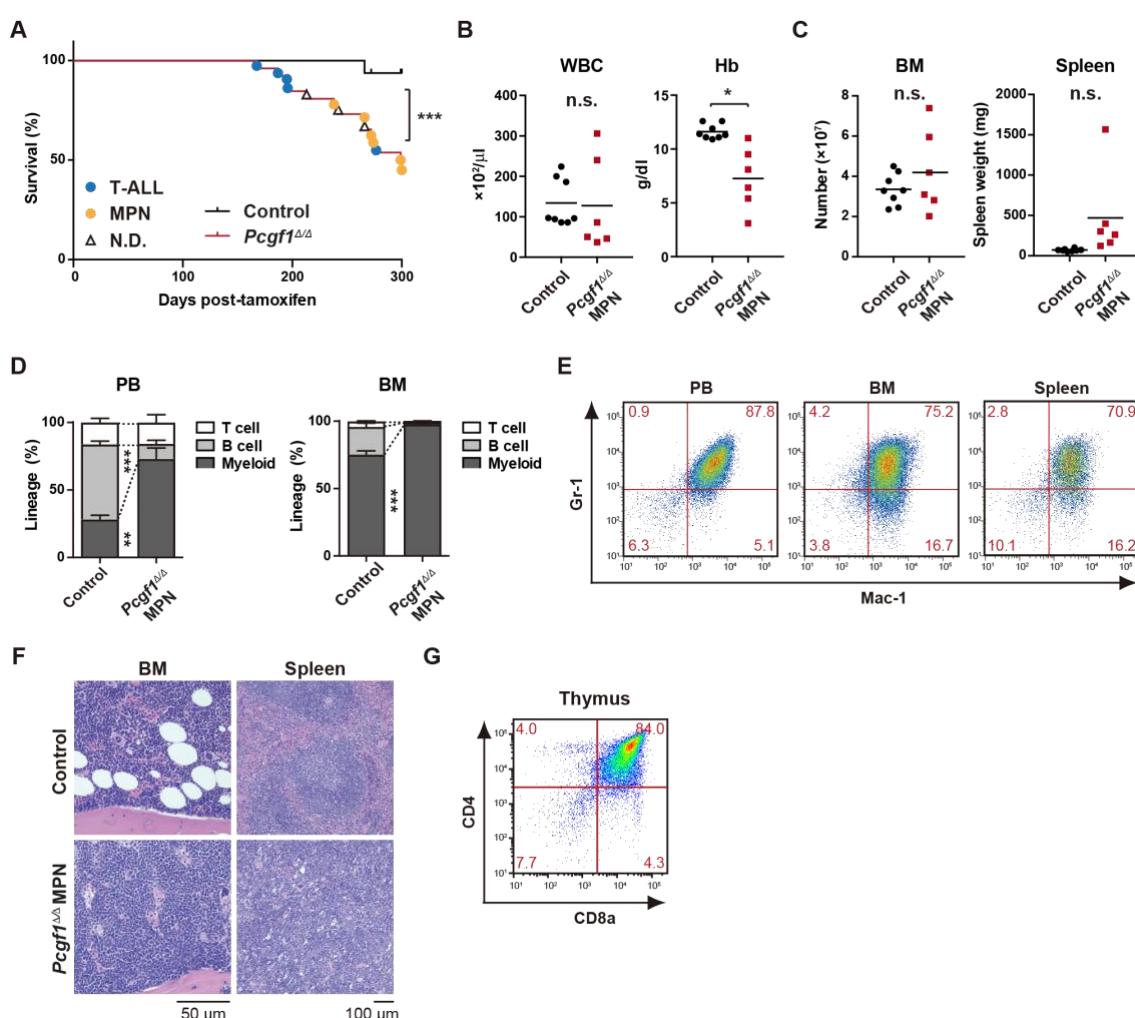
440 formation activity upon serial replating with myeloid cytokines, which is in line with the
441 elevated self-renewing activity of *Pcgf1*^{Δ/Δ} GMPs (Fig 5C).

442 srGMPs have increased levels of nuclear β-catenin, which is known to confer aberrant
443 self-renewal features to leukemic GMPs (Wang et al., 2010) and directly suppresses *Irf8*
444 expression (Héault et al., 2017). The proportion of nuclear β-catenin was significantly
445 increased in *Pcgf1*^{Δ/Δ} GMPs at later time points of culture when GMPs in control culture
446 shrunk but GMPs in *Pcgf1*^{Δ/Δ} culture kept expanding (Fig 5B and D). *Pcgf1*^{Δ/Δ} GMPs in
447 culture possessed a transcriptional profile typical to srGMPs; up-regulation of *Hoxa9* and
448 down-regulation of *Irf8*, *Csf1r*, and *Il6ra* (Fig 5E). GSEA revealed activation of the
449 Wnt/β-catenin pathway (Shooshtarizadeh et al., 2019) and down-regulation of the *Irf8*
450 targets (Kubosaki et al., 2010) in *Pcgf1*^{Δ/Δ} GMPs (Fig 5F). We hypothesized that *Hoxa9*,
451 a direct target of PCGF1, could have a role in the GMP self-renewal network.
452 Overexpression of *Hoxa9* in HSPCs significantly enhanced their growth and induced
453 persistent production of GMPs for a long period (Fig 5G and S6G). Most *Hoxa9*-
454 overexpressing GMPs had nuclear β-catenin (Fig 5H). These results indicate that HOXA9
455 can reinforce activation of β-catenin, thus placing HOXA9 as a component of the GMP
456 self-renewal network and PCGF1-PRC1.1 as a negative regulator of this network (Fig 5
457 I).

458

459

460 **Figure 5. PCGF1 restricts self-renewal of GMPs by attenuating *Hoxa9* expression**


461 (A) Growth of control and *Pcgf1*^{Δ/Δ} GMPs in culture. Cells were cultured in triplicate under myeloid
462 culture condition-1 (20 ng/mL SCF, TPO, IL-3, and GM-CSF). Data are shown as the mean ± SEM.
463 (B) Growth of control and *Pcgf1*^{Δ/Δ} HSCs under myeloid culture condition-2 (25 ng/mL SCF, TPO,

464 Flt3L, and IL-11 and 10 ng/mL IL-3 and GM-CSF). Cells were cultured in triplicate. The proportion
465 of GMPs in culture is depicted on the right panel. (C) Replating assay data. Seven hundred LSK cells
466 were plated in a methylcellulose medium containing 20 ng/mL of SCF, TPO, IL-3, and GM-CSF.
467 After 10 days of culture, colonies were counted and pooled, and 1×10^4 cells were then replated in the
468 same medium every 7 days. (D) Proportion of GMPs with nuclear β -catenin in control and *Pcgf1^{4/4}*
469 GMPs in HSC culture on day 16 in (B). Representative immunofluorescent signals of β -catenin are
470 shown on the right panel. (E) Quantitative RT-PCR analysis of *Hoxa9*, *Irf8*, *Csf1r*, and *Il-6ra* in control
471 and *Pcgf1^{4/4}* GMPs in HSC culture in (B) at the indicated time points. *Hprt1* was used to normalize
472 the amount of input RNA. Data are shown as the mean \pm SEM (n=3). (F) GSEA using RNA-seq data.
473 The gene sets used are indicated in Supplementary Table 1. (G) Growth of mock control and *Hoxa9*-
474 expressing LSK cells. LSK cells transduced with a *Hoxa9* retrovirus harboring mCherry marker gene
475 were cultured in triplicate under myeloid culture condition-2. The proportion of GMPs in culture is
476 depicted on the right panel. (H) Proportion of GMPs with nuclear β -catenin in mock control and
477 *Hoxa9*-expressing GMPs in LSK culture on day 12 in (G). (I) Model of the molecular network
478 controlling GMP self-renewal and differentiation. * $p<0.05$; ** $p<0.01$; *** $p<0.001$ by the Student's *t*-
479 test (A-D, H, and G) or the One-way ANOVA (E). Each symbol is derived from an individual culture.
480

481 **Constitutive PCGF1 loss promotes malignant transformation**

482 In leukemia, GMP clusters are constantly produced owing to persistent activation of the
483 myeloid self-renewal network and a lack of termination cytokines that normally restore
484 HSC quiescence (Héault et al., 2017). A significant portion of *Pcgf1^{4/4}* mice, which
485 exhibit constant production of GMP clusters, developed lethal Myeloproliferative
486 neoplasms (MPN) with severe anemia and massive accumulation of mature myeloid cells
487 in PB, BM, and spleen (Fig 6A-E). Accumulation of myeloid cells was evident in BM
488 and spleen sections (Fig 6F). A part of *Pcgf1^{4/4}* mice also developed lethal T-cell acute
489 lymphoblastic leukemia (T-ALL) (Fig 6A and G) like *Bcor* mutant mice (Tara et al.,
490 2018). These results indicate that constitutive activation of the GMP self-renewal network
491 in *Pcgf1^{4/4}* mice serves to promote malignant transformation. Taken together, these
492 results highlight the importance of PRC1.1-dependent suppression of the myeloid self-
493 renewing network to prevent malignant transformation.

