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Abstract 
Each human genome has tens of thousands of rare genetic variants; however, identifying 
impactful rare variants remains a major challenge. We demonstrate how use of personal 
multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic 
Study of Atherosclerosis (MESA) which included several hundred individuals with whole 
genome sequencing, transcriptomes, methylomes, and proteomes collected across two time 
points, ten years apart. We evaluated each multi-omic phenotype’s ability to separately and 
jointly inform functional rare variation. By combining expression and protein data, we 
observed rare stop variants 62x and rare frameshift variants 216x as frequently as 
controls, compared to 13x to 27x for expression or protein effects alone. We developed a 
Bayesian hierarchical model to prioritize specific rare variants underlying multi-omic 
signals across the regulatory cascade. With this approach, we identified rare variants that 
exhibited large effect sizes on multiple complex traits including height, schizophrenia, and 
Alzheimer’s disease.  
 
 
Introduction 
There are thousands of rare (minor allele frequency; MAF < 1%) genetic variants in every 
human genome but determining which, if any, exert a significant phenotypic effect remains 
challenging. Prior work has demonstrated the use of transcriptome data in prioritizing rare 
variants with both large molecular and phenotypic effects1,2. However, rare variants have 
the potential to influence additional regulatory mechanisms beyond transcription, such as 
DNA methylation and protein expression, and integrating corresponding functional 
genomics data can allow for more comprehensive detection of impactful rare variants and 
understanding of their roles in the regulation of gene function. 
 
The ability of transcriptome data to enhance prioritization of rare variants with effects on 
diseases and traits3 is presumably due to those effects propagating through the regulatory 
cascade to protein levels and cellular functions. Prior work has shown that common 
variants associated with changes in gene expression can have effects on ribosome and 
protein levels, though those effects are significantly reduced at the protein level4,5. We and 
others have also shown that common variants can be associated with changes in protein 
abundance, yet not show any impact at the mRNA level, indicating the effects of post-
translational regulation, in addition to the substantial effects of post-transcriptional and 
protein degradation regulation4–6. In particular, the plasma proteome contains proteins 
generated from many different cell types, leading to its regular use as a source for 
biomarker discovery6,7; therefore, understanding how rare genetic variation impacts 
protein abundance in samples such as plasma may help identify impactful rare variants 
from tissues that are more challenging to transcriptome-sequence8.  
 
In this study, we expand the assessment of impactful rare variation to integrate molecular 
signatures across the regulatory cascade. We analyzed measurements of DNA methylation 
from whole blood, RNA-sequencing from peripheral blood mononuclear cells (PBMCs), and 
plasma proteome abundance from a multi-ethnic cohort of ~900 individuals with data 
from two time points, ten years apart, and assessed the ability of each measurement to 
prioritize nearby rare variation. Notably, we observed that the longitudinal design of these 
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data provided robust outlier measurements per individual per data modality. We 
subsequently integrated these diverse functional signals into a predictive model to assign 
probabilities to individual rare variants leading to functional effects at various levels of the 
regulatory cascade. Finally, we demonstrated the utility of these predicted functional 
probabilities in prioritizing variants with large effects on downstream traits and diseases. 
 
 
Results 
Consistency of outlier measurements across time 
Assessing the correlation of multi-omic measurements across between ten-year timepoints 
of collection, plasma proteome measurements exhibited the highest correlation (R = 0.64), 
followed by expression (R = 0.27), gene-level methylation (R = 0.20), and gene-level 
splicing (R = 0.07) (Figure S1). We then assessed replication across time for the subset of 
measurements at the extremes of the distribution ("outliers") for each gene-level outlier 
type. We refer to those instances for gene expression as "eOutliers", methylation as 
"mOutliers", splicing as “sOutliers”, and protein as "pOutliers". After identifying outliers in 
exam 1, based on an individual’s deviation from the mean for a given gene (Z-score), we 
assessed the proportion that also had measurements at least two standard deviations from 
the mean in exam 5. Across thresholds, we observed the highest replication for pOutliers 
(range = [0.34 - 0.89]), followed by mOutliers (range = [0.18 - 0.82]), eOutliers (range = 
[0.12 - 0.85]), and then sOutliers (range = [0.07,0.22]). When focusing on the subset of 
eOutliers with negative Z-scores and thus very low expression, we saw the replication rate 
across time increased with threshold stringency (Figure 1A), eventually surpassing all 
other replication rates when the measurements were over ~6 standard deviations below 
the mean (Z < -6), at which point 79% of exam 1 eOutliers were also seen in exam 5. This is 
in line with prior work demonstrating that under-expression outliers are more often 
associated with rare variants, and thus likely more often genetically-driven than over-
expression outliers1,2. In order to focus on robust and more likely genetically-driven outlier 
events, we took advantage of the longitudinal study design and required an outlier effect to 
be seen in both time points in subsequent analyses ("joint outliers”). For joint outliers, we 
observed an average of 12.5 eOutliers, 1.2 gene-level mOutliers (472 CpG-level mOutliers), 
4.8 sOutliers (9.9 sOutlier clusters), and 8.3 pOutliers per individual (Figure 1B).  
 
