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 2 

Abstract 28 

The paradigmatic tree model of hematopoiesis is increasingly recognized to be limited as it is 29 

based on heterogeneous populations and largely inferred from non-homeostatic cell fate assays. 30 

Here, we combine persistent labeling with time-series single-cell RNA-Seq to build the first real-31 

time, quantitative model of in vivo tissue dynamics for any mammalian organ. We couple 32 

cascading single-cell expression patterns with dynamic changes in differentiation and growth 33 

speeds. The resulting explicit linkage between single cell molecular states and cellular behavior 34 

reveals widely varying self-renewal and differentiation properties across distinct lineages. 35 

Transplanted stem cells show strong acceleration of neutrophil differentiation, illustrating how the 36 

new model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from 37 

snapshot measurements is akin to how a Kinetoscope allows sequential images to merge into a 38 

movie. We posit that this approach is broadly applicable to empower single cell genomics to reveal 39 

important tissue scale dynamics information. 40 

Introduction 41 

A continuous flow of cells replenishes blood cells throughout life to maintain homeostasis. This 42 

flow originates from the hematopoietic stem cells (HSCs) and progresses through a complex 43 

hierarchy of multipotent, bipotent and unipotent progenitors, together called hematopoietic stem 44 

and progenitor cells (HSPCs). Decades of research have allowed to immunophenotypically 45 

identify HSPCs and define their functionality, thus positioning them within the hematopoietic 46 

hierarchy and establishing the 'hematopoietic tree model' (Eaves, 2015; Notta et al., 2016).  47 

The hematopoietic tree, while undeniably useful, is a static and qualitative model of a highly 48 

dynamic process. Previous work (Busch et al., 2015) paved the way to real-time modelling of 49 

HSPC dynamics under native conditions. The study induced a persistent fluorescent reporter gene 50 

within the HSC compartment and followed label propagation into downstream progenitor and 51 

mature cells with flow cytometry. However, immunophenotyping has limited resolution, and 52 

HSPC populations defined by flow cytometry are known to be functionally heterogeneous. This is 53 

particularly evident within common myeloid progenitors (CMP) (Paul et al., 2015; Perié et al., 54 

2015) and lymphoid-primed multipotent progenitors (LMPP) (Klein et al., 2022; Nestorowa et al., 55 
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2016) as revealed by scRNA-Seq and transplantation experiments. Further high-throughput 56 

scRNA-Seq studies charted putative gradual molecular transitions from HSCs toward 8 distinct 57 

lineages (Dahlin et al., 2018) including specific stages of erythroid differentiation (Tusi et al., 58 

2018). More recently, lineage tracing and scRNA-Seq were combined to show that molecular 59 

states captured by scRNA-Seq are predictive of progenitor fate potential when assessed in vitro 60 

(Wang et al., 2022; Weinreb et al., 2020; Yeo et al., 2021), but gaining insight into single-cell fates 61 

in vivo during homeostasis is more challenging (Pei et al., 2020).  62 

While scRNA-Seq offers high-resolution, it is typically used to obtain snapshot measurements 63 

lacking temporal information. Here, we combined scRNA-Seq with an inducible HSC-labelling 64 

system allowing label-propagation analysis of the downstream progeny during steady-state 65 

hematopoiesis. We measured the real-time dynamics of label accumulation across the stem and 66 

progenitor cell landscape and built cellular flow models capturing self-renewal and differentiation 67 

rates. We find that cell output is maintained via lineage-specific mechanisms. By taking advantage 68 

of the available molecular information, we also construct continuous models to associate the gene 69 

expression changes with cell behaviors such as increased proliferation or accelerated 70 

differentiation, thus directly connecting tissue and cellular behavior with the underpinning layer 71 

of molecular processes. Finally, we demonstrate that our reference model, unlike 72 

immunophenotypic data, is transferable and applicable to different datasets. To showcase this, we 73 

analyze transplanted stem cell progeny and pinpoint drastic upregulation of differentiation rates in 74 

specific lineages. 75 

Results 76 

Hoxb5-CreERT2-Tomato reporter tracks HSC differentiation over time 77 

To analyze the HSPC dynamics, we employed a heritable fluorescent label approach (based on 78 

principles from (Busch et al., 2015)), in which an inducible HSC-specific CRE excises a STOP 79 

cassette in Rosa26-LoxP-STOP-LoxP-tdTomato (R26LSL-tdTomato) reporter to permanently label 80 

HSCs and the label expression is subsequently inherited by their downstream progeny. To achieve 81 

this, we generated the Hoxb5CreERT2 mouse allele where the CRE-ERT2 protein is expressed from 82 

the HSC-specific Hoxb5 gene (Figure 1A), following a similar strategy previously employed to 83 

express mCherry from the Hoxb5 locus without affecting Hoxb5 expression (Chen et al., 2016). 84 
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We next combined the Hoxb5CreERT2 allele with the R26LSL-tdTomato reporter (Madisen et al., 2010) 85 

to generate Hoxb5CreERT2; R26LSL-tdTomato mice (for simplicity referred to as Hoxb5-Tom mice), 86 

which allow for inducible labelling of HSCs in situ at a specific time-point by tamoxifen 87 

administration and tracking HSC progeny over time (Figure 1B-D). To validate this system, we 88 

treated Hoxb5-Tom mice with tamoxifen and monitored tdTomato (Tom) expression in HSCs and 89 

their subsequent progeny within the HSPC sub-populations in the bone marrow (BM) and 90 

differentiated cell types in the peripheral blood (PB) at indicated intervals (Figure 1B-D, S1A-C). 91 

Upon tamoxifen administration, we observed a specific labelling of the HSC compartment (with 92 

the frequency of 1.8%), which over 2 months gradually accumulated in downstream cell 93 

compartments (Figure 1C-D). Labelled differentiated cells are detectable in PB within 1-2 months 94 

after labeling HSCs; with granulocytes and monocytes being the first emerging populations and T 95 

and B cells appearing later. We observed stable labelling for at least 9 months after the treatment 96 

(Figure 1C-D, S1A-B), indicating that the label is persistent and inert.  97 

Computational inference of population dynamics relies on a simple principle (Figure 1E): as 98 

heritable label propagates down from the label-rich upstream compartment it follows 99 

differentiation, thus rapid transitions cause fast label equilibration and vice versa (see methods). 100 

To benchmark our new model, we compared flow cytometry data obtained from tamoxifen-treated 101 

Hoxb5-Tom mice with previously published results (Busch et al., 2015) of analogous label 102 

propagation obtained with the Tie2-YFP mouse line. As shown in Figure 1F, our data are highly 103 

consistent for both MPP/HSC and HPC-1/HSC relative abundances across the entire time range. 104 

Altogether, we established a new mouse system for inducible, persistent labelling of HSC progeny 105 

in the BM, thus unlocking our next goal - modelling of population dynamics. 106 

A unified reference HSPC landscape with time-resolved differentiation 107 

Having validated the HoxB5-Tom system, we designed a strategy to capture scRNA-Seq profiles 108 

of cells traversing the HSPC landscape in real-time (Figure 2A). We harvested BM from 109 

tamoxifen-treated mice at 9 time-points ranging between 3 days (providing just enough time for 110 

Tom expression) and 269 days, when the label is mostly equilibrated. At each time-point we sorted 111 

Lin- cKit+ or Lin-Sca1+ sub-population from the bone marrow, which contains all stem cells and a 112 

broad view progenitor cells (Dahlin et al., 2018) (Figure S1D). To ensure accuracy and 113 

reproducibility, we profiled multiple independent biological replicates for each time-point (36 114 
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animals in total). While our focus was labelled Tom+ cells, we also profiled Tom- cells at each 115 

time-point to obtain the background cell density. We generated a common reference landscape by 116 

integrating all single-cell profiles followed by clustering and embedding in a UMAP projection 117 

(Figure S2F). Clusters disjointed from the main landscape body (mostly mature cell types) and 118 

those representing technical artifacts (e.g. doublets or dying cells) were excluded. The refined 119 

landscape (>115,000 cells) served as a basis of our analysis (Figure 2B, unfiltered data in Figure 120 

S2F,G).  121 

To place our data within the broader scope of hematopoietic research and extend its 122 

interpretability, we provide multiple layers of annotation. The manual annotation (Dahlin et al., 123 

2018; Weinreb et al., 2020) uses lineage marker expression (Figure S2A,B) and HSC-score 124 

(molecular signature of long-term repopulating HSCs  (Hamey and Göttgens, 2019)) to highlight 125 

the upstream cluster containing HSCs (Figure S2C) (cluster 0) and 8 terminal clusters (Figure 2E), 126 

where clear expression of definitive markers is observed (Supplementary Table 1). To add more 127 

functional information, we mapped external scRNA-Seq datasets using our Cellproject package. 128 

Firstly, we overlaid canonical immunophenotypic annotation (data from (Nestorowa et al., 2016)) 129 

comprising: highly purified LT-HSCs, multipotent progenitors (MPPs) 1 and 3, ST-HSCs, 130 

granulocyte-monocyte progenitors (GMPs), LMPPs and megakaryocyte-erythroid progenitors 131 

(MEPs) (Figure 2C,D, S4A,B). Secondly, we highlighted cell states associated with specific cell 132 

fate outcomes based on in vitro lineage tracing experiments (Weinreb et al., 2020) (Figures 2G 133 

and S4C). Importantly, the in vitro cell potency is broadly aligned with the manual cluster 134 

annotation. Finally, we included information about the active/inactive HSC status under 135 

proliferative challenge based on lineage tracing data from (Bowling et al., 2020) (Figure 2F). 136 

Together, these annotations place cell clusters in the functional context, essential for interpretation 137 

of the population dynamics models discussed below. 138 

The HSPC landscape split by time-point shows clear propagation of labelled cells (Figure 2H, 139 

quantification for all time-points is shown in Figure S3B), in agreement with the theory (Figure 140 

1E). Certain areas (e.g. clusters 8 and 7) very quickly accumulate labelled cells, others are slower 141 