494

495

Figure 6. Development of lethal myeloproliferative neoplasm in *Pcgf1* $^{\Delta/\Delta}$ mice

(A) Kaplan-Meier survival curves of control (n=7) and *Pcgf1* $^{\Delta/\Delta}$ (n=25) mice after the tamoxifen injection. (B) White blood cell (WBC) and hemoglobin (Hb) in PB from control (n=8) and moribund *Pcgf1* $^{\Delta/\Delta}$ MPN mice (n=6). Bars indicate median values. Data are shown as the mean \pm SEM. (C) Absolute numbers of total BM cells and spleen weight in control (n=8) and moribund *Pcgf1* $^{\Delta/\Delta}$ MPN mice (n=6). (D) The proportions of Mac-1 $^+$ and/or Gr-1 $^+$ myeloid cells, B220 $^+$ B cells, and CD4 $^+$ or CD8 $^+$ T cells in PB and BM in control (n=8) and moribund *Pcgf1* $^{\Delta/\Delta}$ MPN mice (n=6). (E) Representative flow cytometric profiles of PB, BM, and spleen of control and moribund *Pcgf1* $^{\Delta/\Delta}$ MPN mice. The percentages of gated populations over CD45.2 $^+$ live cells are indicated. (F) Representative histology of BM and spleen from control and moribund *Pcgf1* $^{\Delta/\Delta}$ MPN mice observed by hematoxylin-eosin staining. (G) Representative flow cytometric profiles of thymus from control mice and moribund *Pcgf1* $^{\Delta/\Delta}$ T-ALL mice. *p<0.05; **p<0.01; ***p<0.001 by the Student's t-test. Each symbol is derived from an individual mouse.

509

510 **DISCUSSION**

511 In this study, we demonstrated that PCGF1 contributes to balanced hematopoiesis by
512 restricting precocious myeloid commitment of HSPCs and expansion of myeloid
513 progenitors while its inhibition promotes emergency myelopoiesis and myeloid
514 transformation. These findings present a sharp contrast with PCGF4/BMI1 essential for
515 self-renewal of HSCs (Iwama et al., 2004; Oguro et al., 2006; Park et al., 2003) and
516 underscore distinct functions between canonical PRC1 and non-canonical PRC1.1 in
517 hematopoiesis (Fig S6H).

518 PcG and trithorax group proteins mark developmental regulator gene promoters with
519 bivalent histone domains to keep them poised for activation in ES cells(Bernstein et al.,
520 2006). We previously reported that canonical PRC1 reinforces bivalent domains at the B
521 cell regulator genes, *Ebf1* and *Pax5*, to maintain B-cell lineage commitment poised for
522 activation in HSPCs (Oguro et al., 2010). In contrast, PCGF1 appeared to target non-
523 bivalent PRC1 target genes marked with moderate levels of H2AK119ub1 and
524 H3K27me3. Among these, PCGF1 targets myeloid regulator genes, such as *Cebpa*,
525 thereby negatively regulating myeloid commitment. Our findings indicate that canonical
526 and non-canonical PRC1 restrict the lymphoid and myeloid commitment of HSPCs,
527 respectively, by targeting different transcriptional programs of differentiation, thereby
528 fine-tuning the balance of HSPC commitment (Fig S6H). Although there might be
529 considerable functional redundancy between canonical and non-canonical PRC1
530 complexes, our results uncovered a unique function of PRC1.1 in the lineage commitment
531 of HSPCs.

532 Myeloid-biased output from HSPCs is one of the hallmarks of emergency
533 hematopoiesis (Trumpp et al., 2010; Zhao & Baltimore, 2015). In mouse models of

534 regeneration, myeloid-biased MPP2 and MPP3 are transiently overproduced, suggesting
535 that HSCs produce functionally distinct lineage-biased MPPs to adapt blood production
536 to hematopoietic demands (Pietras et al., 2015). In the present study, we found that *Pcgf1*-
537 deficient hematopoiesis recapitulates sustained emergency myelopoiesis, although the
538 production of circulating myeloid cells was not enhanced. Expanding GMPs, GMP
539 clusters during regeneration, which, in turn, differentiate into granulocytes (Héault et al.,
540 2017). Of note, PCGF1 loss induced constitutive GMP cluster formation at steady state
541 and sustained GMP expansion in mice after myeloablation and in culture.
542 Correspondingly, *Pcgf1*-deficient mice had a greater number of self-renewing GMPs than
543 control mice. This unique phenotype may implicate the importance of transient but not
544 constitutive PCGF1 repression for proper myeloid regeneration. β -catenin and *Irf8*
545 constitute an inducible self-renewal progenitor network controlling GMP cluster
546 formation, with β -catenin directly suppressing *Irf8* expression while restoration of *Irf8*
547 expression terminating the self-renewal network and inducing GMP differentiation
548 (Héault et al., 2017) (Fig 5I). *Hoxa9*, which is up-regulated in srGMPs, is one of the
549 PRC1.1 targets in myeloid progenitors (Fig S6) (Ross et al., 2012; Shinoda et al., 2022;
550 Tara et al., 2018). We demonstrated that *Hoxa9* expression activates β -catenin and
551 promotes GMP self-renewal, identifying HOXA9 as a component of the GMP self-
552 renewal network. Of note, PRC1.1 is transiently inhibited to de-repress such GMP self-
553 renewal network genes. This transient nature of PRC1.1 inhibition allows for srGMP
554 expansion and GMP cluster formation followed by proper differentiation of expanded
555 GMPs. As expression levels of PRC1.1 components remained unchanged during
556 hematopoietic regeneration, non-canonical PRC1.1 activity could be modulated by
557 posttranslational modifications in response to extracellular stimuli like canonical PRC1

558 (Banerjee Mustafi et al., 2017; Liu et al., 2012; Nacerddine et al., 2012; Voncken et al.,
559 2005). How extrinsic signals modulate PRC1.1 functions to regulate myelopoiesis
560 remains an important question.

561 The molecular machineries that drive emergency myelopoiesis are often hijacked by
562 transformed cells (Hérault et al., 2017). A significant portion of *Pcgf1*-deficient mice
563 eventually developed lethal MPN after a sustained myeloproliferative state. These
564 findings indicate that PRC1.1 functions as a critical negative regulator of myeloid
565 transformation. Among the components of PRC1.1, *BCOR* and *BCLRL1*, but not *PCGF1*
566 are targeted by somatic gene mutations in various hematological malignancies, including
567 myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and
568 acute myeloid leukemia (AML) (Isshiki & Iwama, 2018). We reported that mice
569 expressing a carboxyl-terminal truncated BCOR, which cannot interact with PCGF1,
570 showed myeloid-biased hematopoiesis like *Pcgf1*-deficient mice. Importantly, HSPCs in
571 these mice showed a growth advantage in the myeloid compartment, which was further
572 enhanced by the concurrent deletion of *Tet2*, leading to the development of lethal MDS
573 (Tara et al., 2018). De-repression of myeloid regulator genes, such as *Cebp* family and
574 *Hoxa* cluster genes, were also detected in *Bcor* mutant progenitor cells (Tara et al., 2018).
575 These findings also support the idea that PRC1.1 restricts myeloid transformation by
576 transcriptionally repressing aberrant activation of myeloid regeneration programs.

577 Collectively, our findings highlight a critical role of PRC1.1 in coordinating steady-
578 state and emergency hematopoiesis and preventing malignant transformation. They also
579 suggest that transient inhibition of PRC1.1 would be a novel approach to temporarily
580 induce emergency myelopoiesis and enhance myeloid cell supply while avoiding the
581 potential risk for malignant transformation.