We assessed the relative proportion of joint outlier events for each omics data type. 
Restricting to individuals with data in both time points, we assessed 14,290 genes across 
547 individuals for eOutliers, 19,919 genes across 785 individuals for mOutliers, 8,211 
genes across 564 individuals for sOutliers, and 1,317 proteins across 876 individuals for 
pOutliers. Looking at the proportion of tests that resulted in joint outliers at a threshold of 
|Z| > 3, we found the highest proportion for pOutliers, followed by eOutliers (Figure 1C). 
Overall, the set of pOutliers contained many more high abundance outliers compared to 
low abundance outliers, while the proportions in either direction were more comparable 
for eOutliers and mOutliers. This could reflect the dynamic range of the protein 
measurements, as previous work has found the range of protein abundances detectable to 
be higher than that of mRNA transcripts9, and there is no strict upper bound for high 
abundance outliers, while detected protein abundances can only decrease to 0. We further 
found that the number of high and low abundance pOutliers discovered varies by protein 
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type (Figure S2A) or inferred tissue of origin (Figure S2B) and observed that classes of 
proteins with higher base expression tended to have more low abundance pOutlier 
individuals than the set of all proteins and vice versa (Figure S2C-D).  
 
Outlier sharing across the regulatory cascade 
While each data type was measured in different biospecimens, with DNA methylation from 
whole blood, expression data from peripheral blood mononuclear cells (PBMCs), and 
protein measurements from plasma, we assessed the sharing of outlier signals across each 
omics data type, as rare variant effects can manifest across multiple tissues1,2. For the set of 
joint outliers identified in each data type at a threshold of |Z| > 3, we assessed the mean Z-
scores across exams in all other gene-level data types. For under-eOutlier individuals, there 
were significant shifts in corresponding methylation (p = 1.5e-15, one-sided Wilcoxon rank 
sum test), splicing (p < 2.2e-16), and protein (p = 5.1e-14) Z-scores. For over-eOutlier 
individuals, there were significant shifts in methylation (p < 2.2e-16) and splicing (p = 2.5e-
5) Z-scores for over-eOutliers (Figure 2A). For gene-level mOutlier and sOutlier individuals, 
there was a significant increase in the corresponding expression Z-scores (p = 2.8e-13 and 
p < 2.2e-16, respectively). For low abundance pOutlier individuals, there was a 
corresponding significant shift in expression values (p = 1.1e-11), though this is not the 
case for high abundance pOutlier individuals. 
 
For eOutliers, the highest degree of sharing was seen at the protein level. Of 485 eOutliers 
(|Z| > 3 in both exams) identified in genes and individuals that also had protein 
measurements, we found that 12% of those (N = 58) were shared at the protein level, with 
29.3% (N = 17) of those being high abundance pOutliers. For all other gene-level outlier 
types (mOutliers, sOutliers, and pOutliers), the highest degree of sharing was seen at the 
expression level, with 18.2%, 8.9%, and 3.7% of mOutliers, sOutliers, and pOutliers, 
respectively (Figure S3A). Considering only under-eOutliers, 20.8% of those showed outlier 
protein levels and for low abundance pOutliers, 15.1% also had outlier expression levels 
(Figure S3B). Overall, eOutliers had the strongest shift in values for other functional 
measurements and best captured outlier signals across all other data types, particularly 
when the outlier effect led to very low expression, indicating that the transcriptome best 
captured effects that propagated throughout the regulatory cascade, though any one 
individual measurement will also miss some potentially abnormal function. 
 
Rare variants contribute to outlier effects across multi-omics data types 
We expect rare variants to contribute substantially to the observed outlier effects, as has 
been thoroughly demonstrated for transcriptome outliers2 and investigated for 
methylation10,11 and protein levels12. As we have multiple -omics measurements for the 
same individuals across this cohort, and observed that a proportion of outlier effects are 
shared between molecular phenotypes, we sought to assess the degree to which rare 
variation contributed to each gene-level outlier signal and the benefit of collecting multiple 
-omics measurements for rare variant interpretation.  
 
Considering each of the four gene-level outlier types individually, we observed the 
strongest enrichment for mOutliers, which carried rare variants in the outlier gene body or 
within 10kb between 1.11x to 1.55x as frequently as non-outliers, depending on threshold 
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stringency. This was followed by eOutliers (relative risk = [1.10 - 1.29]), sOutliers (relative 
risk = [1.02 - 1.26]) and pOutliers (relative risk = [1.03 - 1.06]), considering rare variants 
within the same 10kb-window. pOutliers had the smallest enrichment despite having 
highest replication across exams, though a recent study looking at common variants 
impacting plasma proteome (pQTLs) reported ~60% of proteins had only trans-pQTLs 
(>500kb from target), suggesting that impactful rare variants may be more often located in 
trans. For joint CpG-level mOutliers, they were strongly enriched for carrying nearby rare 
variants across windows that ranged from 100bp (relative risk = 52.9, p < 2.2e-16) to 1kb 
(relative risk = 5.84, p < 2.2e-16) around the site. These enrichments remained significant 
but were largely driven by instances where rare variants overlapped the CpG site itself 
(Figure S4A-B). As a further signature of a rare variant effects, CpG-level mOutliers also 
showed a significant increase in allele-specific expression in a 1kb window around outlier 
sites (Figure S4C).  
 