(clusters 11 or 10) and some very slow (clusters 13 or 14). Eventually the label largely equilibrated, 142 

as compared to the Tom- population (Figure S3A). Importantly, cell populations defined in this 143 

way are much more molecularly homogeneous, in contrast to conventional flow cytometry gates 144 
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(Figure S4A,B) (Nestorowa et al., 2016; Paul et al., 2015; Rodriguez-Fraticelli et al., 2018). To 145 

provide a quantitative description of population dynamics, we employed two types of models: 146 

discrete and continuous, each built for specific purpose. The former captures dynamics across the 147 

entire compartment and intuitively combines the old models of hematopoiesis with a new 148 

quantitative view. It also serves as a necessary reference for the latter, a more advanced continuous 149 

modelling approach, which focuses on specific trajectories, but provides cellular flux parameter 150 

estimates for each single cell and thus directly connects single cell transcriptomic profiles with 151 

tissue-scale cellular behavior. 152 

Discrete model reveals HSPCs with lineage-specific patterns of self-renewal and 153 

differentiation 154 

To capture flow of cells through HSPC compartment in real time, we utilized the label propagation 155 

principles to build a discrete model consisting of multiple, interconnected cell clusters (Figure 3A-156 

C). We explain two variables changing over time: initial labelling frequency (Tom+ cells) and size 157 

(Tom- cells) per cluster. The model considers two basic properties of each cluster: net proliferation 158 

(difference between proliferation and death) and differentiation rates (ingoing and outgoing 159 

transitions among clusters). Additionally, we introduce two derived parameters that are useful for 160 

interpreting cell behavior (Figure 1D). Residence time, a metric of self-renewal, describes the time 161 

required for the cluster to shrink by 63% (to 1/e of original size, where e is the Euler’s number) in 162 

absence of any inputs. Finally, flux depicts the number of cells transported in a unit of time. We 163 

limited the number of differentiation parameters by assuming that cells travel only between 164 

adjacent clusters (i.e. with highest PAGA connectivities – Figure 3A,  (Wolf et al., 2019)). 165 

Of note, we observed changes in relative cluster size over-time, in particular a quick increase 166 

(>50% in <20 days) in clusters 0, 7 and 8 and a coordinated decrease in other major clusters (Figure 167 

S6), (Sánchez-Aguilera et al., 2014). Previous tamoxifen-based label propagation studies coupling 168 

also observed a quick rise in ST-HSC, MPP2 and MPP3 total numbers (Figure S6B), but no 169 

explanations were provided (Barile et al., 2020). Consistent with recovery from cell depletion 170 

caused by tamoxifen interference with JAK/STAT signaling (Sánchez-Aguilera et al., 2014), this 171 

pathway was most active in the depleted clusters 7, 8 in addition to cluster 0 (Figure S7H). To 172 

assess how recovery from cell depletion may influence model parameters, we compared our main 173 
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model with a bi-phasic fit which permits a switch in differentiation/proliferation rates between the 174 

recovery phase and homeostasis (after 27 days), which shows that 14 out of 58 rates change (Figure 175 

S7D-G). We thus explain and account for a previously overlooked side-effect of using tamoxifen 176 

for label induction. 177 

We formulated our main model into a graph in Figures 3C and S7A, where node sizes are 178 

proportional to the average cluster size, node color indicates self-renewal (or net proliferation in 179 

Figure S7A) and arrows indicate cell flux (differentiation rate in Figure S7A). Interestingly, 180 

differentiation rates do not correlate with similarities between gene expression states (Figures 3E, 181 

S7B), indicating that inferring real-time dynamics requires temporal information. 182 

Let us first consider cluster 0 as a single unit (grey box, Figure 3C), whose substructure we will 183 

discuss in the next section. The compartment-wide view clearly shows lineage-specific dynamics 184 

(Figure 3C). The definitive megakaryocyte progenitors emerge through a rapid transition via the 185 

fast-proliferating cluster 8, which also more slowly generates erythroid cells (cluster 1). The 186 

erythroid lineage is maintained by including additional stages with considerable self-renewal 187 

(clusters 1 and 9) and proliferation (cluster 9), followed by fast differentiation between clusters 9 188 

and 11. The myeloid progenitors flow from cluster 0 either into cluster 4 or via a shared route with 189 

the erythroid and megakaryocytic progenitors in cluster 8, with gradually increasing differentiation 190 

rates from cluster 2 onward. Thus, the myeloid branch similarly to the erythroid one, just like the 191 

erythroid one, employs additional progenitor populations, albeit with lower proliferation rates 192 

(Figure S7A). 193 

By contrast the lymphoid trajectory shows low proliferation and is limited by slow transitions via 194 

clusters 5 and 2 into cluster 14 (which overlaps mostly with a subset of MPP4 cells). Similarly 195 

slow is the plasmacytoid dendritic cell (cluster 13, pDCs) differentiation through the lymphoid 196 

cluster 14 and myeloid clusters 6 and 16. The emergence of mast cell, basophil and eosinophil 197 

progenitors in the adult bone marrow is unclear (Hamey et al., 2021; Wu et al., 2022). Our results 198 

reveal that basophil and mast cell progenitors (cluster 12) are continuously generated and originate 199 

mostly by a transition from cluster 2. Furthermore, despite limited cell numbers, we observed some 200 

label accumulation in eosinophils (cluster 17), primarily originating from neutrophil progenitors 201 

(cluster 10). 202 
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Interestingly, residence time (self-renewal) varies widely across the HSPC landscape, with 203 

lineage-specific patterns (Figure 3C). As expected, cluster 0 contains the only perfectly self-204 

sustaining population; intermediate populations show an extensive range of residence times, from 205 

just 2.5 days for Erythroid/Megakaryocytic progenitor (cluster 8), 11 days for 206 

Monocyte/Granulocyte progenitors (cluster 2) and up to 53 days for the medial cluster 4. The latter 207 

example falls close to the residence time previously estimated for MPPs (70 days)(Busch et al., 208 

2015) and highlights that progenitors can also show considerable self-renewal. Importantly, cells 209 

in cluster 8, 2 and 4 largely fall within the immunophenotypic CMP and MPP definitions (Figures 210 

2C-D and S4A,B), indicating that these gates capture populations with vastly different dynamics. 211 

We also note that among some intermediate clusters our model permits a degree of forward and 212 

backward differentiation suggesting a balance (or oscillations) between the states. To conclude, 213 

diverse hematopoietic progenitors exhibit widely different, lineage-dependent dynamics 214 

illustrating the distinct mechanisms maintaining cell output. 215 

The top compartment composition changes over time 216 

The top cluster 0, based on the immunophenotype annotation (Figure 2C), contains virtually all 217 

LT-HSC and a large subset of ST-HSC and MPP1 cells. The overall cluster size increases over 218 

time (Figure S5C), following the expansion of ST-HSCs and MPP3s (Figure S6B) (Barile et al., 219 

2020). Surprisingly, the Hoxb5-Tom labelled cells within cluster 0 grow almost exponentially 220 

(Figure S5B), which mirrors the behavior of Tie2-YFP labelled LT-HSCs (Barile et al., 2020) and 221 

is consistent with the observation of dramatic expansion of Hoxb5-, Tie2- or Fgd5-labelled cells 222 

in ageing animals (Zhang et al., 2020). This suggests that Hoxb5 and Tie2 systems mark, in 223 

addition to the canonically quiescent LT-HSCs, a subset of stem cells with high self-renewal or 224 

proliferation capacity. 225 

To provide insight into cluster 0 sub-structure, we tested multiple models and put forward a 226 

potential explanation, which assumes a logistic growth for cluster 0 and three sub-clusters within 227 

in it: a top, perfectly self-renewing cluster 0a, megakaryocyte & myeloid-biased cluster 0b and 228 

multipotent 0c. We constrained cluster 0a size and differentiation rate to match previously reported 229 

LT-HSC numbers but left clusters 0b and 0c sizes unconstrained. Cluster 0c remains stable over 230 

time but it proliferates quickly and feeds both downstream progenitors and cluster 0b, which in 231 

turn grows over time (Figure S5D). Hence, the flux between clusters 0b and 8 increases with mouse 232 
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age. This is in line with the increased myeloid output (Benz et al., 2012; Muller-Sieburg et al., 233 

2004) and relative proportion of megakaryocyte-biased and myeloid-biased HSCs in aged animals 234 

(Yamamoto et al., 2018). Of note, cluster 0b shows high self-renewal (residence time of 180 days), 235 

consistent with high repopulation potential of lineage-biased HSCs (Yamamoto et al., 2018). 236 

Altogether, our discrete model in addition to faithful recapitulation of cell flux through the HSPC 237 

compartment also provides a possible explanation of ageing-associated changes in HSC behavior. 238 

Continuous model of hematopoiesis connects dynamics of gene expression with 239 

cell behavior 240 

Unlike immunophenotyping, scRNA-Seq contains transcriptome-wide profiles for each cell. 241 

While the discrete model provides compartment-wide dynamics, its utility for gene expression 242 

analysis is limited. To address this issue, we employed a continuous model based on the 243 

Pseudodynamics framework (Fischer et al., 2019). For tractability, we considered one lineage at a 244 

time, based on cells with highest fate probabilities towards each lineage (Lange et al., 2022; Setty 245 

et al., 2019)(Figure 4A,B, S8A,B, S11). 246 

The continuous model assigns differentiation and net proliferation rates to each cell (Figure 4A) 247 

by solving partial differential equations describing cell densities along pseudotime over real-time. 248 

Hence, model parameters and gene expression share a common pseudotime (and real-time) axis, 249 

enabling direct comparison. Of particular interest are states (i.e. pseudotime ranges) with changes 250 

in proliferation or differentiation rates. An increase in proliferation rates indicates an expansion 251 

stage, whereas a rise in differentiation rates marks a potentially irreversible molecular transition. 252 

We set out to analyze gene expression dynamics occurring at such changes in cell behavior. For 253 

brevity we focus on the megakaryocyte and neutrophil trajectories but also provide analogous 254 

analyses for erythroid and monocytic/dendritic lineages (Figures S8,S9). As shown in Figure 4A,C 255 

megakaryocyte progenitors show characteristic changes in growth and differentiation rates. Cells 256 

rapidly increase their net proliferation early on, ahead of the peak in differentiation and around the 257 

stage where Pf4 (megakaryocyte marker) mRNA becomes detectable. In this growth phase, we 258 

identified 170 dynamically expressed genes (similar analysis of the differentiation phase in Figure 259 