582 **MATERIALS AND METHODS**

583 **Mice**

584 Wild-type mice (C57BL/6) and *Rosa::Cre-ERT2* mice were purchased from the Japan
585 SLC and TaconicArtemis GmbH, respectively. *Pcgf1^{f/f}* and *Cebpa^{f/f}* mice were kindly
586 provided by Haruhiko Koseki and Daniel G. Tenen, respectively, and previously reported
587 (Almeida et al., 2017; Zhang et al., 2004). All experiments using mice were performed in
588 accordance with our institutional guidelines for the use of laboratory animals and
589 approved by the Review Board for Animal Experiments of Chiba University (approval
590 ID: 30-56) and the University of Tokyo (approval ID: PA18-03).

591

592 **Bone marrow transplantation**

593 To generate hematopoietic cell-specific *Pcgf1* KO mice, we transplanted total BM cells
594 (5×10^6) from *Rosa::Cre-ERT* and *Cre-ERT;Pcgf1^{f/f}* mice into lethally irradiated (9.5 Gy)
595 CD45.1 recipient mice. For competitive bone marrow transplantation assay, we
596 transplanted total BM cells (2×10^6) from CD45.2 donor mice with CD45.1⁺ competitor
597 total BM cells (2×10^6) into lethally irradiated (9.5 Gy) CD45.1 recipient mice. To induce
598 Cre activity, transplanted-mice were injected with 100 μ L of tamoxifen (Sigma-Aldrich)
599 dissolved in corn oil (Sigma-Aldrich) at a concentration of 10 mg/mL intraperitoneally
600 once a day for 5 consecutive days 4 weeks after transplantation.

601

602 **Locus-specific genotyping of *Pcgf1*, *Cebpa* and *Rosa::Cre-ERT***

603 To detect *Pcgf1^{f/f}*, *Pcgf1^{A/A}*, *Cebpa^{f/f}*, *Cebpa^{A/A}* and *Rosa::Cre-ERT* PCR reactions were
604 performed using the specific oligonucleotides. The oligonucleotide sequences used were
605 shown in Table S5.

606

607 **5-FU challenge**

608 8-12-week old wild-type mice or control and *Pcgf1*^{Δ/Δ} were injected with 300 μL PBS or
609 150 mg/kg (3.75 mg per 25 g body weight mouse) 5-FU (Kyowa KIRIN) dissolved in
610 300 μL PBS intraperitoneally once.

611

612 **Flow cytometry analyses and antibodies.**

613 The monoclonal antibodies recognizing the following antigens were used in flow
614 cytometry and cell sorting: CD45.1(A20), CD45.2 (104), Gr-1 (RB6-8C5), CD11b/Mac-
615 1 (M1/70), Ter-119 (TER-119), B220 (RA3-6B2), CD127/IL-7R (SB/119), CD4 (GK1.5),
616 CD8a (53-6.7), CD117/c-Kit (2B8), Sca-1 (D7), CD34 (RAM34), CD150 (TC15-
617 12F12.2), CD48 (HM48-1), CD135 (A2F10), CD16/32/FcγRII-III (93), CD41
618 (eBioMWReg30), CD105 (MJ7/18), Ly6D (49-H4), lineage mixture (Gr-1, Mac-1, Ter-
619 119, CD127/IL-7R, B220, CD4, CD8α) and lineage mixture for CLP (Gr-1, Mac-1, Ter-
620 119, B220, CD4, CD8α). Monoclonal antibodies were purchased from BioLegend, Tonbo
621 Biosciences, Thermo Fisher Scientific or BD Bioscience. Dead cells were eliminated by
622 staining with 0.5 μg/mL Propidium iodide (Sigma-Aldrich). All flow cytometric analyses
623 and cell sorting were performed on FACS Aria IIIu, FACSCanto II and FACSCelesta (BD
624 Bioscience). Cell surface protein expression used to define hematopoietic cell types were
625 as follows:

626 HSC: CD150⁺CD48⁻CD135⁻CD34⁻c-Kit⁺Sca-1⁺Lineage⁻

627 MPP1: CD150⁺CD48⁻CD135⁻CD34⁺c-Kit⁺Sca-1⁺Lineage⁻

628 MPP2: CD150⁺CD48⁺CD135⁻CD34⁺c-Kit⁺Sca-1⁺Lineage⁻

629 MPP3: CD150⁻CD48⁺CD135⁻CD34⁺c-Kit⁺Sca-1⁺Lineage⁻

630 MPP4: CD150⁻CD48⁺CD135⁺CD34⁺c-Kit⁺Sca-1⁺Lineage⁻
631 CMP: CD34⁺Fc γ R⁻c-Kit⁺Sca-1⁻Lineage⁻
632 GMP: CD34⁺Fc γ R⁺c-Kit⁺Sca-1⁻Lineage⁻
633 MEP: CD34⁻Fc γ R⁻c-Kit⁺Sca-1⁻Lineage⁻
634 pre-GM: CD150⁻CD105⁻Fc γ R⁻CD41⁻c-Kit⁺Sca-1⁻Lineage⁻
635 CLP: c-Kit^{low}Sca-1^{low}CD135⁺IL7R⁺Lineage (for CLP)⁻
636 ALP: Ly6D⁻cKit^{low}Sca-1^{low}CD135⁺IL7R⁺Lineage⁻
637 BLP: Ly6D⁺cKit^{low}Sca-1^{low}CD135⁺IL7R⁺Lineage⁻
638 LSK: c-Kit⁺Sca-1⁺Lineage⁻
639 LK: c-Kit⁺Lineage⁻
640 Pro-B: B220⁺CD43⁺IgM⁻
641 Pre-B: B220⁺CD43⁻IgM⁻
642

643 Quantitative RT-PCR

644 Total RNA was extracted using a RNeasy Micro Plus Kit (QIAGEN) or TRIZOL LS
645 solution (MOR) and reverse transcribed by the SuperScript IV First-Strand Synthesis
646 System (Invitrogen) or the ReverTra Ace α - (TOYOBO) with an oligo-dT primer. Real-
647 time quantitative PCR was performed with a StepOnePlus Real-Time PCR System (Life
648 Technologies) using FastStart Universal Probe Master (Roche) and the indicated
649 combinations of the Universal Probe Library (Roche), or TB Green Premix Ex Taq II
650 (TaKaRa Bio). All data are presented as relative expression levels normalized to *Hprt*
651 expression. The primer sequences used were shown in Table S5 (Murakami et al., 2021;
652 Sonntag et al., 2018).

653

654 **Limiting dilution assay**

655 For *in vivo* limiting dilution assay, we transplanted limiting numbers of total BM cells
656 (1×10^4 , 4×10^4 , 8×10^4 , and 2×10^5) isolated from primary recipients (control and *Pcgf1*^{+/+}
657 mice 1 month after tamoxifen injections) with CD45.1⁺ competitor total BM cells (2×10^5)
658 into lethally irradiated CD45.1 recipient mice. PB analyses were performed at 16 weeks
659 after transplantation.

660 For *in vitro* limiting dilution assay, we sorted HSCs from control and *Pcgf1*^{+/+} mice 1
661 month after tamoxifen injections and cultured limiting numbers of the cells (1, 5, 25, and
662 125) with TSt-4 (B cells) or TSt-4/DLL1 stromal cells (T cells) in RPMI (Thermo Fisher
663 Scientific) supplemented with 10% BSA (093001; STEMCELL Technologies), 50 μ M 2-
664 ME (Sigma-Aldrich), 100 μ M MEM Non-Essential Amino Acids solution (Gibco), 100
665 μ M sodium pyruvate (Gibco) and 2 ng/mL recombinant mouse IL-7 (577802; BioLegend)
666 for 28 days. The generation of CD19⁺ B cells or Thy1.2⁺ T cells in each well was detected
667 by flow cytometry.

668

669 **Cell cycle assay**

670 BM cells were stained with antibodies against cell-surface markers. After washing, cells
671 were fixed and permeabilized with a BD Phosflow Lyse/Fix Buffer and a BD Phosflow
672 Perm Buffer II (BD Bioscience) according to the manufacturer's instructions. Cells were
673 stained with FITC-Ki67 antibody (#11-5698-82; Thermo Fisher Scientific) at room
674 temperature for 30 min and then with 1 μ g/mL 7-AAD (Sigma-Aldrich). Flow cytometric
675 analyses were performed on FACSaria IIIu (BD Bioscience).

