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Abstract

The paradigmatic tree model of hematopoiesis is increasingly recognized to be limited as it is
based on heterogeneous populations and largely inferred from non-homeostatic cell fate assays.
Here, we combine persistent labeling with time-series single-cell RNA-Seq to build the first real-
time, quantitative model of in vivo tissue dynamics for any mammalian organ. We couple
cascading single-cell expression patterns with dynamic changes in differentiation and growth
speeds. The resulting explicit linkage between single cell molecular states and cellular behavior
reveals widely varying self-renewal and differentiation properties across distinct lineages.
Transplanted stem cells show strong acceleration of neutrophil differentiation, illustrating how the
new model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from
snapshot measurements is akin to how a Kinetoscope allows sequential images to merge into a
movie. We posit that this approach is broadly applicable to empower single cell genomics to reveal

important tissue scale dynamics information.

Introduction

A continuous flow of cells replenishes blood cells throughout life to maintain homeostasis. This
flow originates from the hematopoietic stem cells (HSCs) and progresses through a complex
hierarchy of multipotent, bipotent and unipotent progenitors, together called hematopoietic stem
and progenitor cells (HSPCs). Decades of research have allowed to immunophenotypically
identify HSPCs and define their functionality, thus positioning them within the hematopoietic
hierarchy and establishing the 'hematopoietic tree model' (Eaves, 2015; Notta et al., 2016).

The hematopoietic tree, while undeniably useful, is a static and qualitative model of a highly
dynamic process. Previous work (Busch et al., 2015) paved the way to real-time modelling of
HSPC dynamics under native conditions. The study induced a persistent fluorescent reporter gene
within the HSC compartment and followed label propagation into downstream progenitor and
mature cells with flow cytometry. However, immunophenotyping has limited resolution, and
HSPC populations defined by flow cytometry are known to be functionally heterogeneous. This is
particularly evident within common myeloid progenitors (CMP) (Paul et al., 2015; Perié et al.,

2015) and lymphoid-primed multipotent progenitors (LMPP) (Klein et al., 2022; Nestorowa et al.,
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2016) as revealed by scRNA-Seq and transplantation experiments. Further high-throughput
scRNA-Seq studies charted putative gradual molecular transitions from HSCs toward 8 distinct
lineages (Dahlin et al., 2018) including specific stages of erythroid differentiation (Tusi et al.,
2018). More recently, lineage tracing and scRNA-Seq were combined to show that molecular
states captured by scRNA-Seq are predictive of progenitor fate potential when assessed in vitro
(Wang et al., 2022; Weinreb et al., 2020; Yeo et al., 2021), but gaining insight into single-cell fates

in vivo during homeostasis is more challenging (Pei et al., 2020).

While scRNA-Seq offers high-resolution, it is typically used to obtain snapshot measurements
lacking temporal information. Here, we combined scRNA-Seq with an inducible HSC-labelling
system allowing label-propagation analysis of the downstream progeny during steady-state
hematopoiesis. We measured the real-time dynamics of label accumulation across the stem and
progenitor cell landscape and built cellular flow models capturing self-renewal and differentiation
rates. We find that cell output is maintained via lineage-specific mechanisms. By taking advantage
of the available molecular information, we also construct continuous models to associate the gene
expression changes with cell behaviors such as increased proliferation or accelerated
differentiation, thus directly connecting tissue and cellular behavior with the underpinning layer
of molecular processes. Finally, we demonstrate that our reference model, unlike
immunophenotypic data, is transferable and applicable to different datasets. To showcase this, we
analyze transplanted stem cell progeny and pinpoint drastic upregulation of differentiation rates in

specific lineages.

Results

Hoxb5-Cref®?-Tomato reporter tracks HSC differentiation over time

To analyze the HSPC dynamics, we employed a heritable fluorescent label approach (based on
principles from (Busch et al., 2015)), in which an inducible HSC-specific CRE excises a STOP
cassette in Rosa26-LoxP-STOP-LoxP-tdTomato (R2655L-14Tomaio) reporter to permanently label
HSCs and the label expression is subsequently inherited by their downstream progeny. To achieve
this, we generated the Hoxb5¢*FRT2 mouse allele where the CRE-ERT2 protein is expressed from
the HSC-specific Hoxb5 gene (Figure 1A), following a similar strategy previously employed to
express mCherry from the Hoxb5 locus without affecting Hoxb5 expression (Chen et al., 2016).
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85  We next combined the Hoxb5¢FRT? allele with the R26SL-4Tomato reporter (Madisen et al., 2010)
86  to generate Hoxbh5CERT?; R2@LSL-tdTomato mice (for simplicity referred to as Hoxb5-Tom mice),
87  which allow for inducible labelling of HSCs in sifu at a specific time-point by tamoxifen
88  administration and tracking HSC progeny over time (Figure 1B-D). To validate this system, we
89  treated Hoxb5-Tom mice with tamoxifen and monitored tdTomato (Tom) expression in HSCs and
90 their subsequent progeny within the HSPC sub-populations in the bone marrow (BM) and
91  differentiated cell types in the peripheral blood (PB) at indicated intervals (Figure 1B-D, S1A-C).
92  Upon tamoxifen administration, we observed a specific labelling of the HSC compartment (with
93  the frequency of 1.8%), which over 2 months gradually accumulated in downstream cell
94  compartments (Figure 1C-D). Labelled differentiated cells are detectable in PB within 1-2 months
95  after labeling HSCs; with granulocytes and monocytes being the first emerging populations and T
96 and B cells appearing later. We observed stable labelling for at least 9 months after the treatment

97  (Figure 1C-D, S1A-B), indicating that the label is persistent and inert.

98  Computational inference of population dynamics relies on a simple principle (Figure 1E): as

99  heritable label propagates down from the label-rich upstream compartment it follows
100  differentiation, thus rapid transitions cause fast label equilibration and vice versa (see methods).
101  To benchmark our new model, we compared flow cytometry data obtained from tamoxifen-treated
102 Hoxb5-Tom mice with previously published results (Busch et al., 2015) of analogous label
103 propagation obtained with the Tie2-YFP mouse line. As shown in Figure 1F, our data are highly
104  consistent for both MPP/HSC and HPC-1/HSC relative abundances across the entire time range.
105  Altogether, we established a new mouse system for inducible, persistent labelling of HSC progeny

106  in the BM, thus unlocking our next goal - modelling of population dynamics.
107 A unified reference HSPC landscape with time-resolved differentiation

108  Having validated the HoxB5-Tom system, we designed a strategy to capture scRNA-Seq profiles
109  of cells traversing the HSPC landscape in real-time (Figure 2A). We harvested BM from
110  tamoxifen-treated mice at 9 time-points ranging between 3 days (providing just enough time for
111  Tom expression) and 269 days, when the label is mostly equilibrated. At each time-point we sorted
112 Lin cKit" or Lin"Scal* sub-population from the bone marrow, which contains all stem cells and a
113 broad view progenitor cells (Dahlin et al., 2018) (Figure S1D). To ensure accuracy and

114 reproducibility, we profiled multiple independent biological replicates for each time-point (36

4


https://doi.org/10.1101/2022.09.07.506735
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.506735; this version posted September 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

115  animals in total). While our focus was labelled Tom" cells, we also profiled Tom™ cells at each
116  time-point to obtain the background cell density. We generated a common reference landscape by
117  integrating all single-cell profiles followed by clustering and embedding in a UMAP projection
118  (Figure S2F). Clusters disjointed from the main landscape body (mostly mature cell types) and
119  those representing technical artifacts (e.g. doublets or dying cells) were excluded. The refined
120 landscape (>115,000 cells) served as a basis of our analysis (Figure 2B, unfiltered data in Figure

121  S2F,QG).

122 To place our data within the broader scope of hematopoietic research and extend its
123 interpretability, we provide multiple layers of annotation. The manual annotation (Dahlin et al.,
124 2018; Weinreb et al., 2020) uses lineage marker expression (Figure S2A,B) and HSC-score
125  (molecular signature of long-term repopulating HSCs (Hamey and Gottgens, 2019)) to highlight
126  the upstream cluster containing HSCs (Figure S2C) (cluster 0) and 8 terminal clusters (Figure 2E),
127  where clear expression of definitive markers is observed (Supplementary Table 1). To add more
128  functional information, we mapped external sScRNA-Seq datasets using our Cellproject package.
129  Firstly, we overlaid canonical immunophenotypic annotation (data from (Nestorowa et al., 2016))
130  comprising: highly purified LT-HSCs, multipotent progenitors (MPPs) 1 and 3, ST-HSCs,
131  granulocyte-monocyte progenitors (GMPs), LMPPs and megakaryocyte-erythroid progenitors
132 (MEPs) (Figure 2C,D, S4A,B). Secondly, we highlighted cell states associated with specific cell
133 fate outcomes based on in vitro lineage tracing experiments (Weinreb et al., 2020) (Figures 2G
134  and S4C). Importantly, the in vitro cell potency is broadly aligned with the manual cluster
135 annotation. Finally, we included information about the active/inactive HSC status under
136  proliferative challenge based on lineage tracing data from (Bowling et al., 2020) (Figure 2F).
137  Together, these annotations place cell clusters in the functional context, essential for interpretation

138  of the population dynamics models discussed below.