S8C-D) with distinct patterns along pseudotime (Figure 4C-D). These genes are strongly enriched 260 

for cell growth and proliferation genes with almost all of them showing an upward trend in the 261 
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relevant pseudotime range. This serves as a proof of principle, as the model based solely on total 262 

cell numbers, predicts the growth stage matching the respective gene signature. 263 

While following the neutrophil differentiation kinetics (Figure 4B,E), we found gradually 264 

increasing differentiation rates (blue line) accompanied by a complex pattern of gene expression. 265 

Indeed, we observed two phases of neutrophil-affiliated gene expression (Figure 4F), with Cebpe, 266 

Cst7, Elane, Fcgr3, and Gfi1 appearing almost simultaneously at the onset of differentiation, while 267 

Clec4a2, Wfdc21, S100a8 increasing at different intervals later. To gain insight into potential 268 

mechanisms regulating the process, we scrutinized transcription factors with dynamic expression 269 

along the trajectory (Figure S9A) and classified them into 4 groups based on their distinct 270 

expression patterns. Group 2 (Figure 4F) largely mirrored the expression of early neutrophil 271 

markers described above, and reassuringly contained the Gfi1 factor, a key determinant of the 272 

neutrophil fate (Olsson et al., 2016). Group 3 (Figure S9B) contained factors with the highest 273 

expression in the most immature HSPCs (e.g. Gata2, Hlf, Meis1) and showed early and nearly 274 

synchronous decay in expression, suggesting involvement in self-renewal. Finally, Group 1 275 

(Figure 4F) TFs exhibit unique patterns of expression with peaks at different stages, all of which 276 

ultimately decaying as late neutrophil markers appear. These contain multiple TFs associated with 277 

specific lineages such as: Irf8 (Monocyte/DC fate (Olsson et al., 2016)), Aff3 (lymphoid/B cells 278 

(Ma and Staudt, 1996)), Dach1 (myeloid (Amann-Zalcenstein et al., 2020)), Hmga2 (myeloid, 279 

erythroid, megakaryocytic (Kumar et al., 2019), Pou2f2 (lymphoid/B cells (Novershtern et al., 280 

2011) or are important for HSPC self-renewal, including Ikzf2 (Park et al., 2019) or Ssbp2 (Li et 281 

al., 2014). Thus, our analysis indicates that progenitors exhibit transient expression of major 282 

lineage determinants at specific differentiation stages on their way to becoming neutrophils (see 283 

Gfi1, Flt3, Irf8 in Figure S9D,E). Early accumulation of these factors is correlated with increased 284 

differentiation rate but eventually a single programme takes over and accelerates the differentiation 285 

even further. To conclude, the continuous model unlocks the access to full single cell transcriptome 286 

data, and thus enables integrated analysis of cellular and molecular dynamics, revealing new 287 

mechanistic insights into cell behavior during differentiation. 288 
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HSPC models simulate cell journeys in real-time consistent with basic 289 

properties of hematopoiesis 290 

Mathematical models combined with our new datasets offer unique prediction capabilities 291 

allowing us to unravel fundamental facets of hematopoiesis. Specifically, we focused on 292 

computing cell journeys in real-time and consequences of cluster ablation. Firstly, we estimate the 293 

'average journey times' with the discrete model. We placed a single cell in cluster 0 and computed 294 

the average time required to accumulate one cell for each target cluster. As shown in Figures 3F 295 

and S7C, time required to reach terminal population varies widely between lineages. For instance, 296 

reaching Meg progenitors (cluster 7) requires 27 days, neutrophil progenitors (cluster 10) or late 297 

erythroid progenitors (cluster 11) >80 days and finally producing pDCs takes about 150 days. 298 

Secondly, we predict what would happen if, under normal conditions, the self-renewing cluster 0 299 

was ablated. As expected, without cluster 0 input, downstream cluster sizes would gradually 300 

decline over time (Figure 3G), due to limited self-renewal of intermediate progenitors. As we 301 

described above, progenitor self-renewal is lineage-specific, hence corresponding clusters wane at 302 

different rates, with megakaryocyte progenitors depleted to 50% after 2-3 days, whereas lymphoid 303 

progenitors are maintained for >50 days. 304 

Altogether, the hierarchy revealed by our model is consistent with current hematopoiesis research 305 

(Eaves, 2015; Rodriguez-Fraticelli et al., 2018; Tusi et al., 2018; Weinreb et al., 2020). 306 

Furthermore our model estimates lead to predictions that agree with basic properties of 307 

hematopoiesis inferred from transplantation (Notta et al., 2016; Rodriguez-Fraticelli et al., 2018) 308 

or cell culture (Notta et al., 2016; Weinreb et al., 2020) experiments such as the order of lineage 309 

emergence. The time-frame of the process is expectedly much longer but is compatible with 310 

previous studies of HSPC dynamics in the native context (Busch et al., 2015). This important 311 

validation demonstrates that our completely new approach is anchored firmly in the long tradition 312 

of hematopoiesis research, yet at the same time produces profound new insights, and unlocks 313 

previously impossible means of performing truly quantitative comparisons. 314 

Integrative model resolves effects of transplantation HSPC dynamics 315 

Our models serve as a reference framework for native hematopoiesis, uniquely capable of 316 

transferring information across experiments and systems. To demonstrate this utility, we analyzed 317 
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previously published data (Dong et al., 2020) using scRNA-Seq to track the progeny of highly-318 

purified HSCs in transplanted animals over time (Figure 5A). After integrating the scRNA-Seq 319 

profiles into our reference landscape (Figure 5B-F), we derived cell frequencies per cluster at day 320 

3, and used the discrete model to predict the cell abundance expected under 'normal' conditions 321 

(Figures 5 and S10). While some general features match normal hematopoiesis, for instance 322 

megakaryocyte progenitors being the first emerging lineage, it is clear that, under transplantation 323 

conditions, cells differentiate much faster in most directions, particularly towards the neutrophil 324 

fate (Figure 5G, cluster 10). The erythroid lineage behaves differently; while early megakaryocyte 325 

and erythrocyte differentiation is accelerated upon transplantation (Figure 5G, cluster 8), late 326 

erythroid progenitor cell differentiation is stalled, compared to the steady-state counterparts 327 

(Figure 5G, cluster 11). In conclusion, we demonstrated that our model can be easily applied to 328 

other datasets, and provide quantitative predictions and interpretation, which would not be 329 

otherwise available from static measurements alone. 330 

Discussion 331 

Quantitative models describing cell differentiation (e.g. Waddington landscape) have been 332 

conceptualized decades ago (Waddington, 1957). Yet, we have barely progressed beyond static 333 

and qualitative abstractions of hematopoiesis. Here, we report a major effort which has allowed us 334 

to add real time to single-cell transcriptomics data. Analogously to the moving images in a 335 

Kinetoscope, our approach uses snapshots of differentiation to reconstruct the cellular flow 336 

between single-cell states within the bone marrow. Internally, our model describes cell behavior 337 

as a function of self-renewal and differentiation rate parameters, which in turn translate into the 338 

shape of a Waddington-like landscape (Figure 6). The discrete model approximates the landscape 339 

with a set of pre-defined platforms connected with slides, whereas the continuous model follows 340 

the shape for all observed states (here: single cells). Differentiation rate is analogous to the slope 341 

of the valley connecting two states, with steeper slopes indicating faster transition. In turn, stable 342 

states have little or no downward slope and combined with proliferation constitute areas of high 343 

self-renewal - these can be imagined as flat areas in the landscape (Figure 1G). 344 

The cellular context is crucial for understanding the differentiation rates and cell fate. CMPs have 345 

been proposed as an intermediate progenitor population with combined erythroid, megakaryocytic, 346 
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neutrophilic and monocytic potential (Akashi et al., 2000). However, later studies reported that the 347 

majority of CMPs are transcriptionally and epigenetically primed towards specific lineages (Paul 348 

et al., 2015), accompanied by lineage bias and mostly unipotent output (Perié et al., 2015) in 349 

transplantation cell fate assay. Importantly, transplantation, as we show in this work, is associated 350 

with greatly increased differentiation rates, most likely due to high proliferative demand, which if 351 

induced by 5-FU treatment also causes accelerated differentiation (Busch et al., 2015). In fact, cell 352 

fate assays performed in media containing a range of differentiation-supporting cytokines, rarely 353 

show combined megakaryocyte, erythroid, granulocyte and monocyte output, as demonstrated by 354 

(Akashi et al., 2000) and (Weinreb et al., 2020). Instead, if cells are given an opportunity to expand 355 

(for approx. 3 divisions) under cytokine-restricted conditions (SCF, IL-11, TPO only) >50% CMPs 356 

are capable of generating multipotent output in secondary assays (Akashi et al., 2000). The same 357 

argument applies to the LMPP population, which was originally reported as consisting mostly of 358 

multi-potent cells based on analogous two-phase culture assays (Adolfsson et al., 2005) and later 359 

described to produce mostly unilineage output in transplantation assays (Naik et al., 2013). Our 360 

model suggests that the clusters 8, 4, 5 (largely overlapping with CMPs) transition slowly among 361 

each other and particularly in case of cluster 8 and 4 both directions are permitted, indicating that 362 

these states may exist in balance. Thus, strong differentiation conditions (transplantation or 363 

differentiating media) are likely to simply not provide enough time for cells to 'explore' the 364 

multipotent progenitor space. Moreover, if a progenitor cell does not divide before being channeled 365 

down a particular lineage, alternative fates can never be realized. Further work will be required to 366 

better resolve the HSC sub-populations (in cluster 0). We consider the tentative sub-structure 367 

provided here as a useful first step in this endeavor, as it fits both our data and experimental 368 

evidence of HSC behavior in ageing mice (Barile et al., 2020; Busch et al., 2015; Yamamoto et 369 

al., 2018; Zhang et al., 2020). 370 

We fully leverage the scRNA-Seq approach to vastly extend our model’s applicability. To ensure 371 

accessibility and interpretability for wide audience we integrated published annotation from many 372 

sources. This places our unified landscape (and its sub-populations) in the biological context of 373 

previous immunophenotyping and lineage tracing experiments. Moreover, static cell properties 374 