676

677 **Cell culture**

678 For growth assays, sorted CD34⁺CD150⁺LSK HSCs, LSK cells and GMPs were cultured
679 in S-Clone SF-O3 (Sanko Junyaku) supplemented with 0.1% BSA (093001; STEMCELL
680 Technologies), 50 µM 2-ME (Sigma-Aldrich) and 1% penicillin/streptomycin/glutamine
681 (Gibco). 20 ng/mL of recombinant mouse SCF (579706; Biolegend) and recombinant
682 human TPO (763706; Biolegend) for HSC culture conditions and 10 ng/mL of SCF, TPO,
683 recombinant mouse IL-3 (575506; Biolegend), and recombinant murine GM-CSF (315-
684 03; PeproTech) for myeloid culture condition-1 were added to cultures. In the case of
685 myeloid culture condition-2, sorted CD150⁺CD48⁻CD135⁻CD34⁻LSK HSCs were
686 cultured in IMDM (Gibco) supplemented with 5% FBS, 50 µM 2-ME (Sigma-Aldrich),
687 1% penicillin/streptomycin/glutamine (Gibco), 1 mM sodium pyruvate (Gibco) and 0.1
688 mM MEM Non-Essential Amino Acids solution (Gibco). 25 ng/mL of SCF, TPO,
689 recombinant human Flt3L (300-19; PeproTech) and recombinant murine IL-11 (220-11;
690 PeproTech) and 10 ng/mL of IL-3 and GM-CSF were added to cultures.

691 For replating assays, LSK cells were plated in methylcellulose medium (Methocult
692 M3234; STEMCELL Technologies) containing 20 ng/mL of SCF, TPO, IL-3, and GM-
693 CSF.

694

695 **Retroviral vector and virus production**

696 Full-length *Pcgf1* and *Bmi1* cDNA tagged with a 3×Flag at the N-terminus was subcloned
697 into the retroviral vector pGCDNsam-IRES-EGFP. Full-length *Hoxa9* cDNA was
698 subcloned into the retroviral vector pMYs-IRES-mCherry. A recombinant retrovirus was
699 generated by a 293gpg packaging cell line. The virus in supernatants of 293gpg cells was
700 concentrated by centrifugation at 6,000g for 16 hours.

701

702 **Immunofluorescence imaging of bone marrow and spleen sections**

703 Isolated mouse femurs were immediately placed in ice-cold 2% paraformaldehyde
704 solution (PFA/PBS) and fixed under gentle agitation for 16 hours. The samples were then
705 incubated in 15% and 30% sucrose for cryoprotection overnight. Samples were embedded
706 in O.C.T. (Sakura) and frozen in cooled hexane. The 7 μ m frozen sections were generated
707 with a cryostat (Cryostar NX70, Thermo Scientific) using Kawamoto's tape method
708 (Kawamoto, 2003). Sections on slide glasses were blocked with staining buffer (10%
709 normal donkey serum in TBS) and an Avidin/Biotin Blocking Kit (VECTOR), then
710 stained with biotinylated anti-lineage antibody cocktail and anti-c-Kit antibody (#AF
711 1356; R&D Systems), or anti-Fc γ R-AlexaFluor 647 (#101314; Biolegend) in staining
712 buffer overnight at 4 °C. For secondary staining, sections were incubated with
713 streptavidin-AlexaFluor 488 (#S11223; Invitrogen) and donkey anti-goat AlexaFluor 555
714 (#A21432; Invitrogen) antibody for 3 hours at room temperature. Finally, sections were
715 incubated with 1 μ g/mL DAPI/TBS for 10 minutes and mounted with ProLong Glass
716 Antifade Mountant (Thermo Scientific). Images of sections were captured on a confocal
717 microscope (Dragonfly, Andor or A1Rsi, Nikon) and processed using Fiji.

718

719 **Immunofluorescence imaging of purified GMPs**

720 GMPs were sorted directly onto glass slides using BD AriaIIIu. The cells were washed
721 three times with PBS for 5 min between each staining step. Cells were fixed with 4% PFA
722 for 15 min, permeabilized with 0.1% Triton X-100 for 10 min, and then blocked with 3%
723 BSA for 1 h at room temperature. The cells were then incubated with rabbit anti-mouse
724 β -catenin (#9582S; Cell Signaling) primary antibody at 4°C overnight. The cells were
725 then stained with anti-rabbit AF488A (#20015; Biotium) secondary antibody for 2 h at

726 room temperature. After staining with 1 μ g/mL DAPI/PBS for 5 min, the cells were
727 mounted with ProLongTM Glass Antifade Mountant (ThermoFisher). DragonFly (Andor,
728 40x objective) was used for image acquisition.

729

730 **Bulk RNA-seq and data processing**

731 Total RNAs were extracted from 1,000-5,000 cells using an RNeasy Plus Micro Kit
732 (QIAGEN) and cDNAs were synthesized using a SMART-Seq v4 Ultra Low Input RNA
733 Kit for Sequencing (Clontech) according to the manufacturer's instructions. The ds-
734 cDNAs were fragmented using S220 or M220 Focused-ultrasonicator (Covaris), then
735 cDNA libraries were generated using a NEBNext Ultra DNA Library Prep Kit (New
736 England BioLabs) according to the manufacturer's instructions. Sequencing was
737 performed using HiSeq1500 or HiSeq2500 (Illumina) with a single-read sequencing
738 length of 60bp. TopHat2 (version 2.0.13; with default parameters) was used to map the
739 reads to the reference genome (UCSC/mm10) with annotation data from iGenomes
740 (Illumina). Levels of gene expression were quantified using Cuffdiff (Cufflinks version
741 2.2.1; with default parameters). Significant expression differences were detected edgeR
742 (version 3.14; with default parameters), with raw counts generated from String Tie. The
743 super-computing resource was provided by the Human Genome Center, the Institute of
744 Medical Science, the University of Tokyo (<http://sc.hgc.jp/shirokane.html>). The
745 enrichment analysis

746

747 **Single cell RNA-seq and data processing**

748 Control (1.2×10^4) and *Pcgf1*^{Δ/Δ} (1.2×10^4) LK cells were collected for single cell RNA-seq.
749 mRNA were isolated and libraries were prepared according to Chromium Next GEM

750 Single Cell 3' Reagent Kits v3.1 (10x Genomics). Raw data files (Base call files) were
751 demultiplexed into fastq files using Cell Ranger with mkfastq command. Then,
752 "cellranger count" command was used for feature counts, barcode counts with reference
753 "refdata-gex-mm10-2020-A". Filtered_feature_bc_matrix included 6,565 control LK
754 cells and 7,651 Pcgf1 KO LK cells. We subsampled 6,565 cells from 7,651 Pcgf1 KO LK
755 cells to adjust cell numbers between KO and control LK. Subsequent analyses were
756 performed using Seurat 4.1.0. Quality filtering for each feature and cell was conducted
757 based on these criteria (min.cells = 3 & min.features = 200 & nFeature_RNA > 200 &
758 nFeature_RNA < 10000 & percent.mt < 5). After quality filtering, 6,171 control LKs and
759 6,198 KO LKs were used for further analysis. Feature counts are log-normalized with the
760 function of "NormalizeData". 2,000 highly variable features are selected for PCA. PC 1-
761 10 components are used for UMAP and graph-based clustering with the functions of
762 FindNeighbors(object, reduction = "pca", dims = 1:15) and FindClusters(object,
763 resolution = 0.28). Cluster 0, 2 and 4 cells are extracted and re-analyzed with PCA.
764 Differentially expressed genes are selected with the function of "FindMarkers(object,
765 min.pct = 0.25)".

