

1 Activation of TrkB in Parvalbumin interneurons is required for the promotion of reversal learning in

2 spatial and fear memory by antidepressants

3

4 **Abbreviated title**

5 PV-TrkB flx reversal learning

6

7 Elias Jetsonen^{1§}, Giuliano Didio^{1§}, Frederike Winkel^{1†}, Maria Llach Pou^{1¥}, Chloe Boj¹, Laura

8 Kuczynski-Noyau^{1Φ}, Vootele Võikar¹, Ramon Guirado², Tomi Taira³, Sari E. Lauri^{1,4}, Eero Castren^{1*},

9 Juzoh Umemori^{1, 5*}

10

11 1 Neuroscience Center, HiLIFE, University of Helsinki, Finland.

12 2 Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for

13 Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Spain.

14 3 Department of Veterinary Biosciences and Neuroscience Center, University of Helsinki, Finland

15 4 Molecular and Integrative Biosciences Research Programme, University of Helsinki, Finland

16 5 Gene and cell technology, A.I. Virtanen Institute, University of Eastern Finland

17 * These authors share corresponding author

18 Juzoh Umemori, Gene and cell technology, A.I. Virtanen Institute, University of Eastern Finland

19 Neulaniementie 2, 70211 Kuopio, Finland. Tel: +3584515789830. E-mail: juzoh.umemori@uef.fi

20 Eero Castren, Neuroscience Center, Neuroscience Center, HiLife, University of Helsinki,

21 Haartmaninkatu 8, FI-00014, Finland. Tel: +358504484753. Fax: +358294157620. E-mail:

22 eero.castren@helsinki.fi

23 § These authors contributed equally

24 †Present address:Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental

25 Disorders, King's College London, United Kingdom

26 ¥ Present address: Integrative Neurobiology of Cholinergic Systems, Neuroscience Department, Institut

27 Pasteur: Paris, France

28 Φ Present address: Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the

29 Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000 Lille, France

30

31 **Summary**

32 Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions,
33 including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity
34 with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the
35 activation of TrkB, a receptor for BDNF, in Parvalbumin positive (PV⁺) interneurons has a pivotal role
36 in cortical network changes. However, it is unknown if the activation of TrkB in PV⁺ interneurons is
37 important for other plasticity-related behaviors, especially for learning and memory. Here, using mice
38 with heterozygous conditional TrkB deletion in PV⁺ interneurons (PV-TrkB hCKO) in Intellicage and
39 fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed
40 antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in
41 spatial and fear memory, largely depending on the expression of the TrkB receptor in PV⁺ interneurons.
42 In addition, hippocampal long-term potentiation (LTP) was enhanced by chronic treatment with
43 fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV⁺
44 interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and
45 downregulation of enzymes involved in perineuronal net (PNN) formation. Consistently,
46 immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs

47 in PV⁺ interneurons, and here we show that TrkB expression in PV⁺ interneurons is required for these
48 effects. Together, our results provide molecular and network mechanisms for the induction of critical
49 period-like plasticity in adulthood.

50

51 **Keywords**

52 Parvalbumin interneurons, BDNF/TrkB, SSRI, reversal learning memory

53

54

55 **Introduction**

56 Learning and memory dysfunction is a common neuropsychological symptom of neuropsychiatric and
57 neurological diseases. It has been proposed that chronic treatment with antidepressants (ADs) improves
58 impaired learning and memory in animal models [1–3] via increased neuronal plasticity, by promoting
59 neurogenesis [4,5], and long-term potentiation (LTP) in the hippocampus [6–8]. However, it is still not
60 clear how AD treatments improve the dysfunction.

61 The activation of the brain derived neurotrophic factor (BDNF) and its receptor TrkB is a key
62 factor in neuronal plasticity. The binding of BDNF to TrkB causes the autophosphorylation of TrkB and
63 leads to the activation of intracellular signalling pathways involved in neuronal differentiation, survival,
64 and growth, as well as synaptic plasticity in neurons [9,10]. This pathway also regulates gene
65 transcription and long-term potentiation (LTP) [9]. Previous studies demonstrated that chronic treatment
66 with AD, such as the selective serotonin reuptake inhibitor (SSRI) fluoxetine, increases the plastic state
67 of Parvalbumin-positive (PV⁺) fast-spiking interneurons primarily targeting the perisomatic area of
68 pyramidal neurons [11–13]. Donato et al. showed that PV⁺ fast-spiking basket cells exhibit plasticity by
69 dynamically changing their states in response to recent experience: a state characterized by low PV
70 expression in the PV⁺ interneurons is involved in plastic networks while a state with high PV-expression

71 in PV cells promotes memory consolidation in the hippocampal CA3 region. This leads to a lower and
72 a higher number of excitatory synaptic inputs onto PV interneurons, respectively, regulating experience-
73 dependent network plasticity [14]. Furthermore, perineuronal nets (PNN) [15], an extracellular matrix
74 surrounding PV interneurons is known to be a plastic structure regulated by iPlasticity in the amygdala,
75 hippocampus and visual cortex [13,16,17].

76 We have demonstrated that ADs induce a critical period-like plasticity in the adult brain
77 (iPlasticity), which allows brain networks to better adapt to environmental stimuli, such as training or
78 rehabilitation, and consequently ameliorate neuropsychiatric symptoms [7,10,18]. iPlasticity occurs in a
79 variety of brain areas and can be induced by different interventions to modulate behaviors when
80 combined with appropriate trainings. We have proposed the “network hypothesis” of neuropsychiatric
81 diseases, according to which neuropsychiatric diseases reflect malfunctioning information processing
82 within particular neural networks, and interventions, including ADs, act by providing an opportunity for
83 neuronal activity to improve this processing [19]. Our laboratory recently demonstrated that ADs directly
84 bind to TrkB through a lipid binding motif and activate TrkB to promote neural plasticity [20]. We also
85 recently showed that TrkB activation in PV⁺ interneurons is necessary and sufficient for iPlasticity in
86 the visual cortex [16]. Therefore, the treatment with ADs is a good tool to directly activate TrkB to study

87 the mechanisms of iPlasticity. However, it is still unknown whether elevated plasticity by ADs in PV⁺

88 interneurons combined with learning processes can improve learning and memory more generally.

89 In order to assess the effects of TrkB in PV⁺ interneurons on reversal learning, we treated PV⁺

90 interneuron-specific heterozygous TrkB knockout (PV-TrkB hCKO) mice with fluoxetine in the fear

91 extinction paradigm and in IntelliCage apparatus. We also examined the dependency of LTP on the

92 expression of TrkB in PV⁺ interneurons by studying local field potential activity in the hippocampal

93 CA1 of PV-TrkB hCKO mice. We then performed a transcriptomic analysis specifically for PV⁺

94 interneurons using translating ribosome affinity purification (TRAP) after a chronic treatment with

95 fluoxetine, and found intrinsic changes in PV⁺ interneurons, especially in genes related to the formation

96 of PNNs. Finally, we immunohistologically confirmed the plastic changes in PV⁺ interneurons after

97 chronic treatment with fluoxetine.

98

99 **Material and Method**

100 Details of Material and Methods are in the Supplementary Materials and Methods

101

102 *Animals and experimental design*

103 Heterozygous mice with reduced expression of TrkB specifically in PV⁺ interneurons (PV-TrkB hCKO;
104 PV^{pvr/wt}, TrkB^{flx/wt}) were produced by mating females from an heterozygous PV specific Cre line [21]
105 (PV^{pvr/wt}; Pvalb-IRES-Cre, JAX: 008069, Jackson laboratory) with males from an homozygous floxed
106 TrkB mouse line (TrkB^{flx/flx}) [22] (Fig. 1a). Due to frequent fights among males, only females (5 months
107 old) were used for IntelliCage and the males (2 months old) were used for the fear extinction paradigm.
108 Transgenic mice harboring FLEX-L4 conjugating GFP [23] were crossed with homozygous PV specific
109 Cre mice (PV^{pvr/wt}) to obtain the mice (2 months old) expressing GFP-L4 specifically in PV interneurons.
110 The room temperature was kept at 23±2°C, and all mice were kept in a room with a 12-hr light/dark
111 cycle (lights on at 6:00 a.m.) with access to food and water *ad libitum*. All experiments were carried out
112 in accordance with the European Communities Council Directive 86/6609/EEC and the guidelines of the
113 Society for Neuroscience and were approved by the County Administrative Board of Southern Finland
114 (License number: ESAVI/38503/2019).

115

116 *Fear extinction paradigm*

117 The fear conditioning paradigm was conducted following a protocol described previously [13].

118

119 *IntelliCage with chronic fluoxetine treatment*

120 Intellicage (NewBehavior AG, Zurich, Switzerland) is an automated device that allows housing,

121 performance and measurements of specific tasks in a fully automated manner, removing the need for a

122 human operator and operator-derived bias [24,25]. Mice were divided into two groups: the “control”

123 treated with 0.1% (w/v) saccharine in the drinking water and the “experimental group” with 0.1% (w/v)

124 saccharin supplemented with 0.08% (w/v) fluoxetine in the drinking water. We performed patrolling

125 tasks, where the water bottles were made accessible (doors would open for 4s) only if the mouse nose-

126 poked the “active” door area which, once discovered and used by the mouse, would switch to the one

127 immediately next to it, in a clockwise direction. During the Reversal phase the direction was switched

128 to counter-clockwise.

129

130 *Electrophysiology in acute slices*

131 Field excitatory postsynaptic currents (fEPSPs) were recorded in an interface chamber using ACSF-

132 filled electrodes (2-4 MΩ) positioned within the CA1 stratum radiatum (Supplemental note). Notably,

133 LTP was induced through tetanic stimulation (200ms pulse interval; 100 pulses; 0.1ms pulse duration)

134 and recorded for 45min.

135

136 *Immunohistochemistry*

137 Animals treated with control or fluoxetine were perfused transcardially with PBS followed by 4% PFA

138 in PBS and the brains were isolated. The brains were post-fixed overnight and stored in PBS with 0.02%

139 NaN_3 until cutting on a vibratome (VT 1000E, Leica). Free-floating sections (40 μm) were processed

140 for fluorescence immunohistochemistry following a protocol described previously [26] using antibodies

141 listed in supplemental table 1.

142

143 *Confocal imaging and imaging analysis on PV and PNN intensity*

144 Immunohistologically stained sections were imaged with a confocal microscope (Zeiss LSM 700).

145 PV/PNN was imaged in different sections containing CA3b region in the dorsal hippocampus (between

146 -1.94 and -2.18 mm in the Anterior-Posterior axis relative to Bregma). The multilayer confocal images

147 were stacked (z-stack, maximum intensity), and the fluorescence intensity of PV, PNN and TdTomato

148 were analyzed with Fiji software (National Institute of Health, US) (<https://fiji.sc/>) [27]

149

150 *TRAP sample preparation and sequencing*

151 TRAP-analysis was performed according to a previously published protocol [28]

152

153 *Experimental design and statistical analysis*

154 Biochemical and behavioral data were analyzed by two-way ANOVA, taking sessions, genotype, and

155 treatment with fluoxetine, followed by Fisher's LSD test. All results of two-way ANOVA are shown in

156 the supplemental table 3. All statistical analyses were performed using Prism 6 or 8 (GraphPad Software).