(cluster, pseudotime) and model parameters (differentiation rates, self-renewal) are transferable. 375 

As demonstrated in Figure 5, new time-course scRNA-Seq data can be readily incorporated into 376 

our landscape, while the model highlight changes in cell differentiation rates in context of cell 377 
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transplantation. Even with snapshot data our model can be used to simulate what changes in cell 378 

dynamic parameters could underlie an observed difference in cell abundance between conditions. 379 

Differentiation and growth involve coordinated up- and down-regulation of thousands of genes, 380 

where it remains unknown for the vast majority of those genes whether and if so, how, they play 381 

a role in controlling cell behavior. To access the relevant molecular states with high precision, we 382 

introduce the first continuous model of native hematopoiesis which includes per-cell growth and 383 

differentiation rates, thus providing a direct comparison between cellular behavior and underlying 384 

gene expression. We observed complex, sequential gene expression pattern, some of which overlap 385 

with increasing differentiation rates, suggesting irreversible molecular changes. Specifically, we 386 

show that neutrophil differentiation is coupled with expression of multiple lineage determinants 387 

(Irf8, Flt3, Pou2f2, Gfi1) followed by a single programme taking over and a further increase in 388 

differentiation. 389 

Our work shifts the paradigm from qualitative models with limited predictive capabilities to 390 

integrative and quantitative models. The latter are highly transferable and thus key to providing 391 

insight into human hematopoiesis, where experimental options are limited. Recently demonstrated 392 

scRNA-Seq information transfer across species  (Lotfollahi et al., 2019, 2022; Welch et al., 2019) 393 

will potentially enable mapping HSPC dynamics onto human counterparts. Self-renewal and 394 

differentiation capacities are particularly relevant to leukemia research, which, in most cases, 395 

struggles with identifying cell types of cancer origin. As we show here and supported by previous 396 

studies (Busch et al., 2015; Takahashi et al., 2021), progenitors can also operate close to self-397 

renewal and a small proliferative advantage may be sufficient to immortalize them. Finally, 398 

population dynamic models are universally applicable across biological fields, as adult tissues are 399 

commonly replenished from their own stem cell pools (Goodell et al., 2015). To instruct such 400 

future endeavours, we demonstrated how to build a model connecting high-resolution molecular 401 

information with tissue-scale cell behavior. 402 

Methods 403 

Data and code availability 404 

• All sequencing data has been deposited on GEO under  accession number: GSE207412. 405 
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• Cellproject package is available through Github (https://github.com/Iwo-K/cellproject). 406 

Hoxb5CreERT2 mouse line 407 

The Hoxb5CreERT2 allele was generated using CRISPR-Cas9 gene editing technology employing 408 

fertilized 1-cell zygotes on the B6CBAF1/Crl genetic background. We injected a single 15 ng/ul 409 

sgRNA (tcctccggatgggctca) (Chen et al., 2016) together with 25 ng/ul CAS9 mRNA and 17.5 ng/ul 410 

single strand donor DNA encoding the P2A-CRE-ERT2 protein flanked by 70 nucleotides of 411 

homology arms (Supplementary Table 2). The F0 offspring was screened by PCR and Sanger 412 

sequencing. The Hoxb5CreERT2 line was established from one founder animal and back-crossed 413 

several times to the C57BL/6N genetic background. Mice were genotyped by PCR using primers 414 

detailed in Supplementary Table 2. 415 

Induction of reporter gene expression by tamoxifen 416 

Tamoxifen (1g; Sigma T5648) was dissolved in 10 mL absolute ethanol and 90 mL corn oil (Sigma 417 

C8267) at 37ºC. Aliquots of tamoxifen (10 mg/mL) were stored at -20 ºC. Mice were injected 418 

intraperitoneally (i.p.) with tamoxifen at 100 mg/kg body weight for 7 days. Hoxb5-Tom mice 419 

were injected with equivalent volume of corn oil to confirm no background or tamoxifen-induced 420 

changes in the reporter strain alone. Non-injected Hoxb5-Tom mice were also analysed to 421 

determine whether any labelling was present in the absence of induction.  422 

Flow cytometry 423 

At end point analyses, the fraction of Tom+ cells was determined in various hematopoietic 424 

compartments of BM, PB, spleens, thymi and lymph nodes. Cells from those tissues were prepared 425 

and analyzed as described previously (Lawson et al., 2021; Mapperley et al., 2021). 426 

For HSC and progenitor cell analyses, unfractionated BM cells were incubated with Fc block (BD 427 

Pharmigen 553141), followed by biotin-conjugated anti-lineage marker antibodies (CD4 428 

(Biolegend 553649), CD5 (Biolegend 553019), CD8a (Biolegend 553029), CD11b (Biolegend 429 

553309), B220 (Biolegend 553086), Gr1 (Biolegend 553125) and Ter119 (Biolegend 553672)), 430 

cKit-BV711 (Biolegend 105835), Sca1-APC/Cy7 (Biolegend 108126), CD48-APC (Biolegend 431 

103411) and CD150-PE/Cy7 (Biolegend 115914) antibodies. Biotin-conjugated antibodies were 432 
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then stained with Pacific blue-conjugated streptavidin (Biolegend 405225). DAPI (BD Pharmigen 433 

564907) was used for dead cell exclusion. 434 

For analyses of differentiated cells in the BM, cell suspensions were stained with B220-APC 435 

(Biolegend103212) and CD19-APC/Cy7 (Biolegend 115529) antibodies for B cells, CD11b-PB 436 

(Biolegend 101224) and Gr1-PE/Cy7 (Biolegend 108416) for myeloid cells and Ter119-FITC 437 

(Biolegend 116206) for erythroid cells. 438 

For analyses of differentiated cells in PB, spleen and lymph node, myeloid cells were stained as 439 

above for BM cells, T cells with CD8a-APC (Biolegend 100712) and CD4-APC (Biolegend 440 

100411) antibodies, and CD19-APC/Cy7 (Biolegend 1155290) antibodies were used to detect B 441 

cells. 442 

Cell suspensions from thymus were incubated with the biotin-conjugated anti-lineage marker 443 

antibodies described above together with CD4-APC (Biolegend 100411), CD8b-APC/Cy7 444 

(Biolegend 126620), CD25-PB (Biolegend 102022) and CD44-PE/Cy7 (Biolegend 103030) 445 

antibodies. Biotin-conjugated antibodies were then stained with PerCP-conjugated streptavidin 446 

(Biolegend 405213). Flow cytometry analyses were performed using LSRFortessa (BD). 447 

 448 

Cell isolation for the scRNA-Seq experiments 449 

All steps in this section (unless otherwise indicated) were performed on ice, and centrifugation 450 

steps performed at 300g, 4°C for 5 min. 8-12 weeks old mice carrying the Hoxb5-Cre and the 451 

Rosa26-LoxP-STOP-LoxP-tdTomato constructs were treated with 7 daily injections of tamoxifen 452 

(as described above) and sacrificed at indicated time-points. Bone marrow cells were extracted 453 

from ilia, tibiae and femora by grinding with mortar and pestle in PBS supplemented with 2% 454 

Fetal Bovine Serum (cell buffer). The suspension was filtered through a 50µm filter, centrifuged 455 

and resuspended in 3 ml of cell buffer. Red blood cells were removed using the ammonium 456 

chloride solution: 5 ml of 0.8% Ammonium Chloride (StemCell Tech. 07800) was added to the 457 

suspension and incubated for 10 min with intermittent mixing. Afterwards cells were diluted with 458 

7 ml of cell buffer, centrifuged and resuspended in 1 ml of cell buffer. Subsequently, lineage 459 

depletion was performed as follows: added 20 µl of the EasySep mouse hematopoietic progenitor 460 
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cell isolation cocktail (Stem Cell Technologies 19856), incubated for 15 min, added 30 µl magnetic 461 

particles, incubated for 10 min, added 1.5 ml of cell buffer and placed tubes in a magnet, incubated 462 

for 3 min at room temperature and eluted cells twice (with additional 2.5 ml of cell buffer). 463 

Afterwards, cells were centrifuged, resuspended in 200 µl of cell buffer and stained with the 464 

antibody panel as follows: antibody mix was added, cells were incubated for 30 min, washed with 465 

2 ml of cell buffer, centrifuged, resuspended in 200 µl cell buffer. For the secondary staining 466 

Streptavidin-BV510 was added, cells were washed with 2 ml of cell buffer, centrifuged, and 467 

resuspended in 1000 µl of cell buffer supplemented with 7AAD. Afterwards cells were sorted with 468 

BD influx sorter into either 96 well plates containing 2.3 µl lysis buffer (for the Smart-Seq2 469 

protocol) or 100 µl of PBS with 0.04% BSA in eppendorf tubes ('droplet buffer') when used for 470 

the 10x Genomics scRNA-Seq protocol. The Smart-Seq2 plates were vortexed, centrifuged at 800g 471 

for 2 min and stored at -80°C. 472 

Both Tom+ or Tom- cells within the Lin-/(cKit OR Sca1)+ gate were sorted. (cKit OR Sca1)+ is a 473 

superset of the cKit+ gate used previously (Dahlin et al., 2018) which contains more lymphoid 474 

progenitors and pDCs. 475 

Antibodies and fluorochromes used: Mouse hematopoietic progenitor cell isolation cocktail (Stem 476 

Cell Technologies 19856), CD48-APC (Thermo-Fischer 17-0481-82), c-Kit-APC/Cy7 (Biolegend 477 

105826), Sca1-BV421 (Biolegend 108133) and CD150-PE/Cy7 (Biolegend 115914), 478 

Streptavidin-BV510 (Biolegend 405234), 7AAD (Thermo Fischer A1310) 479 

scRNA-seq data generation 480 

Smart-Seq2 481 

When cell numbers were limiting single cells were profiled with a modified version of the Smart-482 