766

767 **Chromatin immunoprecipitation (ChIP) assays and ChIP-sequencing**

768 ChIP assays for histone modifications were performed as described previously (Aoyama
769 et al., 2018) using an anti-H2AK119ub1 (#8240S; Cell Signaling Technology) and an
770 anti-H3K27me3 (#07-449; Millipore). BM LSK cells were fixed with 1% FA at 37°C for
771 2 min, lysed in ChIP buffer (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM CaCl₂, 0.5%
772 NP-40 substitute and cOmplete proteases inhibitor cocktail) and sonicated for 5 sec × 3
773 times by a Bioruptor (UCD-300; Cosmo Bio). After then, cells were digested with

774 Micrococcal Nuclease at 37°C for 40 min (New England BioLabs) and added 10 mM
775 EDTA to stop the reaction. After the addition of an equal volume of RIPA buffer (50 mM
776 Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA pH 8.0, 1% NP-40 substitute, 0.5% sodium
777 deoxycholate, 0.1% SDS and cOmplete proteases inhibitor cocktail), cells were sonicated
778 again for 5 sec x 10 times by a Bioruptor. After centrifugation, supernatants were
779 immunoprecipitated at 4°C overnight with Dynabeads Sheep anti–Rabbite IgG
780 (Invitrogen) conjugated with each antibody. Immunoprecipitates were washed with ChIP
781 wash buffer (10 mM Tris-HCl pH 8.0, 500 mM NaCl, 1 mM CaCl₂, 0.5% NP-40
782 substitute and cOmplete proteases inhibitor cocktail) 4 times and TE buffer (10 mM Tris-
783 HCl pH8.0 and 1 mM EDTA pH8.0) twice. Bound chromatins and 30 µL of input DNA
784 were suspended in 95 µL and 65 µL elution buffer (50 mM Tris-HCl pH 8.0, 10mM
785 EDTA pH8.0, 1% SDS and 250 mM NaCl), respectively. After the addition of 5 µL of
786 5M NaCl, the solutions were incubated at 65°C for 4 hours, treated with 25 µg/mL RNase
787 A (Sigma-Aldrich) at 37°C for 30 min and 0.1 mg/mL proteinase K (Roche) at 50 °C for
788 1 hour and were purified with a MinElute PCR Purification Kit (QIAGEN).
789 In 3×Flag-Pcgf1ChIP assay, BM LK cells were fixed with 1% FA at 25°C for 10 min,
790 lysed in RIPA buffer and sonicated for 11 sec × 15 times by a homogenizer (NR-50M;
791 Micro-tec Co.). After centrifugation, supernatants were immunoprecipitated at 4°C
792 overnight with Dynabeads Sheep anti–Mouse IgG (Invitrogen) conjugated with an anti-
793 FLAG antibody (Sigma-Aldrich). After that, the samples were treated in the same way as
794 ChIP assays for histone modifications.
795 In ChIP-qPCR assay, quantitative real-time PCR was performed with a StepOnePlus
796 Thermal Cycler (Thermo Fisher Scientific) using SYBR Premix Ex Taq II or TB Green

797 Premix Ex Taq II (Takara Bio). The primer sequences used were shown in Table S5 (Tara
798 et al., 2018).

799 ChIP-seq libraries were prepared using a ThruPLEX DNA-seq Kit (Clontech)
800 according to the manufacturer's instructions. Bowtie2 (version 2.2.6; with default
801 parameters) was used to map the reads to the reference genome (UCSC/mm10). The RPM
802 (reads per million mapped reads) values of the sequenced reads were calculated every
803 1,000 bp bin with a shifting size of 100 bp using bedtools. In order to visualize with
804 Integrative Genomics Viewer (IGV) (<http://www.broadinstitute.org/igv>), the RPM values
805 of the immunoprecipitated samples were normalized by subtracting the RPM values of
806 the input samples in each bin and converted to a bigwig file using wigToBigWig tool.
807 The super-computing resource was provided by the Human Genome Center, the Institute
808 of Medical Science, the University of Tokyo (<http://sc.hgc.jp/shirokane.html>).

809

810 **Assay for Transposase Accessible Chromatin with high-throughput (ATAC)-**
811 **sequencing**

812 BM CD135⁺LSK cells (1.6-3.0 x 10⁴) and GMPs (3.0 x 10⁴) were lysed in cold lysis buffer
813 (10mM Tris-HCl ph7.4, 10 mM NaCl, 3 mM MgCl₂, 0.1% IGEPAL CA-630) on ice for
814 10 min. After centrifugation, nuclei pellets were resuspended with 50 µL of transposase
815 reaction mix (25 µL Tagment DNA buffer (illumine), 2.5 µL Tagment DNA enzyme
816 (illumine) and 22.5 µL water), incubated at 37°C for 35 min and were purified with a
817 MinElute PCR Purification Kit (QIAGEN). After the optimization of PCR cycle number
818 using SYBER Green I Nucleic Acid gel Stain (Takara Bio), transposed fragments were
819 amplified using NEBNext High Fidelity 2× PCR Master mix and index primers, and were
820 purified with a MinElute PCR Purification Kit (QIAGEN). Library DNA was sized

821 selected (240-360 bps) with BluePippin (Sage Scince). Sequencing was performed using
822 HiSeq1500 or HiSeq2500 (Illumina) with a single-read sequencing length of 60bp.
823 Bowtie2 (version 2.2.6; with default parameters) was used to map reads to the reference
824 genome (UCSC/mm10) with annotation data from iGenomes (Illumina). Reads mapped
825 to mitochondria were removed. To ensure even processing, reads were randomly
826 downsampled from each sample to adjust to the smallest read number of samples. MACS
827 (version 2.1.1; with default parameters) was used to call peaks in downsampled reads.
828 The catalogue of all peaks called in any samples was produced by merging all called
829 peaks that overlapped by at least one base pair using bedtools. The MACS bdgcmp
830 function was used to compute the fold enrichment over the background for all populations,
831 and the bedtools map function was used to count fragments in the catalogue in each
832 population. Fragment counts at each site in the catalogue were quantile normalized
833 between samples using the PreprocessCore package in R (3.3.2). We used the Homer
834 package with command annotatePeaks.pl using default parameters to annotate regions
835 with promoter and distal labels and the nearest gene, and with command
836 findMotifsGenome.pl using default parameters to identify enriched motifs, and the
837 catalogue of all called peaks as a background.

838

839 **Quantification and Statistical Analysis**

840 Statistical tests were performed using Prism version 9 (Graphpad). The significance of
841 difference was measured by the Student's *t*-test or One-way ANOVA. Data are shown as
842 the mean \pm SEM. Significance was taken at values of **p* less than .05, ** *p* less than .01,
843 and *** *p* less than .001.

844

845 **Data and Software Availability**

846 RNA sequence, ChIP sequence and ATAC sequence data were deposited in the DDBJ
847 (accession number DRA008518 and DRA013523).

848 **AUTHOR CONTRIBUTIONS**

849 Y. Nakajima-Takagi performed the experiments, analyzed results, made the figures, and
850 actively wrote the manuscript. M. Oshima, J. Takano, S. Koide, N. Itokawa, S. Uemura,
851 M. Yamashita, S. Andoh, K. Aoyama, Y. Isshiki, D. Shinida, A. Saraya, F. Arai, K.
852 Yamaguchi, Y. Furukawa, and T. Ikawa assisted with the experiments. H. Koseki
853 generated mice. M. Yamashita aided in interpreting the results and worked on the
854 manuscript. A. Iwama conceived of and directed the project, secured funding, and actively
855 wrote the manuscript.

856

857 **ACKNOWLEDGMENTS**

858 We would like to thank Dr. Daniel G. Tenen for providing us with *Cebpa* mutant mice.
859 The super-computing resource was provided by The Human Genome Center, The
860 Institute of Medical Science, The University of Tokyo. This work was supported in part
861 by Grants-in-Aid for Scientific Research (#19H05653, #20K08728) and Scientific
862 Research on Innovative Area “Replication of Non-Genomic Codes” (#19H05746) from
863 Japanese Society for the Promotion of Science (JSPS), Japan, and Moonshot project
864 (#21zf0127003h0001) from AMED, Japan

865

866 **Disclosures:** The authors declare no competing financial interests.

867

868 REFERENCES

869

870 Almeida, M., Pintacuda, G., Masui, O., Koseki, Y., Gdula, M., Cerase, A., Brown, D.,
871 Mould, A., Innocent, C., Nakayama, M., Schermelleh, L., Nesterova, T. B., Koseki,
872 H., & Brockdorff, N. (2017). PCGF3/5-PRC1 initiates Polycomb recruitment in X
873 chromosome inactivation. *Science*, 356(6342), 1081-1084.

874 <https://doi.org/10.1126/science.aal2512>

875 Andricovich, J., Kai, Y., Peng, W., Foudi, A., & Tzatsos, A. (2016). Histone demethylase
876 KDM2B regulates lineage commitment in normal and malignant hematopoiesis. *J*
877 *Clin Invest*, 126(3), 905-920. <https://doi.org/10.1172/JCI84014>

878 Aoyama, K., Oshima, M., Koide, S., Suzuki, E., Mochizuki-Kashio, M., Kato, Y., Tara,
879 S., Shinoda, D., Hiura, N., Nakajima-Takagi, Y., Sashida, G., & Iwama, A. (2018).
880 Ezh1 Targets Bivalent Genes to Maintain Self-Renewing Stem Cells in Ezh2-
881 Insufficient Myelodysplastic Syndrome. *iScience*, 9, 161-174.