Previous studies have observed stronger rare variant enrichments for under-eOutliers 
compared to over-eOutliers2. For expression, we observed similar patterns (relative risk = 
[1.12 - 1.37] for under-eOutliers and [1.10 - 1.24] for over-eOutliers). This observation also 
held for other omics data types included in our study. When splitting by the direction of the 
effect for methylation, hypo-methylated mOutliers (relative risk = [1.13 - 1.73]) showed 
stronger enrichments than hyper-methylated mOutliers (relative risk = [1.13 - 1.29]). 
Likewise, for pOutliers we observed higher enrichment for under-outliers (relative risk = 
[1.19 - 1.34]) compared to over-outliers (relative risk = [0.99 - 1.02]). Notably, high 
abundance pOutliers were not significantly enriched for nearby rare variation at any 
threshold above |Z| > 2 (relative risk = 1.02, p = 1.54e-3) (Figure 3A). This lack of 
enrichment was not entirely due to the restricted set of genes assayed for protein 
abundance as restricting the set of eOutliers to the genes also assayed at the protein level, 
they were still significantly enriched for nearby rare variants in the over-expression 
direction at thresholds of |Z| > 2 (relative risk = 1.10, p = 1.97e-8) and |Z| > 3 (relative risk 
= 1.11, p = 0.013; Figure S5).  
 
We next evaluated if different categories of rare variants contributed to observed 
enrichments in each omics data type. Considering different predicted effects across 
variants, eOutliers were most strongly enriched for nearby rare stop and frameshift 
variants, as expected based on previous work2, while sOutliers were most strongly 
enriched for nearby rare splice variants, with strong enrichments also for rare stop and 
frameshift variants. For gene-level mOutliers, most variant categories were not 
significantly enriched, but rare variants nearby the associated gene’s transcription start 
site (TSS) were seen 5.49x (p < 2.2e-16) as frequently in mOutlier individuals as compared 
to controls (Figure 3B). While the combined set of pOutliers were largely not enriched for 
nearby rare variants overall, there was strong enrichments for nearby rare stop (relative 
risk = 21.7, p < 2.2e-16) and frameshift (relative risk = 24.4, p < 2.2e-16) variants, though 
this was predominantly driven by under-expression pOutliers (Figure S6). 
 
Multi-omics outliers increase discovery of rare variant effects 
As expression outliers best captured outlier signals in other data types (Figure 2; Figure 
S3), we assessed the gain in rare variant enrichments when considering eOutliers in 
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conjunction with outliers for each of the other data types. While for many types of variants, 
eOutliers alone tagged functional rare variants at a similar frequency to the set of 
multimodal outliers, there was a subset of variant types for which multi-omics data 
improved functional rare variant identification (Figure 3C). Most notably, the set of gene-
individual pairs that showed outlier signal at both the expression and protein level are 
more strongly enriched for nearby rare conserved non-coding, protein-domain, splice, stop, 
and frameshift variants as compared to the set of eOutliers or pOutliers identified alone in 
the same set of genes and individuals. When considering both expression and methylation 
signal, there was an improvement in enrichment for nearby rare TSS variants over either 
data type alone, and for overlapping expression and splicing signal, the enrichment of 
nearby rare conserved non-coding variants and rare splice and stop variants were all 
increased (Figure 3C), indicating that for specific variant effects, assessing multiple 
molecular signals can improve identification of functional rare variants. 
 
In practice, it may be difficult to collect both multiple ‘omics measurements from an 
individual as well as data across multiple time points. While we are limited by the relatively 
smaller number of proteins assayed as compared to gene expression measurements, we 
assessed the relative gain in enrichments considering both expression and protein outliers 
identified from only a single time point as compared to outlier effects seen in each specific 
omics data type measured at two time points. While the set of overlapping eOutliers and 
pOutliers at a single time point is small (n = 72 at a threshold of |Z| > 3), we do see 
increased enrichment of nearby rare variation (relative risk = 1.37, p = 1.71e-4) over either 
joint eOutliers (relative risk = 1.23, p < 2.2e-16) or joint pOutliers (relative risk = 1.06, p = 
1.72e-9) at that same threshold or higher (Figure S7). This indicates that multi-omics 
measurements are providing enhanced ability to detect rare variant-driven outliers 
compared to repeated measures of a specific omics data type.  
 
Replication of GTEx outlier-associated rare variants 
Our previous work identified rare variants associated with multi-tissue transcriptome 
outliers in the Genotype Tissue Expression project (GTEx)2, which consisted primarily of 
individuals of European ancestry. Here, we observed significant correlation between 
individual outlier burden and genotype principal components (PCs), which decreased at 
increasing outlier thresholds (Figure S8). Notably, we saw little difference in rare variant 
enrichment estimates after matching each outlier individual to a control individual by 
ancestry, as measured by genotype PCs (Figure S9), and thus did not observe evidence of 
differences in genetic ancestry driving the observed enrichment of rare variants nearby 
any outlier type. Next, we evaluated the proportion of those GTEx variants that are carried 
by any individual in MESA and exhibit consistent effects on gene expression and splicing. 
For eOutliers, we identified 1348 multi-tissue eOutlier-associated variants in GTEx that 
were present in any MESA individual and occurred at <1% frequency across MESA, which 
totaled 5604 total variant-gene-individual instances (Figure S10A). Of these, 888 also 
showed outlier expression in MESA, at a reduced threshold of |Z| > 2 in both exams 
(q<0.01; Figure S10B). We found that rare stop variants are most predictive of replicating 
expression effects, followed by rare splice variants (Figure S10C).  For sOutliers, we 
identified 1113 multi-tissue sOutlier-associated variants in GTEx that were present in any 
MESA individual, which totaled 5858 total variant-gene-individual instances (Figure S11A). 
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Of these, 891 also showed outlier splicing in MESA, at a reduced threshold of |Z| > 2 in both 
exams (q<0.01; Figure S11B). We observed that rare splice variants are most predictive of 
replicating outlier splicing effects (Figure S11C).  
 