157 A *p*-value <0.05 was considered statistically significant.

158

159 **Results**

160 *Expression of TrkB in PV+ interneurons is important for fear erasure induced by fluoxetine treatment*

161 We have previously demonstrated that a chronic treatment with fluoxetine combined with fear extinction

162 training promotes the erasure of previously acquired fear memory and alters the configuration of PV⁺

163 interneurons [13]. We first tested whether this promoted fear erasure might depend on TrkB expressed

164 in PV⁺ interneurons and would therefore be blunted in PV-TrkB hCKO mice (Fig. 1a). In a fear

165 conditioning paradigm (Fig. 1b), all mice were conditioned with a shock paired with a sound cue in

166 context A during the fear-conditioning/acquisition phase, resulting in an increased freezing that was

167 comparable in duration across all groups, although PV-TrkB hCKO mice conditioned faster than wild-

168 type mice (Fig. 1c). The control and PV-TrkB hCKO mice were then assigned equally and randomly

169 into groups receiving either water or water supplied with 0.08% (w/v) of fluoxetine, both enriched with

170 0.1 % (w/v) saccharin. Two weeks later, the mice were exposed to the conditioned stimulus (CS; “beep”

171 sound) in context B during 2 days of extinction training. In the wild-type group, both control and

172 fluoxetine treated mice showed a decreased freezing, but the effect was significantly more pronounced

173 in the fluoxetine treated group (Fig. 1d). Both control and fluoxetine treated PV-TrkB hCKO mice

174 showed decreased freezing on the 2nd day of extinction training, but the response to fluoxetine was

175 significantly less pronounced than in the wild-type mice (Fig. 1e). In fact, when comparing the difference
176 in freezing (delta) between water-treated and fluoxetine-treated mice in each session, the wild-type mice
177 showed a significantly higher difference compared to PV-TrkB hCKO mice by pairwise t-test (Fig. 1f),
178 suggesting that in the absence of TrkB in PV neurons, the effects of fluoxetine are significantly reduced.
179 One week later, the fluoxetine-treated wild-type mice showed decreased freezing throughout the whole
180 session in context B (spontaneous recovery, SR) (Fig. 1g), as well as in the 1st session of this test (Fig.
181 1h). However, the PV-TrkB hCKO mice failed to show similar effects of the fluoxetine treatment
182 throughout the sessions of the test (Fig. 1g, h). In addition, the treatment significantly reduced the
183 freezing in the fear renewal test (FR) in context A in wild-type mice, especially in the first session of
184 (Fig. 1i, j). Interestingly, the treatment with fluoxetine decreased the overall freezing of PV-TrkB hCKO
185 mice in the fear renewal test (Fig. 1i), but there was no difference in the first session (Fig. 1j). These
186 results suggest a role of TrkB expression in PV neurons in the extinction-enhancing effects of fluoxetine
187 in cued fear conditioning, but a less pronounced role in the contextual component of the paradigm (FR).
188
189 *Expression of TrkB in PV+ interneurons is important for the improvement of reversal spatial learning*
190 *induced by fluoxetine treatment*

191 The IntelliCage experiments were conducted to test the effect of chronic fluoxetine treatment on spatial
192 learning as depicted in Fig. 2a. Mice were implanted with transponders and were treated with fluoxetine-
193 containing water for two weeks before the experiments. During the adaptation to freely accessible water
194 bottles in the corners (FA), nose pokes (NPA), and drinking sessions (DSA), six mice were excluded
195 because they could not learn the adaptation tasks [Control group (wild-type, 1; PV-TrkB hCKO, 2),
196 fluoxetine-treated group (wild-type, 1; PV-TrkB hCKO, 2)]. In the acquisition phase of the patrolling
197 task, the location of the open corner changed after each visit, and the water-deprived mice had to patrol
198 the corners in a “clockwise” order to receive a water reward (Fig. 2a, left panel). The percentages of
199 error ratios were calculated as the number of visits in the incorrect corner divided by the number of total
200 visits. The wild-type mice decreased the error ratio during sessions, and there was no effect of fluoxetine
201 treatment in the acquisition phase (Fig. 2c-e). The PV TrkB hCKO mice also decreased the error ratio
202 during sessions (Fig. 2f-h), but interestingly the fluoxetine treatment decreased the error ratio faster than
203 in water-treated mice (Fig. 2f). The PV TrkB hCKO mice had significantly higher error ratios compared
204 to wild-type mice treated with control water (Supplemental fig 1a). These results indicate that PV TrkB
205 hCKO mice have lower spatial learning skills in acquisition compared to wild-type mice, but the
206 fluoxetine treatment recovers them to a level comparable to wild-type mice.

207 In the reversal phase, wild-type mice significantly reduced the error ratio during sessions in both control
208 and fluoxetine-treated groups (Fig. 2i-k), but the treatment with fluoxetine facilitated the decrease of the
209 error ratio during sessions, especially in the final session (Fig. 2i). These results indicate that the
210 fluoxetine treatment improves the reversal learning in wild-type mice. The PV hTrkB CKO mice also
211 improved their performance during sessions (Fig. 3l-n). Notably however, there was no effect of the
212 fluoxetine treatment (Fig. 3l). These results strongly suggest that TrkB expression in PV interneurons is
213 important for the effect of fluoxetine on the reversal learning in spatial tasks.

214

215 *Fluoxetine treatment potentiates hippocampal LTP through expression of TrkB in PV interneurons*
216 In order to understand whether the improved behavioral flexibility after fluoxetine treatment reflects
217 enhanced neural plasticity in the hippocampus, the main region involved in contextual fear and spatial
218 memory [29], we recorded fEPSPs in acute hippocampal slices of wild-type and PV TrkB hCKO mice
219 after chronic fluoxetine treatment (Fig. 3). As previously reported [8,30] we observed a significant
220 enhancement of long-term potentiation (LTP) at 45 min after tetanic stimulation in wild-type mice
221 treated with fluoxetine compared to mice treated with water. There was, however, no effect of fluoxetine

222 treatment on LTP in hPV-TrkB CKO mice (Fig. 3). These results indicate that the chronic treatment with

223 fluoxetine enhances LTP induction and expression, which seems to require TrkB expression in PV cells.

224

225 *PV-specific transcriptomic analysis through TRAP*

226 In order to investigate gene expression in PV interneurons after chronic treatment with fluoxetine, we

227 conducted a TRAP analysis to investigate ongoing protein translation specifically in PV⁺ interneurons

228 (Fig 4a). After chronic treatment with fluoxetine, the whole hippocampus of mice expressing EGFP-

229 tagged L10a ribosomal subunits specifically in PV interneurons (Fig. 4b) was used for TRAP followed

230 by next generation sequencing (NGS). We found 879 genes that were differentially expressed after

231 chronic treatment with fluoxetine ($p < 0.05$) and these were further studied by a pathway analysis. The

232 chronic fluoxetine treatment significantly affected several of these pathways in the hippocampus ($p <$

233 0.1) (Supplemental table 2), and representative pathways are shown in Fig. 4c. Particularly, genes in

234 glycosaminoglycan chondroitin sulphate and heparan biosynthesis pathways were significantly down

235 regulated. These are associated with chondroitin sulphate proteoglycans, which are an integral part of

236 PNNs [15]. Also, genes related to glycerolipid and glycerophospholipid metabolism were down

237 regulated. These pathways are involved in the regulation of lipid composition of the cellular membrane,

238 which is highly related to antidepressant effects [20]. Furthermore, the fluoxetine treatment significantly
239 changed the expression of genes in the GABAergic synapse pathway, including G Protein Alpha
240 Inhibiting Activity Polypeptide 3 (Gnai3), G protein subunit gamma 4, 8, and 13 (Gng4, Gng8, and
241 Gng13), which are coupled with GABA type B receptor, and mediate slow and prolonged inhibitory
242 action [31]. Huntingtin-associated protein 1 (Hap1) directly interacts with GABA type A (GABA_A)
243 receptors and influences the recycling of the receptor by inhibiting its degradation [32]. Such modulation
244 of the expression and localization of GABA_A receptors are thought to be a plastic event resulting in
245 maintenance of the excitatory/inhibitory balance [33].
246 Overall, our TRAP analysis revealed a novel mechanistic insight into the observed phenomena of
247 increased neural plasticity in PV⁺ interneurons, such as synaptic formation and turnover of PNNs
248 through the regulation of gene expression after fluoxetine treatment.

249

250 *Decreased intensity of PV and PNN after fluoxetine treatment depending on TrkB expression in PV⁺*

251 *interneurons*

252 TRAP analysis showed decreased expression of genes related to the formation of PNN. In addition, it

253 has been reported that PV configurations in the CA3 region of the hippocampus are dynamically

254 regulated by experiences, such as environmental enrichment and fear conditioning [34]. We used

255 immunohistochemistry to analyze the intensities of PV, and PNNs surrounding PV interneurons as a

256 measure of their expression levels in the hippocampal CA3 region after chronic fluoxetine treatment

257 (Fig. 5a). After fluoxetine treatment the proportion of low-intensity PV cells increased, and the high-

258 intensity PV cells were reduced in wild-type mice, while there was no obvious difference in the

259 proportions of PV intensity in PV-TrkB hCKO mice (Fig. 5b). In addition, the proportion of PV-positive

260 cells among cells positive for PNN was significantly reduced after fluoxetine treatment in wild-type

261 mice as shown previously [13], but not in PV TrkB hCKO mice (Fig. 5c). Interestingly, when the

262 intensity of PNNs were separately measured in lower- and higher- PV expressing PV interneurons, the

263 fluoxetine treatment significantly reduced the intensity of PNN only in high- but not in low- PV-

264 expressing cells in wild-type mice (Fig. 5d). However, the treatments showed no effect on the PNN

265 intensity between in either low- or high- PV expressing cells in PV-TrkB hCKO mice (Fig. 5e). These

266 results strongly suggest that chronic fluoxetine treatment shifts the configuration of PV interneurons
267 towards lower PV and PNN expressing cell state through TrkB signaling. Taken together with the TRAP
268 analysis, the decreased gene expressions of the extracellular matrix might be involved in the reduced
269 PNN formation after chronic treatment with fluoxetine.

270

271 **Discussion**

272 Here, we demonstrate that iPlasticity induced by pharmacological activation of TrkB in PV⁺ interneurons
273 promotes reversal learning in fear and spatial memory. We also showed that both the potentiation of
274 LTP in Schaffer collaterals to CA1 synapses, and the shift in the configuration of the PV and PNN
275 network to a more plastic state require TrkB expression in hippocampal PV⁺ interneurons. These
276 alterations involve changes in the gene expression patterns related to GABAergic synapses and PNN
277 formation.

278

279 *Impaired fear extinction consolidation of heterozygous PV-TrkB CKO mice*

280 It has previously been shown that heterozygous PV-hTrkB CKO male mice exhibit slightly impaired
281 extinction consolidation but not fear acquisition/conditioning in auditory fear paradigm [35]. In this

282 study, PV-hTrkB CKO mice showed normal or even faster fear acquisition, but control heterozygous
283 PV-TrkB CKO mice kept a higher level of freezing in fear renewal, compared to that of wild-type mice.
284 Altogether, heterozygous PV-TrkB CKO mice seem to have a deficit in the consolidation of fear
285 extinction.

286

287 *Roles of TrkB in PV⁺ interneurons for contextual fear erasure*

288 We show here that fluoxetine treatment decreases cued and contextual fear responses in wild-type mice
289 as previously shown [13], but not in heterozygous PV-TrkB CKO mice. However, fluoxetine treated
290 heterozygous PV-TrkB CKO mice showed a blunted effect only in the initial phase, but then reduced
291 their fear responses in later phases during fear renewal. Interestingly, optical activation of TrkB in the
292 pyramidal neurons of the ventral hippocampus showed a similar pattern: decreased contextual fear
293 response except for the initial phase [26]. These observations raise the possibility that the expression of
294 TrkB in PV interneurons is important, but that TrkB expression in pyramidal neurons is also involved in
295 the formation of a new inhibitory memory to overwrite a conditioned memory or to erase a fear memory.