Seq2 protocol (Bagnoli et al., 2018; Picelli et al., 2014) rather than 10x Genomics kit. Single cells 483 

were sorted into 96-well plates with 2.3 µl lysis buffer containing 0.115 µl of SUPERase-In RNase 484 

Inhibitor at 20 U/µl concentration (ThermoFisher AM2694) and 0.23 µl of 10% Triton X-100 485 

solution (Sigma 93443), plates were vortexed and stored at -80°C. After thawing 2 µl of the 486 

annealing solution (0.1 µl of ERCC RNA Spike-In solution (1:300,000 dilution) Thermo-Fisher 487 

4456740), 0.02 µl of the oligo-dT primer (100 µM stock concentration) and 1 µl of dNTP (10 mM 488 

stock concentration)) was added. The plate was incubated at 72°C for 3 min, cooled down on ice 489 
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and reverse transcription was performed by adding 5.7 µl of RT buffer (0.1 µl of Maxima H minus 490 

reverse transcriptase at 200 U/µl concentration (ThermoFischer EP0752), 0.25 µl of SUPERase-491 

In RNAse Inhibitor at 20 U/µl concentration, 2 µl of the Maxima enzyme buffer, 0.2 µl of TSO 492 

oligo at 100 µM concentration, 1.875 µl of PEG 8000 solution (Sigma P1458) at 40% v/v 493 

concentration and 1.275 µl water) and incubation at 42°C for 90 min followed by incubation at 494 

70°C for 15 min. Immediately after, cDNA was amplified by PCR by adding 1 µl of the Terra 495 

PCR Direct Polymerase (1.25 U/µl, Takara 639270), 25 µl of the Terra PCR Direct buffer and 1 496 

µl of the ISPCR primer (10 µM stock concentration) to a total volume of 50 µl using the following 497 

PCR conditions: 98°C for 3 min, 98°C for 15 s, 65°C for 30 s, 68°C for 4 min (21 cycles), 72°C 498 

for 10 min. The amplified cDNA was purified using AMPure XP beads (Beckman A63882), 499 

quantified using the PicoGreen assay (ThermoFischer P7589) and used for Nextera library 500 

preparation. The libraries were generated using either a standard protocol (batch 7d) or modified 501 

protocol (batches 3d7d, 2w4w and 3dr2), see the corresponding metadata) described below. No 502 

obvious batch effects were observed among cells analyzed with either of the protocols. 503 

The standard Nextera protocol: cDNA was diluted to approximately 50-150 pg/µl and 1.25 µl of 504 

the solution was used, 2.5 µl of Tagment DNA buffer 1.25 µl of Amplicon Tagment Mix (Nextera 505 

XT kit, Illumina FC-131-1096) were added, samples were incubated at 55°C for 10 min, and the 506 

reaction was stopped by addition of 1.25 µl of NT buffer. Tagmentation products were amplified 507 

by PCR by adding 1.25 µl of each N and S primers (Illumina Nextera XT 96-index kit FC-131-508 

1002) and 3.75 µl of NPM solution and using the following thermocycler settings: 72°C 3 min, 509 

95°C 30 s, 12 cycles of 95°C 30s, 55°C 30s, 72°C 60s and a final extension at 72°C for 5 min. 510 

The modified Nextera protocol follows the same principle as the standard Nextera protocol and 511 

includes the following steps: cDNA was diluted to approximately 50-150 pg/µl and 1.03 µl of the 512 

solution was used, 1.63 µl of Tagment DNA buffer and 0.6 µl Amplicon Tagment Mix was added, 513 

samples were incubated at 55°C for 10 min, the reaction was stopped by adding 0.82 µl of NT 514 

buffer. Tagmentation products were amplified by adding 1.23 µl of each N and S primers (as above 515 

but diluted 5 times), 2.3 µl of Phusion HF buffer (ThermoFischer F530L), 0.1 µl of dNTP (25 mM 516 

stock concentration), 0.07 µl of Phusion polymerase and 2.5 µl of water and using the following 517 

thermocycler settings: 72°C 3 min, 98°C 3 min s, 12 cycles of 98°C 10s, 55°C 30s, 72°C 30s and 518 

a final extension at 72°C for 5 min. 519 
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Libraries were sequenced using the Illumina Hiseq4000 or NovaSeq instruments, obtaining 520 

approximately 100-200 mln reads per 96 cells. 521 

10X genomics 522 

For the 10x Genomics scRNA-Seq protocol up to 20,000 cells were pooled in pairs corresponding 523 

to male and female animals, centrifuged and resuspended in a volume of droplet buffer optimal for 524 

recovery of up to 10,000 cells and immediately processed with the 10x Genomics Single Cell 3' 525 

v3 protocol following the manufacturer's instructions. 526 

Libraries were sequenced using the Illumina NovaSeq instrument, obtaining at least 20,000 reads 527 

per cells. 528 

scRNA-Seq data analysis 529 

Smart-Seq2 sequencing reads were aligned to the mouse genome (mm10) using the STAR aligner 530 

(version 2.7.3a) with default parameters. Reads mapping to exons were counted with 531 

featureCounts (version 2.0.0) using the ENSEMBL v93 annotation. Each sample was subjected to 532 

a quality control, samples with: <100,000 reads, <23% of reads mapped to exons, >8.5% of reads 533 

mapped to ERCC transcripts, >10% mitochondrial reads or <2000 genes detected above 10 counts 534 

per million were discarded. 1288 out of 1533 samples passed quality control. Data were 535 

normalized 10,000 total counts and ln(n+1) transformed. 536 

10x genomics reads were pre-processed using cellranger (version 3.1.0, reference genome and 537 

annotation version 3.0.0) with default settings. Downstream analysis was performed mainly using 538 

the scanpy (Wolf et al., 2018) framework with additional packages where indicated. Low quality 539 

barcodes with less than 1000 genes were excluded from the analysis, doublet scores were estimated 540 

using the scrublet tool (using 30 principal components), potential doublets were removed. Male 541 

and female cells were distinguished based on the expression of the Xist gene and Y chromosome 542 

genes. Cells with detectable Xist expression and undetectable Y chromosome gene expression 543 

were classified as female and vice versa, ambiguous cells or potential doublets were excluded. 544 

Data were normalised to 10,000 total counts and ln(n+1) transformed. 545 

To determine highly variable genes, scanpy's highly_variable_genes function was used to select 546 

top 5000 genes within the 10x genomics data. From the list of highly variable genes, genes 547 
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associated with cell cycle, Y-chromosome genes and the Xist were excluded. Genes associated 548 

with cell cycle were a union of cell-cycle genes from (Dahlin et al., 2018) and genes with at least 549 

0.1 Pearson correlation with the following gene set: Ube2c, Hmgb2, Hmgn2, Tuba1b, Ccnb1, 550 

Tubb5, Top2a, Tubb4b, following the method from (Weinreb et al., 2020). Putative cell cycle 551 

phase was assigned using scanpy's 'score genes cell cycle' function to assign putative cell cycle 552 

phase to both 10x and Smart-Seq2 cells. Following that, 10x and Smart-Seq2 data were combined 553 

and subjected to Seurat CCA batch correction (Stuart et al., 2019). Among a variety of batch 554 

correction tools (Harmony (Korsunsky et al., 2019), Scanorama (Hie et al., 2019), BBKNN 555 

(Polański et al., 2020), fastMNN (Haghverdi et al., 2018), MNNcorrect) only Seurat CCA 556 

generated seamless integration best matching the cell frequencies based on flow cytometry 557 

analysis. After applying batch correction, we observed no obvious segregation of Smart-Seq2 and 558 

10x scRNA-Seq profiles (Figure S2E). Corrected log-normalized counts were scaled and used to 559 

compute 50 principal components, find nearest neighbors and calculate a UMAP projection 560 

(McInnes et al., 2020). A minor batch effect between 10x samples was corrected using Harmony 561 

batch correction tool (Korsunsky et al., 2019). The corrected principal components were used to 562 

calculate 12 neighbors followed by cell clustering using the leiden algorithm (Traag et al., 2019) 563 

and calculation of the UMAP projection. Clusters were manually annotated based on the marker 564 

gene expression as described in Supplementary table S1. To reduce the complexity for the discrete 565 

model clusters with the following criteria were excluded from the further analysis: clusters that 566 

appeared disjointed from the main landscape body, represented low-quality/dying cells or with 567 

unclear origins based on the UMAP projection and PAGA analysis. This included: T cells, innate 568 

lymphoid cells (ILCs), cells with high mitochondrial gene counts, mature B cells, interferon-569 

activated cells, cells with high complement expression and small clusters with unclear annotation, 570 

likely to represent doublet cells. Unfiltered landscape is displayed in Figure S2F,G. 571 

To visualize the relative proportions of cells per cluster over time (Figure S3B), we averaged 572 

fractions of Tom+ cells in each cluster for each time-point and divided by the respective values for 573 

matching Tom- cells. 574 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.07.506735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.506735
http://creativecommons.org/licenses/by/4.0/


 21 

Embedding external datasets into the integrated HSPC landscape 575 

For each external datasets the log-normalised counts for cells passing quality control were used as 576 

in the original work. Annotation was either obtained from the respective GEO repositories, 577 

literature or kindly provided by the authors. 578 

Each dataset was integrated with the HSPC landscape (below denoted as reference) using the 579 

indicated batch correction tools and the Cellproject package as follows. Log-normalized counts 580 

for (Nestorowa et al., 2016) were concatenated with the reference and batch effect was removed 581 

using Seurat CCA method (Stuart et al., 2019) only highly-variable genes selected in the reference 582 

landscape were used. The corrected values were scaled and used to compute PCA (50 components) 583 

in the reference dataset. The correct values of (Nestorowa et al., 2016) dataset were fit into the 584 

reference PCA space, in which 15 nearest neighbors were identified between the datasets. These 585 

nearest neighbors were used for two purposes: (1) transfer the cluster identity to the new data 586 

(based on the most frequent label) and (2) to predict coordinates in the original reference PCA 587 

space (used as a basis for UMAP projection) using nearest-neighbor regression. Finally, the new 588 