Development and evaluation of multi-omic rare variant prediction model 
To leverage the full spectrum of data available in MESA to prioritize functional rare 
variants, we extended our Bayesian hierarchical variant effect prediction model, 
Watershed2. Briefly, Watershed integrates genomic annotations such as conservation 
scores and variant annotations with observed outlier signals from functional data in a 
latent variable model originally developed for transcriptomic outliers. Here, we extended 
Watershed to include mRNA expression, methylation, splicing, and protein expression 
(Figure S12A). When evaluated against pairs of individuals with the same rare variant 
nearby the same gene (N2 pair), the multi-omic Watershed model outperformed logistic 
regression models based on genomic annotations alone (GAM) in predicting the regulatory 
status of one individual in the pair based on the genomic annotations and observed outlier 
status in the other, achieving an area under the precision-recall curve between 0.07 and 
0.11 across the four omics data types (Figure 4A), compared to 0.02 to 0.06 for GAM.  
 
Examining the learned parameters of the multi-omic Watershed model, we observed higher 
edge weights connecting RNA and methylation, and RNA and splicing signals, compared to 
those connecting protein and other signals, suggesting varying levels of information 
sharing between signals in modeling rare variant effects (Figure 4B). Consequently, multi-
omic Watershed model outperformed corresponding RIVER models, which were trained on 
single omic data types at a time, due to information sharing (Figure S12B). The learned 
weights contributed by each genomic features also reflect known regulatory biology, with 
distance-based features being highly informative for RNA and methylation outlier signals, 
splicing annotations most predictive of splicing outlier signal, and missense and loss-of-
function annotations most predictive of protein outlier signals (Figure 4C). These results 
indicate that our multi-omic Watershed model captures biological signals underlying rare 
variants’ effect on outlier expression across aspects of the regulatory cascade to jointly 
prioritize functional rare variants.  
 
Given that we observed little difference in the enrichment of rare variant burden when 
considering all individuals or matching by ancestry within MESA (see Methods), we sought 
to assess portability of the multi-omic Watershed model across ancestries. We estimated 
genetic ancestry based on the Human Genome Diversity Panel (HGDP) with seven super 
populations13 and assigned population groups by thresholding the proportion of ancestry 
estimates (Figure S13). We then trained multi-omic Watershed model using data from N = 
426 individuals assigned to European ancestry and evaluated its performance on N2 pair 
individuals from other populations. We observed comparable predictive performance in 
terms of area under the precision-recall curve assessment across these populations (Figure 
S14), suggesting that outlier rare variant effects discovered in one population are likely to 
exhibit comparable effects across populations, as expected if we are identifying truly causal 
variants in the absence of significant non-genetic contributions. 
 
Multi-omics prioritized rare variants are prevalent in each individual 
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To assess the individual relevance of the rare variants prioritized by the multi-omic 
Watershed model, we first observed that each individual’s genome had a significant 
number of rare variants with large posteriors in each omics data type, with 11 RNA 
variants, 7 splicing variants, 17 methylation variants, and 52 protein variants with 
posterior >= 0.5 (Figure 5A). Methylation and protein had the highest number of rare 
variants with predicted large effects at posterior threshold of 0.5 and 0.9. Strikingly, 
variants prioritized by different outlier signals were largely non-overlapping (Figure 
S15A), indicating that multi-omic measurements provided complementary information in 
characterizing effects of rare variants inaccessible to one omics data type alone, as also 
supported by the increasing enrichment of nearby rare variants when outlier signals are 
seen at multiple levels. 
 
To further characterize variants prioritized by each omics data type within an individual, 
we extracted the probability of loss of function intolerance (pLI) scores14 for genes mapped 
to variants in each group. Notably, pLI scores were not included as an annotation in the 
Watershed model. We observed that genes with large-effect variants across multiple 
signals tended to have lower pLI scores and thus were more tolerant of damaging 
mutations (Figure S15B). Moreover, when we applied MetaDome15 to systematically map 
Watershed-prioritized variants to protein domains, we found that variants falling within 
homologous meta-domains had higher posteriors in all outlier signals (Figure S15C, p < 
2.2e-16). Overall, these data suggest that multi-omic Watershed posteriors captures 
functional impact of rare variants and provide a strong basis for the application of 
Watershed posteriors to inform trait associations.  
 
Multi-omics prioritized rare variants impact multiple complex traits and diseases 
We sought to test the hypothesis that rare variants with large multi-omics-based 
Watershed posteriors are likely to be causal for traits and diseases. We first focused on 
height, a highly polygenic and heritable trait collected for all individuals in MESA. Based on 
the summary statistics estimated from a separate cohort, UK Biobank, we identified 78,527 
rare variants which overlap with the scored variants in our multi-omic Watershed model 
which maps to 1,314 genes known to cause abnormal body height as catalogued in the 
Human Phenotype Ontology (HPO16). When restricting to variants prioritized by 
Watershed with posterior > 0.5 or > 0.9, we observed higher effect sizes on height as 
compared to background (Figure 5B; Figure S16). The observed higher effect sizes were 
robust to selecting only the top N variants (N = 10 and 100) from each data type separately 
(Figure S17A).  
 