296

297 *PV interneurons are involved in the reversal learning phase in spatial learning*

298 To test whether fluoxetine treatment can improve behavioral flexibility or spatial reversal learning
299 through TrkB receptors in PV interneurons, we used the IntelliCage system. IntelliCage is an automated
300 setup that allows behavioral experiments without direct handling of mice except for when changing
301 cages and water bottles, which results in higher reproducibility and reliability [36]. Previous studies have
302 shown that CKIIa specific TrkB heterozygous CKO mice had normal spatial memory in the classical
303 Morris water maze test, but had a lower behavioral flexibility in a naturalistic settings [22,37]. Chronic
304 treatment with fluoxetine did not affect acquisition but it enhanced reversal spatial memory in wild-type
305 mice. In contrast, PV-TrkB hCKO mice showed improved spatial memory in acquisition but not in
306 reversal phase after fluoxetine treatment. In addition, PV-TrkB CKO mice showed a higher error ratio
307 in acquisition but not in reversal phase, when compared to the wild-type mice. These observations,
308 suggest that TrkB in PV⁺ interneurons play a central role in both the basal level of spatial learning as
309 well as in newly formed memory, especially reversal learning promoted by fluoxetine.

310

311 *PV and PNN as makers of plasticity in PV interneurons*

312 We found that fluoxetine treatment mainly affects the high-PV expressing PV interneurons, which have
313 been demonstrated to be born earlier during embryonic development and to be responsible for memory

314 formation of recent experiences [14,34]. For instance, fear conditioning increases the number of high
315 PV-expressing cells, while environmental enrichment increases the fraction of PV basket cells with low
316 levels of PV [34]. These observations suggest that chronic fluoxetine treatment and environmental
317 enrichment show similar effects, promoting the more plastic state of PV configuration. In addition, we
318 demonstrate that the intensity of PNN was reduced after fluoxetine treatment only in high PV-expressing
319 but not in low- PV-expressing interneurons. Lower expression of PNN is known to represent a plastic
320 state of PV interneurons [38], and it is interesting that chronic fluoxetine treatment regulates both PV
321 and PNNs via TrkB expression. The TRAP analysis also points towards the regulation of PNNs as the
322 target of fluoxetine action. We have previously shown that plasticity promoted by the reduction of PNNs
323 by chondroitinase treatment is also dependent on the expression of TrkB in PV interneurons and that this
324 effect is mediated by the inhibition of the PNN receptor, receptor-type tyrosine-protein phosphatase
325 Sigma (PTPRS) [39]. In addition, fluoxetine was shown to disrupt the interaction between TrkB and
326 PTPRS, functionally mimicking the effects of PNN disruption [39]. Furthermore, it appears that
327 fluoxetine specifically targets PV⁺ interneurons which was also observed in visual cortex plasticity [16].
328 These effects of fluoxetine treatment on the TrkB receptors expressed in PV interneurons might be

329 involved in behavioral flexibility, which would promote the exchange or renewal of consolidated
330 memories.

331

332 *LTP is increased through TrkB activation in PV interneurons*

333 Hippocampal LTP is widely regarded as the cellular substrate underlying learning and memory, enabling
334 plasticity processes to take place [40]. Previous research has shown that chronic fluoxetine treatment
335 increases LTP in the hippocampus, amygdala and visual cortex [8,13,16,41]. The TrkB receptor and
336 particularly its signaling through phospholipase C γ (PLC γ) has emerged as a potent regulator of LTP
337 [9]. We now show that the fluoxetine-mediated increase in hippocampal LTP is prevented when TrkB
338 expression is reduced in PV interneurons.

339

340 *Gene regulation in fluoxetine-induced plasticity in PV⁺ interneurons.*

341 In addition to the genes related to the formation of PNNs, composition of cellular membrane, and
342 regulatory proteins of GABAergic receptors, all significant DE genes related to axon guidance were up-
343 regulated. For instance, Sem3D is a receptor of Sema3A, which is known to be localized in PNNs [42],
344 and Srgap2 is localized in synapses and regulates synaptic densities through Rac1-GAP activity[43,44].

345 Since the Rac1 signaling regulates the density of inhibitory synapses within dendrites and their
346 subcellular distribution, Srgap2 is considered to coordinate excitatory/inhibitory balance [45]. These
347 results suggest that axon regeneration and sprouting actively occurred and can potentially rewire
348 neuronal networks involving PV⁺ interneurons responding to environmental stimuli.

349

350 *Mechanisms of fluoxetine-induced plasticity.*

351 We have recently shown that fluoxetine directly binds to the transmembrane domain of TrkB dimers and
352 increases TrkB retention in the plasma membrane, thereby allosterically promoting BDNF signaling [20].
353 Furthermore, antidepressants disrupt the interaction between TrkB and the AP2 complex involved in
354 endocytosis, promoting TrkB localization in plasma membrane [46]. Consistently with the present
355 findings, we have observed that the activation of TrkB specifically in the PV interneurons is necessary
356 and sufficient for iPlasticity in the visual cortex [16]. We found here that TrkB activation by fluoxetine
357 regulates PNNs encasing PV neurons and our previous findings suggest that reduction in PNNs further
358 promotes TrkB activity within PV⁺ interneurons [17]. Taken together, a positive feedback loop between
359 reduction of PNN and TrkB activation may explain the critical role of TrkB in the PV⁺ neurons in
360 iPlasticity. Importantly, while the activation of TrkB in pyramidal neurons promotes their excitability,

361 in PV⁺ neurons TrkB activation reduces excitability through downregulation of Kv3-family potassium
362 channels [16]. Therefore, the activation of TrkB in PV⁺ interneurons does not counteract the concomitant
363 TrkB activation in pyramidal neurons but synergizes with it by disinhibiting pyramidal neurons, thereby
364 orchestrating an enhanced state of cortical plasticity that underlies iPlasticity. Our present data suggest
365 that a similar kind of state of enhanced plasticity, involving reformation of GABAergic signaling and
366 reduction in PNNs, is underlying the effects of fluoxetine on behavioral flexibility and reversal learning.

367

368

369 **Funding and Disclosure**

370 The original research in our laboratory was supported by the ERC grant # 322742 – iPLASTICITY, the
371 Sigrid Jusélius foundation, Jane & Aatos Erkko Foundation, the EU Joint Programme–
372 Neurodegenerative Disease Research (JPND) project # JPCOFUND_FP-829-007, the HiLife Fellows
373 program, the Academy of Finland grants #294710, 303124, 307416 and 347358, Bilateral exchange
374 program between the Academy of Finland and JSPS (Japan Society for the Promotion of Science), the
375 Brain & Mind grants, The Finnish Medical Foundation and the University of Helsinki Research
376 Foundation.

377

378 **Acknowledgement**

379 We thank Sulo Kolehmainen and Outi Nikkila for assistance in all experiments. We also thank the
380 caretakers in the F-building in UH for assistance with animal care, and Sequencing unit of Institute for
381 Molecular Medicine Finland FIMM Technology Centre, University of Helsinki supported by Biocenter
382 Finland. Behavioural testing was carried out at the Mouse Behavioural Phenotyping Facility (MBPF)
383 supported by Biocenter Finland and HiLIFE. We also thank Anu Suoranta, and Pirkko Mattila in FIMM
384 Transcriptomics services supported by UH and Biocenter Finland.

385

386 **Conflict of Interest**

387 The authors declare no competing financial interests.

388

389 **Author Contributions**

390 JU and EC conceived of and designed the project. CB, GD, and JU performed behavioral experiments.
391 ML, LK, and JU conducted immunohistochemistry and imaging analysis under the supervision of RG.
392 F.W. performed electrophysiological experiments under the supervision of TT and S.L. EJ performed
393 TRAP analysis under the supervision of JU. All authors were involved in writing the manuscript.

394

395 **References**

396 1. Barkas L, Redhead E, Taylor M, Shtaya A, Hamilton DA, Gray WP. Fluoxetine restores spatial
397 learning but not accelerated forgetting in mesial temporal lobe epilepsy. *Brain*. 2012;135:2358–
398 2374.

399 2. Marwari S, Dawe GS. (R)-fluoxetine enhances cognitive flexibility and hippocampal cell
400 proliferation in mice. *J Psychopharmacol*. 2018;32:441–457.

401 3. Gan H, Zhang Q, Zhu B, Wu S, Chai D. Fluoxetine reverses brain radiation and temozolomide-
402 induced anxiety and spatial learning and memory defect in mice. *J Neurophysiol*.
403 2019;121:298–305.

404 4. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic Antidepressant Treatment Increases
405 Neurogenesis in Adult Rat Hippocampus. *J Neurosci*. 2000;20:9104–9110.

406 5. Malberg JE, Duman RS. Cell Proliferation in Adult Hippocampus is Decreased by Inescapable
407 Stress: Reversal by Fluoxetine Treatment. *Neuropsychopharmacology*. 2003;28:1562–1571.

408 6. Rubio FJ, Ampuero E, Sandoval R, Toledo J, Pancetti F, Wyneken U. Long-term fluoxetine
409 treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1

410 hippocampal subfield. *Front Cell Neurosci.* 2013;0:66.

411 7. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. *Trends Neurosci.*

412 2013;36:259–267.

413 8. Popova D, Castrén E, Taira T. Chronic fluoxetine administration enhances synaptic plasticity

414 and increases functional dynamics in hippocampal CA3-CA1 synapses. *Neuropharmacology.*

415 2017;126:250–256.

416 9. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB-

417 mediated hippocampal long-term potentiation. *Neuron.* 2002;36:121–137.

418 10. Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. *Mol*

419 *Psychiatry.* 2017;22:1085–1095.

420 11. Ohira K, Takeuchi R, Iwanaga T, Miyakawa T. Chronic fluoxetine treatment reduces

421 parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of

422 the frontal cortex in adult mice. *Mol Brain.* 2013;6:43.

423 12. Guirado R, Perez-Rando M, Sanchez-Matarredona D, Castrén E, Nacher J. Chronic fluoxetine

424 treatment alters the structure, connectivity and plasticity of cortical interneurons. *Int J*

425 *Neuropsychopharmacol.* 2014;17:1635–1646.

426 13. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Ágústsdóttir A, et al.
427 Fear erasure in mice requires synergy between antidepressant drugs and extinction training.
428 Science (80-). 2011;334:1731–1734.

429 14. Donato F, Chowdhury A, Lahr M, Caroni P. Early-and late-born parvalbumin basket cell
430 subpopulations exhibiting distinct regulation and roles in learning. *Neuron*. 2015;85:770–786.

431 15. Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal
432 extracellular matrix in neuronal function. *Nat Rev Neurosci* 2019 208. 2019;20:451–465.

433 16. Winkel F, Ryazantseva M, Voigt MB, Didio G, Lilja A, Llach Pou M, et al. Pharmacological
434 and optical activation of TrkB in Parvalbumin interneurons regulate intrinsic states to
435 orchestrate cortical plasticity. *Mol Psychiatry* 2021. 2021:1–10.

436 17. Lesnikova A, Casarotto PC, Fred SM, Voipio M, Winkel F, Steinzeig A, et al. Chondroitinase
437 and Antidepressants Promote Plasticity by Releasing TRKB from Dephosphorylating Control of
438 PTP σ in Parvalbumin Neurons. *J Neurosci*. 2021;41:972–980.

439 18. Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: Induced juvenile-like
440 plasticity in the adult brain as a mechanism of antidepressants. *Psychiatry Clin Neurosci*. 2018.
441 11 July 2018. <https://doi.org/10.1111/pcn.12683>.

442 19. Castrén E. Is mood chemistry? *Nat Rev Neurosci.* 2005;6:241.

443 20. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant

444 drugs act by directly binding to TRKB neurotrophin receptors. *Cell.* 2021;184:1299-1313.e19.

445 21. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, et al. A

446 Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling.

447 *PLoS Biol.* 2005;3:e159.

448 22. Minichiello L, Korte M, Wolfer D, Kühn R, Unsicker K, Cestari V, et al. Essential role for TrkB

449 receptors in hippocampus-mediated learning. *Neuron.* 1999;24:401–414.