139  The HSPC landscape split by time-point shows clear propagation of labelled cells (Figure 2H,
140  quantification for all time-points is shown in Figure S3B), in agreement with the theory (Figure
141  1E). Certain areas (e.g. clusters 8 and 7) very quickly accumulate labelled cells, others are slower
142 (clusters 11 or 10) and some very slow (clusters 13 or 14). Eventually the label largely equilibrated,
143 as compared to the Tom™ population (Figure S3A). Importantly, cell populations defined in this

144  way are much more molecularly homogeneous, in contrast to conventional flow cytometry gates
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145  (Figure S4A,B) (Nestorowa et al., 2016; Paul et al., 2015; Rodriguez-Fraticelli et al., 2018). To
146  provide a quantitative description of population dynamics, we employed two types of models:
147  discrete and continuous, each built for specific purpose. The former captures dynamics across the
148  entire compartment and intuitively combines the old models of hematopoiesis with a new
149  quantitative view. It also serves as a necessary reference for the latter, a more advanced continuous
150  modelling approach, which focuses on specific trajectories, but provides cellular flux parameter
151  estimates for each single cell and thus directly connects single cell transcriptomic profiles with

152  tissue-scale cellular behavior.

153  Discrete model reveals HSPCs with lineage-specific patterns of self-renewal and

154 differentiation

155  To capture flow of cells through HSPC compartment in real time, we utilized the label propagation
156  principles to build a discrete model consisting of multiple, interconnected cell clusters (Figure 3A-
157  C). We explain two variables changing over time: initial labelling frequency (Tom™ cells) and size
158  (Tom cells) per cluster. The model considers two basic properties of each cluster: net proliferation
159  (difference between proliferation and death) and differentiation rates (ingoing and outgoing
160  transitions among clusters). Additionally, we introduce two derived parameters that are useful for
161 interpreting cell behavior (Figure 1D). Residence time, a metric of self-renewal, describes the time
162  required for the cluster to shrink by 63% (to 1/e of original size, where e is the Euler’s number) in
163 absence of any inputs. Finally, flux depicts the number of cells transported in a unit of time. We
164  limited the number of differentiation parameters by assuming that cells travel only between

165  adjacent clusters (i.e. with highest PAGA connectivities — Figure 3A, (Wolf et al., 2019)).

166  Of note, we observed changes in relative cluster size over-time, in particular a quick increase
167  (>50% in <20 days) in clusters 0, 7 and 8 and a coordinated decrease in other major clusters (Figure
168  S6), (Sanchez-Aguilera et al., 2014). Previous tamoxifen-based label propagation studies coupling
169  also observed a quick rise in ST-HSC, MPP2 and MPP3 total numbers (Figure S6B), but no
170  explanations were provided (Barile et al., 2020). Consistent with recovery from cell depletion
171  caused by tamoxifen interference with JAK/STAT signaling (Sanchez-Aguilera et al., 2014), this
172 pathway was most active in the depleted clusters 7, 8 in addition to cluster 0 (Figure S7H). To

173 assess how recovery from cell depletion may influence model parameters, we compared our main
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174  model with a bi-phasic fit which permits a switch in differentiation/proliferation rates between the
175  recovery phase and homeostasis (after 27 days), which shows that 14 out of 58 rates change (Figure
176 ~ S7D-G). We thus explain and account for a previously overlooked side-effect of using tamoxifen

177  for label induction.

178  We formulated our main model into a graph in Figures 3C and S7A, where node sizes are
179  proportional to the average cluster size, node color indicates self-renewal (or net proliferation in
180  Figure S7A) and arrows indicate cell flux (differentiation rate in Figure S7A). Interestingly,
181  differentiation rates do not correlate with similarities between gene expression states (Figures 3E,

182  S7B), indicating that inferring real-time dynamics requires temporal information.

183  Let us first consider cluster 0 as a single unit (grey box, Figure 3C), whose substructure we will
184  discuss in the next section. The compartment-wide view clearly shows lineage-specific dynamics
185  (Figure 3C). The definitive megakaryocyte progenitors emerge through a rapid transition via the
186  fast-proliferating cluster 8, which also more slowly generates erythroid cells (cluster 1). The
187  erythroid lineage is maintained by including additional stages with considerable self-renewal
188  (clusters 1 and 9) and proliferation (cluster 9), followed by fast differentiation between clusters 9
189  and 11. The myeloid progenitors flow from cluster 0 either into cluster 4 or via a shared route with
190 the erythroid and megakaryocytic progenitors in cluster 8, with gradually increasing differentiation
191  rates from cluster 2 onward. Thus, the myeloid branch similarly to the erythroid one, just like the
192  erythroid one, employs additional progenitor populations, albeit with lower proliferation rates

193 (Figure S7A).

194 By contrast the lymphoid trajectory shows low proliferation and is limited by slow transitions via
195  clusters 5 and 2 into cluster 14 (which overlaps mostly with a subset of MPP4 cells). Similarly
196  slow is the plasmacytoid dendritic cell (cluster 13, pDCs) differentiation through the lymphoid
197  cluster 14 and myeloid clusters 6 and 16. The emergence of mast cell, basophil and eosinophil
198  progenitors in the adult bone marrow is unclear (Hamey et al., 2021; Wu et al., 2022). Our results
199  reveal that basophil and mast cell progenitors (cluster 12) are continuously generated and originate
200  mostly by a transition from cluster 2. Furthermore, despite limited cell numbers, we observed some
201  label accumulation in eosinophils (cluster 17), primarily originating from neutrophil progenitors

202 (cluster 10).
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203  Interestingly, residence time (self-renewal) varies widely across the HSPC landscape, with
204  lineage-specific patterns (Figure 3C). As expected, cluster 0 contains the only perfectly self-
205  sustaining population; intermediate populations show an extensive range of residence times, from
206 just 2.5 days for Erythroid/Megakaryocytic progenitor (cluster 8), 11 days for
207  Monocyte/Granulocyte progenitors (cluster 2) and up to 53 days for the medial cluster 4. The latter
208  example falls close to the residence time previously estimated for MPPs (70 days)(Busch et al.,
209  2015) and highlights that progenitors can also show considerable self-renewal. Importantly, cells
210  incluster 8, 2 and 4 largely fall within the immunophenotypic CMP and MPP definitions (Figures
211  2C-D and S4A,B), indicating that these gates capture populations with vastly different dynamics.
212 We also note that among some intermediate clusters our model permits a degree of forward and
213 backward differentiation suggesting a balance (or oscillations) between the states. To conclude,
214  diverse hematopoietic progenitors exhibit widely different, lineage-dependent dynamics

215  illustrating the distinct mechanisms maintaining cell output.
216  The top compartment composition changes over time

217  The top cluster 0, based on the immunophenotype annotation (Figure 2C), contains virtually all
218  LT-HSC and a large subset of ST-HSC and MPP1 cells. The overall cluster size increases over
219  time (Figure S5C), following the expansion of ST-HSCs and MPP3s (Figure S6B) (Barile et al.,
220  2020). Surprisingly, the Hoxb5-Tom labelled cells within cluster 0 grow almost exponentially
221  (Figure S5B), which mirrors the behavior of Tie2-YFP labelled LT-HSCs (Barile et al., 2020) and
222 is consistent with the observation of dramatic expansion of Hoxb5-, Tie2- or Fgd5-labelled cells
223 in ageing animals (Zhang et al., 2020). This suggests that Hoxb5 and Tie2 systems mark, in
224 addition to the canonically quiescent LT-HSCs, a subset of stem cells with high self-renewal or

225  proliferation capacity.

226  To provide insight into cluster 0 sub-structure, we tested multiple models and put forward a
227  potential explanation, which assumes a logistic growth for cluster 0 and three sub-clusters within
228  in it: a top, perfectly self-renewing cluster Oa, megakaryocyte & myeloid-biased cluster Ob and
229  multipotent Oc. We constrained cluster Oa size and differentiation rate to match previously reported
230  LT-HSC numbers but left clusters Ob and Oc sizes unconstrained. Cluster Oc remains stable over
231  time but it proliferates quickly and feeds both downstream progenitors and cluster Ob, which in

232 turn grows over time (Figure S5D). Hence, the flux between clusters Ob and 8 increases with mouse


https://doi.org/10.1101/2022.09.07.506735
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.506735; this version posted September 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

233 age. This is in line with the increased myeloid output (Benz et al., 2012; Muller-Sieburg et al.,
234 2004) and relative proportion of megakaryocyte-biased and myeloid-biased HSCs in aged animals
235  (Yamamoto et al., 2018). Of note, cluster Ob shows high self-renewal (residence time of 180 days),
236  consistent with high repopulation potential of lineage-biased HSCs (Yamamoto et al., 2018).
237  Altogether, our discrete model in addition to faithful recapitulation of cell flux through the HSPC

238  compartment also provides a possible explanation of ageing-associated changes in HSC behavior.

239  Continuous model of hematopoiesis connects dynamics of gene expression with

240 cell behavior

241  Unlike immunophenotyping, scRNA-Seq contains transcriptome-wide profiles for each cell.
242 While the discrete model provides compartment-wide dynamics, its utility for gene expression
243 analysis is limited. To address this issue, we employed a continuous model based on the
244 Pseudodynamics framework (Fischer et al., 2019). For tractability, we considered one lineage at a
245  time, based on cells with highest fate probabilities towards each lineage (Lange et al., 2022; Setty
246  etal., 2019)(Figure 4A,B, S8A,B, S11).

247  The continuous model assigns differentiation and net proliferation rates to each cell (Figure 4A)
248 by solving partial differential equations describing cell densities along pseudotime over real-time.
249  Hence, model parameters and gene expression share a common pseudotime (and real-time) axis,
250  enabling direct comparison. Of particular interest are states (i.e. pseudotime ranges) with changes
251  in proliferation or differentiation rates. An increase in proliferation rates indicates an expansion

252  stage, whereas a rise in differentiation rates marks a potentially irreversible molecular transition.