Notably, multi-omics outliers could prioritize Mendelian or large-effect genes. We 
identified a small set of rare variants which were mapped to Mendelian height genes with 
posterior > 0.5 or were among the top 100 highest posteriors in more than one signal 
(Figure 5C, S17B). However, when comparing rare variants prioritized by two signals, we 
found that they had even higher effect sizes compared to those prioritized by single signals, 
which is especially prominent with splicing and protein when combined with another 
signal (Figure 5D, Figure S17C-D). Importantly, the shift in effect size by Watershed 
prioritized variants was also higher than single-omics outliers further stratified by minor 
allele frequency (MAF, Figure S18), suggesting that the functional correlation between 
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Watershed posterior and effects on trait is not solely driven by MAF. These data support 
the utility of collecting multi-omic measurements from the same individuals to improve 
prioritization of functional rare variants with large trait effects that could potentially be 
missed by traditional approaches such as genome-wide association studies (GWAS).  
 
We next assessed whether Watershed prioritized rare variants could be applied to enhance 
gene prioritization for complex traits. We obtained body height data on N = 4,559 MESA 
individuals and after correcting for known covariates, identified those with average body 
height (“control” individuals, residual |Z| < 0.2) and those with the extremes of body height 
(“outlier” individuals, residual |Z| > 2). When comparing the distribution of posteriors for 
all rare variants mapped to each gene between outlier and control individuals, we were 
able to recapitulate known Mendelian height genes (Figure 5E); importantly, different 
signals prioritized different genes, which further highlighted the complementary nature of 
each omic data type. When we combined posteriors across all outlier signals for each 
variant and compared the resulting gene-level p-values with other gene prioritization 
methods based on common variants (MAGMA17), rare coding variants (burden test18), or 
expression quantitative trait loci (PrediXcan19), we found that our approach is largely 
independent (Figure S19), suggesting the unique advantage of incorporating non-coding 
rare variants in a gene prioritization framework.  
 
To demonstrate the utility of multi-omics prioritized rare variants with Watershed to a 
diverse range of traits and diseases, we applied similar analyses to immunological and 
neuropsychiatric traits. Here, we referenced a recent machine learning method that 
systematically characterized causal genes to primarily focus on rare variants impacting 
genes with well-predicted trait relevance20. For rheumatoid arthritis (RA), we identified 
41,339 rare variants with effect size estimates in GWAS and observed that RNA posteriors 
strongly correlated with effect size (median rank normalized effect size = 0.58 for RNA 
posterior prioritized RVs compared to 0.50 for background). We further observed that for 
RA, the protein signal by itself did not prioritize rare variants with large effect size; 
however, it did when combined with RNA or methylation signals (Figure S20A-B). This 
observation held true for COVID-19 severity, another immunological trait (Figure S20C-D). 
For Alzheimer’s disease (AD), methylation outliers were most predictive of effect size, but 
multimodal outliers have much higher impacts (Figure S21A-C). Interestingly, joint under-
expression outliers in RNA and protein signals identified genes with established 
associations with AD, such as PDGFRB21 (rs116171826, rs149274963, and rs10071918), 
PTN22 (rs61735090), and MPO23 (rs35897051), supporting the potential role for our 
prioritized variants in AD pathobiology. For schizophrenia (SCZ), even though we had a 
smaller set of rare variants with effect size estimates (N=2,851), we observed moderate 
effect size for variants prioritized by RNA, methylation, and protein signals and a strong 
shift in splicing prioritized variants (Figure S21D). Notably, in addition to referencing 
external databases for identifying relevant causal genes, we applied MAGMA to prioritize 
genes using GWAS summary statistics. We identified 5,378 genes with MAGMA Z > 2 
(schizophrenia “positive” genes) and 4,092 genes with MAGMA Z < 0 (schizophrenia 
“control” genes), and when we compared rare variants with large Watershed posteriors 
mapped to these two groups of genes, we observed a significant shift in effect size only 
within positive genes. Overall, these analyses demonstrate that the multi-omic Watershed 
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model represents a flexible framework which can be easily integrated into pipelines for 
connecting variants to traits.  
 
 
Discussion 
Rare genetic variants are collectively abundant in the human genome due to recent 
population expansion24,25. They are often population-private, unlike common variants 
which are shared across populations26. Although rare variants have in general larger effects 
and contribute to risk of complex diseases27,28, their abundance may lead to false positive 
associations and thus require careful methods for analysis and interpretation29,30. The 
present study extends efforts to identify large-effect rare variants through analysis of 
functional genomics data1,2,31–35. By integrating longitudinal multi-omic data collected from 
a diverse cohort with matched whole genome sequencing, we identified significant 
enrichment of rare variant burden nearby multi-omic outlier signals across the regulatory 
cascade.  
 
Our study benefited from both multi-omics data generation and a study design including 
functional measurements at two time points approximately ten years apart. We observed 
higher enrichment of rare variant burden in multimodal outliers collected at a single time 
point compared to joint outliers across two visits based on only a single molecular signal, 
which indicates that multi-omic datasets can be more beneficial than collecting the same 
measurement over multiple time points when using those measurements to prioritize 
functional rare variants.  
 