450 23. Liu J, Krautzberger AM, Sui SH, Hofmann OM, Chen Y, Baetscher M, et al. Cell-specific

451 translational profiling in acute kidney injury. *J Clin Invest.* 2014;124:1242–1254.

452 24. Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, et al. IntelliCage as a tool

453 for measuring mouse behavior – 20 years perspective. *Behav Brain Res.* 2020;388:112620.

454 25. Lipp H-P. High-throughput and Automated Behavioural Screening of Normal and Genetically

455 Modified Mice The biology of alphaPIX View project The role of adult hippocampal

456 neurogenesis in rodent transgenic models View project.

457 26. Umemori, Juzoh. Optical activation of TrkB neurotrophin receptor in mouse ventral

458 hippocampus promotes plasticity and facilitates fear extinction. *BioRxiv*.

459 2021:2021.02.14.431126.

460 27. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An
461 open-source platform for biological-image analysis. *Nat Methods*. 2012;9:676–682.

462 28. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N. Cell type–specific mRNA
463 purification by translating ribosome affinity purification (TRAP). *Nat Protoc* 2014 96.
464 2014;9:1282–1291.

465 29. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. *Nat Rev Neurosci*.
466 2015;16:317–331.

467 30. Vetencourt JFM, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’leary OF, et al. The
468 antidepressant fluoxetine restores plasticity in the adult visual cortex. *Science* (80-).
469 2008;320:385–388.

470 31. Padgett CL, Slesinger PA. GABAB Receptor Coupling to G-proteins and Ion Channels. *Adv
471 Pharmacol*. 2010;58:123–147.

472 32. Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, et al. Huntingtin-
473 associated protein 1 regulates inhibitory synaptic transmission by modulating γ -aminobutyric

474 acid type A receptor membrane trafficking. *Proc Natl Acad Sci.* 2004;101:12736–12741.

475 33. Mele M, Leal G, Duarte CB. Role of GABA A R trafficking in the plasticity of inhibitory

476 synapses. *J Neurochem.* 2016;139:997–1018.

477 34. Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity

478 induced by experience regulates adult learning. *Nature.* 2013;504:272.

479 35. Lucas EK, Jegarl A, Clem RL. Mice lacking TrkB in parvalbumin-positive cells exhibit sexually

480 dimorphic behavioral phenotypes. *Behav Brain Res.* 2014;274:219–225.

481 36. Puścian A, Łeski S, Górkiewicz T, Meyza K, Lipp HP, Knapska E. A novel automated

482 behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. *Front*

483 *Behav Neurosci.* 2014;8:140.

484 37. Vyssotski AL, Dell’Omo G, Poletaeva II, Vyssotski DL, Minichiello L, Klein R, et al. Long-

485 term monitoring of hippocampus-dependent behavior in naturalistic settings: Mutant mice

486 lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired

487 behavioral flexibility. *Hippocampus.* 2002;12:27–38.

488 38. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks

489 juvenile plasticity through network mechanisms of decreased inhibition and increased gamma

490 activity. *J Neurosci*. 2017;37:1269–1283.

491 39. Lesnikova A, Casarotto P, Moliner R, Fred SM, Biojone C, Castrén E. Perineuronal Net

492 Receptor PTP σ Regulates Retention of Memories. *Front Synaptic Neurosci*. 2021;13:37.

493 40. Minichiello L. TrkB signalling pathways in LTP and learning. *Nat Rev Neurosci*. 2009;10:850–

494 860.

495 41. Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic Fluoxetine Stimulates

496 Maturation and Synaptic Plasticity of Adult-Born Hippocampal Granule Cells. *J Neurosci*.

497 2008;28:1374–1384.

498 42. Vo T, Carulli D, Ehlert EME, Kwok JCF, Dick G, Mecollari V, et al. The chemorepulsive axon

499 guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain.

500 *Mol Cell Neurosci*. 2013;56:186–200.

501 43. Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA, Soderling SH. SH3 domain-based

502 phototrapping in living cells reveals rho family GAP signaling complexes. *Sci Signal*. 2011;4.

503 44. Fossati M, Pizzarelli R, Schmidt ER, Kupferman J V., Stroebel D, Polleux F, et al. SRGAP2

504 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory

505 Synapses. *Neuron*. 2016;91:356–369.

506 45. Maffei A, Charrier C, Caiati MD, Barberis A, Mahadevan V, Woodin MA, et al. Emerging

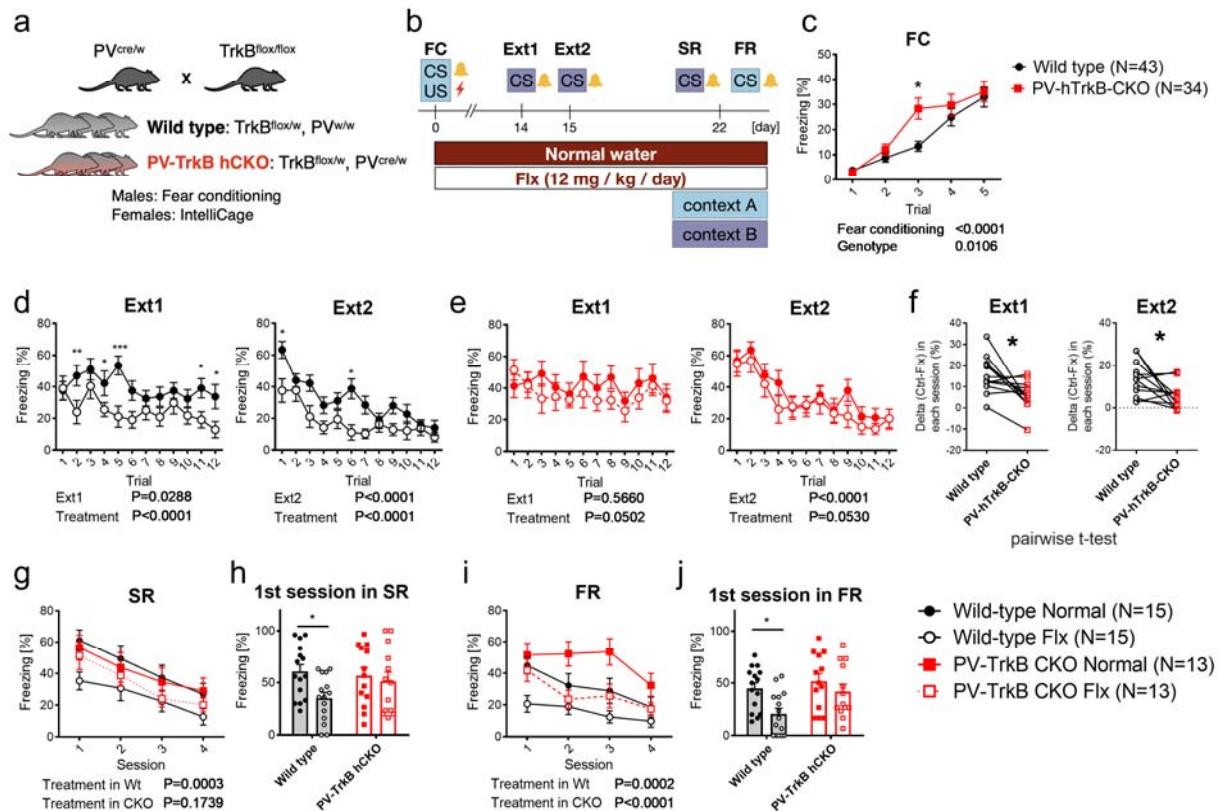
507 Mechanisms Underlying Dynamics of GABAergic Synapses. *J Neurosci*. 2017;37:10792–

508 10799.

509 46. Fred SM, Laukkanen L, Brunello CA, Vesa L, Göös H, Cardon I, et al. Pharmacologically

510 diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the

511 endocytic adaptor complex AP-2. *J Biol Chem*. 2019;294:18150–18161.


512

513

514

515 **Figures**

516

517

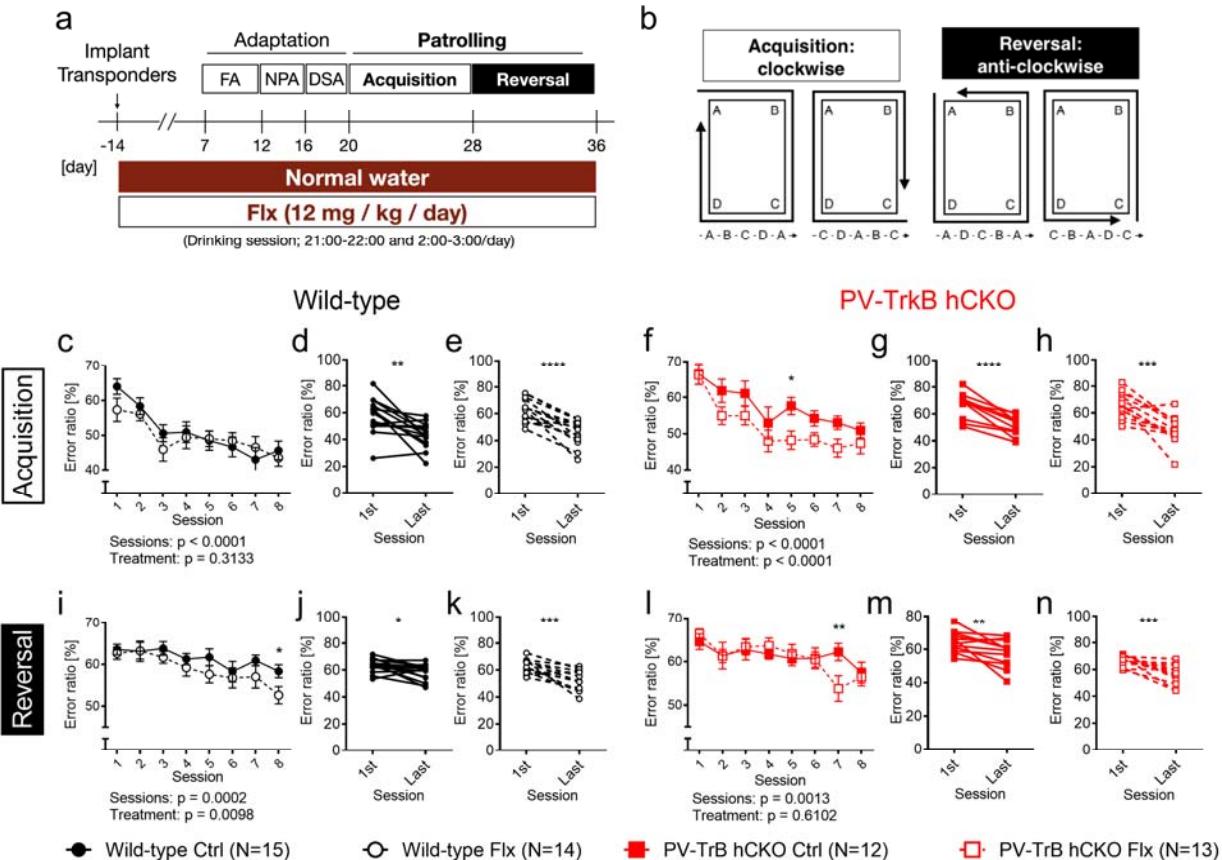
518 Fig. 1. Fluoxetine treatment promotes contextual and cued fear erasure and depends on TrkB expression

519 in PV interneurons. (a) Mating strategy to obtain wild type and PV specific heterozygous TrkB knockout

520 mice PV-TrkB hCKO). (b). Scheme of the fear conditioning paradigm. Mice were conditioned by pairing

521 a tone and an electric shock in context A (c), and one group was treated with fluoxetine (24mg/kg/day).