253  We set out to analyze gene expression dynamics occurring at such changes in cell behavior. For
254  brevity we focus on the megakaryocyte and neutrophil trajectories but also provide analogous
255  analyses for erythroid and monocytic/dendritic lineages (Figures S8,S9). As shown in Figure 4A,C
256  megakaryocyte progenitors show characteristic changes in growth and differentiation rates. Cells
257  rapidly increase their net proliferation early on, ahead of the peak in differentiation and around the
258  stage where Pf4 (megakaryocyte marker) mRNA becomes detectable. In this growth phase, we
259  identified 170 dynamically expressed genes (similar analysis of the differentiation phase in Figure
260  S8C-D) with distinct patterns along pseudotime (Figure 4C-D). These genes are strongly enriched

261  for cell growth and proliferation genes with almost all of them showing an upward trend in the
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262  relevant pseudotime range. This serves as a proof of principle, as the model based solely on total

263  cell numbers, predicts the growth stage matching the respective gene signature.

264  While following the neutrophil differentiation kinetics (Figure 4B,E), we found gradually
265 increasing differentiation rates (blue line) accompanied by a complex pattern of gene expression.
266  Indeed, we observed two phases of neutrophil-affiliated gene expression (Figure 4F), with Cebpe,
267  Cst7, Elane, Fcgr3, and Gfil appearing almost simultaneously at the onset of differentiation, while
268  Clec4a2, Wfdc21, S100a8 increasing at different intervals later. To gain insight into potential
269  mechanisms regulating the process, we scrutinized transcription factors with dynamic expression
270 along the trajectory (Figure S9A) and classified them into 4 groups based on their distinct
271  expression patterns. Group 2 (Figure 4F) largely mirrored the expression of early neutrophil
272 markers described above, and reassuringly contained the Gfil factor, a key determinant of the
273 neutrophil fate (Olsson et al., 2016). Group 3 (Figure S9B) contained factors with the highest
274  expression in the most immature HSPCs (e.g. Gata2, HIf, MeisI) and showed early and nearly
275  synchronous decay in expression, suggesting involvement in self-renewal. Finally, Group 1
276  (Figure 4F) TFs exhibit unique patterns of expression with peaks at different stages, all of which
277  ultimately decaying as late neutrophil markers appear. These contain multiple TFs associated with
278  specific lineages such as: Irf8 (Monocyte/DC fate (Olsson et al., 2016)), Aff3 (lymphoid/B cells
279  (Ma and Staudt, 1996)), Dachl (myeloid (Amann-Zalcenstein et al., 2020)), Hmga2 (myeloid,
280  erythroid, megakaryocytic (Kumar et al., 2019), Pou2f2 (lymphoid/B cells (Novershtern et al.,
281  2011) or are important for HSPC self-renewal, including 7kzf2 (Park et al., 2019) or Ssbp2 (Li et
282  al., 2014). Thus, our analysis indicates that progenitors exhibit transient expression of major
283 lineage determinants at specific differentiation stages on their way to becoming neutrophils (see
284  Gfil, Flt3, Irf8 in Figure S9D,E). Early accumulation of these factors is correlated with increased
285  differentiation rate but eventually a single programme takes over and accelerates the differentiation
286  even further. To conclude, the continuous model unlocks the access to full single cell transcriptome
287  data, and thus enables integrated analysis of cellular and molecular dynamics, revealing new

288  mechanistic insights into cell behavior during differentiation.

10
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289  HSPC models simulate cell journeys in real-time consistent with basic

290 properties of hematopoiesis

291  Mathematical models combined with our new datasets offer unique prediction capabilities
292  allowing us to unravel fundamental facets of hematopoiesis. Specifically, we focused on
293 computing cell journeys in real-time and consequences of cluster ablation. Firstly, we estimate the
294  ‘average journey times' with the discrete model. We placed a single cell in cluster 0 and computed
295  the average time required to accumulate one cell for each target cluster. As shown in Figures 3F
296  and S7C, time required to reach terminal population varies widely between lineages. For instance,
297  reaching Meg progenitors (cluster 7) requires 27 days, neutrophil progenitors (cluster 10) or late
298  erythroid progenitors (cluster 11) >80 days and finally producing pDCs takes about 150 days.
299  Secondly, we predict what would happen if, under normal conditions, the self-renewing cluster 0
300 was ablated. As expected, without cluster 0 input, downstream cluster sizes would gradually
301  decline over time (Figure 3G), due to limited self-renewal of intermediate progenitors. As we
302  described above, progenitor self-renewal is lineage-specific, hence corresponding clusters wane at
303  different rates, with megakaryocyte progenitors depleted to 50% after 2-3 days, whereas lymphoid

304  progenitors are maintained for >50 days.

305  Altogether, the hierarchy revealed by our model is consistent with current hematopoiesis research
306 (Eaves, 2015; Rodriguez-Fraticelli et al., 2018; Tusi et al.,, 2018; Weinreb et al., 2020).
307  Furthermore our model estimates lead to predictions that agree with basic properties of
308 hematopoiesis inferred from transplantation (Notta et al., 2016; Rodriguez-Fraticelli et al., 2018)
309  or cell culture (Notta et al., 2016; Weinreb et al., 2020) experiments such as the order of lineage
310 emergence. The time-frame of the process is expectedly much longer but is compatible with
311  previous studies of HSPC dynamics in the native context (Busch et al., 2015). This important
312 validation demonstrates that our completely new approach is anchored firmly in the long tradition
313 of hematopoiesis research, yet at the same time produces profound new insights, and unlocks

314  previously impossible means of performing truly quantitative comparisons.

315 Integrative model resolves effects of transplantation HSPC dynamics

316  Our models serve as a reference framework for native hematopoiesis, uniquely capable of

317  transferring information across experiments and systems. To demonstrate this utility, we analyzed
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318  previously published data (Dong et al., 2020) using scRNA-Seq to track the progeny of highly-
319  purified HSCs in transplanted animals over time (Figure 5A). After integrating the scRNA-Seq
320  profiles into our reference landscape (Figure 5B-F), we derived cell frequencies per cluster at day
321 3, and used the discrete model to predict the cell abundance expected under 'normal' conditions
322 (Figures 5 and S10). While some general features match normal hematopoiesis, for instance
323  megakaryocyte progenitors being the first emerging lineage, it is clear that, under transplantation
324  conditions, cells differentiate much faster in most directions, particularly towards the neutrophil
325  fate (Figure 5G, cluster 10). The erythroid lineage behaves differently; while early megakaryocyte
326  and erythrocyte differentiation is accelerated upon transplantation (Figure 5G, cluster 8), late
327  erythroid progenitor cell differentiation is stalled, compared to the steady-state counterparts
328  (Figure 5G, cluster 11). In conclusion, we demonstrated that our model can be easily applied to
329  other datasets, and provide quantitative predictions and interpretation, which would not be

330 otherwise available from static measurements alone.

331  Discussion

332 Quantitative models describing cell differentiation (e.g. Waddington landscape) have been
333 conceptualized decades ago (Waddington, 1957). Yet, we have barely progressed beyond static
334  and qualitative abstractions of hematopoiesis. Here, we report a major effort which has allowed us
335 to add real time to single-cell transcriptomics data. Analogously to the moving images in a
336  Kinetoscope, our approach uses snapshots of differentiation to reconstruct the cellular flow
337  between single-cell states within the bone marrow. Internally, our model describes cell behavior
338 as a function of self-renewal and differentiation rate parameters, which in turn translate into the
339  shape of a Waddington-like landscape (Figure 6). The discrete model approximates the landscape
340  with a set of pre-defined platforms connected with slides, whereas the continuous model follows
341 the shape for all observed states (here: single cells). Differentiation rate is analogous to the slope
342  of the valley connecting two states, with steeper slopes indicating faster transition. In turn, stable
343  states have little or no downward slope and combined with proliferation constitute areas of high

344  self-renewal - these can be imagined as flat areas in the landscape (Figure 1G).

345  The cellular context is crucial for understanding the differentiation rates and cell fate. CMPs have

346  been proposed as an intermediate progenitor population with combined erythroid, megakaryocytic,
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347  neutrophilic and monocytic potential (Akashi et al., 2000). However, later studies reported that the
348  majority of CMPs are transcriptionally and epigenetically primed towards specific lineages (Paul
349 et al., 2015), accompanied by lineage bias and mostly unipotent output (Perié et al., 2015) in
350 transplantation cell fate assay. Importantly, transplantation, as we show in this work, is associated
351  with greatly increased differentiation rates, most likely due to high proliferative demand, which if
352  induced by 5-FU treatment also causes accelerated differentiation (Busch et al., 2015). In fact, cell
353  fate assays performed in media containing a range of differentiation-supporting cytokines, rarely
354  show combined megakaryocyte, erythroid, granulocyte and monocyte output, as demonstrated by
355  (Akashietal., 2000) and (Weinreb et al., 2020). Instead, if cells are given an opportunity to expand
356  (forapprox. 3 divisions) under cytokine-restricted conditions (SCF, IL-11, TPO only) >50% CMPs
357  are capable of generating multipotent output in secondary assays (Akashi et al., 2000). The same
358  argument applies to the LMPP population, which was originally reported as consisting mostly of
359  multi-potent cells based on analogous two-phase culture assays (Adolfsson et al., 2005) and later
360  described to produce mostly unilineage output in transplantation assays (Naik et al., 2013). Our
361  model suggests that the clusters 8, 4, 5 (largely overlapping with CMPs) transition slowly among
362  each other and particularly in case of cluster 8 and 4 both directions are permitted, indicating that
363 these states may exist in balance. Thus, strong differentiation conditions (transplantation or
364  differentiating media) are likely to simply not provide enough time for cells to 'explore' the
365  multipotent progenitor space. Moreover, if a progenitor cell does not divide before being channeled
366  down a particular lineage, alternative fates can never be realized. Further work will be required to
367  Dbetter resolve the HSC sub-populations (in cluster 0). We consider the tentative sub-structure
368 provided here as a useful first step in this endeavor, as it fits both our data and experimental
369 evidence of HSC behavior in ageing mice (Barile et al., 2020; Busch et al., 2015; Yamamoto et
370  al., 2018; Zhang et al., 2020).