Importantly, we conducted analyses across an ancestrally-diverse cohort, including 
individuals with substantial African, East Asian, European, and American (through the 
inclusion of Hispanic individuals) genetic ancestry, which allows for the evaluation of many 
additional rare variants than would be included in a cohort containing individuals with all 
predominantly European ancestry, as is often the case in genomics research due to the 
over-representation of European populations36–38. We found that rare variant enrichments 
nearby outliers did not change when comparing against all other control individuals as 
opposed to restricting to controls with similar ancestry, as has been done in previous 
studies1,2. We also found that rare variants associated with multi-tissue expression or 
splicing changes in GTEx, which consists predominantly of individuals of European 
ancestry, 15.8% and 15.2% replicated in MESA, which was many more than seen after 
permuting expression and splicing values. The variants discovered in GTEx that are 
associated with similar transcriptomic effects in MESA were enriched for rare stop and 
splice annotations, supporting the use of both genomic annotations and functional signals 
in variant prioritization. 
 
We extended a Bayesian hierarchical variant effect prediction model, Watershed, to 
synthesize genomic annotations with observed outlier status in four omics data types. 
Using multi-omics Watershed, we predicted the functional impact of more than 30 million 
rare variants and observed that each person in MESA harbors a significant number of rare 
variants with large posterior probabilities of functional effect. Using this approach, we 
prioritized multiple novel and known rare variants across common and complex traits and 
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disease including height, Rheumatoid Arthritis, COVID severity, Alzheimer’s Disease and 
Schizophrenia. Further, we demonstrated how integration of this expanded set of 
prioritized rare variants aids detection of causal genes.  
 
Combined, we present a comprehensive survey of rare variants underlying multi-omic 
outlier signals across the regulatory cascade. Using personal multi-omics, our Watershed 
model prioritized rare variants across a broad range of complex traits. These approaches 
further demonstrate a general and flexible framework to prioritize impactful rare variants 
and test for gene associations in diverse population cohorts. 
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Online Methods  
The Multi-Ethnic Study of Atherosclerosis (MESA) 
MESA is a study of the characteristics of subclinical cardiovascular disease (disease 
detected non-invasively before it has produced clinical signs and symptoms) and the risk 
factors that predict progression to clinically overt cardiovascular disease or progression of 
the subclinical disease39. MESA researchers study a diverse, population-based sample of 
6,814 asymptomatic men and women aged 45-84. Thirty-eight percent of the recruited 
participants are white, 28 percent African American, 22 percent Hispanic, and 12 percent 
Asian, predominantly of Chinese descent. Participants were recruited from six field centers 
across the United States: Wake Forest University, Columbia University, Johns Hopkins 
University, University of Minnesota, Northwestern University and University of California - 
Los Angeles. Participants are being followed for identification and characterization of 
cardiovascular disease events, including acute myocardial infarction and other forms of 
coronary heart disease (CHD), stroke, and congestive heart failure; for cardiovascular 
disease interventions; and for mortality. In addition to the six Field Centers, MESA involves 
a Coordinating Center, a Central Laboratory, and Central Reading Centers for Computed 
Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and 
Electrocardiography (ECG). The first examination took place over two years, from July 
2000 - July 2002. It was followed by five examination periods that were 17-20 months in 
length. Participants have been contacted every 9 to 12 months throughout the study to 
assess clinical morbidity and mortality.  
Further, the TOPMed MESA Multi-omics Pilot successfully generated transcriptomic data 
by RNAseq, DNA methylation [850K CpG sites], plasma proteomics by aptamer capture 
(SomaLogic), and untargeted and targeted metabolomics using liquid chromatography/ 
mass spectrometry (LC-MS from the Gerszten/Clish laboratory) in ~1,000 multi-ethnic 
participants sampled at two time points, Exam 1 and Exam 5, approximately 10 years apart. 
These data are being used in this study. 
 
  
Multi-omic data pre-processing 
To identify functional outliers at each time point separately, for three of the four data types 
considered (total gene expression and splicing measured via RNA-sequencing, DNA 
methylation, and plasma proteome abundance), we normalized the initial measurements 
and then corrected for the top 11 genotype principal components, 30 hidden factors 
determined via PEER40, sex, age, and genotype of the strongest QTL per measurement 
within each exam, before scaling to generate Z-scores on which we threshold to identify 
outlier events. For assessing DNA methylation outliers, we removed sites if there exists a 
common SNV that overlap the measurement probe region, and we also removed individual-
site pairs if the individual carries a rare variant in the probe’s target region. To estimate 
methylation at the gene level, we calculate the median methylation Z-score across CpG sites 
for all sites falling between a gene’s TSS and 1.5kb upstream of TSS41. For sOutliers, we 
define clusters of exon-exon junctions by LeafCutter42 from splice junction counts 
measured by STAR43, and identify splicing outlier events using SPOT2 which are collapsed 
to the gene level by taking the minimum p-value across clusters per gene. 
 