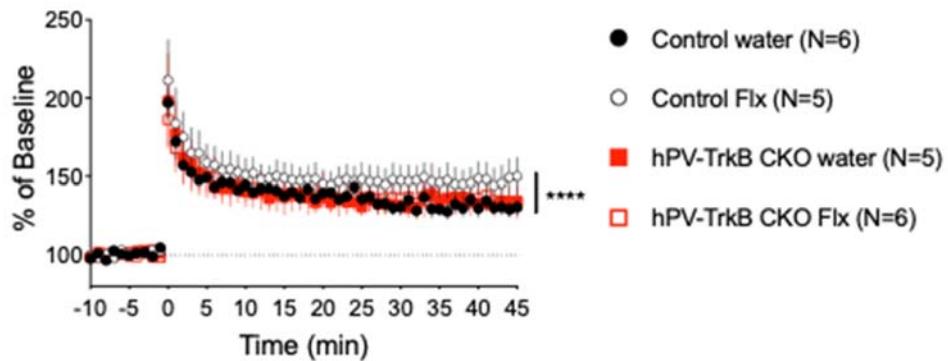
522 After two weeks, mice were subjected to two days of fear extinction training: day1 (Ext1), day 2 (Ext2)


523 *wt* (d), PV-TrkB hCKO (e). After one week, mice were tested for spontaneous recovery (SR) in context

524 B (g, h) and fear renewal (FR) in context A (i, j). (c) Both wild-type and PV-TrkB hCKO mice increased
525 freezing during the conditioning/acquisition phase and exhibited the same levels of fear acquisition (two-
526 way ANOVA, Conditioning, $F(4, 375) = 33.81, P < 0.0001$). However, PV-TrkB hCKO mice showed
527 significantly higher freezing compared to wild-type mice (Genotype, $F(1, 375) = 6.601, P < 0.0106$;
528 post-hoc, wild-type vs PV-TrkB hCKO in Trial 3, $p=0.0186$). (d) In wild-type mice, significant effects
529 of sessions were detected in Ext1 and Ext2 (Extinction, Ext1, $F(11, 348) = 1.869, P = 0.0423$; Ext2, F
530 $(11, 348) = 9.655, P < 0.0001$) and an effect of fluoxetine treatment on both days (Treatment, Ext1, $F(1,$
531 $348) = 36.74, P < 0.0001$; Ext2, $F(1, 348) = 44.24, P < 0.0001$). (e) PV-TrkB hCKO mice tended to
532 have an effect of fluoxetine treatment (2-way ANOVA, treatment, Ext1, $F(1, 288) = 3.866, P = 0.052$;
533 Ext2, $F(1, 288) = 3.766, P = 0.053$), and the extinction training significantly reduced the freezing in all
534 PV-TrkB-hCKO mice only on day 2 (Ext2, session, $F(11, 288) = 9.655, P < 0.0001$). (f) Pairwise t-test
535 of fluoxetine effect (delta: freezing in control (%) – fluoxetine (%)) between wild-type and PV-TrkB
536 hCKO mice on each session in two days. Wild-type mice had a significantly higher difference compared
537 to PV-TrkB hCKO mice on sessions in Ext1 (paired t-test, $p = 0.0101$) and Ext 2 (paired t-test, $p =$
538 0.0228). (g) In SR, fluoxetine treatment significantly decreased freezing throughout sessions in wild-
539 type mice (2-way ANOVA, Treatment, $F(3, 116) = 15.15, p = 0.0002$) but not in PV-TrkB hCKO mice

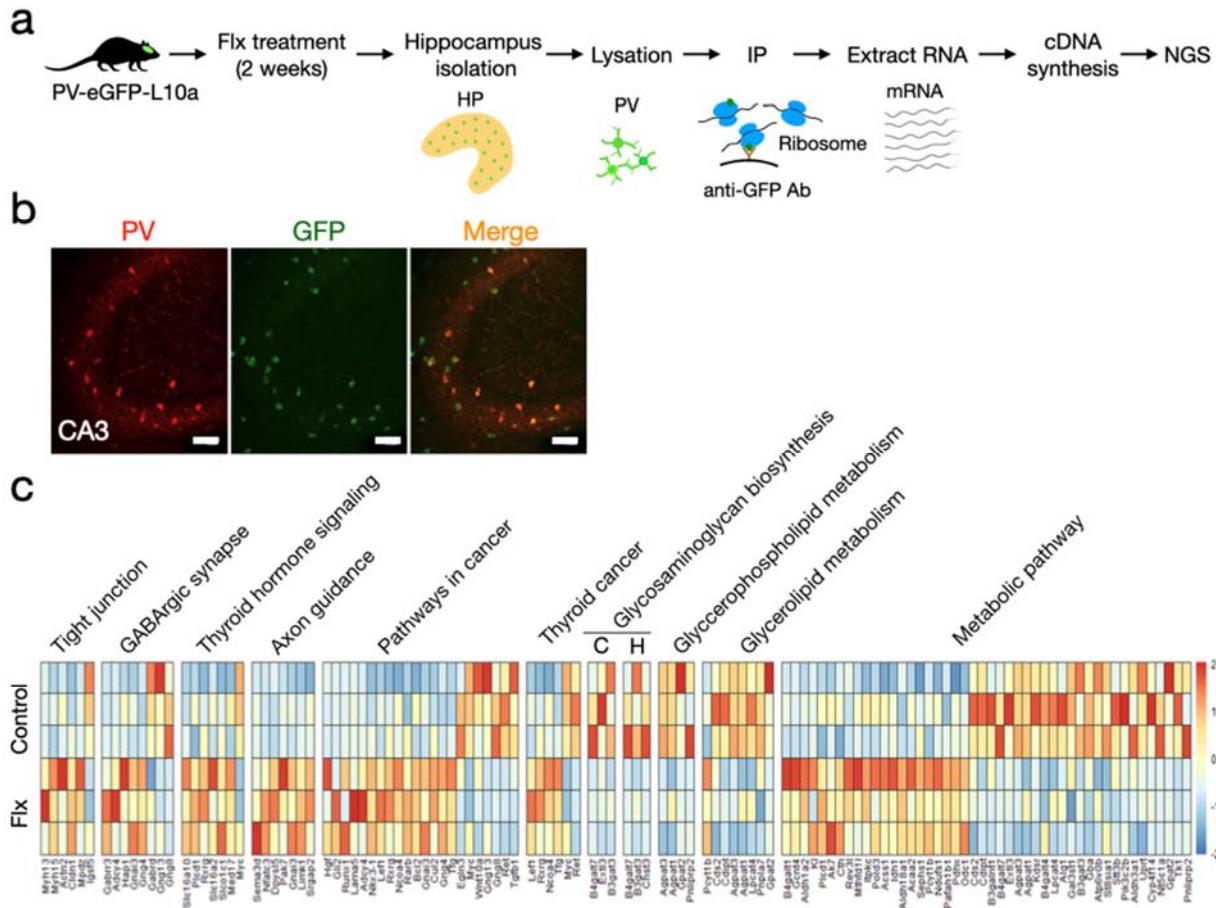
540 (2-way ANOVA, treatment, $F (1, 96) = 1.876$, $p = 0.1739$) (h). In the 1st session of SR, fluoxetine
541 treatment decreased freezing in the wild type mice (Holm-Sidak's multiple comparisons test, $p = 0.0229$)
542 but not in PV-TrkB hCKO mice ($p = 0.6282$). (i) In FR, fluoxetine treatment induced a decrease of
543 freezing in both wild-type (2-way ANOVA, treatment, $F (1, 116) = 10.14$, $P = 0.0020$) and PV-TrkB
544 hCKO mice (treatment, $F (1, 96) = 16.61$, $p < 0.0001$). (j). In the 1st session of FR, fluoxetine treatment
545 decreased freezing in wild type (Holm-Sidak's multiple comparisons test, $p = 0.0122$) but not PV-TrkB
546 hCKO mice ($p = 0.2892$). Error bars designate SEM. * $p < 0.05$; ** $p < 0.01$.

547


548

556 mice (f-h, l-n) (n = 12– 15 per group). (c) Wild-type mice decreased the error ratio during the sessions
557 (sessions, $F(7,128) = 4.905$, $p < 0.0001$), but there was no difference caused by the treatment (two-way
558 ANOVA, treatment, $F(1, 128) = 2.077$, $p = 0.3133$). Significant differences were found in pair-wise
559 comparisons between the 1st and last sessions in control mice (pairwise t-test, $p = 0.0031$) (d) and
560 fluoxetine water-treated mice ($p < 0.0001$). (e). Fluoxetine treatment reduced the error ratio during
561 sessions in PV-TrkB-hCKO mice (treatment, $F(1, 183) = 16.37$, $p < 0.0001$; sessions, $F(7, 183) = 9.462$,
562 $p < 0.0001$). There was a significant difference in the error ratio between the initial and the last sessions
563 in control (pairwise t-test, $p < 0.0001$) (g) and fluoxetine- ($p = 0.0001$) (h) treated mice. (i) In the reversal
564 phase, wild-type mice showed a significant effect in both sessions ($F(7, 208) = 4.212$, $p < 0.0002$) and
565 treatment ($F(1, 128) = 2.077$, $P = 0.0098$). There were significant differences between the error ratio in
566 the initial session and the last one in both control (pairwise t-test, $p = 0.0097$) (h) and fluoxetine treated
567 mice ($p = 0.0006$) (i). (l) In PV hTrkB cKO mice, fluoxetine treatment did not have an effect during
568 sessions ($F(1, 184) = 0.2608$, $p = 0.6102$). There was a significant difference in error ratios between 1st
569 and last session in control (pairwise t-test, $p = 0.0097$) (m) and fluoxetine treatment ($p = 0.0006$) (n).
570 Error bars designate SEM. * $p < 0.05$; ** $p < 0.01$.