PCA coordinates were used to embed the new data into UMAP space. As immunophenotypic 589 

populations we used the 'narrow' classification provided in the original study. 590 

(Bowling et al., 2020) data was concatenated with the reference and a common PCA space was 591 

calculated, which was subsequently corrected with the Harmony batch correction tool. Within the 592 

corrected space 8 nearest neighbors were identified across the datasets, followed by label transfer 593 

and UMAP embedding as described above. 594 

(Weinreb et al., 2020) data was integrated analogously to the (Nestorowa et al., 2016) data. Only 595 

'state-fate' clones were used, ie. cells captured at an early time-point (day2) with measured fate 596 

outcomes at later time-points. Only fates with more than 7 cells were considered for the analysis. 597 

Trajectory inference and selection 598 

To pinpoint the most immature stem cells the HSC score was calculated (default parameters) 599 

(Hamey and Göttgens, 2019) and denoised by averaging values over the nearest neighbors for each 600 

cell. As diffusion pseudotime the cell with the highest smoothed HSC score was selected, diffusion 601 
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map was calculated and served as the basis for trajectory inference and continuous populations 602 

models described below. 603 

To infer putative trajectories Tom+ cells were used (matching the Pseudodynamics analysis below) 604 

for calculating cell transition probabilities using the Pseudotime Kernel method (based on the 605 

Palantir tool (Setty et al., 2019)) from the CellRank package (Lange et al., 2022). To define the 606 

end states clusters 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19 were selected and within them 50 cells 607 

with the highest pseudotime values. These states are largely consistent with an unsupervised 608 

method of macrostate selection Generalized Perron Cluster Analysis with Schur decomposition 609 

(Lange et al., 2022). To assign cell fate probabilities Cellrank's compute_absorption_probabilities 610 

function was used. 611 

Cells belonging to trajectories for the continuous models were selected as follows. In case of 612 

megakaryocytic trajectory cells belonging to cluster 0, 7 and 8 and with the respective fate 613 

probability >0.3 were chosen. For the erythroid trajectory cells with respective fate probability 614 

<0.2 and falling within the pseudotime range 0.015 and 0.294 (to exclude variable small number 615 

at the end of the trajectory) were used. Neutrophil and monocyte share a long stretch of progenitors 616 

with high probabilities towards both lineages, thus a different approach was used, motivated the 617 

apparent locations of bipotent cells with neutrophil and monocyte/DC potential based on cell fate 618 

assays (Figure 2G) (Weinreb et al., 2020). Neutrophil progenitors (terminal state 10) were selected 619 

with fate probability >0.24 and Mono/DC probability <0.38 and excluding a small number of cells 620 

falling into clusters 12, 17 and 14. Conversely for the Mono/DC progenitors (terminal state 6) cells 621 

were selected with Mono/DC fate probability >0.18 and neutrophil probability <0.49 and a small 622 

number of cells falling into clusters 12, 17 and 14 was excluded. 623 

Discrete population model analysis 624 

As input to the discrete models the estimated total number of Tom+ or Tom- cells per cluster was 625 

used. The numbers were estimated based on the fraction of cells assigned to each cluster adjusted 626 

by the total number of cells analyzed by flow cytometry (samples were analysed in their entirety). 627 

One out of 5 mice analyzed at day 3 exhibited abnormally high labelling frequency, the sample 628 

was excluded to avoid introducing bias but we provide the corresponding data within the GEO 629 

submission files and source code for individual assessment. 630 
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To assess the kinetics of differentiation and growth of the different hematopoietic populations, we 631 

first considered a discrete compartments model, using the HSPC landscape clusters as 632 

compartments. To establish the topology of the differentiation process, PAGA connections and 633 

pseudotime ordering were considered. First of all, only transitions with PAGA connectivities 634 

higher than 0.05 were selected. No back differentiation (ie. against pseudotime ordering) was 635 

permitted into cluster 0 and from most differentiated clusters with clear expression of commitment 636 

genes: 1, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Other transitions above-threshold were 637 

considered potentially bidirectional. Each compartment is assigned a growth rate and as many 638 

differentiation rates as the number of its progeny compartments. Assuming the following: 639 

• the label is neutral and stably propagated 640 

• the kinetics parameters of each cluster are constant over time and independent of the size 641 

of any cluster 642 

• the labeled and unlabeled cells have identical kinetics, 643 

Population dynamics can be modelled as an ODE system of coupled equations: 644 

𝑥̇𝑖(𝑡) = (𝛽𝑖 −∑
𝑛𝑐

𝑗=1

𝛼𝑖,𝑗)  𝑥𝑖(𝑡) +∑
𝑛𝑐

𝑗=1

𝛼𝑗,𝑖 𝑥𝑗(𝑡) 645 

where 𝑥𝑖(𝑡) is the number of cells in population 𝑖, 𝛼𝑗,𝑖 is the differentiation rate from compartment 646 

𝑗 to 𝑖, and 𝛽𝑖 the growth rate of population 𝑖. For the terminal and initial clusters the equations take 647 

form respectively: 648 

𝑥̇𝑖(𝑡) = 𝛽𝑖 𝑥𝑖(𝑡) +∑
𝑛𝑐

𝑗=1

𝛼𝑗,𝑖 𝑥𝑗(𝑡) 649 

𝑥̇0(𝑡) = (𝛽0 −∑
𝑛𝑐

𝑗=1

𝛼0,𝑗)  𝑥0(𝑡) 650 

Please note that differentiation rates are set to zero if they have not passed the thresholding criteria 651 

as explained above. The number of clusters, nc, is equal to 22, one per each of the 20 Leiden 652 

clusters, plus 2 additional subpopulations within cluster 0, the most immature cluster. The reason 653 
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for this choice lays in 2 observed characteristics in the data: cluster 0 ratio of labelled to unlabeled 654 

cells (labelling frequency) grows over time, and some downstream clusters' labelling frequency 655 

overshoots the one in cluster 0. Based on (Barile et al., 2020) and (Takahashi et al., 2021), this 656 

implies that the progenitor cluster must be heterogeneous. Indeed, the most immature HSCs 657 

occupy only the tip of cluster 0 (Figure 2C). Particularly, we chose to add 2 more sub-658 

compartments to allow for differentiation bias in the HSCs. The differentiation rates were allowed 659 

to vary between 0 and 4 per day, with the exception of cluster 0a's rates, which were bounded to 660 

vary between 0 and 0.02 per day, based on previous knowledge of HSCs low activity (Barile et 661 

al., 2020; Oguro et al., 2013). The growth rates were bounded between -4 and 4 per day, to allow 662 

for death rate (negative values) or additional differentiation towards more mature cell states outside 663 

the presented HSPC landscape, or cell migration. The growth rate in cluster 0a was fixed in such 664 

a way to balance the differentiation rates, given the a priori knowledge that pure functional 665 

haematopoietic stem cells show only limited growth over time (Zhang et al., 2020). Furthermore, 666 

we observed that the total number of cells in cluster 0 plateaus as the mice age, similarly to what 667 

was previously observed for the HSC and MPP populations (Barile et al., 2020). We accounted for 668 

this upon modelling cluster 0 overall number of cells with a logistic function, and thus added a 669 

logistic parameter 𝜌 and a carrying capacity 𝐾. Both parameters are positive and unconstrained. 670 

Specifically, we implemented the following equations for cluster 0a: 671 

𝑥̇0(𝑡) = 𝜌 𝑥0(1 − 𝑥0(𝑡)/𝐾) 672 

𝑥̇0𝑎(𝑡) = 𝑥̇0(𝑡) − 𝑥̇0𝑏(𝑡) − 𝑥̇0𝑐(𝑡), 673 

while the time evolution of clusters 0b and 0c is analogous to that of all other clusters. Since we 674 

calibrated the ODE system to both the labelled and unlabeled cells time courses, we also included 675 

as parameters 22*2 initial conditions, all positive and unbounded, except for the number of cells 676 

in cluster 0a, set to range between 500 and 1500 based on previous HSC number estimates (Kent 677 

et al., 2009) and factoring in cell isolation efficiency. The model allows the initial number of 678 

labelled cells to be greater than zero, thus accounting for any unspecific labelling. 679 

We calibrated our model to 4 types of observables: 680 

• The number of labeled cells in each cluster over time and relative to cluster 0 as computed 681 

via scRNA-Seq analysis 682 
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• The number of unlabeled cells in each cluster over time and relative to cluster 0 as 683 

computed via scRNA-Seq analysis 684 

• The number of labeled cells in cluster 0 over time as computed via FACS sorting and 685 

scRNA-Seq analysis 686 

• The number of unlabeled cells in cluster 0 over time as computed via FACS sorting and 687 

scRNA-Seq analysis 688 

To estimate the parameters, we minimized a cost function of the squared sum of residuals. Each 689 

residual is weighted by the squared error, which was computed as pooled variance per time course. 690 

We computed the 95% confidence bounds on the parameters' best fit with the profile likelihood 691 

method as in (Barile et al., 2020; Raue et al., 2009). To compute error bounds on the model, we 692 

ran ≈4000 bootstrap simulations, where data is resampled with replacement per time-point, and 693 

the cost function is re-minimized on the new dataset. For each simulation, a new parameter vector 694 

is found, and a model curve generated. 95% bootstrap confidence bounds are then determined 695 

cutting upper and lower 0.025 quantiles per time-point. To simulate the ablation of any population, 696 

the initial condition of the unlabeled cells for the corresponding compartment can be set to 0. To 697 

ablate the HSCs, we simultaneously set to 0 the initial condition of all 3 subclusters. 698 

To compute the journey times, we generated the model in the time interval 1-300 days with 1 day 699 

steps, assuming that cells are initially only in cluster 0 and with the unlabeled cells initial condition. 700 