Outlier sharing and rare variant enrichment test  
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We defined outlier (gene, individual) pairs in each omics data to have |Z| > 3 in both time 
points (joint outliers), where we also assessed outlier sharing across time points and 
across the regulatory cascade at varying threshold of |Z| (between 2 to 10). For joint 
outliers in each data type, we calculated mean Z-scores across exams, and assessed outlier 
sharing by taking a set of (gene, individual) pairs with |Z| > 3 in one signal and calculated 
proportion of these (gene, individual) pairs in each of the other signals with a relaxed 
threshold |Z| > 2, for the set of genes and individuals with both data types measured. For 
expression, methylation, and protein levels, we also assessed outliers with Z < -3 (under 
outliers) and those with Z > 3 (over outliers) separately. We calculated enrichment as the 
ratio between outlier and control individuals for the proportion of (gene, individuals) with 
rare variants within 10kb window of the gene body, restricting to the same set of genes 
with outlier measurements as before2.  
 
Effects of ancestry on rare variant enrichment 
To assess whether the observed enrichments were impacted by differences in genetic 
ancestry between outlier and non-outlier individuals within each set, even after correcting 
for the top 11 genotype principal components (PCs) before identifying eOutliers, mOutliers, 
and pOutliers, we calculated the correlation between individual outlier burden (the 
number of outliers per data type identified for a single individual) and loadings on 
genotype PC values for all outlier types, across different thresholds for the definition of 
outliers. We further replicated rare variant enrichment tests by matching each outlier 
individual to a non-outlier individual based on closest Euclidean distance defined by the 
top 11 genotype PC values and compared the resulting relative risk estimates with those 
from corresponding tests retaining all non-outlier individuals. 
 
The Multi-omic Watershed model  
To integrate genomic annotation with outlier signals to prioritize rare variants with large 
effects across the regulatory cascade, we extended our Bayesian hierarchical model, 
Watershed, which consists of a layer of genomic annotation variables (G), a fully connected 
layer (Z) of latent regulatory variables for each of the four omic signals (mRNA expression, 
methylation, splicing, and protein expression), and a layer of variables (E) representing the 
observed outlier status of each omics data type. We used as input p-values for each of the 
four signals and for all (gene, individual) pairs with at least two signals measured in MESA, 
along with a set of 77 binary and continuous genomic annotations aggregated across all 
rare variants nearby each gene. Watershed was then trained to learn edge weights 
connecting each variable and estimate posterior probability of each rare variant leading to 
outlier levels of nearby gene for each of the four signals, given genomic annotations and 
observed expression levels P(E|G, Z). As evaluation, we identified pairs of individuals with 
the same set of rare variants nearby the same gene (N2 pair), and asked the Watershed 
model to predict the regulatory status of one individual in the pair based on genomic 
annotations of rare variants and observed outlier status of each omic signal in the other 
individual. We benchmarked the performance of multi-omic Watershed model against 
logistic regression models trained using genomic annotations alone (GAM) and Bayesian 
models based on single outlier signals at a time (RIVER), at the same p-value threshold for 
defining outliers (p < 0.05). We repeated the same analysis when training the model on 
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individuals of European ancestry and evaluating its performance on individuals from other 
ancestries to assess its cross-population portability.  
 
Application of multi-omic Watershed posteriors to trait analysis 
To test the hypothesis that rare variants with large Watershed posteriors are likely to be 
causal for traits through altered expression of nearby genes, we compared Watershed 
posterior probabilities against variant effect sizes estimated from genome-wide association 
studies (GWAS) obtained from independent datasets. For each trait, we considered the set 
of rare variants reported in GWAS summary statistics which were also present in MESA 
and applied rank normalization on effect size for all such rare variants (background). The 
distribution of normalized effect size was then compared across rare variants prioritized 
by Watershed at varying thresholds (0.5 or 0.9), where we focused on variants nearby 
genes with known evidence of being causal for each trait through the Human Phenotype 
Ontology (HPO16) or Open Targets20. Given the differences in posterior distribution in each 
omics data type, we also considered same number of top N variants as prioritized by 
Watershed for each data type in isolation (N = 10 and 100) and compared their effect size 
distribution against the background. Additionally, because Watershed can leverage data 
from all outlier signals and make posterior predictions even for unobserved omic 
measurements, we repeated this analysis after subsetting to variants mapped to directly 
measured genes in each signal.  
 
To assess whether Watershed posteriors can be applied to prioritize genes, we adopted a 
similar approach as rare variant collapsing analysis by aggregating all rare variants within 
10kb window of a gene and compared the distribution of rare variant posteriors for 
individuals at the extremes of trait. Specifically for height, we first calculated residual 
height after regressing out age, sex, self-reported race, clinical center, and top 10 genotype 
PCs, for N = 4,559 individuals in MESA for whom we collected height and demographic 
data. We then defined individuals with residual |Z| > 2 as having outlier height and those 
with residual |Z| < 0.2 as controls. For each gene, we compared Watershed posterior 
distribution for all rare variants in outlier individuals versus controls using a Wilcoxon 
rank-sum test and controlled for multiple testing by the Benjamini-Hochberg procedure.  
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Main Figures 
 

 
 