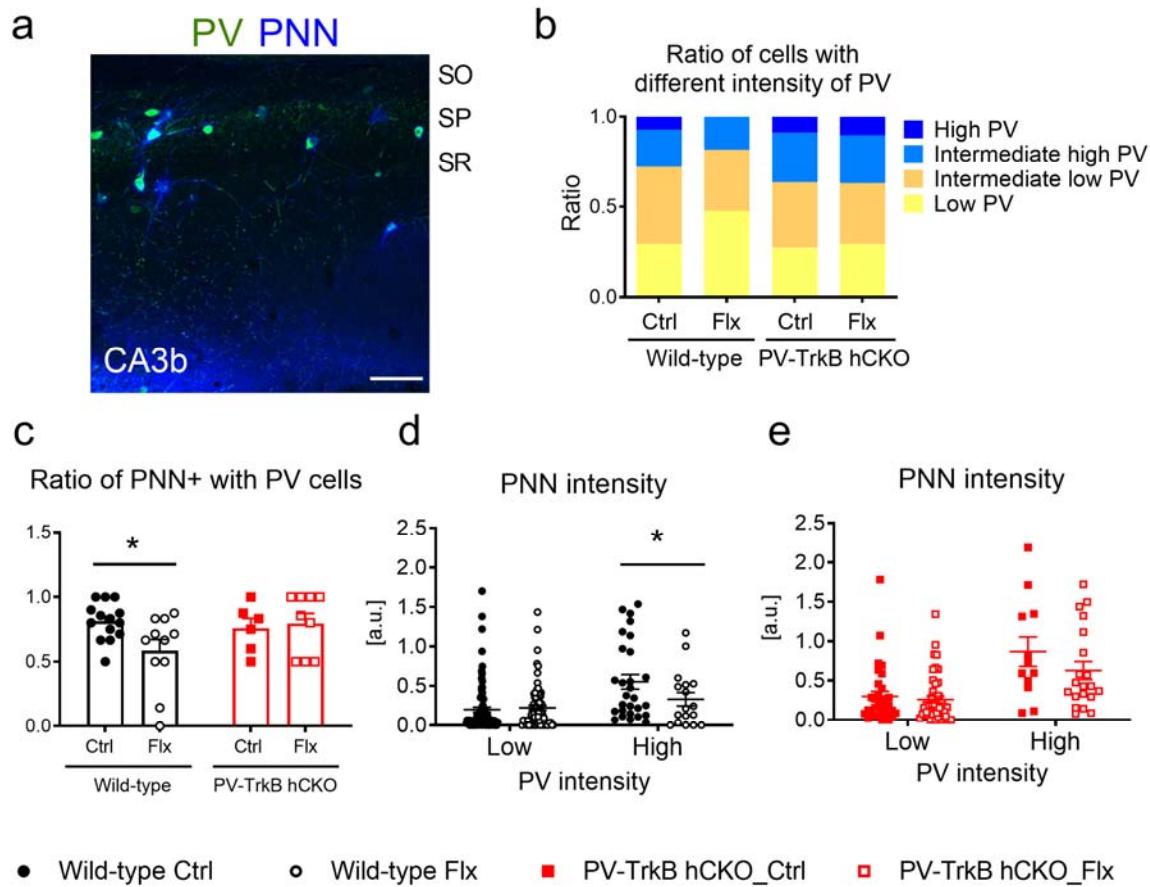
571


572

573

574 Fig. 3. Chronic treatment with fluoxetine enhances synaptic plasticity in the hippocampus. LTP
575 induction after chronic treatment with fluoxetine. LTP was significantly enhanced 45 min after tetanic
576 stimulation in wild-type mice treated with fluoxetine compared to control (Two-way ANOVA, treatment,
577 wild-type, $F (1, 414) = 50.20, P < 0.0001$) but not in PV-TrkB hCKO mice (treatment, $F (1, 491) =$
578 0.2324, $p = 0.6300$). Bars indicate mean \pm SEM.

579


580

581 Fig. 4. TRAP analysis of PV interneuron after chronic treatment with fluoxetine. (a) Ribosome-tagged
582 transgenic mice were treated with fluoxetine or control water for two weeks, and their hippocampi were
583 isolated and lysated. Ribosomes bound to mRNA were immunoprecipitated with beads coated with GFP-
584 antibody and the mRNA was purified for cDNA synthesis followed by next generation sequencing
585 (NGS). (b) Immunohistochemistry analysis with anti-PV antibody. Parvalbumin is co-localized with
586 GFP indicating that the cells expressing GFP-tag in ribosomes are PV-cells. Scale bars, 50 μ m.

587 (c) Heatmap of significant genes and pathways detected by GO analysis. C, chondroitin sulfate; H,

588 heparan sulfate.

589

590

591 Fig. 5. Chronic treatment with fluoxetine enhances PV plasticity in the hippocampus. (a-e) Image

592 analysis on PV and PNN expression in the dorsal hippocampus of control and fluoxetine-treated wild

593 type and PV-TrkB hCKO mice. (a) Representative image of PV and PNN staining. Immunostaining with

594 PV and PNN followed by intensity analysis on PV and PNN. SP, stratum pyramidale; SO, stratum oriens;

595 SR, stratum radiatum. Scale bar, 200 μ m. (b) Intensity analysis of PV expression in PV interneurons.

596 The ratio of high and intermediate-high PV was lower after fluoxetine treatment in wild-type mice, but

597 this difference was not observed in PV-TrkB hCKO mice. (c) Fluoxetine-treated wild-type mice have

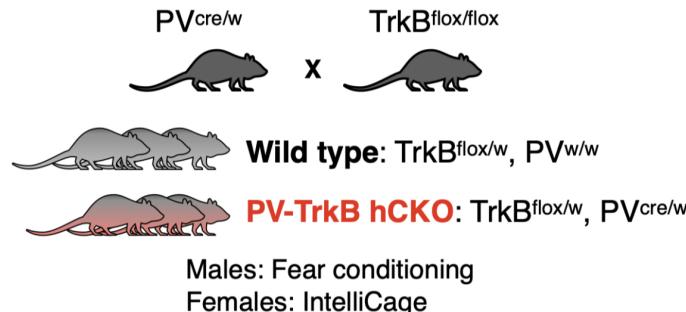
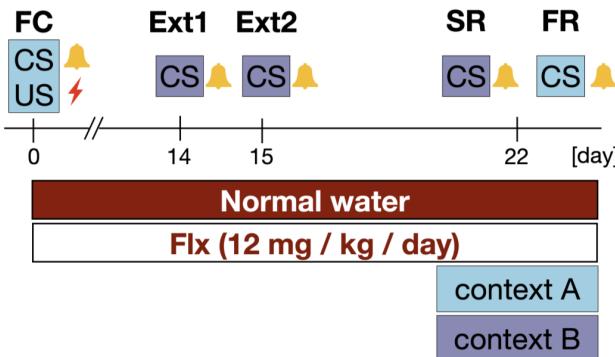
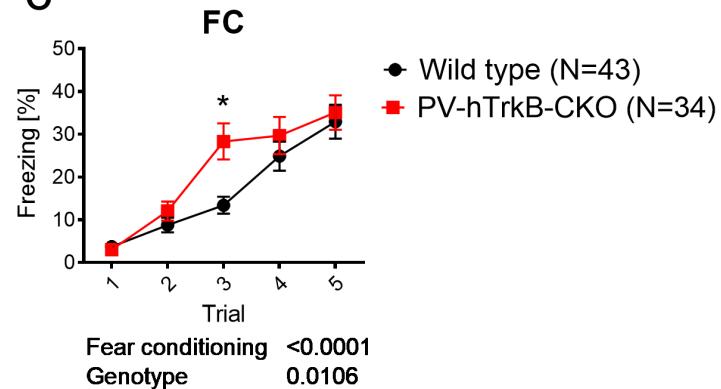
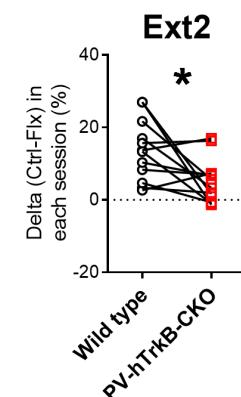
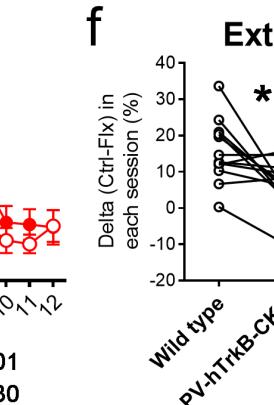
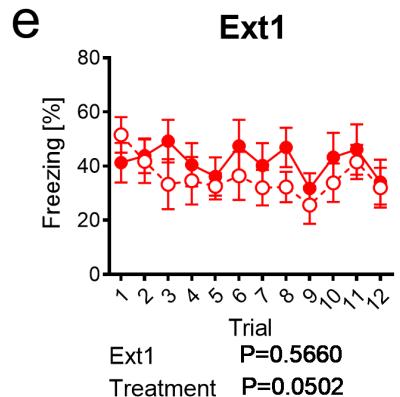
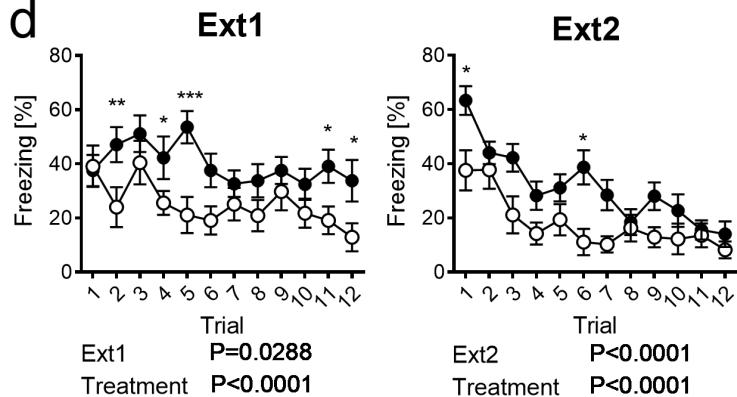
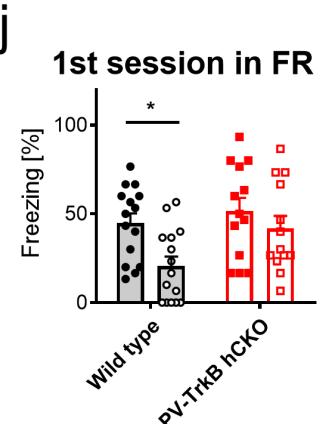
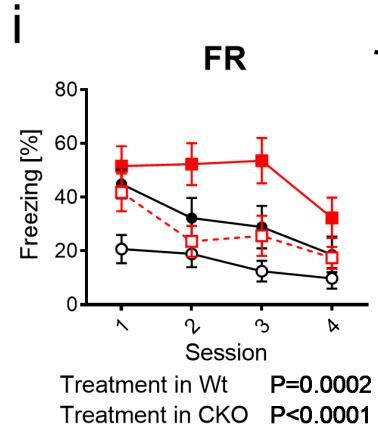
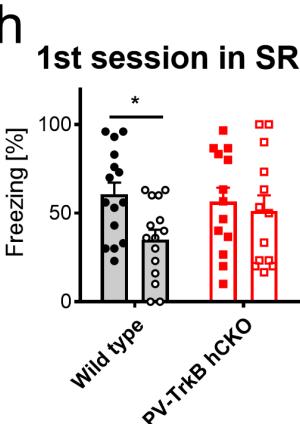
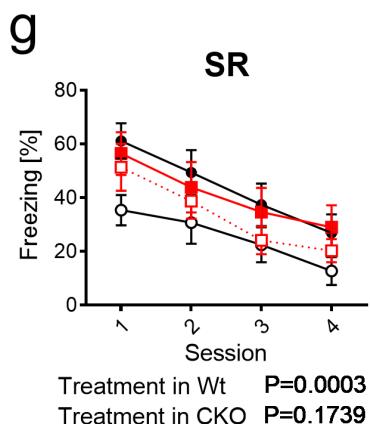
598 significantly lower percentages of PV interneurons also expressing PNNs, but this effect is blunted in

599 PV-TrkB hCKO mice (Fisher's LSD post-hoc test, control vs Flx: wild-type, $p = 0.0138$; CKO, $p =$

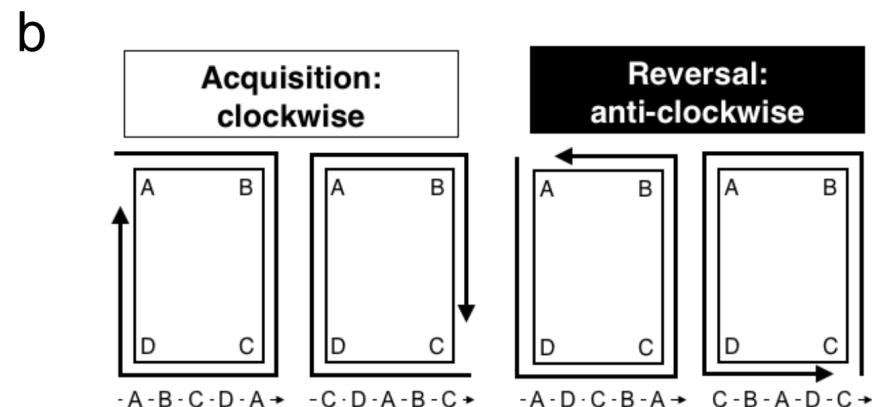
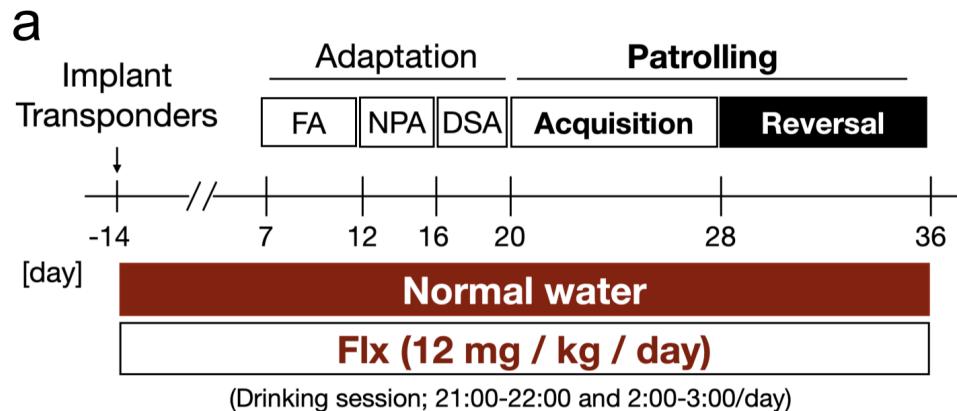
600 0.7571). (d, e) PNN intensity analysis in cells separated by PV-intensity. Fluoxetine treatment reduces