We then computed the smallest time for which the number of cells in a population reaches one and 701 

dubbed that journey time. 702 

Continuous population model analysis 703 

In order to compute pseudotime-dependent kinetic rates, we relied on the pseudodynamics 704 

framework (Fischer et al., 2019). Briefly, the compartment model explained in the previous section 705 

has a one to one correspondence to the continuous model if the compartment index is treated as a 706 

continuous variable, namely the diffusion pseudotime coordinate 𝑠, the number of cells is replaced 707 

by the cell density over pseudotime and real time 𝑢(𝑠, 𝑡), and the differentiation and net 708 

proliferation rates are replaced by the drift 𝑣(𝑠) and the growth rate 𝑔(𝑠), respectively. Given 709 

these substitutions, the ODE system becomes a PDE system. In addition, the Pseudodynamics 710 

framework also introduced an extra parameter 𝐷(𝑠) that allows for diffusion of the cells on the 711 
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pseudotime axis to account for stochasticity in the differentiation process. The 3 kinetics 712 

parameters, drift, growth rate and diffusion, are modelled as natural cubic splines with 9 nodes. 713 

The nodes boundaries were kept as in the original publication: between 0 and 1 per day for drift 714 

and diffusion, and between -5 and 6 per day for the growth rate. To simplify the computation, we 715 

estimated such rates independently for 4 different trajectories, which avoids introducing 716 

parameters that describe the branching process. The trajectories were chosen based on the affinity 717 

to each terminal state as estimated by CellRank (see section 'Trajectory inference and selection'). 718 

For each trajectory, the PDE reads: 719 

𝜕𝑢(𝑠, 𝑡)
𝜕𝑡

=
𝜕
𝜕𝑠

(𝐷(𝑠)  
𝜕𝑢(𝑠, 𝑡)
𝜕𝑠

) −
𝜕
𝜕𝑠

(𝑣(𝑠) 𝑢(𝑠, 𝑡)) + 𝑔(𝑠) 𝑢(𝑠, 𝑡) 720 

For the boundaries, we assumed no-flux Robin conditions, as in the original publication. To solve 721 

the PDE, we used the non-branching pseudodynamics model as compiled in MATLAB 2017b, 722 

with only one difference: we did not enforce differentiation to be 0 at the end of the trajectory 723 

which, together with the growth rates taking also negative values, accounts for the fact that the 724 

populations in our landscape are all transient and that fully mature cells are not captured by our 725 

gating strategy. The model was calibrated to the time-dependent density and total number of 726 

labelled cells only. The error was computed as variance among replicates. For each trajectory, at 727 

least 240 simulations were launched, with regularization parameters 0, 1, or 10 to penalize big 728 

differences in the splines' nodes. The solution was chosen based on the highest log-likelihood, and 729 

the regularization parameter as the highest that visually fits the data well. 730 

Differential expression analysis 731 

For the DE analysis cells were selected to match the continuous model trajectories. The shapes of 732 

differentiation and net proliferation rates were inspected for potential regions of interests and 733 

respective ranges of pseudotime values were chosen. Prior to the analysis genes with low 734 

expression were filtered out, only genes detected in more than 2.5% cells and with overall mean 735 

expression above 0.05 (data normalized with logNormCounts from the scuttle package) were 736 

included. To select genes with dynamic expression in the chosen intervals the fitGAM function 737 

followed by startVsEndTest from the TradeSeq package were used. Genes were considered 738 

significant if they showed at least FDR of 0.1 and a log2(Fold change) of at least 1. Predicted and 739 
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smoothed gene expression was used using the predictSmooth function from the same package. In 740 

heatmaps genes were clustered with hierarchical clustering using the hclust R function with default 741 

settings. Transcription factors were selected based on the gene list established in (Ravasi et al., 742 

2010), TF groups were established by cutting the tree at the level of 4. Gene enrichment was 743 

performed using GSEAPY interface to the enrichr tool (Kuleshov et al., 2016). 744 

Transplantation data analysis 745 

(Dong et al., 2020) data was integrated into the HSPC landscape analogously to the (Nestorowa et 746 

al., 2016) data integration described in section 'Embedding external datasets into the integrated 747 

HSPC landscape'. Cells in each HSPC cluster were counted and used as an input into the discrete 748 

model prediction. Day 3 data was used as the initial condition and cell abundances per cluster were 749 

predicted from day 3 to day 7. The bootstrap confidence bounds were recomputed upon 750 

substituting the initial conditions. Given that the experimental data in relevant clusters vastly 751 

exceed the model prediction bounds, we concluded that the dynamics of perturbed haematopoiesis 752 

are different from normal conditions and suggest increased differentiation. 753 
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Figure legends 791 

Figure 1. Hoxb5-Tom persistent labelling system enables time-resolved tracking of stem cells 792 

and their progeny (A) Diagram of the genetic construct used to introduce the inducible and 793 

persistent Hoxb5-Tom label in the respective mouse line. (B) Schematic of the time-course 794 

experiment analyzing Hoxb5-Tom label frequency in the indicated populations of mouse bone 795 

marrow (BM) and peripheral blood (PB). Upon tamoxifen administration, Hoxb5-expressing cells 796 

are labelled with heritable Tom expression. (C) Fractions of Tom+ cells in the HSPC 797 

subpopulations within the bone marrow at indicated time-points after label induction. Mice were 798 

analyzed at 0.5 (n=5), 1 (n=3), 2 (n=8), 3 (n=10), 5 (n=4) and 9 (n=7) months after label induction. 799 

Dots represent individual mice and bars indicate mean ± SEM. (D) Fractions of Tom+ cells in 800 

peripheral blood analyzed at the indicated time-points after label induction. Shown as mean with 801 

error bars denoting SEM of 4-32 animals. (E) Diagram portraying the concept of inferring 802 

population dynamics from heritable label propagation. The rate of label accumulation in the 803 

downstream compartments is proportional to differentiation rate between the compartments. (F) 804 

Comparison of Tie2-YFP and Hoxb5-Tom label progression displayed as relative labelling 805 

frequency between MPP or HPC-1 and HSC compartments. Red dots - Hoxb5-Tom data points, 806 

grey line - rolling average for matching Tie2-YFP data, as published previously (Barile et al., 807 

2020). (G) Diagrams portraying key population parameters together with a geometric 808 

interpretation in context of the Waddington landscape. 809 

Figure 2. Time-resolved reference HSPC landscape at single-cell level (A) Experimental 810 

design for HSPC dynamics analysis with flow cytometry and scRNA-Seq. Table indicates specific 811 

time-point and the number of mice (replicates) used Tom+ scRNA-Seq analysis, 2 mice in each 812 

time-point were used for the Tom- fraction estimation. (B) UMAP projection of the integrated 813 

HSPC scRNA-Seq landscape (all Tom+ and Tom- cells combined) with color-coded clusters. 814 

Outlier or aberrant clusters were removed for clarity (see Figure S2F,G). (C,D) Projection from B 815 

in grey, with embedded and color-coded immunophenotypic sub-populations from (Nestorowa et 816 

al., 2016) data. Up to 60 cells in each category are plotted. All cells are plotted in the Figure S4A. 817 

(E) Manual annotation of the landscape in B. Most differentiated clusters with clearly defined 818 

lineage markers are color-coded, intermediate undifferentiated states are shown in grey (Int prog), 819 

cluster containing HSCs is shown in pink. (F) Projection from B in grey, with embedded and color-820 
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coded HSCs with no detected cellular output (Childless) or contributing to haematopoiesis (Parent) 821 

following 5-FU challenge in mice (data from (Bowling et al., 2020)) (G) Projection from B in 822 

grey, with embedded and color-coded cKit+ progenitors, based on their output in lineage tracing 823 

in vitro cultures. Color-coded points correspond to cells harvested at day 2 with sufficient clonal 824 

information available at day 4 and day 6 of culture. Data from (Weinreb et al., 2020). (H) 825 

Projection from B in grey, with Hoxb5-Tom+ cells harvested at indicated time-points shown in 826 

blue. 827 

Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and Mast Cell 828 

progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - erythroid 829 

progenitors, HSC - hematopoietic stem cells, Int prog - intermediate progenitors, Ly prog - 830 

lymphoid progenitors, Meg prog - megakaryocyte progenitors, Mono/DC prog - monocyte and 831 

dendritic cells progenitors, Neu prog - neutrophil progenitors, pDC - plasmacytoid dendritic cells 832 

Figure 3. Quantitative discrete model of the HSPCs highlights progenitor-specific self-833 

renewal and differentiation properties (A) Annotated UMAP projection overlaid with PAGA 834 

graph abstraction view of the HSPC landscape. The graph shows putative transitions between 835 

clusters (related to Figure 2B). (B) The absolute number of labelled cells observed in each cluster 836 

over time displayed as a graph view from A. 4 out of 9 time-points are shown for clarity. (C) Graph 837 

abstraction view of the discrete cellular flow model. Size of the nodes is proportional to square 838 

roots of relative cluster size, node color is proportional to the residence time (log-scale), arrows 839 

indicate differentiation directions, arrow stem thickness is proportional to cell flux. Note: cluster 840 

0a is fully self-renewing and thus exhibits infinite residence time. (D) Best discrete model fit (with 841 

95% confidence intervals) for relative Tom+ label frequency in chosen clusters. Error bars indicate 842 

pooled standard error of the mean. (E) Scatter plot showing relation of pseudotime distance to 843 

differentiation rates. Only clusters 0-12 and differentiation rates greater than 10-12 are shown. 844 

Please note that in case of the transitions between clusters 4 and 8 two differentiation rates are 845 

plotted (each direction). (F) UMAP projection of the HSPC landscape, with cells color-coded by 846 

simulated time required for 1 cell to reach corresponding cluster starting from cluster 0. Please 847 

mind that the color is logarithm-scaled. (G) Simulated relative cluster size of chosen clusters 848 

following ablation of cluster 0. 849 
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Figure 4. Continuous models capture single cell growth and differentiation rates alongside 850 

their molecular state (A) Diagramatic representation of megakaryocyte trajectory analysis with 851 

pseudodynamics. Following the arrows: putative cell transitions (pseudotime kernel) were used to 852 

estimate megakaryocyte cell fate, from which megakaryocyte trajectory was isolated (dashed line). 853 