371  We fully leverage the scRNA-Seq approach to vastly extend our model’s applicability. To ensure
372  accessibility and interpretability for wide audience we integrated published annotation from many
373  sources. This places our unified landscape (and its sub-populations) in the biological context of
374  previous immunophenotyping and lineage tracing experiments. Moreover, static cell properties
375  (cluster, pseudotime) and model parameters (differentiation rates, self-renewal) are transferable.
376  As demonstrated in Figure 5, new time-course sScCRNA-Seq data can be readily incorporated into

377  our landscape, while the model highlight changes in cell differentiation rates in context of cell
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378 transplantation. Even with snapshot data our model can be used to simulate what changes in cell

379  dynamic parameters could underlie an observed difference in cell abundance between conditions.

380  Differentiation and growth involve coordinated up- and down-regulation of thousands of genes,
381  where it remains unknown for the vast majority of those genes whether and if so, how, they play
382 arole in controlling cell behavior. To access the relevant molecular states with high precision, we
383  introduce the first continuous model of native hematopoiesis which includes per-cell growth and
384  differentiation rates, thus providing a direct comparison between cellular behavior and underlying
385  gene expression. We observed complex, sequential gene expression pattern, some of which overlap
386  with increasing differentiation rates, suggesting irreversible molecular changes. Specifically, we
387  show that neutrophil differentiation is coupled with expression of multiple lineage determinants
388  (Irf8, Flt3, Pou2f2, Gfil) followed by a single programme taking over and a further increase in
389  differentiation.

390  Our work shifts the paradigm from qualitative models with limited predictive capabilities to
391  integrative and quantitative models. The latter are highly transferable and thus key to providing
392  insight into human hematopoiesis, where experimental options are limited. Recently demonstrated
393 scRNA-Seq information transfer across species (Lotfollahi et al., 2019, 2022; Welch et al., 2019)
394  will potentially enable mapping HSPC dynamics onto human counterparts. Self-renewal and
395  differentiation capacities are particularly relevant to leukemia research, which, in most cases,
396  struggles with identifying cell types of cancer origin. As we show here and supported by previous
397  studies (Busch et al., 2015; Takahashi et al., 2021), progenitors can also operate close to self-
398 renewal and a small proliferative advantage may be sufficient to immortalize them. Finally,
399  population dynamic models are universally applicable across biological fields, as adult tissues are
400  commonly replenished from their own stem cell pools (Goodell et al., 2015). To instruct such
401  future endeavours, we demonstrated how to build a model connecting high-resolution molecular

402  information with tissue-scale cell behavior.

403 Methods

404 Data and code availability

405 *  All sequencing data has been deposited on GEO under accession number: GSE207412.
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406 *  Cellproject package is available through Github (https://github.com/Iwo-K/cellproject).

407  Hoxb5¢ERT2 mouse line

408  The Hoxb5*ERT? gllele was generated using CRISPR-Cas9 gene editing technology employing
409  fertilized 1-cell zygotes on the BOCBAF1/Crl genetic background. We injected a single 15 ng/ul
410  sgRNA (tcctecggatgggctca) (Chen et al., 2016) together with 25 ng/ul CAS9 mRNA and 17.5 ng/ul
411  single strand donor DNA encoding the P2A-CRE-ERT2 protein flanked by 70 nucleotides of
412  homology arms (Supplementary Table 2). The FO offspring was screened by PCR and Sanger
413 sequencing. The Hoxb5“*ERT? line was established from one founder animal and back-crossed
414  several times to the C57BL/6N genetic background. Mice were genotyped by PCR using primers
415  detailed in Supplementary Table 2.

416 Induction of reporter gene expression by tamoxifen

417  Tamoxifen (1g; Sigma T5648) was dissolved in 10 mL absolute ethanol and 90 mL corn oil (Sigma
418  (C8267) at 37°C. Aliquots of tamoxifen (10 mg/mL) were stored at -20 °C. Mice were injected
419  intraperitoneally (i.p.) with tamoxifen at 100 mg/kg body weight for 7 days. Hoxb5-Tom mice
420  were injected with equivalent volume of corn oil to confirm no background or tamoxifen-induced
421  changes in the reporter strain alone. Non-injected Hoxb5-Tom mice were also analysed to

422  determine whether any labelling was present in the absence of induction.

423 Flow cytometry

424 At end point analyses, the fraction of Tom" cells was determined in various hematopoietic
425  compartments of BM, PB, spleens, thymi and lymph nodes. Cells from those tissues were prepared

426  and analyzed as described previously (Lawson et al., 2021; Mapperley et al., 2021).

427  For HSC and progenitor cell analyses, unfractionated BM cells were incubated with Fc block (BD
428  Pharmigen 553141), followed by biotin-conjugated anti-lineage marker antibodies (CD4
429  (Biolegend 553649), CD5 (Biolegend 553019), CD8a (Biolegend 553029), CD11b (Biolegend
430  553309), B220 (Biolegend 553086), Grl (Biolegend 553125) and Ter119 (Biolegend 553672)),
431  cKit-BV711 (Biolegend 105835), Scal-APC/Cy7 (Biolegend 108126), CD48-APC (Biolegend
432 103411) and CD150-PE/Cy7 (Biolegend 115914) antibodies. Biotin-conjugated antibodies were
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433 then stained with Pacific blue-conjugated streptavidin (Biolegend 405225). DAPI (BD Pharmigen
434  564907) was used for dead cell exclusion.

435  For analyses of differentiated cells in the BM, cell suspensions were stained with B220-APC
436  (Biolegend103212) and CD19-APC/Cy7 (Biolegend 115529) antibodies for B cells, CD11b-PB
437  (Biolegend 101224) and Grl1-PE/Cy7 (Biolegend 108416) for myeloid cells and Ter119-FITC
438  (Biolegend 116206) for erythroid cells.

439  For analyses of differentiated cells in PB, spleen and lymph node, myeloid cells were stained as
440 above for BM cells, T cells with CD8a-APC (Biolegend 100712) and CD4-APC (Biolegend
441  100411) antibodies, and CD19-APC/Cy7 (Biolegend 1155290) antibodies were used to detect B
442 cells.

443  Cell suspensions from thymus were incubated with the biotin-conjugated anti-lineage marker
444  antibodies described above together with CD4-APC (Biolegend 100411), CD8b-APC/Cy7
445  (Biolegend 126620), CD25-PB (Biolegend 102022) and CD44-PE/Cy7 (Biolegend 103030)
446  antibodies. Biotin-conjugated antibodies were then stained with PerCP-conjugated streptavidin

447  (Biolegend 405213). Flow cytometry analyses were performed using LSRFortessa (BD).

448

449  Cell isolation for the scRNA-Seq experiments

450  All steps in this section (unless otherwise indicated) were performed on ice, and centrifugation
451  steps performed at 300g, 4°C for 5 min. 8-12 weeks old mice carrying the Hoxb5-Cre and the
452  Rosa26-LoxP-STOP-LoxP-tdTomato constructs were treated with 7 daily injections of tamoxifen
453  (as described above) and sacrificed at indicated time-points. Bone marrow cells were extracted
454  from ilia, tibiae and femora by grinding with mortar and pestle in PBS supplemented with 2%
455  Fetal Bovine Serum (cell buffer). The suspension was filtered through a 50um filter, centrifuged
456  and resuspended in 3 ml of cell buffer. Red blood cells were removed using the ammonium
457  chloride solution: 5 ml of 0.8% Ammonium Chloride (StemCell Tech. 07800) was added to the
458  suspension and incubated for 10 min with intermittent mixing. Afterwards cells were diluted with
459 7 ml of cell buffer, centrifuged and resuspended in 1 ml of cell buffer. Subsequently, lineage
460  depletion was performed as follows: added 20 pl of the EasySep mouse hematopoietic progenitor
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461  cell isolation cocktail (Stem Cell Technologies 19856), incubated for 15 min, added 30 pl magnetic
462  particles, incubated for 10 min, added 1.5 ml of cell buffer and placed tubes in a magnet, incubated
463  for 3 min at room temperature and eluted cells twice (with additional 2.5 ml of cell buffer).
464  Afterwards, cells were centrifuged, resuspended in 200 pl of cell buffer and stained with the
465  antibody panel as follows: antibody mix was added, cells were incubated for 30 min, washed with
466 2 ml of cell buffer, centrifuged, resuspended in 200 pl cell buffer. For the secondary staining
467  Streptavidin-BV510 was added, cells were washed with 2 ml of cell buffer, centrifuged, and
468  resuspended in 1000 pl of cell buffer supplemented with 7AAD. Afterwards cells were sorted with
469  BD influx sorter into either 96 well plates containing 2.3 pl lysis buffer (for the Smart-Seq2
470  protocol) or 100 ul of PBS with 0.04% BSA in eppendorf tubes (‘droplet buffer') when used for
471  the 10x Genomics scRNA-Seq protocol. The Smart-Seq?2 plates were vortexed, centrifuged at 800g
472  for 2 min and stored at -80°C.

473  Both Tom" or Tom" cells within the Lin/(cKit OR Scal)* gate were sorted. (cKit OR Scal)" is a
474  superset of the cKit+ gate used previously (Dahlin et al., 2018) which contains more lymphoid
475  progenitors and pDCs.