601 PNN intensities in high- (intermediate-high and high) PV expressing cells only in WT mice (two-way

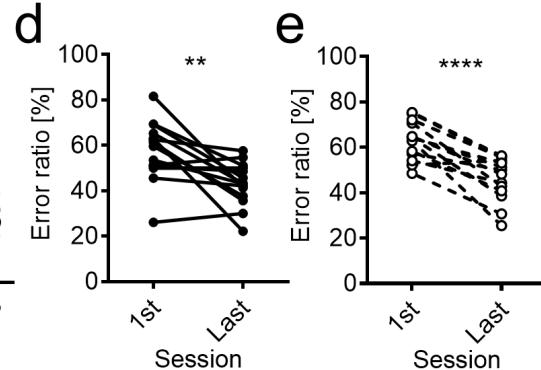
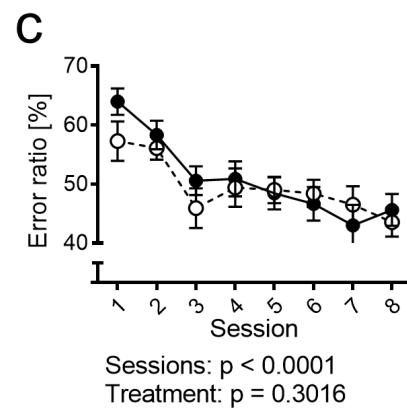
602 ANOVA, interaction between, $F (1, 208) = 4.785$, $P = 0.0298$, Fisher's LSD post hoc test, control vs Flx:












603 Low, $p = 0.6365$; High, $p = 0.0281$), but not in PV-TrkB hCKO mice (two-way ANOVA, interaction, F

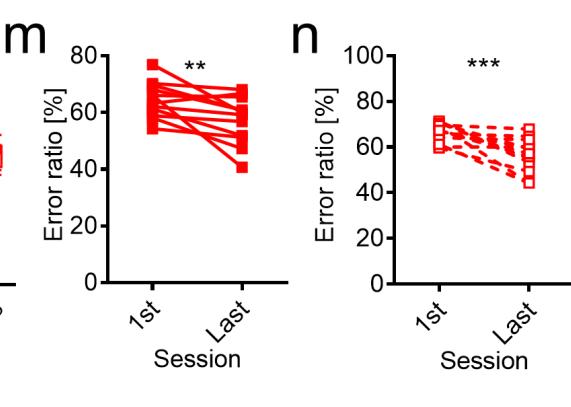
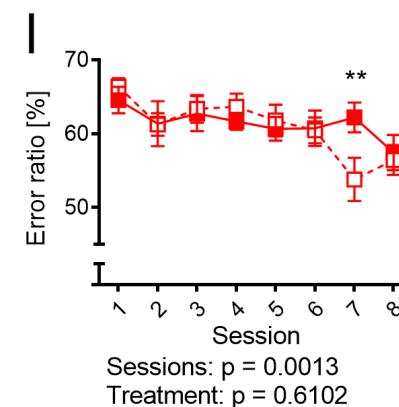
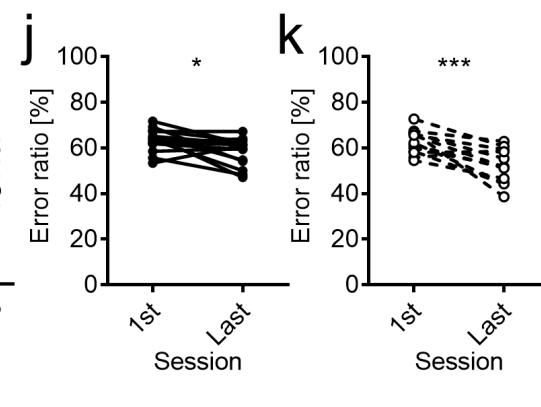
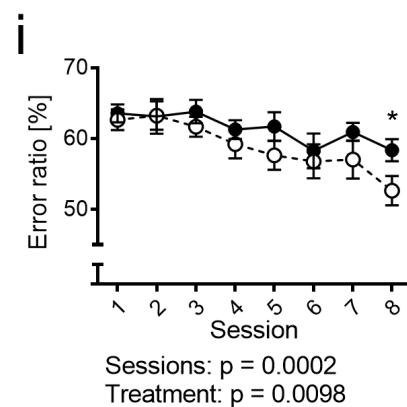
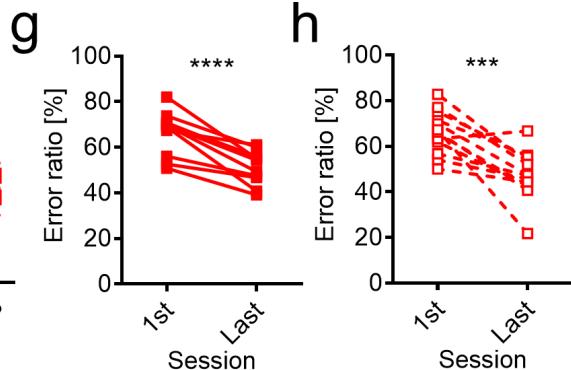
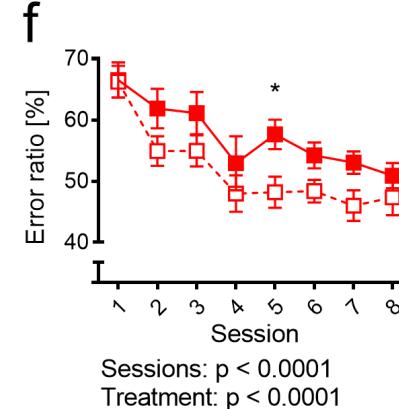
604 (1, 108) = 1.326, $P = 0.2520$, Fisher's LSD post hoc test, control vs Flx: Low, $p = 0.6722$; High, $p =$



605 0.1075). WT, control, low, $n = 88$; WT, Flx, low, $n = 79$; WT, control, high, $n = 28$; WT, co, high, 17;