882 <https://doi.org/10.1016/j.isci.2018.10.008>

883 Avellino, R., & Delwel, R. (2017). Expression and regulation of C/EBP α in normal
884 myelopoiesis and in malignant transformation. *Blood*, 129(15), 2083-2091.

885 <https://doi.org/10.1182/blood-2016-09-687822>

886 Banerjee Mustafi, S., Chakraborty, P. K., Dwivedi, S. K., Ding, K., Moxley, K. M.,
887 Mukherjee, P., & Bhattacharya, R. (2017). BMI1, a new target of CK2 α . *Mol Cancer*,
888 16(1), 56. <https://doi.org/10.1186/s12943-017-0617-8>

889 Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B.,
890 Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber,
891 S. L., & Lander, E. S. (2006). A bivalent chromatin structure marks key

892 developmental genes in embryonic stem cells. *Cell*, 125(2), 315-326.

893 <https://doi.org/10.1016/j.cell.2006.02.041>

894 Blackledge, N. P., Farcas, A. M., Kondo, T., King, H. W., McGouran, J. F., Hanssen, L.

895 L. P., Ito, S., Cooper, S., Kondo, K., Koseki, Y., Ishikura, T., Long, H. K., Sheahan,

896 T. W., Brockdorff, N., Kessler, B. M., Koseki, H., & Klose, R. J. (2014). Variant

897 PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and

898 polycomb domain formation. *Cell*, 157(6), 1445-1459.

899 <https://doi.org/10.1016/j.cell.2014.05.004>

900 Blackledge, N. P., Rose, N. R., & Klose, R. J. (2015). Targeting Polycomb systems to

901 regulate gene expression: modifications to a complex story. *Nat Rev Mol Cell Biol*,

902 16(11), 643-649. <https://doi.org/10.1038/nrm4067>

903 Brown, A. L., Wilkinson, C. R., Waterman, S. R., Kok, C. H., Salerno, D. G., Diakiw, S.

904 M., Reynolds, B., Scott, H. S., Tsykin, A., Glonek, G. F., Goodall, G. J., Solomon, P.

905 J., Gonda, T. J., & D'Andrea, R. J. (2006). Genetic regulators of myelopoiesis and

906 leukemic signaling identified by gene profiling and linear modeling. *J Leukoc Biol*,

907 80(2), 433-447. <https://doi.org/10.1189/jlb.0206112>

908 Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti,

909 R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated Single-Cell Analysis Maps

910 the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. *Cell*,

911 173(6), 1535-1548.e1516. <https://doi.org/10.1016/j.cell.2018.03.074>

912 Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M.,

913 Reth, M., Höfer, T., & Rodewald, H. R. (2015). Fundamental properties of

914 unperturbed haematopoiesis from stem cells in vivo. *Nature*, 518(7540), 542-546.

915 <https://doi.org/10.1038/nature14242>

916 Chiba, Y., Mizoguchi, I., Hasegawa, H., Ohashi, M., Orii, N., Nagai, T., Sugahara, M.,
917 Miyamoto, Y., Xu, M., Owaki, T., & Yoshimoto, T. (2018). Regulation of
918 myelopoiesis by proinflammatory cytokines in infectious diseases. *Cell Mol Life Sci*,
919 75(8), 1363-1376. <https://doi.org/10.1007/s00018-017-2724-5>

920 D'Alo', F., Johansen, L. M., Nelson, E. A., Radomska, H. S., Evans, E. K., Zhang, P.,
921 Nerlov, C., & Tenen, D. G. (2003). The amino terminal and E2F interaction domains
922 are critical for C/EBP alpha-mediated induction of granulopoietic development of
923 hematopoietic cells. *Blood*, 102(9), 3163-3171. <https://doi.org/10.1182/blood-2003-02-0479>

925 de Pooter, R. F., & Kee, B. L. (2010). E proteins and the regulation of early lymphocyte
926 development. *Immunol Rev*, 238(1), 93-109. <https://doi.org/10.1111/j.1600-065X.2010.00957.x>

928 Farcas, A. M., Blackledge, N. P., Sudbery, I., Long, H. K., McGouran, J. F., Rose, N. R.,
929 Lee, S., Sims, D., Cerase, A., Sheahan, T. W., Koseki, H., Brockdorff, N., Ponting, C.
930 P., Kessler, B. M., & Klose, R. J. (2012). KDM2B links the Polycomb Repressive
931 Complex 1 (PRC1) to recognition of CpG islands. *eLife*, 1, e00205.
932 <https://doi.org/10.7554/eLife.00205>

933 Fukuchi, Y., Shibata, F., Ito, M., Goto-Koshino, Y., Sotomaru, Y., Kitamura, T., &
934 Nakajima, H. (2006). Comprehensive analysis of myeloid lineage conversion using
935 mice expressing an inducible form of C/EBP alpha. *EMBO J*, 25(14), 3398-3410.
936 <https://doi.org/10.1038/sj.emboj.7601199>

937 Gao, Z., Zhang, J., Bonasio, R., Strino, F., Sawai, A., Parisi, F., Kluger, Y., & Reinberg,
938 D. (2012). PCGF homologs, CBX proteins, and RYBP define functionally distinct
939 PRC1 family complexes. *Mol Cell*, 45(3), 344-356.

940 <https://doi.org/10.1016/j.molcel.2012.01.002>

941 Gery, S., Gombart, A. F., Yi, W. S., Koeffler, C., Hofmann, W. K., & Koeffler, H. P. (2005).

942 Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in

943 myeloid leukemia. *Blood*, 106(8), 2827-2836. <https://doi.org/10.1182/blood-2005-01-0358>

944

945 He, J., Shen, L., Wan, M., Taranova, O., Wu, H., & Zhang, Y. (2013). Kdm2b maintains

946 murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of

947 developmental genes. *Nat Cell Biol*, 15(4), 373-384. <https://doi.org/10.1038/ncb2702>

948 Héault, A., Binnewies, M., Leong, S., Calero-Nieto, F. J., Zhang, S. Y., Kang, Y. A., Wang,

949 X., Pietras, E. M., Chu, S. H., Barry-Holson, K., Armstrong, S., Göttgens, B., &

950 Passegue, E. (2017). Myeloid progenitor cluster formation drives emergency and

951 leukaemic myelopoiesis. *Nature*, 544(7648), 53-58.

952 <https://doi.org/10.1038/nature21693>

953 Higa, K. C., Goodspeed, A., Chavez, J. S., De Dominicis, M., Danis, E., Zaberezhnyy, V.,

954 Rabe, J. L., Tenen, D. G., Pietras, E. M., & DeGregori, J. (2021). Chronic interleukin-

955 1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic

956 progenitors. *J Exp Med*, 218(6). <https://doi.org/10.1084/jem.20200560>

957 Ishida, S., Huang, E., Zuzan, H., Spang, R., Leone, G., West, M., & Nevins, J. R. (2001).

958 Role for E2F in control of both DNA replication and mitotic functions as revealed

959 from DNA microarray analysis. *Mol Cell Biol*, 21(14), 4684-4699.

960 <https://doi.org/10.1128/MCB.21.14.4684-4699.2001>

961 Isshiki, Y., & Iwama, A. (2018). Emerging role of noncanonical polycomb repressive

962 complexes in normal and malignant hematopoiesis. *Exp Hematol*, 68, 10-14.