476  Antibodies and fluorochromes used: Mouse hematopoietic progenitor cell isolation cocktail (Stem
477  Cell Technologies 19856), CD48-APC (Thermo-Fischer 17-0481-82), c-Kit-APC/Cy7 (Biolegend
478  105826), Scal-BV421 (Biolegend 108133) and CDI150-PE/Cy7 (Biolegend 115914),
479  Streptavidin-BV510 (Biolegend 405234), 7AAD (Thermo Fischer A1310)

480 scRNA-seq data generation

481  Smart-Seq2

482  When cell numbers were limiting single cells were profiled with a modified version of the Smart-
483  Seq2 protocol (Bagnoli et al., 2018; Picelli et al., 2014) rather than 10x Genomics kit. Single cells
484  were sorted into 96-well plates with 2.3 ul lysis buffer containing 0.115 pl of SUPERase-In RNase
485  Inhibitor at 20 U/ul concentration (ThermoFisher AM2694) and 0.23 pl of 10% Triton X-100
486  solution (Sigma 93443), plates were vortexed and stored at -80°C. After thawing 2 pl of the
487  annealing solution (0.1 pl of ERCC RNA Spike-In solution (1:300,000 dilution) Thermo-Fisher
488  4456740), 0.02 ul of the oligo-dT primer (100 uM stock concentration) and 1 pl of ANTP (10 mM

489  stock concentration)) was added. The plate was incubated at 72°C for 3 min, cooled down on ice
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490  and reverse transcription was performed by adding 5.7 pl of RT buffer (0.1 pl of Maxima H minus
491  reverse transcriptase at 200 U/ul concentration (ThermoFischer EP0752), 0.25 ul of SUPERase-
492  In RNAse Inhibitor at 20 U/ul concentration, 2 pl of the Maxima enzyme buffer, 0.2 pl of TSO
493  oligo at 100 uM concentration, 1.875 ul of PEG 8000 solution (Sigma P1458) at 40% v/v
494  concentration and 1.275 pl water) and incubation at 42°C for 90 min followed by incubation at
495  70°C for 15 min. Immediately after, cDNA was amplified by PCR by adding 1 pl of the Terra
496  PCR Direct Polymerase (1.25 U/ul, Takara 639270), 25 ul of the Terra PCR Direct buffer and 1
497  ul of the ISPCR primer (10 uM stock concentration) to a total volume of 50 ul using the following
498  PCR conditions: 98°C for 3 min, 98°C for 15 s, 65°C for 30 s, 68°C for 4 min (21 cycles), 72°C
499  for 10 min. The amplified cDNA was purified using AMPure XP beads (Beckman A63882),
500  quantified using the PicoGreen assay (ThermoFischer P7589) and used for Nextera library
501  preparation. The libraries were generated using either a standard protocol (batch 7d) or modified
502  protocol (batches 3d7d, 2w4w and 3dr2), see the corresponding metadata) described below. No

503  obvious batch effects were observed among cells analyzed with either of the protocols.

504  The standard Nextera protocol: cDNA was diluted to approximately 50-150 pg/ul and 1.25 pl of
505  the solution was used, 2.5 pl of Tagment DNA buffer 1.25 ul of Amplicon Tagment Mix (Nextera
506  XT kit, [llumina FC-131-1096) were added, samples were incubated at 55°C for 10 min, and the
507  reaction was stopped by addition of 1.25 ul of NT buffer. Tagmentation products were amplified
508 by PCR by adding 1.25 pl of each N and S primers (Illumina Nextera XT 96-index kit FC-131-
509  1002) and 3.75 ul of NPM solution and using the following thermocycler settings: 72°C 3 min,
510  95°C 30, 12 cycles of 95°C 30s, 55°C 30s, 72°C 60s and a final extension at 72°C for 5 min.

511  The modified Nextera protocol follows the same principle as the standard Nextera protocol and
512 includes the following steps: cDNA was diluted to approximately 50-150 pg/ul and 1.03 pl of the
513  solution was used, 1.63 ul of Tagment DNA buffer and 0.6 ul Amplicon Tagment Mix was added,
514  samples were incubated at 55°C for 10 min, the reaction was stopped by adding 0.82 pl of NT
515  buffer. Tagmentation products were amplified by adding 1.23 pl of each N and S primers (as above
516  butdiluted 5 times), 2.3 pl of Phusion HF buffer (ThermoFischer F530L), 0.1 pul of ANTP (25 mM
517  stock concentration), 0.07 pul of Phusion polymerase and 2.5 pl of water and using the following
518  thermocycler settings: 72°C 3 min, 98°C 3 min s, 12 cycles of 98°C 10s, 55°C 30s, 72°C 30s and

519 a final extension at 72°C for 5 min.
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520  Libraries were sequenced using the Illumina Hiseq4000 or NovaSeq instruments, obtaining

521  approximately 100-200 mlIn reads per 96 cells.
522 10X genomics

523 For the 10x Genomics scRNA-Seq protocol up to 20,000 cells were pooled in pairs corresponding
524  to male and female animals, centrifuged and resuspended in a volume of droplet buffer optimal for
525  recovery of up to 10,000 cells and immediately processed with the 10x Genomics Single Cell 3'

526  v3 protocol following the manufacturer's instructions.

527  Libraries were sequenced using the Illumina NovaSeq instrument, obtaining at least 20,000 reads

528  per cells.

529  scRNA-Seq data analysis

530  Smart-Seq2 sequencing reads were aligned to the mouse genome (mm10) using the STAR aligner
531 (version 2.7.3a) with default parameters. Reads mapping to exons were counted with
532 featureCounts (version 2.0.0) using the ENSEMBL v93 annotation. Each sample was subjected to
533 a quality control, samples with: <100,000 reads, <23% of reads mapped to exons, >8.5% of reads
534  mapped to ERCC transcripts, >10% mitochondrial reads or <2000 genes detected above 10 counts
535  per million were discarded. 1288 out of 1533 samples passed quality control. Data were

536  normalized 10,000 total counts and In(n+1) transformed.

537  10x genomics reads were pre-processed using cellranger (version 3.1.0, reference genome and
538 annotation version 3.0.0) with default settings. Downstream analysis was performed mainly using
539  the scanpy (Wolf et al., 2018) framework with additional packages where indicated. Low quality
540  barcodes with less than 1000 genes were excluded from the analysis, doublet scores were estimated
541  using the scrublet tool (using 30 principal components), potential doublets were removed. Male
542  and female cells were distinguished based on the expression of the Xist gene and Y chromosome
543  genes. Cells with detectable Xist expression and undetectable Y chromosome gene expression
544  were classified as female and vice versa, ambiguous cells or potential doublets were excluded.

545  Data were normalised to 10,000 total counts and In(n+1) transformed.

546  To determine highly variable genes, scanpy's highly variable genes function was used to select

547  top 5000 genes within the 10x genomics data. From the list of highly variable genes, genes
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548  associated with cell cycle, Y-chromosome genes and the Xist were excluded. Genes associated
549  with cell cycle were a union of cell-cycle genes from (Dahlin et al., 2018) and genes with at least
550 0.1 Pearson correlation with the following gene set: Ube2c, Hmgb2, Hmgn2, Tubalb, Ccnbl,
551  TubbS5, Top2a, Tubb4b, following the method from (Weinreb et al., 2020). Putative cell cycle
552 phase was assigned using scanpy's 'score genes cell cycle' function to assign putative cell cycle
553  phase to both 10x and Smart-Seq?2 cells. Following that, 10x and Smart-Seq2 data were combined
554  and subjected to Seurat CCA batch correction (Stuart et al., 2019). Among a variety of batch
555  correction tools (Harmony (Korsunsky et al., 2019), Scanorama (Hie et al., 2019), BBKNN
556  (Polanski et al., 2020), fastMNN (Haghverdi et al., 2018), MNNcorrect) only Seurat CCA
557  generated seamless integration best matching the cell frequencies based on flow cytometry
558  analysis. After applying batch correction, we observed no obvious segregation of Smart-Seq2 and
559  10x scRNA-Seq profiles (Figure S2E). Corrected log-normalized counts were scaled and used to
560 compute 50 principal components, find nearest neighbors and calculate a UMAP projection
561  (Mclnnes et al., 2020). A minor batch effect between 10x samples was corrected using Harmony
562  batch correction tool (Korsunsky et al., 2019). The corrected principal components were used to
563  calculate 12 neighbors followed by cell clustering using the leiden algorithm (Traag et al., 2019)
564  and calculation of the UMAP projection. Clusters were manually annotated based on the marker
565  gene expression as described in Supplementary table S1. To reduce the complexity for the discrete
566  model clusters with the following criteria were excluded from the further analysis: clusters that
567  appeared disjointed from the main landscape body, represented low-quality/dying cells or with
568  unclear origins based on the UMAP projection and PAGA analysis. This included: T cells, innate
569  lymphoid cells (ILCs), cells with high mitochondrial gene counts, mature B cells, interferon-
570 activated cells, cells with high complement expression and small clusters with unclear annotation,

571  likely to represent doublet cells. Unfiltered landscape is displayed in Figure S2F,G.

572 To visualize the relative proportions of cells per cluster over time (Figure S3B), we averaged
573  fractions of Tom" cells in each cluster for each time-point and divided by the respective values for

574  matching Tom™ cells.
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575 Embedding external datasets into the integrated HSPC landscape

576  For each external datasets the log-normalised counts for cells passing quality control were used as
577 in the original work. Annotation was either obtained from the respective GEO repositories,

578  literature or kindly provided by the authors.