Along the pseudotime cell densities were computed for each time-point (color-coded density 854 

profiles) and analyzed using the pseudodynamics framework providing differentiation and net 855 

proliferation rate estimates for each cell. (B) (left) UMAP projection of the HSPC landscape color-856 

coded by cell fate probability of neutrophil lineage (estimated with pseudotime kernel, see A). 857 

Panels on the right show UMAP projections of isolated neutrophil trajectory color-coded by 858 

indicated parameters or gene expression. (C) Pseudodynamics fitted net proliferation parameter 859 

(red) and differentiation rate parameters (blue) along pseudotime for megakaryocyte trajectory. 860 

Vertical lines indicate the region of interest. (D) Heatmap of genes differentially expressed around 861 

the region of interest shown in C. Left columns indicate genes belonging to enriched gene 862 

categories - E2F target (FDR <10-38), G2-M checkpoint (FDR <10-24) and cell cycle (FDR <10-38). 863 

(E) Pseudodynamics fitted net proliferation (red) and differentiation rate (blue) parameters along 864 

pseudotime for neutrophil trajectory. Vertical lines indicate the region of interest. (F) Fitted gene 865 

expression values along pseudotime for neutrophil markers and two TF groups shown in (full 866 

analysis in Figure S9A). Grey, dashed line indicated differentiation rates shown in E. Gene 867 

expression was scaled around the mean. 868 

Figure 5. Growth and differentiation rates of HSPCs adapt to cellular stress conditions (A) 869 

Diagram of the experiment performed by (Dong et al., 2020) study. (B-F) UMAP projections of 870 

the HSPC landscape (grey) with embedded cells from (Dong et al., 2020) in blue. (G) Relative 871 

cluster size, data (points) and discrete model prediction (red line with 95% confidence interval) 872 

based on day 3 data from (Dong et al., 2020). Error bars indicate propagated standard error of the 873 

mean. 874 

Figure 6. The quantitative model of HSPC dynamics in the mouse bone marrow Diagram 875 

highlighting the transferable information and the model utility. 876 

Figure S1 (A) Representative flow cytometry gates used for isolation of HSPC subpopulations 877 

and Tom+ cells from mouse bone marrow. Tom labelling (red) is shown in each population 878 

compared to control cells (blue). FACS plots correspond to mouse analysed 3 months after label 879 
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induction. Relevant to Figure 1B,C. (B) Example flow cytometry plots showing Tom+ fractions in 880 

the bone marrow HSPC subpopulations from Hoxb5-Tom mice. Plots correspond to animals 881 

analyzed at 2 weeks and 9 months after label induction. Tom gate was set based on the signal from 882 

the control mice lacking the Tom label (top row). Relevant to Figure 1B, C. (C) Fractions of Tom883 
+ cells in the bone marrow, thymus, spleen and lymph nodes analyzed at the indicated time-points 884 

after label induction. Shown as mean with error bars denoting SEM of 4-32 animals. (D) Flow 885 

cytometry gating scheme for the Lin-, (Sca1+ OR cKit+) population (relevant to Figure 2 onward). 886 

Figure S2 (A) UMAP projection of the integrated HSPC scRNA-Seq landscape (all Tom+ and 887 

Tom- combined) with log-normalized expression for chosen marker genes in red. (B) Projection 888 

from A with inferred cell cycle phases. (C) Projection from A showing the HSC-score, metric 889 

correlated with the highest HSC repopulation potential. (D) Projection from A showing inferred 890 

diffusion pseudotime values for each cell. (E) Projection from A color-coded by scRNA-Seq 891 

technology used, SS2 - Smart-Seq2, 10x - 10x Genomics 3' Kit. (F) UMAP projection of the 892 

integrated scRNA-Seq landscape (all Tom+ and Tom- cells combined) prior to filtering out 893 

outlier/aberrant clusters with color-coded cluster information. After filtering cluster were 894 

renumbered in the consecutive order. (G) Projection from F with color-coded manual annotation. 895 

Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and Mast Cell 896 

progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - erythroid 897 

progenitors, HSC - hematopoietic stem cells, Hi-Mito - cluster characterized by high mitochondrial 898 

gene expression (potentially dying cells), ILC - innate lymphoid cells, Ifn-act prog - progenitors 899 

with strongly activated Interferon signature, Int prog - intermediate progenitors, Ly prog - 900 

lymphoid progenitors, Meg prog - megakaryocyte progenitors, Mono/DC prog - monocyte and 901 

dendritic cells progenitors, Myo C1 - myeloid cells with high expression of complement genes, 902 

Neu prog - neutrophil progenitors, pDC - plasmacytoid dendritic cells 903 

Figure S3 (A) UMAP projection of the integrated scRNA-Seq landscape (all Tom+ and Tom- 904 

combined) in grey with Tom- cells harvested at 269 days in blue. (B) Projection from A with each 905 

cluster color-coded according to its log2-transformed abundance ratio between Tom+ and Tom- 906 

cells. Relative abundance has been averaged across all samples for each time-point. Red indicates 907 

enrichment, white the expected value and blue depletion. For reference the cluster boundaries are 908 

visualized in the bottom right panel. 909 
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Figure S4 (A) UMAP projection of the integrated HSPC landscape (grey) with embedded 910 

immunophenotypic sub-populations (blue) from (Nestorowa et al., 2016) (B) Fraction of cells in 911 

each immunophenotypic population from A assigned to the HSPC landscape clusters. (C) UMAP 912 

projection of the integrated HSPC landscape (grey) with embedded cells from (Weinreb et al., 913 

2020) split by their progeny fate. 914 

Figure S5 (A) Best discrete model fit (with 95% confidence intervals) for relative Tom+ label 915 

frequency by cluster (normalized to cluster 0). (B) Best discrete model fit (with 95% confidence 916 

intervals) for number of Tom+ cells in cluster 0. (C) Best discrete model fit (with 95% confidence 917 

intervals) for cluster 0 size. (D) Best discrete model fit for sub-cluster sizes within cluster 0. Error 918 

bars indicate pooled standard error of the mean. 919 

Figure S6 (A) Best discrete model fit (with 95% confidence intervals) for relative cluster size 920 

(normalized to cluster 0, based on Tom- cells). (B) Total number of cells per mouse in the indicated 921 

populations normalized to the first time-point. Based on flow cytometry data from (Barile et al., 922 

2020). Error bars indicate pooled standard error of the mean. 923 

Figure S7 (A) Graph abstraction view of the dynamics model. Size of the nodes is proportional to 924 

square roots of relative cluster size, node color is proportional to net proliferation rate, arrows 925 

indicate differentiation directions, arrow thickness is proportional to cell differentiation rate (log-926 

scale). (B) Scatter plot showing relation of cluster connectivity (estimated by PAGA) to 927 

differentiation rates. Only clusters 0-12 and differentiation rates greater than 10-12 are shown. 928 

Please note that in case of the transitions between clusters 4 and 8 two differentiation rates are 929 

plotted (each direction) (C) Related to Figure 3F, the average time required for a single cell to 930 

reach corresponding cluster when initiated in cluster 0 (journey time). (D,E) Relative cluster size 931 

(normalized to cluster 0, based on Tom- cells) with the best fit for the main model (only one phase) 932 

and bi-phasic model, which permits a change in proliferation and differentiation rates after day 27. 933 

Error bars indicate pooled standard error of the mean. (F) Differentiation rates per transition for 934 

each phase of the bi-phasic model. Phase I includes the first four time-points and phase II the 935 

remaining ones. Error bars indicate 95% confidence interval. (G) Proliferation rates per cluster for 936 

each phase of the bi-phasic model. Phase I includes the first four time-points and phase II the 937 

remaining ones. Error bars indicate 95% confidence interval. (H) UMAP projection of the 938 
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integrated landscape color-coded by log-normalized expression of indicated JAK/STAT target 939 

genes (Morris et al., 2018). 940 

Figure S8 (A) UMAP projections of the HSPC landscape color-coded by cell fate probability for 941 

respective lineages (estimated with pseudotime kernel). (B) UMAP projections with cells selected 942 

for respective trajectories color-coded in blue. (C) Pseudodynamics fitted net proliferation and 943 

differentiation rate parameters along pseudotime for the megakaryocyte trajectory. Vertical lines 944 

indicate the region of interest. (D) Heatmap of TFs differentially expressed around the region of 945 

interest shown in C. (E) Pseudodynamics fitted net proliferation and differentiation rate parameters 946 

along pseudotime for the erythroid trajectory. Vertical lines indicate the region of interest. (F) 947 

Heatmap of TFs differentially expressed around the region of interest shown in E. (G) 948 

Pseudodynamics fitted net proliferation and differentiation rate parameters along pseudotime for 949 

the monocyte/dendritic cell trajectory. Vertical lines indicate the region of interest. (H) Heatmap 950 

of TFs differentially expressed around the region of interest shown in G. 951 

Figure S9 (A) Heatmap of differentially expressed TFs around the region of interest shown in 952 

Figure 4E for neutrophil trajectory. TFs are hierarchically clustered, 4 color-coded groups are 953 

plotted separately in Figures 4F and S9B, C. (B,C) Fitted gene expression values along pseudotime 954 

for neutrophil trajectory for TF groups 3 and 4, see A. (D) Fitted gene expression values along 955 

pseudotime for neutrophil trajectory for the Gfi1, Flt3, Irf8 genes. (E) UMAP projections of the 956 

integrated HSPC landscape color-coded by log-normalized expression of genes Gfi1, Flt3, Irf8 957 

genes. 958 

Figure S10 (A) Related to Figure 5. Predicted relative cluster size (red line with 95% confidence 959 

interval) based on day 3 data from (Dong et al., 2020). Observed data shown in blue. Error bars 960 

indicate propagated standard error of the mean. 961 

Figure S11 Continuous model best fits (red line) and standard deviation ranges around the mean 962 

(shaded areas) for the indicated trajectories. 963 
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Supplementary tables legends 964 

Table S1. Details of the manual annotation of the integrated HSPC landscape. Table contains 965 

the manual annotation for each cluster, indication whether the cluster was filtered out and lists of 966 

key marker genes used in the annotation process. 967 

Table S2. Oligonucleotide sequences. Table containing DNA sequences of the oligonucleotides 968 

used in this work. 969 
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