963 <https://doi.org/10.1016/j.exphem.2018.10.008>

964 Isshiki, Y., Nakajima-Takagi, Y., Oshima, M., Aoyama, K., Rizk, M., Kurosawa, S.,
965 Saraya, A., Kondo, T., Sakaida, E., Nakaseko, C., Yokote, K., Koseki, H., & Iwama,
966 A. (2019). KDM2B in polycomb repressive complex 1.1 functions as a tumor
967 suppressor in the initiation of T-cell leukemogenesis. *Blood Adv*, 3(17), 2537-2549.
968 <https://doi.org/10.1182/bloodadvances.2018028522>

969 Iwama, A. (2017). Polycomb repressive complexes in hematological malignancies. *Blood*,
970 130(1), 23-29. <https://doi.org/10.1182/blood-2017-02-739490>

971 Iwama, A., Oguro, H., Negishi, M., Kato, Y., Morita, Y., Tsukui, H., Ema, H., Kamijo, T.,
972 Katoh-Fukui, Y., Koseki, H., van Lohuizen, M., & Nakauchi, H. (2004). Enhanced
973 self-renewal of hematopoietic stem cells mediated by the polycomb gene product
974 Bmi-1. *Immunity*, 21(6), 843-851. <https://doi.org/10.1016/j.jimmuni.2004.11.004>

975 Kawamoto, T. (2003). Use of a new adhesive film for the preparation of multi-purpose
976 fresh-frozen sections from hard tissues, whole-animals, insects and plants. *Arch
977 Histol Cytol*, 66(2), 123-143. <https://doi.org/10.1679/aohc.66.123>

978 Ku, M., Koche, R. P., Rheinbay, E., Mendenhall, E. M., Endoh, M., Mikkelsen, T. S.,
979 Presser, A., Nusbaum, C., Xie, X., Chi, A. S., Adli, M., Kasif, S., Ptaszek, L. M.,
980 Cowan, C. A., Lander, E. S., Koseki, H., & Bernstein, B. E. (2008). Genomewide
981 analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains.
982 *PLoS Genet*, 4(10), e1000242. <https://doi.org/10.1371/journal.pgen.1000242>

983 Kubosaki, A., Lindgren, G., Tagami, M., Simon, C., Tomaru, Y., Miura, H., Suzuki, T.,
984 Arner, E., Forrest, A. R., Irvine, K. M., Schroder, K., Hasegawa, Y., Kanamori-
985 Katayama, M., Rehli, M., Hume, D. A., Kawai, J., Suzuki, M., Suzuki, H., &
986 Hayashizaki, Y. (2010). The combination of gene perturbation assay and ChIP-chip
987 reveals functional direct target genes for IRF8 in THP-1 cells. *Mol Immunol*, 47(14),

988 2295-2302. <https://doi.org/10.1016/j.molimm.2010.05.289>

989 Liu, Y., Liu, F., Yu, H., Zhao, X., Sashida, G., Deblasio, A., Harr, M., She, Q. B., Chen,
990 Z., Lin, H. K., Di Giandomenico, S., Elf, S. E., Yang, Y., Miyata, Y., Huang, G.,
991 Menendez, S., Mellinghoff, I. K., Rosen, N., Pandolfi, P. P., . . . Nimer, S. D. (2012).
992 Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the
993 tumor-suppressing ink4a-arf locus. *Sci Signal*, 5(247), ra77.
994 <https://doi.org/10.1126/scisignal.2003199>

995 Loke, J., Chin, P. S., Keane, P., Pickin, A., Assi, S. A., Ptasinska, A., Imperato, M. R.,
996 Cockerill, P. N., & Bonifer, C. (2018). C/EBP α overrides epigenetic reprogramming
997 by oncogenic transcription factors in acute myeloid leukemia. *Blood Adv*, 2(3), 271-
998 284. <https://doi.org/10.1182/bloodadvances.2017012781>

999 Manz, M. G., & Boettcher, S. (2014). Emergency granulopoiesis. *Nat Rev Immunol*, 14(5),
1000 302-314. <https://doi.org/10.1038/nri3660>

1001 Masuda, K., Kubagawa, H., Ikawa, T., Chen, C. C., Kakugawa, K., Hattori, M.,
1002 Kageyama, R., Cooper, M. D., Minato, N., Katsura, Y., & Kawamoto, H. (2005).
1003 Prethymic T-cell development defined by the expression of paired immunoglobulin-
1004 like receptors. *EMBO J*, 24(23), 4052-4060.
1005 <https://doi.org/10.1038/sj.emboj.7600878>

1006 Murakami, K., Sasaki, H., Nishiyama, A., Kurotaki, D., Kawase, W., Ban, T.,
1007 Nakabayashi, J., Kanzaki, S., Sekita, Y., Nakajima, H., Ozato, K., Kimura, T., &
1008 Tamura, T. (2021). A RUNX-CBF β -driven enhancer directs the Irf8 dose-dependent
1009 lineage choice between DCs and monocytes. *Nat Immunol*, 22(3), 301-311.
1010 <https://doi.org/10.1038/s41590-021-00871-y>

1011 Nacerddine, K., Beaudry, J. B., Gnjala, V., Westerman, B., Mattioli, F., Song, J. Y., van

1012 der Poel, H., Ponz, O. B., Pritchard, C., Cornelissen-Steijger, P., Zevenhoven, J.,
1013 Tanger, E., Sixma, T. K., Ganesan, S., & van Lohuizen, M. (2012). Akt-mediated
1014 phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and
1015 DNA damage repair activity in mouse prostate cancer. *J Clin Invest*, 122(5), 1920-
1016 1932. <https://doi.org/10.1172/JCI57477>

1017 Nestorowa, S., Hamey, F. K., Pijuan Sala, B., Diamanti, E., Shepherd, M., Laurenti, E.,
1018 Wilson, N. K., Kent, D. G., & Göttgens, B. (2016). A single-cell resolution map of
1019 mouse hematopoietic stem and progenitor cell differentiation. *Blood*, 128(8), e20-31.
1020 <https://doi.org/10.1182/blood-2016-05-716480>

1021 Oguro, H., Iwama, A., Morita, Y., Kamijo, T., van Lohuizen, M., & Nakauchi, H. (2006).
1022 Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone
1023 marrow microenvironment in Bmi1-deficient mice. *J Exp Med*, 203(10), 2247-2253.
1024 <https://doi.org/10.1084/jem.20052477>

1025 Oguro, H., Yuan, J., Ichikawa, H., Ikawa, T., Yamazaki, S., Kawamoto, H., Nakauchi, H.,
1026 & Iwama, A. (2010). Poised lineage specification in multipotential hematopoietic
1027 stem and progenitor cells by the polycomb protein Bmi1. *Cell Stem Cell*, 6(3), 279-
1028 286. <https://doi.org/10.1016/j.stem.2010.01.005>

1029 Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S.
1030 J., & Clarke, M. F. (2003). Bmi-1 is required for maintenance of adult self-renewing
1031 haematopoietic stem cells. *Nature*, 423(6937), 302-305.
1032 <https://doi.org/10.1038/nature01587>

1033 Pietras, E. M., Mirantes-Barbeito, C., Fong, S., Loeffler, D., Kovtonyuk, L. V., Zhang, S.,
1034 Lakshminarasimhan, R., Chin, C. P., Techner, J. M., Will, B., Nerlov, C., Steidl, U.,
1035 Manz, M. G., Schroeder, T., & Passegué, E. (2016). Chronic interleukin-1 exposure

1036 drives haematopoietic stem cells towards precocious myeloid differentiation at the
1037 expense of self-renewal. *Nat Cell Biol*, 18(6), 607-618.
1038 <https://doi.org/10.1038/ncb3346>

1039 Pietras, E. M., Reynaud, D., Kang, Y. A., Carlin, D., Calero-Nieto, F. J., Leavitt, A. D.,
1040 Stuart, J. M., Göttgens, B., & Passegue, E. (2015). Functionally Distinct Subsets of
1041 Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and
1042 Regenerative Conditions. *Cell Stem Cell*, 17(1), 35-46.
1043 <https://doi.org/10.1016/j.stem.2015.05.003>

1044 Piunti, A., & Shilatifard, A. (2021). The roles of Polycomb repressive complexes in
1045 mammalian development and cancer. *Nat Rev Mol Cell Biol*, 22(5), 326-345.
1046 <https://doi.org/10.1038/s41580-021-00341-1>

1047 Rosenbauer, F., & Tenen, D. G. (2007). Transcription factors in myeloid development:
1048 balancing differentiation with transformation. *Nat Rev Immunol*, 7(2), 105-117.
1049 <https://doi.org/10.1038/nri2024>

1050 Ross, K., Sedello, A. K., Todd, G. P., Paszkowski-Rogacz, M., Bird, A. W., Ding, L.,
1051 Grinenko, T., Behrens, K., Hubner, N., Mann, M., Waskow, C., Stocking, C., &
1052 Buchholz, F. (2012). Polycomb group ring finger 1 cooperates with Runx1 in
1053 regulating differentiation and self-renewal of hematopoietic cells. *Blood*, 119(18),
1054 4152-4161. <https://doi.org/10.1182/blood-2011-09-382390>

1055 Sashida, G., & Iwama, A. (2012). Epigenetic regulation of hematopoiesis. *Int J Hematol*,
1056 96(4), 405-412. <https://doi.org/10.1007/s12185-012-1183-x>