579  Each dataset was integrated with the HSPC landscape (below denoted as reference) using the
580 indicated batch correction tools and the Cellproject package as follows. Log-normalized counts
581  for (Nestorowa et al., 2016) were concatenated with the reference and batch effect was removed
582  using Seurat CCA method (Stuart et al., 2019) only highly-variable genes selected in the reference
583  landscape were used. The corrected values were scaled and used to compute PCA (50 components)
584  in the reference dataset. The correct values of (Nestorowa et al., 2016) dataset were fit into the
585  reference PCA space, in which 15 nearest neighbors were identified between the datasets. These
586  nearest neighbors were used for two purposes: (1) transfer the cluster identity to the new data
587  (based on the most frequent label) and (2) to predict coordinates in the original reference PCA
588  space (used as a basis for UMAP projection) using nearest-neighbor regression. Finally, the new
589  PCA coordinates were used to embed the new data into UMAP space. As immunophenotypic

590  populations we used the 'narrow' classification provided in the original study.

591  (Bowling et al., 2020) data was concatenated with the reference and a common PCA space was
592  calculated, which was subsequently corrected with the Harmony batch correction tool. Within the
593  corrected space 8 nearest neighbors were identified across the datasets, followed by label transfer

594  and UMAP embedding as described above.

595  (Weinreb et al., 2020) data was integrated analogously to the (Nestorowa et al., 2016) data. Only
596  'state-fate' clones were used, ie. cells captured at an early time-point (day2) with measured fate

597  outcomes at later time-points. Only fates with more than 7 cells were considered for the analysis.

598 Trajectory inference and selection

599  To pinpoint the most immature stem cells the HSC score was calculated (default parameters)
600 (Hamey and Gottgens, 2019) and denoised by averaging values over the nearest neighbors for each

601  cell. As diffusion pseudotime the cell with the highest smoothed HSC score was selected, diffusion
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602  map was calculated and served as the basis for trajectory inference and continuous populations

603  models described below.

604  To infer putative trajectories Tom™ cells were used (matching the Pseudodynamics analysis below)
605  for calculating cell transition probabilities using the Pseudotime Kernel method (based on the
606  Palantir tool (Setty et al., 2019)) from the CellRank package (Lange et al., 2022). To define the
607  end states clusters 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19 were selected and within them 50 cells
608  with the highest pseudotime values. These states are largely consistent with an unsupervised
609  method of macrostate selection Generalized Perron Cluster Analysis with Schur decomposition
610 (Lange et al., 2022). To assign cell fate probabilities Cellrank's compute absorption probabilities

611 function was used.

612 Cells belonging to trajectories for the continuous models were selected as follows. In case of
613  megakaryocytic trajectory cells belonging to cluster 0, 7 and 8 and with the respective fate
614  probability >0.3 were chosen. For the erythroid trajectory cells with respective fate probability
615  <0.2 and falling within the pseudotime range 0.015 and 0.294 (to exclude variable small number
616  atthe end of the trajectory) were used. Neutrophil and monocyte share a long stretch of progenitors
617  with high probabilities towards both lineages, thus a different approach was used, motivated the
618  apparent locations of bipotent cells with neutrophil and monocyte/DC potential based on cell fate
619  assays (Figure 2G) (Weinreb et al., 2020). Neutrophil progenitors (terminal state 10) were selected
620  with fate probability >0.24 and Mono/DC probability <0.38 and excluding a small number of cells
621  falling into clusters 12, 17 and 14. Conversely for the Mono/DC progenitors (terminal state 6) cells
622  were selected with Mono/DC fate probability >0.18 and neutrophil probability <0.49 and a small

623  number of cells falling into clusters 12, 17 and 14 was excluded.

624  Discrete population model analysis

625  As input to the discrete models the estimated total number of Tom* or Tom™ cells per cluster was
626  used. The numbers were estimated based on the fraction of cells assigned to each cluster adjusted
627 by the total number of cells analyzed by flow cytometry (samples were analysed in their entirety).
628  One out of 5 mice analyzed at day 3 exhibited abnormally high labelling frequency, the sample
629  was excluded to avoid introducing bias but we provide the corresponding data within the GEO

630  submission files and source code for individual assessment.
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To assess the kinetics of differentiation and growth of the different hematopoietic populations, we
first considered a discrete compartments model, using the HSPC landscape clusters as
compartments. To establish the topology of the differentiation process, PAGA connections and
pseudotime ordering were considered. First of all, only transitions with PAGA connectivities
higher than 0.05 were selected. No back differentiation (ie. against pseudotime ordering) was
permitted into cluster 0 and from most differentiated clusters with clear expression of commitment

genes: 1,3,6,7,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Other transitions above-threshold were

considered potentially bidirectional. Each compartment is assigned a growth rate and as many
differentiation rates as the number of its progeny compartments. Assuming the following:
» the label is neutral and stably propagated
» the kinetics parameters of each cluster are constant over time and independent of the size
of any cluster
»  the labeled and unlabeled cells have identical kinetics,
Population dynamics can be modelled as an ODE system of coupled equations:
nc nc
x;(t) =| B — Z a;; | x(t)+ Z a;; x;(t)
j=1 j=1

where x;(t) is the number of cells in population i, @;; is the differentiation rate from compartment
j to i, and f3; the growth rate of population i. For the terminal and initial clusters the equations take

form respectively:
nc
H®) = Fra®+ ) a0
j=1

nc

5@ =|ho= ) ;| %®

Jj=1

Please note that differentiation rates are set to zero if they have not passed the thresholding criteria
as explained above. The number of clusters, nc, is equal to 22, one per each of the 20 Leiden

clusters, plus 2 additional subpopulations within cluster 0, the most immature cluster. The reason
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654  for this choice lays in 2 observed characteristics in the data: cluster 0 ratio of labelled to unlabeled
655  cells (labelling frequency) grows over time, and some downstream clusters' labelling frequency
656  overshoots the one in cluster 0. Based on (Barile et al., 2020) and (Takahashi et al., 2021), this
657 implies that the progenitor cluster must be heterogeneous. Indeed, the most immature HSCs
658  occupy only the tip of cluster 0 (Figure 2C). Particularly, we chose to add 2 more sub-
659  compartments to allow for differentiation bias in the HSCs. The differentiation rates were allowed
660  to vary between 0 and 4 per day, with the exception of cluster Oa's rates, which were bounded to
661  vary between 0 and 0.02 per day, based on previous knowledge of HSCs low activity (Barile et
662  al., 2020; Oguro et al., 2013). The growth rates were bounded between -4 and 4 per day, to allow
663  for death rate (negative values) or additional differentiation towards more mature cell states outside
664  the presented HSPC landscape, or cell migration. The growth rate in cluster Oa was fixed in such
665 a way to balance the differentiation rates, given the a priori knowledge that pure functional
666  haematopoietic stem cells show only limited growth over time (Zhang et al., 2020). Furthermore,
667  we observed that the total number of cells in cluster 0 plateaus as the mice age, similarly to what
668  was previously observed for the HSC and MPP populations (Barile et al., 2020). We accounted for
669  this upon modelling cluster 0 overall number of cells with a logistic function, and thus added a
670 logistic parameter p and a carrying capacity K. Both parameters are positive and unconstrained.

671  Specifically, we implemented the following equations for cluster Oa:
672 Xo(t) = p xo(1 = x0(t)/K)
673 Xoa () = %o(£) — %op () — Xoc(£),

674  while the time evolution of clusters Ob and Oc is analogous to that of all other clusters. Since we
675  calibrated the ODE system to both the labelled and unlabeled cells time courses, we also included
676  as parameters 22*2 initial conditions, all positive and unbounded, except for the number of cells
677  in cluster Oa, set to range between 500 and 1500 based on previous HSC number estimates (Kent
678 et al., 2009) and factoring in cell isolation efficiency. The model allows the initial number of

679  labelled cells to be greater than zero, thus accounting for any unspecific labelling.
680  We calibrated our model to 4 types of observables:

681 *  The number of labeled cells in each cluster over time and relative to cluster 0 as computed

682 via scRNA-Seq analysis
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683 *  The number of unlabeled cells in each cluster over time and relative to cluster 0 as
684 computed via sScRNA-Seq analysis

685 *  The number of labeled cells in cluster 0 over time as computed via FACS sorting and
686 scRNA-Seq analysis

687 *  The number of unlabeled cells in cluster 0 over time as computed via FACS sorting and
688 scRNA-Seq analysis

689  To estimate the parameters, we minimized a cost function of the squared sum of residuals. Each
690  residual is weighted by the squared error, which was computed as pooled variance per time course.
691  We computed the 95% confidence bounds on the parameters' best fit with the profile likelihood
692  method as in (Barile et al., 2020; Raue et al., 2009). To compute error bounds on the model, we
693  ran =4000 bootstrap simulations, where data is resampled with replacement per time-point, and
694  the cost function is re-minimized on the new dataset. For each simulation, a new parameter vector
695 is found, and a model curve generated. 95% bootstrap confidence bounds are then determined
696  cutting upper and lower 0.025 quantiles per time-point. To simulate the ablation of any population,
697  the initial condition of the unlabeled cells for the corresponding compartment can be set to 0. To

698  ablate the HSCs, we simultaneously set to 0 the initial condition of all 3 subclusters.