606 CKO, control, low, $n = 32$; CKO, Flx, low, $n = 48$; CKO, control, high, $n = 12$; CKO, control, high, 20.

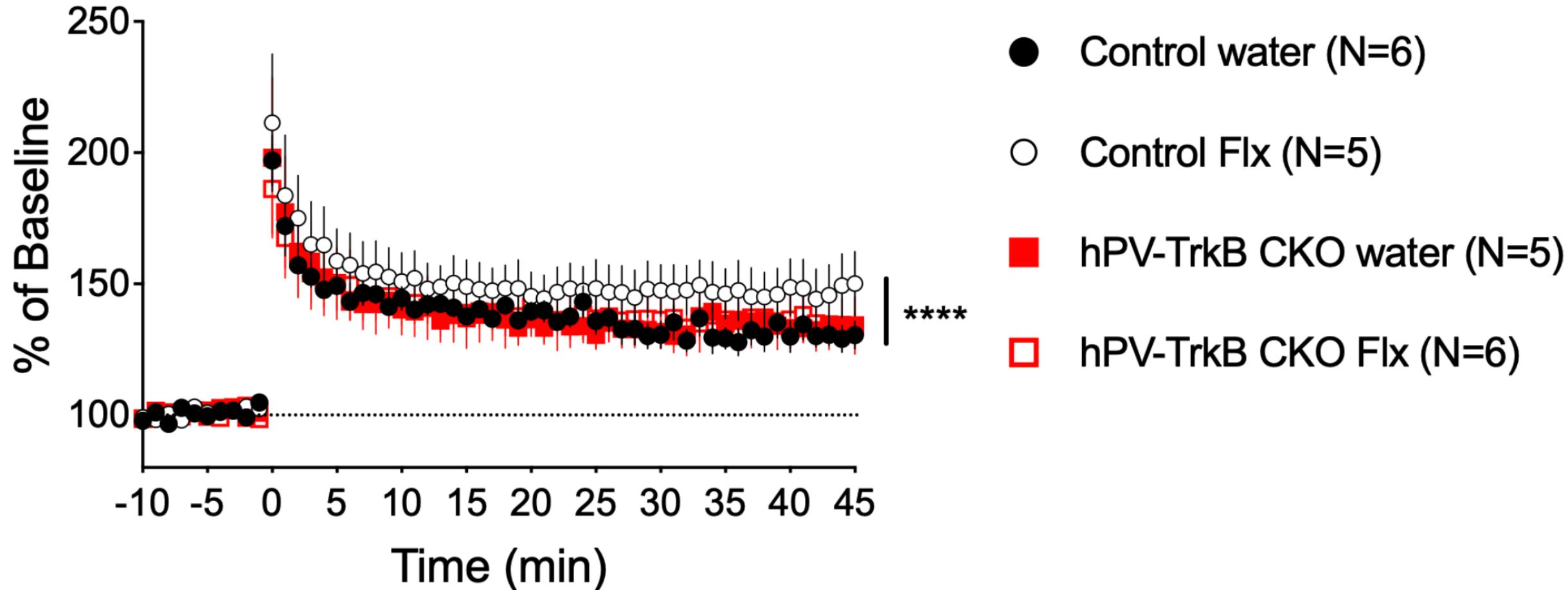


607 Bars indicate mean + SEM. * $p < 0.05$

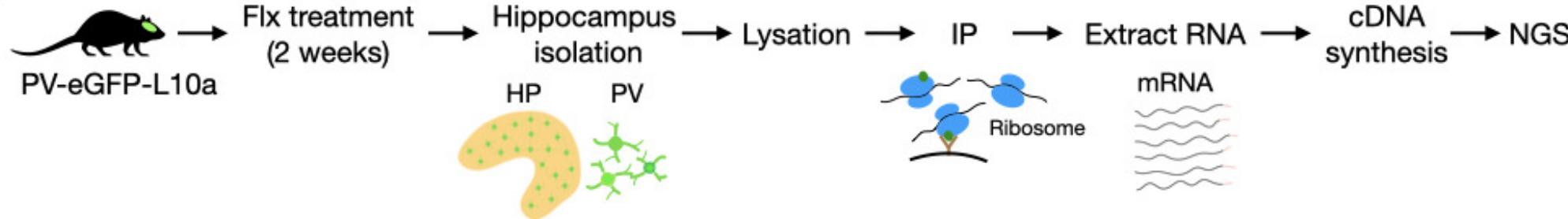
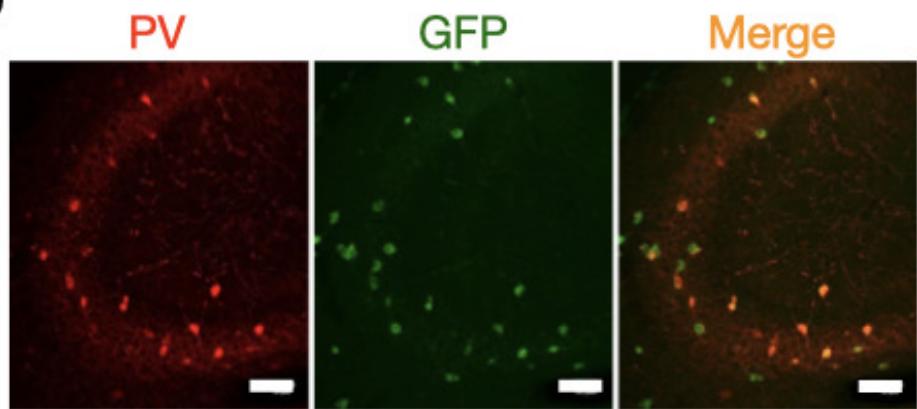
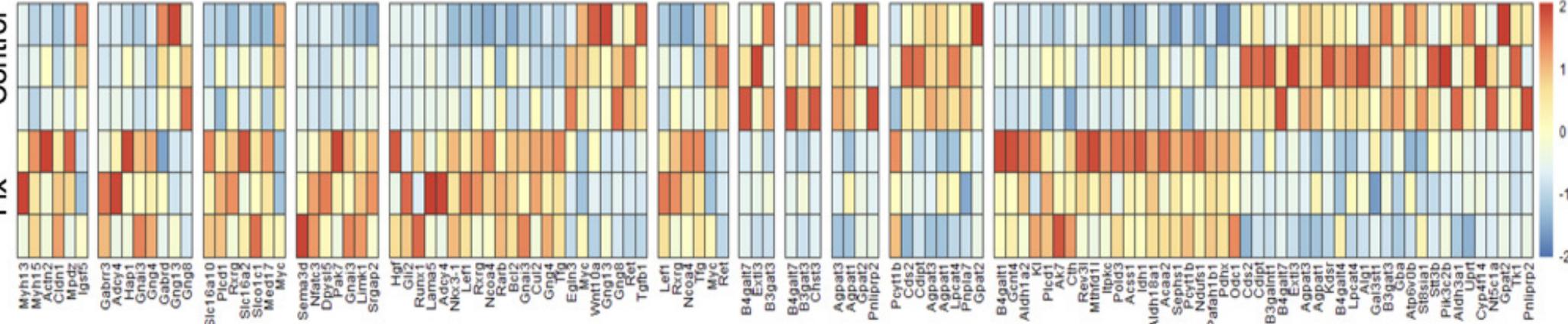
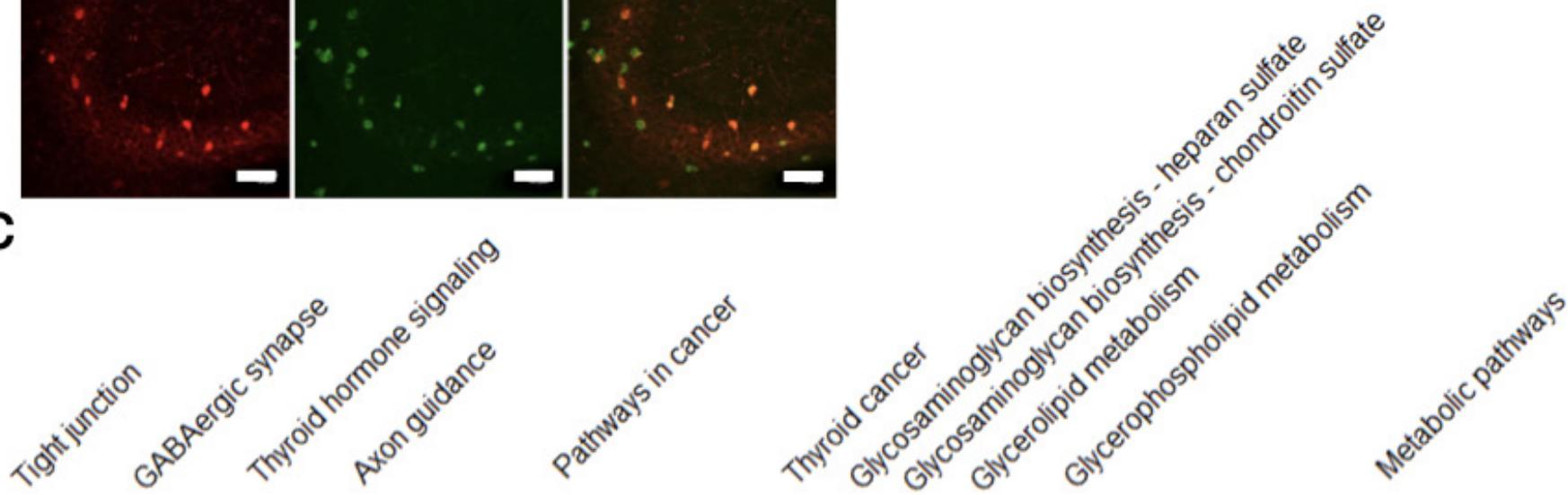
a**b****c****d****g**

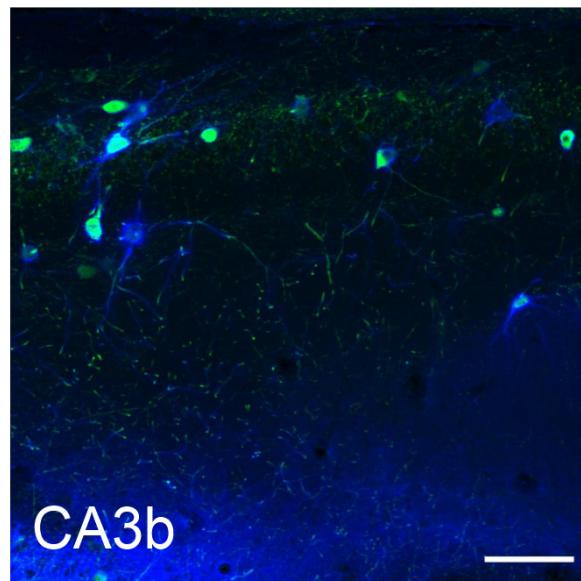
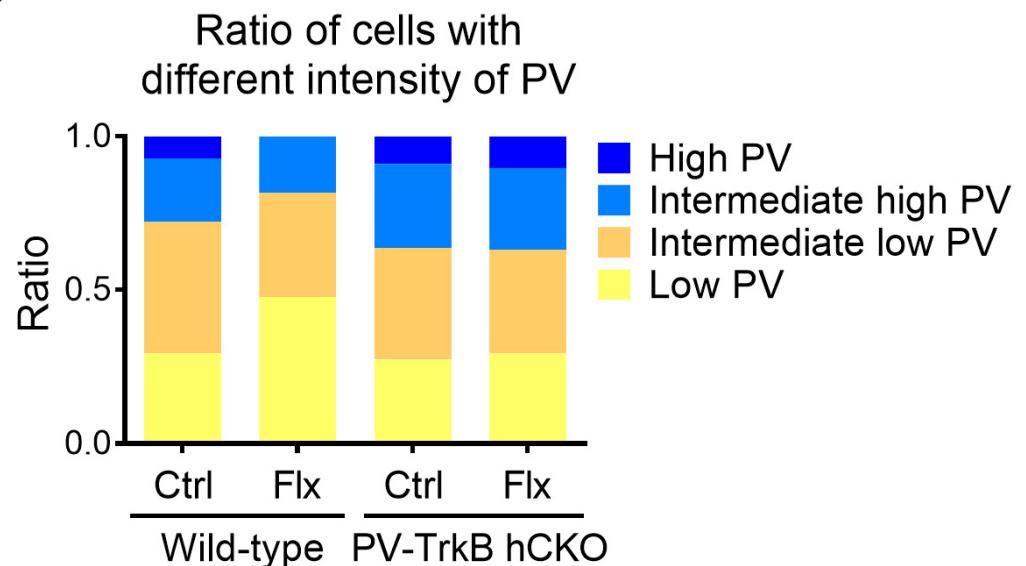






- Wild-type Normal (N=15)
- Wild-type Flx (N=15)
- PV-TrkB CKO Normal (N=13)
- PV-TrkB CKO Flx (N=13)

Wild-type

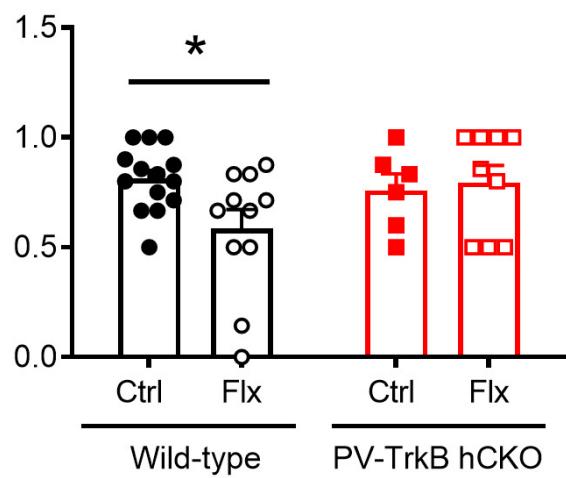
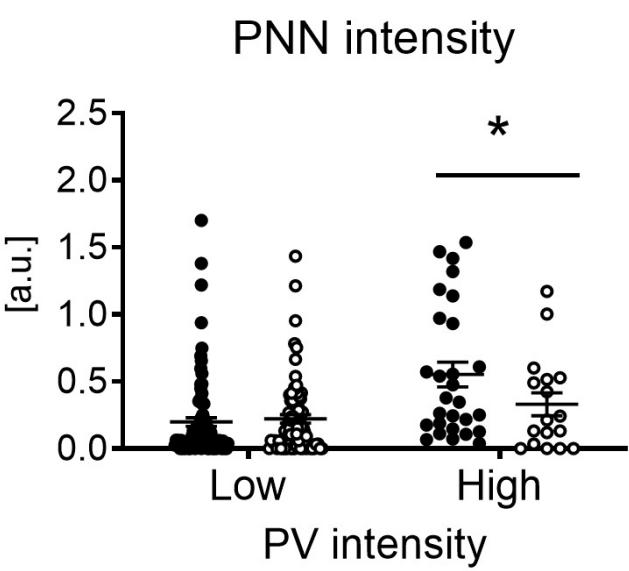
PV-TrkB hCKO

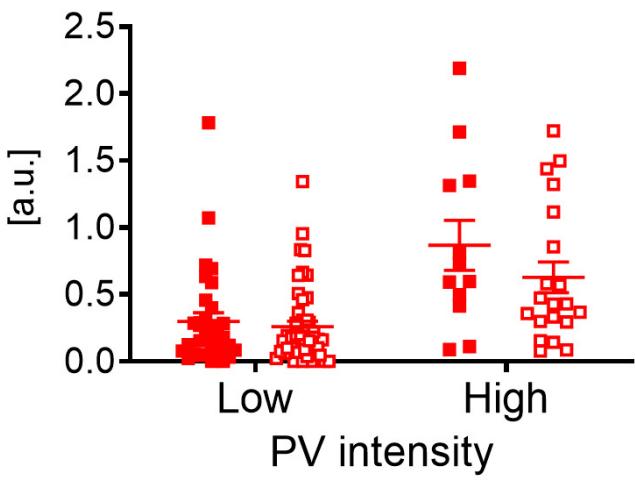






● Wild-type Ctrl (N=15)



○ Wild-type Flx (N=14)

■ PV-TrkB hCKO Ctrl (N=12)



□ PV-TrkB hCKO Flx (N=13)


a**b****c**

a**PV PNN****b****c**

Ratio of PNN+ with PV cells

d**e**

PNN intensity

● Wild-type Ctrl

○ Wild-type Flx

■ PV-TrkB hCKO_Ctrl

□ PV-TrkB hCKO_Flx