Figure 1. Outlier calls across exams. (A) The proportion of gene-level outliers identified 
in exam 1 (y-axis) at varying thresholds (x-axis) that replicate in exam 5 at a threshold of 
|Z| > 2. sOutliers (gold) do not have direction and so are shown only for the combined set of 
outlier calls (left), while eOutliers (green), mOutliers (red), and pOutliers (blue) are also 
shown split by direction, with outliers with positive Z-scores in the center (“Over”) and 
negative Z-scores on the right (“Under”). (B) The number of outliers identified per 
individual where the outlier effect is seen in both exams, using a threshold of |Z| > 3 for all 
gene-level outliers (left), as well as the number of CpG-level mOutliers (center) and 
sOutlier clusters (right). (C) The proportion of all gene-individual pairs considered that 
show outlier signal in both exams, using a threshold of |Z| > 3, split by the direction of the 
effect.  
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Figure 2. Distribution of Z-scores for outliers in other data types. (A) The distribution 
of gene-level methylation, gene-level splicing, and protein Z-scores for eOutlier individuals 
(green) and non-outliers (grey) for corresponding genes, split by the direction of the 
expression effect. (B) The distribution of expression, gene-level splicing, and protein Z-
scores for mOutlier individuals (red) and non-outliers (grey) for corresponding genes. (C) 
The distribution of expression, gene-level methylation, and protein Z-scores for sOutlier 
individuals (gold) and non-outliers (grey) for corresponding genes. (D) The distribution of 
expression, gene-level methylation, and gene-level splicing Z-scores for pOutlier 
individuals (blue) and non-outliers (grey) for corresponding genes, split by the direction of 
the expression effect. **** p < 0.0001, * p < 0.05, one-sided Wilcoxon rank-sum test on 
absolute value of mean Z-score across both exams between outlier and non-outlier 
individuals.  
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Figure 3. Enrichment of rare variants nearby gene-level outliers. (A) The relative risk 
of nearby rare variants for eOutliers (green), gene-level mOutliers (red), gene-level 
sOutliers (gold), and pOutliers (blue) across varying Z-score thresholds (x-axis). 
Enrichments are split by the direction of the effect for eOutliers, mOutliers, and pOutliers. 
Non-outliers are defined as all individuals with |Z| < 1 in both exams for the same set of 
genes. (B) The relative risk of nearby rare variants with a given annotation (x-axis) for 
eOutliers (green), gene-level mOutliers (red), gene-level sOutliers (gold), and pOutliers 
(blue) at a threshold of |Z| > 3 in both exams. Non-outliers are defined as all individuals 
with |Z| < 1 in both exams for the same set of genes. If no outlier individual carried a 
nearby rare variant in a given category, that data type is not shown. (C) The relative risk of 
nearby rare variants with a given annotation (x-axis) for combinations of eOutliers and the 
other three data types (orange) as compared to single data type outliers, matched for the 
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same considered genes and individuals, considering a reduced threshold of |Z| > 2 in both 
exams, and in both data types for the overlapping set. Non-outliers are defined as all 
individuals with |Z| < 1 in both exams for the same set of genes. If no outlier individual 
carried a nearby rare variant in a given category, that data type is not shown. 
 
 

 
 
Figure 4. Evaluation of multi-omic Watershed model. (A) Precision-recall curves of 
Watershed models (solid lines) and genomic annotation models (GAM, dotted lines) for 
mRNA expression (green), methylation (red), splicing (gold), and protein expression (blue) 
evaluated against (gene, individual) pairs with the same set of rare variants nearby. GAM 
outliers are defined by a p-value threshold of 0.05. (B) Symmetric matrix summarizing 
weights of edges connecting the latent regulatory variables (Z) in the multi-omic 
Watershed model. (C) Edge weights connecting top genomic annotation features to latent 
regulatory variables in each omic signal, ranked by the relative informativeness in 
decreasing order. Top 5 most influential genomic annotations are shown in bold for each 
outlier signal. A detailed explanation of each genomic annotation features included in the 
model is provided in Supplementary Table 1. 
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Figure 5. Application of multi-omic Watershed model to inform trait associations. (A) 
Number of rare variants per individual as prioritized by each omic signal (mRNA 
expression - green; methylation - red; splicing - gold; and protein expression blue) at two 
levels of Watershed posterior cutoff 0.5 and 0.9. Individuals with significantly large number 
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of outlier expressions (“global outliers”) are removed. The y-axis is transformed to log 
scale. (B) Distribution of percentile normalized effect size for height (median and 
interquartile range) of all rare variants (background, gray), and those rare variants 
prioritized by multi-omic Watershed in each signal at two posterior threshold values. Only 
rare variants mapped to genes with evidence of causing abnormal body height as reported 
by the Human Phenotype Ontology (HPO) are shown (N = 1,314 genes). Number of rare 
variants in each category is shown in x-axis labels. Effect size estimate was obtained from 
UK Biobank GWAS Round 2 using rank-normalized phenotype. (C) Venn diagram of rare 
variants prioritized by each signal at a posterior threshold of 0.5. (D) Distribution of 
percentile normalized effect size for height (median and interquartile range) for rare 
variants prioritized by a single signal at a posterior threshold of 0.5 (left – splicing; right – 
protein expression) and combined with another signal. (E) Distribution of Watershed 
posteriors of rare variants identified in individuals with normal height (|Z| < 0.2) and 
abnormal height (|Z| > 2) in the MESA cohort, collapsed to each gene. Shown are examples 
of top genes showing differential distribution of posteriors in each omic signal which 
overlap with HPO annotated genes. *** p < 0.001,  one-sided Wilcoxon rank-sum test on 
absolute value of posteriors between normal and outlier individuals.  
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