699  To compute the journey times, we generated the model in the time interval 1-300 days with 1 day
700  steps, assuming that cells are initially only in cluster 0 and with the unlabeled cells initial condition.
701  We then computed the smallest time for which the number of cells in a population reaches one and

702 dubbed that journey time.
703  Continuous population model analysis

704  In order to compute pseudotime-dependent kinetic rates, we relied on the pseudodynamics
705  framework (Fischer et al., 2019). Briefly, the compartment model explained in the previous section
706  has a one to one correspondence to the continuous model if the compartment index is treated as a
707  continuous variable, namely the diffusion pseudotime coordinate s, the number of cells is replaced
708 by the cell density over pseudotime and real time u(s,t), and the differentiation and net
709  proliferation rates are replaced by the drift v(s) and the growth rate g(s), respectively. Given
710  these substitutions, the ODE system becomes a PDE system. In addition, the Pseudodynamics

711  framework also introduced an extra parameter D(s) that allows for diffusion of the cells on the
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712 pseudotime axis to account for stochasticity in the differentiation process. The 3 kinetics
713 parameters, drift, growth rate and diffusion, are modelled as natural cubic splines with 9 nodes.
714 The nodes boundaries were kept as in the original publication: between 0 and 1 per day for drift
715  and diffusion, and between -5 and 6 per day for the growth rate. To simplify the computation, we
716  estimated such rates independently for 4 different trajectories, which avoids introducing
717  parameters that describe the branching process. The trajectories were chosen based on the affinity
718  to each terminal state as estimated by CellRank (see section "Trajectory inference and selection').

719 For each trajectory, the PDE reads:

720

du(s,t) 0 ou(s,t)
at &(D () =55

0
> ~ 35 (v(s) u(s, t)) + g(s) u(s, t)

721  For the boundaries, we assumed no-flux Robin conditions, as in the original publication. To solve
722  the PDE, we used the non-branching pseudodynamics model as compiled in MATLAB 2017b,
723  with only one difference: we did not enforce differentiation to be 0 at the end of the trajectory
724 which, together with the growth rates taking also negative values, accounts for the fact that the
725  populations in our landscape are all transient and that fully mature cells are not captured by our
726  gating strategy. The model was calibrated to the time-dependent density and total number of
727  labelled cells only. The error was computed as variance among replicates. For each trajectory, at
728  least 240 simulations were launched, with regularization parameters 0, 1, or 10 to penalize big
729  differences in the splines' nodes. The solution was chosen based on the highest log-likelihood, and

730  the regularization parameter as the highest that visually fits the data well.
731  Differential expression analysis

732 For the DE analysis cells were selected to match the continuous model trajectories. The shapes of
733 differentiation and net proliferation rates were inspected for potential regions of interests and
734  respective ranges of pseudotime values were chosen. Prior to the analysis genes with low
735  expression were filtered out, only genes detected in more than 2.5% cells and with overall mean
736  expression above 0.05 (data normalized with logNormCounts from the scuttle package) were
737  included. To select genes with dynamic expression in the chosen intervals the fitGAM function
738  followed by startVsEndTest from the TradeSeq package were used. Genes were considered
739  significant if they showed at least FDR of 0.1 and a log2(Fold change) of at least 1. Predicted and
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740  smoothed gene expression was used using the predictSmooth function from the same package. In
741  heatmaps genes were clustered with hierarchical clustering using the hclust R function with default
742  settings. Transcription factors were selected based on the gene list established in (Ravasi et al.,
743 2010), TF groups were established by cutting the tree at the level of 4. Gene enrichment was
744 performed using GSEAPY interface to the enrichr tool (Kuleshov et al., 2016).

745  Transplantation data analysis

746  (Dong et al., 2020) data was integrated into the HSPC landscape analogously to the (Nestorowa et
747  al., 2016) data integration described in section 'Embedding external datasets into the integrated
748  HSPC landscape'. Cells in each HSPC cluster were counted and used as an input into the discrete
749  model prediction. Day 3 data was used as the initial condition and cell abundances per cluster were
750  predicted from day 3 to day 7. The bootstrap confidence bounds were recomputed upon
751  substituting the initial conditions. Given that the experimental data in relevant clusters vastly
752  exceed the model prediction bounds, we concluded that the dynamics of perturbed haematopoiesis

753  are different from normal conditions and suggest increased differentiation.
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791  Figure legends

792 Figure 1. Hoxb5-Tom persistent labelling system enables time-resolved tracking of stem cells
793  and their progeny (A) Diagram of the genetic construct used to introduce the inducible and
794  persistent Hoxb5-Tom label in the respective mouse line. (B) Schematic of the time-course
795  experiment analyzing Hoxb5-Tom label frequency in the indicated populations of mouse bone
796  marrow (BM) and peripheral blood (PB). Upon tamoxifen administration, Hoxb5-expressing cells
797  are labelled with heritable Tom expression. (C) Fractions of Tom® cells in the HSPC
798  subpopulations within the bone marrow at indicated time-points after label induction. Mice were
799  analyzed at 0.5 (n=5), 1 (n=3), 2 (n=8), 3 (n=10), 5 (n=4) and 9 (n=7) months after label induction.
800  Dots represent individual mice and bars indicate mean = SEM. (D) Fractions of Tom" cells in
801  peripheral blood analyzed at the indicated time-points after label induction. Shown as mean with
802  error bars denoting SEM of 4-32 animals. (E) Diagram portraying the concept of inferring
803  population dynamics from heritable label propagation. The rate of label accumulation in the
804  downstream compartments is proportional to differentiation rate between the compartments. (F)
805  Comparison of Tie2-YFP and Hoxb5-Tom label progression displayed as relative labelling
806  frequency between MPP or HPC-1 and HSC compartments. Red dots - Hoxb5-Tom data points,
807  grey line - rolling average for matching Tie2-YFP data, as published previously (Barile et al.,
808  2020). (G) Diagrams portraying key population parameters together with a geometric
809 interpretation in context of the Waddington landscape.

810  Figure 2. Time-resolved reference HSPC landscape at single-cell level (A) Experimental
811  design for HSPC dynamics analysis with flow cytometry and scRNA-Seq. Table indicates specific
812  time-point and the number of mice (replicates) used Tom” scRNA-Seq analysis, 2 mice in each
813  time-point were used for the Tom™ fraction estimation. (B) UMAP projection of the integrated
814  HSPC scRNA-Seq landscape (all Tom" and Tom™ cells combined) with color-coded clusters.
815  Outlier or aberrant clusters were removed for clarity (see Figure S2F,G). (C,D) Projection from B
816  in grey, with embedded and color-coded immunophenotypic sub-populations from (Nestorowa et
817 al., 2016) data. Up to 60 cells in each category are plotted. All cells are plotted in the Figure S4A.
818  (E) Manual annotation of the landscape in B. Most differentiated clusters with clearly defined
819  lineage markers are color-coded, intermediate undifferentiated states are shown in grey (Int prog),

820  cluster containing HSCs is shown in pink. (F) Projection from B in grey, with embedded and color-
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821  coded HSCs with no detected cellular output (Childless) or contributing to haematopoiesis (Parent)
822  following 5-FU challenge in mice (data from (Bowling et al., 2020)) (G) Projection from B in
823  grey, with embedded and color-coded cKit" progenitors, based on their output in lineage tracing
824  in vitro cultures. Color-coded points correspond to cells harvested at day 2 with sufficient clonal
825 information available at day 4 and day 6 of culture. Data from (Weinreb et al., 2020). (H)
826  Projection from B in grey, with Hoxb5-Tom" cells harvested at indicated time-points shown in

827  Dblue.

828  Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and Mast Cell
829  progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - erythroid
830  progenitors, HSC - hematopoietic stem cells, Int prog - intermediate progenitors, Ly prog -
831  lymphoid progenitors, Meg prog - megakaryocyte progenitors, Mono/DC prog - monocyte and
832  dendritic cells progenitors, Neu prog - neutrophil progenitors, pDC - plasmacytoid dendritic cells

833  Figure 3. Quantitative discrete model of the HSPCs highlights progenitor-specific self-
834  renewal and differentiation properties (A) Annotated UMAP projection overlaid with PAGA
835  graph abstraction view of the HSPC landscape. The graph shows putative transitions between
836  clusters (related to Figure 2B). (B) The absolute number of labelled cells observed in each cluster
837  over time displayed as a graph view from A. 4 out of 9 time-points are shown for clarity. (C) Graph
838  abstraction view of the discrete cellular flow model. Size of the nodes is proportional to square
839  roots of relative cluster size, node color is proportional to the residence time (log-scale), arrows
840 indicate differentiation directions, arrow stem thickness is proportional to cell flux. Note: cluster
841  Oais fully self-renewing and thus exhibits infinite residence time. (D) Best discrete model fit (with
842 95% confidence intervals) for relative Tom™ label frequency in chosen clusters. Error bars indicate
843  pooled standard error of the mean. (E) Scatter plot showing relation of pseudotime distance to
844  differentiation rates. Only clusters 0-12 and differentiation rates greater than 10-!? are shown.
845  Please note that in case of the transitions between clusters 4 and 8 two differentiation rates are
846  plotted (each direction). (F) UMAP projection of the HSPC landscape, with cells color-coded by
847  simulated time required for 1 cell to reach corresponding cluster starting from cluster 0. Please
848  mind that the color is logarithm-scaled. (G) Simulated relative cluster size of chosen clusters

849  following ablation of cluster 0.
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850  Figure 4. Continuous models capture single cell growth and differentiation rates alongside
851  their molecular state (A) Diagramatic representation of megakaryocyte trajectory analysis with
852  pseudodynamics. Following the arrows: putative cell transitions (pseudotime kernel) were used to
853  estimate megakaryocyte cell fate, from which megakaryocyte trajectory was isolated (dashed line).
854  Along the pseudotime cell densities were computed for each time-point (color-coded density
855  profiles) and analyzed using the pseudodynamics framework providing differentiation and net
856  proliferation rate estimates for each cell. (B) (left) UMAP projection of the HSPC landscape color-
857  coded by cell fate probability of neutrophil lineage (estimated with pseudotime kernel, see A).
858  Panels on the right show UMAP projections of isolated neutrophil trajectory color-coded by
859  indicated parameters or gene expression. (C) Pseudodynamics fitted net proliferation parameter
860  (red) and differentiation rate parameters (blue) along pseudotime for megakaryocyte trajectory.
861  Vertical lines indicate the region of interest. (D) Heatmap of genes differentially expressed around
862  the region of interest shown in C. Left columns indicate genes belonging to enriched gene
863  categories - E2F target (FDR <10-*®), G2-M checkpoint (FDR <10-?%) and cell cycle (FDR <10-3%).
864  (E) Pseudodynamics fitted net proliferation (red) and differentiation rate (blue) parameters along
865  pseudotime for neutrophil trajectory. Vertical lines indicate the region of interest. (F) Fitted gene
866  expression values along pseudotime for neutrophil markers and two TF groups shown in (full
867  analysis in Figure S9A). Grey, dashed line indicated differentiation rates shown in E. Gene

868  expression was scaled around the mean.