1057 Sawai, C. M., Babovic, S., Upadhyaya, S., Knapp, D. J. H. F., Lavin, Y., Lau, C. M.,
1058 Goloborodko, A., Feng, J., Fujisaki, J., Ding, L., Mirny, L. A., Merad, M., Eaves, C.
1059 J., & Reizis, B. (2016). Hematopoietic Stem Cells Are the Major Source of

1060 Multilineage Hematopoiesis in Adult Animals. *Immunity*, 45(3), 597-609.

1061 <https://doi.org/10.1016/j.jimmuni.2016.08.007>

1062 Säwen, P., Eldeeb, M., Erlandsson, E., Kristiansen, T. A., Laterza, C., Kokaia, Z.,

1063 Karlsson, G., Yuan, J., Soneji, S., Mandal, P. K., Rossi, D. J., & Bryder, D. (2018).

1064 Murine HSCs contribute actively to native hematopoiesis but with reduced

1065 differentiation capacity upon aging. *Elife*, 7. <https://doi.org/10.7554/eLife.41258>

1066 Shinoda, D., Nakajima-Takagi, Y., Oshima, M., Koide, S., Aoyama, K., Saraya, A.,

1067 Harada, H., Rahmutulla, B., Kaneda, A., Yamaguchi, K., Furukawa, Y., Koseki, H.,

1068 Shimoda, K., Tanaka, T., Sashida, G., & Iwama, A. (2022). Insufficiency of non-

1069 canonical PRC1 synergizes with JAK2V617F in the development of myelofibrosis.

1070 *Leukemia*, 36(2), 452-463. <https://doi.org/10.1038/s41375-021-01402-2>

1071 Shooshtarizadeh, P., Helness, A., Vadnais, C., Brouwer, N., Beauchemin, H., Chen, R.,

1072 Bagci, H., Staal, F. J. T., Coté, J. F., & Möröy, T. (2019). Gfi1b regulates the level of

1073 Wnt/β-catenin signaling in hematopoietic stem cells and megakaryocytes. *Nat*

1074 *Commun*, 10(1), 1270. <https://doi.org/10.1038/s41467-019-09273-z>

1075 Si, S., Nakajima-Takagi, Y., Aoyama, K., Oshima, M., Saraya, A., Sugishita, H.,

1076 Nakayama, M., Ishikura, T., Koseki, H., & Iwama, A. (2016). Loss of Pcgf5 Affects

1077 Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and

1078 Progenitor Cells. *PLoS One*, 11(5), e0154561.

1079 <https://doi.org/10.1371/journal.pone.0154561>

1080 Slomiany, B. A., D'Arigo, K. L., Kelly, M. M., & Kurtz, D. T. (2000). C/EBPalpha inhibits

1081 cell growth via direct repression of E2F-DP-mediated transcription. *Mol Cell Biol*,

1082 20(16), 5986-5997. <https://doi.org/10.1128/MCB.20.16.5986-5997.2000>

1083 Sonntag, R., Giebel, N., Nevzorova, Y. A., Bangen, J. M., Fahrenkamp, D., Lambertz,

1084 D., Haas, U., Hu, W., Gassler, N., Cubero, F. J., Müller-Newen, G., Abdallah, A. T.,
1085 Weiskirchen, R., Ticconi, F., Costa, I. G., Barbacid, M., Trautwein, C., & Liedtke, C.
1086 (2018). Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for
1087 progression of hepatocellular carcinoma. *Proc Natl Acad Sci U S A*, 115(37), 9282-
1088 9287. <https://doi.org/10.1073/pnas.1807155115>

1089 Sun, J., Ramos, A., Chapman, B., Johnnidis, J. B., Le, L., Ho, Y. J., Klein, A., Hofmann,
1090 O., & Camargo, F. D. (2014). Clonal dynamics of native haematopoiesis. *Nature*,
1091 514(7522), 322-327. <https://doi.org/10.1038/nature13824>

1092 Takayama, N., Murison, A., Takayanagi, S. I., Arlidge, C., Zhou, S., Garcia-Prat, L.,
1093 Chan-Seng-Yue, M., Zandi, S., Gan, O. I., Boutzen, H., Kaufmann, K. B., Trotman-
1094 Grant, A., Schoof, E., Kron, K., Díaz, N., Lee, J. J. Y., Medina, T., De Carvalho, D.
1095 D., Taylor, M. D., . . . Lupien, M. (2021). The Transition from Quiescent to Activated
1096 States in Human Hematopoietic Stem Cells Is Governed by Dynamic 3D Genome
1097 Reorganization. *Cell Stem Cell*, 28(3), 488-501.e410.
1098 <https://doi.org/10.1016/j.stem.2020.11.001>

1099 Tara, S., Isshiki, Y., Nakajima-Takagi, Y., Oshima, M., Aoyama, K., Tanaka, T., Shinoda,
1100 D., Koide, S., Saraya, A., Miyagi, S., Manabe, I., Matsui, H., Koseki, H., Bardwell,
1101 V. J., & Iwama, A. (2018). Bcor insufficiency promotes initiation and progression of
1102 myelodysplastic syndrome. *Blood*, 132(23), 2470-2483.
1103 <https://doi.org/10.1182/blood-2018-01-827964>

1104 Trumpp, A., Essers, M., & Wilson, A. (2010). Awakening dormant haematopoietic stem
1105 cells. *Nat Rev Immunol*, 10(3), 201-209. <https://doi.org/10.1038/nri2726>

1106 Voncken, J. W., Niessen, H., Neufeld, B., Rennefahrt, U., Dahlmans, V., Kubben, N.,
1107 Holzer, B., Ludwig, S., & Rapp, U. R. (2005). MAPKAP kinase 3pK phosphorylates

1108 and regulates chromatin association of the polycomb group protein Bmi1. *J Biol*
1109 *Chem*, 280(7), 5178-5187. <https://doi.org/10.1074/jbc.M407155200>

1110 Wang, L., Brown, J. L., Cao, R., Zhang, Y., Kassis, J. A., & Jones, R. S. (2004).
1111 Hierarchical recruitment of polycomb group silencing complexes. *Mol Cell*, 14(5),
1112 637-646. <https://doi.org/10.1016/j.molcel.2004.05.009>

1113 Wang, Y., Krivtsov, A. V., Sinha, A. U., North, T. E., Goessling, W., Feng, Z., Zon, L. I.,
1114 & Armstrong, S. A. (2010). The Wnt/beta-catenin pathway is required for the
1115 development of leukemia stem cells in AML. *Science*, 327(5973), 1650-1653.
1116 <https://doi.org/10.1126/science.1186624>

1117 Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of B cells into
1118 macrophages. *Cell*, 117(5), 663-676. [https://doi.org/10.1016/s0092-8674\(04\)00419-2](https://doi.org/10.1016/s0092-8674(04)00419-2)

1119

1120 Ye, M., Zhang, H., Amabile, G., Yang, H., Staber, P. B., Zhang, P., Levantini, E., Alberich-
1121 Jordà, M., Zhang, J., Kawasaki, A., & Tenen, D. G. (2013). C/EBPa controls
1122 acquisition and maintenance of adult haematopoietic stem cell quiescence. *Nat Cell*
1123 *Biol*, 15(4), 385-394. <https://doi.org/10.1038/ncb2698>

1124 Zhang, D. E., Zhang, P., Wang, N. D., Hetherington, C. J., Darlington, G. J., & Tenen, D.
1125 G. (1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil
1126 development in CCAAT enhancer binding protein alpha-deficient mice. *Proc Natl*
1127 *Acad Sci U S A*, 94(2), 569-574. <https://doi.org/10.1073/pnas.94.2.569>

1128 Zhang, P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M. L., Dayaram, T., Owens, B. M.,
1129 Shigematsu, H., Levantini, E., Huettner, C. S., Lekstrom-Himes, J. A., Akashi, K., &
1130 Tenen, D. G. (2004). Enhancement of hematopoietic stem cell repopulating capacity
1131 and self-renewal in the absence of the transcription factor C/EBP alpha. *Immunity*,

1132 21(6), 853-863. <https://doi.org/10.1016/j.immuni.2004.11.006>

1133 Zhao, J. L., & Baltimore, D. (2015). Regulation of stress-induced hematopoiesis. *Curr*
1134 *Opin Hematol*, 22(4), 286-292. <https://doi.org/10.1097/MOH.0000000000000149>

1135