869  Figure 5. Growth and differentiation rates of HSPCs adapt to cellular stress conditions (A)
870  Diagram of the experiment performed by (Dong et al., 2020) study. (B-F) UMAP projections of
871  the HSPC landscape (grey) with embedded cells from (Dong et al., 2020) in blue. (G) Relative
872  cluster size, data (points) and discrete model prediction (red line with 95% confidence interval)
873  based on day 3 data from (Dong et al., 2020). Error bars indicate propagated standard error of the

874  mean.

875  Figure 6. The quantitative model of HSPC dynamics in the mouse bone marrow Diagram

876  highlighting the transferable information and the model utility.

877  Figure S1 (A) Representative flow cytometry gates used for isolation of HSPC subpopulations
878 and Tom" cells from mouse bone marrow. Tom labelling (red) is shown in each population

879  compared to control cells (blue). FACS plots correspond to mouse analysed 3 months after label
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880  induction. Relevant to Figure 1B,C. (B) Example flow cytometry plots showing Tom" fractions in
881  the bone marrow HSPC subpopulations from Hoxb5-Tom mice. Plots correspond to animals
882  analyzed at 2 weeks and 9 months after label induction. Tom gate was set based on the signal from
883  the control mice lacking the Tom label (top row). Relevant to Figure 1B, C. (C) Fractions of Tom
884 " cells in the bone marrow, thymus, spleen and lymph nodes analyzed at the indicated time-points
885 after label induction. Shown as mean with error bars denoting SEM of 4-32 animals. (D) Flow

886  cytometry gating scheme for the Lin-, (Scal™ OR cKit") population (relevant to Figure 2 onward).

887  Figure S2 (A) UMAP projection of the integrated HSPC scRNA-Seq landscape (all Tom"™ and
888  Tom™ combined) with log-normalized expression for chosen marker genes in red. (B) Projection
889  from A with inferred cell cycle phases. (C) Projection from A showing the HSC-score, metric
890  correlated with the highest HSC repopulation potential. (D) Projection from A showing inferred
891  diffusion pseudotime values for each cell. (E) Projection from A color-coded by scRNA-Seq
892  technology used, SS2 - Smart-Seq2, 10x - 10x Genomics 3' Kit. (F) UMAP projection of the
893  integrated scRNA-Seq landscape (all Tom" and Tom™ cells combined) prior to filtering out
894  outlier/aberrant clusters with color-coded cluster information. After filtering cluster were

895  renumbered in the consecutive order. (G) Projection from F with color-coded manual annotation.

896  Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and Mast Cell
897  progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - erythroid
898  progenitors, HSC - hematopoietic stem cells, Hi-Mito - cluster characterized by high mitochondrial
899  gene expression (potentially dying cells), ILC - innate lymphoid cells, Ifn-act prog - progenitors
900  with strongly activated Interferon signature, Int prog - intermediate progenitors, Ly prog -
901 lymphoid progenitors, Meg prog - megakaryocyte progenitors, Mono/DC prog - monocyte and
902  dendritic cells progenitors, Myo C1 - myeloid cells with high expression of complement genes,

903  Neu prog - neutrophil progenitors, pDC - plasmacytoid dendritic cells

904  Figure S3 (A) UMAP projection of the integrated scRNA-Seq landscape (all Tom" and Tom"
905  combined) in grey with Tom" cells harvested at 269 days in blue. (B) Projection from A with each
906 cluster color-coded according to its loga-transformed abundance ratio between Tom™ and Tom"
907 cells. Relative abundance has been averaged across all samples for each time-point. Red indicates
908  enrichment, white the expected value and blue depletion. For reference the cluster boundaries are

909  visualized in the bottom right panel.
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910  Figure S4 (A) UMAP projection of the integrated HSPC landscape (grey) with embedded
911  immunophenotypic sub-populations (blue) from (Nestorowa et al., 2016) (B) Fraction of cells in
912  each immunophenotypic population from A assigned to the HSPC landscape clusters. (C) UMAP
913  projection of the integrated HSPC landscape (grey) with embedded cells from (Weinreb et al.,
914  2020) split by their progeny fate.

915  Figure S5 (A) Best discrete model fit (with 95% confidence intervals) for relative Tom™ label
916  frequency by cluster (normalized to cluster 0). (B) Best discrete model fit (with 95% confidence
917 intervals) for number of Tom" cells in cluster 0. (C) Best discrete model fit (with 95% confidence
918 intervals) for cluster 0 size. (D) Best discrete model fit for sub-cluster sizes within cluster 0. Error

919  bars indicate pooled standard error of the mean.

920  Figure S6 (A) Best discrete model fit (with 95% confidence intervals) for relative cluster size
921  (normalized to cluster 0, based on Tom™ cells). (B) Total number of cells per mouse in the indicated
922  populations normalized to the first time-point. Based on flow cytometry data from (Barile et al.,

923 2020). Error bars indicate pooled standard error of the mean.

924 Figure S7 (A) Graph abstraction view of the dynamics model. Size of the nodes is proportional to
925  square roots of relative cluster size, node color is proportional to net proliferation rate, arrows
926  indicate differentiation directions, arrow thickness is proportional to cell differentiation rate (log-
927  scale). (B) Scatter plot showing relation of cluster connectivity (estimated by PAGA) to
928  differentiation rates. Only clusters 0-12 and differentiation rates greater than 10-!? are shown.
929  Please note that in case of the transitions between clusters 4 and 8 two differentiation rates are
930  plotted (each direction) (C) Related to Figure 3F, the average time required for a single cell to
931  reach corresponding cluster when initiated in cluster 0 (journey time). (D,E) Relative cluster size
932  (normalized to cluster 0, based on Tom" cells) with the best fit for the main model (only one phase)
933  and bi-phasic model, which permits a change in proliferation and differentiation rates after day 27.
934  Error bars indicate pooled standard error of the mean. (F) Differentiation rates per transition for
935  each phase of the bi-phasic model. Phase I includes the first four time-points and phase II the
936  remaining ones. Error bars indicate 95% confidence interval. (G) Proliferation rates per cluster for
937  each phase of the bi-phasic model. Phase I includes the first four time-points and phase II the

938 remaining ones. Error bars indicate 95% confidence interval. (H) UMAP projection of the
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939 integrated landscape color-coded by log-normalized expression of indicated JAK/STAT target
940  genes (Morris et al., 2018).

941  Figure S8 (A) UMAP projections of the HSPC landscape color-coded by cell fate probability for
942  respective lineages (estimated with pseudotime kernel). (B) UMAP projections with cells selected
943  for respective trajectories color-coded in blue. (C) Pseudodynamics fitted net proliferation and
944  differentiation rate parameters along pseudotime for the megakaryocyte trajectory. Vertical lines
945  indicate the region of interest. (D) Heatmap of TFs differentially expressed around the region of
946 interest shown in C. (E) Pseudodynamics fitted net proliferation and differentiation rate parameters
947  along pseudotime for the erythroid trajectory. Vertical lines indicate the region of interest. (F)
948  Heatmap of TFs differentially expressed around the region of interest shown in E. (G)
949  Pseudodynamics fitted net proliferation and differentiation rate parameters along pseudotime for
950  the monocyte/dendritic cell trajectory. Vertical lines indicate the region of interest. (H) Heatmap

951  of TFs differentially expressed around the region of interest shown in G.

952  Figure S9 (A) Heatmap of differentially expressed TFs around the region of interest shown in
953  Figure 4E for neutrophil trajectory. TFs are hierarchically clustered, 4 color-coded groups are
954  plotted separately in Figures 4F and S9B, C. (B,C) Fitted gene expression values along pseudotime
955  for neutrophil trajectory for TF groups 3 and 4, see A. (D) Fitted gene expression values along
956  pseudotime for neutrophil trajectory for the Gfil, Fit3, Irf8 genes. (E) UMAP projections of the
957  integrated HSPC landscape color-coded by log-normalized expression of genes Gfil, Flt3, Irf8
958  genes.

959  Figure S10 (A) Related to Figure 5. Predicted relative cluster size (red line with 95% confidence
960 interval) based on day 3 data from (Dong et al., 2020). Observed data shown in blue. Error bars

961 indicate propagated standard error of the mean.

962  Figure S11 Continuous model best fits (red line) and standard deviation ranges around the mean

963  (shaded areas) for the indicated trajectories.
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964 Supplementary tables legends

965  Table S1. Details of the manual annotation of the integrated HSPC landscape. Table contains
966 the manual annotation for each cluster, indication whether the cluster was filtered out and lists of

967  key marker genes used in the annotation process.

968  Table S2. Oligonucleotide sequences. Table containing DNA sequences of the oligonucleotides

969  used in this work.
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